1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/ObjectUtils.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 54 #include "llvm/CodeGen/TargetFrameLowering.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetLowering.h" 57 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 58 #include "llvm/CodeGen/TargetOpcodes.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCCodePadder.h" 84 #include "llvm/MC/MCContext.h" 85 #include "llvm/MC/MCDirectives.h" 86 #include "llvm/MC/MCDwarf.h" 87 #include "llvm/MC/MCExpr.h" 88 #include "llvm/MC/MCInst.h" 89 #include "llvm/MC/MCSection.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCStreamer.h" 93 #include "llvm/MC/MCSubtargetInfo.h" 94 #include "llvm/MC/MCSymbol.h" 95 #include "llvm/MC/MCSymbolELF.h" 96 #include "llvm/MC/MCTargetOptions.h" 97 #include "llvm/MC/MCValue.h" 98 #include "llvm/MC/SectionKind.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/Format.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/Path.h" 107 #include "llvm/Support/TargetRegistry.h" 108 #include "llvm/Support/Timer.h" 109 #include "llvm/Support/raw_ostream.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cinttypes> 115 #include <cstdint> 116 #include <iterator> 117 #include <limits> 118 #include <memory> 119 #include <string> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "asm-printer" 126 127 static const char *const DWARFGroupName = "dwarf"; 128 static const char *const DWARFGroupDescription = "DWARF Emission"; 129 static const char *const DbgTimerName = "emit"; 130 static const char *const DbgTimerDescription = "Debug Info Emission"; 131 static const char *const EHTimerName = "write_exception"; 132 static const char *const EHTimerDescription = "DWARF Exception Writer"; 133 static const char *const CodeViewLineTablesGroupName = "linetables"; 134 static const char *const CodeViewLineTablesGroupDescription = 135 "CodeView Line Tables"; 136 137 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 138 139 static cl::opt<bool> 140 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 141 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 142 143 char AsmPrinter::ID = 0; 144 145 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 146 147 static gcp_map_type &getGCMap(void *&P) { 148 if (!P) 149 P = new gcp_map_type(); 150 return *(gcp_map_type*)P; 151 } 152 153 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 154 /// value in log2 form. This rounds up to the preferred alignment if possible 155 /// and legal. 156 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 157 unsigned InBits = 0) { 158 unsigned NumBits = 0; 159 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 160 NumBits = DL.getPreferredAlignmentLog(GVar); 161 162 // If InBits is specified, round it to it. 163 if (InBits > NumBits) 164 NumBits = InBits; 165 166 // If the GV has a specified alignment, take it into account. 167 if (GV->getAlignment() == 0) 168 return NumBits; 169 170 unsigned GVAlign = Log2_32(GV->getAlignment()); 171 172 // If the GVAlign is larger than NumBits, or if we are required to obey 173 // NumBits because the GV has an assigned section, obey it. 174 if (GVAlign > NumBits || GV->hasSection()) 175 NumBits = GVAlign; 176 return NumBits; 177 } 178 179 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 180 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 181 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 182 VerboseAsm = OutStreamer->isVerboseAsm(); 183 } 184 185 AsmPrinter::~AsmPrinter() { 186 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 187 188 if (GCMetadataPrinters) { 189 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 190 191 delete &GCMap; 192 GCMetadataPrinters = nullptr; 193 } 194 } 195 196 bool AsmPrinter::isPositionIndependent() const { 197 return TM.isPositionIndependent(); 198 } 199 200 /// getFunctionNumber - Return a unique ID for the current function. 201 unsigned AsmPrinter::getFunctionNumber() const { 202 return MF->getFunctionNumber(); 203 } 204 205 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 206 return *TM.getObjFileLowering(); 207 } 208 209 const DataLayout &AsmPrinter::getDataLayout() const { 210 return MMI->getModule()->getDataLayout(); 211 } 212 213 // Do not use the cached DataLayout because some client use it without a Module 214 // (llvm-dsymutil, llvm-dwarfdump). 215 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 216 217 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 218 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 219 return MF->getSubtarget<MCSubtargetInfo>(); 220 } 221 222 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 223 S.EmitInstruction(Inst, getSubtargetInfo()); 224 } 225 226 /// getCurrentSection() - Return the current section we are emitting to. 227 const MCSection *AsmPrinter::getCurrentSection() const { 228 return OutStreamer->getCurrentSectionOnly(); 229 } 230 231 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesAll(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 AU.addRequired<MachineModuleInfo>(); 235 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 236 AU.addRequired<GCModuleInfo>(); 237 AU.addRequired<MachineLoopInfo>(); 238 } 239 240 bool AsmPrinter::doInitialization(Module &M) { 241 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 242 243 // Initialize TargetLoweringObjectFile. 244 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 245 .Initialize(OutContext, TM); 246 247 OutStreamer->InitSections(false); 248 249 // Emit the version-min deplyment target directive if needed. 250 // 251 // FIXME: If we end up with a collection of these sorts of Darwin-specific 252 // or ELF-specific things, it may make sense to have a platform helper class 253 // that will work with the target helper class. For now keep it here, as the 254 // alternative is duplicated code in each of the target asm printers that 255 // use the directive, where it would need the same conditionalization 256 // anyway. 257 const Triple &TT = TM.getTargetTriple(); 258 // If there is a version specified, Major will be non-zero. 259 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 260 unsigned Major, Minor, Update; 261 MCVersionMinType VersionType; 262 if (TT.isWatchOS()) { 263 VersionType = MCVM_WatchOSVersionMin; 264 TT.getWatchOSVersion(Major, Minor, Update); 265 } else if (TT.isTvOS()) { 266 VersionType = MCVM_TvOSVersionMin; 267 TT.getiOSVersion(Major, Minor, Update); 268 } else if (TT.isMacOSX()) { 269 VersionType = MCVM_OSXVersionMin; 270 if (!TT.getMacOSXVersion(Major, Minor, Update)) 271 Major = 0; 272 } else { 273 VersionType = MCVM_IOSVersionMin; 274 TT.getiOSVersion(Major, Minor, Update); 275 } 276 if (Major != 0) 277 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 278 } 279 280 // Allow the target to emit any magic that it wants at the start of the file. 281 EmitStartOfAsmFile(M); 282 283 // Very minimal debug info. It is ignored if we emit actual debug info. If we 284 // don't, this at least helps the user find where a global came from. 285 if (MAI->hasSingleParameterDotFile()) { 286 // .file "foo.c" 287 OutStreamer->EmitFileDirective( 288 llvm::sys::path::filename(M.getSourceFileName())); 289 } 290 291 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 292 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 293 for (auto &I : *MI) 294 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 295 MP->beginAssembly(M, *MI, *this); 296 297 // Emit module-level inline asm if it exists. 298 if (!M.getModuleInlineAsm().empty()) { 299 // We're at the module level. Construct MCSubtarget from the default CPU 300 // and target triple. 301 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 302 TM.getTargetTriple().str(), TM.getTargetCPU(), 303 TM.getTargetFeatureString())); 304 OutStreamer->AddComment("Start of file scope inline assembly"); 305 OutStreamer->AddBlankLine(); 306 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 307 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 308 OutStreamer->AddComment("End of file scope inline assembly"); 309 OutStreamer->AddBlankLine(); 310 } 311 312 if (MAI->doesSupportDebugInformation()) { 313 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 314 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 315 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 316 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 317 DbgTimerName, DbgTimerDescription, 318 CodeViewLineTablesGroupName, 319 CodeViewLineTablesGroupDescription)); 320 } 321 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 322 DD = new DwarfDebug(this, &M); 323 DD->beginModule(); 324 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 325 DWARFGroupName, DWARFGroupDescription)); 326 } 327 } 328 329 switch (MAI->getExceptionHandlingType()) { 330 case ExceptionHandling::SjLj: 331 case ExceptionHandling::DwarfCFI: 332 case ExceptionHandling::ARM: 333 isCFIMoveForDebugging = true; 334 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 335 break; 336 for (auto &F: M.getFunctionList()) { 337 // If the module contains any function with unwind data, 338 // .eh_frame has to be emitted. 339 // Ignore functions that won't get emitted. 340 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 341 isCFIMoveForDebugging = false; 342 break; 343 } 344 } 345 break; 346 default: 347 isCFIMoveForDebugging = false; 348 break; 349 } 350 351 EHStreamer *ES = nullptr; 352 switch (MAI->getExceptionHandlingType()) { 353 case ExceptionHandling::None: 354 break; 355 case ExceptionHandling::SjLj: 356 case ExceptionHandling::DwarfCFI: 357 ES = new DwarfCFIException(this); 358 break; 359 case ExceptionHandling::ARM: 360 ES = new ARMException(this); 361 break; 362 case ExceptionHandling::WinEH: 363 switch (MAI->getWinEHEncodingType()) { 364 default: llvm_unreachable("unsupported unwinding information encoding"); 365 case WinEH::EncodingType::Invalid: 366 break; 367 case WinEH::EncodingType::X86: 368 case WinEH::EncodingType::Itanium: 369 ES = new WinException(this); 370 break; 371 } 372 break; 373 } 374 if (ES) 375 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 376 DWARFGroupName, DWARFGroupDescription)); 377 return false; 378 } 379 380 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 381 if (!MAI.hasWeakDefCanBeHiddenDirective()) 382 return false; 383 384 return canBeOmittedFromSymbolTable(GV); 385 } 386 387 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 388 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 389 switch (Linkage) { 390 case GlobalValue::CommonLinkage: 391 case GlobalValue::LinkOnceAnyLinkage: 392 case GlobalValue::LinkOnceODRLinkage: 393 case GlobalValue::WeakAnyLinkage: 394 case GlobalValue::WeakODRLinkage: 395 if (MAI->hasWeakDefDirective()) { 396 // .globl _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 398 399 if (!canBeHidden(GV, *MAI)) 400 // .weak_definition _foo 401 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 402 else 403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 404 } else if (MAI->hasLinkOnceDirective()) { 405 // .globl _foo 406 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 407 //NOTE: linkonce is handled by the section the symbol was assigned to. 408 } else { 409 // .weak _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 411 } 412 return; 413 case GlobalValue::ExternalLinkage: 414 // If external, declare as a global symbol: .globl _foo 415 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 416 return; 417 case GlobalValue::PrivateLinkage: 418 case GlobalValue::InternalLinkage: 419 return; 420 case GlobalValue::AppendingLinkage: 421 case GlobalValue::AvailableExternallyLinkage: 422 case GlobalValue::ExternalWeakLinkage: 423 llvm_unreachable("Should never emit this"); 424 } 425 llvm_unreachable("Unknown linkage type!"); 426 } 427 428 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 429 const GlobalValue *GV) const { 430 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 431 } 432 433 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 434 return TM.getSymbol(GV); 435 } 436 437 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 438 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 439 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 440 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 441 "No emulated TLS variables in the common section"); 442 443 // Never emit TLS variable xyz in emulated TLS model. 444 // The initialization value is in __emutls_t.xyz instead of xyz. 445 if (IsEmuTLSVar) 446 return; 447 448 if (GV->hasInitializer()) { 449 // Check to see if this is a special global used by LLVM, if so, emit it. 450 if (EmitSpecialLLVMGlobal(GV)) 451 return; 452 453 // Skip the emission of global equivalents. The symbol can be emitted later 454 // on by emitGlobalGOTEquivs in case it turns out to be needed. 455 if (GlobalGOTEquivs.count(getSymbol(GV))) 456 return; 457 458 if (isVerbose()) { 459 // When printing the control variable __emutls_v.*, 460 // we don't need to print the original TLS variable name. 461 GV->printAsOperand(OutStreamer->GetCommentOS(), 462 /*PrintType=*/false, GV->getParent()); 463 OutStreamer->GetCommentOS() << '\n'; 464 } 465 } 466 467 MCSymbol *GVSym = getSymbol(GV); 468 MCSymbol *EmittedSym = GVSym; 469 470 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 471 // attributes. 472 // GV's or GVSym's attributes will be used for the EmittedSym. 473 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 474 475 if (!GV->hasInitializer()) // External globals require no extra code. 476 return; 477 478 GVSym->redefineIfPossible(); 479 if (GVSym->isDefined() || GVSym->isVariable()) 480 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 481 "' is already defined"); 482 483 if (MAI->hasDotTypeDotSizeDirective()) 484 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 485 486 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 487 488 const DataLayout &DL = GV->getParent()->getDataLayout(); 489 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 490 491 // If the alignment is specified, we *must* obey it. Overaligning a global 492 // with a specified alignment is a prompt way to break globals emitted to 493 // sections and expected to be contiguous (e.g. ObjC metadata). 494 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 495 496 for (const HandlerInfo &HI : Handlers) { 497 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 498 HI.TimerGroupName, HI.TimerGroupDescription, 499 TimePassesIsEnabled); 500 HI.Handler->setSymbolSize(GVSym, Size); 501 } 502 503 // Handle common symbols 504 if (GVKind.isCommon()) { 505 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 506 unsigned Align = 1 << AlignLog; 507 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 508 Align = 0; 509 510 // .comm _foo, 42, 4 511 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 512 return; 513 } 514 515 // Determine to which section this global should be emitted. 516 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 517 518 // If we have a bss global going to a section that supports the 519 // zerofill directive, do so here. 520 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 521 TheSection->isVirtualSection()) { 522 if (Size == 0) 523 Size = 1; // zerofill of 0 bytes is undefined. 524 unsigned Align = 1 << AlignLog; 525 EmitLinkage(GV, GVSym); 526 // .zerofill __DATA, __bss, _foo, 400, 5 527 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 528 return; 529 } 530 531 // If this is a BSS local symbol and we are emitting in the BSS 532 // section use .lcomm/.comm directive. 533 if (GVKind.isBSSLocal() && 534 getObjFileLowering().getBSSSection() == TheSection) { 535 if (Size == 0) 536 Size = 1; // .comm Foo, 0 is undefined, avoid it. 537 unsigned Align = 1 << AlignLog; 538 539 // Use .lcomm only if it supports user-specified alignment. 540 // Otherwise, while it would still be correct to use .lcomm in some 541 // cases (e.g. when Align == 1), the external assembler might enfore 542 // some -unknown- default alignment behavior, which could cause 543 // spurious differences between external and integrated assembler. 544 // Prefer to simply fall back to .local / .comm in this case. 545 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 546 // .lcomm _foo, 42 547 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 548 return; 549 } 550 551 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 552 Align = 0; 553 554 // .local _foo 555 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 556 // .comm _foo, 42, 4 557 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 558 return; 559 } 560 561 // Handle thread local data for mach-o which requires us to output an 562 // additional structure of data and mangle the original symbol so that we 563 // can reference it later. 564 // 565 // TODO: This should become an "emit thread local global" method on TLOF. 566 // All of this macho specific stuff should be sunk down into TLOFMachO and 567 // stuff like "TLSExtraDataSection" should no longer be part of the parent 568 // TLOF class. This will also make it more obvious that stuff like 569 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 570 // specific code. 571 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 572 // Emit the .tbss symbol 573 MCSymbol *MangSym = 574 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 575 576 if (GVKind.isThreadBSS()) { 577 TheSection = getObjFileLowering().getTLSBSSSection(); 578 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 579 } else if (GVKind.isThreadData()) { 580 OutStreamer->SwitchSection(TheSection); 581 582 EmitAlignment(AlignLog, GV); 583 OutStreamer->EmitLabel(MangSym); 584 585 EmitGlobalConstant(GV->getParent()->getDataLayout(), 586 GV->getInitializer()); 587 } 588 589 OutStreamer->AddBlankLine(); 590 591 // Emit the variable struct for the runtime. 592 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 593 594 OutStreamer->SwitchSection(TLVSect); 595 // Emit the linkage here. 596 EmitLinkage(GV, GVSym); 597 OutStreamer->EmitLabel(GVSym); 598 599 // Three pointers in size: 600 // - __tlv_bootstrap - used to make sure support exists 601 // - spare pointer, used when mapped by the runtime 602 // - pointer to mangled symbol above with initializer 603 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 604 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 605 PtrSize); 606 OutStreamer->EmitIntValue(0, PtrSize); 607 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 608 609 OutStreamer->AddBlankLine(); 610 return; 611 } 612 613 MCSymbol *EmittedInitSym = GVSym; 614 615 OutStreamer->SwitchSection(TheSection); 616 617 EmitLinkage(GV, EmittedInitSym); 618 EmitAlignment(AlignLog, GV); 619 620 OutStreamer->EmitLabel(EmittedInitSym); 621 622 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 623 624 if (MAI->hasDotTypeDotSizeDirective()) 625 // .size foo, 42 626 OutStreamer->emitELFSize(EmittedInitSym, 627 MCConstantExpr::create(Size, OutContext)); 628 629 OutStreamer->AddBlankLine(); 630 } 631 632 /// Emit the directive and value for debug thread local expression 633 /// 634 /// \p Value - The value to emit. 635 /// \p Size - The size of the integer (in bytes) to emit. 636 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 637 unsigned Size) const { 638 OutStreamer->EmitValue(Value, Size); 639 } 640 641 /// EmitFunctionHeader - This method emits the header for the current 642 /// function. 643 void AsmPrinter::EmitFunctionHeader() { 644 const Function *F = MF->getFunction(); 645 646 if (isVerbose()) 647 OutStreamer->GetCommentOS() 648 << "-- Begin function " 649 << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n'; 650 651 // Print out constants referenced by the function 652 EmitConstantPool(); 653 654 // Print the 'header' of function. 655 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 656 EmitVisibility(CurrentFnSym, F->getVisibility()); 657 658 EmitLinkage(F, CurrentFnSym); 659 if (MAI->hasFunctionAlignment()) 660 EmitAlignment(MF->getAlignment(), F); 661 662 if (MAI->hasDotTypeDotSizeDirective()) 663 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 664 665 if (isVerbose()) { 666 F->printAsOperand(OutStreamer->GetCommentOS(), 667 /*PrintType=*/false, F->getParent()); 668 OutStreamer->GetCommentOS() << '\n'; 669 } 670 671 // Emit the prefix data. 672 if (F->hasPrefixData()) { 673 if (MAI->hasSubsectionsViaSymbols()) { 674 // Preserving prefix data on platforms which use subsections-via-symbols 675 // is a bit tricky. Here we introduce a symbol for the prefix data 676 // and use the .alt_entry attribute to mark the function's real entry point 677 // as an alternative entry point to the prefix-data symbol. 678 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 679 OutStreamer->EmitLabel(PrefixSym); 680 681 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 682 683 // Emit an .alt_entry directive for the actual function symbol. 684 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 685 } else { 686 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 687 } 688 } 689 690 // Emit the CurrentFnSym. This is a virtual function to allow targets to 691 // do their wild and crazy things as required. 692 EmitFunctionEntryLabel(); 693 694 // If the function had address-taken blocks that got deleted, then we have 695 // references to the dangling symbols. Emit them at the start of the function 696 // so that we don't get references to undefined symbols. 697 std::vector<MCSymbol*> DeadBlockSyms; 698 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 699 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 700 OutStreamer->AddComment("Address taken block that was later removed"); 701 OutStreamer->EmitLabel(DeadBlockSyms[i]); 702 } 703 704 if (CurrentFnBegin) { 705 if (MAI->useAssignmentForEHBegin()) { 706 MCSymbol *CurPos = OutContext.createTempSymbol(); 707 OutStreamer->EmitLabel(CurPos); 708 OutStreamer->EmitAssignment(CurrentFnBegin, 709 MCSymbolRefExpr::create(CurPos, OutContext)); 710 } else { 711 OutStreamer->EmitLabel(CurrentFnBegin); 712 } 713 } 714 715 // Emit pre-function debug and/or EH information. 716 for (const HandlerInfo &HI : Handlers) { 717 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 718 HI.TimerGroupDescription, TimePassesIsEnabled); 719 HI.Handler->beginFunction(MF); 720 } 721 722 // Emit the prologue data. 723 if (F->hasPrologueData()) 724 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 725 } 726 727 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 728 /// function. This can be overridden by targets as required to do custom stuff. 729 void AsmPrinter::EmitFunctionEntryLabel() { 730 CurrentFnSym->redefineIfPossible(); 731 732 // The function label could have already been emitted if two symbols end up 733 // conflicting due to asm renaming. Detect this and emit an error. 734 if (CurrentFnSym->isVariable()) 735 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 736 "' is a protected alias"); 737 if (CurrentFnSym->isDefined()) 738 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 739 "' label emitted multiple times to assembly file"); 740 741 return OutStreamer->EmitLabel(CurrentFnSym); 742 } 743 744 /// emitComments - Pretty-print comments for instructions. 745 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 746 AsmPrinter *AP) { 747 const MachineFunction *MF = MI.getMF(); 748 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 749 750 // Check for spills and reloads 751 int FI; 752 753 const MachineFrameInfo &MFI = MF->getFrameInfo(); 754 bool Commented = false; 755 756 // We assume a single instruction only has a spill or reload, not 757 // both. 758 const MachineMemOperand *MMO; 759 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 760 if (MFI.isSpillSlotObjectIndex(FI)) { 761 MMO = *MI.memoperands_begin(); 762 CommentOS << MMO->getSize() << "-byte Reload"; 763 Commented = true; 764 } 765 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 766 if (MFI.isSpillSlotObjectIndex(FI)) { 767 CommentOS << MMO->getSize() << "-byte Folded Reload"; 768 Commented = true; 769 } 770 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 771 if (MFI.isSpillSlotObjectIndex(FI)) { 772 MMO = *MI.memoperands_begin(); 773 CommentOS << MMO->getSize() << "-byte Spill"; 774 Commented = true; 775 } 776 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 777 if (MFI.isSpillSlotObjectIndex(FI)) { 778 CommentOS << MMO->getSize() << "-byte Folded Spill"; 779 Commented = true; 780 } 781 } 782 783 // Check for spill-induced copies 784 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 785 Commented = true; 786 CommentOS << " Reload Reuse"; 787 } 788 789 if (Commented && AP->EnablePrintSchedInfo) 790 // If any comment was added above and we need sched info comment then 791 // add this new comment just after the above comment w/o "\n" between them. 792 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 793 else if (Commented) 794 CommentOS << "\n"; 795 } 796 797 /// emitImplicitDef - This method emits the specified machine instruction 798 /// that is an implicit def. 799 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 800 unsigned RegNo = MI->getOperand(0).getReg(); 801 802 SmallString<128> Str; 803 raw_svector_ostream OS(Str); 804 OS << "implicit-def: " 805 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 806 807 OutStreamer->AddComment(OS.str()); 808 OutStreamer->AddBlankLine(); 809 } 810 811 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 812 std::string Str; 813 raw_string_ostream OS(Str); 814 OS << "kill:"; 815 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 816 const MachineOperand &Op = MI->getOperand(i); 817 assert(Op.isReg() && "KILL instruction must have only register operands"); 818 OS << ' ' << (Op.isDef() ? "def " : "killed ") 819 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 820 } 821 AP.OutStreamer->AddComment(OS.str()); 822 AP.OutStreamer->AddBlankLine(); 823 } 824 825 /// emitDebugValueComment - This method handles the target-independent form 826 /// of DBG_VALUE, returning true if it was able to do so. A false return 827 /// means the target will need to handle MI in EmitInstruction. 828 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 829 // This code handles only the 4-operand target-independent form. 830 if (MI->getNumOperands() != 4) 831 return false; 832 833 SmallString<128> Str; 834 raw_svector_ostream OS(Str); 835 OS << "DEBUG_VALUE: "; 836 837 const DILocalVariable *V = MI->getDebugVariable(); 838 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 839 StringRef Name = SP->getName(); 840 if (!Name.empty()) 841 OS << Name << ":"; 842 } 843 OS << V->getName(); 844 OS << " <- "; 845 846 // The second operand is only an offset if it's an immediate. 847 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 848 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 849 const DIExpression *Expr = MI->getDebugExpression(); 850 if (Expr->getNumElements()) { 851 OS << '['; 852 bool NeedSep = false; 853 for (auto Op : Expr->expr_ops()) { 854 if (NeedSep) 855 OS << ", "; 856 else 857 NeedSep = true; 858 OS << dwarf::OperationEncodingString(Op.getOp()); 859 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 860 OS << ' ' << Op.getArg(I); 861 } 862 OS << "] "; 863 } 864 865 // Register or immediate value. Register 0 means undef. 866 if (MI->getOperand(0).isFPImm()) { 867 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 868 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 869 OS << (double)APF.convertToFloat(); 870 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 871 OS << APF.convertToDouble(); 872 } else { 873 // There is no good way to print long double. Convert a copy to 874 // double. Ah well, it's only a comment. 875 bool ignored; 876 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 877 &ignored); 878 OS << "(long double) " << APF.convertToDouble(); 879 } 880 } else if (MI->getOperand(0).isImm()) { 881 OS << MI->getOperand(0).getImm(); 882 } else if (MI->getOperand(0).isCImm()) { 883 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 884 } else { 885 unsigned Reg; 886 if (MI->getOperand(0).isReg()) { 887 Reg = MI->getOperand(0).getReg(); 888 } else { 889 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 890 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 891 Offset += TFI->getFrameIndexReference(*AP.MF, 892 MI->getOperand(0).getIndex(), Reg); 893 MemLoc = true; 894 } 895 if (Reg == 0) { 896 // Suppress offset, it is not meaningful here. 897 OS << "undef"; 898 // NOTE: Want this comment at start of line, don't emit with AddComment. 899 AP.OutStreamer->emitRawComment(OS.str()); 900 return true; 901 } 902 if (MemLoc) 903 OS << '['; 904 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 905 } 906 907 if (MemLoc) 908 OS << '+' << Offset << ']'; 909 910 // NOTE: Want this comment at start of line, don't emit with AddComment. 911 AP.OutStreamer->emitRawComment(OS.str()); 912 return true; 913 } 914 915 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 916 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 917 MF->getFunction()->needsUnwindTableEntry()) 918 return CFI_M_EH; 919 920 if (MMI->hasDebugInfo()) 921 return CFI_M_Debug; 922 923 return CFI_M_None; 924 } 925 926 bool AsmPrinter::needsSEHMoves() { 927 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 928 } 929 930 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 931 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 932 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 933 ExceptionHandlingType != ExceptionHandling::ARM) 934 return; 935 936 if (needsCFIMoves() == CFI_M_None) 937 return; 938 939 // If there is no "real" instruction following this CFI instruction, skip 940 // emitting it; it would be beyond the end of the function's FDE range. 941 auto *MBB = MI.getParent(); 942 auto I = std::next(MI.getIterator()); 943 while (I != MBB->end() && I->isTransient()) 944 ++I; 945 if (I == MBB->instr_end() && 946 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 947 return; 948 949 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 950 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 951 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 952 emitCFIInstruction(CFI); 953 } 954 955 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 956 // The operands are the MCSymbol and the frame offset of the allocation. 957 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 958 int FrameOffset = MI.getOperand(1).getImm(); 959 960 // Emit a symbol assignment. 961 OutStreamer->EmitAssignment(FrameAllocSym, 962 MCConstantExpr::create(FrameOffset, OutContext)); 963 } 964 965 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 966 if (!MF.getTarget().Options.EmitStackSizeSection) 967 return; 968 969 MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection(); 970 if (!StackSizeSection) 971 return; 972 973 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 974 // Don't emit functions with dynamic stack allocations. 975 if (FrameInfo.hasVarSizedObjects()) 976 return; 977 978 OutStreamer->PushSection(); 979 OutStreamer->SwitchSection(StackSizeSection); 980 981 const MCSymbol *FunctionSymbol = getSymbol(MF.getFunction()); 982 uint64_t StackSize = FrameInfo.getStackSize(); 983 OutStreamer->EmitValue(MCSymbolRefExpr::create(FunctionSymbol, OutContext), 984 /* size = */ 8); 985 OutStreamer->EmitULEB128IntValue(StackSize); 986 987 OutStreamer->PopSection(); 988 } 989 990 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 991 MachineModuleInfo *MMI) { 992 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 993 return true; 994 995 // We might emit an EH table that uses function begin and end labels even if 996 // we don't have any landingpads. 997 if (!MF.getFunction()->hasPersonalityFn()) 998 return false; 999 return !isNoOpWithoutInvoke( 1000 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 1001 } 1002 1003 /// EmitFunctionBody - This method emits the body and trailer for a 1004 /// function. 1005 void AsmPrinter::EmitFunctionBody() { 1006 EmitFunctionHeader(); 1007 1008 // Emit target-specific gunk before the function body. 1009 EmitFunctionBodyStart(); 1010 1011 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1012 1013 // Print out code for the function. 1014 bool HasAnyRealCode = false; 1015 int NumInstsInFunction = 0; 1016 for (auto &MBB : *MF) { 1017 // Print a label for the basic block. 1018 EmitBasicBlockStart(MBB); 1019 for (auto &MI : MBB) { 1020 // Print the assembly for the instruction. 1021 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1022 !MI.isDebugValue()) { 1023 HasAnyRealCode = true; 1024 ++NumInstsInFunction; 1025 } 1026 1027 if (ShouldPrintDebugScopes) { 1028 for (const HandlerInfo &HI : Handlers) { 1029 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1030 HI.TimerGroupName, HI.TimerGroupDescription, 1031 TimePassesIsEnabled); 1032 HI.Handler->beginInstruction(&MI); 1033 } 1034 } 1035 1036 if (isVerbose()) 1037 emitComments(MI, OutStreamer->GetCommentOS(), this); 1038 1039 switch (MI.getOpcode()) { 1040 case TargetOpcode::CFI_INSTRUCTION: 1041 emitCFIInstruction(MI); 1042 break; 1043 case TargetOpcode::LOCAL_ESCAPE: 1044 emitFrameAlloc(MI); 1045 break; 1046 case TargetOpcode::EH_LABEL: 1047 case TargetOpcode::GC_LABEL: 1048 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1049 break; 1050 case TargetOpcode::INLINEASM: 1051 EmitInlineAsm(&MI); 1052 break; 1053 case TargetOpcode::DBG_VALUE: 1054 if (isVerbose()) { 1055 if (!emitDebugValueComment(&MI, *this)) 1056 EmitInstruction(&MI); 1057 } 1058 break; 1059 case TargetOpcode::IMPLICIT_DEF: 1060 if (isVerbose()) emitImplicitDef(&MI); 1061 break; 1062 case TargetOpcode::KILL: 1063 if (isVerbose()) emitKill(&MI, *this); 1064 break; 1065 default: 1066 EmitInstruction(&MI); 1067 break; 1068 } 1069 1070 if (ShouldPrintDebugScopes) { 1071 for (const HandlerInfo &HI : Handlers) { 1072 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1073 HI.TimerGroupName, HI.TimerGroupDescription, 1074 TimePassesIsEnabled); 1075 HI.Handler->endInstruction(); 1076 } 1077 } 1078 } 1079 1080 EmitBasicBlockEnd(MBB); 1081 } 1082 1083 EmittedInsts += NumInstsInFunction; 1084 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1085 MF->getFunction()->getSubprogram(), 1086 &MF->front()); 1087 R << ore::NV("NumInstructions", NumInstsInFunction) 1088 << " instructions in function"; 1089 ORE->emit(R); 1090 1091 // If the function is empty and the object file uses .subsections_via_symbols, 1092 // then we need to emit *something* to the function body to prevent the 1093 // labels from collapsing together. Just emit a noop. 1094 // Similarly, don't emit empty functions on Windows either. It can lead to 1095 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1096 // after linking, causing the kernel not to load the binary: 1097 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1098 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1099 const Triple &TT = TM.getTargetTriple(); 1100 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1101 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1102 MCInst Noop; 1103 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1104 1105 // Targets can opt-out of emitting the noop here by leaving the opcode 1106 // unspecified. 1107 if (Noop.getOpcode()) { 1108 OutStreamer->AddComment("avoids zero-length function"); 1109 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1110 } 1111 } 1112 1113 const Function *F = MF->getFunction(); 1114 for (const auto &BB : *F) { 1115 if (!BB.hasAddressTaken()) 1116 continue; 1117 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1118 if (Sym->isDefined()) 1119 continue; 1120 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1121 OutStreamer->EmitLabel(Sym); 1122 } 1123 1124 // Emit target-specific gunk after the function body. 1125 EmitFunctionBodyEnd(); 1126 1127 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1128 MAI->hasDotTypeDotSizeDirective()) { 1129 // Create a symbol for the end of function. 1130 CurrentFnEnd = createTempSymbol("func_end"); 1131 OutStreamer->EmitLabel(CurrentFnEnd); 1132 } 1133 1134 // If the target wants a .size directive for the size of the function, emit 1135 // it. 1136 if (MAI->hasDotTypeDotSizeDirective()) { 1137 // We can get the size as difference between the function label and the 1138 // temp label. 1139 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1140 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1141 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1142 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1143 } 1144 1145 for (const HandlerInfo &HI : Handlers) { 1146 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1147 HI.TimerGroupDescription, TimePassesIsEnabled); 1148 HI.Handler->markFunctionEnd(); 1149 } 1150 1151 // Print out jump tables referenced by the function. 1152 EmitJumpTableInfo(); 1153 1154 // Emit post-function debug and/or EH information. 1155 for (const HandlerInfo &HI : Handlers) { 1156 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1157 HI.TimerGroupDescription, TimePassesIsEnabled); 1158 HI.Handler->endFunction(MF); 1159 } 1160 1161 // Emit section containing stack size metadata. 1162 emitStackSizeSection(*MF); 1163 1164 if (isVerbose()) 1165 OutStreamer->GetCommentOS() << "-- End function\n"; 1166 1167 OutStreamer->AddBlankLine(); 1168 } 1169 1170 /// \brief Compute the number of Global Variables that uses a Constant. 1171 static unsigned getNumGlobalVariableUses(const Constant *C) { 1172 if (!C) 1173 return 0; 1174 1175 if (isa<GlobalVariable>(C)) 1176 return 1; 1177 1178 unsigned NumUses = 0; 1179 for (auto *CU : C->users()) 1180 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1181 1182 return NumUses; 1183 } 1184 1185 /// \brief Only consider global GOT equivalents if at least one user is a 1186 /// cstexpr inside an initializer of another global variables. Also, don't 1187 /// handle cstexpr inside instructions. During global variable emission, 1188 /// candidates are skipped and are emitted later in case at least one cstexpr 1189 /// isn't replaced by a PC relative GOT entry access. 1190 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1191 unsigned &NumGOTEquivUsers) { 1192 // Global GOT equivalents are unnamed private globals with a constant 1193 // pointer initializer to another global symbol. They must point to a 1194 // GlobalVariable or Function, i.e., as GlobalValue. 1195 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1196 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1197 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1198 return false; 1199 1200 // To be a got equivalent, at least one of its users need to be a constant 1201 // expression used by another global variable. 1202 for (auto *U : GV->users()) 1203 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1204 1205 return NumGOTEquivUsers > 0; 1206 } 1207 1208 /// \brief Unnamed constant global variables solely contaning a pointer to 1209 /// another globals variable is equivalent to a GOT table entry; it contains the 1210 /// the address of another symbol. Optimize it and replace accesses to these 1211 /// "GOT equivalents" by using the GOT entry for the final global instead. 1212 /// Compute GOT equivalent candidates among all global variables to avoid 1213 /// emitting them if possible later on, after it use is replaced by a GOT entry 1214 /// access. 1215 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1216 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1217 return; 1218 1219 for (const auto &G : M.globals()) { 1220 unsigned NumGOTEquivUsers = 0; 1221 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1222 continue; 1223 1224 const MCSymbol *GOTEquivSym = getSymbol(&G); 1225 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1226 } 1227 } 1228 1229 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1230 /// for PC relative GOT entry conversion, in such cases we need to emit such 1231 /// globals we previously omitted in EmitGlobalVariable. 1232 void AsmPrinter::emitGlobalGOTEquivs() { 1233 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1234 return; 1235 1236 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1237 for (auto &I : GlobalGOTEquivs) { 1238 const GlobalVariable *GV = I.second.first; 1239 unsigned Cnt = I.second.second; 1240 if (Cnt) 1241 FailedCandidates.push_back(GV); 1242 } 1243 GlobalGOTEquivs.clear(); 1244 1245 for (auto *GV : FailedCandidates) 1246 EmitGlobalVariable(GV); 1247 } 1248 1249 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1250 const GlobalIndirectSymbol& GIS) { 1251 MCSymbol *Name = getSymbol(&GIS); 1252 1253 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1254 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1255 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1256 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1257 else 1258 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1259 1260 // Set the symbol type to function if the alias has a function type. 1261 // This affects codegen when the aliasee is not a function. 1262 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1263 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1264 if (isa<GlobalIFunc>(GIS)) 1265 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1266 } 1267 1268 EmitVisibility(Name, GIS.getVisibility()); 1269 1270 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1271 1272 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1273 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1274 1275 // Emit the directives as assignments aka .set: 1276 OutStreamer->EmitAssignment(Name, Expr); 1277 1278 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1279 // If the aliasee does not correspond to a symbol in the output, i.e. the 1280 // alias is not of an object or the aliased object is private, then set the 1281 // size of the alias symbol from the type of the alias. We don't do this in 1282 // other situations as the alias and aliasee having differing types but same 1283 // size may be intentional. 1284 const GlobalObject *BaseObject = GA->getBaseObject(); 1285 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1286 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1287 const DataLayout &DL = M.getDataLayout(); 1288 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1289 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1290 } 1291 } 1292 } 1293 1294 bool AsmPrinter::doFinalization(Module &M) { 1295 // Set the MachineFunction to nullptr so that we can catch attempted 1296 // accesses to MF specific features at the module level and so that 1297 // we can conditionalize accesses based on whether or not it is nullptr. 1298 MF = nullptr; 1299 1300 // Gather all GOT equivalent globals in the module. We really need two 1301 // passes over the globals: one to compute and another to avoid its emission 1302 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1303 // where the got equivalent shows up before its use. 1304 computeGlobalGOTEquivs(M); 1305 1306 // Emit global variables. 1307 for (const auto &G : M.globals()) 1308 EmitGlobalVariable(&G); 1309 1310 // Emit remaining GOT equivalent globals. 1311 emitGlobalGOTEquivs(); 1312 1313 // Emit visibility info for declarations 1314 for (const Function &F : M) { 1315 if (!F.isDeclarationForLinker()) 1316 continue; 1317 GlobalValue::VisibilityTypes V = F.getVisibility(); 1318 if (V == GlobalValue::DefaultVisibility) 1319 continue; 1320 1321 MCSymbol *Name = getSymbol(&F); 1322 EmitVisibility(Name, V, false); 1323 } 1324 1325 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1326 1327 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1328 1329 if (TM.getTargetTriple().isOSBinFormatELF()) { 1330 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1331 1332 // Output stubs for external and common global variables. 1333 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1334 if (!Stubs.empty()) { 1335 OutStreamer->SwitchSection(TLOF.getDataSection()); 1336 const DataLayout &DL = M.getDataLayout(); 1337 1338 for (const auto &Stub : Stubs) { 1339 OutStreamer->EmitLabel(Stub.first); 1340 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1341 DL.getPointerSize()); 1342 } 1343 } 1344 } 1345 1346 // Finalize debug and EH information. 1347 for (const HandlerInfo &HI : Handlers) { 1348 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1349 HI.TimerGroupDescription, TimePassesIsEnabled); 1350 HI.Handler->endModule(); 1351 delete HI.Handler; 1352 } 1353 Handlers.clear(); 1354 DD = nullptr; 1355 1356 // If the target wants to know about weak references, print them all. 1357 if (MAI->getWeakRefDirective()) { 1358 // FIXME: This is not lazy, it would be nice to only print weak references 1359 // to stuff that is actually used. Note that doing so would require targets 1360 // to notice uses in operands (due to constant exprs etc). This should 1361 // happen with the MC stuff eventually. 1362 1363 // Print out module-level global objects here. 1364 for (const auto &GO : M.global_objects()) { 1365 if (!GO.hasExternalWeakLinkage()) 1366 continue; 1367 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1368 } 1369 } 1370 1371 OutStreamer->AddBlankLine(); 1372 1373 // Print aliases in topological order, that is, for each alias a = b, 1374 // b must be printed before a. 1375 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1376 // such an order to generate correct TOC information. 1377 SmallVector<const GlobalAlias *, 16> AliasStack; 1378 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1379 for (const auto &Alias : M.aliases()) { 1380 for (const GlobalAlias *Cur = &Alias; Cur; 1381 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1382 if (!AliasVisited.insert(Cur).second) 1383 break; 1384 AliasStack.push_back(Cur); 1385 } 1386 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1387 emitGlobalIndirectSymbol(M, *AncestorAlias); 1388 AliasStack.clear(); 1389 } 1390 for (const auto &IFunc : M.ifuncs()) 1391 emitGlobalIndirectSymbol(M, IFunc); 1392 1393 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1394 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1395 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1396 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1397 MP->finishAssembly(M, *MI, *this); 1398 1399 // Emit llvm.ident metadata in an '.ident' directive. 1400 EmitModuleIdents(M); 1401 1402 // Emit __morestack address if needed for indirect calls. 1403 if (MMI->usesMorestackAddr()) { 1404 unsigned Align = 1; 1405 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1406 getDataLayout(), SectionKind::getReadOnly(), 1407 /*C=*/nullptr, Align); 1408 OutStreamer->SwitchSection(ReadOnlySection); 1409 1410 MCSymbol *AddrSymbol = 1411 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1412 OutStreamer->EmitLabel(AddrSymbol); 1413 1414 unsigned PtrSize = MAI->getCodePointerSize(); 1415 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1416 PtrSize); 1417 } 1418 1419 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1420 // split-stack is used. 1421 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1422 OutStreamer->SwitchSection( 1423 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1424 if (MMI->hasNosplitStack()) 1425 OutStreamer->SwitchSection( 1426 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1427 } 1428 1429 // If we don't have any trampolines, then we don't require stack memory 1430 // to be executable. Some targets have a directive to declare this. 1431 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1432 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1433 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1434 OutStreamer->SwitchSection(S); 1435 1436 // Allow the target to emit any magic that it wants at the end of the file, 1437 // after everything else has gone out. 1438 EmitEndOfAsmFile(M); 1439 1440 MMI = nullptr; 1441 1442 OutStreamer->Finish(); 1443 OutStreamer->reset(); 1444 1445 return false; 1446 } 1447 1448 MCSymbol *AsmPrinter::getCurExceptionSym() { 1449 if (!CurExceptionSym) 1450 CurExceptionSym = createTempSymbol("exception"); 1451 return CurExceptionSym; 1452 } 1453 1454 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1455 this->MF = &MF; 1456 // Get the function symbol. 1457 CurrentFnSym = getSymbol(MF.getFunction()); 1458 CurrentFnSymForSize = CurrentFnSym; 1459 CurrentFnBegin = nullptr; 1460 CurExceptionSym = nullptr; 1461 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1462 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1463 CurrentFnBegin = createTempSymbol("func_begin"); 1464 if (NeedsLocalForSize) 1465 CurrentFnSymForSize = CurrentFnBegin; 1466 } 1467 1468 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1469 LI = &getAnalysis<MachineLoopInfo>(); 1470 1471 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1472 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1473 ? PrintSchedule 1474 : STI.supportPrintSchedInfo(); 1475 } 1476 1477 namespace { 1478 1479 // Keep track the alignment, constpool entries per Section. 1480 struct SectionCPs { 1481 MCSection *S; 1482 unsigned Alignment; 1483 SmallVector<unsigned, 4> CPEs; 1484 1485 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1486 }; 1487 1488 } // end anonymous namespace 1489 1490 /// EmitConstantPool - Print to the current output stream assembly 1491 /// representations of the constants in the constant pool MCP. This is 1492 /// used to print out constants which have been "spilled to memory" by 1493 /// the code generator. 1494 void AsmPrinter::EmitConstantPool() { 1495 const MachineConstantPool *MCP = MF->getConstantPool(); 1496 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1497 if (CP.empty()) return; 1498 1499 // Calculate sections for constant pool entries. We collect entries to go into 1500 // the same section together to reduce amount of section switch statements. 1501 SmallVector<SectionCPs, 4> CPSections; 1502 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1503 const MachineConstantPoolEntry &CPE = CP[i]; 1504 unsigned Align = CPE.getAlignment(); 1505 1506 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1507 1508 const Constant *C = nullptr; 1509 if (!CPE.isMachineConstantPoolEntry()) 1510 C = CPE.Val.ConstVal; 1511 1512 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1513 Kind, C, Align); 1514 1515 // The number of sections are small, just do a linear search from the 1516 // last section to the first. 1517 bool Found = false; 1518 unsigned SecIdx = CPSections.size(); 1519 while (SecIdx != 0) { 1520 if (CPSections[--SecIdx].S == S) { 1521 Found = true; 1522 break; 1523 } 1524 } 1525 if (!Found) { 1526 SecIdx = CPSections.size(); 1527 CPSections.push_back(SectionCPs(S, Align)); 1528 } 1529 1530 if (Align > CPSections[SecIdx].Alignment) 1531 CPSections[SecIdx].Alignment = Align; 1532 CPSections[SecIdx].CPEs.push_back(i); 1533 } 1534 1535 // Now print stuff into the calculated sections. 1536 const MCSection *CurSection = nullptr; 1537 unsigned Offset = 0; 1538 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1539 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1540 unsigned CPI = CPSections[i].CPEs[j]; 1541 MCSymbol *Sym = GetCPISymbol(CPI); 1542 if (!Sym->isUndefined()) 1543 continue; 1544 1545 if (CurSection != CPSections[i].S) { 1546 OutStreamer->SwitchSection(CPSections[i].S); 1547 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1548 CurSection = CPSections[i].S; 1549 Offset = 0; 1550 } 1551 1552 MachineConstantPoolEntry CPE = CP[CPI]; 1553 1554 // Emit inter-object padding for alignment. 1555 unsigned AlignMask = CPE.getAlignment() - 1; 1556 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1557 OutStreamer->EmitZeros(NewOffset - Offset); 1558 1559 Type *Ty = CPE.getType(); 1560 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1561 1562 OutStreamer->EmitLabel(Sym); 1563 if (CPE.isMachineConstantPoolEntry()) 1564 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1565 else 1566 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1567 } 1568 } 1569 } 1570 1571 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1572 /// by the current function to the current output stream. 1573 void AsmPrinter::EmitJumpTableInfo() { 1574 const DataLayout &DL = MF->getDataLayout(); 1575 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1576 if (!MJTI) return; 1577 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1578 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1579 if (JT.empty()) return; 1580 1581 // Pick the directive to use to print the jump table entries, and switch to 1582 // the appropriate section. 1583 const Function *F = MF->getFunction(); 1584 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1585 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1586 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1587 *F); 1588 if (JTInDiffSection) { 1589 // Drop it in the readonly section. 1590 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1591 OutStreamer->SwitchSection(ReadOnlySection); 1592 } 1593 1594 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1595 1596 // Jump tables in code sections are marked with a data_region directive 1597 // where that's supported. 1598 if (!JTInDiffSection) 1599 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1600 1601 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1602 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1603 1604 // If this jump table was deleted, ignore it. 1605 if (JTBBs.empty()) continue; 1606 1607 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1608 /// emit a .set directive for each unique entry. 1609 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1610 MAI->doesSetDirectiveSuppressReloc()) { 1611 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1612 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1613 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1614 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1615 const MachineBasicBlock *MBB = JTBBs[ii]; 1616 if (!EmittedSets.insert(MBB).second) 1617 continue; 1618 1619 // .set LJTSet, LBB32-base 1620 const MCExpr *LHS = 1621 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1622 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1623 MCBinaryExpr::createSub(LHS, Base, 1624 OutContext)); 1625 } 1626 } 1627 1628 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1629 // before each jump table. The first label is never referenced, but tells 1630 // the assembler and linker the extents of the jump table object. The 1631 // second label is actually referenced by the code. 1632 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1633 // FIXME: This doesn't have to have any specific name, just any randomly 1634 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1635 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1636 1637 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1638 1639 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1640 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1641 } 1642 if (!JTInDiffSection) 1643 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1644 } 1645 1646 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1647 /// current stream. 1648 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1649 const MachineBasicBlock *MBB, 1650 unsigned UID) const { 1651 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1652 const MCExpr *Value = nullptr; 1653 switch (MJTI->getEntryKind()) { 1654 case MachineJumpTableInfo::EK_Inline: 1655 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1656 case MachineJumpTableInfo::EK_Custom32: 1657 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1658 MJTI, MBB, UID, OutContext); 1659 break; 1660 case MachineJumpTableInfo::EK_BlockAddress: 1661 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1662 // .word LBB123 1663 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1664 break; 1665 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1666 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1667 // with a relocation as gp-relative, e.g.: 1668 // .gprel32 LBB123 1669 MCSymbol *MBBSym = MBB->getSymbol(); 1670 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1671 return; 1672 } 1673 1674 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1675 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1676 // with a relocation as gp-relative, e.g.: 1677 // .gpdword LBB123 1678 MCSymbol *MBBSym = MBB->getSymbol(); 1679 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1680 return; 1681 } 1682 1683 case MachineJumpTableInfo::EK_LabelDifference32: { 1684 // Each entry is the address of the block minus the address of the jump 1685 // table. This is used for PIC jump tables where gprel32 is not supported. 1686 // e.g.: 1687 // .word LBB123 - LJTI1_2 1688 // If the .set directive avoids relocations, this is emitted as: 1689 // .set L4_5_set_123, LBB123 - LJTI1_2 1690 // .word L4_5_set_123 1691 if (MAI->doesSetDirectiveSuppressReloc()) { 1692 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1693 OutContext); 1694 break; 1695 } 1696 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1697 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1698 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1699 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1700 break; 1701 } 1702 } 1703 1704 assert(Value && "Unknown entry kind!"); 1705 1706 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1707 OutStreamer->EmitValue(Value, EntrySize); 1708 } 1709 1710 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1711 /// special global used by LLVM. If so, emit it and return true, otherwise 1712 /// do nothing and return false. 1713 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1714 if (GV->getName() == "llvm.used") { 1715 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1716 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1717 return true; 1718 } 1719 1720 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1721 if (GV->getSection() == "llvm.metadata" || 1722 GV->hasAvailableExternallyLinkage()) 1723 return true; 1724 1725 if (!GV->hasAppendingLinkage()) return false; 1726 1727 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1728 1729 if (GV->getName() == "llvm.global_ctors") { 1730 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1731 /* isCtor */ true); 1732 1733 return true; 1734 } 1735 1736 if (GV->getName() == "llvm.global_dtors") { 1737 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1738 /* isCtor */ false); 1739 1740 return true; 1741 } 1742 1743 report_fatal_error("unknown special variable"); 1744 } 1745 1746 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1747 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1748 /// is true, as being used with this directive. 1749 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1750 // Should be an array of 'i8*'. 1751 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1752 const GlobalValue *GV = 1753 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1754 if (GV) 1755 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1756 } 1757 } 1758 1759 namespace { 1760 1761 struct Structor { 1762 int Priority = 0; 1763 Constant *Func = nullptr; 1764 GlobalValue *ComdatKey = nullptr; 1765 1766 Structor() = default; 1767 }; 1768 1769 } // end anonymous namespace 1770 1771 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1772 /// priority. 1773 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1774 bool isCtor) { 1775 // Should be an array of '{ int, void ()* }' structs. The first value is the 1776 // init priority. 1777 if (!isa<ConstantArray>(List)) return; 1778 1779 // Sanity check the structors list. 1780 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1781 if (!InitList) return; // Not an array! 1782 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1783 // FIXME: Only allow the 3-field form in LLVM 4.0. 1784 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1785 return; // Not an array of two or three elements! 1786 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1787 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1788 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1789 return; // Not (int, ptr, ptr). 1790 1791 // Gather the structors in a form that's convenient for sorting by priority. 1792 SmallVector<Structor, 8> Structors; 1793 for (Value *O : InitList->operands()) { 1794 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1795 if (!CS) continue; // Malformed. 1796 if (CS->getOperand(1)->isNullValue()) 1797 break; // Found a null terminator, skip the rest. 1798 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1799 if (!Priority) continue; // Malformed. 1800 Structors.push_back(Structor()); 1801 Structor &S = Structors.back(); 1802 S.Priority = Priority->getLimitedValue(65535); 1803 S.Func = CS->getOperand(1); 1804 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1805 S.ComdatKey = 1806 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1807 } 1808 1809 // Emit the function pointers in the target-specific order 1810 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1811 std::stable_sort(Structors.begin(), Structors.end(), 1812 [](const Structor &L, 1813 const Structor &R) { return L.Priority < R.Priority; }); 1814 for (Structor &S : Structors) { 1815 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1816 const MCSymbol *KeySym = nullptr; 1817 if (GlobalValue *GV = S.ComdatKey) { 1818 if (GV->isDeclarationForLinker()) 1819 // If the associated variable is not defined in this module 1820 // (it might be available_externally, or have been an 1821 // available_externally definition that was dropped by the 1822 // EliminateAvailableExternally pass), some other TU 1823 // will provide its dynamic initializer. 1824 continue; 1825 1826 KeySym = getSymbol(GV); 1827 } 1828 MCSection *OutputSection = 1829 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1830 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1831 OutStreamer->SwitchSection(OutputSection); 1832 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1833 EmitAlignment(Align); 1834 EmitXXStructor(DL, S.Func); 1835 } 1836 } 1837 1838 void AsmPrinter::EmitModuleIdents(Module &M) { 1839 if (!MAI->hasIdentDirective()) 1840 return; 1841 1842 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1843 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1844 const MDNode *N = NMD->getOperand(i); 1845 assert(N->getNumOperands() == 1 && 1846 "llvm.ident metadata entry can have only one operand"); 1847 const MDString *S = cast<MDString>(N->getOperand(0)); 1848 OutStreamer->EmitIdent(S->getString()); 1849 } 1850 } 1851 } 1852 1853 //===--------------------------------------------------------------------===// 1854 // Emission and print routines 1855 // 1856 1857 /// EmitInt8 - Emit a byte directive and value. 1858 /// 1859 void AsmPrinter::EmitInt8(int Value) const { 1860 OutStreamer->EmitIntValue(Value, 1); 1861 } 1862 1863 /// EmitInt16 - Emit a short directive and value. 1864 void AsmPrinter::EmitInt16(int Value) const { 1865 OutStreamer->EmitIntValue(Value, 2); 1866 } 1867 1868 /// EmitInt32 - Emit a long directive and value. 1869 void AsmPrinter::EmitInt32(int Value) const { 1870 OutStreamer->EmitIntValue(Value, 4); 1871 } 1872 1873 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1874 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1875 /// .set if it avoids relocations. 1876 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1877 unsigned Size) const { 1878 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1879 } 1880 1881 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1882 /// where the size in bytes of the directive is specified by Size and Label 1883 /// specifies the label. This implicitly uses .set if it is available. 1884 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1885 unsigned Size, 1886 bool IsSectionRelative) const { 1887 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1888 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1889 if (Size > 4) 1890 OutStreamer->EmitZeros(Size - 4); 1891 return; 1892 } 1893 1894 // Emit Label+Offset (or just Label if Offset is zero) 1895 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1896 if (Offset) 1897 Expr = MCBinaryExpr::createAdd( 1898 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1899 1900 OutStreamer->EmitValue(Expr, Size); 1901 } 1902 1903 //===----------------------------------------------------------------------===// 1904 1905 // EmitAlignment - Emit an alignment directive to the specified power of 1906 // two boundary. For example, if you pass in 3 here, you will get an 8 1907 // byte alignment. If a global value is specified, and if that global has 1908 // an explicit alignment requested, it will override the alignment request 1909 // if required for correctness. 1910 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1911 if (GV) 1912 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1913 1914 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1915 1916 assert(NumBits < 1917 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1918 "undefined behavior"); 1919 if (getCurrentSection()->getKind().isText()) 1920 OutStreamer->EmitCodeAlignment(1u << NumBits); 1921 else 1922 OutStreamer->EmitValueToAlignment(1u << NumBits); 1923 } 1924 1925 //===----------------------------------------------------------------------===// 1926 // Constant emission. 1927 //===----------------------------------------------------------------------===// 1928 1929 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1930 MCContext &Ctx = OutContext; 1931 1932 if (CV->isNullValue() || isa<UndefValue>(CV)) 1933 return MCConstantExpr::create(0, Ctx); 1934 1935 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1936 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1937 1938 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1939 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1940 1941 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1942 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1943 1944 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1945 if (!CE) { 1946 llvm_unreachable("Unknown constant value to lower!"); 1947 } 1948 1949 switch (CE->getOpcode()) { 1950 default: 1951 // If the code isn't optimized, there may be outstanding folding 1952 // opportunities. Attempt to fold the expression using DataLayout as a 1953 // last resort before giving up. 1954 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1955 if (C != CE) 1956 return lowerConstant(C); 1957 1958 // Otherwise report the problem to the user. 1959 { 1960 std::string S; 1961 raw_string_ostream OS(S); 1962 OS << "Unsupported expression in static initializer: "; 1963 CE->printAsOperand(OS, /*PrintType=*/false, 1964 !MF ? nullptr : MF->getFunction()->getParent()); 1965 report_fatal_error(OS.str()); 1966 } 1967 case Instruction::GetElementPtr: { 1968 // Generate a symbolic expression for the byte address 1969 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1970 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1971 1972 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1973 if (!OffsetAI) 1974 return Base; 1975 1976 int64_t Offset = OffsetAI.getSExtValue(); 1977 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1978 Ctx); 1979 } 1980 1981 case Instruction::Trunc: 1982 // We emit the value and depend on the assembler to truncate the generated 1983 // expression properly. This is important for differences between 1984 // blockaddress labels. Since the two labels are in the same function, it 1985 // is reasonable to treat their delta as a 32-bit value. 1986 LLVM_FALLTHROUGH; 1987 case Instruction::BitCast: 1988 return lowerConstant(CE->getOperand(0)); 1989 1990 case Instruction::IntToPtr: { 1991 const DataLayout &DL = getDataLayout(); 1992 1993 // Handle casts to pointers by changing them into casts to the appropriate 1994 // integer type. This promotes constant folding and simplifies this code. 1995 Constant *Op = CE->getOperand(0); 1996 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1997 false/*ZExt*/); 1998 return lowerConstant(Op); 1999 } 2000 2001 case Instruction::PtrToInt: { 2002 const DataLayout &DL = getDataLayout(); 2003 2004 // Support only foldable casts to/from pointers that can be eliminated by 2005 // changing the pointer to the appropriately sized integer type. 2006 Constant *Op = CE->getOperand(0); 2007 Type *Ty = CE->getType(); 2008 2009 const MCExpr *OpExpr = lowerConstant(Op); 2010 2011 // We can emit the pointer value into this slot if the slot is an 2012 // integer slot equal to the size of the pointer. 2013 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2014 return OpExpr; 2015 2016 // Otherwise the pointer is smaller than the resultant integer, mask off 2017 // the high bits so we are sure to get a proper truncation if the input is 2018 // a constant expr. 2019 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2020 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2021 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2022 } 2023 2024 case Instruction::Sub: { 2025 GlobalValue *LHSGV; 2026 APInt LHSOffset; 2027 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2028 getDataLayout())) { 2029 GlobalValue *RHSGV; 2030 APInt RHSOffset; 2031 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2032 getDataLayout())) { 2033 const MCExpr *RelocExpr = 2034 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2035 if (!RelocExpr) 2036 RelocExpr = MCBinaryExpr::createSub( 2037 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2038 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2039 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2040 if (Addend != 0) 2041 RelocExpr = MCBinaryExpr::createAdd( 2042 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2043 return RelocExpr; 2044 } 2045 } 2046 } 2047 // else fallthrough 2048 2049 // The MC library also has a right-shift operator, but it isn't consistently 2050 // signed or unsigned between different targets. 2051 case Instruction::Add: 2052 case Instruction::Mul: 2053 case Instruction::SDiv: 2054 case Instruction::SRem: 2055 case Instruction::Shl: 2056 case Instruction::And: 2057 case Instruction::Or: 2058 case Instruction::Xor: { 2059 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2060 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2061 switch (CE->getOpcode()) { 2062 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2063 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2064 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2065 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2066 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2067 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2068 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2069 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2070 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2071 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2072 } 2073 } 2074 } 2075 } 2076 2077 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2078 AsmPrinter &AP, 2079 const Constant *BaseCV = nullptr, 2080 uint64_t Offset = 0); 2081 2082 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2083 2084 /// isRepeatedByteSequence - Determine whether the given value is 2085 /// composed of a repeated sequence of identical bytes and return the 2086 /// byte value. If it is not a repeated sequence, return -1. 2087 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2088 StringRef Data = V->getRawDataValues(); 2089 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2090 char C = Data[0]; 2091 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2092 if (Data[i] != C) return -1; 2093 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2094 } 2095 2096 /// isRepeatedByteSequence - Determine whether the given value is 2097 /// composed of a repeated sequence of identical bytes and return the 2098 /// byte value. If it is not a repeated sequence, return -1. 2099 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2100 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2101 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2102 assert(Size % 8 == 0); 2103 2104 // Extend the element to take zero padding into account. 2105 APInt Value = CI->getValue().zextOrSelf(Size); 2106 if (!Value.isSplat(8)) 2107 return -1; 2108 2109 return Value.zextOrTrunc(8).getZExtValue(); 2110 } 2111 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2112 // Make sure all array elements are sequences of the same repeated 2113 // byte. 2114 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2115 Constant *Op0 = CA->getOperand(0); 2116 int Byte = isRepeatedByteSequence(Op0, DL); 2117 if (Byte == -1) 2118 return -1; 2119 2120 // All array elements must be equal. 2121 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2122 if (CA->getOperand(i) != Op0) 2123 return -1; 2124 return Byte; 2125 } 2126 2127 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2128 return isRepeatedByteSequence(CDS); 2129 2130 return -1; 2131 } 2132 2133 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2134 const ConstantDataSequential *CDS, 2135 AsmPrinter &AP) { 2136 // See if we can aggregate this into a .fill, if so, emit it as such. 2137 int Value = isRepeatedByteSequence(CDS, DL); 2138 if (Value != -1) { 2139 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2140 // Don't emit a 1-byte object as a .fill. 2141 if (Bytes > 1) 2142 return AP.OutStreamer->emitFill(Bytes, Value); 2143 } 2144 2145 // If this can be emitted with .ascii/.asciz, emit it as such. 2146 if (CDS->isString()) 2147 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2148 2149 // Otherwise, emit the values in successive locations. 2150 unsigned ElementByteSize = CDS->getElementByteSize(); 2151 if (isa<IntegerType>(CDS->getElementType())) { 2152 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2153 if (AP.isVerbose()) 2154 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2155 CDS->getElementAsInteger(i)); 2156 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2157 ElementByteSize); 2158 } 2159 } else { 2160 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2161 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2162 } 2163 2164 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2165 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2166 CDS->getNumElements(); 2167 if (unsigned Padding = Size - EmittedSize) 2168 AP.OutStreamer->EmitZeros(Padding); 2169 } 2170 2171 static void emitGlobalConstantArray(const DataLayout &DL, 2172 const ConstantArray *CA, AsmPrinter &AP, 2173 const Constant *BaseCV, uint64_t Offset) { 2174 // See if we can aggregate some values. Make sure it can be 2175 // represented as a series of bytes of the constant value. 2176 int Value = isRepeatedByteSequence(CA, DL); 2177 2178 if (Value != -1) { 2179 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2180 AP.OutStreamer->emitFill(Bytes, Value); 2181 } 2182 else { 2183 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2184 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2185 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2186 } 2187 } 2188 } 2189 2190 static void emitGlobalConstantVector(const DataLayout &DL, 2191 const ConstantVector *CV, AsmPrinter &AP) { 2192 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2193 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2194 2195 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2196 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2197 CV->getType()->getNumElements(); 2198 if (unsigned Padding = Size - EmittedSize) 2199 AP.OutStreamer->EmitZeros(Padding); 2200 } 2201 2202 static void emitGlobalConstantStruct(const DataLayout &DL, 2203 const ConstantStruct *CS, AsmPrinter &AP, 2204 const Constant *BaseCV, uint64_t Offset) { 2205 // Print the fields in successive locations. Pad to align if needed! 2206 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2207 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2208 uint64_t SizeSoFar = 0; 2209 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2210 const Constant *Field = CS->getOperand(i); 2211 2212 // Print the actual field value. 2213 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2214 2215 // Check if padding is needed and insert one or more 0s. 2216 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2217 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2218 - Layout->getElementOffset(i)) - FieldSize; 2219 SizeSoFar += FieldSize + PadSize; 2220 2221 // Insert padding - this may include padding to increase the size of the 2222 // current field up to the ABI size (if the struct is not packed) as well 2223 // as padding to ensure that the next field starts at the right offset. 2224 AP.OutStreamer->EmitZeros(PadSize); 2225 } 2226 assert(SizeSoFar == Layout->getSizeInBytes() && 2227 "Layout of constant struct may be incorrect!"); 2228 } 2229 2230 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2231 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2232 2233 // First print a comment with what we think the original floating-point value 2234 // should have been. 2235 if (AP.isVerbose()) { 2236 SmallString<8> StrVal; 2237 CFP->getValueAPF().toString(StrVal); 2238 2239 if (CFP->getType()) 2240 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2241 else 2242 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2243 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2244 } 2245 2246 // Now iterate through the APInt chunks, emitting them in endian-correct 2247 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2248 // floats). 2249 unsigned NumBytes = API.getBitWidth() / 8; 2250 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2251 const uint64_t *p = API.getRawData(); 2252 2253 // PPC's long double has odd notions of endianness compared to how LLVM 2254 // handles it: p[0] goes first for *big* endian on PPC. 2255 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2256 int Chunk = API.getNumWords() - 1; 2257 2258 if (TrailingBytes) 2259 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2260 2261 for (; Chunk >= 0; --Chunk) 2262 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2263 } else { 2264 unsigned Chunk; 2265 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2266 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2267 2268 if (TrailingBytes) 2269 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2270 } 2271 2272 // Emit the tail padding for the long double. 2273 const DataLayout &DL = AP.getDataLayout(); 2274 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2275 DL.getTypeStoreSize(CFP->getType())); 2276 } 2277 2278 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2279 const DataLayout &DL = AP.getDataLayout(); 2280 unsigned BitWidth = CI->getBitWidth(); 2281 2282 // Copy the value as we may massage the layout for constants whose bit width 2283 // is not a multiple of 64-bits. 2284 APInt Realigned(CI->getValue()); 2285 uint64_t ExtraBits = 0; 2286 unsigned ExtraBitsSize = BitWidth & 63; 2287 2288 if (ExtraBitsSize) { 2289 // The bit width of the data is not a multiple of 64-bits. 2290 // The extra bits are expected to be at the end of the chunk of the memory. 2291 // Little endian: 2292 // * Nothing to be done, just record the extra bits to emit. 2293 // Big endian: 2294 // * Record the extra bits to emit. 2295 // * Realign the raw data to emit the chunks of 64-bits. 2296 if (DL.isBigEndian()) { 2297 // Basically the structure of the raw data is a chunk of 64-bits cells: 2298 // 0 1 BitWidth / 64 2299 // [chunk1][chunk2] ... [chunkN]. 2300 // The most significant chunk is chunkN and it should be emitted first. 2301 // However, due to the alignment issue chunkN contains useless bits. 2302 // Realign the chunks so that they contain only useless information: 2303 // ExtraBits 0 1 (BitWidth / 64) - 1 2304 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2305 ExtraBits = Realigned.getRawData()[0] & 2306 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2307 Realigned.lshrInPlace(ExtraBitsSize); 2308 } else 2309 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2310 } 2311 2312 // We don't expect assemblers to support integer data directives 2313 // for more than 64 bits, so we emit the data in at most 64-bit 2314 // quantities at a time. 2315 const uint64_t *RawData = Realigned.getRawData(); 2316 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2317 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2318 AP.OutStreamer->EmitIntValue(Val, 8); 2319 } 2320 2321 if (ExtraBitsSize) { 2322 // Emit the extra bits after the 64-bits chunks. 2323 2324 // Emit a directive that fills the expected size. 2325 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2326 Size -= (BitWidth / 64) * 8; 2327 assert(Size && Size * 8 >= ExtraBitsSize && 2328 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2329 == ExtraBits && "Directive too small for extra bits."); 2330 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2331 } 2332 } 2333 2334 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2335 /// equivalent global, by a target specific GOT pc relative access to the 2336 /// final symbol. 2337 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2338 const Constant *BaseCst, 2339 uint64_t Offset) { 2340 // The global @foo below illustrates a global that uses a got equivalent. 2341 // 2342 // @bar = global i32 42 2343 // @gotequiv = private unnamed_addr constant i32* @bar 2344 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2345 // i64 ptrtoint (i32* @foo to i64)) 2346 // to i32) 2347 // 2348 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2349 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2350 // form: 2351 // 2352 // foo = cstexpr, where 2353 // cstexpr := <gotequiv> - "." + <cst> 2354 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2355 // 2356 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2357 // 2358 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2359 // gotpcrelcst := <offset from @foo base> + <cst> 2360 MCValue MV; 2361 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2362 return; 2363 const MCSymbolRefExpr *SymA = MV.getSymA(); 2364 if (!SymA) 2365 return; 2366 2367 // Check that GOT equivalent symbol is cached. 2368 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2369 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2370 return; 2371 2372 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2373 if (!BaseGV) 2374 return; 2375 2376 // Check for a valid base symbol 2377 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2378 const MCSymbolRefExpr *SymB = MV.getSymB(); 2379 2380 if (!SymB || BaseSym != &SymB->getSymbol()) 2381 return; 2382 2383 // Make sure to match: 2384 // 2385 // gotpcrelcst := <offset from @foo base> + <cst> 2386 // 2387 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2388 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2389 // if the target knows how to encode it. 2390 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2391 if (GOTPCRelCst < 0) 2392 return; 2393 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2394 return; 2395 2396 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2397 // 2398 // bar: 2399 // .long 42 2400 // gotequiv: 2401 // .quad bar 2402 // foo: 2403 // .long gotequiv - "." + <cst> 2404 // 2405 // is replaced by the target specific equivalent to: 2406 // 2407 // bar: 2408 // .long 42 2409 // foo: 2410 // .long bar@GOTPCREL+<gotpcrelcst> 2411 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2412 const GlobalVariable *GV = Result.first; 2413 int NumUses = (int)Result.second; 2414 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2415 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2416 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2417 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2418 2419 // Update GOT equivalent usage information 2420 --NumUses; 2421 if (NumUses >= 0) 2422 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2423 } 2424 2425 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2426 AsmPrinter &AP, const Constant *BaseCV, 2427 uint64_t Offset) { 2428 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2429 2430 // Globals with sub-elements such as combinations of arrays and structs 2431 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2432 // constant symbol base and the current position with BaseCV and Offset. 2433 if (!BaseCV && CV->hasOneUse()) 2434 BaseCV = dyn_cast<Constant>(CV->user_back()); 2435 2436 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2437 return AP.OutStreamer->EmitZeros(Size); 2438 2439 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2440 switch (Size) { 2441 case 1: 2442 case 2: 2443 case 4: 2444 case 8: 2445 if (AP.isVerbose()) 2446 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2447 CI->getZExtValue()); 2448 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2449 return; 2450 default: 2451 emitGlobalConstantLargeInt(CI, AP); 2452 return; 2453 } 2454 } 2455 2456 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2457 return emitGlobalConstantFP(CFP, AP); 2458 2459 if (isa<ConstantPointerNull>(CV)) { 2460 AP.OutStreamer->EmitIntValue(0, Size); 2461 return; 2462 } 2463 2464 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2465 return emitGlobalConstantDataSequential(DL, CDS, AP); 2466 2467 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2468 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2469 2470 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2471 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2472 2473 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2474 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2475 // vectors). 2476 if (CE->getOpcode() == Instruction::BitCast) 2477 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2478 2479 if (Size > 8) { 2480 // If the constant expression's size is greater than 64-bits, then we have 2481 // to emit the value in chunks. Try to constant fold the value and emit it 2482 // that way. 2483 Constant *New = ConstantFoldConstant(CE, DL); 2484 if (New && New != CE) 2485 return emitGlobalConstantImpl(DL, New, AP); 2486 } 2487 } 2488 2489 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2490 return emitGlobalConstantVector(DL, V, AP); 2491 2492 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2493 // thread the streamer with EmitValue. 2494 const MCExpr *ME = AP.lowerConstant(CV); 2495 2496 // Since lowerConstant already folded and got rid of all IR pointer and 2497 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2498 // directly. 2499 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2500 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2501 2502 AP.OutStreamer->EmitValue(ME, Size); 2503 } 2504 2505 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2506 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2507 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2508 if (Size) 2509 emitGlobalConstantImpl(DL, CV, *this); 2510 else if (MAI->hasSubsectionsViaSymbols()) { 2511 // If the global has zero size, emit a single byte so that two labels don't 2512 // look like they are at the same location. 2513 OutStreamer->EmitIntValue(0, 1); 2514 } 2515 } 2516 2517 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2518 // Target doesn't support this yet! 2519 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2520 } 2521 2522 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2523 if (Offset > 0) 2524 OS << '+' << Offset; 2525 else if (Offset < 0) 2526 OS << Offset; 2527 } 2528 2529 //===----------------------------------------------------------------------===// 2530 // Symbol Lowering Routines. 2531 //===----------------------------------------------------------------------===// 2532 2533 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2534 return OutContext.createTempSymbol(Name, true); 2535 } 2536 2537 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2538 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2539 } 2540 2541 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2542 return MMI->getAddrLabelSymbol(BB); 2543 } 2544 2545 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2546 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2547 const DataLayout &DL = getDataLayout(); 2548 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2549 "CPI" + Twine(getFunctionNumber()) + "_" + 2550 Twine(CPID)); 2551 } 2552 2553 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2554 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2555 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2556 } 2557 2558 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2559 /// FIXME: privatize to AsmPrinter. 2560 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2561 const DataLayout &DL = getDataLayout(); 2562 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2563 Twine(getFunctionNumber()) + "_" + 2564 Twine(UID) + "_set_" + Twine(MBBID)); 2565 } 2566 2567 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2568 StringRef Suffix) const { 2569 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2570 } 2571 2572 /// Return the MCSymbol for the specified ExternalSymbol. 2573 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2574 SmallString<60> NameStr; 2575 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2576 return OutContext.getOrCreateSymbol(NameStr); 2577 } 2578 2579 /// PrintParentLoopComment - Print comments about parent loops of this one. 2580 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2581 unsigned FunctionNumber) { 2582 if (!Loop) return; 2583 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2584 OS.indent(Loop->getLoopDepth()*2) 2585 << "Parent Loop BB" << FunctionNumber << "_" 2586 << Loop->getHeader()->getNumber() 2587 << " Depth=" << Loop->getLoopDepth() << '\n'; 2588 } 2589 2590 /// PrintChildLoopComment - Print comments about child loops within 2591 /// the loop for this basic block, with nesting. 2592 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2593 unsigned FunctionNumber) { 2594 // Add child loop information 2595 for (const MachineLoop *CL : *Loop) { 2596 OS.indent(CL->getLoopDepth()*2) 2597 << "Child Loop BB" << FunctionNumber << "_" 2598 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2599 << '\n'; 2600 PrintChildLoopComment(OS, CL, FunctionNumber); 2601 } 2602 } 2603 2604 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2605 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2606 const MachineLoopInfo *LI, 2607 const AsmPrinter &AP) { 2608 // Add loop depth information 2609 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2610 if (!Loop) return; 2611 2612 MachineBasicBlock *Header = Loop->getHeader(); 2613 assert(Header && "No header for loop"); 2614 2615 // If this block is not a loop header, just print out what is the loop header 2616 // and return. 2617 if (Header != &MBB) { 2618 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2619 Twine(AP.getFunctionNumber())+"_" + 2620 Twine(Loop->getHeader()->getNumber())+ 2621 " Depth="+Twine(Loop->getLoopDepth())); 2622 return; 2623 } 2624 2625 // Otherwise, it is a loop header. Print out information about child and 2626 // parent loops. 2627 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2628 2629 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2630 2631 OS << "=>"; 2632 OS.indent(Loop->getLoopDepth()*2-2); 2633 2634 OS << "This "; 2635 if (Loop->empty()) 2636 OS << "Inner "; 2637 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2638 2639 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2640 } 2641 2642 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2643 MCCodePaddingContext &Context) const { 2644 assert(MF != nullptr && "Machine function must be valid"); 2645 assert(LI != nullptr && "Loop info must be valid"); 2646 Context.IsPaddingActive = !MF->hasInlineAsm() && 2647 !MF->getFunction()->optForSize() && 2648 TM.getOptLevel() != CodeGenOpt::None; 2649 const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB); 2650 Context.IsBasicBlockInsideInnermostLoop = 2651 CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty(); 2652 Context.IsBasicBlockReachableViaFallthrough = 2653 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2654 MBB.pred_end(); 2655 Context.IsBasicBlockReachableViaBranch = 2656 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2657 } 2658 2659 /// EmitBasicBlockStart - This method prints the label for the specified 2660 /// MachineBasicBlock, an alignment (if present) and a comment describing 2661 /// it if appropriate. 2662 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2663 // End the previous funclet and start a new one. 2664 if (MBB.isEHFuncletEntry()) { 2665 for (const HandlerInfo &HI : Handlers) { 2666 HI.Handler->endFunclet(); 2667 HI.Handler->beginFunclet(MBB); 2668 } 2669 } 2670 2671 // Emit an alignment directive for this block, if needed. 2672 if (unsigned Align = MBB.getAlignment()) 2673 EmitAlignment(Align); 2674 MCCodePaddingContext Context; 2675 setupCodePaddingContext(MBB, Context); 2676 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2677 2678 // If the block has its address taken, emit any labels that were used to 2679 // reference the block. It is possible that there is more than one label 2680 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2681 // the references were generated. 2682 if (MBB.hasAddressTaken()) { 2683 const BasicBlock *BB = MBB.getBasicBlock(); 2684 if (isVerbose()) 2685 OutStreamer->AddComment("Block address taken"); 2686 2687 // MBBs can have their address taken as part of CodeGen without having 2688 // their corresponding BB's address taken in IR 2689 if (BB->hasAddressTaken()) 2690 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2691 OutStreamer->EmitLabel(Sym); 2692 } 2693 2694 // Print some verbose block comments. 2695 if (isVerbose()) { 2696 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2697 if (BB->hasName()) { 2698 BB->printAsOperand(OutStreamer->GetCommentOS(), 2699 /*PrintType=*/false, BB->getModule()); 2700 OutStreamer->GetCommentOS() << '\n'; 2701 } 2702 } 2703 emitBasicBlockLoopComments(MBB, LI, *this); 2704 } 2705 2706 // Print the main label for the block. 2707 if (MBB.pred_empty() || 2708 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2709 if (isVerbose()) { 2710 // NOTE: Want this comment at start of line, don't emit with AddComment. 2711 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2712 false); 2713 } 2714 } else { 2715 OutStreamer->EmitLabel(MBB.getSymbol()); 2716 } 2717 } 2718 2719 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2720 MCCodePaddingContext Context; 2721 setupCodePaddingContext(MBB, Context); 2722 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2723 } 2724 2725 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2726 bool IsDefinition) const { 2727 MCSymbolAttr Attr = MCSA_Invalid; 2728 2729 switch (Visibility) { 2730 default: break; 2731 case GlobalValue::HiddenVisibility: 2732 if (IsDefinition) 2733 Attr = MAI->getHiddenVisibilityAttr(); 2734 else 2735 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2736 break; 2737 case GlobalValue::ProtectedVisibility: 2738 Attr = MAI->getProtectedVisibilityAttr(); 2739 break; 2740 } 2741 2742 if (Attr != MCSA_Invalid) 2743 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2744 } 2745 2746 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2747 /// exactly one predecessor and the control transfer mechanism between 2748 /// the predecessor and this block is a fall-through. 2749 bool AsmPrinter:: 2750 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2751 // If this is a landing pad, it isn't a fall through. If it has no preds, 2752 // then nothing falls through to it. 2753 if (MBB->isEHPad() || MBB->pred_empty()) 2754 return false; 2755 2756 // If there isn't exactly one predecessor, it can't be a fall through. 2757 if (MBB->pred_size() > 1) 2758 return false; 2759 2760 // The predecessor has to be immediately before this block. 2761 MachineBasicBlock *Pred = *MBB->pred_begin(); 2762 if (!Pred->isLayoutSuccessor(MBB)) 2763 return false; 2764 2765 // If the block is completely empty, then it definitely does fall through. 2766 if (Pred->empty()) 2767 return true; 2768 2769 // Check the terminators in the previous blocks 2770 for (const auto &MI : Pred->terminators()) { 2771 // If it is not a simple branch, we are in a table somewhere. 2772 if (!MI.isBranch() || MI.isIndirectBranch()) 2773 return false; 2774 2775 // If we are the operands of one of the branches, this is not a fall 2776 // through. Note that targets with delay slots will usually bundle 2777 // terminators with the delay slot instruction. 2778 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2779 if (OP->isJTI()) 2780 return false; 2781 if (OP->isMBB() && OP->getMBB() == MBB) 2782 return false; 2783 } 2784 } 2785 2786 return true; 2787 } 2788 2789 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2790 if (!S.usesMetadata()) 2791 return nullptr; 2792 2793 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2794 " stackmap formats, please see the documentation for a description of" 2795 " the default format. If you really need a custom serialized format," 2796 " please file a bug"); 2797 2798 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2799 gcp_map_type::iterator GCPI = GCMap.find(&S); 2800 if (GCPI != GCMap.end()) 2801 return GCPI->second.get(); 2802 2803 auto Name = S.getName(); 2804 2805 for (GCMetadataPrinterRegistry::iterator 2806 I = GCMetadataPrinterRegistry::begin(), 2807 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2808 if (Name == I->getName()) { 2809 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2810 GMP->S = &S; 2811 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2812 return IterBool.first->second.get(); 2813 } 2814 2815 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2816 } 2817 2818 /// Pin vtable to this file. 2819 AsmPrinterHandler::~AsmPrinterHandler() = default; 2820 2821 void AsmPrinterHandler::markFunctionEnd() {} 2822 2823 // In the binary's "xray_instr_map" section, an array of these function entries 2824 // describes each instrumentation point. When XRay patches your code, the index 2825 // into this table will be given to your handler as a patch point identifier. 2826 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2827 const MCSymbol *CurrentFnSym) const { 2828 Out->EmitSymbolValue(Sled, Bytes); 2829 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2830 auto Kind8 = static_cast<uint8_t>(Kind); 2831 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2832 Out->EmitBinaryData( 2833 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2834 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2835 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2836 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2837 Out->EmitZeros(Padding); 2838 } 2839 2840 void AsmPrinter::emitXRayTable() { 2841 if (Sleds.empty()) 2842 return; 2843 2844 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2845 auto Fn = MF->getFunction(); 2846 MCSection *InstMap = nullptr; 2847 MCSection *FnSledIndex = nullptr; 2848 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2849 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2850 assert(Associated != nullptr); 2851 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2852 std::string GroupName; 2853 if (Fn->hasComdat()) { 2854 Flags |= ELF::SHF_GROUP; 2855 GroupName = Fn->getComdat()->getName(); 2856 } 2857 2858 auto UniqueID = ++XRayFnUniqueID; 2859 InstMap = 2860 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2861 GroupName, UniqueID, Associated); 2862 FnSledIndex = 2863 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2864 GroupName, UniqueID, Associated); 2865 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2866 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2867 SectionKind::getReadOnlyWithRel()); 2868 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2869 SectionKind::getReadOnlyWithRel()); 2870 } else { 2871 llvm_unreachable("Unsupported target"); 2872 } 2873 2874 auto WordSizeBytes = MAI->getCodePointerSize(); 2875 2876 // Now we switch to the instrumentation map section. Because this is done 2877 // per-function, we are able to create an index entry that will represent the 2878 // range of sleds associated with a function. 2879 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2880 OutStreamer->SwitchSection(InstMap); 2881 OutStreamer->EmitLabel(SledsStart); 2882 for (const auto &Sled : Sleds) 2883 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2884 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2885 OutStreamer->EmitLabel(SledsEnd); 2886 2887 // We then emit a single entry in the index per function. We use the symbols 2888 // that bound the instrumentation map as the range for a specific function. 2889 // Each entry here will be 2 * word size aligned, as we're writing down two 2890 // pointers. This should work for both 32-bit and 64-bit platforms. 2891 OutStreamer->SwitchSection(FnSledIndex); 2892 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2893 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2894 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2895 OutStreamer->SwitchSection(PrevSection); 2896 Sleds.clear(); 2897 } 2898 2899 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2900 SledKind Kind, uint8_t Version) { 2901 auto Fn = MI.getMF()->getFunction(); 2902 auto Attr = Fn->getFnAttribute("function-instrument"); 2903 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2904 bool AlwaysInstrument = 2905 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2906 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2907 Kind = SledKind::LOG_ARGS_ENTER; 2908 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2909 AlwaysInstrument, Fn, Version}); 2910 } 2911 2912 uint16_t AsmPrinter::getDwarfVersion() const { 2913 return OutStreamer->getContext().getDwarfVersion(); 2914 } 2915 2916 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2917 OutStreamer->getContext().setDwarfVersion(Version); 2918 } 2919