1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSymbolELF.h" 42 #include "llvm/MC/MCValue.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/Format.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "asm-printer" 57 58 static const char *const DWARFGroupName = "DWARF Emission"; 59 static const char *const DbgTimerName = "Debug Info Emission"; 60 static const char *const EHTimerName = "DWARF Exception Writer"; 61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 62 63 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 64 65 char AsmPrinter::ID = 0; 66 67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 68 static gcp_map_type &getGCMap(void *&P) { 69 if (!P) 70 P = new gcp_map_type(); 71 return *(gcp_map_type*)P; 72 } 73 74 75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 76 /// value in log2 form. This rounds up to the preferred alignment if possible 77 /// and legal. 78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 79 unsigned InBits = 0) { 80 unsigned NumBits = 0; 81 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 82 NumBits = DL.getPreferredAlignmentLog(GVar); 83 84 // If InBits is specified, round it to it. 85 if (InBits > NumBits) 86 NumBits = InBits; 87 88 // If the GV has a specified alignment, take it into account. 89 if (GV->getAlignment() == 0) 90 return NumBits; 91 92 unsigned GVAlign = Log2_32(GV->getAlignment()); 93 94 // If the GVAlign is larger than NumBits, or if we are required to obey 95 // NumBits because the GV has an assigned section, obey it. 96 if (GVAlign > NumBits || GV->hasSection()) 97 NumBits = GVAlign; 98 return NumBits; 99 } 100 101 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 102 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 103 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 104 LastMI(nullptr), LastFn(0), Counter(~0U) { 105 DD = nullptr; 106 MMI = nullptr; 107 LI = nullptr; 108 MF = nullptr; 109 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 110 CurrentFnBegin = nullptr; 111 CurrentFnEnd = nullptr; 112 GCMetadataPrinters = nullptr; 113 VerboseAsm = OutStreamer->isVerboseAsm(); 114 } 115 116 AsmPrinter::~AsmPrinter() { 117 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 118 119 if (GCMetadataPrinters) { 120 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 121 122 delete &GCMap; 123 GCMetadataPrinters = nullptr; 124 } 125 } 126 127 bool AsmPrinter::isPositionIndependent() const { 128 return TM.isPositionIndependent(); 129 } 130 131 /// getFunctionNumber - Return a unique ID for the current function. 132 /// 133 unsigned AsmPrinter::getFunctionNumber() const { 134 return MF->getFunctionNumber(); 135 } 136 137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 138 return *TM.getObjFileLowering(); 139 } 140 141 const DataLayout &AsmPrinter::getDataLayout() const { 142 return MMI->getModule()->getDataLayout(); 143 } 144 145 // Do not use the cached DataLayout because some client use it without a Module 146 // (llmv-dsymutil, llvm-dwarfdump). 147 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 148 149 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 150 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 151 return MF->getSubtarget<MCSubtargetInfo>(); 152 } 153 154 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 155 S.EmitInstruction(Inst, getSubtargetInfo()); 156 } 157 158 StringRef AsmPrinter::getTargetTriple() const { 159 return TM.getTargetTriple().str(); 160 } 161 162 /// getCurrentSection() - Return the current section we are emitting to. 163 const MCSection *AsmPrinter::getCurrentSection() const { 164 return OutStreamer->getCurrentSection().first; 165 } 166 167 168 169 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 170 AU.setPreservesAll(); 171 MachineFunctionPass::getAnalysisUsage(AU); 172 AU.addRequired<MachineModuleInfo>(); 173 AU.addRequired<GCModuleInfo>(); 174 if (isVerbose()) 175 AU.addRequired<MachineLoopInfo>(); 176 } 177 178 bool AsmPrinter::doInitialization(Module &M) { 179 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 180 181 // Initialize TargetLoweringObjectFile. 182 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 183 .Initialize(OutContext, TM); 184 185 OutStreamer->InitSections(false); 186 187 // Emit the version-min deplyment target directive if needed. 188 // 189 // FIXME: If we end up with a collection of these sorts of Darwin-specific 190 // or ELF-specific things, it may make sense to have a platform helper class 191 // that will work with the target helper class. For now keep it here, as the 192 // alternative is duplicated code in each of the target asm printers that 193 // use the directive, where it would need the same conditionalization 194 // anyway. 195 Triple TT(getTargetTriple()); 196 // If there is a version specified, Major will be non-zero. 197 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 198 unsigned Major, Minor, Update; 199 MCVersionMinType VersionType; 200 if (TT.isWatchOS()) { 201 VersionType = MCVM_WatchOSVersionMin; 202 TT.getWatchOSVersion(Major, Minor, Update); 203 } else if (TT.isTvOS()) { 204 VersionType = MCVM_TvOSVersionMin; 205 TT.getiOSVersion(Major, Minor, Update); 206 } else if (TT.isMacOSX()) { 207 VersionType = MCVM_OSXVersionMin; 208 if (!TT.getMacOSXVersion(Major, Minor, Update)) 209 Major = 0; 210 } else { 211 VersionType = MCVM_IOSVersionMin; 212 TT.getiOSVersion(Major, Minor, Update); 213 } 214 if (Major != 0) 215 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 216 } 217 218 // Allow the target to emit any magic that it wants at the start of the file. 219 EmitStartOfAsmFile(M); 220 221 // Very minimal debug info. It is ignored if we emit actual debug info. If we 222 // don't, this at least helps the user find where a global came from. 223 if (MAI->hasSingleParameterDotFile()) { 224 // .file "foo.c" 225 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 226 } 227 228 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 229 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 230 for (auto &I : *MI) 231 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 232 MP->beginAssembly(M, *MI, *this); 233 234 // Emit module-level inline asm if it exists. 235 if (!M.getModuleInlineAsm().empty()) { 236 // We're at the module level. Construct MCSubtarget from the default CPU 237 // and target triple. 238 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 239 TM.getTargetTriple().str(), TM.getTargetCPU(), 240 TM.getTargetFeatureString())); 241 OutStreamer->AddComment("Start of file scope inline assembly"); 242 OutStreamer->AddBlankLine(); 243 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 244 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 245 OutStreamer->AddComment("End of file scope inline assembly"); 246 OutStreamer->AddBlankLine(); 247 } 248 249 if (MAI->doesSupportDebugInformation()) { 250 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 251 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 252 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 253 DbgTimerName, 254 CodeViewLineTablesGroupName)); 255 } 256 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 257 DD = new DwarfDebug(this, &M); 258 DD->beginModule(); 259 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 260 } 261 } 262 263 EHStreamer *ES = nullptr; 264 switch (MAI->getExceptionHandlingType()) { 265 case ExceptionHandling::None: 266 break; 267 case ExceptionHandling::SjLj: 268 case ExceptionHandling::DwarfCFI: 269 ES = new DwarfCFIException(this); 270 break; 271 case ExceptionHandling::ARM: 272 ES = new ARMException(this); 273 break; 274 case ExceptionHandling::WinEH: 275 switch (MAI->getWinEHEncodingType()) { 276 default: llvm_unreachable("unsupported unwinding information encoding"); 277 case WinEH::EncodingType::Invalid: 278 break; 279 case WinEH::EncodingType::X86: 280 case WinEH::EncodingType::Itanium: 281 ES = new WinException(this); 282 break; 283 } 284 break; 285 } 286 if (ES) 287 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 288 return false; 289 } 290 291 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 292 if (!MAI.hasWeakDefCanBeHiddenDirective()) 293 return false; 294 295 return canBeOmittedFromSymbolTable(GV); 296 } 297 298 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 299 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 300 switch (Linkage) { 301 case GlobalValue::CommonLinkage: 302 case GlobalValue::LinkOnceAnyLinkage: 303 case GlobalValue::LinkOnceODRLinkage: 304 case GlobalValue::WeakAnyLinkage: 305 case GlobalValue::WeakODRLinkage: 306 if (MAI->hasWeakDefDirective()) { 307 // .globl _foo 308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 309 310 if (!canBeHidden(GV, *MAI)) 311 // .weak_definition _foo 312 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 313 else 314 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 315 } else if (MAI->hasLinkOnceDirective()) { 316 // .globl _foo 317 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 318 //NOTE: linkonce is handled by the section the symbol was assigned to. 319 } else { 320 // .weak _foo 321 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 322 } 323 return; 324 case GlobalValue::ExternalLinkage: 325 // If external, declare as a global symbol: .globl _foo 326 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 327 return; 328 case GlobalValue::PrivateLinkage: 329 case GlobalValue::InternalLinkage: 330 return; 331 case GlobalValue::AppendingLinkage: 332 case GlobalValue::AvailableExternallyLinkage: 333 case GlobalValue::ExternalWeakLinkage: 334 llvm_unreachable("Should never emit this"); 335 } 336 llvm_unreachable("Unknown linkage type!"); 337 } 338 339 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 340 const GlobalValue *GV) const { 341 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 342 } 343 344 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 345 return TM.getSymbol(GV, getObjFileLowering().getMangler()); 346 } 347 348 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 349 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 350 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 351 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 352 "No emulated TLS variables in the common section"); 353 354 // Never emit TLS variable xyz in emulated TLS model. 355 // The initialization value is in __emutls_t.xyz instead of xyz. 356 if (IsEmuTLSVar) 357 return; 358 359 if (GV->hasInitializer()) { 360 // Check to see if this is a special global used by LLVM, if so, emit it. 361 if (EmitSpecialLLVMGlobal(GV)) 362 return; 363 364 // Skip the emission of global equivalents. The symbol can be emitted later 365 // on by emitGlobalGOTEquivs in case it turns out to be needed. 366 if (GlobalGOTEquivs.count(getSymbol(GV))) 367 return; 368 369 if (isVerbose()) { 370 // When printing the control variable __emutls_v.*, 371 // we don't need to print the original TLS variable name. 372 GV->printAsOperand(OutStreamer->GetCommentOS(), 373 /*PrintType=*/false, GV->getParent()); 374 OutStreamer->GetCommentOS() << '\n'; 375 } 376 } 377 378 MCSymbol *GVSym = getSymbol(GV); 379 MCSymbol *EmittedSym = GVSym; 380 381 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 382 // attributes. 383 // GV's or GVSym's attributes will be used for the EmittedSym. 384 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 385 386 if (!GV->hasInitializer()) // External globals require no extra code. 387 return; 388 389 GVSym->redefineIfPossible(); 390 if (GVSym->isDefined() || GVSym->isVariable()) 391 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 392 "' is already defined"); 393 394 if (MAI->hasDotTypeDotSizeDirective()) 395 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 396 397 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 398 399 const DataLayout &DL = GV->getParent()->getDataLayout(); 400 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 401 402 // If the alignment is specified, we *must* obey it. Overaligning a global 403 // with a specified alignment is a prompt way to break globals emitted to 404 // sections and expected to be contiguous (e.g. ObjC metadata). 405 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 406 407 for (const HandlerInfo &HI : Handlers) { 408 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 409 HI.Handler->setSymbolSize(GVSym, Size); 410 } 411 412 // Handle common symbols 413 if (GVKind.isCommon()) { 414 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 415 unsigned Align = 1 << AlignLog; 416 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 417 Align = 0; 418 419 // .comm _foo, 42, 4 420 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 421 return; 422 } 423 424 // Determine to which section this global should be emitted. 425 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 426 427 // If we have a bss global going to a section that supports the 428 // zerofill directive, do so here. 429 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 430 TheSection->isVirtualSection()) { 431 if (Size == 0) 432 Size = 1; // zerofill of 0 bytes is undefined. 433 unsigned Align = 1 << AlignLog; 434 EmitLinkage(GV, GVSym); 435 // .zerofill __DATA, __bss, _foo, 400, 5 436 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 437 return; 438 } 439 440 // If this is a BSS local symbol and we are emitting in the BSS 441 // section use .lcomm/.comm directive. 442 if (GVKind.isBSSLocal() && 443 getObjFileLowering().getBSSSection() == TheSection) { 444 if (Size == 0) 445 Size = 1; // .comm Foo, 0 is undefined, avoid it. 446 unsigned Align = 1 << AlignLog; 447 448 // Use .lcomm only if it supports user-specified alignment. 449 // Otherwise, while it would still be correct to use .lcomm in some 450 // cases (e.g. when Align == 1), the external assembler might enfore 451 // some -unknown- default alignment behavior, which could cause 452 // spurious differences between external and integrated assembler. 453 // Prefer to simply fall back to .local / .comm in this case. 454 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 455 // .lcomm _foo, 42 456 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 457 return; 458 } 459 460 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 461 Align = 0; 462 463 // .local _foo 464 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 465 // .comm _foo, 42, 4 466 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 467 return; 468 } 469 470 // Handle thread local data for mach-o which requires us to output an 471 // additional structure of data and mangle the original symbol so that we 472 // can reference it later. 473 // 474 // TODO: This should become an "emit thread local global" method on TLOF. 475 // All of this macho specific stuff should be sunk down into TLOFMachO and 476 // stuff like "TLSExtraDataSection" should no longer be part of the parent 477 // TLOF class. This will also make it more obvious that stuff like 478 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 479 // specific code. 480 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 481 // Emit the .tbss symbol 482 MCSymbol *MangSym = 483 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 484 485 if (GVKind.isThreadBSS()) { 486 TheSection = getObjFileLowering().getTLSBSSSection(); 487 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 488 } else if (GVKind.isThreadData()) { 489 OutStreamer->SwitchSection(TheSection); 490 491 EmitAlignment(AlignLog, GV); 492 OutStreamer->EmitLabel(MangSym); 493 494 EmitGlobalConstant(GV->getParent()->getDataLayout(), 495 GV->getInitializer()); 496 } 497 498 OutStreamer->AddBlankLine(); 499 500 // Emit the variable struct for the runtime. 501 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 502 503 OutStreamer->SwitchSection(TLVSect); 504 // Emit the linkage here. 505 EmitLinkage(GV, GVSym); 506 OutStreamer->EmitLabel(GVSym); 507 508 // Three pointers in size: 509 // - __tlv_bootstrap - used to make sure support exists 510 // - spare pointer, used when mapped by the runtime 511 // - pointer to mangled symbol above with initializer 512 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 513 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 514 PtrSize); 515 OutStreamer->EmitIntValue(0, PtrSize); 516 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 517 518 OutStreamer->AddBlankLine(); 519 return; 520 } 521 522 MCSymbol *EmittedInitSym = GVSym; 523 524 OutStreamer->SwitchSection(TheSection); 525 526 EmitLinkage(GV, EmittedInitSym); 527 EmitAlignment(AlignLog, GV); 528 529 OutStreamer->EmitLabel(EmittedInitSym); 530 531 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 532 533 if (MAI->hasDotTypeDotSizeDirective()) 534 // .size foo, 42 535 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 536 MCConstantExpr::create(Size, OutContext)); 537 538 OutStreamer->AddBlankLine(); 539 } 540 541 /// EmitFunctionHeader - This method emits the header for the current 542 /// function. 543 void AsmPrinter::EmitFunctionHeader() { 544 // Print out constants referenced by the function 545 EmitConstantPool(); 546 547 // Print the 'header' of function. 548 const Function *F = MF->getFunction(); 549 550 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 551 EmitVisibility(CurrentFnSym, F->getVisibility()); 552 553 EmitLinkage(F, CurrentFnSym); 554 if (MAI->hasFunctionAlignment()) 555 EmitAlignment(MF->getAlignment(), F); 556 557 if (MAI->hasDotTypeDotSizeDirective()) 558 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 559 560 if (isVerbose()) { 561 F->printAsOperand(OutStreamer->GetCommentOS(), 562 /*PrintType=*/false, F->getParent()); 563 OutStreamer->GetCommentOS() << '\n'; 564 } 565 566 // Emit the prefix data. 567 if (F->hasPrefixData()) 568 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 569 570 // Emit the CurrentFnSym. This is a virtual function to allow targets to 571 // do their wild and crazy things as required. 572 EmitFunctionEntryLabel(); 573 574 // If the function had address-taken blocks that got deleted, then we have 575 // references to the dangling symbols. Emit them at the start of the function 576 // so that we don't get references to undefined symbols. 577 std::vector<MCSymbol*> DeadBlockSyms; 578 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 579 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 580 OutStreamer->AddComment("Address taken block that was later removed"); 581 OutStreamer->EmitLabel(DeadBlockSyms[i]); 582 } 583 584 if (CurrentFnBegin) { 585 if (MAI->useAssignmentForEHBegin()) { 586 MCSymbol *CurPos = OutContext.createTempSymbol(); 587 OutStreamer->EmitLabel(CurPos); 588 OutStreamer->EmitAssignment(CurrentFnBegin, 589 MCSymbolRefExpr::create(CurPos, OutContext)); 590 } else { 591 OutStreamer->EmitLabel(CurrentFnBegin); 592 } 593 } 594 595 // Emit pre-function debug and/or EH information. 596 for (const HandlerInfo &HI : Handlers) { 597 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 598 HI.Handler->beginFunction(MF); 599 } 600 601 // Emit the prologue data. 602 if (F->hasPrologueData()) 603 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 604 } 605 606 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 607 /// function. This can be overridden by targets as required to do custom stuff. 608 void AsmPrinter::EmitFunctionEntryLabel() { 609 CurrentFnSym->redefineIfPossible(); 610 611 // The function label could have already been emitted if two symbols end up 612 // conflicting due to asm renaming. Detect this and emit an error. 613 if (CurrentFnSym->isVariable()) 614 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 615 "' is a protected alias"); 616 if (CurrentFnSym->isDefined()) 617 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 618 "' label emitted multiple times to assembly file"); 619 620 return OutStreamer->EmitLabel(CurrentFnSym); 621 } 622 623 /// emitComments - Pretty-print comments for instructions. 624 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 625 const MachineFunction *MF = MI.getParent()->getParent(); 626 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 627 628 // Check for spills and reloads 629 int FI; 630 631 const MachineFrameInfo &MFI = MF->getFrameInfo(); 632 633 // We assume a single instruction only has a spill or reload, not 634 // both. 635 const MachineMemOperand *MMO; 636 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 637 if (MFI.isSpillSlotObjectIndex(FI)) { 638 MMO = *MI.memoperands_begin(); 639 CommentOS << MMO->getSize() << "-byte Reload\n"; 640 } 641 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 642 if (MFI.isSpillSlotObjectIndex(FI)) 643 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 644 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 645 if (MFI.isSpillSlotObjectIndex(FI)) { 646 MMO = *MI.memoperands_begin(); 647 CommentOS << MMO->getSize() << "-byte Spill\n"; 648 } 649 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 650 if (MFI.isSpillSlotObjectIndex(FI)) 651 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 652 } 653 654 // Check for spill-induced copies 655 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 656 CommentOS << " Reload Reuse\n"; 657 } 658 659 /// emitImplicitDef - This method emits the specified machine instruction 660 /// that is an implicit def. 661 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 662 unsigned RegNo = MI->getOperand(0).getReg(); 663 664 SmallString<128> Str; 665 raw_svector_ostream OS(Str); 666 OS << "implicit-def: " 667 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 668 669 OutStreamer->AddComment(OS.str()); 670 OutStreamer->AddBlankLine(); 671 } 672 673 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 674 std::string Str; 675 raw_string_ostream OS(Str); 676 OS << "kill:"; 677 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 678 const MachineOperand &Op = MI->getOperand(i); 679 assert(Op.isReg() && "KILL instruction must have only register operands"); 680 OS << ' ' 681 << PrintReg(Op.getReg(), 682 AP.MF->getSubtarget().getRegisterInfo()) 683 << (Op.isDef() ? "<def>" : "<kill>"); 684 } 685 AP.OutStreamer->AddComment(OS.str()); 686 AP.OutStreamer->AddBlankLine(); 687 } 688 689 /// emitDebugValueComment - This method handles the target-independent form 690 /// of DBG_VALUE, returning true if it was able to do so. A false return 691 /// means the target will need to handle MI in EmitInstruction. 692 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 693 // This code handles only the 4-operand target-independent form. 694 if (MI->getNumOperands() != 4) 695 return false; 696 697 SmallString<128> Str; 698 raw_svector_ostream OS(Str); 699 OS << "DEBUG_VALUE: "; 700 701 const DILocalVariable *V = MI->getDebugVariable(); 702 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 703 StringRef Name = SP->getDisplayName(); 704 if (!Name.empty()) 705 OS << Name << ":"; 706 } 707 OS << V->getName(); 708 709 const DIExpression *Expr = MI->getDebugExpression(); 710 if (Expr->isBitPiece()) 711 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 712 << " size=" << Expr->getBitPieceSize() << "]"; 713 OS << " <- "; 714 715 // The second operand is only an offset if it's an immediate. 716 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 717 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 718 719 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 720 if (Deref) { 721 // We currently don't support extra Offsets or derefs after the first 722 // one. Bail out early instead of emitting an incorrect comment 723 OS << " [complex expression]"; 724 AP.OutStreamer->emitRawComment(OS.str()); 725 return true; 726 } 727 uint64_t Op = Expr->getElement(i); 728 if (Op == dwarf::DW_OP_deref) { 729 Deref = true; 730 continue; 731 } else if (Op == dwarf::DW_OP_bit_piece) { 732 // There can't be any operands after this in a valid expression 733 break; 734 } 735 uint64_t ExtraOffset = Expr->getElement(i++); 736 if (Op == dwarf::DW_OP_plus) 737 Offset += ExtraOffset; 738 else { 739 assert(Op == dwarf::DW_OP_minus); 740 Offset -= ExtraOffset; 741 } 742 } 743 744 // Register or immediate value. Register 0 means undef. 745 if (MI->getOperand(0).isFPImm()) { 746 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 747 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 748 OS << (double)APF.convertToFloat(); 749 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 750 OS << APF.convertToDouble(); 751 } else { 752 // There is no good way to print long double. Convert a copy to 753 // double. Ah well, it's only a comment. 754 bool ignored; 755 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 756 &ignored); 757 OS << "(long double) " << APF.convertToDouble(); 758 } 759 } else if (MI->getOperand(0).isImm()) { 760 OS << MI->getOperand(0).getImm(); 761 } else if (MI->getOperand(0).isCImm()) { 762 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 763 } else { 764 unsigned Reg; 765 if (MI->getOperand(0).isReg()) { 766 Reg = MI->getOperand(0).getReg(); 767 } else { 768 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 769 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 770 Offset += TFI->getFrameIndexReference(*AP.MF, 771 MI->getOperand(0).getIndex(), Reg); 772 Deref = true; 773 } 774 if (Reg == 0) { 775 // Suppress offset, it is not meaningful here. 776 OS << "undef"; 777 // NOTE: Want this comment at start of line, don't emit with AddComment. 778 AP.OutStreamer->emitRawComment(OS.str()); 779 return true; 780 } 781 if (Deref) 782 OS << '['; 783 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 784 } 785 786 if (Deref) 787 OS << '+' << Offset << ']'; 788 789 // NOTE: Want this comment at start of line, don't emit with AddComment. 790 AP.OutStreamer->emitRawComment(OS.str()); 791 return true; 792 } 793 794 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 795 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 796 MF->getFunction()->needsUnwindTableEntry()) 797 return CFI_M_EH; 798 799 if (MMI->hasDebugInfo()) 800 return CFI_M_Debug; 801 802 return CFI_M_None; 803 } 804 805 bool AsmPrinter::needsSEHMoves() { 806 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 807 } 808 809 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 810 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 811 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 812 ExceptionHandlingType != ExceptionHandling::ARM) 813 return; 814 815 if (needsCFIMoves() == CFI_M_None) 816 return; 817 818 const MachineModuleInfo &MMI = MF->getMMI(); 819 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 820 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 821 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 822 emitCFIInstruction(CFI); 823 } 824 825 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 826 // The operands are the MCSymbol and the frame offset of the allocation. 827 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 828 int FrameOffset = MI.getOperand(1).getImm(); 829 830 // Emit a symbol assignment. 831 OutStreamer->EmitAssignment(FrameAllocSym, 832 MCConstantExpr::create(FrameOffset, OutContext)); 833 } 834 835 /// EmitFunctionBody - This method emits the body and trailer for a 836 /// function. 837 void AsmPrinter::EmitFunctionBody() { 838 EmitFunctionHeader(); 839 840 // Emit target-specific gunk before the function body. 841 EmitFunctionBodyStart(); 842 843 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 844 845 // Print out code for the function. 846 bool HasAnyRealCode = false; 847 for (auto &MBB : *MF) { 848 // Print a label for the basic block. 849 EmitBasicBlockStart(MBB); 850 for (auto &MI : MBB) { 851 852 // Print the assembly for the instruction. 853 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 854 !MI.isDebugValue()) { 855 HasAnyRealCode = true; 856 ++EmittedInsts; 857 } 858 859 if (ShouldPrintDebugScopes) { 860 for (const HandlerInfo &HI : Handlers) { 861 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 862 TimePassesIsEnabled); 863 HI.Handler->beginInstruction(&MI); 864 } 865 } 866 867 if (isVerbose()) 868 emitComments(MI, OutStreamer->GetCommentOS()); 869 870 switch (MI.getOpcode()) { 871 case TargetOpcode::CFI_INSTRUCTION: 872 emitCFIInstruction(MI); 873 break; 874 875 case TargetOpcode::LOCAL_ESCAPE: 876 emitFrameAlloc(MI); 877 break; 878 879 case TargetOpcode::EH_LABEL: 880 case TargetOpcode::GC_LABEL: 881 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 882 break; 883 case TargetOpcode::INLINEASM: 884 EmitInlineAsm(&MI); 885 break; 886 case TargetOpcode::DBG_VALUE: 887 if (isVerbose()) { 888 if (!emitDebugValueComment(&MI, *this)) 889 EmitInstruction(&MI); 890 } 891 break; 892 case TargetOpcode::IMPLICIT_DEF: 893 if (isVerbose()) emitImplicitDef(&MI); 894 break; 895 case TargetOpcode::KILL: 896 if (isVerbose()) emitKill(&MI, *this); 897 break; 898 default: 899 EmitInstruction(&MI); 900 break; 901 } 902 903 if (ShouldPrintDebugScopes) { 904 for (const HandlerInfo &HI : Handlers) { 905 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 906 TimePassesIsEnabled); 907 HI.Handler->endInstruction(); 908 } 909 } 910 } 911 912 EmitBasicBlockEnd(MBB); 913 } 914 915 // If the function is empty and the object file uses .subsections_via_symbols, 916 // then we need to emit *something* to the function body to prevent the 917 // labels from collapsing together. Just emit a noop. 918 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 919 MCInst Noop; 920 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 921 OutStreamer->AddComment("avoids zero-length function"); 922 923 // Targets can opt-out of emitting the noop here by leaving the opcode 924 // unspecified. 925 if (Noop.getOpcode()) 926 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 927 } 928 929 const Function *F = MF->getFunction(); 930 for (const auto &BB : *F) { 931 if (!BB.hasAddressTaken()) 932 continue; 933 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 934 if (Sym->isDefined()) 935 continue; 936 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 937 OutStreamer->EmitLabel(Sym); 938 } 939 940 // Emit target-specific gunk after the function body. 941 EmitFunctionBodyEnd(); 942 943 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 944 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 945 // Create a symbol for the end of function. 946 CurrentFnEnd = createTempSymbol("func_end"); 947 OutStreamer->EmitLabel(CurrentFnEnd); 948 } 949 950 // If the target wants a .size directive for the size of the function, emit 951 // it. 952 if (MAI->hasDotTypeDotSizeDirective()) { 953 // We can get the size as difference between the function label and the 954 // temp label. 955 const MCExpr *SizeExp = MCBinaryExpr::createSub( 956 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 957 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 958 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 959 OutStreamer->emitELFSize(Sym, SizeExp); 960 } 961 962 for (const HandlerInfo &HI : Handlers) { 963 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 964 HI.Handler->markFunctionEnd(); 965 } 966 967 // Print out jump tables referenced by the function. 968 EmitJumpTableInfo(); 969 970 // Emit post-function debug and/or EH information. 971 for (const HandlerInfo &HI : Handlers) { 972 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 973 HI.Handler->endFunction(MF); 974 } 975 MMI->EndFunction(); 976 977 OutStreamer->AddBlankLine(); 978 } 979 980 /// \brief Compute the number of Global Variables that uses a Constant. 981 static unsigned getNumGlobalVariableUses(const Constant *C) { 982 if (!C) 983 return 0; 984 985 if (isa<GlobalVariable>(C)) 986 return 1; 987 988 unsigned NumUses = 0; 989 for (auto *CU : C->users()) 990 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 991 992 return NumUses; 993 } 994 995 /// \brief Only consider global GOT equivalents if at least one user is a 996 /// cstexpr inside an initializer of another global variables. Also, don't 997 /// handle cstexpr inside instructions. During global variable emission, 998 /// candidates are skipped and are emitted later in case at least one cstexpr 999 /// isn't replaced by a PC relative GOT entry access. 1000 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1001 unsigned &NumGOTEquivUsers) { 1002 // Global GOT equivalents are unnamed private globals with a constant 1003 // pointer initializer to another global symbol. They must point to a 1004 // GlobalVariable or Function, i.e., as GlobalValue. 1005 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1006 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1007 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1008 return false; 1009 1010 // To be a got equivalent, at least one of its users need to be a constant 1011 // expression used by another global variable. 1012 for (auto *U : GV->users()) 1013 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1014 1015 return NumGOTEquivUsers > 0; 1016 } 1017 1018 /// \brief Unnamed constant global variables solely contaning a pointer to 1019 /// another globals variable is equivalent to a GOT table entry; it contains the 1020 /// the address of another symbol. Optimize it and replace accesses to these 1021 /// "GOT equivalents" by using the GOT entry for the final global instead. 1022 /// Compute GOT equivalent candidates among all global variables to avoid 1023 /// emitting them if possible later on, after it use is replaced by a GOT entry 1024 /// access. 1025 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1026 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1027 return; 1028 1029 for (const auto &G : M.globals()) { 1030 unsigned NumGOTEquivUsers = 0; 1031 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1032 continue; 1033 1034 const MCSymbol *GOTEquivSym = getSymbol(&G); 1035 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1036 } 1037 } 1038 1039 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1040 /// for PC relative GOT entry conversion, in such cases we need to emit such 1041 /// globals we previously omitted in EmitGlobalVariable. 1042 void AsmPrinter::emitGlobalGOTEquivs() { 1043 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1044 return; 1045 1046 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1047 for (auto &I : GlobalGOTEquivs) { 1048 const GlobalVariable *GV = I.second.first; 1049 unsigned Cnt = I.second.second; 1050 if (Cnt) 1051 FailedCandidates.push_back(GV); 1052 } 1053 GlobalGOTEquivs.clear(); 1054 1055 for (auto *GV : FailedCandidates) 1056 EmitGlobalVariable(GV); 1057 } 1058 1059 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1060 const GlobalIndirectSymbol& GIS) { 1061 MCSymbol *Name = getSymbol(&GIS); 1062 1063 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1064 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1065 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1066 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1067 else 1068 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1069 1070 // Set the symbol type to function if the alias has a function type. 1071 // This affects codegen when the aliasee is not a function. 1072 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1073 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1074 if (isa<GlobalIFunc>(GIS)) 1075 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1076 } 1077 1078 EmitVisibility(Name, GIS.getVisibility()); 1079 1080 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1081 1082 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1083 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1084 1085 // Emit the directives as assignments aka .set: 1086 OutStreamer->EmitAssignment(Name, Expr); 1087 1088 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1089 // If the aliasee does not correspond to a symbol in the output, i.e. the 1090 // alias is not of an object or the aliased object is private, then set the 1091 // size of the alias symbol from the type of the alias. We don't do this in 1092 // other situations as the alias and aliasee having differing types but same 1093 // size may be intentional. 1094 const GlobalObject *BaseObject = GA->getBaseObject(); 1095 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1096 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1097 const DataLayout &DL = M.getDataLayout(); 1098 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1099 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1100 MCConstantExpr::create(Size, OutContext)); 1101 } 1102 } 1103 } 1104 1105 bool AsmPrinter::doFinalization(Module &M) { 1106 // Set the MachineFunction to nullptr so that we can catch attempted 1107 // accesses to MF specific features at the module level and so that 1108 // we can conditionalize accesses based on whether or not it is nullptr. 1109 MF = nullptr; 1110 1111 // Gather all GOT equivalent globals in the module. We really need two 1112 // passes over the globals: one to compute and another to avoid its emission 1113 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1114 // where the got equivalent shows up before its use. 1115 computeGlobalGOTEquivs(M); 1116 1117 // Emit global variables. 1118 for (const auto &G : M.globals()) 1119 EmitGlobalVariable(&G); 1120 1121 // Emit remaining GOT equivalent globals. 1122 emitGlobalGOTEquivs(); 1123 1124 // Emit visibility info for declarations 1125 for (const Function &F : M) { 1126 if (!F.isDeclarationForLinker()) 1127 continue; 1128 GlobalValue::VisibilityTypes V = F.getVisibility(); 1129 if (V == GlobalValue::DefaultVisibility) 1130 continue; 1131 1132 MCSymbol *Name = getSymbol(&F); 1133 EmitVisibility(Name, V, false); 1134 } 1135 1136 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1137 1138 // Emit module flags. 1139 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1140 M.getModuleFlagsMetadata(ModuleFlags); 1141 if (!ModuleFlags.empty()) 1142 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1143 1144 if (TM.getTargetTriple().isOSBinFormatELF()) { 1145 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1146 1147 // Output stubs for external and common global variables. 1148 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1149 if (!Stubs.empty()) { 1150 OutStreamer->SwitchSection(TLOF.getDataSection()); 1151 const DataLayout &DL = M.getDataLayout(); 1152 1153 for (const auto &Stub : Stubs) { 1154 OutStreamer->EmitLabel(Stub.first); 1155 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1156 DL.getPointerSize()); 1157 } 1158 } 1159 } 1160 1161 // Finalize debug and EH information. 1162 for (const HandlerInfo &HI : Handlers) { 1163 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1164 TimePassesIsEnabled); 1165 HI.Handler->endModule(); 1166 delete HI.Handler; 1167 } 1168 Handlers.clear(); 1169 DD = nullptr; 1170 1171 // If the target wants to know about weak references, print them all. 1172 if (MAI->getWeakRefDirective()) { 1173 // FIXME: This is not lazy, it would be nice to only print weak references 1174 // to stuff that is actually used. Note that doing so would require targets 1175 // to notice uses in operands (due to constant exprs etc). This should 1176 // happen with the MC stuff eventually. 1177 1178 // Print out module-level global objects here. 1179 for (const auto &GO : M.global_objects()) { 1180 if (!GO.hasExternalWeakLinkage()) 1181 continue; 1182 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1183 } 1184 } 1185 1186 OutStreamer->AddBlankLine(); 1187 1188 // Print aliases in topological order, that is, for each alias a = b, 1189 // b must be printed before a. 1190 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1191 // such an order to generate correct TOC information. 1192 SmallVector<const GlobalAlias *, 16> AliasStack; 1193 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1194 for (const auto &Alias : M.aliases()) { 1195 for (const GlobalAlias *Cur = &Alias; Cur; 1196 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1197 if (!AliasVisited.insert(Cur).second) 1198 break; 1199 AliasStack.push_back(Cur); 1200 } 1201 for (const GlobalAlias *AncestorAlias : reverse(AliasStack)) 1202 emitGlobalIndirectSymbol(M, *AncestorAlias); 1203 AliasStack.clear(); 1204 } 1205 for (const auto &IFunc : M.ifuncs()) 1206 emitGlobalIndirectSymbol(M, IFunc); 1207 1208 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1209 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1210 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1211 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1212 MP->finishAssembly(M, *MI, *this); 1213 1214 // Emit llvm.ident metadata in an '.ident' directive. 1215 EmitModuleIdents(M); 1216 1217 // Emit __morestack address if needed for indirect calls. 1218 if (MMI->usesMorestackAddr()) { 1219 unsigned Align = 1; 1220 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1221 getDataLayout(), SectionKind::getReadOnly(), 1222 /*C=*/nullptr, Align); 1223 OutStreamer->SwitchSection(ReadOnlySection); 1224 1225 MCSymbol *AddrSymbol = 1226 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1227 OutStreamer->EmitLabel(AddrSymbol); 1228 1229 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1230 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1231 PtrSize); 1232 } 1233 1234 // If we don't have any trampolines, then we don't require stack memory 1235 // to be executable. Some targets have a directive to declare this. 1236 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1237 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1238 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1239 OutStreamer->SwitchSection(S); 1240 1241 // Allow the target to emit any magic that it wants at the end of the file, 1242 // after everything else has gone out. 1243 EmitEndOfAsmFile(M); 1244 1245 MMI = nullptr; 1246 1247 OutStreamer->Finish(); 1248 OutStreamer->reset(); 1249 1250 return false; 1251 } 1252 1253 MCSymbol *AsmPrinter::getCurExceptionSym() { 1254 if (!CurExceptionSym) 1255 CurExceptionSym = createTempSymbol("exception"); 1256 return CurExceptionSym; 1257 } 1258 1259 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1260 this->MF = &MF; 1261 // Get the function symbol. 1262 CurrentFnSym = getSymbol(MF.getFunction()); 1263 CurrentFnSymForSize = CurrentFnSym; 1264 CurrentFnBegin = nullptr; 1265 CurExceptionSym = nullptr; 1266 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1267 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1268 MMI->hasEHFunclets() || NeedsLocalForSize) { 1269 CurrentFnBegin = createTempSymbol("func_begin"); 1270 if (NeedsLocalForSize) 1271 CurrentFnSymForSize = CurrentFnBegin; 1272 } 1273 1274 if (isVerbose()) 1275 LI = &getAnalysis<MachineLoopInfo>(); 1276 } 1277 1278 namespace { 1279 // Keep track the alignment, constpool entries per Section. 1280 struct SectionCPs { 1281 MCSection *S; 1282 unsigned Alignment; 1283 SmallVector<unsigned, 4> CPEs; 1284 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1285 }; 1286 } 1287 1288 /// EmitConstantPool - Print to the current output stream assembly 1289 /// representations of the constants in the constant pool MCP. This is 1290 /// used to print out constants which have been "spilled to memory" by 1291 /// the code generator. 1292 /// 1293 void AsmPrinter::EmitConstantPool() { 1294 const MachineConstantPool *MCP = MF->getConstantPool(); 1295 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1296 if (CP.empty()) return; 1297 1298 // Calculate sections for constant pool entries. We collect entries to go into 1299 // the same section together to reduce amount of section switch statements. 1300 SmallVector<SectionCPs, 4> CPSections; 1301 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1302 const MachineConstantPoolEntry &CPE = CP[i]; 1303 unsigned Align = CPE.getAlignment(); 1304 1305 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1306 1307 const Constant *C = nullptr; 1308 if (!CPE.isMachineConstantPoolEntry()) 1309 C = CPE.Val.ConstVal; 1310 1311 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1312 Kind, C, Align); 1313 1314 // The number of sections are small, just do a linear search from the 1315 // last section to the first. 1316 bool Found = false; 1317 unsigned SecIdx = CPSections.size(); 1318 while (SecIdx != 0) { 1319 if (CPSections[--SecIdx].S == S) { 1320 Found = true; 1321 break; 1322 } 1323 } 1324 if (!Found) { 1325 SecIdx = CPSections.size(); 1326 CPSections.push_back(SectionCPs(S, Align)); 1327 } 1328 1329 if (Align > CPSections[SecIdx].Alignment) 1330 CPSections[SecIdx].Alignment = Align; 1331 CPSections[SecIdx].CPEs.push_back(i); 1332 } 1333 1334 // Now print stuff into the calculated sections. 1335 const MCSection *CurSection = nullptr; 1336 unsigned Offset = 0; 1337 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1338 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1339 unsigned CPI = CPSections[i].CPEs[j]; 1340 MCSymbol *Sym = GetCPISymbol(CPI); 1341 if (!Sym->isUndefined()) 1342 continue; 1343 1344 if (CurSection != CPSections[i].S) { 1345 OutStreamer->SwitchSection(CPSections[i].S); 1346 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1347 CurSection = CPSections[i].S; 1348 Offset = 0; 1349 } 1350 1351 MachineConstantPoolEntry CPE = CP[CPI]; 1352 1353 // Emit inter-object padding for alignment. 1354 unsigned AlignMask = CPE.getAlignment() - 1; 1355 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1356 OutStreamer->EmitZeros(NewOffset - Offset); 1357 1358 Type *Ty = CPE.getType(); 1359 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1360 1361 OutStreamer->EmitLabel(Sym); 1362 if (CPE.isMachineConstantPoolEntry()) 1363 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1364 else 1365 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1366 } 1367 } 1368 } 1369 1370 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1371 /// by the current function to the current output stream. 1372 /// 1373 void AsmPrinter::EmitJumpTableInfo() { 1374 const DataLayout &DL = MF->getDataLayout(); 1375 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1376 if (!MJTI) return; 1377 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1378 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1379 if (JT.empty()) return; 1380 1381 // Pick the directive to use to print the jump table entries, and switch to 1382 // the appropriate section. 1383 const Function *F = MF->getFunction(); 1384 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1385 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1386 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1387 *F); 1388 if (JTInDiffSection) { 1389 // Drop it in the readonly section. 1390 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1391 OutStreamer->SwitchSection(ReadOnlySection); 1392 } 1393 1394 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1395 1396 // Jump tables in code sections are marked with a data_region directive 1397 // where that's supported. 1398 if (!JTInDiffSection) 1399 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1400 1401 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1402 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1403 1404 // If this jump table was deleted, ignore it. 1405 if (JTBBs.empty()) continue; 1406 1407 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1408 /// emit a .set directive for each unique entry. 1409 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1410 MAI->doesSetDirectiveSuppressReloc()) { 1411 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1412 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1413 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1414 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1415 const MachineBasicBlock *MBB = JTBBs[ii]; 1416 if (!EmittedSets.insert(MBB).second) 1417 continue; 1418 1419 // .set LJTSet, LBB32-base 1420 const MCExpr *LHS = 1421 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1422 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1423 MCBinaryExpr::createSub(LHS, Base, 1424 OutContext)); 1425 } 1426 } 1427 1428 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1429 // before each jump table. The first label is never referenced, but tells 1430 // the assembler and linker the extents of the jump table object. The 1431 // second label is actually referenced by the code. 1432 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1433 // FIXME: This doesn't have to have any specific name, just any randomly 1434 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1435 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1436 1437 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1438 1439 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1440 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1441 } 1442 if (!JTInDiffSection) 1443 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1444 } 1445 1446 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1447 /// current stream. 1448 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1449 const MachineBasicBlock *MBB, 1450 unsigned UID) const { 1451 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1452 const MCExpr *Value = nullptr; 1453 switch (MJTI->getEntryKind()) { 1454 case MachineJumpTableInfo::EK_Inline: 1455 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1456 case MachineJumpTableInfo::EK_Custom32: 1457 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1458 MJTI, MBB, UID, OutContext); 1459 break; 1460 case MachineJumpTableInfo::EK_BlockAddress: 1461 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1462 // .word LBB123 1463 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1464 break; 1465 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1466 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1467 // with a relocation as gp-relative, e.g.: 1468 // .gprel32 LBB123 1469 MCSymbol *MBBSym = MBB->getSymbol(); 1470 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1471 return; 1472 } 1473 1474 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1475 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1476 // with a relocation as gp-relative, e.g.: 1477 // .gpdword LBB123 1478 MCSymbol *MBBSym = MBB->getSymbol(); 1479 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1480 return; 1481 } 1482 1483 case MachineJumpTableInfo::EK_LabelDifference32: { 1484 // Each entry is the address of the block minus the address of the jump 1485 // table. This is used for PIC jump tables where gprel32 is not supported. 1486 // e.g.: 1487 // .word LBB123 - LJTI1_2 1488 // If the .set directive avoids relocations, this is emitted as: 1489 // .set L4_5_set_123, LBB123 - LJTI1_2 1490 // .word L4_5_set_123 1491 if (MAI->doesSetDirectiveSuppressReloc()) { 1492 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1493 OutContext); 1494 break; 1495 } 1496 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1497 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1498 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1499 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1500 break; 1501 } 1502 } 1503 1504 assert(Value && "Unknown entry kind!"); 1505 1506 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1507 OutStreamer->EmitValue(Value, EntrySize); 1508 } 1509 1510 1511 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1512 /// special global used by LLVM. If so, emit it and return true, otherwise 1513 /// do nothing and return false. 1514 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1515 if (GV->getName() == "llvm.used") { 1516 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1517 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1518 return true; 1519 } 1520 1521 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1522 if (GV->getSection() == "llvm.metadata" || 1523 GV->hasAvailableExternallyLinkage()) 1524 return true; 1525 1526 if (!GV->hasAppendingLinkage()) return false; 1527 1528 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1529 1530 if (GV->getName() == "llvm.global_ctors") { 1531 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1532 /* isCtor */ true); 1533 1534 return true; 1535 } 1536 1537 if (GV->getName() == "llvm.global_dtors") { 1538 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1539 /* isCtor */ false); 1540 1541 return true; 1542 } 1543 1544 report_fatal_error("unknown special variable"); 1545 } 1546 1547 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1548 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1549 /// is true, as being used with this directive. 1550 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1551 // Should be an array of 'i8*'. 1552 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1553 const GlobalValue *GV = 1554 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1555 if (GV) 1556 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1557 } 1558 } 1559 1560 namespace { 1561 struct Structor { 1562 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1563 int Priority; 1564 llvm::Constant *Func; 1565 llvm::GlobalValue *ComdatKey; 1566 }; 1567 } // end namespace 1568 1569 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1570 /// priority. 1571 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1572 bool isCtor) { 1573 // Should be an array of '{ int, void ()* }' structs. The first value is the 1574 // init priority. 1575 if (!isa<ConstantArray>(List)) return; 1576 1577 // Sanity check the structors list. 1578 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1579 if (!InitList) return; // Not an array! 1580 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1581 // FIXME: Only allow the 3-field form in LLVM 4.0. 1582 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1583 return; // Not an array of two or three elements! 1584 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1585 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1586 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1587 return; // Not (int, ptr, ptr). 1588 1589 // Gather the structors in a form that's convenient for sorting by priority. 1590 SmallVector<Structor, 8> Structors; 1591 for (Value *O : InitList->operands()) { 1592 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1593 if (!CS) continue; // Malformed. 1594 if (CS->getOperand(1)->isNullValue()) 1595 break; // Found a null terminator, skip the rest. 1596 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1597 if (!Priority) continue; // Malformed. 1598 Structors.push_back(Structor()); 1599 Structor &S = Structors.back(); 1600 S.Priority = Priority->getLimitedValue(65535); 1601 S.Func = CS->getOperand(1); 1602 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1603 S.ComdatKey = 1604 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1605 } 1606 1607 // Emit the function pointers in the target-specific order 1608 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1609 std::stable_sort(Structors.begin(), Structors.end(), 1610 [](const Structor &L, 1611 const Structor &R) { return L.Priority < R.Priority; }); 1612 for (Structor &S : Structors) { 1613 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1614 const MCSymbol *KeySym = nullptr; 1615 if (GlobalValue *GV = S.ComdatKey) { 1616 if (GV->hasAvailableExternallyLinkage()) 1617 // If the associated variable is available_externally, some other TU 1618 // will provide its dynamic initializer. 1619 continue; 1620 1621 KeySym = getSymbol(GV); 1622 } 1623 MCSection *OutputSection = 1624 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1625 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1626 OutStreamer->SwitchSection(OutputSection); 1627 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1628 EmitAlignment(Align); 1629 EmitXXStructor(DL, S.Func); 1630 } 1631 } 1632 1633 void AsmPrinter::EmitModuleIdents(Module &M) { 1634 if (!MAI->hasIdentDirective()) 1635 return; 1636 1637 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1638 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1639 const MDNode *N = NMD->getOperand(i); 1640 assert(N->getNumOperands() == 1 && 1641 "llvm.ident metadata entry can have only one operand"); 1642 const MDString *S = cast<MDString>(N->getOperand(0)); 1643 OutStreamer->EmitIdent(S->getString()); 1644 } 1645 } 1646 } 1647 1648 //===--------------------------------------------------------------------===// 1649 // Emission and print routines 1650 // 1651 1652 /// EmitInt8 - Emit a byte directive and value. 1653 /// 1654 void AsmPrinter::EmitInt8(int Value) const { 1655 OutStreamer->EmitIntValue(Value, 1); 1656 } 1657 1658 /// EmitInt16 - Emit a short directive and value. 1659 /// 1660 void AsmPrinter::EmitInt16(int Value) const { 1661 OutStreamer->EmitIntValue(Value, 2); 1662 } 1663 1664 /// EmitInt32 - Emit a long directive and value. 1665 /// 1666 void AsmPrinter::EmitInt32(int Value) const { 1667 OutStreamer->EmitIntValue(Value, 4); 1668 } 1669 1670 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1671 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1672 /// .set if it avoids relocations. 1673 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1674 unsigned Size) const { 1675 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1676 } 1677 1678 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1679 /// where the size in bytes of the directive is specified by Size and Label 1680 /// specifies the label. This implicitly uses .set if it is available. 1681 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1682 unsigned Size, 1683 bool IsSectionRelative) const { 1684 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1685 OutStreamer->EmitCOFFSecRel32(Label); 1686 return; 1687 } 1688 1689 // Emit Label+Offset (or just Label if Offset is zero) 1690 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1691 if (Offset) 1692 Expr = MCBinaryExpr::createAdd( 1693 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1694 1695 OutStreamer->EmitValue(Expr, Size); 1696 } 1697 1698 //===----------------------------------------------------------------------===// 1699 1700 // EmitAlignment - Emit an alignment directive to the specified power of 1701 // two boundary. For example, if you pass in 3 here, you will get an 8 1702 // byte alignment. If a global value is specified, and if that global has 1703 // an explicit alignment requested, it will override the alignment request 1704 // if required for correctness. 1705 // 1706 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1707 if (GV) 1708 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1709 1710 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1711 1712 assert(NumBits < 1713 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1714 "undefined behavior"); 1715 if (getCurrentSection()->getKind().isText()) 1716 OutStreamer->EmitCodeAlignment(1u << NumBits); 1717 else 1718 OutStreamer->EmitValueToAlignment(1u << NumBits); 1719 } 1720 1721 //===----------------------------------------------------------------------===// 1722 // Constant emission. 1723 //===----------------------------------------------------------------------===// 1724 1725 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1726 MCContext &Ctx = OutContext; 1727 1728 if (CV->isNullValue() || isa<UndefValue>(CV)) 1729 return MCConstantExpr::create(0, Ctx); 1730 1731 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1732 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1733 1734 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1735 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1736 1737 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1738 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1739 1740 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1741 if (!CE) { 1742 llvm_unreachable("Unknown constant value to lower!"); 1743 } 1744 1745 switch (CE->getOpcode()) { 1746 default: 1747 // If the code isn't optimized, there may be outstanding folding 1748 // opportunities. Attempt to fold the expression using DataLayout as a 1749 // last resort before giving up. 1750 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1751 if (C != CE) 1752 return lowerConstant(C); 1753 1754 // Otherwise report the problem to the user. 1755 { 1756 std::string S; 1757 raw_string_ostream OS(S); 1758 OS << "Unsupported expression in static initializer: "; 1759 CE->printAsOperand(OS, /*PrintType=*/false, 1760 !MF ? nullptr : MF->getFunction()->getParent()); 1761 report_fatal_error(OS.str()); 1762 } 1763 case Instruction::GetElementPtr: { 1764 // Generate a symbolic expression for the byte address 1765 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1766 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1767 1768 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1769 if (!OffsetAI) 1770 return Base; 1771 1772 int64_t Offset = OffsetAI.getSExtValue(); 1773 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1774 Ctx); 1775 } 1776 1777 case Instruction::Trunc: 1778 // We emit the value and depend on the assembler to truncate the generated 1779 // expression properly. This is important for differences between 1780 // blockaddress labels. Since the two labels are in the same function, it 1781 // is reasonable to treat their delta as a 32-bit value. 1782 LLVM_FALLTHROUGH; 1783 case Instruction::BitCast: 1784 return lowerConstant(CE->getOperand(0)); 1785 1786 case Instruction::IntToPtr: { 1787 const DataLayout &DL = getDataLayout(); 1788 1789 // Handle casts to pointers by changing them into casts to the appropriate 1790 // integer type. This promotes constant folding and simplifies this code. 1791 Constant *Op = CE->getOperand(0); 1792 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1793 false/*ZExt*/); 1794 return lowerConstant(Op); 1795 } 1796 1797 case Instruction::PtrToInt: { 1798 const DataLayout &DL = getDataLayout(); 1799 1800 // Support only foldable casts to/from pointers that can be eliminated by 1801 // changing the pointer to the appropriately sized integer type. 1802 Constant *Op = CE->getOperand(0); 1803 Type *Ty = CE->getType(); 1804 1805 const MCExpr *OpExpr = lowerConstant(Op); 1806 1807 // We can emit the pointer value into this slot if the slot is an 1808 // integer slot equal to the size of the pointer. 1809 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1810 return OpExpr; 1811 1812 // Otherwise the pointer is smaller than the resultant integer, mask off 1813 // the high bits so we are sure to get a proper truncation if the input is 1814 // a constant expr. 1815 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1816 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1817 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1818 } 1819 1820 case Instruction::Sub: { 1821 GlobalValue *LHSGV; 1822 APInt LHSOffset; 1823 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1824 getDataLayout())) { 1825 GlobalValue *RHSGV; 1826 APInt RHSOffset; 1827 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1828 getDataLayout())) { 1829 const MCExpr *RelocExpr = 1830 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1831 if (!RelocExpr) 1832 RelocExpr = MCBinaryExpr::createSub( 1833 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1834 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1835 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1836 if (Addend != 0) 1837 RelocExpr = MCBinaryExpr::createAdd( 1838 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1839 return RelocExpr; 1840 } 1841 } 1842 } 1843 // else fallthrough 1844 1845 // The MC library also has a right-shift operator, but it isn't consistently 1846 // signed or unsigned between different targets. 1847 case Instruction::Add: 1848 case Instruction::Mul: 1849 case Instruction::SDiv: 1850 case Instruction::SRem: 1851 case Instruction::Shl: 1852 case Instruction::And: 1853 case Instruction::Or: 1854 case Instruction::Xor: { 1855 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1856 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1857 switch (CE->getOpcode()) { 1858 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1859 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1860 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1861 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1862 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1863 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1864 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1865 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1866 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1867 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1868 } 1869 } 1870 } 1871 } 1872 1873 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1874 AsmPrinter &AP, 1875 const Constant *BaseCV = nullptr, 1876 uint64_t Offset = 0); 1877 1878 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1879 1880 /// isRepeatedByteSequence - Determine whether the given value is 1881 /// composed of a repeated sequence of identical bytes and return the 1882 /// byte value. If it is not a repeated sequence, return -1. 1883 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1884 StringRef Data = V->getRawDataValues(); 1885 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1886 char C = Data[0]; 1887 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1888 if (Data[i] != C) return -1; 1889 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1890 } 1891 1892 1893 /// isRepeatedByteSequence - Determine whether the given value is 1894 /// composed of a repeated sequence of identical bytes and return the 1895 /// byte value. If it is not a repeated sequence, return -1. 1896 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1897 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1898 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1899 assert(Size % 8 == 0); 1900 1901 // Extend the element to take zero padding into account. 1902 APInt Value = CI->getValue().zextOrSelf(Size); 1903 if (!Value.isSplat(8)) 1904 return -1; 1905 1906 return Value.zextOrTrunc(8).getZExtValue(); 1907 } 1908 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1909 // Make sure all array elements are sequences of the same repeated 1910 // byte. 1911 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1912 Constant *Op0 = CA->getOperand(0); 1913 int Byte = isRepeatedByteSequence(Op0, DL); 1914 if (Byte == -1) 1915 return -1; 1916 1917 // All array elements must be equal. 1918 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1919 if (CA->getOperand(i) != Op0) 1920 return -1; 1921 return Byte; 1922 } 1923 1924 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1925 return isRepeatedByteSequence(CDS); 1926 1927 return -1; 1928 } 1929 1930 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1931 const ConstantDataSequential *CDS, 1932 AsmPrinter &AP) { 1933 1934 // See if we can aggregate this into a .fill, if so, emit it as such. 1935 int Value = isRepeatedByteSequence(CDS, DL); 1936 if (Value != -1) { 1937 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1938 // Don't emit a 1-byte object as a .fill. 1939 if (Bytes > 1) 1940 return AP.OutStreamer->emitFill(Bytes, Value); 1941 } 1942 1943 // If this can be emitted with .ascii/.asciz, emit it as such. 1944 if (CDS->isString()) 1945 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1946 1947 // Otherwise, emit the values in successive locations. 1948 unsigned ElementByteSize = CDS->getElementByteSize(); 1949 if (isa<IntegerType>(CDS->getElementType())) { 1950 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1951 if (AP.isVerbose()) 1952 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1953 CDS->getElementAsInteger(i)); 1954 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1955 ElementByteSize); 1956 } 1957 } else { 1958 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 1959 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 1960 } 1961 1962 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1963 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1964 CDS->getNumElements(); 1965 if (unsigned Padding = Size - EmittedSize) 1966 AP.OutStreamer->EmitZeros(Padding); 1967 1968 } 1969 1970 static void emitGlobalConstantArray(const DataLayout &DL, 1971 const ConstantArray *CA, AsmPrinter &AP, 1972 const Constant *BaseCV, uint64_t Offset) { 1973 // See if we can aggregate some values. Make sure it can be 1974 // represented as a series of bytes of the constant value. 1975 int Value = isRepeatedByteSequence(CA, DL); 1976 1977 if (Value != -1) { 1978 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1979 AP.OutStreamer->emitFill(Bytes, Value); 1980 } 1981 else { 1982 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1983 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 1984 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1985 } 1986 } 1987 } 1988 1989 static void emitGlobalConstantVector(const DataLayout &DL, 1990 const ConstantVector *CV, AsmPrinter &AP) { 1991 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1992 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 1993 1994 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1995 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1996 CV->getType()->getNumElements(); 1997 if (unsigned Padding = Size - EmittedSize) 1998 AP.OutStreamer->EmitZeros(Padding); 1999 } 2000 2001 static void emitGlobalConstantStruct(const DataLayout &DL, 2002 const ConstantStruct *CS, AsmPrinter &AP, 2003 const Constant *BaseCV, uint64_t Offset) { 2004 // Print the fields in successive locations. Pad to align if needed! 2005 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2006 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2007 uint64_t SizeSoFar = 0; 2008 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2009 const Constant *Field = CS->getOperand(i); 2010 2011 // Print the actual field value. 2012 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2013 2014 // Check if padding is needed and insert one or more 0s. 2015 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2016 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2017 - Layout->getElementOffset(i)) - FieldSize; 2018 SizeSoFar += FieldSize + PadSize; 2019 2020 // Insert padding - this may include padding to increase the size of the 2021 // current field up to the ABI size (if the struct is not packed) as well 2022 // as padding to ensure that the next field starts at the right offset. 2023 AP.OutStreamer->EmitZeros(PadSize); 2024 } 2025 assert(SizeSoFar == Layout->getSizeInBytes() && 2026 "Layout of constant struct may be incorrect!"); 2027 } 2028 2029 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2030 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2031 2032 // First print a comment with what we think the original floating-point value 2033 // should have been. 2034 if (AP.isVerbose()) { 2035 SmallString<8> StrVal; 2036 CFP->getValueAPF().toString(StrVal); 2037 2038 if (CFP->getType()) 2039 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2040 else 2041 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2042 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2043 } 2044 2045 // Now iterate through the APInt chunks, emitting them in endian-correct 2046 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2047 // floats). 2048 unsigned NumBytes = API.getBitWidth() / 8; 2049 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2050 const uint64_t *p = API.getRawData(); 2051 2052 // PPC's long double has odd notions of endianness compared to how LLVM 2053 // handles it: p[0] goes first for *big* endian on PPC. 2054 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2055 int Chunk = API.getNumWords() - 1; 2056 2057 if (TrailingBytes) 2058 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2059 2060 for (; Chunk >= 0; --Chunk) 2061 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2062 } else { 2063 unsigned Chunk; 2064 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2065 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2066 2067 if (TrailingBytes) 2068 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2069 } 2070 2071 // Emit the tail padding for the long double. 2072 const DataLayout &DL = AP.getDataLayout(); 2073 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2074 DL.getTypeStoreSize(CFP->getType())); 2075 } 2076 2077 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2078 const DataLayout &DL = AP.getDataLayout(); 2079 unsigned BitWidth = CI->getBitWidth(); 2080 2081 // Copy the value as we may massage the layout for constants whose bit width 2082 // is not a multiple of 64-bits. 2083 APInt Realigned(CI->getValue()); 2084 uint64_t ExtraBits = 0; 2085 unsigned ExtraBitsSize = BitWidth & 63; 2086 2087 if (ExtraBitsSize) { 2088 // The bit width of the data is not a multiple of 64-bits. 2089 // The extra bits are expected to be at the end of the chunk of the memory. 2090 // Little endian: 2091 // * Nothing to be done, just record the extra bits to emit. 2092 // Big endian: 2093 // * Record the extra bits to emit. 2094 // * Realign the raw data to emit the chunks of 64-bits. 2095 if (DL.isBigEndian()) { 2096 // Basically the structure of the raw data is a chunk of 64-bits cells: 2097 // 0 1 BitWidth / 64 2098 // [chunk1][chunk2] ... [chunkN]. 2099 // The most significant chunk is chunkN and it should be emitted first. 2100 // However, due to the alignment issue chunkN contains useless bits. 2101 // Realign the chunks so that they contain only useless information: 2102 // ExtraBits 0 1 (BitWidth / 64) - 1 2103 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2104 ExtraBits = Realigned.getRawData()[0] & 2105 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2106 Realigned = Realigned.lshr(ExtraBitsSize); 2107 } else 2108 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2109 } 2110 2111 // We don't expect assemblers to support integer data directives 2112 // for more than 64 bits, so we emit the data in at most 64-bit 2113 // quantities at a time. 2114 const uint64_t *RawData = Realigned.getRawData(); 2115 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2116 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2117 AP.OutStreamer->EmitIntValue(Val, 8); 2118 } 2119 2120 if (ExtraBitsSize) { 2121 // Emit the extra bits after the 64-bits chunks. 2122 2123 // Emit a directive that fills the expected size. 2124 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2125 Size -= (BitWidth / 64) * 8; 2126 assert(Size && Size * 8 >= ExtraBitsSize && 2127 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2128 == ExtraBits && "Directive too small for extra bits."); 2129 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2130 } 2131 } 2132 2133 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2134 /// equivalent global, by a target specific GOT pc relative access to the 2135 /// final symbol. 2136 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2137 const Constant *BaseCst, 2138 uint64_t Offset) { 2139 // The global @foo below illustrates a global that uses a got equivalent. 2140 // 2141 // @bar = global i32 42 2142 // @gotequiv = private unnamed_addr constant i32* @bar 2143 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2144 // i64 ptrtoint (i32* @foo to i64)) 2145 // to i32) 2146 // 2147 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2148 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2149 // form: 2150 // 2151 // foo = cstexpr, where 2152 // cstexpr := <gotequiv> - "." + <cst> 2153 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2154 // 2155 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2156 // 2157 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2158 // gotpcrelcst := <offset from @foo base> + <cst> 2159 // 2160 MCValue MV; 2161 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2162 return; 2163 const MCSymbolRefExpr *SymA = MV.getSymA(); 2164 if (!SymA) 2165 return; 2166 2167 // Check that GOT equivalent symbol is cached. 2168 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2169 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2170 return; 2171 2172 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2173 if (!BaseGV) 2174 return; 2175 2176 // Check for a valid base symbol 2177 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2178 const MCSymbolRefExpr *SymB = MV.getSymB(); 2179 2180 if (!SymB || BaseSym != &SymB->getSymbol()) 2181 return; 2182 2183 // Make sure to match: 2184 // 2185 // gotpcrelcst := <offset from @foo base> + <cst> 2186 // 2187 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2188 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2189 // if the target knows how to encode it. 2190 // 2191 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2192 if (GOTPCRelCst < 0) 2193 return; 2194 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2195 return; 2196 2197 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2198 // 2199 // bar: 2200 // .long 42 2201 // gotequiv: 2202 // .quad bar 2203 // foo: 2204 // .long gotequiv - "." + <cst> 2205 // 2206 // is replaced by the target specific equivalent to: 2207 // 2208 // bar: 2209 // .long 42 2210 // foo: 2211 // .long bar@GOTPCREL+<gotpcrelcst> 2212 // 2213 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2214 const GlobalVariable *GV = Result.first; 2215 int NumUses = (int)Result.second; 2216 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2217 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2218 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2219 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2220 2221 // Update GOT equivalent usage information 2222 --NumUses; 2223 if (NumUses >= 0) 2224 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2225 } 2226 2227 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2228 AsmPrinter &AP, const Constant *BaseCV, 2229 uint64_t Offset) { 2230 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2231 2232 // Globals with sub-elements such as combinations of arrays and structs 2233 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2234 // constant symbol base and the current position with BaseCV and Offset. 2235 if (!BaseCV && CV->hasOneUse()) 2236 BaseCV = dyn_cast<Constant>(CV->user_back()); 2237 2238 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2239 return AP.OutStreamer->EmitZeros(Size); 2240 2241 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2242 switch (Size) { 2243 case 1: 2244 case 2: 2245 case 4: 2246 case 8: 2247 if (AP.isVerbose()) 2248 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2249 CI->getZExtValue()); 2250 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2251 return; 2252 default: 2253 emitGlobalConstantLargeInt(CI, AP); 2254 return; 2255 } 2256 } 2257 2258 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2259 return emitGlobalConstantFP(CFP, AP); 2260 2261 if (isa<ConstantPointerNull>(CV)) { 2262 AP.OutStreamer->EmitIntValue(0, Size); 2263 return; 2264 } 2265 2266 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2267 return emitGlobalConstantDataSequential(DL, CDS, AP); 2268 2269 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2270 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2271 2272 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2273 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2274 2275 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2276 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2277 // vectors). 2278 if (CE->getOpcode() == Instruction::BitCast) 2279 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2280 2281 if (Size > 8) { 2282 // If the constant expression's size is greater than 64-bits, then we have 2283 // to emit the value in chunks. Try to constant fold the value and emit it 2284 // that way. 2285 Constant *New = ConstantFoldConstant(CE, DL); 2286 if (New && New != CE) 2287 return emitGlobalConstantImpl(DL, New, AP); 2288 } 2289 } 2290 2291 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2292 return emitGlobalConstantVector(DL, V, AP); 2293 2294 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2295 // thread the streamer with EmitValue. 2296 const MCExpr *ME = AP.lowerConstant(CV); 2297 2298 // Since lowerConstant already folded and got rid of all IR pointer and 2299 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2300 // directly. 2301 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2302 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2303 2304 AP.OutStreamer->EmitValue(ME, Size); 2305 } 2306 2307 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2308 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2309 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2310 if (Size) 2311 emitGlobalConstantImpl(DL, CV, *this); 2312 else if (MAI->hasSubsectionsViaSymbols()) { 2313 // If the global has zero size, emit a single byte so that two labels don't 2314 // look like they are at the same location. 2315 OutStreamer->EmitIntValue(0, 1); 2316 } 2317 } 2318 2319 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2320 // Target doesn't support this yet! 2321 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2322 } 2323 2324 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2325 if (Offset > 0) 2326 OS << '+' << Offset; 2327 else if (Offset < 0) 2328 OS << Offset; 2329 } 2330 2331 //===----------------------------------------------------------------------===// 2332 // Symbol Lowering Routines. 2333 //===----------------------------------------------------------------------===// 2334 2335 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2336 return OutContext.createTempSymbol(Name, true); 2337 } 2338 2339 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2340 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2341 } 2342 2343 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2344 return MMI->getAddrLabelSymbol(BB); 2345 } 2346 2347 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2348 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2349 const DataLayout &DL = getDataLayout(); 2350 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2351 "CPI" + Twine(getFunctionNumber()) + "_" + 2352 Twine(CPID)); 2353 } 2354 2355 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2356 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2357 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2358 } 2359 2360 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2361 /// FIXME: privatize to AsmPrinter. 2362 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2363 const DataLayout &DL = getDataLayout(); 2364 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2365 Twine(getFunctionNumber()) + "_" + 2366 Twine(UID) + "_set_" + Twine(MBBID)); 2367 } 2368 2369 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2370 StringRef Suffix) const { 2371 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2372 } 2373 2374 /// Return the MCSymbol for the specified ExternalSymbol. 2375 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2376 SmallString<60> NameStr; 2377 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2378 return OutContext.getOrCreateSymbol(NameStr); 2379 } 2380 2381 2382 2383 /// PrintParentLoopComment - Print comments about parent loops of this one. 2384 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2385 unsigned FunctionNumber) { 2386 if (!Loop) return; 2387 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2388 OS.indent(Loop->getLoopDepth()*2) 2389 << "Parent Loop BB" << FunctionNumber << "_" 2390 << Loop->getHeader()->getNumber() 2391 << " Depth=" << Loop->getLoopDepth() << '\n'; 2392 } 2393 2394 2395 /// PrintChildLoopComment - Print comments about child loops within 2396 /// the loop for this basic block, with nesting. 2397 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2398 unsigned FunctionNumber) { 2399 // Add child loop information 2400 for (const MachineLoop *CL : *Loop) { 2401 OS.indent(CL->getLoopDepth()*2) 2402 << "Child Loop BB" << FunctionNumber << "_" 2403 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2404 << '\n'; 2405 PrintChildLoopComment(OS, CL, FunctionNumber); 2406 } 2407 } 2408 2409 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2410 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2411 const MachineLoopInfo *LI, 2412 const AsmPrinter &AP) { 2413 // Add loop depth information 2414 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2415 if (!Loop) return; 2416 2417 MachineBasicBlock *Header = Loop->getHeader(); 2418 assert(Header && "No header for loop"); 2419 2420 // If this block is not a loop header, just print out what is the loop header 2421 // and return. 2422 if (Header != &MBB) { 2423 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2424 Twine(AP.getFunctionNumber())+"_" + 2425 Twine(Loop->getHeader()->getNumber())+ 2426 " Depth="+Twine(Loop->getLoopDepth())); 2427 return; 2428 } 2429 2430 // Otherwise, it is a loop header. Print out information about child and 2431 // parent loops. 2432 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2433 2434 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2435 2436 OS << "=>"; 2437 OS.indent(Loop->getLoopDepth()*2-2); 2438 2439 OS << "This "; 2440 if (Loop->empty()) 2441 OS << "Inner "; 2442 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2443 2444 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2445 } 2446 2447 2448 /// EmitBasicBlockStart - This method prints the label for the specified 2449 /// MachineBasicBlock, an alignment (if present) and a comment describing 2450 /// it if appropriate. 2451 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2452 // End the previous funclet and start a new one. 2453 if (MBB.isEHFuncletEntry()) { 2454 for (const HandlerInfo &HI : Handlers) { 2455 HI.Handler->endFunclet(); 2456 HI.Handler->beginFunclet(MBB); 2457 } 2458 } 2459 2460 // Emit an alignment directive for this block, if needed. 2461 if (unsigned Align = MBB.getAlignment()) 2462 EmitAlignment(Align); 2463 2464 // If the block has its address taken, emit any labels that were used to 2465 // reference the block. It is possible that there is more than one label 2466 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2467 // the references were generated. 2468 if (MBB.hasAddressTaken()) { 2469 const BasicBlock *BB = MBB.getBasicBlock(); 2470 if (isVerbose()) 2471 OutStreamer->AddComment("Block address taken"); 2472 2473 // MBBs can have their address taken as part of CodeGen without having 2474 // their corresponding BB's address taken in IR 2475 if (BB->hasAddressTaken()) 2476 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2477 OutStreamer->EmitLabel(Sym); 2478 } 2479 2480 // Print some verbose block comments. 2481 if (isVerbose()) { 2482 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2483 if (BB->hasName()) { 2484 BB->printAsOperand(OutStreamer->GetCommentOS(), 2485 /*PrintType=*/false, BB->getModule()); 2486 OutStreamer->GetCommentOS() << '\n'; 2487 } 2488 } 2489 emitBasicBlockLoopComments(MBB, LI, *this); 2490 } 2491 2492 // Print the main label for the block. 2493 if (MBB.pred_empty() || 2494 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2495 if (isVerbose()) { 2496 // NOTE: Want this comment at start of line, don't emit with AddComment. 2497 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2498 } 2499 } else { 2500 OutStreamer->EmitLabel(MBB.getSymbol()); 2501 } 2502 } 2503 2504 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2505 bool IsDefinition) const { 2506 MCSymbolAttr Attr = MCSA_Invalid; 2507 2508 switch (Visibility) { 2509 default: break; 2510 case GlobalValue::HiddenVisibility: 2511 if (IsDefinition) 2512 Attr = MAI->getHiddenVisibilityAttr(); 2513 else 2514 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2515 break; 2516 case GlobalValue::ProtectedVisibility: 2517 Attr = MAI->getProtectedVisibilityAttr(); 2518 break; 2519 } 2520 2521 if (Attr != MCSA_Invalid) 2522 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2523 } 2524 2525 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2526 /// exactly one predecessor and the control transfer mechanism between 2527 /// the predecessor and this block is a fall-through. 2528 bool AsmPrinter:: 2529 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2530 // If this is a landing pad, it isn't a fall through. If it has no preds, 2531 // then nothing falls through to it. 2532 if (MBB->isEHPad() || MBB->pred_empty()) 2533 return false; 2534 2535 // If there isn't exactly one predecessor, it can't be a fall through. 2536 if (MBB->pred_size() > 1) 2537 return false; 2538 2539 // The predecessor has to be immediately before this block. 2540 MachineBasicBlock *Pred = *MBB->pred_begin(); 2541 if (!Pred->isLayoutSuccessor(MBB)) 2542 return false; 2543 2544 // If the block is completely empty, then it definitely does fall through. 2545 if (Pred->empty()) 2546 return true; 2547 2548 // Check the terminators in the previous blocks 2549 for (const auto &MI : Pred->terminators()) { 2550 // If it is not a simple branch, we are in a table somewhere. 2551 if (!MI.isBranch() || MI.isIndirectBranch()) 2552 return false; 2553 2554 // If we are the operands of one of the branches, this is not a fall 2555 // through. Note that targets with delay slots will usually bundle 2556 // terminators with the delay slot instruction. 2557 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2558 if (OP->isJTI()) 2559 return false; 2560 if (OP->isMBB() && OP->getMBB() == MBB) 2561 return false; 2562 } 2563 } 2564 2565 return true; 2566 } 2567 2568 2569 2570 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2571 if (!S.usesMetadata()) 2572 return nullptr; 2573 2574 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2575 " stackmap formats, please see the documentation for a description of" 2576 " the default format. If you really need a custom serialized format," 2577 " please file a bug"); 2578 2579 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2580 gcp_map_type::iterator GCPI = GCMap.find(&S); 2581 if (GCPI != GCMap.end()) 2582 return GCPI->second.get(); 2583 2584 const char *Name = S.getName().c_str(); 2585 2586 for (GCMetadataPrinterRegistry::iterator 2587 I = GCMetadataPrinterRegistry::begin(), 2588 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2589 if (strcmp(Name, I->getName()) == 0) { 2590 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2591 GMP->S = &S; 2592 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2593 return IterBool.first->second.get(); 2594 } 2595 2596 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2597 } 2598 2599 /// Pin vtable to this file. 2600 AsmPrinterHandler::~AsmPrinterHandler() {} 2601 2602 void AsmPrinterHandler::markFunctionEnd() {} 2603 2604 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2605 SledKind Kind) { 2606 auto Fn = MI.getParent()->getParent()->getFunction(); 2607 auto Attr = Fn->getFnAttribute("function-instrument"); 2608 bool AlwaysInstrument = 2609 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2610 Sleds.emplace_back( 2611 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2612 } 2613