1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "asm-printer" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "llvm/Module.h" 19 #include "llvm/CodeGen/GCMetadataPrinter.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DebugInfo.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCSection.h" 33 #include "llvm/MC/MCStreamer.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Target/Mangler.h" 36 #include "llvm/Target/TargetData.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetLoweringObjectFile.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Assembly/Writer.h" 43 #include "llvm/ADT/SmallString.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/Timer.h" 49 using namespace llvm; 50 51 static const char *DWARFGroupName = "DWARF Emission"; 52 static const char *DbgTimerName = "DWARF Debug Writer"; 53 static const char *EHTimerName = "DWARF Exception Writer"; 54 55 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 56 57 char AsmPrinter::ID = 0; 58 59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 60 static gcp_map_type &getGCMap(void *&P) { 61 if (P == 0) 62 P = new gcp_map_type(); 63 return *(gcp_map_type*)P; 64 } 65 66 67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 68 /// value in log2 form. This rounds up to the preferred alignment if possible 69 /// and legal. 70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, 71 unsigned InBits = 0) { 72 unsigned NumBits = 0; 73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 74 NumBits = TD.getPreferredAlignmentLog(GVar); 75 76 // If InBits is specified, round it to it. 77 if (InBits > NumBits) 78 NumBits = InBits; 79 80 // If the GV has a specified alignment, take it into account. 81 if (GV->getAlignment() == 0) 82 return NumBits; 83 84 unsigned GVAlign = Log2_32(GV->getAlignment()); 85 86 // If the GVAlign is larger than NumBits, or if we are required to obey 87 // NumBits because the GV has an assigned section, obey it. 88 if (GVAlign > NumBits || GV->hasSection()) 89 NumBits = GVAlign; 90 return NumBits; 91 } 92 93 94 95 96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 97 : MachineFunctionPass(ID), 98 TM(tm), MAI(tm.getMCAsmInfo()), 99 OutContext(Streamer.getContext()), 100 OutStreamer(Streamer), 101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 102 DD = 0; DE = 0; MMI = 0; LI = 0; 103 GCMetadataPrinters = 0; 104 VerboseAsm = Streamer.isVerboseAsm(); 105 } 106 107 AsmPrinter::~AsmPrinter() { 108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 109 110 if (GCMetadataPrinters != 0) { 111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 112 113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 114 delete I->second; 115 delete &GCMap; 116 GCMetadataPrinters = 0; 117 } 118 119 delete &OutStreamer; 120 } 121 122 /// getFunctionNumber - Return a unique ID for the current function. 123 /// 124 unsigned AsmPrinter::getFunctionNumber() const { 125 return MF->getFunctionNumber(); 126 } 127 128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 129 return TM.getTargetLowering()->getObjFileLowering(); 130 } 131 132 133 /// getTargetData - Return information about data layout. 134 const TargetData &AsmPrinter::getTargetData() const { 135 return *TM.getTargetData(); 136 } 137 138 /// getCurrentSection() - Return the current section we are emitting to. 139 const MCSection *AsmPrinter::getCurrentSection() const { 140 return OutStreamer.getCurrentSection(); 141 } 142 143 144 145 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 146 AU.setPreservesAll(); 147 MachineFunctionPass::getAnalysisUsage(AU); 148 AU.addRequired<MachineModuleInfo>(); 149 AU.addRequired<GCModuleInfo>(); 150 if (isVerbose()) 151 AU.addRequired<MachineLoopInfo>(); 152 } 153 154 bool AsmPrinter::doInitialization(Module &M) { 155 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 156 MMI->AnalyzeModule(M); 157 158 // Initialize TargetLoweringObjectFile. 159 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 160 .Initialize(OutContext, TM); 161 162 Mang = new Mangler(OutContext, *TM.getTargetData()); 163 164 // Allow the target to emit any magic that it wants at the start of the file. 165 EmitStartOfAsmFile(M); 166 167 // Very minimal debug info. It is ignored if we emit actual debug info. If we 168 // don't, this at least helps the user find where a global came from. 169 if (MAI->hasSingleParameterDotFile()) { 170 // .file "foo.c" 171 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 172 } 173 174 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 175 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 178 MP->beginAssembly(*this); 179 180 // Emit module-level inline asm if it exists. 181 if (!M.getModuleInlineAsm().empty()) { 182 OutStreamer.AddComment("Start of file scope inline assembly"); 183 OutStreamer.AddBlankLine(); 184 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 185 OutStreamer.AddComment("End of file scope inline assembly"); 186 OutStreamer.AddBlankLine(); 187 } 188 189 if (MAI->doesSupportDebugInformation()) 190 DD = new DwarfDebug(this, &M); 191 192 switch (MAI->getExceptionHandlingType()) { 193 case ExceptionHandling::None: 194 return false; 195 case ExceptionHandling::SjLj: 196 case ExceptionHandling::DwarfCFI: 197 DE = new DwarfCFIException(this); 198 return false; 199 case ExceptionHandling::ARM: 200 DE = new ARMException(this); 201 return false; 202 case ExceptionHandling::Win64: 203 DE = new Win64Exception(this); 204 return false; 205 } 206 207 llvm_unreachable("Unknown exception type."); 208 } 209 210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 211 switch ((GlobalValue::LinkageTypes)Linkage) { 212 case GlobalValue::CommonLinkage: 213 case GlobalValue::LinkOnceAnyLinkage: 214 case GlobalValue::LinkOnceODRLinkage: 215 case GlobalValue::WeakAnyLinkage: 216 case GlobalValue::WeakODRLinkage: 217 case GlobalValue::LinkerPrivateWeakLinkage: 218 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 219 if (MAI->getWeakDefDirective() != 0) { 220 // .globl _foo 221 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 222 223 if ((GlobalValue::LinkageTypes)Linkage != 224 GlobalValue::LinkerPrivateWeakDefAutoLinkage) 225 // .weak_definition _foo 226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 227 else 228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 229 } else if (MAI->getLinkOnceDirective() != 0) { 230 // .globl _foo 231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 232 //NOTE: linkonce is handled by the section the symbol was assigned to. 233 } else { 234 // .weak _foo 235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 236 } 237 break; 238 case GlobalValue::DLLExportLinkage: 239 case GlobalValue::AppendingLinkage: 240 // FIXME: appending linkage variables should go into a section of 241 // their name or something. For now, just emit them as external. 242 case GlobalValue::ExternalLinkage: 243 // If external or appending, declare as a global symbol. 244 // .globl _foo 245 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 246 break; 247 case GlobalValue::PrivateLinkage: 248 case GlobalValue::InternalLinkage: 249 case GlobalValue::LinkerPrivateLinkage: 250 break; 251 default: 252 llvm_unreachable("Unknown linkage type!"); 253 } 254 } 255 256 257 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 259 if (GV->hasInitializer()) { 260 // Check to see if this is a special global used by LLVM, if so, emit it. 261 if (EmitSpecialLLVMGlobal(GV)) 262 return; 263 264 if (isVerbose()) { 265 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 266 /*PrintType=*/false, GV->getParent()); 267 OutStreamer.GetCommentOS() << '\n'; 268 } 269 } 270 271 MCSymbol *GVSym = Mang->getSymbol(GV); 272 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 273 274 if (!GV->hasInitializer()) // External globals require no extra code. 275 return; 276 277 if (MAI->hasDotTypeDotSizeDirective()) 278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 279 280 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 281 282 const TargetData *TD = TM.getTargetData(); 283 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 284 285 // If the alignment is specified, we *must* obey it. Overaligning a global 286 // with a specified alignment is a prompt way to break globals emitted to 287 // sections and expected to be contiguous (e.g. ObjC metadata). 288 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 289 290 // Handle common and BSS local symbols (.lcomm). 291 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 292 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 293 unsigned Align = 1 << AlignLog; 294 295 // Handle common symbols. 296 if (GVKind.isCommon()) { 297 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 298 Align = 0; 299 300 // .comm _foo, 42, 4 301 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 302 return; 303 } 304 305 // Handle local BSS symbols. 306 if (MAI->hasMachoZeroFillDirective()) { 307 const MCSection *TheSection = 308 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 309 // .zerofill __DATA, __bss, _foo, 400, 5 310 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 311 return; 312 } 313 314 if (MAI->getLCOMMDirectiveType() != LCOMM::None && 315 (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) { 316 // .lcomm _foo, 42 317 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 318 return; 319 } 320 321 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 322 Align = 0; 323 324 // .local _foo 325 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 326 // .comm _foo, 42, 4 327 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 328 return; 329 } 330 331 const MCSection *TheSection = 332 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 333 334 // Handle the zerofill directive on darwin, which is a special form of BSS 335 // emission. 336 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 337 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 338 339 // .globl _foo 340 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 341 // .zerofill __DATA, __common, _foo, 400, 5 342 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 343 return; 344 } 345 346 // Handle thread local data for mach-o which requires us to output an 347 // additional structure of data and mangle the original symbol so that we 348 // can reference it later. 349 // 350 // TODO: This should become an "emit thread local global" method on TLOF. 351 // All of this macho specific stuff should be sunk down into TLOFMachO and 352 // stuff like "TLSExtraDataSection" should no longer be part of the parent 353 // TLOF class. This will also make it more obvious that stuff like 354 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 355 // specific code. 356 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 357 // Emit the .tbss symbol 358 MCSymbol *MangSym = 359 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 360 361 if (GVKind.isThreadBSS()) 362 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 363 else if (GVKind.isThreadData()) { 364 OutStreamer.SwitchSection(TheSection); 365 366 EmitAlignment(AlignLog, GV); 367 OutStreamer.EmitLabel(MangSym); 368 369 EmitGlobalConstant(GV->getInitializer()); 370 } 371 372 OutStreamer.AddBlankLine(); 373 374 // Emit the variable struct for the runtime. 375 const MCSection *TLVSect 376 = getObjFileLowering().getTLSExtraDataSection(); 377 378 OutStreamer.SwitchSection(TLVSect); 379 // Emit the linkage here. 380 EmitLinkage(GV->getLinkage(), GVSym); 381 OutStreamer.EmitLabel(GVSym); 382 383 // Three pointers in size: 384 // - __tlv_bootstrap - used to make sure support exists 385 // - spare pointer, used when mapped by the runtime 386 // - pointer to mangled symbol above with initializer 387 unsigned PtrSize = TD->getPointerSizeInBits()/8; 388 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 389 PtrSize, 0); 390 OutStreamer.EmitIntValue(0, PtrSize, 0); 391 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 392 393 OutStreamer.AddBlankLine(); 394 return; 395 } 396 397 OutStreamer.SwitchSection(TheSection); 398 399 EmitLinkage(GV->getLinkage(), GVSym); 400 EmitAlignment(AlignLog, GV); 401 402 OutStreamer.EmitLabel(GVSym); 403 404 EmitGlobalConstant(GV->getInitializer()); 405 406 if (MAI->hasDotTypeDotSizeDirective()) 407 // .size foo, 42 408 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 409 410 OutStreamer.AddBlankLine(); 411 } 412 413 /// EmitFunctionHeader - This method emits the header for the current 414 /// function. 415 void AsmPrinter::EmitFunctionHeader() { 416 // Print out constants referenced by the function 417 EmitConstantPool(); 418 419 // Print the 'header' of function. 420 const Function *F = MF->getFunction(); 421 422 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 423 EmitVisibility(CurrentFnSym, F->getVisibility()); 424 425 EmitLinkage(F->getLinkage(), CurrentFnSym); 426 EmitAlignment(MF->getAlignment(), F); 427 428 if (MAI->hasDotTypeDotSizeDirective()) 429 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 430 431 if (isVerbose()) { 432 WriteAsOperand(OutStreamer.GetCommentOS(), F, 433 /*PrintType=*/false, F->getParent()); 434 OutStreamer.GetCommentOS() << '\n'; 435 } 436 437 // Emit the CurrentFnSym. This is a virtual function to allow targets to 438 // do their wild and crazy things as required. 439 EmitFunctionEntryLabel(); 440 441 // If the function had address-taken blocks that got deleted, then we have 442 // references to the dangling symbols. Emit them at the start of the function 443 // so that we don't get references to undefined symbols. 444 std::vector<MCSymbol*> DeadBlockSyms; 445 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 446 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 447 OutStreamer.AddComment("Address taken block that was later removed"); 448 OutStreamer.EmitLabel(DeadBlockSyms[i]); 449 } 450 451 // Add some workaround for linkonce linkage on Cygwin\MinGW. 452 if (MAI->getLinkOnceDirective() != 0 && 453 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 454 // FIXME: What is this? 455 MCSymbol *FakeStub = 456 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 457 CurrentFnSym->getName()); 458 OutStreamer.EmitLabel(FakeStub); 459 } 460 461 // Emit pre-function debug and/or EH information. 462 if (DE) { 463 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 464 DE->BeginFunction(MF); 465 } 466 if (DD) { 467 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 468 DD->beginFunction(MF); 469 } 470 } 471 472 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 473 /// function. This can be overridden by targets as required to do custom stuff. 474 void AsmPrinter::EmitFunctionEntryLabel() { 475 // The function label could have already been emitted if two symbols end up 476 // conflicting due to asm renaming. Detect this and emit an error. 477 if (CurrentFnSym->isUndefined()) { 478 OutStreamer.ForceCodeRegion(); 479 return OutStreamer.EmitLabel(CurrentFnSym); 480 } 481 482 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 483 "' label emitted multiple times to assembly file"); 484 } 485 486 487 /// EmitComments - Pretty-print comments for instructions. 488 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 489 const MachineFunction *MF = MI.getParent()->getParent(); 490 const TargetMachine &TM = MF->getTarget(); 491 492 // Check for spills and reloads 493 int FI; 494 495 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 496 497 // We assume a single instruction only has a spill or reload, not 498 // both. 499 const MachineMemOperand *MMO; 500 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 501 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 502 MMO = *MI.memoperands_begin(); 503 CommentOS << MMO->getSize() << "-byte Reload\n"; 504 } 505 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 506 if (FrameInfo->isSpillSlotObjectIndex(FI)) 507 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 508 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 509 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 510 MMO = *MI.memoperands_begin(); 511 CommentOS << MMO->getSize() << "-byte Spill\n"; 512 } 513 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 514 if (FrameInfo->isSpillSlotObjectIndex(FI)) 515 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 516 } 517 518 // Check for spill-induced copies 519 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 520 CommentOS << " Reload Reuse\n"; 521 } 522 523 /// EmitImplicitDef - This method emits the specified machine instruction 524 /// that is an implicit def. 525 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 526 unsigned RegNo = MI->getOperand(0).getReg(); 527 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 528 AP.TM.getRegisterInfo()->getName(RegNo)); 529 AP.OutStreamer.AddBlankLine(); 530 } 531 532 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) { 533 std::string Str = "kill:"; 534 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 535 const MachineOperand &Op = MI->getOperand(i); 536 assert(Op.isReg() && "KILL instruction must have only register operands"); 537 Str += ' '; 538 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 539 Str += (Op.isDef() ? "<def>" : "<kill>"); 540 } 541 AP.OutStreamer.AddComment(Str); 542 AP.OutStreamer.AddBlankLine(); 543 } 544 545 /// EmitDebugValueComment - This method handles the target-independent form 546 /// of DBG_VALUE, returning true if it was able to do so. A false return 547 /// means the target will need to handle MI in EmitInstruction. 548 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 549 // This code handles only the 3-operand target-independent form. 550 if (MI->getNumOperands() != 3) 551 return false; 552 553 SmallString<128> Str; 554 raw_svector_ostream OS(Str); 555 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 556 557 // cast away const; DIetc do not take const operands for some reason. 558 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 559 if (V.getContext().isSubprogram()) 560 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 561 OS << V.getName() << " <- "; 562 563 // Register or immediate value. Register 0 means undef. 564 if (MI->getOperand(0).isFPImm()) { 565 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 566 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 567 OS << (double)APF.convertToFloat(); 568 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 569 OS << APF.convertToDouble(); 570 } else { 571 // There is no good way to print long double. Convert a copy to 572 // double. Ah well, it's only a comment. 573 bool ignored; 574 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 575 &ignored); 576 OS << "(long double) " << APF.convertToDouble(); 577 } 578 } else if (MI->getOperand(0).isImm()) { 579 OS << MI->getOperand(0).getImm(); 580 } else if (MI->getOperand(0).isCImm()) { 581 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 582 } else { 583 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 584 if (MI->getOperand(0).getReg() == 0) { 585 // Suppress offset, it is not meaningful here. 586 OS << "undef"; 587 // NOTE: Want this comment at start of line, don't emit with AddComment. 588 AP.OutStreamer.EmitRawText(OS.str()); 589 return true; 590 } 591 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 592 } 593 594 OS << '+' << MI->getOperand(1).getImm(); 595 // NOTE: Want this comment at start of line, don't emit with AddComment. 596 AP.OutStreamer.EmitRawText(OS.str()); 597 return true; 598 } 599 600 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 601 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 602 MF->getFunction()->needsUnwindTableEntry()) 603 return CFI_M_EH; 604 605 if (MMI->hasDebugInfo()) 606 return CFI_M_Debug; 607 608 return CFI_M_None; 609 } 610 611 bool AsmPrinter::needsSEHMoves() { 612 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 613 MF->getFunction()->needsUnwindTableEntry(); 614 } 615 616 bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 617 return MAI->doesDwarfUseRelocationsForStringPool(); 618 } 619 620 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 621 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 622 623 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 624 return; 625 626 if (needsCFIMoves() == CFI_M_None) 627 return; 628 629 if (MMI->getCompactUnwindEncoding() != 0) 630 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 631 632 MachineModuleInfo &MMI = MF->getMMI(); 633 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 634 bool FoundOne = false; 635 (void)FoundOne; 636 for (std::vector<MachineMove>::iterator I = Moves.begin(), 637 E = Moves.end(); I != E; ++I) { 638 if (I->getLabel() == Label) { 639 EmitCFIFrameMove(*I); 640 FoundOne = true; 641 } 642 } 643 assert(FoundOne); 644 } 645 646 /// EmitFunctionBody - This method emits the body and trailer for a 647 /// function. 648 void AsmPrinter::EmitFunctionBody() { 649 // Emit target-specific gunk before the function body. 650 EmitFunctionBodyStart(); 651 652 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 653 654 // Print out code for the function. 655 bool HasAnyRealCode = false; 656 const MachineInstr *LastMI = 0; 657 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 658 I != E; ++I) { 659 // Print a label for the basic block. 660 EmitBasicBlockStart(I); 661 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 662 II != IE; ++II) { 663 LastMI = II; 664 665 // Print the assembly for the instruction. 666 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 667 !II->isDebugValue()) { 668 HasAnyRealCode = true; 669 ++EmittedInsts; 670 } 671 672 if (ShouldPrintDebugScopes) { 673 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 674 DD->beginInstruction(II); 675 } 676 677 if (isVerbose()) 678 EmitComments(*II, OutStreamer.GetCommentOS()); 679 680 switch (II->getOpcode()) { 681 case TargetOpcode::PROLOG_LABEL: 682 emitPrologLabel(*II); 683 break; 684 685 case TargetOpcode::EH_LABEL: 686 case TargetOpcode::GC_LABEL: 687 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 688 break; 689 case TargetOpcode::INLINEASM: 690 EmitInlineAsm(II); 691 break; 692 case TargetOpcode::DBG_VALUE: 693 if (isVerbose()) { 694 if (!EmitDebugValueComment(II, *this)) 695 EmitInstruction(II); 696 } 697 break; 698 case TargetOpcode::IMPLICIT_DEF: 699 if (isVerbose()) EmitImplicitDef(II, *this); 700 break; 701 case TargetOpcode::KILL: 702 if (isVerbose()) EmitKill(II, *this); 703 break; 704 default: 705 if (!TM.hasMCUseLoc()) 706 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 707 708 EmitInstruction(II); 709 break; 710 } 711 712 if (ShouldPrintDebugScopes) { 713 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 714 DD->endInstruction(II); 715 } 716 } 717 } 718 719 // If the last instruction was a prolog label, then we have a situation where 720 // we emitted a prolog but no function body. This results in the ending prolog 721 // label equaling the end of function label and an invalid "row" in the 722 // FDE. We need to emit a noop in this situation so that the FDE's rows are 723 // valid. 724 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 725 726 // If the function is empty and the object file uses .subsections_via_symbols, 727 // then we need to emit *something* to the function body to prevent the 728 // labels from collapsing together. Just emit a noop. 729 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 730 MCInst Noop; 731 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 732 if (Noop.getOpcode()) { 733 OutStreamer.AddComment("avoids zero-length function"); 734 OutStreamer.EmitInstruction(Noop); 735 } else // Target not mc-ized yet. 736 OutStreamer.EmitRawText(StringRef("\tnop\n")); 737 } 738 739 // Emit target-specific gunk after the function body. 740 EmitFunctionBodyEnd(); 741 742 // If the target wants a .size directive for the size of the function, emit 743 // it. 744 if (MAI->hasDotTypeDotSizeDirective()) { 745 // Create a symbol for the end of function, so we can get the size as 746 // difference between the function label and the temp label. 747 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 748 OutStreamer.EmitLabel(FnEndLabel); 749 750 const MCExpr *SizeExp = 751 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 752 MCSymbolRefExpr::Create(CurrentFnSym, OutContext), 753 OutContext); 754 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 755 } 756 757 // Emit post-function debug information. 758 if (DD) { 759 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 760 DD->endFunction(MF); 761 } 762 if (DE) { 763 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 764 DE->EndFunction(); 765 } 766 MMI->EndFunction(); 767 768 // Print out jump tables referenced by the function. 769 EmitJumpTableInfo(); 770 771 OutStreamer.AddBlankLine(); 772 } 773 774 /// getDebugValueLocation - Get location information encoded by DBG_VALUE 775 /// operands. 776 MachineLocation AsmPrinter:: 777 getDebugValueLocation(const MachineInstr *MI) const { 778 // Target specific DBG_VALUE instructions are handled by each target. 779 return MachineLocation(); 780 } 781 782 /// EmitDwarfRegOp - Emit dwarf register operation. 783 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 784 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 785 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 786 787 for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg()); 788 *SR && Reg < 0; ++SR) { 789 Reg = TRI->getDwarfRegNum(*SR, false); 790 // FIXME: Get the bit range this register uses of the superregister 791 // so that we can produce a DW_OP_bit_piece 792 } 793 794 // FIXME: Handle cases like a super register being encoded as 795 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 796 797 // FIXME: We have no reasonable way of handling errors in here. The 798 // caller might be in the middle of an dwarf expression. We should 799 // probably assert that Reg >= 0 once debug info generation is more mature. 800 801 if (int Offset = MLoc.getOffset()) { 802 if (Reg < 32) { 803 OutStreamer.AddComment( 804 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 805 EmitInt8(dwarf::DW_OP_breg0 + Reg); 806 } else { 807 OutStreamer.AddComment("DW_OP_bregx"); 808 EmitInt8(dwarf::DW_OP_bregx); 809 OutStreamer.AddComment(Twine(Reg)); 810 EmitULEB128(Reg); 811 } 812 EmitSLEB128(Offset); 813 } else { 814 if (Reg < 32) { 815 OutStreamer.AddComment( 816 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 817 EmitInt8(dwarf::DW_OP_reg0 + Reg); 818 } else { 819 OutStreamer.AddComment("DW_OP_regx"); 820 EmitInt8(dwarf::DW_OP_regx); 821 OutStreamer.AddComment(Twine(Reg)); 822 EmitULEB128(Reg); 823 } 824 } 825 826 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 827 } 828 829 bool AsmPrinter::doFinalization(Module &M) { 830 // Emit global variables. 831 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 832 I != E; ++I) 833 EmitGlobalVariable(I); 834 835 // Emit visibility info for declarations 836 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 837 const Function &F = *I; 838 if (!F.isDeclaration()) 839 continue; 840 GlobalValue::VisibilityTypes V = F.getVisibility(); 841 if (V == GlobalValue::DefaultVisibility) 842 continue; 843 844 MCSymbol *Name = Mang->getSymbol(&F); 845 EmitVisibility(Name, V, false); 846 } 847 848 // Finalize debug and EH information. 849 if (DE) { 850 { 851 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 852 DE->EndModule(); 853 } 854 delete DE; DE = 0; 855 } 856 if (DD) { 857 { 858 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 859 DD->endModule(); 860 } 861 delete DD; DD = 0; 862 } 863 864 // If the target wants to know about weak references, print them all. 865 if (MAI->getWeakRefDirective()) { 866 // FIXME: This is not lazy, it would be nice to only print weak references 867 // to stuff that is actually used. Note that doing so would require targets 868 // to notice uses in operands (due to constant exprs etc). This should 869 // happen with the MC stuff eventually. 870 871 // Print out module-level global variables here. 872 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 873 I != E; ++I) { 874 if (!I->hasExternalWeakLinkage()) continue; 875 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 876 } 877 878 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 879 if (!I->hasExternalWeakLinkage()) continue; 880 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 881 } 882 } 883 884 if (MAI->hasSetDirective()) { 885 OutStreamer.AddBlankLine(); 886 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 887 I != E; ++I) { 888 MCSymbol *Name = Mang->getSymbol(I); 889 890 const GlobalValue *GV = I->getAliasedGlobal(); 891 MCSymbol *Target = Mang->getSymbol(GV); 892 893 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 894 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 895 else if (I->hasWeakLinkage()) 896 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 897 else 898 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 899 900 EmitVisibility(Name, I->getVisibility()); 901 902 // Emit the directives as assignments aka .set: 903 OutStreamer.EmitAssignment(Name, 904 MCSymbolRefExpr::Create(Target, OutContext)); 905 } 906 } 907 908 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 909 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 910 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 911 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 912 MP->finishAssembly(*this); 913 914 // If we don't have any trampolines, then we don't require stack memory 915 // to be executable. Some targets have a directive to declare this. 916 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 917 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 918 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 919 OutStreamer.SwitchSection(S); 920 921 // Allow the target to emit any magic that it wants at the end of the file, 922 // after everything else has gone out. 923 EmitEndOfAsmFile(M); 924 925 delete Mang; Mang = 0; 926 MMI = 0; 927 928 OutStreamer.Finish(); 929 return false; 930 } 931 932 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 933 this->MF = &MF; 934 // Get the function symbol. 935 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 936 937 if (isVerbose()) 938 LI = &getAnalysis<MachineLoopInfo>(); 939 } 940 941 namespace { 942 // SectionCPs - Keep track the alignment, constpool entries per Section. 943 struct SectionCPs { 944 const MCSection *S; 945 unsigned Alignment; 946 SmallVector<unsigned, 4> CPEs; 947 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 948 }; 949 } 950 951 /// EmitConstantPool - Print to the current output stream assembly 952 /// representations of the constants in the constant pool MCP. This is 953 /// used to print out constants which have been "spilled to memory" by 954 /// the code generator. 955 /// 956 void AsmPrinter::EmitConstantPool() { 957 const MachineConstantPool *MCP = MF->getConstantPool(); 958 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 959 if (CP.empty()) return; 960 961 // Calculate sections for constant pool entries. We collect entries to go into 962 // the same section together to reduce amount of section switch statements. 963 SmallVector<SectionCPs, 4> CPSections; 964 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 965 const MachineConstantPoolEntry &CPE = CP[i]; 966 unsigned Align = CPE.getAlignment(); 967 968 SectionKind Kind; 969 switch (CPE.getRelocationInfo()) { 970 default: llvm_unreachable("Unknown section kind"); 971 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 972 case 1: 973 Kind = SectionKind::getReadOnlyWithRelLocal(); 974 break; 975 case 0: 976 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 977 case 4: Kind = SectionKind::getMergeableConst4(); break; 978 case 8: Kind = SectionKind::getMergeableConst8(); break; 979 case 16: Kind = SectionKind::getMergeableConst16();break; 980 default: Kind = SectionKind::getMergeableConst(); break; 981 } 982 } 983 984 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 985 986 // The number of sections are small, just do a linear search from the 987 // last section to the first. 988 bool Found = false; 989 unsigned SecIdx = CPSections.size(); 990 while (SecIdx != 0) { 991 if (CPSections[--SecIdx].S == S) { 992 Found = true; 993 break; 994 } 995 } 996 if (!Found) { 997 SecIdx = CPSections.size(); 998 CPSections.push_back(SectionCPs(S, Align)); 999 } 1000 1001 if (Align > CPSections[SecIdx].Alignment) 1002 CPSections[SecIdx].Alignment = Align; 1003 CPSections[SecIdx].CPEs.push_back(i); 1004 } 1005 1006 // Now print stuff into the calculated sections. 1007 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1008 OutStreamer.SwitchSection(CPSections[i].S); 1009 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1010 1011 unsigned Offset = 0; 1012 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1013 unsigned CPI = CPSections[i].CPEs[j]; 1014 MachineConstantPoolEntry CPE = CP[CPI]; 1015 1016 // Emit inter-object padding for alignment. 1017 unsigned AlignMask = CPE.getAlignment() - 1; 1018 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1019 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1020 1021 Type *Ty = CPE.getType(); 1022 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 1023 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1024 1025 if (CPE.isMachineConstantPoolEntry()) 1026 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1027 else 1028 EmitGlobalConstant(CPE.Val.ConstVal); 1029 } 1030 } 1031 } 1032 1033 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1034 /// by the current function to the current output stream. 1035 /// 1036 void AsmPrinter::EmitJumpTableInfo() { 1037 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1038 if (MJTI == 0) return; 1039 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1040 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1041 if (JT.empty()) return; 1042 1043 // Pick the directive to use to print the jump table entries, and switch to 1044 // the appropriate section. 1045 const Function *F = MF->getFunction(); 1046 bool JTInDiffSection = false; 1047 if (// In PIC mode, we need to emit the jump table to the same section as the 1048 // function body itself, otherwise the label differences won't make sense. 1049 // FIXME: Need a better predicate for this: what about custom entries? 1050 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1051 // We should also do if the section name is NULL or function is declared 1052 // in discardable section 1053 // FIXME: this isn't the right predicate, should be based on the MCSection 1054 // for the function. 1055 F->isWeakForLinker()) { 1056 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1057 } else { 1058 // Otherwise, drop it in the readonly section. 1059 const MCSection *ReadOnlySection = 1060 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1061 OutStreamer.SwitchSection(ReadOnlySection); 1062 JTInDiffSection = true; 1063 } 1064 1065 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 1066 1067 // If we know the form of the jump table, go ahead and tag it as such. 1068 if (!JTInDiffSection) { 1069 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) { 1070 OutStreamer.EmitJumpTable32Region(); 1071 } else { 1072 OutStreamer.EmitDataRegion(); 1073 } 1074 } 1075 1076 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1077 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1078 1079 // If this jump table was deleted, ignore it. 1080 if (JTBBs.empty()) continue; 1081 1082 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1083 // .set directive for each unique entry. This reduces the number of 1084 // relocations the assembler will generate for the jump table. 1085 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1086 MAI->hasSetDirective()) { 1087 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1088 const TargetLowering *TLI = TM.getTargetLowering(); 1089 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1090 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1091 const MachineBasicBlock *MBB = JTBBs[ii]; 1092 if (!EmittedSets.insert(MBB)) continue; 1093 1094 // .set LJTSet, LBB32-base 1095 const MCExpr *LHS = 1096 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1097 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1098 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1099 } 1100 } 1101 1102 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1103 // before each jump table. The first label is never referenced, but tells 1104 // the assembler and linker the extents of the jump table object. The 1105 // second label is actually referenced by the code. 1106 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1107 // FIXME: This doesn't have to have any specific name, just any randomly 1108 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1109 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1110 1111 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1112 1113 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1114 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1115 } 1116 } 1117 1118 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1119 /// current stream. 1120 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1121 const MachineBasicBlock *MBB, 1122 unsigned UID) const { 1123 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1124 const MCExpr *Value = 0; 1125 switch (MJTI->getEntryKind()) { 1126 case MachineJumpTableInfo::EK_Inline: 1127 llvm_unreachable("Cannot emit EK_Inline jump table entry"); break; 1128 case MachineJumpTableInfo::EK_Custom32: 1129 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1130 OutContext); 1131 break; 1132 case MachineJumpTableInfo::EK_BlockAddress: 1133 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1134 // .word LBB123 1135 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1136 break; 1137 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1138 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1139 // with a relocation as gp-relative, e.g.: 1140 // .gprel32 LBB123 1141 MCSymbol *MBBSym = MBB->getSymbol(); 1142 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1143 return; 1144 } 1145 1146 case MachineJumpTableInfo::EK_LabelDifference32: { 1147 // EK_LabelDifference32 - Each entry is the address of the block minus 1148 // the address of the jump table. This is used for PIC jump tables where 1149 // gprel32 is not supported. e.g.: 1150 // .word LBB123 - LJTI1_2 1151 // If the .set directive is supported, this is emitted as: 1152 // .set L4_5_set_123, LBB123 - LJTI1_2 1153 // .word L4_5_set_123 1154 1155 // If we have emitted set directives for the jump table entries, print 1156 // them rather than the entries themselves. If we're emitting PIC, then 1157 // emit the table entries as differences between two text section labels. 1158 if (MAI->hasSetDirective()) { 1159 // If we used .set, reference the .set's symbol. 1160 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1161 OutContext); 1162 break; 1163 } 1164 // Otherwise, use the difference as the jump table entry. 1165 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1166 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1167 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1168 break; 1169 } 1170 } 1171 1172 assert(Value && "Unknown entry kind!"); 1173 1174 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 1175 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1176 } 1177 1178 1179 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1180 /// special global used by LLVM. If so, emit it and return true, otherwise 1181 /// do nothing and return false. 1182 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1183 if (GV->getName() == "llvm.used") { 1184 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1185 EmitLLVMUsedList(GV->getInitializer()); 1186 return true; 1187 } 1188 1189 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1190 if (GV->getSection() == "llvm.metadata" || 1191 GV->hasAvailableExternallyLinkage()) 1192 return true; 1193 1194 if (!GV->hasAppendingLinkage()) return false; 1195 1196 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1197 1198 const TargetData *TD = TM.getTargetData(); 1199 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1200 if (GV->getName() == "llvm.global_ctors") { 1201 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 1202 EmitAlignment(Align); 1203 EmitXXStructorList(GV->getInitializer()); 1204 1205 if (TM.getRelocationModel() == Reloc::Static && 1206 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1207 StringRef Sym(".constructors_used"); 1208 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1209 MCSA_Reference); 1210 } 1211 return true; 1212 } 1213 1214 if (GV->getName() == "llvm.global_dtors") { 1215 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 1216 EmitAlignment(Align); 1217 EmitXXStructorList(GV->getInitializer()); 1218 1219 if (TM.getRelocationModel() == Reloc::Static && 1220 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1221 StringRef Sym(".destructors_used"); 1222 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1223 MCSA_Reference); 1224 } 1225 return true; 1226 } 1227 1228 return false; 1229 } 1230 1231 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1232 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1233 /// is true, as being used with this directive. 1234 void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1235 // Should be an array of 'i8*'. 1236 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1237 if (InitList == 0) return; 1238 1239 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1240 const GlobalValue *GV = 1241 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1242 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1243 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1244 } 1245 } 1246 1247 typedef std::pair<int, Constant*> Structor; 1248 1249 static bool priority_order(const Structor& lhs, const Structor& rhs) { 1250 return lhs.first < rhs.first; 1251 } 1252 1253 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1254 /// priority. 1255 void AsmPrinter::EmitXXStructorList(const Constant *List) { 1256 // Should be an array of '{ int, void ()* }' structs. The first value is the 1257 // init priority. 1258 if (!isa<ConstantArray>(List)) return; 1259 1260 // Sanity check the structors list. 1261 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1262 if (!InitList) return; // Not an array! 1263 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1264 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1265 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1266 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1267 1268 // Gather the structors in a form that's convenient for sorting by priority. 1269 SmallVector<Structor, 8> Structors; 1270 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1271 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1272 if (!CS) continue; // Malformed. 1273 if (CS->getOperand(1)->isNullValue()) 1274 break; // Found a null terminator, skip the rest. 1275 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1276 if (!Priority) continue; // Malformed. 1277 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1278 CS->getOperand(1))); 1279 } 1280 1281 // Emit the function pointers in reverse priority order. 1282 switch (MAI->getStructorOutputOrder()) { 1283 case Structors::None: 1284 break; 1285 case Structors::PriorityOrder: 1286 std::sort(Structors.begin(), Structors.end(), priority_order); 1287 break; 1288 case Structors::ReversePriorityOrder: 1289 std::sort(Structors.rbegin(), Structors.rend(), priority_order); 1290 break; 1291 } 1292 for (unsigned i = 0, e = Structors.size(); i != e; ++i) 1293 EmitGlobalConstant(Structors[i].second); 1294 } 1295 1296 //===--------------------------------------------------------------------===// 1297 // Emission and print routines 1298 // 1299 1300 /// EmitInt8 - Emit a byte directive and value. 1301 /// 1302 void AsmPrinter::EmitInt8(int Value) const { 1303 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1304 } 1305 1306 /// EmitInt16 - Emit a short directive and value. 1307 /// 1308 void AsmPrinter::EmitInt16(int Value) const { 1309 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1310 } 1311 1312 /// EmitInt32 - Emit a long directive and value. 1313 /// 1314 void AsmPrinter::EmitInt32(int Value) const { 1315 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1316 } 1317 1318 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1319 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1320 /// labels. This implicitly uses .set if it is available. 1321 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1322 unsigned Size) const { 1323 // Get the Hi-Lo expression. 1324 const MCExpr *Diff = 1325 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1326 MCSymbolRefExpr::Create(Lo, OutContext), 1327 OutContext); 1328 1329 if (!MAI->hasSetDirective()) { 1330 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1331 return; 1332 } 1333 1334 // Otherwise, emit with .set (aka assignment). 1335 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1336 OutStreamer.EmitAssignment(SetLabel, Diff); 1337 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1338 } 1339 1340 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1341 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1342 /// specify the labels. This implicitly uses .set if it is available. 1343 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1344 const MCSymbol *Lo, unsigned Size) 1345 const { 1346 1347 // Emit Hi+Offset - Lo 1348 // Get the Hi+Offset expression. 1349 const MCExpr *Plus = 1350 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1351 MCConstantExpr::Create(Offset, OutContext), 1352 OutContext); 1353 1354 // Get the Hi+Offset-Lo expression. 1355 const MCExpr *Diff = 1356 MCBinaryExpr::CreateSub(Plus, 1357 MCSymbolRefExpr::Create(Lo, OutContext), 1358 OutContext); 1359 1360 if (!MAI->hasSetDirective()) 1361 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1362 else { 1363 // Otherwise, emit with .set (aka assignment). 1364 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1365 OutStreamer.EmitAssignment(SetLabel, Diff); 1366 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1367 } 1368 } 1369 1370 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1371 /// where the size in bytes of the directive is specified by Size and Label 1372 /// specifies the label. This implicitly uses .set if it is available. 1373 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1374 unsigned Size) 1375 const { 1376 1377 // Emit Label+Offset 1378 const MCExpr *Plus = 1379 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext), 1380 MCConstantExpr::Create(Offset, OutContext), 1381 OutContext); 1382 1383 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/); 1384 } 1385 1386 1387 //===----------------------------------------------------------------------===// 1388 1389 // EmitAlignment - Emit an alignment directive to the specified power of 1390 // two boundary. For example, if you pass in 3 here, you will get an 8 1391 // byte alignment. If a global value is specified, and if that global has 1392 // an explicit alignment requested, it will override the alignment request 1393 // if required for correctness. 1394 // 1395 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1396 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); 1397 1398 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1399 1400 if (getCurrentSection()->getKind().isText()) 1401 OutStreamer.EmitCodeAlignment(1 << NumBits); 1402 else 1403 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1404 } 1405 1406 //===----------------------------------------------------------------------===// 1407 // Constant emission. 1408 //===----------------------------------------------------------------------===// 1409 1410 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr. 1411 /// 1412 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { 1413 MCContext &Ctx = AP.OutContext; 1414 1415 if (CV->isNullValue() || isa<UndefValue>(CV)) 1416 return MCConstantExpr::Create(0, Ctx); 1417 1418 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1419 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1420 1421 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1422 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1423 1424 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1425 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1426 1427 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1428 if (CE == 0) { 1429 llvm_unreachable("Unknown constant value to lower!"); 1430 return MCConstantExpr::Create(0, Ctx); 1431 } 1432 1433 switch (CE->getOpcode()) { 1434 default: 1435 // If the code isn't optimized, there may be outstanding folding 1436 // opportunities. Attempt to fold the expression using TargetData as a 1437 // last resort before giving up. 1438 if (Constant *C = 1439 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 1440 if (C != CE) 1441 return LowerConstant(C, AP); 1442 1443 // Otherwise report the problem to the user. 1444 { 1445 std::string S; 1446 raw_string_ostream OS(S); 1447 OS << "Unsupported expression in static initializer: "; 1448 WriteAsOperand(OS, CE, /*PrintType=*/false, 1449 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1450 report_fatal_error(OS.str()); 1451 } 1452 return MCConstantExpr::Create(0, Ctx); 1453 case Instruction::GetElementPtr: { 1454 const TargetData &TD = *AP.TM.getTargetData(); 1455 // Generate a symbolic expression for the byte address 1456 const Constant *PtrVal = CE->getOperand(0); 1457 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1458 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1459 1460 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); 1461 if (Offset == 0) 1462 return Base; 1463 1464 // Truncate/sext the offset to the pointer size. 1465 if (TD.getPointerSizeInBits() != 64) { 1466 int SExtAmount = 64-TD.getPointerSizeInBits(); 1467 Offset = (Offset << SExtAmount) >> SExtAmount; 1468 } 1469 1470 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1471 Ctx); 1472 } 1473 1474 case Instruction::Trunc: 1475 // We emit the value and depend on the assembler to truncate the generated 1476 // expression properly. This is important for differences between 1477 // blockaddress labels. Since the two labels are in the same function, it 1478 // is reasonable to treat their delta as a 32-bit value. 1479 // FALL THROUGH. 1480 case Instruction::BitCast: 1481 return LowerConstant(CE->getOperand(0), AP); 1482 1483 case Instruction::IntToPtr: { 1484 const TargetData &TD = *AP.TM.getTargetData(); 1485 // Handle casts to pointers by changing them into casts to the appropriate 1486 // integer type. This promotes constant folding and simplifies this code. 1487 Constant *Op = CE->getOperand(0); 1488 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1489 false/*ZExt*/); 1490 return LowerConstant(Op, AP); 1491 } 1492 1493 case Instruction::PtrToInt: { 1494 const TargetData &TD = *AP.TM.getTargetData(); 1495 // Support only foldable casts to/from pointers that can be eliminated by 1496 // changing the pointer to the appropriately sized integer type. 1497 Constant *Op = CE->getOperand(0); 1498 Type *Ty = CE->getType(); 1499 1500 const MCExpr *OpExpr = LowerConstant(Op, AP); 1501 1502 // We can emit the pointer value into this slot if the slot is an 1503 // integer slot equal to the size of the pointer. 1504 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1505 return OpExpr; 1506 1507 // Otherwise the pointer is smaller than the resultant integer, mask off 1508 // the high bits so we are sure to get a proper truncation if the input is 1509 // a constant expr. 1510 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1511 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1512 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1513 } 1514 1515 // The MC library also has a right-shift operator, but it isn't consistently 1516 // signed or unsigned between different targets. 1517 case Instruction::Add: 1518 case Instruction::Sub: 1519 case Instruction::Mul: 1520 case Instruction::SDiv: 1521 case Instruction::SRem: 1522 case Instruction::Shl: 1523 case Instruction::And: 1524 case Instruction::Or: 1525 case Instruction::Xor: { 1526 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); 1527 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); 1528 switch (CE->getOpcode()) { 1529 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1530 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1531 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1532 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1533 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1534 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1535 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1536 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1537 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1538 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1539 } 1540 } 1541 } 1542 } 1543 1544 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1545 AsmPrinter &AP); 1546 1547 /// isRepeatedByteSequence - Determine whether the given value is 1548 /// composed of a repeated sequence of identical bytes and return the 1549 /// byte value. If it is not a repeated sequence, return -1. 1550 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1551 1552 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1553 if (CI->getBitWidth() > 64) return -1; 1554 1555 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType()); 1556 uint64_t Value = CI->getZExtValue(); 1557 1558 // Make sure the constant is at least 8 bits long and has a power 1559 // of 2 bit width. This guarantees the constant bit width is 1560 // always a multiple of 8 bits, avoiding issues with padding out 1561 // to Size and other such corner cases. 1562 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1563 1564 uint8_t Byte = static_cast<uint8_t>(Value); 1565 1566 for (unsigned i = 1; i < Size; ++i) { 1567 Value >>= 8; 1568 if (static_cast<uint8_t>(Value) != Byte) return -1; 1569 } 1570 return Byte; 1571 } 1572 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1573 // Make sure all array elements are sequences of the same repeated 1574 // byte. 1575 if (CA->getNumOperands() == 0) return -1; 1576 1577 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1578 if (Byte == -1) return -1; 1579 1580 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1581 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1582 if (ThisByte == -1) return -1; 1583 if (Byte != ThisByte) return -1; 1584 } 1585 return Byte; 1586 } 1587 1588 return -1; 1589 } 1590 1591 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1592 AsmPrinter &AP) { 1593 if (AddrSpace != 0 || !CA->isString()) { 1594 // Not a string. Print the values in successive locations. 1595 1596 // See if we can aggregate some values. Make sure it can be 1597 // represented as a series of bytes of the constant value. 1598 int Value = isRepeatedByteSequence(CA, AP.TM); 1599 1600 if (Value != -1) { 1601 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType()); 1602 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1603 } 1604 else { 1605 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1606 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1607 } 1608 return; 1609 } 1610 1611 // Otherwise, it can be emitted as .ascii. 1612 SmallVector<char, 128> TmpVec; 1613 TmpVec.reserve(CA->getNumOperands()); 1614 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1615 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue()); 1616 1617 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace); 1618 } 1619 1620 static void EmitGlobalConstantVector(const ConstantVector *CV, 1621 unsigned AddrSpace, AsmPrinter &AP) { 1622 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1623 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1624 1625 const TargetData &TD = *AP.TM.getTargetData(); 1626 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1627 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1628 CV->getType()->getNumElements(); 1629 if (unsigned Padding = Size - EmittedSize) 1630 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1631 } 1632 1633 static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1634 unsigned AddrSpace, AsmPrinter &AP) { 1635 // Print the fields in successive locations. Pad to align if needed! 1636 const TargetData *TD = AP.TM.getTargetData(); 1637 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1638 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1639 uint64_t SizeSoFar = 0; 1640 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1641 const Constant *Field = CS->getOperand(i); 1642 1643 // Check if padding is needed and insert one or more 0s. 1644 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1645 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1646 - Layout->getElementOffset(i)) - FieldSize; 1647 SizeSoFar += FieldSize + PadSize; 1648 1649 // Now print the actual field value. 1650 EmitGlobalConstantImpl(Field, AddrSpace, AP); 1651 1652 // Insert padding - this may include padding to increase the size of the 1653 // current field up to the ABI size (if the struct is not packed) as well 1654 // as padding to ensure that the next field starts at the right offset. 1655 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1656 } 1657 assert(SizeSoFar == Layout->getSizeInBytes() && 1658 "Layout of constant struct may be incorrect!"); 1659 } 1660 1661 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1662 AsmPrinter &AP) { 1663 // FP Constants are printed as integer constants to avoid losing 1664 // precision. 1665 if (CFP->getType()->isDoubleTy()) { 1666 if (AP.isVerbose()) { 1667 double Val = CFP->getValueAPF().convertToDouble(); 1668 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; 1669 } 1670 1671 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1672 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1673 return; 1674 } 1675 1676 if (CFP->getType()->isFloatTy()) { 1677 if (AP.isVerbose()) { 1678 float Val = CFP->getValueAPF().convertToFloat(); 1679 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; 1680 } 1681 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1682 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1683 return; 1684 } 1685 1686 if (CFP->getType()->isX86_FP80Ty()) { 1687 // all long double variants are printed as hex 1688 // API needed to prevent premature destruction 1689 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1690 const uint64_t *p = API.getRawData(); 1691 if (AP.isVerbose()) { 1692 // Convert to double so we can print the approximate val as a comment. 1693 APFloat DoubleVal = CFP->getValueAPF(); 1694 bool ignored; 1695 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1696 &ignored); 1697 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1698 << DoubleVal.convertToDouble() << '\n'; 1699 } 1700 1701 if (AP.TM.getTargetData()->isBigEndian()) { 1702 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1703 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1704 } else { 1705 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1706 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1707 } 1708 1709 // Emit the tail padding for the long double. 1710 const TargetData &TD = *AP.TM.getTargetData(); 1711 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1712 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1713 return; 1714 } 1715 1716 assert(CFP->getType()->isPPC_FP128Ty() && 1717 "Floating point constant type not handled"); 1718 // All long double variants are printed as hex 1719 // API needed to prevent premature destruction. 1720 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1721 const uint64_t *p = API.getRawData(); 1722 if (AP.TM.getTargetData()->isBigEndian()) { 1723 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1724 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1725 } else { 1726 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1727 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1728 } 1729 } 1730 1731 static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1732 unsigned AddrSpace, AsmPrinter &AP) { 1733 const TargetData *TD = AP.TM.getTargetData(); 1734 unsigned BitWidth = CI->getBitWidth(); 1735 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1736 1737 // We don't expect assemblers to support integer data directives 1738 // for more than 64 bits, so we emit the data in at most 64-bit 1739 // quantities at a time. 1740 const uint64_t *RawData = CI->getValue().getRawData(); 1741 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1742 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1743 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1744 } 1745 } 1746 1747 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1748 AsmPrinter &AP) { 1749 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { 1750 uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1751 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1752 } 1753 1754 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1755 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1756 switch (Size) { 1757 case 1: 1758 case 2: 1759 case 4: 1760 case 8: 1761 if (AP.isVerbose()) 1762 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1763 CI->getZExtValue()); 1764 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1765 return; 1766 default: 1767 EmitGlobalConstantLargeInt(CI, AddrSpace, AP); 1768 return; 1769 } 1770 } 1771 1772 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1773 return EmitGlobalConstantArray(CVA, AddrSpace, AP); 1774 1775 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1776 return EmitGlobalConstantStruct(CVS, AddrSpace, AP); 1777 1778 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1779 return EmitGlobalConstantFP(CFP, AddrSpace, AP); 1780 1781 if (isa<ConstantPointerNull>(CV)) { 1782 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1783 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1784 return; 1785 } 1786 1787 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1788 return EmitGlobalConstantVector(V, AddrSpace, AP); 1789 1790 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1791 // thread the streamer with EmitValue. 1792 AP.OutStreamer.EmitValue(LowerConstant(CV, AP), 1793 AP.TM.getTargetData()->getTypeAllocSize(CV->getType()), 1794 AddrSpace); 1795 } 1796 1797 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1798 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1799 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1800 if (Size) 1801 EmitGlobalConstantImpl(CV, AddrSpace, *this); 1802 else if (MAI->hasSubsectionsViaSymbols()) { 1803 // If the global has zero size, emit a single byte so that two labels don't 1804 // look like they are at the same location. 1805 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1806 } 1807 } 1808 1809 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1810 // Target doesn't support this yet! 1811 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1812 } 1813 1814 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1815 if (Offset > 0) 1816 OS << '+' << Offset; 1817 else if (Offset < 0) 1818 OS << Offset; 1819 } 1820 1821 //===----------------------------------------------------------------------===// 1822 // Symbol Lowering Routines. 1823 //===----------------------------------------------------------------------===// 1824 1825 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1826 /// temporary label with the specified stem and unique ID. 1827 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1828 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1829 Name + Twine(ID)); 1830 } 1831 1832 /// GetTempSymbol - Return an assembler temporary label with the specified 1833 /// stem. 1834 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1835 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1836 Name); 1837 } 1838 1839 1840 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1841 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1842 } 1843 1844 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1845 return MMI->getAddrLabelSymbol(BB); 1846 } 1847 1848 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 1849 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1850 return OutContext.GetOrCreateSymbol 1851 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1852 + "_" + Twine(CPID)); 1853 } 1854 1855 /// GetJTISymbol - Return the symbol for the specified jump table entry. 1856 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1857 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1858 } 1859 1860 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 1861 /// FIXME: privatize to AsmPrinter. 1862 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1863 return OutContext.GetOrCreateSymbol 1864 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1865 Twine(UID) + "_set_" + Twine(MBBID)); 1866 } 1867 1868 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1869 /// global value name as its base, with the specified suffix, and where the 1870 /// symbol is forced to have private linkage if ForcePrivate is true. 1871 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1872 StringRef Suffix, 1873 bool ForcePrivate) const { 1874 SmallString<60> NameStr; 1875 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1876 NameStr.append(Suffix.begin(), Suffix.end()); 1877 return OutContext.GetOrCreateSymbol(NameStr.str()); 1878 } 1879 1880 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1881 /// ExternalSymbol. 1882 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1883 SmallString<60> NameStr; 1884 Mang->getNameWithPrefix(NameStr, Sym); 1885 return OutContext.GetOrCreateSymbol(NameStr.str()); 1886 } 1887 1888 1889 1890 /// PrintParentLoopComment - Print comments about parent loops of this one. 1891 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1892 unsigned FunctionNumber) { 1893 if (Loop == 0) return; 1894 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 1895 OS.indent(Loop->getLoopDepth()*2) 1896 << "Parent Loop BB" << FunctionNumber << "_" 1897 << Loop->getHeader()->getNumber() 1898 << " Depth=" << Loop->getLoopDepth() << '\n'; 1899 } 1900 1901 1902 /// PrintChildLoopComment - Print comments about child loops within 1903 /// the loop for this basic block, with nesting. 1904 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1905 unsigned FunctionNumber) { 1906 // Add child loop information 1907 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 1908 OS.indent((*CL)->getLoopDepth()*2) 1909 << "Child Loop BB" << FunctionNumber << "_" 1910 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 1911 << '\n'; 1912 PrintChildLoopComment(OS, *CL, FunctionNumber); 1913 } 1914 } 1915 1916 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks. 1917 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB, 1918 const MachineLoopInfo *LI, 1919 const AsmPrinter &AP) { 1920 // Add loop depth information 1921 const MachineLoop *Loop = LI->getLoopFor(&MBB); 1922 if (Loop == 0) return; 1923 1924 MachineBasicBlock *Header = Loop->getHeader(); 1925 assert(Header && "No header for loop"); 1926 1927 // If this block is not a loop header, just print out what is the loop header 1928 // and return. 1929 if (Header != &MBB) { 1930 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 1931 Twine(AP.getFunctionNumber())+"_" + 1932 Twine(Loop->getHeader()->getNumber())+ 1933 " Depth="+Twine(Loop->getLoopDepth())); 1934 return; 1935 } 1936 1937 // Otherwise, it is a loop header. Print out information about child and 1938 // parent loops. 1939 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 1940 1941 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 1942 1943 OS << "=>"; 1944 OS.indent(Loop->getLoopDepth()*2-2); 1945 1946 OS << "This "; 1947 if (Loop->empty()) 1948 OS << "Inner "; 1949 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 1950 1951 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 1952 } 1953 1954 1955 /// EmitBasicBlockStart - This method prints the label for the specified 1956 /// MachineBasicBlock, an alignment (if present) and a comment describing 1957 /// it if appropriate. 1958 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1959 // Emit an alignment directive for this block, if needed. 1960 if (unsigned Align = MBB->getAlignment()) 1961 EmitAlignment(Log2_32(Align)); 1962 1963 // If the block has its address taken, emit any labels that were used to 1964 // reference the block. It is possible that there is more than one label 1965 // here, because multiple LLVM BB's may have been RAUW'd to this block after 1966 // the references were generated. 1967 if (MBB->hasAddressTaken()) { 1968 const BasicBlock *BB = MBB->getBasicBlock(); 1969 if (isVerbose()) 1970 OutStreamer.AddComment("Block address taken"); 1971 1972 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 1973 1974 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 1975 OutStreamer.EmitLabel(Syms[i]); 1976 } 1977 1978 // Print the main label for the block. 1979 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 1980 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 1981 if (const BasicBlock *BB = MBB->getBasicBlock()) 1982 if (BB->hasName()) 1983 OutStreamer.AddComment("%" + BB->getName()); 1984 1985 EmitBasicBlockLoopComments(*MBB, LI, *this); 1986 1987 // NOTE: Want this comment at start of line, don't emit with AddComment. 1988 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 1989 Twine(MBB->getNumber()) + ":"); 1990 } 1991 } else { 1992 if (isVerbose()) { 1993 if (const BasicBlock *BB = MBB->getBasicBlock()) 1994 if (BB->hasName()) 1995 OutStreamer.AddComment("%" + BB->getName()); 1996 EmitBasicBlockLoopComments(*MBB, LI, *this); 1997 } 1998 1999 OutStreamer.EmitLabel(MBB->getSymbol()); 2000 } 2001 } 2002 2003 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2004 bool IsDefinition) const { 2005 MCSymbolAttr Attr = MCSA_Invalid; 2006 2007 switch (Visibility) { 2008 default: break; 2009 case GlobalValue::HiddenVisibility: 2010 if (IsDefinition) 2011 Attr = MAI->getHiddenVisibilityAttr(); 2012 else 2013 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2014 break; 2015 case GlobalValue::ProtectedVisibility: 2016 Attr = MAI->getProtectedVisibilityAttr(); 2017 break; 2018 } 2019 2020 if (Attr != MCSA_Invalid) 2021 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2022 } 2023 2024 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2025 /// exactly one predecessor and the control transfer mechanism between 2026 /// the predecessor and this block is a fall-through. 2027 bool AsmPrinter:: 2028 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2029 // If this is a landing pad, it isn't a fall through. If it has no preds, 2030 // then nothing falls through to it. 2031 if (MBB->isLandingPad() || MBB->pred_empty()) 2032 return false; 2033 2034 // If there isn't exactly one predecessor, it can't be a fall through. 2035 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2036 ++PI2; 2037 if (PI2 != MBB->pred_end()) 2038 return false; 2039 2040 // The predecessor has to be immediately before this block. 2041 MachineBasicBlock *Pred = *PI; 2042 2043 if (!Pred->isLayoutSuccessor(MBB)) 2044 return false; 2045 2046 // If the block is completely empty, then it definitely does fall through. 2047 if (Pred->empty()) 2048 return true; 2049 2050 // Check the terminators in the previous blocks 2051 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2052 IE = Pred->end(); II != IE; ++II) { 2053 MachineInstr &MI = *II; 2054 2055 // If it is not a simple branch, we are in a table somewhere. 2056 if (!MI.getDesc().isBranch() || MI.getDesc().isIndirectBranch()) 2057 return false; 2058 2059 // If we are the operands of one of the branches, this is not 2060 // a fall through. 2061 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2062 OE = MI.operands_end(); OI != OE; ++OI) { 2063 const MachineOperand& OP = *OI; 2064 if (OP.isJTI()) 2065 return false; 2066 if (OP.isMBB() && OP.getMBB() == MBB) 2067 return false; 2068 } 2069 } 2070 2071 return true; 2072 } 2073 2074 2075 2076 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2077 if (!S->usesMetadata()) 2078 return 0; 2079 2080 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2081 gcp_map_type::iterator GCPI = GCMap.find(S); 2082 if (GCPI != GCMap.end()) 2083 return GCPI->second; 2084 2085 const char *Name = S->getName().c_str(); 2086 2087 for (GCMetadataPrinterRegistry::iterator 2088 I = GCMetadataPrinterRegistry::begin(), 2089 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2090 if (strcmp(Name, I->getName()) == 0) { 2091 GCMetadataPrinter *GMP = I->instantiate(); 2092 GMP->S = S; 2093 GCMap.insert(std::make_pair(S, GMP)); 2094 return GMP; 2095 } 2096 2097 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2098 return 0; 2099 } 2100