1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GCStrategy.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Remarks/Remark.h"
106 #include "llvm/Remarks/RemarkFormat.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Remarks/RemarkStringTable.h"
109 #include "llvm/Support/Casting.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/Support/FileSystem.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
139 static cl::opt<bool>
140     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
141                              cl::desc("Disable debug info printing"));
142 
143 const char DWARFGroupName[] = "dwarf";
144 const char DWARFGroupDescription[] = "DWARF Emission";
145 const char DbgTimerName[] = "emit";
146 const char DbgTimerDescription[] = "Debug Info Emission";
147 const char EHTimerName[] = "write_exception";
148 const char EHTimerDescription[] = "DWARF Exception Writer";
149 const char CFGuardName[] = "Control Flow Guard";
150 const char CFGuardDescription[] = "Control Flow Guard";
151 const char CodeViewLineTablesGroupName[] = "linetables";
152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
153 const char PPTimerName[] = "emit";
154 const char PPTimerDescription[] = "Pseudo Probe Emission";
155 const char PPGroupName[] = "pseudo probe";
156 const char PPGroupDescription[] = "Pseudo Probe Emission";
157 
158 STATISTIC(EmittedInsts, "Number of machine instrs printed");
159 
160 char AsmPrinter::ID = 0;
161 
162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
163 
164 static gcp_map_type &getGCMap(void *&P) {
165   if (!P)
166     P = new gcp_map_type();
167   return *(gcp_map_type*)P;
168 }
169 
170 /// getGVAlignment - Return the alignment to use for the specified global
171 /// value.  This rounds up to the preferred alignment if possible and legal.
172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
173                                  Align InAlign) {
174   Align Alignment;
175   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
176     Alignment = DL.getPreferredAlign(GVar);
177 
178   // If InAlign is specified, round it to it.
179   if (InAlign > Alignment)
180     Alignment = InAlign;
181 
182   // If the GV has a specified alignment, take it into account.
183   const MaybeAlign GVAlign(GV->getAlignment());
184   if (!GVAlign)
185     return Alignment;
186 
187   assert(GVAlign && "GVAlign must be set");
188 
189   // If the GVAlign is larger than NumBits, or if we are required to obey
190   // NumBits because the GV has an assigned section, obey it.
191   if (*GVAlign > Alignment || GV->hasSection())
192     Alignment = *GVAlign;
193   return Alignment;
194 }
195 
196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
197     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
198       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
199   VerboseAsm = OutStreamer->isVerboseAsm();
200 }
201 
202 AsmPrinter::~AsmPrinter() {
203   assert(!DD && Handlers.size() == NumUserHandlers &&
204          "Debug/EH info didn't get finalized");
205 
206   if (GCMetadataPrinters) {
207     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
208 
209     delete &GCMap;
210     GCMetadataPrinters = nullptr;
211   }
212 }
213 
214 bool AsmPrinter::isPositionIndependent() const {
215   return TM.isPositionIndependent();
216 }
217 
218 /// getFunctionNumber - Return a unique ID for the current function.
219 unsigned AsmPrinter::getFunctionNumber() const {
220   return MF->getFunctionNumber();
221 }
222 
223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
224   return *TM.getObjFileLowering();
225 }
226 
227 const DataLayout &AsmPrinter::getDataLayout() const {
228   return MMI->getModule()->getDataLayout();
229 }
230 
231 // Do not use the cached DataLayout because some client use it without a Module
232 // (dsymutil, llvm-dwarfdump).
233 unsigned AsmPrinter::getPointerSize() const {
234   return TM.getPointerSize(0); // FIXME: Default address space
235 }
236 
237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
238   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
239   return MF->getSubtarget<MCSubtargetInfo>();
240 }
241 
242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
243   S.emitInstruction(Inst, getSubtargetInfo());
244 }
245 
246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
247   if (DD) {
248     assert(OutStreamer->hasRawTextSupport() &&
249            "Expected assembly output mode.");
250     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
251   }
252 }
253 
254 /// getCurrentSection() - Return the current section we are emitting to.
255 const MCSection *AsmPrinter::getCurrentSection() const {
256   return OutStreamer->getCurrentSectionOnly();
257 }
258 
259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
260   AU.setPreservesAll();
261   MachineFunctionPass::getAnalysisUsage(AU);
262   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
263   AU.addRequired<GCModuleInfo>();
264 }
265 
266 bool AsmPrinter::doInitialization(Module &M) {
267   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
268   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
269 
270   // Initialize TargetLoweringObjectFile.
271   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
272     .Initialize(OutContext, TM);
273 
274   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
275       .getModuleMetadata(M);
276 
277   OutStreamer->InitSections(false);
278 
279   if (DisableDebugInfoPrinting)
280     MMI->setDebugInfoAvailability(false);
281 
282   // Emit the version-min deployment target directive if needed.
283   //
284   // FIXME: If we end up with a collection of these sorts of Darwin-specific
285   // or ELF-specific things, it may make sense to have a platform helper class
286   // that will work with the target helper class. For now keep it here, as the
287   // alternative is duplicated code in each of the target asm printers that
288   // use the directive, where it would need the same conditionalization
289   // anyway.
290   const Triple &Target = TM.getTargetTriple();
291   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
292 
293   // Allow the target to emit any magic that it wants at the start of the file.
294   emitStartOfAsmFile(M);
295 
296   // Very minimal debug info. It is ignored if we emit actual debug info. If we
297   // don't, this at least helps the user find where a global came from.
298   if (MAI->hasSingleParameterDotFile()) {
299     // .file "foo.c"
300     if (MAI->hasBasenameOnlyForFileDirective())
301       OutStreamer->emitFileDirective(
302           llvm::sys::path::filename(M.getSourceFileName()));
303     else
304       OutStreamer->emitFileDirective(M.getSourceFileName());
305   }
306 
307   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
308   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
309   for (auto &I : *MI)
310     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
311       MP->beginAssembly(M, *MI, *this);
312 
313   // Emit module-level inline asm if it exists.
314   if (!M.getModuleInlineAsm().empty()) {
315     // We're at the module level. Construct MCSubtarget from the default CPU
316     // and target triple.
317     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
318         TM.getTargetTriple().str(), TM.getTargetCPU(),
319         TM.getTargetFeatureString()));
320     assert(STI && "Unable to create subtarget info");
321     OutStreamer->AddComment("Start of file scope inline assembly");
322     OutStreamer->AddBlankLine();
323     emitInlineAsm(M.getModuleInlineAsm() + "\n",
324                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
325     OutStreamer->AddComment("End of file scope inline assembly");
326     OutStreamer->AddBlankLine();
327   }
328 
329   if (MAI->doesSupportDebugInformation()) {
330     bool EmitCodeView = M.getCodeViewFlag();
331     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
332       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
333                             DbgTimerName, DbgTimerDescription,
334                             CodeViewLineTablesGroupName,
335                             CodeViewLineTablesGroupDescription);
336     }
337     if (!EmitCodeView || M.getDwarfVersion()) {
338       if (!DisableDebugInfoPrinting) {
339         DD = new DwarfDebug(this);
340         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
341                               DbgTimerDescription, DWARFGroupName,
342                               DWARFGroupDescription);
343       }
344     }
345   }
346 
347   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
348     PP = new PseudoProbeHandler(this, &M);
349     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
350                           PPTimerDescription, PPGroupName, PPGroupDescription);
351   }
352 
353   switch (MAI->getExceptionHandlingType()) {
354   case ExceptionHandling::None:
355     // We may want to emit CFI for debug.
356     LLVM_FALLTHROUGH;
357   case ExceptionHandling::SjLj:
358   case ExceptionHandling::DwarfCFI:
359   case ExceptionHandling::ARM:
360     for (auto &F : M.getFunctionList()) {
361       if (getFunctionCFISectionType(F) != CFISection::None)
362         ModuleCFISection = getFunctionCFISectionType(F);
363       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
364       // the module needs .eh_frame. If we have found that case, we are done.
365       if (ModuleCFISection == CFISection::EH)
366         break;
367     }
368     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
369            ModuleCFISection != CFISection::EH);
370     break;
371   default:
372     break;
373   }
374 
375   EHStreamer *ES = nullptr;
376   switch (MAI->getExceptionHandlingType()) {
377   case ExceptionHandling::None:
378     if (!needsCFIForDebug())
379       break;
380     LLVM_FALLTHROUGH;
381   case ExceptionHandling::SjLj:
382   case ExceptionHandling::DwarfCFI:
383     ES = new DwarfCFIException(this);
384     break;
385   case ExceptionHandling::ARM:
386     ES = new ARMException(this);
387     break;
388   case ExceptionHandling::WinEH:
389     switch (MAI->getWinEHEncodingType()) {
390     default: llvm_unreachable("unsupported unwinding information encoding");
391     case WinEH::EncodingType::Invalid:
392       break;
393     case WinEH::EncodingType::X86:
394     case WinEH::EncodingType::Itanium:
395       ES = new WinException(this);
396       break;
397     }
398     break;
399   case ExceptionHandling::Wasm:
400     ES = new WasmException(this);
401     break;
402   case ExceptionHandling::AIX:
403     ES = new AIXException(this);
404     break;
405   }
406   if (ES)
407     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
408                           EHTimerDescription, DWARFGroupName,
409                           DWARFGroupDescription);
410 
411   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
412   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
413     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
414                           CFGuardDescription, DWARFGroupName,
415                           DWARFGroupDescription);
416 
417   for (const HandlerInfo &HI : Handlers) {
418     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
419                        HI.TimerGroupDescription, TimePassesIsEnabled);
420     HI.Handler->beginModule(&M);
421   }
422 
423   return false;
424 }
425 
426 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
427   if (!MAI.hasWeakDefCanBeHiddenDirective())
428     return false;
429 
430   return GV->canBeOmittedFromSymbolTable();
431 }
432 
433 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
434   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
435   switch (Linkage) {
436   case GlobalValue::CommonLinkage:
437   case GlobalValue::LinkOnceAnyLinkage:
438   case GlobalValue::LinkOnceODRLinkage:
439   case GlobalValue::WeakAnyLinkage:
440   case GlobalValue::WeakODRLinkage:
441     if (MAI->hasWeakDefDirective()) {
442       // .globl _foo
443       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
444 
445       if (!canBeHidden(GV, *MAI))
446         // .weak_definition _foo
447         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
448       else
449         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
450     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
451       // .globl _foo
452       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
453       //NOTE: linkonce is handled by the section the symbol was assigned to.
454     } else {
455       // .weak _foo
456       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
457     }
458     return;
459   case GlobalValue::ExternalLinkage:
460     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
461     return;
462   case GlobalValue::PrivateLinkage:
463   case GlobalValue::InternalLinkage:
464     return;
465   case GlobalValue::ExternalWeakLinkage:
466   case GlobalValue::AvailableExternallyLinkage:
467   case GlobalValue::AppendingLinkage:
468     llvm_unreachable("Should never emit this");
469   }
470   llvm_unreachable("Unknown linkage type!");
471 }
472 
473 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
474                                    const GlobalValue *GV) const {
475   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
476 }
477 
478 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
479   return TM.getSymbol(GV);
480 }
481 
482 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
483   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
484   // exact definion (intersection of GlobalValue::hasExactDefinition() and
485   // !isInterposable()). These linkages include: external, appending, internal,
486   // private. It may be profitable to use a local alias for external. The
487   // assembler would otherwise be conservative and assume a global default
488   // visibility symbol can be interposable, even if the code generator already
489   // assumed it.
490   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
491     const Module &M = *GV.getParent();
492     if (TM.getRelocationModel() != Reloc::Static &&
493         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
494       return getSymbolWithGlobalValueBase(&GV, "$local");
495   }
496   return TM.getSymbol(&GV);
497 }
498 
499 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
500 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
501   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
502   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
503          "No emulated TLS variables in the common section");
504 
505   // Never emit TLS variable xyz in emulated TLS model.
506   // The initialization value is in __emutls_t.xyz instead of xyz.
507   if (IsEmuTLSVar)
508     return;
509 
510   if (GV->hasInitializer()) {
511     // Check to see if this is a special global used by LLVM, if so, emit it.
512     if (emitSpecialLLVMGlobal(GV))
513       return;
514 
515     // Skip the emission of global equivalents. The symbol can be emitted later
516     // on by emitGlobalGOTEquivs in case it turns out to be needed.
517     if (GlobalGOTEquivs.count(getSymbol(GV)))
518       return;
519 
520     if (isVerbose()) {
521       // When printing the control variable __emutls_v.*,
522       // we don't need to print the original TLS variable name.
523       GV->printAsOperand(OutStreamer->GetCommentOS(),
524                      /*PrintType=*/false, GV->getParent());
525       OutStreamer->GetCommentOS() << '\n';
526     }
527   }
528 
529   MCSymbol *GVSym = getSymbol(GV);
530   MCSymbol *EmittedSym = GVSym;
531 
532   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
533   // attributes.
534   // GV's or GVSym's attributes will be used for the EmittedSym.
535   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
536 
537   if (!GV->hasInitializer())   // External globals require no extra code.
538     return;
539 
540   GVSym->redefineIfPossible();
541   if (GVSym->isDefined() || GVSym->isVariable())
542     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
543                                         "' is already defined");
544 
545   if (MAI->hasDotTypeDotSizeDirective())
546     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
547 
548   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
549 
550   const DataLayout &DL = GV->getParent()->getDataLayout();
551   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
552 
553   // If the alignment is specified, we *must* obey it.  Overaligning a global
554   // with a specified alignment is a prompt way to break globals emitted to
555   // sections and expected to be contiguous (e.g. ObjC metadata).
556   const Align Alignment = getGVAlignment(GV, DL);
557 
558   for (const HandlerInfo &HI : Handlers) {
559     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
560                        HI.TimerGroupName, HI.TimerGroupDescription,
561                        TimePassesIsEnabled);
562     HI.Handler->setSymbolSize(GVSym, Size);
563   }
564 
565   // Handle common symbols
566   if (GVKind.isCommon()) {
567     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
568     // .comm _foo, 42, 4
569     const bool SupportsAlignment =
570         getObjFileLowering().getCommDirectiveSupportsAlignment();
571     OutStreamer->emitCommonSymbol(GVSym, Size,
572                                   SupportsAlignment ? Alignment.value() : 0);
573     return;
574   }
575 
576   // Determine to which section this global should be emitted.
577   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
578 
579   // If we have a bss global going to a section that supports the
580   // zerofill directive, do so here.
581   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
582       TheSection->isVirtualSection()) {
583     if (Size == 0)
584       Size = 1; // zerofill of 0 bytes is undefined.
585     emitLinkage(GV, GVSym);
586     // .zerofill __DATA, __bss, _foo, 400, 5
587     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
588     return;
589   }
590 
591   // If this is a BSS local symbol and we are emitting in the BSS
592   // section use .lcomm/.comm directive.
593   if (GVKind.isBSSLocal() &&
594       getObjFileLowering().getBSSSection() == TheSection) {
595     if (Size == 0)
596       Size = 1; // .comm Foo, 0 is undefined, avoid it.
597 
598     // Use .lcomm only if it supports user-specified alignment.
599     // Otherwise, while it would still be correct to use .lcomm in some
600     // cases (e.g. when Align == 1), the external assembler might enfore
601     // some -unknown- default alignment behavior, which could cause
602     // spurious differences between external and integrated assembler.
603     // Prefer to simply fall back to .local / .comm in this case.
604     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
605       // .lcomm _foo, 42
606       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
607       return;
608     }
609 
610     // .local _foo
611     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
612     // .comm _foo, 42, 4
613     const bool SupportsAlignment =
614         getObjFileLowering().getCommDirectiveSupportsAlignment();
615     OutStreamer->emitCommonSymbol(GVSym, Size,
616                                   SupportsAlignment ? Alignment.value() : 0);
617     return;
618   }
619 
620   // Handle thread local data for mach-o which requires us to output an
621   // additional structure of data and mangle the original symbol so that we
622   // can reference it later.
623   //
624   // TODO: This should become an "emit thread local global" method on TLOF.
625   // All of this macho specific stuff should be sunk down into TLOFMachO and
626   // stuff like "TLSExtraDataSection" should no longer be part of the parent
627   // TLOF class.  This will also make it more obvious that stuff like
628   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
629   // specific code.
630   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
631     // Emit the .tbss symbol
632     MCSymbol *MangSym =
633         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
634 
635     if (GVKind.isThreadBSS()) {
636       TheSection = getObjFileLowering().getTLSBSSSection();
637       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
638     } else if (GVKind.isThreadData()) {
639       OutStreamer->SwitchSection(TheSection);
640 
641       emitAlignment(Alignment, GV);
642       OutStreamer->emitLabel(MangSym);
643 
644       emitGlobalConstant(GV->getParent()->getDataLayout(),
645                          GV->getInitializer());
646     }
647 
648     OutStreamer->AddBlankLine();
649 
650     // Emit the variable struct for the runtime.
651     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
652 
653     OutStreamer->SwitchSection(TLVSect);
654     // Emit the linkage here.
655     emitLinkage(GV, GVSym);
656     OutStreamer->emitLabel(GVSym);
657 
658     // Three pointers in size:
659     //   - __tlv_bootstrap - used to make sure support exists
660     //   - spare pointer, used when mapped by the runtime
661     //   - pointer to mangled symbol above with initializer
662     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
663     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
664                                 PtrSize);
665     OutStreamer->emitIntValue(0, PtrSize);
666     OutStreamer->emitSymbolValue(MangSym, PtrSize);
667 
668     OutStreamer->AddBlankLine();
669     return;
670   }
671 
672   MCSymbol *EmittedInitSym = GVSym;
673 
674   OutStreamer->SwitchSection(TheSection);
675 
676   emitLinkage(GV, EmittedInitSym);
677   emitAlignment(Alignment, GV);
678 
679   OutStreamer->emitLabel(EmittedInitSym);
680   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
681   if (LocalAlias != EmittedInitSym)
682     OutStreamer->emitLabel(LocalAlias);
683 
684   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
685 
686   if (MAI->hasDotTypeDotSizeDirective())
687     // .size foo, 42
688     OutStreamer->emitELFSize(EmittedInitSym,
689                              MCConstantExpr::create(Size, OutContext));
690 
691   OutStreamer->AddBlankLine();
692 }
693 
694 /// Emit the directive and value for debug thread local expression
695 ///
696 /// \p Value - The value to emit.
697 /// \p Size - The size of the integer (in bytes) to emit.
698 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
699   OutStreamer->emitValue(Value, Size);
700 }
701 
702 void AsmPrinter::emitFunctionHeaderComment() {}
703 
704 /// EmitFunctionHeader - This method emits the header for the current
705 /// function.
706 void AsmPrinter::emitFunctionHeader() {
707   const Function &F = MF->getFunction();
708 
709   if (isVerbose())
710     OutStreamer->GetCommentOS()
711         << "-- Begin function "
712         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
713 
714   // Print out constants referenced by the function
715   emitConstantPool();
716 
717   // Print the 'header' of function.
718   // If basic block sections are desired, explicitly request a unique section
719   // for this function's entry block.
720   if (MF->front().isBeginSection())
721     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
722   else
723     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
724   OutStreamer->SwitchSection(MF->getSection());
725 
726   if (!MAI->hasVisibilityOnlyWithLinkage())
727     emitVisibility(CurrentFnSym, F.getVisibility());
728 
729   if (MAI->needsFunctionDescriptors())
730     emitLinkage(&F, CurrentFnDescSym);
731 
732   emitLinkage(&F, CurrentFnSym);
733   if (MAI->hasFunctionAlignment())
734     emitAlignment(MF->getAlignment(), &F);
735 
736   if (MAI->hasDotTypeDotSizeDirective())
737     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
738 
739   if (F.hasFnAttribute(Attribute::Cold))
740     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
741 
742   if (isVerbose()) {
743     F.printAsOperand(OutStreamer->GetCommentOS(),
744                    /*PrintType=*/false, F.getParent());
745     emitFunctionHeaderComment();
746     OutStreamer->GetCommentOS() << '\n';
747   }
748 
749   // Emit the prefix data.
750   if (F.hasPrefixData()) {
751     if (MAI->hasSubsectionsViaSymbols()) {
752       // Preserving prefix data on platforms which use subsections-via-symbols
753       // is a bit tricky. Here we introduce a symbol for the prefix data
754       // and use the .alt_entry attribute to mark the function's real entry point
755       // as an alternative entry point to the prefix-data symbol.
756       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
757       OutStreamer->emitLabel(PrefixSym);
758 
759       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
760 
761       // Emit an .alt_entry directive for the actual function symbol.
762       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
763     } else {
764       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
765     }
766   }
767 
768   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
769   // place prefix data before NOPs.
770   unsigned PatchableFunctionPrefix = 0;
771   unsigned PatchableFunctionEntry = 0;
772   (void)F.getFnAttribute("patchable-function-prefix")
773       .getValueAsString()
774       .getAsInteger(10, PatchableFunctionPrefix);
775   (void)F.getFnAttribute("patchable-function-entry")
776       .getValueAsString()
777       .getAsInteger(10, PatchableFunctionEntry);
778   if (PatchableFunctionPrefix) {
779     CurrentPatchableFunctionEntrySym =
780         OutContext.createLinkerPrivateTempSymbol();
781     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
782     emitNops(PatchableFunctionPrefix);
783   } else if (PatchableFunctionEntry) {
784     // May be reassigned when emitting the body, to reference the label after
785     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
786     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
787   }
788 
789   // Emit the function descriptor. This is a virtual function to allow targets
790   // to emit their specific function descriptor. Right now it is only used by
791   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
792   // descriptors and should be converted to use this hook as well.
793   if (MAI->needsFunctionDescriptors())
794     emitFunctionDescriptor();
795 
796   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
797   // their wild and crazy things as required.
798   emitFunctionEntryLabel();
799 
800   // If the function had address-taken blocks that got deleted, then we have
801   // references to the dangling symbols.  Emit them at the start of the function
802   // so that we don't get references to undefined symbols.
803   std::vector<MCSymbol*> DeadBlockSyms;
804   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
805   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
806     OutStreamer->AddComment("Address taken block that was later removed");
807     OutStreamer->emitLabel(DeadBlockSyms[i]);
808   }
809 
810   if (CurrentFnBegin) {
811     if (MAI->useAssignmentForEHBegin()) {
812       MCSymbol *CurPos = OutContext.createTempSymbol();
813       OutStreamer->emitLabel(CurPos);
814       OutStreamer->emitAssignment(CurrentFnBegin,
815                                  MCSymbolRefExpr::create(CurPos, OutContext));
816     } else {
817       OutStreamer->emitLabel(CurrentFnBegin);
818     }
819   }
820 
821   // Emit pre-function debug and/or EH information.
822   for (const HandlerInfo &HI : Handlers) {
823     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
824                        HI.TimerGroupDescription, TimePassesIsEnabled);
825     HI.Handler->beginFunction(MF);
826   }
827 
828   // Emit the prologue data.
829   if (F.hasPrologueData())
830     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
831 }
832 
833 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
834 /// function.  This can be overridden by targets as required to do custom stuff.
835 void AsmPrinter::emitFunctionEntryLabel() {
836   CurrentFnSym->redefineIfPossible();
837 
838   // The function label could have already been emitted if two symbols end up
839   // conflicting due to asm renaming.  Detect this and emit an error.
840   if (CurrentFnSym->isVariable())
841     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
842                        "' is a protected alias");
843 
844   OutStreamer->emitLabel(CurrentFnSym);
845 
846   if (TM.getTargetTriple().isOSBinFormatELF()) {
847     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
848     if (Sym != CurrentFnSym)
849       OutStreamer->emitLabel(Sym);
850   }
851 }
852 
853 /// emitComments - Pretty-print comments for instructions.
854 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
855   const MachineFunction *MF = MI.getMF();
856   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
857 
858   // Check for spills and reloads
859 
860   // We assume a single instruction only has a spill or reload, not
861   // both.
862   Optional<unsigned> Size;
863   if ((Size = MI.getRestoreSize(TII))) {
864     CommentOS << *Size << "-byte Reload\n";
865   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
866     if (*Size) {
867       if (*Size == unsigned(MemoryLocation::UnknownSize))
868         CommentOS << "Unknown-size Folded Reload\n";
869       else
870         CommentOS << *Size << "-byte Folded Reload\n";
871     }
872   } else if ((Size = MI.getSpillSize(TII))) {
873     CommentOS << *Size << "-byte Spill\n";
874   } else if ((Size = MI.getFoldedSpillSize(TII))) {
875     if (*Size) {
876       if (*Size == unsigned(MemoryLocation::UnknownSize))
877         CommentOS << "Unknown-size Folded Spill\n";
878       else
879         CommentOS << *Size << "-byte Folded Spill\n";
880     }
881   }
882 
883   // Check for spill-induced copies
884   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
885     CommentOS << " Reload Reuse\n";
886 }
887 
888 /// emitImplicitDef - This method emits the specified machine instruction
889 /// that is an implicit def.
890 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
891   Register RegNo = MI->getOperand(0).getReg();
892 
893   SmallString<128> Str;
894   raw_svector_ostream OS(Str);
895   OS << "implicit-def: "
896      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
897 
898   OutStreamer->AddComment(OS.str());
899   OutStreamer->AddBlankLine();
900 }
901 
902 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
903   std::string Str;
904   raw_string_ostream OS(Str);
905   OS << "kill:";
906   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
907     const MachineOperand &Op = MI->getOperand(i);
908     assert(Op.isReg() && "KILL instruction must have only register operands");
909     OS << ' ' << (Op.isDef() ? "def " : "killed ")
910        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
911   }
912   AP.OutStreamer->AddComment(OS.str());
913   AP.OutStreamer->AddBlankLine();
914 }
915 
916 /// emitDebugValueComment - This method handles the target-independent form
917 /// of DBG_VALUE, returning true if it was able to do so.  A false return
918 /// means the target will need to handle MI in EmitInstruction.
919 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
920   // This code handles only the 4-operand target-independent form.
921   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
922     return false;
923 
924   SmallString<128> Str;
925   raw_svector_ostream OS(Str);
926   OS << "DEBUG_VALUE: ";
927 
928   const DILocalVariable *V = MI->getDebugVariable();
929   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
930     StringRef Name = SP->getName();
931     if (!Name.empty())
932       OS << Name << ":";
933   }
934   OS << V->getName();
935   OS << " <- ";
936 
937   const DIExpression *Expr = MI->getDebugExpression();
938   if (Expr->getNumElements()) {
939     OS << '[';
940     ListSeparator LS;
941     for (auto Op : Expr->expr_ops()) {
942       OS << LS << dwarf::OperationEncodingString(Op.getOp());
943       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
944         OS << ' ' << Op.getArg(I);
945     }
946     OS << "] ";
947   }
948 
949   // Register or immediate value. Register 0 means undef.
950   for (const MachineOperand &Op : MI->debug_operands()) {
951     if (&Op != MI->debug_operands().begin())
952       OS << ", ";
953     switch (Op.getType()) {
954     case MachineOperand::MO_FPImmediate: {
955       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
956       Type *ImmTy = Op.getFPImm()->getType();
957       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
958           ImmTy->isDoubleTy()) {
959         OS << APF.convertToDouble();
960       } else {
961         // There is no good way to print long double.  Convert a copy to
962         // double.  Ah well, it's only a comment.
963         bool ignored;
964         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
965                     &ignored);
966         OS << "(long double) " << APF.convertToDouble();
967       }
968       break;
969     }
970     case MachineOperand::MO_Immediate: {
971       OS << Op.getImm();
972       break;
973     }
974     case MachineOperand::MO_CImmediate: {
975       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
976       break;
977     }
978     case MachineOperand::MO_TargetIndex: {
979       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
980       // NOTE: Want this comment at start of line, don't emit with AddComment.
981       AP.OutStreamer->emitRawComment(OS.str());
982       break;
983     }
984     case MachineOperand::MO_Register:
985     case MachineOperand::MO_FrameIndex: {
986       Register Reg;
987       Optional<StackOffset> Offset;
988       if (Op.isReg()) {
989         Reg = Op.getReg();
990       } else {
991         const TargetFrameLowering *TFI =
992             AP.MF->getSubtarget().getFrameLowering();
993         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
994       }
995       if (!Reg) {
996         // Suppress offset, it is not meaningful here.
997         OS << "undef";
998         break;
999       }
1000       // The second operand is only an offset if it's an immediate.
1001       if (MI->isIndirectDebugValue())
1002         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1003       if (Offset)
1004         OS << '[';
1005       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1006       if (Offset)
1007         OS << '+' << Offset->getFixed() << ']';
1008       break;
1009     }
1010     default:
1011       llvm_unreachable("Unknown operand type");
1012     }
1013   }
1014 
1015   // NOTE: Want this comment at start of line, don't emit with AddComment.
1016   AP.OutStreamer->emitRawComment(OS.str());
1017   return true;
1018 }
1019 
1020 /// This method handles the target-independent form of DBG_LABEL, returning
1021 /// true if it was able to do so.  A false return means the target will need
1022 /// to handle MI in EmitInstruction.
1023 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1024   if (MI->getNumOperands() != 1)
1025     return false;
1026 
1027   SmallString<128> Str;
1028   raw_svector_ostream OS(Str);
1029   OS << "DEBUG_LABEL: ";
1030 
1031   const DILabel *V = MI->getDebugLabel();
1032   if (auto *SP = dyn_cast<DISubprogram>(
1033           V->getScope()->getNonLexicalBlockFileScope())) {
1034     StringRef Name = SP->getName();
1035     if (!Name.empty())
1036       OS << Name << ":";
1037   }
1038   OS << V->getName();
1039 
1040   // NOTE: Want this comment at start of line, don't emit with AddComment.
1041   AP.OutStreamer->emitRawComment(OS.str());
1042   return true;
1043 }
1044 
1045 AsmPrinter::CFISection
1046 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1047   // Ignore functions that won't get emitted.
1048   if (F.isDeclarationForLinker())
1049     return CFISection::None;
1050 
1051   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1052       F.needsUnwindTableEntry())
1053     return CFISection::EH;
1054 
1055   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1056     return CFISection::Debug;
1057 
1058   return CFISection::None;
1059 }
1060 
1061 AsmPrinter::CFISection
1062 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1063   return getFunctionCFISectionType(MF.getFunction());
1064 }
1065 
1066 bool AsmPrinter::needsSEHMoves() {
1067   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1068 }
1069 
1070 bool AsmPrinter::needsCFIForDebug() const {
1071   return MAI->getExceptionHandlingType() == ExceptionHandling::None &&
1072          MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug;
1073 }
1074 
1075 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1076   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1077   if (!needsCFIForDebug() &&
1078       ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1079       ExceptionHandlingType != ExceptionHandling::ARM)
1080     return;
1081 
1082   if (getFunctionCFISectionType(*MF) == CFISection::None)
1083     return;
1084 
1085   // If there is no "real" instruction following this CFI instruction, skip
1086   // emitting it; it would be beyond the end of the function's FDE range.
1087   auto *MBB = MI.getParent();
1088   auto I = std::next(MI.getIterator());
1089   while (I != MBB->end() && I->isTransient())
1090     ++I;
1091   if (I == MBB->instr_end() &&
1092       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1093     return;
1094 
1095   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1096   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1097   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1098   emitCFIInstruction(CFI);
1099 }
1100 
1101 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1102   // The operands are the MCSymbol and the frame offset of the allocation.
1103   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1104   int FrameOffset = MI.getOperand(1).getImm();
1105 
1106   // Emit a symbol assignment.
1107   OutStreamer->emitAssignment(FrameAllocSym,
1108                              MCConstantExpr::create(FrameOffset, OutContext));
1109 }
1110 
1111 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1112 /// given basic block. This can be used to capture more precise profile
1113 /// information. We use the last 4 bits (LSBs) to encode the following
1114 /// information:
1115 ///  * (1): set if return block (ret or tail call).
1116 ///  * (2): set if ends with a tail call.
1117 ///  * (3): set if exception handling (EH) landing pad.
1118 ///  * (4): set if the block can fall through to its next.
1119 /// The remaining bits are zero.
1120 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1121   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1122   return ((unsigned)MBB.isReturnBlock()) |
1123          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1124          (MBB.isEHPad() << 2) |
1125          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1126 }
1127 
1128 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1129   MCSection *BBAddrMapSection =
1130       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1131   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1132 
1133   const MCSymbol *FunctionSymbol = getFunctionBegin();
1134 
1135   OutStreamer->PushSection();
1136   OutStreamer->SwitchSection(BBAddrMapSection);
1137   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1138   // Emit the total number of basic blocks in this function.
1139   OutStreamer->emitULEB128IntValue(MF.size());
1140   // Emit BB Information for each basic block in the funciton.
1141   for (const MachineBasicBlock &MBB : MF) {
1142     const MCSymbol *MBBSymbol =
1143         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1144     // Emit the basic block offset.
1145     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1146     // Emit the basic block size. When BBs have alignments, their size cannot
1147     // always be computed from their offsets.
1148     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1149     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1150   }
1151   OutStreamer->PopSection();
1152 }
1153 
1154 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1155   auto GUID = MI.getOperand(0).getImm();
1156   auto Index = MI.getOperand(1).getImm();
1157   auto Type = MI.getOperand(2).getImm();
1158   auto Attr = MI.getOperand(3).getImm();
1159   DILocation *DebugLoc = MI.getDebugLoc();
1160   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1161 }
1162 
1163 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1164   if (!MF.getTarget().Options.EmitStackSizeSection)
1165     return;
1166 
1167   MCSection *StackSizeSection =
1168       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1169   if (!StackSizeSection)
1170     return;
1171 
1172   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1173   // Don't emit functions with dynamic stack allocations.
1174   if (FrameInfo.hasVarSizedObjects())
1175     return;
1176 
1177   OutStreamer->PushSection();
1178   OutStreamer->SwitchSection(StackSizeSection);
1179 
1180   const MCSymbol *FunctionSymbol = getFunctionBegin();
1181   uint64_t StackSize = FrameInfo.getStackSize();
1182   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1183   OutStreamer->emitULEB128IntValue(StackSize);
1184 
1185   OutStreamer->PopSection();
1186 }
1187 
1188 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1189   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1190 
1191   // OutputFilename empty implies -fstack-usage is not passed.
1192   if (OutputFilename.empty())
1193     return;
1194 
1195   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1196   uint64_t StackSize = FrameInfo.getStackSize();
1197 
1198   if (StackUsageStream == nullptr) {
1199     std::error_code EC;
1200     StackUsageStream =
1201         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1202     if (EC) {
1203       errs() << "Could not open file: " << EC.message();
1204       return;
1205     }
1206   }
1207 
1208   *StackUsageStream << MF.getFunction().getParent()->getName();
1209   if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1210     *StackUsageStream << ':' << DSP->getLine();
1211 
1212   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1213   if (FrameInfo.hasVarSizedObjects())
1214     *StackUsageStream << "dynamic\n";
1215   else
1216     *StackUsageStream << "static\n";
1217 }
1218 
1219 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1220   MachineModuleInfo &MMI = MF.getMMI();
1221   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1222     return true;
1223 
1224   // We might emit an EH table that uses function begin and end labels even if
1225   // we don't have any landingpads.
1226   if (!MF.getFunction().hasPersonalityFn())
1227     return false;
1228   return !isNoOpWithoutInvoke(
1229       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1230 }
1231 
1232 /// EmitFunctionBody - This method emits the body and trailer for a
1233 /// function.
1234 void AsmPrinter::emitFunctionBody() {
1235   emitFunctionHeader();
1236 
1237   // Emit target-specific gunk before the function body.
1238   emitFunctionBodyStart();
1239 
1240   if (isVerbose()) {
1241     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1242     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1243     if (!MDT) {
1244       OwnedMDT = std::make_unique<MachineDominatorTree>();
1245       OwnedMDT->getBase().recalculate(*MF);
1246       MDT = OwnedMDT.get();
1247     }
1248 
1249     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1250     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1251     if (!MLI) {
1252       OwnedMLI = std::make_unique<MachineLoopInfo>();
1253       OwnedMLI->getBase().analyze(MDT->getBase());
1254       MLI = OwnedMLI.get();
1255     }
1256   }
1257 
1258   // Print out code for the function.
1259   bool HasAnyRealCode = false;
1260   int NumInstsInFunction = 0;
1261 
1262   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1263   for (auto &MBB : *MF) {
1264     // Print a label for the basic block.
1265     emitBasicBlockStart(MBB);
1266     DenseMap<StringRef, unsigned> MnemonicCounts;
1267     for (auto &MI : MBB) {
1268       // Print the assembly for the instruction.
1269       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1270           !MI.isDebugInstr()) {
1271         HasAnyRealCode = true;
1272         ++NumInstsInFunction;
1273       }
1274 
1275       // If there is a pre-instruction symbol, emit a label for it here.
1276       if (MCSymbol *S = MI.getPreInstrSymbol())
1277         OutStreamer->emitLabel(S);
1278 
1279       for (const HandlerInfo &HI : Handlers) {
1280         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1281                            HI.TimerGroupDescription, TimePassesIsEnabled);
1282         HI.Handler->beginInstruction(&MI);
1283       }
1284 
1285       if (isVerbose())
1286         emitComments(MI, OutStreamer->GetCommentOS());
1287 
1288       switch (MI.getOpcode()) {
1289       case TargetOpcode::CFI_INSTRUCTION:
1290         emitCFIInstruction(MI);
1291         break;
1292       case TargetOpcode::LOCAL_ESCAPE:
1293         emitFrameAlloc(MI);
1294         break;
1295       case TargetOpcode::ANNOTATION_LABEL:
1296       case TargetOpcode::EH_LABEL:
1297       case TargetOpcode::GC_LABEL:
1298         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1299         break;
1300       case TargetOpcode::INLINEASM:
1301       case TargetOpcode::INLINEASM_BR:
1302         emitInlineAsm(&MI);
1303         break;
1304       case TargetOpcode::DBG_VALUE:
1305       case TargetOpcode::DBG_VALUE_LIST:
1306         if (isVerbose()) {
1307           if (!emitDebugValueComment(&MI, *this))
1308             emitInstruction(&MI);
1309         }
1310         break;
1311       case TargetOpcode::DBG_INSTR_REF:
1312         // This instruction reference will have been resolved to a machine
1313         // location, and a nearby DBG_VALUE created. We can safely ignore
1314         // the instruction reference.
1315         break;
1316       case TargetOpcode::DBG_PHI:
1317         // This instruction is only used to label a program point, it's purely
1318         // meta information.
1319         break;
1320       case TargetOpcode::DBG_LABEL:
1321         if (isVerbose()) {
1322           if (!emitDebugLabelComment(&MI, *this))
1323             emitInstruction(&MI);
1324         }
1325         break;
1326       case TargetOpcode::IMPLICIT_DEF:
1327         if (isVerbose()) emitImplicitDef(&MI);
1328         break;
1329       case TargetOpcode::KILL:
1330         if (isVerbose()) emitKill(&MI, *this);
1331         break;
1332       case TargetOpcode::PSEUDO_PROBE:
1333         emitPseudoProbe(MI);
1334         break;
1335       case TargetOpcode::ARITH_FENCE:
1336         if (isVerbose())
1337           OutStreamer->emitRawComment("ARITH_FENCE");
1338         break;
1339       default:
1340         emitInstruction(&MI);
1341         if (CanDoExtraAnalysis) {
1342           MCInst MCI;
1343           MCI.setOpcode(MI.getOpcode());
1344           auto Name = OutStreamer->getMnemonic(MCI);
1345           auto I = MnemonicCounts.insert({Name, 0u});
1346           I.first->second++;
1347         }
1348         break;
1349       }
1350 
1351       // If there is a post-instruction symbol, emit a label for it here.
1352       if (MCSymbol *S = MI.getPostInstrSymbol())
1353         OutStreamer->emitLabel(S);
1354 
1355       for (const HandlerInfo &HI : Handlers) {
1356         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1357                            HI.TimerGroupDescription, TimePassesIsEnabled);
1358         HI.Handler->endInstruction();
1359       }
1360     }
1361 
1362     // We must emit temporary symbol for the end of this basic block, if either
1363     // we have BBLabels enabled or if this basic blocks marks the end of a
1364     // section.
1365     if (MF->hasBBLabels() ||
1366         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
1367       OutStreamer->emitLabel(MBB.getEndSymbol());
1368 
1369     if (MBB.isEndSection()) {
1370       // The size directive for the section containing the entry block is
1371       // handled separately by the function section.
1372       if (!MBB.sameSection(&MF->front())) {
1373         if (MAI->hasDotTypeDotSizeDirective()) {
1374           // Emit the size directive for the basic block section.
1375           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1376               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1377               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1378               OutContext);
1379           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1380         }
1381         MBBSectionRanges[MBB.getSectionIDNum()] =
1382             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1383       }
1384     }
1385     emitBasicBlockEnd(MBB);
1386 
1387     if (CanDoExtraAnalysis) {
1388       // Skip empty blocks.
1389       if (MBB.empty())
1390         continue;
1391 
1392       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1393                                           MBB.begin()->getDebugLoc(), &MBB);
1394 
1395       // Generate instruction mix remark. First, sort counts in descending order
1396       // by count and name.
1397       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1398       for (auto &KV : MnemonicCounts)
1399         MnemonicVec.emplace_back(KV.first, KV.second);
1400 
1401       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1402                            const std::pair<StringRef, unsigned> &B) {
1403         if (A.second > B.second)
1404           return true;
1405         if (A.second == B.second)
1406           return StringRef(A.first) < StringRef(B.first);
1407         return false;
1408       });
1409       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1410       for (auto &KV : MnemonicVec) {
1411         auto Name = (Twine("INST_") + KV.first.trim()).str();
1412         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1413       }
1414       ORE->emit(R);
1415     }
1416   }
1417 
1418   EmittedInsts += NumInstsInFunction;
1419   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1420                                       MF->getFunction().getSubprogram(),
1421                                       &MF->front());
1422   R << ore::NV("NumInstructions", NumInstsInFunction)
1423     << " instructions in function";
1424   ORE->emit(R);
1425 
1426   // If the function is empty and the object file uses .subsections_via_symbols,
1427   // then we need to emit *something* to the function body to prevent the
1428   // labels from collapsing together.  Just emit a noop.
1429   // Similarly, don't emit empty functions on Windows either. It can lead to
1430   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1431   // after linking, causing the kernel not to load the binary:
1432   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1433   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1434   const Triple &TT = TM.getTargetTriple();
1435   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1436                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1437     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1438 
1439     // Targets can opt-out of emitting the noop here by leaving the opcode
1440     // unspecified.
1441     if (Noop.getOpcode()) {
1442       OutStreamer->AddComment("avoids zero-length function");
1443       emitNops(1);
1444     }
1445   }
1446 
1447   // Switch to the original section in case basic block sections was used.
1448   OutStreamer->SwitchSection(MF->getSection());
1449 
1450   const Function &F = MF->getFunction();
1451   for (const auto &BB : F) {
1452     if (!BB.hasAddressTaken())
1453       continue;
1454     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1455     if (Sym->isDefined())
1456       continue;
1457     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1458     OutStreamer->emitLabel(Sym);
1459   }
1460 
1461   // Emit target-specific gunk after the function body.
1462   emitFunctionBodyEnd();
1463 
1464   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1465       MAI->hasDotTypeDotSizeDirective()) {
1466     // Create a symbol for the end of function.
1467     CurrentFnEnd = createTempSymbol("func_end");
1468     OutStreamer->emitLabel(CurrentFnEnd);
1469   }
1470 
1471   // If the target wants a .size directive for the size of the function, emit
1472   // it.
1473   if (MAI->hasDotTypeDotSizeDirective()) {
1474     // We can get the size as difference between the function label and the
1475     // temp label.
1476     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1477         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1478         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1479     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1480   }
1481 
1482   for (const HandlerInfo &HI : Handlers) {
1483     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1484                        HI.TimerGroupDescription, TimePassesIsEnabled);
1485     HI.Handler->markFunctionEnd();
1486   }
1487 
1488   MBBSectionRanges[MF->front().getSectionIDNum()] =
1489       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1490 
1491   // Print out jump tables referenced by the function.
1492   emitJumpTableInfo();
1493 
1494   // Emit post-function debug and/or EH information.
1495   for (const HandlerInfo &HI : Handlers) {
1496     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1497                        HI.TimerGroupDescription, TimePassesIsEnabled);
1498     HI.Handler->endFunction(MF);
1499   }
1500 
1501   // Emit section containing BB address offsets and their metadata, when
1502   // BB labels are requested for this function. Skip empty functions.
1503   if (MF->hasBBLabels() && HasAnyRealCode)
1504     emitBBAddrMapSection(*MF);
1505 
1506   // Emit section containing stack size metadata.
1507   emitStackSizeSection(*MF);
1508 
1509   // Emit .su file containing function stack size information.
1510   emitStackUsage(*MF);
1511 
1512   emitPatchableFunctionEntries();
1513 
1514   if (isVerbose())
1515     OutStreamer->GetCommentOS() << "-- End function\n";
1516 
1517   OutStreamer->AddBlankLine();
1518 }
1519 
1520 /// Compute the number of Global Variables that uses a Constant.
1521 static unsigned getNumGlobalVariableUses(const Constant *C) {
1522   if (!C)
1523     return 0;
1524 
1525   if (isa<GlobalVariable>(C))
1526     return 1;
1527 
1528   unsigned NumUses = 0;
1529   for (auto *CU : C->users())
1530     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1531 
1532   return NumUses;
1533 }
1534 
1535 /// Only consider global GOT equivalents if at least one user is a
1536 /// cstexpr inside an initializer of another global variables. Also, don't
1537 /// handle cstexpr inside instructions. During global variable emission,
1538 /// candidates are skipped and are emitted later in case at least one cstexpr
1539 /// isn't replaced by a PC relative GOT entry access.
1540 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1541                                      unsigned &NumGOTEquivUsers) {
1542   // Global GOT equivalents are unnamed private globals with a constant
1543   // pointer initializer to another global symbol. They must point to a
1544   // GlobalVariable or Function, i.e., as GlobalValue.
1545   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1546       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1547       !isa<GlobalValue>(GV->getOperand(0)))
1548     return false;
1549 
1550   // To be a got equivalent, at least one of its users need to be a constant
1551   // expression used by another global variable.
1552   for (auto *U : GV->users())
1553     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1554 
1555   return NumGOTEquivUsers > 0;
1556 }
1557 
1558 /// Unnamed constant global variables solely contaning a pointer to
1559 /// another globals variable is equivalent to a GOT table entry; it contains the
1560 /// the address of another symbol. Optimize it and replace accesses to these
1561 /// "GOT equivalents" by using the GOT entry for the final global instead.
1562 /// Compute GOT equivalent candidates among all global variables to avoid
1563 /// emitting them if possible later on, after it use is replaced by a GOT entry
1564 /// access.
1565 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1566   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1567     return;
1568 
1569   for (const auto &G : M.globals()) {
1570     unsigned NumGOTEquivUsers = 0;
1571     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1572       continue;
1573 
1574     const MCSymbol *GOTEquivSym = getSymbol(&G);
1575     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1576   }
1577 }
1578 
1579 /// Constant expressions using GOT equivalent globals may not be eligible
1580 /// for PC relative GOT entry conversion, in such cases we need to emit such
1581 /// globals we previously omitted in EmitGlobalVariable.
1582 void AsmPrinter::emitGlobalGOTEquivs() {
1583   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1584     return;
1585 
1586   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1587   for (auto &I : GlobalGOTEquivs) {
1588     const GlobalVariable *GV = I.second.first;
1589     unsigned Cnt = I.second.second;
1590     if (Cnt)
1591       FailedCandidates.push_back(GV);
1592   }
1593   GlobalGOTEquivs.clear();
1594 
1595   for (auto *GV : FailedCandidates)
1596     emitGlobalVariable(GV);
1597 }
1598 
1599 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1600                                           const GlobalIndirectSymbol& GIS) {
1601   MCSymbol *Name = getSymbol(&GIS);
1602   bool IsFunction = GIS.getValueType()->isFunctionTy();
1603   // Treat bitcasts of functions as functions also. This is important at least
1604   // on WebAssembly where object and function addresses can't alias each other.
1605   if (!IsFunction)
1606     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1607       if (CE->getOpcode() == Instruction::BitCast)
1608         IsFunction =
1609           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1610 
1611   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1612   // so AIX has to use the extra-label-at-definition strategy. At this
1613   // point, all the extra label is emitted, we just have to emit linkage for
1614   // those labels.
1615   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1616     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1617     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1618            "Visibility should be handled with emitLinkage() on AIX.");
1619     emitLinkage(&GIS, Name);
1620     // If it's a function, also emit linkage for aliases of function entry
1621     // point.
1622     if (IsFunction)
1623       emitLinkage(&GIS,
1624                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1625     return;
1626   }
1627 
1628   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1629     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1630   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1631     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1632   else
1633     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1634 
1635   // Set the symbol type to function if the alias has a function type.
1636   // This affects codegen when the aliasee is not a function.
1637   if (IsFunction)
1638     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1639                                                ? MCSA_ELF_TypeIndFunction
1640                                                : MCSA_ELF_TypeFunction);
1641 
1642   emitVisibility(Name, GIS.getVisibility());
1643 
1644   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1645 
1646   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1647     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1648 
1649   // Emit the directives as assignments aka .set:
1650   OutStreamer->emitAssignment(Name, Expr);
1651   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1652   if (LocalAlias != Name)
1653     OutStreamer->emitAssignment(LocalAlias, Expr);
1654 
1655   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1656     // If the aliasee does not correspond to a symbol in the output, i.e. the
1657     // alias is not of an object or the aliased object is private, then set the
1658     // size of the alias symbol from the type of the alias. We don't do this in
1659     // other situations as the alias and aliasee having differing types but same
1660     // size may be intentional.
1661     const GlobalObject *BaseObject = GA->getBaseObject();
1662     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1663         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1664       const DataLayout &DL = M.getDataLayout();
1665       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1666       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1667     }
1668   }
1669 }
1670 
1671 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1672   if (!RS.needsSection())
1673     return;
1674 
1675   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1676 
1677   Optional<SmallString<128>> Filename;
1678   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1679     Filename = *FilenameRef;
1680     sys::fs::make_absolute(*Filename);
1681     assert(!Filename->empty() && "The filename can't be empty.");
1682   }
1683 
1684   std::string Buf;
1685   raw_string_ostream OS(Buf);
1686   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1687       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1688                : RemarkSerializer.metaSerializer(OS);
1689   MetaSerializer->emit();
1690 
1691   // Switch to the remarks section.
1692   MCSection *RemarksSection =
1693       OutContext.getObjectFileInfo()->getRemarksSection();
1694   OutStreamer->SwitchSection(RemarksSection);
1695 
1696   OutStreamer->emitBinaryData(OS.str());
1697 }
1698 
1699 bool AsmPrinter::doFinalization(Module &M) {
1700   // Set the MachineFunction to nullptr so that we can catch attempted
1701   // accesses to MF specific features at the module level and so that
1702   // we can conditionalize accesses based on whether or not it is nullptr.
1703   MF = nullptr;
1704 
1705   // Gather all GOT equivalent globals in the module. We really need two
1706   // passes over the globals: one to compute and another to avoid its emission
1707   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1708   // where the got equivalent shows up before its use.
1709   computeGlobalGOTEquivs(M);
1710 
1711   // Emit global variables.
1712   for (const auto &G : M.globals())
1713     emitGlobalVariable(&G);
1714 
1715   // Emit remaining GOT equivalent globals.
1716   emitGlobalGOTEquivs();
1717 
1718   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1719 
1720   // Emit linkage(XCOFF) and visibility info for declarations
1721   for (const Function &F : M) {
1722     if (!F.isDeclarationForLinker())
1723       continue;
1724 
1725     MCSymbol *Name = getSymbol(&F);
1726     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1727 
1728     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1729       GlobalValue::VisibilityTypes V = F.getVisibility();
1730       if (V == GlobalValue::DefaultVisibility)
1731         continue;
1732 
1733       emitVisibility(Name, V, false);
1734       continue;
1735     }
1736 
1737     if (F.isIntrinsic())
1738       continue;
1739 
1740     // Handle the XCOFF case.
1741     // Variable `Name` is the function descriptor symbol (see above). Get the
1742     // function entry point symbol.
1743     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1744     // Emit linkage for the function entry point.
1745     emitLinkage(&F, FnEntryPointSym);
1746 
1747     // Emit linkage for the function descriptor.
1748     emitLinkage(&F, Name);
1749   }
1750 
1751   // Emit the remarks section contents.
1752   // FIXME: Figure out when is the safest time to emit this section. It should
1753   // not come after debug info.
1754   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1755     emitRemarksSection(*RS);
1756 
1757   TLOF.emitModuleMetadata(*OutStreamer, M);
1758 
1759   if (TM.getTargetTriple().isOSBinFormatELF()) {
1760     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1761 
1762     // Output stubs for external and common global variables.
1763     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1764     if (!Stubs.empty()) {
1765       OutStreamer->SwitchSection(TLOF.getDataSection());
1766       const DataLayout &DL = M.getDataLayout();
1767 
1768       emitAlignment(Align(DL.getPointerSize()));
1769       for (const auto &Stub : Stubs) {
1770         OutStreamer->emitLabel(Stub.first);
1771         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1772                                      DL.getPointerSize());
1773       }
1774     }
1775   }
1776 
1777   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1778     MachineModuleInfoCOFF &MMICOFF =
1779         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1780 
1781     // Output stubs for external and common global variables.
1782     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1783     if (!Stubs.empty()) {
1784       const DataLayout &DL = M.getDataLayout();
1785 
1786       for (const auto &Stub : Stubs) {
1787         SmallString<256> SectionName = StringRef(".rdata$");
1788         SectionName += Stub.first->getName();
1789         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1790             SectionName,
1791             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1792                 COFF::IMAGE_SCN_LNK_COMDAT,
1793             SectionKind::getReadOnly(), Stub.first->getName(),
1794             COFF::IMAGE_COMDAT_SELECT_ANY));
1795         emitAlignment(Align(DL.getPointerSize()));
1796         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1797         OutStreamer->emitLabel(Stub.first);
1798         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1799                                      DL.getPointerSize());
1800       }
1801     }
1802   }
1803 
1804   // Finalize debug and EH information.
1805   for (const HandlerInfo &HI : Handlers) {
1806     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1807                        HI.TimerGroupDescription, TimePassesIsEnabled);
1808     HI.Handler->endModule();
1809   }
1810 
1811   // This deletes all the ephemeral handlers that AsmPrinter added, while
1812   // keeping all the user-added handlers alive until the AsmPrinter is
1813   // destroyed.
1814   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1815   DD = nullptr;
1816 
1817   // If the target wants to know about weak references, print them all.
1818   if (MAI->getWeakRefDirective()) {
1819     // FIXME: This is not lazy, it would be nice to only print weak references
1820     // to stuff that is actually used.  Note that doing so would require targets
1821     // to notice uses in operands (due to constant exprs etc).  This should
1822     // happen with the MC stuff eventually.
1823 
1824     // Print out module-level global objects here.
1825     for (const auto &GO : M.global_objects()) {
1826       if (!GO.hasExternalWeakLinkage())
1827         continue;
1828       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1829     }
1830   }
1831 
1832   // Print aliases in topological order, that is, for each alias a = b,
1833   // b must be printed before a.
1834   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1835   // such an order to generate correct TOC information.
1836   SmallVector<const GlobalAlias *, 16> AliasStack;
1837   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1838   for (const auto &Alias : M.aliases()) {
1839     for (const GlobalAlias *Cur = &Alias; Cur;
1840          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1841       if (!AliasVisited.insert(Cur).second)
1842         break;
1843       AliasStack.push_back(Cur);
1844     }
1845     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1846       emitGlobalIndirectSymbol(M, *AncestorAlias);
1847     AliasStack.clear();
1848   }
1849   for (const auto &IFunc : M.ifuncs())
1850     emitGlobalIndirectSymbol(M, IFunc);
1851 
1852   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1853   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1854   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1855     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1856       MP->finishAssembly(M, *MI, *this);
1857 
1858   // Emit llvm.ident metadata in an '.ident' directive.
1859   emitModuleIdents(M);
1860 
1861   // Emit bytes for llvm.commandline metadata.
1862   emitModuleCommandLines(M);
1863 
1864   // Emit __morestack address if needed for indirect calls.
1865   if (MMI->usesMorestackAddr()) {
1866     Align Alignment(1);
1867     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1868         getDataLayout(), SectionKind::getReadOnly(),
1869         /*C=*/nullptr, Alignment);
1870     OutStreamer->SwitchSection(ReadOnlySection);
1871 
1872     MCSymbol *AddrSymbol =
1873         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1874     OutStreamer->emitLabel(AddrSymbol);
1875 
1876     unsigned PtrSize = MAI->getCodePointerSize();
1877     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1878                                  PtrSize);
1879   }
1880 
1881   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1882   // split-stack is used.
1883   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1884     OutStreamer->SwitchSection(
1885         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1886     if (MMI->hasNosplitStack())
1887       OutStreamer->SwitchSection(
1888           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1889   }
1890 
1891   // If we don't have any trampolines, then we don't require stack memory
1892   // to be executable. Some targets have a directive to declare this.
1893   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1894   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1895     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1896       OutStreamer->SwitchSection(S);
1897 
1898   if (TM.Options.EmitAddrsig) {
1899     // Emit address-significance attributes for all globals.
1900     OutStreamer->emitAddrsig();
1901     for (const GlobalValue &GV : M.global_values()) {
1902       if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() &&
1903           !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() &&
1904           !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr())
1905         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1906     }
1907   }
1908 
1909   // Emit symbol partition specifications (ELF only).
1910   if (TM.getTargetTriple().isOSBinFormatELF()) {
1911     unsigned UniqueID = 0;
1912     for (const GlobalValue &GV : M.global_values()) {
1913       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1914           GV.getVisibility() != GlobalValue::DefaultVisibility)
1915         continue;
1916 
1917       OutStreamer->SwitchSection(
1918           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1919                                    "", false, ++UniqueID, nullptr));
1920       OutStreamer->emitBytes(GV.getPartition());
1921       OutStreamer->emitZeros(1);
1922       OutStreamer->emitValue(
1923           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1924           MAI->getCodePointerSize());
1925     }
1926   }
1927 
1928   // Allow the target to emit any magic that it wants at the end of the file,
1929   // after everything else has gone out.
1930   emitEndOfAsmFile(M);
1931 
1932   MMI = nullptr;
1933 
1934   OutStreamer->Finish();
1935   OutStreamer->reset();
1936   OwnedMLI.reset();
1937   OwnedMDT.reset();
1938 
1939   return false;
1940 }
1941 
1942 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1943   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1944   if (Res.second)
1945     Res.first->second = createTempSymbol("exception");
1946   return Res.first->second;
1947 }
1948 
1949 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1950   this->MF = &MF;
1951   const Function &F = MF.getFunction();
1952 
1953   // Get the function symbol.
1954   if (!MAI->needsFunctionDescriptors()) {
1955     CurrentFnSym = getSymbol(&MF.getFunction());
1956   } else {
1957     assert(TM.getTargetTriple().isOSAIX() &&
1958            "Only AIX uses the function descriptor hooks.");
1959     // AIX is unique here in that the name of the symbol emitted for the
1960     // function body does not have the same name as the source function's
1961     // C-linkage name.
1962     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1963                                " initalized first.");
1964 
1965     // Get the function entry point symbol.
1966     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1967   }
1968 
1969   CurrentFnSymForSize = CurrentFnSym;
1970   CurrentFnBegin = nullptr;
1971   CurrentSectionBeginSym = nullptr;
1972   MBBSectionRanges.clear();
1973   MBBSectionExceptionSyms.clear();
1974   bool NeedsLocalForSize = MAI->needsLocalForSize();
1975   if (F.hasFnAttribute("patchable-function-entry") ||
1976       F.hasFnAttribute("function-instrument") ||
1977       F.hasFnAttribute("xray-instruction-threshold") ||
1978       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1979       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1980     CurrentFnBegin = createTempSymbol("func_begin");
1981     if (NeedsLocalForSize)
1982       CurrentFnSymForSize = CurrentFnBegin;
1983   }
1984 
1985   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1986 }
1987 
1988 namespace {
1989 
1990 // Keep track the alignment, constpool entries per Section.
1991   struct SectionCPs {
1992     MCSection *S;
1993     Align Alignment;
1994     SmallVector<unsigned, 4> CPEs;
1995 
1996     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1997   };
1998 
1999 } // end anonymous namespace
2000 
2001 /// EmitConstantPool - Print to the current output stream assembly
2002 /// representations of the constants in the constant pool MCP. This is
2003 /// used to print out constants which have been "spilled to memory" by
2004 /// the code generator.
2005 void AsmPrinter::emitConstantPool() {
2006   const MachineConstantPool *MCP = MF->getConstantPool();
2007   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2008   if (CP.empty()) return;
2009 
2010   // Calculate sections for constant pool entries. We collect entries to go into
2011   // the same section together to reduce amount of section switch statements.
2012   SmallVector<SectionCPs, 4> CPSections;
2013   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2014     const MachineConstantPoolEntry &CPE = CP[i];
2015     Align Alignment = CPE.getAlign();
2016 
2017     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2018 
2019     const Constant *C = nullptr;
2020     if (!CPE.isMachineConstantPoolEntry())
2021       C = CPE.Val.ConstVal;
2022 
2023     MCSection *S = getObjFileLowering().getSectionForConstant(
2024         getDataLayout(), Kind, C, Alignment);
2025 
2026     // The number of sections are small, just do a linear search from the
2027     // last section to the first.
2028     bool Found = false;
2029     unsigned SecIdx = CPSections.size();
2030     while (SecIdx != 0) {
2031       if (CPSections[--SecIdx].S == S) {
2032         Found = true;
2033         break;
2034       }
2035     }
2036     if (!Found) {
2037       SecIdx = CPSections.size();
2038       CPSections.push_back(SectionCPs(S, Alignment));
2039     }
2040 
2041     if (Alignment > CPSections[SecIdx].Alignment)
2042       CPSections[SecIdx].Alignment = Alignment;
2043     CPSections[SecIdx].CPEs.push_back(i);
2044   }
2045 
2046   // Now print stuff into the calculated sections.
2047   const MCSection *CurSection = nullptr;
2048   unsigned Offset = 0;
2049   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2050     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2051       unsigned CPI = CPSections[i].CPEs[j];
2052       MCSymbol *Sym = GetCPISymbol(CPI);
2053       if (!Sym->isUndefined())
2054         continue;
2055 
2056       if (CurSection != CPSections[i].S) {
2057         OutStreamer->SwitchSection(CPSections[i].S);
2058         emitAlignment(Align(CPSections[i].Alignment));
2059         CurSection = CPSections[i].S;
2060         Offset = 0;
2061       }
2062 
2063       MachineConstantPoolEntry CPE = CP[CPI];
2064 
2065       // Emit inter-object padding for alignment.
2066       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2067       OutStreamer->emitZeros(NewOffset - Offset);
2068 
2069       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2070 
2071       OutStreamer->emitLabel(Sym);
2072       if (CPE.isMachineConstantPoolEntry())
2073         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2074       else
2075         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2076     }
2077   }
2078 }
2079 
2080 // Print assembly representations of the jump tables used by the current
2081 // function.
2082 void AsmPrinter::emitJumpTableInfo() {
2083   const DataLayout &DL = MF->getDataLayout();
2084   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2085   if (!MJTI) return;
2086   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2087   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2088   if (JT.empty()) return;
2089 
2090   // Pick the directive to use to print the jump table entries, and switch to
2091   // the appropriate section.
2092   const Function &F = MF->getFunction();
2093   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2094   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2095       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2096       F);
2097   if (JTInDiffSection) {
2098     // Drop it in the readonly section.
2099     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2100     OutStreamer->SwitchSection(ReadOnlySection);
2101   }
2102 
2103   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2104 
2105   // Jump tables in code sections are marked with a data_region directive
2106   // where that's supported.
2107   if (!JTInDiffSection)
2108     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2109 
2110   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2111     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2112 
2113     // If this jump table was deleted, ignore it.
2114     if (JTBBs.empty()) continue;
2115 
2116     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2117     /// emit a .set directive for each unique entry.
2118     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2119         MAI->doesSetDirectiveSuppressReloc()) {
2120       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2121       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2122       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2123       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2124         const MachineBasicBlock *MBB = JTBBs[ii];
2125         if (!EmittedSets.insert(MBB).second)
2126           continue;
2127 
2128         // .set LJTSet, LBB32-base
2129         const MCExpr *LHS =
2130           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2131         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2132                                     MCBinaryExpr::createSub(LHS, Base,
2133                                                             OutContext));
2134       }
2135     }
2136 
2137     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2138     // before each jump table.  The first label is never referenced, but tells
2139     // the assembler and linker the extents of the jump table object.  The
2140     // second label is actually referenced by the code.
2141     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2142       // FIXME: This doesn't have to have any specific name, just any randomly
2143       // named and numbered local label started with 'l' would work.  Simplify
2144       // GetJTISymbol.
2145       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2146 
2147     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2148     OutStreamer->emitLabel(JTISymbol);
2149 
2150     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2151       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2152   }
2153   if (!JTInDiffSection)
2154     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2155 }
2156 
2157 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2158 /// current stream.
2159 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2160                                     const MachineBasicBlock *MBB,
2161                                     unsigned UID) const {
2162   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2163   const MCExpr *Value = nullptr;
2164   switch (MJTI->getEntryKind()) {
2165   case MachineJumpTableInfo::EK_Inline:
2166     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2167   case MachineJumpTableInfo::EK_Custom32:
2168     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2169         MJTI, MBB, UID, OutContext);
2170     break;
2171   case MachineJumpTableInfo::EK_BlockAddress:
2172     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2173     //     .word LBB123
2174     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2175     break;
2176   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2177     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2178     // with a relocation as gp-relative, e.g.:
2179     //     .gprel32 LBB123
2180     MCSymbol *MBBSym = MBB->getSymbol();
2181     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2182     return;
2183   }
2184 
2185   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2186     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2187     // with a relocation as gp-relative, e.g.:
2188     //     .gpdword LBB123
2189     MCSymbol *MBBSym = MBB->getSymbol();
2190     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2191     return;
2192   }
2193 
2194   case MachineJumpTableInfo::EK_LabelDifference32: {
2195     // Each entry is the address of the block minus the address of the jump
2196     // table. This is used for PIC jump tables where gprel32 is not supported.
2197     // e.g.:
2198     //      .word LBB123 - LJTI1_2
2199     // If the .set directive avoids relocations, this is emitted as:
2200     //      .set L4_5_set_123, LBB123 - LJTI1_2
2201     //      .word L4_5_set_123
2202     if (MAI->doesSetDirectiveSuppressReloc()) {
2203       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2204                                       OutContext);
2205       break;
2206     }
2207     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2208     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2209     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2210     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2211     break;
2212   }
2213   }
2214 
2215   assert(Value && "Unknown entry kind!");
2216 
2217   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2218   OutStreamer->emitValue(Value, EntrySize);
2219 }
2220 
2221 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2222 /// special global used by LLVM.  If so, emit it and return true, otherwise
2223 /// do nothing and return false.
2224 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2225   if (GV->getName() == "llvm.used") {
2226     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2227       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2228     return true;
2229   }
2230 
2231   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2232   if (GV->getSection() == "llvm.metadata" ||
2233       GV->hasAvailableExternallyLinkage())
2234     return true;
2235 
2236   if (!GV->hasAppendingLinkage()) return false;
2237 
2238   assert(GV->hasInitializer() && "Not a special LLVM global!");
2239 
2240   if (GV->getName() == "llvm.global_ctors") {
2241     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2242                        /* isCtor */ true);
2243 
2244     return true;
2245   }
2246 
2247   if (GV->getName() == "llvm.global_dtors") {
2248     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2249                        /* isCtor */ false);
2250 
2251     return true;
2252   }
2253 
2254   report_fatal_error("unknown special variable");
2255 }
2256 
2257 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2258 /// global in the specified llvm.used list.
2259 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2260   // Should be an array of 'i8*'.
2261   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2262     const GlobalValue *GV =
2263       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2264     if (GV)
2265       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2266   }
2267 }
2268 
2269 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2270                                           const Constant *List,
2271                                           SmallVector<Structor, 8> &Structors) {
2272   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2273   // the init priority.
2274   if (!isa<ConstantArray>(List))
2275     return;
2276 
2277   // Gather the structors in a form that's convenient for sorting by priority.
2278   for (Value *O : cast<ConstantArray>(List)->operands()) {
2279     auto *CS = cast<ConstantStruct>(O);
2280     if (CS->getOperand(1)->isNullValue())
2281       break; // Found a null terminator, skip the rest.
2282     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2283     if (!Priority)
2284       continue; // Malformed.
2285     Structors.push_back(Structor());
2286     Structor &S = Structors.back();
2287     S.Priority = Priority->getLimitedValue(65535);
2288     S.Func = CS->getOperand(1);
2289     if (!CS->getOperand(2)->isNullValue()) {
2290       if (TM.getTargetTriple().isOSAIX())
2291         llvm::report_fatal_error(
2292             "associated data of XXStructor list is not yet supported on AIX");
2293       S.ComdatKey =
2294           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2295     }
2296   }
2297 
2298   // Emit the function pointers in the target-specific order
2299   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2300     return L.Priority < R.Priority;
2301   });
2302 }
2303 
2304 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2305 /// priority.
2306 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2307                                     bool IsCtor) {
2308   SmallVector<Structor, 8> Structors;
2309   preprocessXXStructorList(DL, List, Structors);
2310   if (Structors.empty())
2311     return;
2312 
2313   // Emit the structors in reverse order if we are using the .ctor/.dtor
2314   // initialization scheme.
2315   if (!TM.Options.UseInitArray)
2316     std::reverse(Structors.begin(), Structors.end());
2317 
2318   const Align Align = DL.getPointerPrefAlignment();
2319   for (Structor &S : Structors) {
2320     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2321     const MCSymbol *KeySym = nullptr;
2322     if (GlobalValue *GV = S.ComdatKey) {
2323       if (GV->isDeclarationForLinker())
2324         // If the associated variable is not defined in this module
2325         // (it might be available_externally, or have been an
2326         // available_externally definition that was dropped by the
2327         // EliminateAvailableExternally pass), some other TU
2328         // will provide its dynamic initializer.
2329         continue;
2330 
2331       KeySym = getSymbol(GV);
2332     }
2333 
2334     MCSection *OutputSection =
2335         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2336                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2337     OutStreamer->SwitchSection(OutputSection);
2338     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2339       emitAlignment(Align);
2340     emitXXStructor(DL, S.Func);
2341   }
2342 }
2343 
2344 void AsmPrinter::emitModuleIdents(Module &M) {
2345   if (!MAI->hasIdentDirective())
2346     return;
2347 
2348   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2349     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2350       const MDNode *N = NMD->getOperand(i);
2351       assert(N->getNumOperands() == 1 &&
2352              "llvm.ident metadata entry can have only one operand");
2353       const MDString *S = cast<MDString>(N->getOperand(0));
2354       OutStreamer->emitIdent(S->getString());
2355     }
2356   }
2357 }
2358 
2359 void AsmPrinter::emitModuleCommandLines(Module &M) {
2360   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2361   if (!CommandLine)
2362     return;
2363 
2364   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2365   if (!NMD || !NMD->getNumOperands())
2366     return;
2367 
2368   OutStreamer->PushSection();
2369   OutStreamer->SwitchSection(CommandLine);
2370   OutStreamer->emitZeros(1);
2371   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2372     const MDNode *N = NMD->getOperand(i);
2373     assert(N->getNumOperands() == 1 &&
2374            "llvm.commandline metadata entry can have only one operand");
2375     const MDString *S = cast<MDString>(N->getOperand(0));
2376     OutStreamer->emitBytes(S->getString());
2377     OutStreamer->emitZeros(1);
2378   }
2379   OutStreamer->PopSection();
2380 }
2381 
2382 //===--------------------------------------------------------------------===//
2383 // Emission and print routines
2384 //
2385 
2386 /// Emit a byte directive and value.
2387 ///
2388 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2389 
2390 /// Emit a short directive and value.
2391 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2392 
2393 /// Emit a long directive and value.
2394 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2395 
2396 /// Emit a long long directive and value.
2397 void AsmPrinter::emitInt64(uint64_t Value) const {
2398   OutStreamer->emitInt64(Value);
2399 }
2400 
2401 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2402 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2403 /// .set if it avoids relocations.
2404 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2405                                      unsigned Size) const {
2406   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2407 }
2408 
2409 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2410 /// where the size in bytes of the directive is specified by Size and Label
2411 /// specifies the label.  This implicitly uses .set if it is available.
2412 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2413                                      unsigned Size,
2414                                      bool IsSectionRelative) const {
2415   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2416     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2417     if (Size > 4)
2418       OutStreamer->emitZeros(Size - 4);
2419     return;
2420   }
2421 
2422   // Emit Label+Offset (or just Label if Offset is zero)
2423   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2424   if (Offset)
2425     Expr = MCBinaryExpr::createAdd(
2426         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2427 
2428   OutStreamer->emitValue(Expr, Size);
2429 }
2430 
2431 //===----------------------------------------------------------------------===//
2432 
2433 // EmitAlignment - Emit an alignment directive to the specified power of
2434 // two boundary.  If a global value is specified, and if that global has
2435 // an explicit alignment requested, it will override the alignment request
2436 // if required for correctness.
2437 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2438   if (GV)
2439     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2440 
2441   if (Alignment == Align(1))
2442     return; // 1-byte aligned: no need to emit alignment.
2443 
2444   if (getCurrentSection()->getKind().isText())
2445     OutStreamer->emitCodeAlignment(Alignment.value());
2446   else
2447     OutStreamer->emitValueToAlignment(Alignment.value());
2448 }
2449 
2450 //===----------------------------------------------------------------------===//
2451 // Constant emission.
2452 //===----------------------------------------------------------------------===//
2453 
2454 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2455   MCContext &Ctx = OutContext;
2456 
2457   if (CV->isNullValue() || isa<UndefValue>(CV))
2458     return MCConstantExpr::create(0, Ctx);
2459 
2460   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2461     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2462 
2463   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2464     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2465 
2466   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2467     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2468 
2469   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2470     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2471 
2472   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2473   if (!CE) {
2474     llvm_unreachable("Unknown constant value to lower!");
2475   }
2476 
2477   switch (CE->getOpcode()) {
2478   case Instruction::AddrSpaceCast: {
2479     const Constant *Op = CE->getOperand(0);
2480     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2481     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2482     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2483       return lowerConstant(Op);
2484 
2485     // Fallthrough to error.
2486     LLVM_FALLTHROUGH;
2487   }
2488   default: {
2489     // If the code isn't optimized, there may be outstanding folding
2490     // opportunities. Attempt to fold the expression using DataLayout as a
2491     // last resort before giving up.
2492     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2493     if (C != CE)
2494       return lowerConstant(C);
2495 
2496     // Otherwise report the problem to the user.
2497     std::string S;
2498     raw_string_ostream OS(S);
2499     OS << "Unsupported expression in static initializer: ";
2500     CE->printAsOperand(OS, /*PrintType=*/false,
2501                    !MF ? nullptr : MF->getFunction().getParent());
2502     report_fatal_error(OS.str());
2503   }
2504   case Instruction::GetElementPtr: {
2505     // Generate a symbolic expression for the byte address
2506     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2507     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2508 
2509     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2510     if (!OffsetAI)
2511       return Base;
2512 
2513     int64_t Offset = OffsetAI.getSExtValue();
2514     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2515                                    Ctx);
2516   }
2517 
2518   case Instruction::Trunc:
2519     // We emit the value and depend on the assembler to truncate the generated
2520     // expression properly.  This is important for differences between
2521     // blockaddress labels.  Since the two labels are in the same function, it
2522     // is reasonable to treat their delta as a 32-bit value.
2523     LLVM_FALLTHROUGH;
2524   case Instruction::BitCast:
2525     return lowerConstant(CE->getOperand(0));
2526 
2527   case Instruction::IntToPtr: {
2528     const DataLayout &DL = getDataLayout();
2529 
2530     // Handle casts to pointers by changing them into casts to the appropriate
2531     // integer type.  This promotes constant folding and simplifies this code.
2532     Constant *Op = CE->getOperand(0);
2533     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2534                                       false/*ZExt*/);
2535     return lowerConstant(Op);
2536   }
2537 
2538   case Instruction::PtrToInt: {
2539     const DataLayout &DL = getDataLayout();
2540 
2541     // Support only foldable casts to/from pointers that can be eliminated by
2542     // changing the pointer to the appropriately sized integer type.
2543     Constant *Op = CE->getOperand(0);
2544     Type *Ty = CE->getType();
2545 
2546     const MCExpr *OpExpr = lowerConstant(Op);
2547 
2548     // We can emit the pointer value into this slot if the slot is an
2549     // integer slot equal to the size of the pointer.
2550     //
2551     // If the pointer is larger than the resultant integer, then
2552     // as with Trunc just depend on the assembler to truncate it.
2553     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2554         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2555       return OpExpr;
2556 
2557     // Otherwise the pointer is smaller than the resultant integer, mask off
2558     // the high bits so we are sure to get a proper truncation if the input is
2559     // a constant expr.
2560     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2561     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2562     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2563   }
2564 
2565   case Instruction::Sub: {
2566     GlobalValue *LHSGV;
2567     APInt LHSOffset;
2568     DSOLocalEquivalent *DSOEquiv;
2569     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2570                                    getDataLayout(), &DSOEquiv)) {
2571       GlobalValue *RHSGV;
2572       APInt RHSOffset;
2573       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2574                                      getDataLayout())) {
2575         const MCExpr *RelocExpr =
2576             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2577         if (!RelocExpr) {
2578           const MCExpr *LHSExpr =
2579               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2580           if (DSOEquiv &&
2581               getObjFileLowering().supportDSOLocalEquivalentLowering())
2582             LHSExpr =
2583                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2584           RelocExpr = MCBinaryExpr::createSub(
2585               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2586         }
2587         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2588         if (Addend != 0)
2589           RelocExpr = MCBinaryExpr::createAdd(
2590               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2591         return RelocExpr;
2592       }
2593     }
2594   }
2595   // else fallthrough
2596   LLVM_FALLTHROUGH;
2597 
2598   // The MC library also has a right-shift operator, but it isn't consistently
2599   // signed or unsigned between different targets.
2600   case Instruction::Add:
2601   case Instruction::Mul:
2602   case Instruction::SDiv:
2603   case Instruction::SRem:
2604   case Instruction::Shl:
2605   case Instruction::And:
2606   case Instruction::Or:
2607   case Instruction::Xor: {
2608     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2609     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2610     switch (CE->getOpcode()) {
2611     default: llvm_unreachable("Unknown binary operator constant cast expr");
2612     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2613     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2614     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2615     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2616     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2617     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2618     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2619     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2620     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2621     }
2622   }
2623   }
2624 }
2625 
2626 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2627                                    AsmPrinter &AP,
2628                                    const Constant *BaseCV = nullptr,
2629                                    uint64_t Offset = 0);
2630 
2631 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2632 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2633 
2634 /// isRepeatedByteSequence - Determine whether the given value is
2635 /// composed of a repeated sequence of identical bytes and return the
2636 /// byte value.  If it is not a repeated sequence, return -1.
2637 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2638   StringRef Data = V->getRawDataValues();
2639   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2640   char C = Data[0];
2641   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2642     if (Data[i] != C) return -1;
2643   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2644 }
2645 
2646 /// isRepeatedByteSequence - Determine whether the given value is
2647 /// composed of a repeated sequence of identical bytes and return the
2648 /// byte value.  If it is not a repeated sequence, return -1.
2649 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2650   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2651     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2652     assert(Size % 8 == 0);
2653 
2654     // Extend the element to take zero padding into account.
2655     APInt Value = CI->getValue().zextOrSelf(Size);
2656     if (!Value.isSplat(8))
2657       return -1;
2658 
2659     return Value.zextOrTrunc(8).getZExtValue();
2660   }
2661   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2662     // Make sure all array elements are sequences of the same repeated
2663     // byte.
2664     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2665     Constant *Op0 = CA->getOperand(0);
2666     int Byte = isRepeatedByteSequence(Op0, DL);
2667     if (Byte == -1)
2668       return -1;
2669 
2670     // All array elements must be equal.
2671     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2672       if (CA->getOperand(i) != Op0)
2673         return -1;
2674     return Byte;
2675   }
2676 
2677   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2678     return isRepeatedByteSequence(CDS);
2679 
2680   return -1;
2681 }
2682 
2683 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2684                                              const ConstantDataSequential *CDS,
2685                                              AsmPrinter &AP) {
2686   // See if we can aggregate this into a .fill, if so, emit it as such.
2687   int Value = isRepeatedByteSequence(CDS, DL);
2688   if (Value != -1) {
2689     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2690     // Don't emit a 1-byte object as a .fill.
2691     if (Bytes > 1)
2692       return AP.OutStreamer->emitFill(Bytes, Value);
2693   }
2694 
2695   // If this can be emitted with .ascii/.asciz, emit it as such.
2696   if (CDS->isString())
2697     return AP.OutStreamer->emitBytes(CDS->getAsString());
2698 
2699   // Otherwise, emit the values in successive locations.
2700   unsigned ElementByteSize = CDS->getElementByteSize();
2701   if (isa<IntegerType>(CDS->getElementType())) {
2702     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2703       if (AP.isVerbose())
2704         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2705                                                  CDS->getElementAsInteger(i));
2706       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2707                                    ElementByteSize);
2708     }
2709   } else {
2710     Type *ET = CDS->getElementType();
2711     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2712       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2713   }
2714 
2715   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2716   unsigned EmittedSize =
2717       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2718   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2719   if (unsigned Padding = Size - EmittedSize)
2720     AP.OutStreamer->emitZeros(Padding);
2721 }
2722 
2723 static void emitGlobalConstantArray(const DataLayout &DL,
2724                                     const ConstantArray *CA, AsmPrinter &AP,
2725                                     const Constant *BaseCV, uint64_t Offset) {
2726   // See if we can aggregate some values.  Make sure it can be
2727   // represented as a series of bytes of the constant value.
2728   int Value = isRepeatedByteSequence(CA, DL);
2729 
2730   if (Value != -1) {
2731     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2732     AP.OutStreamer->emitFill(Bytes, Value);
2733   }
2734   else {
2735     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2736       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2737       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2738     }
2739   }
2740 }
2741 
2742 static void emitGlobalConstantVector(const DataLayout &DL,
2743                                      const ConstantVector *CV, AsmPrinter &AP) {
2744   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2745     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2746 
2747   unsigned Size = DL.getTypeAllocSize(CV->getType());
2748   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2749                          CV->getType()->getNumElements();
2750   if (unsigned Padding = Size - EmittedSize)
2751     AP.OutStreamer->emitZeros(Padding);
2752 }
2753 
2754 static void emitGlobalConstantStruct(const DataLayout &DL,
2755                                      const ConstantStruct *CS, AsmPrinter &AP,
2756                                      const Constant *BaseCV, uint64_t Offset) {
2757   // Print the fields in successive locations. Pad to align if needed!
2758   unsigned Size = DL.getTypeAllocSize(CS->getType());
2759   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2760   uint64_t SizeSoFar = 0;
2761   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2762     const Constant *Field = CS->getOperand(i);
2763 
2764     // Print the actual field value.
2765     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2766 
2767     // Check if padding is needed and insert one or more 0s.
2768     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2769     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2770                         - Layout->getElementOffset(i)) - FieldSize;
2771     SizeSoFar += FieldSize + PadSize;
2772 
2773     // Insert padding - this may include padding to increase the size of the
2774     // current field up to the ABI size (if the struct is not packed) as well
2775     // as padding to ensure that the next field starts at the right offset.
2776     AP.OutStreamer->emitZeros(PadSize);
2777   }
2778   assert(SizeSoFar == Layout->getSizeInBytes() &&
2779          "Layout of constant struct may be incorrect!");
2780 }
2781 
2782 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2783   assert(ET && "Unknown float type");
2784   APInt API = APF.bitcastToAPInt();
2785 
2786   // First print a comment with what we think the original floating-point value
2787   // should have been.
2788   if (AP.isVerbose()) {
2789     SmallString<8> StrVal;
2790     APF.toString(StrVal);
2791     ET->print(AP.OutStreamer->GetCommentOS());
2792     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2793   }
2794 
2795   // Now iterate through the APInt chunks, emitting them in endian-correct
2796   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2797   // floats).
2798   unsigned NumBytes = API.getBitWidth() / 8;
2799   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2800   const uint64_t *p = API.getRawData();
2801 
2802   // PPC's long double has odd notions of endianness compared to how LLVM
2803   // handles it: p[0] goes first for *big* endian on PPC.
2804   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2805     int Chunk = API.getNumWords() - 1;
2806 
2807     if (TrailingBytes)
2808       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2809 
2810     for (; Chunk >= 0; --Chunk)
2811       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2812   } else {
2813     unsigned Chunk;
2814     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2815       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2816 
2817     if (TrailingBytes)
2818       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2819   }
2820 
2821   // Emit the tail padding for the long double.
2822   const DataLayout &DL = AP.getDataLayout();
2823   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2824 }
2825 
2826 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2827   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2828 }
2829 
2830 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2831   const DataLayout &DL = AP.getDataLayout();
2832   unsigned BitWidth = CI->getBitWidth();
2833 
2834   // Copy the value as we may massage the layout for constants whose bit width
2835   // is not a multiple of 64-bits.
2836   APInt Realigned(CI->getValue());
2837   uint64_t ExtraBits = 0;
2838   unsigned ExtraBitsSize = BitWidth & 63;
2839 
2840   if (ExtraBitsSize) {
2841     // The bit width of the data is not a multiple of 64-bits.
2842     // The extra bits are expected to be at the end of the chunk of the memory.
2843     // Little endian:
2844     // * Nothing to be done, just record the extra bits to emit.
2845     // Big endian:
2846     // * Record the extra bits to emit.
2847     // * Realign the raw data to emit the chunks of 64-bits.
2848     if (DL.isBigEndian()) {
2849       // Basically the structure of the raw data is a chunk of 64-bits cells:
2850       //    0        1         BitWidth / 64
2851       // [chunk1][chunk2] ... [chunkN].
2852       // The most significant chunk is chunkN and it should be emitted first.
2853       // However, due to the alignment issue chunkN contains useless bits.
2854       // Realign the chunks so that they contain only useful information:
2855       // ExtraBits     0       1       (BitWidth / 64) - 1
2856       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2857       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2858       ExtraBits = Realigned.getRawData()[0] &
2859         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2860       Realigned.lshrInPlace(ExtraBitsSize);
2861     } else
2862       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2863   }
2864 
2865   // We don't expect assemblers to support integer data directives
2866   // for more than 64 bits, so we emit the data in at most 64-bit
2867   // quantities at a time.
2868   const uint64_t *RawData = Realigned.getRawData();
2869   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2870     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2871     AP.OutStreamer->emitIntValue(Val, 8);
2872   }
2873 
2874   if (ExtraBitsSize) {
2875     // Emit the extra bits after the 64-bits chunks.
2876 
2877     // Emit a directive that fills the expected size.
2878     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2879     Size -= (BitWidth / 64) * 8;
2880     assert(Size && Size * 8 >= ExtraBitsSize &&
2881            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2882            == ExtraBits && "Directive too small for extra bits.");
2883     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2884   }
2885 }
2886 
2887 /// Transform a not absolute MCExpr containing a reference to a GOT
2888 /// equivalent global, by a target specific GOT pc relative access to the
2889 /// final symbol.
2890 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2891                                          const Constant *BaseCst,
2892                                          uint64_t Offset) {
2893   // The global @foo below illustrates a global that uses a got equivalent.
2894   //
2895   //  @bar = global i32 42
2896   //  @gotequiv = private unnamed_addr constant i32* @bar
2897   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2898   //                             i64 ptrtoint (i32* @foo to i64))
2899   //                        to i32)
2900   //
2901   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2902   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2903   // form:
2904   //
2905   //  foo = cstexpr, where
2906   //    cstexpr := <gotequiv> - "." + <cst>
2907   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2908   //
2909   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2910   //
2911   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2912   //    gotpcrelcst := <offset from @foo base> + <cst>
2913   MCValue MV;
2914   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2915     return;
2916   const MCSymbolRefExpr *SymA = MV.getSymA();
2917   if (!SymA)
2918     return;
2919 
2920   // Check that GOT equivalent symbol is cached.
2921   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2922   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2923     return;
2924 
2925   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2926   if (!BaseGV)
2927     return;
2928 
2929   // Check for a valid base symbol
2930   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2931   const MCSymbolRefExpr *SymB = MV.getSymB();
2932 
2933   if (!SymB || BaseSym != &SymB->getSymbol())
2934     return;
2935 
2936   // Make sure to match:
2937   //
2938   //    gotpcrelcst := <offset from @foo base> + <cst>
2939   //
2940   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2941   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2942   // if the target knows how to encode it.
2943   int64_t GOTPCRelCst = Offset + MV.getConstant();
2944   if (GOTPCRelCst < 0)
2945     return;
2946   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2947     return;
2948 
2949   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2950   //
2951   //  bar:
2952   //    .long 42
2953   //  gotequiv:
2954   //    .quad bar
2955   //  foo:
2956   //    .long gotequiv - "." + <cst>
2957   //
2958   // is replaced by the target specific equivalent to:
2959   //
2960   //  bar:
2961   //    .long 42
2962   //  foo:
2963   //    .long bar@GOTPCREL+<gotpcrelcst>
2964   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2965   const GlobalVariable *GV = Result.first;
2966   int NumUses = (int)Result.second;
2967   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2968   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2969   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2970       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2971 
2972   // Update GOT equivalent usage information
2973   --NumUses;
2974   if (NumUses >= 0)
2975     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2976 }
2977 
2978 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2979                                    AsmPrinter &AP, const Constant *BaseCV,
2980                                    uint64_t Offset) {
2981   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2982 
2983   // Globals with sub-elements such as combinations of arrays and structs
2984   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2985   // constant symbol base and the current position with BaseCV and Offset.
2986   if (!BaseCV && CV->hasOneUse())
2987     BaseCV = dyn_cast<Constant>(CV->user_back());
2988 
2989   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2990     return AP.OutStreamer->emitZeros(Size);
2991 
2992   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2993     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2994 
2995     if (StoreSize <= 8) {
2996       if (AP.isVerbose())
2997         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2998                                                  CI->getZExtValue());
2999       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
3000     } else {
3001       emitGlobalConstantLargeInt(CI, AP);
3002     }
3003 
3004     // Emit tail padding if needed
3005     if (Size != StoreSize)
3006       AP.OutStreamer->emitZeros(Size - StoreSize);
3007 
3008     return;
3009   }
3010 
3011   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
3012     return emitGlobalConstantFP(CFP, AP);
3013 
3014   if (isa<ConstantPointerNull>(CV)) {
3015     AP.OutStreamer->emitIntValue(0, Size);
3016     return;
3017   }
3018 
3019   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
3020     return emitGlobalConstantDataSequential(DL, CDS, AP);
3021 
3022   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
3023     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
3024 
3025   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
3026     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
3027 
3028   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
3029     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3030     // vectors).
3031     if (CE->getOpcode() == Instruction::BitCast)
3032       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
3033 
3034     if (Size > 8) {
3035       // If the constant expression's size is greater than 64-bits, then we have
3036       // to emit the value in chunks. Try to constant fold the value and emit it
3037       // that way.
3038       Constant *New = ConstantFoldConstant(CE, DL);
3039       if (New != CE)
3040         return emitGlobalConstantImpl(DL, New, AP);
3041     }
3042   }
3043 
3044   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
3045     return emitGlobalConstantVector(DL, V, AP);
3046 
3047   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
3048   // thread the streamer with EmitValue.
3049   const MCExpr *ME = AP.lowerConstant(CV);
3050 
3051   // Since lowerConstant already folded and got rid of all IR pointer and
3052   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3053   // directly.
3054   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3055     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3056 
3057   AP.OutStreamer->emitValue(ME, Size);
3058 }
3059 
3060 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3061 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
3062   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3063   if (Size)
3064     emitGlobalConstantImpl(DL, CV, *this);
3065   else if (MAI->hasSubsectionsViaSymbols()) {
3066     // If the global has zero size, emit a single byte so that two labels don't
3067     // look like they are at the same location.
3068     OutStreamer->emitIntValue(0, 1);
3069   }
3070 }
3071 
3072 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3073   // Target doesn't support this yet!
3074   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3075 }
3076 
3077 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3078   if (Offset > 0)
3079     OS << '+' << Offset;
3080   else if (Offset < 0)
3081     OS << Offset;
3082 }
3083 
3084 void AsmPrinter::emitNops(unsigned N) {
3085   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3086   for (; N; --N)
3087     EmitToStreamer(*OutStreamer, Nop);
3088 }
3089 
3090 //===----------------------------------------------------------------------===//
3091 // Symbol Lowering Routines.
3092 //===----------------------------------------------------------------------===//
3093 
3094 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3095   return OutContext.createTempSymbol(Name, true);
3096 }
3097 
3098 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3099   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3100 }
3101 
3102 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3103   return MMI->getAddrLabelSymbol(BB);
3104 }
3105 
3106 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3107 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3108   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3109     const MachineConstantPoolEntry &CPE =
3110         MF->getConstantPool()->getConstants()[CPID];
3111     if (!CPE.isMachineConstantPoolEntry()) {
3112       const DataLayout &DL = MF->getDataLayout();
3113       SectionKind Kind = CPE.getSectionKind(&DL);
3114       const Constant *C = CPE.Val.ConstVal;
3115       Align Alignment = CPE.Alignment;
3116       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3117               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3118                                                          Alignment))) {
3119         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3120           if (Sym->isUndefined())
3121             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3122           return Sym;
3123         }
3124       }
3125     }
3126   }
3127 
3128   const DataLayout &DL = getDataLayout();
3129   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3130                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3131                                       Twine(CPID));
3132 }
3133 
3134 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3135 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3136   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3137 }
3138 
3139 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3140 /// FIXME: privatize to AsmPrinter.
3141 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3142   const DataLayout &DL = getDataLayout();
3143   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3144                                       Twine(getFunctionNumber()) + "_" +
3145                                       Twine(UID) + "_set_" + Twine(MBBID));
3146 }
3147 
3148 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3149                                                    StringRef Suffix) const {
3150   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3151 }
3152 
3153 /// Return the MCSymbol for the specified ExternalSymbol.
3154 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3155   SmallString<60> NameStr;
3156   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3157   return OutContext.getOrCreateSymbol(NameStr);
3158 }
3159 
3160 /// PrintParentLoopComment - Print comments about parent loops of this one.
3161 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3162                                    unsigned FunctionNumber) {
3163   if (!Loop) return;
3164   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3165   OS.indent(Loop->getLoopDepth()*2)
3166     << "Parent Loop BB" << FunctionNumber << "_"
3167     << Loop->getHeader()->getNumber()
3168     << " Depth=" << Loop->getLoopDepth() << '\n';
3169 }
3170 
3171 /// PrintChildLoopComment - Print comments about child loops within
3172 /// the loop for this basic block, with nesting.
3173 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3174                                   unsigned FunctionNumber) {
3175   // Add child loop information
3176   for (const MachineLoop *CL : *Loop) {
3177     OS.indent(CL->getLoopDepth()*2)
3178       << "Child Loop BB" << FunctionNumber << "_"
3179       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3180       << '\n';
3181     PrintChildLoopComment(OS, CL, FunctionNumber);
3182   }
3183 }
3184 
3185 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3186 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3187                                        const MachineLoopInfo *LI,
3188                                        const AsmPrinter &AP) {
3189   // Add loop depth information
3190   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3191   if (!Loop) return;
3192 
3193   MachineBasicBlock *Header = Loop->getHeader();
3194   assert(Header && "No header for loop");
3195 
3196   // If this block is not a loop header, just print out what is the loop header
3197   // and return.
3198   if (Header != &MBB) {
3199     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3200                                Twine(AP.getFunctionNumber())+"_" +
3201                                Twine(Loop->getHeader()->getNumber())+
3202                                " Depth="+Twine(Loop->getLoopDepth()));
3203     return;
3204   }
3205 
3206   // Otherwise, it is a loop header.  Print out information about child and
3207   // parent loops.
3208   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3209 
3210   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3211 
3212   OS << "=>";
3213   OS.indent(Loop->getLoopDepth()*2-2);
3214 
3215   OS << "This ";
3216   if (Loop->isInnermost())
3217     OS << "Inner ";
3218   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3219 
3220   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3221 }
3222 
3223 /// emitBasicBlockStart - This method prints the label for the specified
3224 /// MachineBasicBlock, an alignment (if present) and a comment describing
3225 /// it if appropriate.
3226 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3227   // End the previous funclet and start a new one.
3228   if (MBB.isEHFuncletEntry()) {
3229     for (const HandlerInfo &HI : Handlers) {
3230       HI.Handler->endFunclet();
3231       HI.Handler->beginFunclet(MBB);
3232     }
3233   }
3234 
3235   // Emit an alignment directive for this block, if needed.
3236   const Align Alignment = MBB.getAlignment();
3237   if (Alignment != Align(1))
3238     emitAlignment(Alignment);
3239 
3240   // Switch to a new section if this basic block must begin a section. The
3241   // entry block is always placed in the function section and is handled
3242   // separately.
3243   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3244     OutStreamer->SwitchSection(
3245         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3246                                                             MBB, TM));
3247     CurrentSectionBeginSym = MBB.getSymbol();
3248   }
3249 
3250   // If the block has its address taken, emit any labels that were used to
3251   // reference the block.  It is possible that there is more than one label
3252   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3253   // the references were generated.
3254   if (MBB.hasAddressTaken()) {
3255     const BasicBlock *BB = MBB.getBasicBlock();
3256     if (isVerbose())
3257       OutStreamer->AddComment("Block address taken");
3258 
3259     // MBBs can have their address taken as part of CodeGen without having
3260     // their corresponding BB's address taken in IR
3261     if (BB->hasAddressTaken())
3262       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3263         OutStreamer->emitLabel(Sym);
3264   }
3265 
3266   // Print some verbose block comments.
3267   if (isVerbose()) {
3268     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3269       if (BB->hasName()) {
3270         BB->printAsOperand(OutStreamer->GetCommentOS(),
3271                            /*PrintType=*/false, BB->getModule());
3272         OutStreamer->GetCommentOS() << '\n';
3273       }
3274     }
3275 
3276     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3277     emitBasicBlockLoopComments(MBB, MLI, *this);
3278   }
3279 
3280   // Print the main label for the block.
3281   if (shouldEmitLabelForBasicBlock(MBB)) {
3282     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3283       OutStreamer->AddComment("Label of block must be emitted");
3284     OutStreamer->emitLabel(MBB.getSymbol());
3285   } else {
3286     if (isVerbose()) {
3287       // NOTE: Want this comment at start of line, don't emit with AddComment.
3288       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3289                                   false);
3290     }
3291   }
3292 
3293   if (MBB.isEHCatchretTarget() &&
3294       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3295     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3296   }
3297 
3298   // With BB sections, each basic block must handle CFI information on its own
3299   // if it begins a section (Entry block is handled separately by
3300   // AsmPrinterHandler::beginFunction).
3301   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3302     for (const HandlerInfo &HI : Handlers)
3303       HI.Handler->beginBasicBlock(MBB);
3304 }
3305 
3306 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3307   // Check if CFI information needs to be updated for this MBB with basic block
3308   // sections.
3309   if (MBB.isEndSection())
3310     for (const HandlerInfo &HI : Handlers)
3311       HI.Handler->endBasicBlock(MBB);
3312 }
3313 
3314 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3315                                 bool IsDefinition) const {
3316   MCSymbolAttr Attr = MCSA_Invalid;
3317 
3318   switch (Visibility) {
3319   default: break;
3320   case GlobalValue::HiddenVisibility:
3321     if (IsDefinition)
3322       Attr = MAI->getHiddenVisibilityAttr();
3323     else
3324       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3325     break;
3326   case GlobalValue::ProtectedVisibility:
3327     Attr = MAI->getProtectedVisibilityAttr();
3328     break;
3329   }
3330 
3331   if (Attr != MCSA_Invalid)
3332     OutStreamer->emitSymbolAttribute(Sym, Attr);
3333 }
3334 
3335 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3336     const MachineBasicBlock &MBB) const {
3337   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3338   // in the labels mode (option `=labels`) and every section beginning in the
3339   // sections mode (`=all` and `=list=`).
3340   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3341     return true;
3342   // A label is needed for any block with at least one predecessor (when that
3343   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3344   // entry, or if a label is forced).
3345   return !MBB.pred_empty() &&
3346          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3347           MBB.hasLabelMustBeEmitted());
3348 }
3349 
3350 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3351 /// exactly one predecessor and the control transfer mechanism between
3352 /// the predecessor and this block is a fall-through.
3353 bool AsmPrinter::
3354 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3355   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3356   // then nothing falls through to it.
3357   if (MBB->isEHPad() || MBB->pred_empty())
3358     return false;
3359 
3360   // If there isn't exactly one predecessor, it can't be a fall through.
3361   if (MBB->pred_size() > 1)
3362     return false;
3363 
3364   // The predecessor has to be immediately before this block.
3365   MachineBasicBlock *Pred = *MBB->pred_begin();
3366   if (!Pred->isLayoutSuccessor(MBB))
3367     return false;
3368 
3369   // If the block is completely empty, then it definitely does fall through.
3370   if (Pred->empty())
3371     return true;
3372 
3373   // Check the terminators in the previous blocks
3374   for (const auto &MI : Pred->terminators()) {
3375     // If it is not a simple branch, we are in a table somewhere.
3376     if (!MI.isBranch() || MI.isIndirectBranch())
3377       return false;
3378 
3379     // If we are the operands of one of the branches, this is not a fall
3380     // through. Note that targets with delay slots will usually bundle
3381     // terminators with the delay slot instruction.
3382     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3383       if (OP->isJTI())
3384         return false;
3385       if (OP->isMBB() && OP->getMBB() == MBB)
3386         return false;
3387     }
3388   }
3389 
3390   return true;
3391 }
3392 
3393 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3394   if (!S.usesMetadata())
3395     return nullptr;
3396 
3397   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3398   gcp_map_type::iterator GCPI = GCMap.find(&S);
3399   if (GCPI != GCMap.end())
3400     return GCPI->second.get();
3401 
3402   auto Name = S.getName();
3403 
3404   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3405        GCMetadataPrinterRegistry::entries())
3406     if (Name == GCMetaPrinter.getName()) {
3407       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3408       GMP->S = &S;
3409       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3410       return IterBool.first->second.get();
3411     }
3412 
3413   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3414 }
3415 
3416 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3417   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3418   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3419   bool NeedsDefault = false;
3420   if (MI->begin() == MI->end())
3421     // No GC strategy, use the default format.
3422     NeedsDefault = true;
3423   else
3424     for (auto &I : *MI) {
3425       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3426         if (MP->emitStackMaps(SM, *this))
3427           continue;
3428       // The strategy doesn't have printer or doesn't emit custom stack maps.
3429       // Use the default format.
3430       NeedsDefault = true;
3431     }
3432 
3433   if (NeedsDefault)
3434     SM.serializeToStackMapSection();
3435 }
3436 
3437 /// Pin vtable to this file.
3438 AsmPrinterHandler::~AsmPrinterHandler() = default;
3439 
3440 void AsmPrinterHandler::markFunctionEnd() {}
3441 
3442 // In the binary's "xray_instr_map" section, an array of these function entries
3443 // describes each instrumentation point.  When XRay patches your code, the index
3444 // into this table will be given to your handler as a patch point identifier.
3445 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3446   auto Kind8 = static_cast<uint8_t>(Kind);
3447   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3448   Out->emitBinaryData(
3449       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3450   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3451   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3452   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3453   Out->emitZeros(Padding);
3454 }
3455 
3456 void AsmPrinter::emitXRayTable() {
3457   if (Sleds.empty())
3458     return;
3459 
3460   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3461   const Function &F = MF->getFunction();
3462   MCSection *InstMap = nullptr;
3463   MCSection *FnSledIndex = nullptr;
3464   const Triple &TT = TM.getTargetTriple();
3465   // Use PC-relative addresses on all targets.
3466   if (TT.isOSBinFormatELF()) {
3467     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3468     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3469     StringRef GroupName;
3470     if (F.hasComdat()) {
3471       Flags |= ELF::SHF_GROUP;
3472       GroupName = F.getComdat()->getName();
3473     }
3474     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3475                                        Flags, 0, GroupName, F.hasComdat(),
3476                                        MCSection::NonUniqueID, LinkedToSym);
3477 
3478     if (!TM.Options.XRayOmitFunctionIndex)
3479       FnSledIndex = OutContext.getELFSection(
3480           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3481           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3482   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3483     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3484                                          SectionKind::getReadOnlyWithRel());
3485     if (!TM.Options.XRayOmitFunctionIndex)
3486       FnSledIndex = OutContext.getMachOSection(
3487           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3488   } else {
3489     llvm_unreachable("Unsupported target");
3490   }
3491 
3492   auto WordSizeBytes = MAI->getCodePointerSize();
3493 
3494   // Now we switch to the instrumentation map section. Because this is done
3495   // per-function, we are able to create an index entry that will represent the
3496   // range of sleds associated with a function.
3497   auto &Ctx = OutContext;
3498   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3499   OutStreamer->SwitchSection(InstMap);
3500   OutStreamer->emitLabel(SledsStart);
3501   for (const auto &Sled : Sleds) {
3502     MCSymbol *Dot = Ctx.createTempSymbol();
3503     OutStreamer->emitLabel(Dot);
3504     OutStreamer->emitValueImpl(
3505         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3506                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3507         WordSizeBytes);
3508     OutStreamer->emitValueImpl(
3509         MCBinaryExpr::createSub(
3510             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3511             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3512                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3513                                     Ctx),
3514             Ctx),
3515         WordSizeBytes);
3516     Sled.emit(WordSizeBytes, OutStreamer.get());
3517   }
3518   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3519   OutStreamer->emitLabel(SledsEnd);
3520 
3521   // We then emit a single entry in the index per function. We use the symbols
3522   // that bound the instrumentation map as the range for a specific function.
3523   // Each entry here will be 2 * word size aligned, as we're writing down two
3524   // pointers. This should work for both 32-bit and 64-bit platforms.
3525   if (FnSledIndex) {
3526     OutStreamer->SwitchSection(FnSledIndex);
3527     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3528     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3529     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3530     OutStreamer->SwitchSection(PrevSection);
3531   }
3532   Sleds.clear();
3533 }
3534 
3535 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3536                             SledKind Kind, uint8_t Version) {
3537   const Function &F = MI.getMF()->getFunction();
3538   auto Attr = F.getFnAttribute("function-instrument");
3539   bool LogArgs = F.hasFnAttribute("xray-log-args");
3540   bool AlwaysInstrument =
3541     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3542   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3543     Kind = SledKind::LOG_ARGS_ENTER;
3544   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3545                                        AlwaysInstrument, &F, Version});
3546 }
3547 
3548 void AsmPrinter::emitPatchableFunctionEntries() {
3549   const Function &F = MF->getFunction();
3550   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3551   (void)F.getFnAttribute("patchable-function-prefix")
3552       .getValueAsString()
3553       .getAsInteger(10, PatchableFunctionPrefix);
3554   (void)F.getFnAttribute("patchable-function-entry")
3555       .getValueAsString()
3556       .getAsInteger(10, PatchableFunctionEntry);
3557   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3558     return;
3559   const unsigned PointerSize = getPointerSize();
3560   if (TM.getTargetTriple().isOSBinFormatELF()) {
3561     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3562     const MCSymbolELF *LinkedToSym = nullptr;
3563     StringRef GroupName;
3564 
3565     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3566     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3567     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3568       Flags |= ELF::SHF_LINK_ORDER;
3569       if (F.hasComdat()) {
3570         Flags |= ELF::SHF_GROUP;
3571         GroupName = F.getComdat()->getName();
3572       }
3573       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3574     }
3575     OutStreamer->SwitchSection(OutContext.getELFSection(
3576         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3577         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3578     emitAlignment(Align(PointerSize));
3579     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3580   }
3581 }
3582 
3583 uint16_t AsmPrinter::getDwarfVersion() const {
3584   return OutStreamer->getContext().getDwarfVersion();
3585 }
3586 
3587 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3588   OutStreamer->getContext().setDwarfVersion(Version);
3589 }
3590 
3591 bool AsmPrinter::isDwarf64() const {
3592   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3593 }
3594 
3595 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3596   return dwarf::getDwarfOffsetByteSize(
3597       OutStreamer->getContext().getDwarfFormat());
3598 }
3599 
3600 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3601   return dwarf::getUnitLengthFieldByteSize(
3602       OutStreamer->getContext().getDwarfFormat());
3603 }
3604