1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GCStrategy.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/FileSystem.h" 114 #include "llvm/Support/Format.h" 115 #include "llvm/Support/MathExtras.h" 116 #include "llvm/Support/Path.h" 117 #include "llvm/Support/TargetRegistry.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 139 static cl::opt<bool> 140 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 141 cl::desc("Disable debug info printing")); 142 143 const char DWARFGroupName[] = "dwarf"; 144 const char DWARFGroupDescription[] = "DWARF Emission"; 145 const char DbgTimerName[] = "emit"; 146 const char DbgTimerDescription[] = "Debug Info Emission"; 147 const char EHTimerName[] = "write_exception"; 148 const char EHTimerDescription[] = "DWARF Exception Writer"; 149 const char CFGuardName[] = "Control Flow Guard"; 150 const char CFGuardDescription[] = "Control Flow Guard"; 151 const char CodeViewLineTablesGroupName[] = "linetables"; 152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 153 const char PPTimerName[] = "emit"; 154 const char PPTimerDescription[] = "Pseudo Probe Emission"; 155 const char PPGroupName[] = "pseudo probe"; 156 const char PPGroupDescription[] = "Pseudo Probe Emission"; 157 158 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 159 160 char AsmPrinter::ID = 0; 161 162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 163 164 static gcp_map_type &getGCMap(void *&P) { 165 if (!P) 166 P = new gcp_map_type(); 167 return *(gcp_map_type*)P; 168 } 169 170 /// getGVAlignment - Return the alignment to use for the specified global 171 /// value. This rounds up to the preferred alignment if possible and legal. 172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 173 Align InAlign) { 174 Align Alignment; 175 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 176 Alignment = DL.getPreferredAlign(GVar); 177 178 // If InAlign is specified, round it to it. 179 if (InAlign > Alignment) 180 Alignment = InAlign; 181 182 // If the GV has a specified alignment, take it into account. 183 const MaybeAlign GVAlign(GV->getAlignment()); 184 if (!GVAlign) 185 return Alignment; 186 187 assert(GVAlign && "GVAlign must be set"); 188 189 // If the GVAlign is larger than NumBits, or if we are required to obey 190 // NumBits because the GV has an assigned section, obey it. 191 if (*GVAlign > Alignment || GV->hasSection()) 192 Alignment = *GVAlign; 193 return Alignment; 194 } 195 196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 197 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 198 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 199 VerboseAsm = OutStreamer->isVerboseAsm(); 200 } 201 202 AsmPrinter::~AsmPrinter() { 203 assert(!DD && Handlers.size() == NumUserHandlers && 204 "Debug/EH info didn't get finalized"); 205 206 if (GCMetadataPrinters) { 207 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 208 209 delete &GCMap; 210 GCMetadataPrinters = nullptr; 211 } 212 } 213 214 bool AsmPrinter::isPositionIndependent() const { 215 return TM.isPositionIndependent(); 216 } 217 218 /// getFunctionNumber - Return a unique ID for the current function. 219 unsigned AsmPrinter::getFunctionNumber() const { 220 return MF->getFunctionNumber(); 221 } 222 223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 224 return *TM.getObjFileLowering(); 225 } 226 227 const DataLayout &AsmPrinter::getDataLayout() const { 228 return MMI->getModule()->getDataLayout(); 229 } 230 231 // Do not use the cached DataLayout because some client use it without a Module 232 // (dsymutil, llvm-dwarfdump). 233 unsigned AsmPrinter::getPointerSize() const { 234 return TM.getPointerSize(0); // FIXME: Default address space 235 } 236 237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 238 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 239 return MF->getSubtarget<MCSubtargetInfo>(); 240 } 241 242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 243 S.emitInstruction(Inst, getSubtargetInfo()); 244 } 245 246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 247 if (DD) { 248 assert(OutStreamer->hasRawTextSupport() && 249 "Expected assembly output mode."); 250 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 251 } 252 } 253 254 /// getCurrentSection() - Return the current section we are emitting to. 255 const MCSection *AsmPrinter::getCurrentSection() const { 256 return OutStreamer->getCurrentSectionOnly(); 257 } 258 259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 260 AU.setPreservesAll(); 261 MachineFunctionPass::getAnalysisUsage(AU); 262 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 263 AU.addRequired<GCModuleInfo>(); 264 } 265 266 bool AsmPrinter::doInitialization(Module &M) { 267 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 268 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 269 270 // Initialize TargetLoweringObjectFile. 271 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 272 .Initialize(OutContext, TM); 273 274 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 275 .getModuleMetadata(M); 276 277 OutStreamer->InitSections(false); 278 279 if (DisableDebugInfoPrinting) 280 MMI->setDebugInfoAvailability(false); 281 282 // Emit the version-min deployment target directive if needed. 283 // 284 // FIXME: If we end up with a collection of these sorts of Darwin-specific 285 // or ELF-specific things, it may make sense to have a platform helper class 286 // that will work with the target helper class. For now keep it here, as the 287 // alternative is duplicated code in each of the target asm printers that 288 // use the directive, where it would need the same conditionalization 289 // anyway. 290 const Triple &Target = TM.getTargetTriple(); 291 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 292 293 // Allow the target to emit any magic that it wants at the start of the file. 294 emitStartOfAsmFile(M); 295 296 // Very minimal debug info. It is ignored if we emit actual debug info. If we 297 // don't, this at least helps the user find where a global came from. 298 if (MAI->hasSingleParameterDotFile()) { 299 // .file "foo.c" 300 if (MAI->hasBasenameOnlyForFileDirective()) 301 OutStreamer->emitFileDirective( 302 llvm::sys::path::filename(M.getSourceFileName())); 303 else 304 OutStreamer->emitFileDirective(M.getSourceFileName()); 305 } 306 307 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 308 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 309 for (auto &I : *MI) 310 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 311 MP->beginAssembly(M, *MI, *this); 312 313 // Emit module-level inline asm if it exists. 314 if (!M.getModuleInlineAsm().empty()) { 315 // We're at the module level. Construct MCSubtarget from the default CPU 316 // and target triple. 317 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 318 TM.getTargetTriple().str(), TM.getTargetCPU(), 319 TM.getTargetFeatureString())); 320 assert(STI && "Unable to create subtarget info"); 321 OutStreamer->AddComment("Start of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 emitInlineAsm(M.getModuleInlineAsm() + "\n", 324 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 325 OutStreamer->AddComment("End of file scope inline assembly"); 326 OutStreamer->AddBlankLine(); 327 } 328 329 if (MAI->doesSupportDebugInformation()) { 330 bool EmitCodeView = M.getCodeViewFlag(); 331 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 332 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 333 DbgTimerName, DbgTimerDescription, 334 CodeViewLineTablesGroupName, 335 CodeViewLineTablesGroupDescription); 336 } 337 if (!EmitCodeView || M.getDwarfVersion()) { 338 if (!DisableDebugInfoPrinting) { 339 DD = new DwarfDebug(this); 340 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 341 DbgTimerDescription, DWARFGroupName, 342 DWARFGroupDescription); 343 } 344 } 345 } 346 347 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 348 PP = new PseudoProbeHandler(this, &M); 349 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 350 PPTimerDescription, PPGroupName, PPGroupDescription); 351 } 352 353 switch (MAI->getExceptionHandlingType()) { 354 case ExceptionHandling::None: 355 // We may want to emit CFI for debug. 356 LLVM_FALLTHROUGH; 357 case ExceptionHandling::SjLj: 358 case ExceptionHandling::DwarfCFI: 359 case ExceptionHandling::ARM: 360 for (auto &F : M.getFunctionList()) { 361 if (getFunctionCFISectionType(F) != CFISection::None) 362 ModuleCFISection = getFunctionCFISectionType(F); 363 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 364 // the module needs .eh_frame. If we have found that case, we are done. 365 if (ModuleCFISection == CFISection::EH) 366 break; 367 } 368 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 369 ModuleCFISection != CFISection::EH); 370 break; 371 default: 372 break; 373 } 374 375 EHStreamer *ES = nullptr; 376 switch (MAI->getExceptionHandlingType()) { 377 case ExceptionHandling::None: 378 if (!needsCFIForDebug()) 379 break; 380 LLVM_FALLTHROUGH; 381 case ExceptionHandling::SjLj: 382 case ExceptionHandling::DwarfCFI: 383 ES = new DwarfCFIException(this); 384 break; 385 case ExceptionHandling::ARM: 386 ES = new ARMException(this); 387 break; 388 case ExceptionHandling::WinEH: 389 switch (MAI->getWinEHEncodingType()) { 390 default: llvm_unreachable("unsupported unwinding information encoding"); 391 case WinEH::EncodingType::Invalid: 392 break; 393 case WinEH::EncodingType::X86: 394 case WinEH::EncodingType::Itanium: 395 ES = new WinException(this); 396 break; 397 } 398 break; 399 case ExceptionHandling::Wasm: 400 ES = new WasmException(this); 401 break; 402 case ExceptionHandling::AIX: 403 ES = new AIXException(this); 404 break; 405 } 406 if (ES) 407 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 408 EHTimerDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 412 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 413 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 414 CFGuardDescription, DWARFGroupName, 415 DWARFGroupDescription); 416 417 for (const HandlerInfo &HI : Handlers) { 418 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 419 HI.TimerGroupDescription, TimePassesIsEnabled); 420 HI.Handler->beginModule(&M); 421 } 422 423 return false; 424 } 425 426 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 427 if (!MAI.hasWeakDefCanBeHiddenDirective()) 428 return false; 429 430 return GV->canBeOmittedFromSymbolTable(); 431 } 432 433 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 434 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 435 switch (Linkage) { 436 case GlobalValue::CommonLinkage: 437 case GlobalValue::LinkOnceAnyLinkage: 438 case GlobalValue::LinkOnceODRLinkage: 439 case GlobalValue::WeakAnyLinkage: 440 case GlobalValue::WeakODRLinkage: 441 if (MAI->hasWeakDefDirective()) { 442 // .globl _foo 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 444 445 if (!canBeHidden(GV, *MAI)) 446 // .weak_definition _foo 447 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 448 else 449 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 450 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 451 // .globl _foo 452 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 453 //NOTE: linkonce is handled by the section the symbol was assigned to. 454 } else { 455 // .weak _foo 456 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 457 } 458 return; 459 case GlobalValue::ExternalLinkage: 460 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 461 return; 462 case GlobalValue::PrivateLinkage: 463 case GlobalValue::InternalLinkage: 464 return; 465 case GlobalValue::ExternalWeakLinkage: 466 case GlobalValue::AvailableExternallyLinkage: 467 case GlobalValue::AppendingLinkage: 468 llvm_unreachable("Should never emit this"); 469 } 470 llvm_unreachable("Unknown linkage type!"); 471 } 472 473 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 474 const GlobalValue *GV) const { 475 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 476 } 477 478 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 479 return TM.getSymbol(GV); 480 } 481 482 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 483 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 484 // exact definion (intersection of GlobalValue::hasExactDefinition() and 485 // !isInterposable()). These linkages include: external, appending, internal, 486 // private. It may be profitable to use a local alias for external. The 487 // assembler would otherwise be conservative and assume a global default 488 // visibility symbol can be interposable, even if the code generator already 489 // assumed it. 490 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 491 const Module &M = *GV.getParent(); 492 if (TM.getRelocationModel() != Reloc::Static && 493 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 494 return getSymbolWithGlobalValueBase(&GV, "$local"); 495 } 496 return TM.getSymbol(&GV); 497 } 498 499 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 500 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 501 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 502 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 503 "No emulated TLS variables in the common section"); 504 505 // Never emit TLS variable xyz in emulated TLS model. 506 // The initialization value is in __emutls_t.xyz instead of xyz. 507 if (IsEmuTLSVar) 508 return; 509 510 if (GV->hasInitializer()) { 511 // Check to see if this is a special global used by LLVM, if so, emit it. 512 if (emitSpecialLLVMGlobal(GV)) 513 return; 514 515 // Skip the emission of global equivalents. The symbol can be emitted later 516 // on by emitGlobalGOTEquivs in case it turns out to be needed. 517 if (GlobalGOTEquivs.count(getSymbol(GV))) 518 return; 519 520 if (isVerbose()) { 521 // When printing the control variable __emutls_v.*, 522 // we don't need to print the original TLS variable name. 523 GV->printAsOperand(OutStreamer->GetCommentOS(), 524 /*PrintType=*/false, GV->getParent()); 525 OutStreamer->GetCommentOS() << '\n'; 526 } 527 } 528 529 MCSymbol *GVSym = getSymbol(GV); 530 MCSymbol *EmittedSym = GVSym; 531 532 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 533 // attributes. 534 // GV's or GVSym's attributes will be used for the EmittedSym. 535 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 536 537 if (!GV->hasInitializer()) // External globals require no extra code. 538 return; 539 540 GVSym->redefineIfPossible(); 541 if (GVSym->isDefined() || GVSym->isVariable()) 542 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 543 "' is already defined"); 544 545 if (MAI->hasDotTypeDotSizeDirective()) 546 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 547 548 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 549 550 const DataLayout &DL = GV->getParent()->getDataLayout(); 551 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 552 553 // If the alignment is specified, we *must* obey it. Overaligning a global 554 // with a specified alignment is a prompt way to break globals emitted to 555 // sections and expected to be contiguous (e.g. ObjC metadata). 556 const Align Alignment = getGVAlignment(GV, DL); 557 558 for (const HandlerInfo &HI : Handlers) { 559 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 560 HI.TimerGroupName, HI.TimerGroupDescription, 561 TimePassesIsEnabled); 562 HI.Handler->setSymbolSize(GVSym, Size); 563 } 564 565 // Handle common symbols 566 if (GVKind.isCommon()) { 567 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 568 // .comm _foo, 42, 4 569 const bool SupportsAlignment = 570 getObjFileLowering().getCommDirectiveSupportsAlignment(); 571 OutStreamer->emitCommonSymbol(GVSym, Size, 572 SupportsAlignment ? Alignment.value() : 0); 573 return; 574 } 575 576 // Determine to which section this global should be emitted. 577 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 578 579 // If we have a bss global going to a section that supports the 580 // zerofill directive, do so here. 581 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 582 TheSection->isVirtualSection()) { 583 if (Size == 0) 584 Size = 1; // zerofill of 0 bytes is undefined. 585 emitLinkage(GV, GVSym); 586 // .zerofill __DATA, __bss, _foo, 400, 5 587 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 588 return; 589 } 590 591 // If this is a BSS local symbol and we are emitting in the BSS 592 // section use .lcomm/.comm directive. 593 if (GVKind.isBSSLocal() && 594 getObjFileLowering().getBSSSection() == TheSection) { 595 if (Size == 0) 596 Size = 1; // .comm Foo, 0 is undefined, avoid it. 597 598 // Use .lcomm only if it supports user-specified alignment. 599 // Otherwise, while it would still be correct to use .lcomm in some 600 // cases (e.g. when Align == 1), the external assembler might enfore 601 // some -unknown- default alignment behavior, which could cause 602 // spurious differences between external and integrated assembler. 603 // Prefer to simply fall back to .local / .comm in this case. 604 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 605 // .lcomm _foo, 42 606 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 607 return; 608 } 609 610 // .local _foo 611 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 612 // .comm _foo, 42, 4 613 const bool SupportsAlignment = 614 getObjFileLowering().getCommDirectiveSupportsAlignment(); 615 OutStreamer->emitCommonSymbol(GVSym, Size, 616 SupportsAlignment ? Alignment.value() : 0); 617 return; 618 } 619 620 // Handle thread local data for mach-o which requires us to output an 621 // additional structure of data and mangle the original symbol so that we 622 // can reference it later. 623 // 624 // TODO: This should become an "emit thread local global" method on TLOF. 625 // All of this macho specific stuff should be sunk down into TLOFMachO and 626 // stuff like "TLSExtraDataSection" should no longer be part of the parent 627 // TLOF class. This will also make it more obvious that stuff like 628 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 629 // specific code. 630 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 631 // Emit the .tbss symbol 632 MCSymbol *MangSym = 633 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 634 635 if (GVKind.isThreadBSS()) { 636 TheSection = getObjFileLowering().getTLSBSSSection(); 637 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 638 } else if (GVKind.isThreadData()) { 639 OutStreamer->SwitchSection(TheSection); 640 641 emitAlignment(Alignment, GV); 642 OutStreamer->emitLabel(MangSym); 643 644 emitGlobalConstant(GV->getParent()->getDataLayout(), 645 GV->getInitializer()); 646 } 647 648 OutStreamer->AddBlankLine(); 649 650 // Emit the variable struct for the runtime. 651 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 652 653 OutStreamer->SwitchSection(TLVSect); 654 // Emit the linkage here. 655 emitLinkage(GV, GVSym); 656 OutStreamer->emitLabel(GVSym); 657 658 // Three pointers in size: 659 // - __tlv_bootstrap - used to make sure support exists 660 // - spare pointer, used when mapped by the runtime 661 // - pointer to mangled symbol above with initializer 662 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 663 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 664 PtrSize); 665 OutStreamer->emitIntValue(0, PtrSize); 666 OutStreamer->emitSymbolValue(MangSym, PtrSize); 667 668 OutStreamer->AddBlankLine(); 669 return; 670 } 671 672 MCSymbol *EmittedInitSym = GVSym; 673 674 OutStreamer->SwitchSection(TheSection); 675 676 emitLinkage(GV, EmittedInitSym); 677 emitAlignment(Alignment, GV); 678 679 OutStreamer->emitLabel(EmittedInitSym); 680 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 681 if (LocalAlias != EmittedInitSym) 682 OutStreamer->emitLabel(LocalAlias); 683 684 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 685 686 if (MAI->hasDotTypeDotSizeDirective()) 687 // .size foo, 42 688 OutStreamer->emitELFSize(EmittedInitSym, 689 MCConstantExpr::create(Size, OutContext)); 690 691 OutStreamer->AddBlankLine(); 692 } 693 694 /// Emit the directive and value for debug thread local expression 695 /// 696 /// \p Value - The value to emit. 697 /// \p Size - The size of the integer (in bytes) to emit. 698 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 699 OutStreamer->emitValue(Value, Size); 700 } 701 702 void AsmPrinter::emitFunctionHeaderComment() {} 703 704 /// EmitFunctionHeader - This method emits the header for the current 705 /// function. 706 void AsmPrinter::emitFunctionHeader() { 707 const Function &F = MF->getFunction(); 708 709 if (isVerbose()) 710 OutStreamer->GetCommentOS() 711 << "-- Begin function " 712 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 713 714 // Print out constants referenced by the function 715 emitConstantPool(); 716 717 // Print the 'header' of function. 718 // If basic block sections are desired, explicitly request a unique section 719 // for this function's entry block. 720 if (MF->front().isBeginSection()) 721 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 722 else 723 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 724 OutStreamer->SwitchSection(MF->getSection()); 725 726 if (!MAI->hasVisibilityOnlyWithLinkage()) 727 emitVisibility(CurrentFnSym, F.getVisibility()); 728 729 if (MAI->needsFunctionDescriptors()) 730 emitLinkage(&F, CurrentFnDescSym); 731 732 emitLinkage(&F, CurrentFnSym); 733 if (MAI->hasFunctionAlignment()) 734 emitAlignment(MF->getAlignment(), &F); 735 736 if (MAI->hasDotTypeDotSizeDirective()) 737 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 738 739 if (F.hasFnAttribute(Attribute::Cold)) 740 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 741 742 if (isVerbose()) { 743 F.printAsOperand(OutStreamer->GetCommentOS(), 744 /*PrintType=*/false, F.getParent()); 745 emitFunctionHeaderComment(); 746 OutStreamer->GetCommentOS() << '\n'; 747 } 748 749 // Emit the prefix data. 750 if (F.hasPrefixData()) { 751 if (MAI->hasSubsectionsViaSymbols()) { 752 // Preserving prefix data on platforms which use subsections-via-symbols 753 // is a bit tricky. Here we introduce a symbol for the prefix data 754 // and use the .alt_entry attribute to mark the function's real entry point 755 // as an alternative entry point to the prefix-data symbol. 756 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 757 OutStreamer->emitLabel(PrefixSym); 758 759 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 760 761 // Emit an .alt_entry directive for the actual function symbol. 762 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 763 } else { 764 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 765 } 766 } 767 768 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 769 // place prefix data before NOPs. 770 unsigned PatchableFunctionPrefix = 0; 771 unsigned PatchableFunctionEntry = 0; 772 (void)F.getFnAttribute("patchable-function-prefix") 773 .getValueAsString() 774 .getAsInteger(10, PatchableFunctionPrefix); 775 (void)F.getFnAttribute("patchable-function-entry") 776 .getValueAsString() 777 .getAsInteger(10, PatchableFunctionEntry); 778 if (PatchableFunctionPrefix) { 779 CurrentPatchableFunctionEntrySym = 780 OutContext.createLinkerPrivateTempSymbol(); 781 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 782 emitNops(PatchableFunctionPrefix); 783 } else if (PatchableFunctionEntry) { 784 // May be reassigned when emitting the body, to reference the label after 785 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 786 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 787 } 788 789 // Emit the function descriptor. This is a virtual function to allow targets 790 // to emit their specific function descriptor. Right now it is only used by 791 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 792 // descriptors and should be converted to use this hook as well. 793 if (MAI->needsFunctionDescriptors()) 794 emitFunctionDescriptor(); 795 796 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 797 // their wild and crazy things as required. 798 emitFunctionEntryLabel(); 799 800 // If the function had address-taken blocks that got deleted, then we have 801 // references to the dangling symbols. Emit them at the start of the function 802 // so that we don't get references to undefined symbols. 803 std::vector<MCSymbol*> DeadBlockSyms; 804 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 805 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 806 OutStreamer->AddComment("Address taken block that was later removed"); 807 OutStreamer->emitLabel(DeadBlockSyms[i]); 808 } 809 810 if (CurrentFnBegin) { 811 if (MAI->useAssignmentForEHBegin()) { 812 MCSymbol *CurPos = OutContext.createTempSymbol(); 813 OutStreamer->emitLabel(CurPos); 814 OutStreamer->emitAssignment(CurrentFnBegin, 815 MCSymbolRefExpr::create(CurPos, OutContext)); 816 } else { 817 OutStreamer->emitLabel(CurrentFnBegin); 818 } 819 } 820 821 // Emit pre-function debug and/or EH information. 822 for (const HandlerInfo &HI : Handlers) { 823 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 824 HI.TimerGroupDescription, TimePassesIsEnabled); 825 HI.Handler->beginFunction(MF); 826 } 827 828 // Emit the prologue data. 829 if (F.hasPrologueData()) 830 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 831 } 832 833 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 834 /// function. This can be overridden by targets as required to do custom stuff. 835 void AsmPrinter::emitFunctionEntryLabel() { 836 CurrentFnSym->redefineIfPossible(); 837 838 // The function label could have already been emitted if two symbols end up 839 // conflicting due to asm renaming. Detect this and emit an error. 840 if (CurrentFnSym->isVariable()) 841 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 842 "' is a protected alias"); 843 844 OutStreamer->emitLabel(CurrentFnSym); 845 846 if (TM.getTargetTriple().isOSBinFormatELF()) { 847 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 848 if (Sym != CurrentFnSym) 849 OutStreamer->emitLabel(Sym); 850 } 851 } 852 853 /// emitComments - Pretty-print comments for instructions. 854 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 855 const MachineFunction *MF = MI.getMF(); 856 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 857 858 // Check for spills and reloads 859 860 // We assume a single instruction only has a spill or reload, not 861 // both. 862 Optional<unsigned> Size; 863 if ((Size = MI.getRestoreSize(TII))) { 864 CommentOS << *Size << "-byte Reload\n"; 865 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 866 if (*Size) { 867 if (*Size == unsigned(MemoryLocation::UnknownSize)) 868 CommentOS << "Unknown-size Folded Reload\n"; 869 else 870 CommentOS << *Size << "-byte Folded Reload\n"; 871 } 872 } else if ((Size = MI.getSpillSize(TII))) { 873 CommentOS << *Size << "-byte Spill\n"; 874 } else if ((Size = MI.getFoldedSpillSize(TII))) { 875 if (*Size) { 876 if (*Size == unsigned(MemoryLocation::UnknownSize)) 877 CommentOS << "Unknown-size Folded Spill\n"; 878 else 879 CommentOS << *Size << "-byte Folded Spill\n"; 880 } 881 } 882 883 // Check for spill-induced copies 884 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 885 CommentOS << " Reload Reuse\n"; 886 } 887 888 /// emitImplicitDef - This method emits the specified machine instruction 889 /// that is an implicit def. 890 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 891 Register RegNo = MI->getOperand(0).getReg(); 892 893 SmallString<128> Str; 894 raw_svector_ostream OS(Str); 895 OS << "implicit-def: " 896 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 897 898 OutStreamer->AddComment(OS.str()); 899 OutStreamer->AddBlankLine(); 900 } 901 902 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 903 std::string Str; 904 raw_string_ostream OS(Str); 905 OS << "kill:"; 906 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 907 const MachineOperand &Op = MI->getOperand(i); 908 assert(Op.isReg() && "KILL instruction must have only register operands"); 909 OS << ' ' << (Op.isDef() ? "def " : "killed ") 910 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 911 } 912 AP.OutStreamer->AddComment(OS.str()); 913 AP.OutStreamer->AddBlankLine(); 914 } 915 916 /// emitDebugValueComment - This method handles the target-independent form 917 /// of DBG_VALUE, returning true if it was able to do so. A false return 918 /// means the target will need to handle MI in EmitInstruction. 919 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 920 // This code handles only the 4-operand target-independent form. 921 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 922 return false; 923 924 SmallString<128> Str; 925 raw_svector_ostream OS(Str); 926 OS << "DEBUG_VALUE: "; 927 928 const DILocalVariable *V = MI->getDebugVariable(); 929 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 930 StringRef Name = SP->getName(); 931 if (!Name.empty()) 932 OS << Name << ":"; 933 } 934 OS << V->getName(); 935 OS << " <- "; 936 937 const DIExpression *Expr = MI->getDebugExpression(); 938 if (Expr->getNumElements()) { 939 OS << '['; 940 ListSeparator LS; 941 for (auto Op : Expr->expr_ops()) { 942 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 943 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 944 OS << ' ' << Op.getArg(I); 945 } 946 OS << "] "; 947 } 948 949 // Register or immediate value. Register 0 means undef. 950 for (const MachineOperand &Op : MI->debug_operands()) { 951 if (&Op != MI->debug_operands().begin()) 952 OS << ", "; 953 switch (Op.getType()) { 954 case MachineOperand::MO_FPImmediate: { 955 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 956 Type *ImmTy = Op.getFPImm()->getType(); 957 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 958 ImmTy->isDoubleTy()) { 959 OS << APF.convertToDouble(); 960 } else { 961 // There is no good way to print long double. Convert a copy to 962 // double. Ah well, it's only a comment. 963 bool ignored; 964 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 965 &ignored); 966 OS << "(long double) " << APF.convertToDouble(); 967 } 968 break; 969 } 970 case MachineOperand::MO_Immediate: { 971 OS << Op.getImm(); 972 break; 973 } 974 case MachineOperand::MO_CImmediate: { 975 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 976 break; 977 } 978 case MachineOperand::MO_TargetIndex: { 979 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 980 // NOTE: Want this comment at start of line, don't emit with AddComment. 981 AP.OutStreamer->emitRawComment(OS.str()); 982 break; 983 } 984 case MachineOperand::MO_Register: 985 case MachineOperand::MO_FrameIndex: { 986 Register Reg; 987 Optional<StackOffset> Offset; 988 if (Op.isReg()) { 989 Reg = Op.getReg(); 990 } else { 991 const TargetFrameLowering *TFI = 992 AP.MF->getSubtarget().getFrameLowering(); 993 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 994 } 995 if (!Reg) { 996 // Suppress offset, it is not meaningful here. 997 OS << "undef"; 998 break; 999 } 1000 // The second operand is only an offset if it's an immediate. 1001 if (MI->isIndirectDebugValue()) 1002 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1003 if (Offset) 1004 OS << '['; 1005 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1006 if (Offset) 1007 OS << '+' << Offset->getFixed() << ']'; 1008 break; 1009 } 1010 default: 1011 llvm_unreachable("Unknown operand type"); 1012 } 1013 } 1014 1015 // NOTE: Want this comment at start of line, don't emit with AddComment. 1016 AP.OutStreamer->emitRawComment(OS.str()); 1017 return true; 1018 } 1019 1020 /// This method handles the target-independent form of DBG_LABEL, returning 1021 /// true if it was able to do so. A false return means the target will need 1022 /// to handle MI in EmitInstruction. 1023 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1024 if (MI->getNumOperands() != 1) 1025 return false; 1026 1027 SmallString<128> Str; 1028 raw_svector_ostream OS(Str); 1029 OS << "DEBUG_LABEL: "; 1030 1031 const DILabel *V = MI->getDebugLabel(); 1032 if (auto *SP = dyn_cast<DISubprogram>( 1033 V->getScope()->getNonLexicalBlockFileScope())) { 1034 StringRef Name = SP->getName(); 1035 if (!Name.empty()) 1036 OS << Name << ":"; 1037 } 1038 OS << V->getName(); 1039 1040 // NOTE: Want this comment at start of line, don't emit with AddComment. 1041 AP.OutStreamer->emitRawComment(OS.str()); 1042 return true; 1043 } 1044 1045 AsmPrinter::CFISection 1046 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1047 // Ignore functions that won't get emitted. 1048 if (F.isDeclarationForLinker()) 1049 return CFISection::None; 1050 1051 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1052 F.needsUnwindTableEntry()) 1053 return CFISection::EH; 1054 1055 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1056 return CFISection::Debug; 1057 1058 return CFISection::None; 1059 } 1060 1061 AsmPrinter::CFISection 1062 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1063 return getFunctionCFISectionType(MF.getFunction()); 1064 } 1065 1066 bool AsmPrinter::needsSEHMoves() { 1067 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1068 } 1069 1070 bool AsmPrinter::needsCFIForDebug() const { 1071 return MAI->getExceptionHandlingType() == ExceptionHandling::None && 1072 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; 1073 } 1074 1075 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1076 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1077 if (!needsCFIForDebug() && 1078 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1079 ExceptionHandlingType != ExceptionHandling::ARM) 1080 return; 1081 1082 if (getFunctionCFISectionType(*MF) == CFISection::None) 1083 return; 1084 1085 // If there is no "real" instruction following this CFI instruction, skip 1086 // emitting it; it would be beyond the end of the function's FDE range. 1087 auto *MBB = MI.getParent(); 1088 auto I = std::next(MI.getIterator()); 1089 while (I != MBB->end() && I->isTransient()) 1090 ++I; 1091 if (I == MBB->instr_end() && 1092 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1093 return; 1094 1095 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1096 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1097 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1098 emitCFIInstruction(CFI); 1099 } 1100 1101 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1102 // The operands are the MCSymbol and the frame offset of the allocation. 1103 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1104 int FrameOffset = MI.getOperand(1).getImm(); 1105 1106 // Emit a symbol assignment. 1107 OutStreamer->emitAssignment(FrameAllocSym, 1108 MCConstantExpr::create(FrameOffset, OutContext)); 1109 } 1110 1111 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1112 /// given basic block. This can be used to capture more precise profile 1113 /// information. We use the last 4 bits (LSBs) to encode the following 1114 /// information: 1115 /// * (1): set if return block (ret or tail call). 1116 /// * (2): set if ends with a tail call. 1117 /// * (3): set if exception handling (EH) landing pad. 1118 /// * (4): set if the block can fall through to its next. 1119 /// The remaining bits are zero. 1120 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1121 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1122 return ((unsigned)MBB.isReturnBlock()) | 1123 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1124 (MBB.isEHPad() << 2) | 1125 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1126 } 1127 1128 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1129 MCSection *BBAddrMapSection = 1130 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1131 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1132 1133 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1134 1135 OutStreamer->PushSection(); 1136 OutStreamer->SwitchSection(BBAddrMapSection); 1137 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1138 // Emit the total number of basic blocks in this function. 1139 OutStreamer->emitULEB128IntValue(MF.size()); 1140 // Emit BB Information for each basic block in the funciton. 1141 for (const MachineBasicBlock &MBB : MF) { 1142 const MCSymbol *MBBSymbol = 1143 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1144 // Emit the basic block offset. 1145 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1146 // Emit the basic block size. When BBs have alignments, their size cannot 1147 // always be computed from their offsets. 1148 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1149 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1150 } 1151 OutStreamer->PopSection(); 1152 } 1153 1154 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1155 auto GUID = MI.getOperand(0).getImm(); 1156 auto Index = MI.getOperand(1).getImm(); 1157 auto Type = MI.getOperand(2).getImm(); 1158 auto Attr = MI.getOperand(3).getImm(); 1159 DILocation *DebugLoc = MI.getDebugLoc(); 1160 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1161 } 1162 1163 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1164 if (!MF.getTarget().Options.EmitStackSizeSection) 1165 return; 1166 1167 MCSection *StackSizeSection = 1168 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1169 if (!StackSizeSection) 1170 return; 1171 1172 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1173 // Don't emit functions with dynamic stack allocations. 1174 if (FrameInfo.hasVarSizedObjects()) 1175 return; 1176 1177 OutStreamer->PushSection(); 1178 OutStreamer->SwitchSection(StackSizeSection); 1179 1180 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1181 uint64_t StackSize = FrameInfo.getStackSize(); 1182 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1183 OutStreamer->emitULEB128IntValue(StackSize); 1184 1185 OutStreamer->PopSection(); 1186 } 1187 1188 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1189 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1190 1191 // OutputFilename empty implies -fstack-usage is not passed. 1192 if (OutputFilename.empty()) 1193 return; 1194 1195 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1196 uint64_t StackSize = FrameInfo.getStackSize(); 1197 1198 if (StackUsageStream == nullptr) { 1199 std::error_code EC; 1200 StackUsageStream = 1201 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1202 if (EC) { 1203 errs() << "Could not open file: " << EC.message(); 1204 return; 1205 } 1206 } 1207 1208 *StackUsageStream << MF.getFunction().getParent()->getName(); 1209 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1210 *StackUsageStream << ':' << DSP->getLine(); 1211 1212 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1213 if (FrameInfo.hasVarSizedObjects()) 1214 *StackUsageStream << "dynamic\n"; 1215 else 1216 *StackUsageStream << "static\n"; 1217 } 1218 1219 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1220 MachineModuleInfo &MMI = MF.getMMI(); 1221 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1222 return true; 1223 1224 // We might emit an EH table that uses function begin and end labels even if 1225 // we don't have any landingpads. 1226 if (!MF.getFunction().hasPersonalityFn()) 1227 return false; 1228 return !isNoOpWithoutInvoke( 1229 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1230 } 1231 1232 /// EmitFunctionBody - This method emits the body and trailer for a 1233 /// function. 1234 void AsmPrinter::emitFunctionBody() { 1235 emitFunctionHeader(); 1236 1237 // Emit target-specific gunk before the function body. 1238 emitFunctionBodyStart(); 1239 1240 if (isVerbose()) { 1241 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1242 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1243 if (!MDT) { 1244 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1245 OwnedMDT->getBase().recalculate(*MF); 1246 MDT = OwnedMDT.get(); 1247 } 1248 1249 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1250 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1251 if (!MLI) { 1252 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1253 OwnedMLI->getBase().analyze(MDT->getBase()); 1254 MLI = OwnedMLI.get(); 1255 } 1256 } 1257 1258 // Print out code for the function. 1259 bool HasAnyRealCode = false; 1260 int NumInstsInFunction = 0; 1261 1262 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1263 for (auto &MBB : *MF) { 1264 // Print a label for the basic block. 1265 emitBasicBlockStart(MBB); 1266 DenseMap<StringRef, unsigned> MnemonicCounts; 1267 for (auto &MI : MBB) { 1268 // Print the assembly for the instruction. 1269 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1270 !MI.isDebugInstr()) { 1271 HasAnyRealCode = true; 1272 ++NumInstsInFunction; 1273 } 1274 1275 // If there is a pre-instruction symbol, emit a label for it here. 1276 if (MCSymbol *S = MI.getPreInstrSymbol()) 1277 OutStreamer->emitLabel(S); 1278 1279 for (const HandlerInfo &HI : Handlers) { 1280 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1281 HI.TimerGroupDescription, TimePassesIsEnabled); 1282 HI.Handler->beginInstruction(&MI); 1283 } 1284 1285 if (isVerbose()) 1286 emitComments(MI, OutStreamer->GetCommentOS()); 1287 1288 switch (MI.getOpcode()) { 1289 case TargetOpcode::CFI_INSTRUCTION: 1290 emitCFIInstruction(MI); 1291 break; 1292 case TargetOpcode::LOCAL_ESCAPE: 1293 emitFrameAlloc(MI); 1294 break; 1295 case TargetOpcode::ANNOTATION_LABEL: 1296 case TargetOpcode::EH_LABEL: 1297 case TargetOpcode::GC_LABEL: 1298 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1299 break; 1300 case TargetOpcode::INLINEASM: 1301 case TargetOpcode::INLINEASM_BR: 1302 emitInlineAsm(&MI); 1303 break; 1304 case TargetOpcode::DBG_VALUE: 1305 case TargetOpcode::DBG_VALUE_LIST: 1306 if (isVerbose()) { 1307 if (!emitDebugValueComment(&MI, *this)) 1308 emitInstruction(&MI); 1309 } 1310 break; 1311 case TargetOpcode::DBG_INSTR_REF: 1312 // This instruction reference will have been resolved to a machine 1313 // location, and a nearby DBG_VALUE created. We can safely ignore 1314 // the instruction reference. 1315 break; 1316 case TargetOpcode::DBG_PHI: 1317 // This instruction is only used to label a program point, it's purely 1318 // meta information. 1319 break; 1320 case TargetOpcode::DBG_LABEL: 1321 if (isVerbose()) { 1322 if (!emitDebugLabelComment(&MI, *this)) 1323 emitInstruction(&MI); 1324 } 1325 break; 1326 case TargetOpcode::IMPLICIT_DEF: 1327 if (isVerbose()) emitImplicitDef(&MI); 1328 break; 1329 case TargetOpcode::KILL: 1330 if (isVerbose()) emitKill(&MI, *this); 1331 break; 1332 case TargetOpcode::PSEUDO_PROBE: 1333 emitPseudoProbe(MI); 1334 break; 1335 case TargetOpcode::ARITH_FENCE: 1336 if (isVerbose()) 1337 OutStreamer->emitRawComment("ARITH_FENCE"); 1338 break; 1339 default: 1340 emitInstruction(&MI); 1341 if (CanDoExtraAnalysis) { 1342 MCInst MCI; 1343 MCI.setOpcode(MI.getOpcode()); 1344 auto Name = OutStreamer->getMnemonic(MCI); 1345 auto I = MnemonicCounts.insert({Name, 0u}); 1346 I.first->second++; 1347 } 1348 break; 1349 } 1350 1351 // If there is a post-instruction symbol, emit a label for it here. 1352 if (MCSymbol *S = MI.getPostInstrSymbol()) 1353 OutStreamer->emitLabel(S); 1354 1355 for (const HandlerInfo &HI : Handlers) { 1356 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1357 HI.TimerGroupDescription, TimePassesIsEnabled); 1358 HI.Handler->endInstruction(); 1359 } 1360 } 1361 1362 // We must emit temporary symbol for the end of this basic block, if either 1363 // we have BBLabels enabled or if this basic blocks marks the end of a 1364 // section. 1365 if (MF->hasBBLabels() || 1366 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1367 OutStreamer->emitLabel(MBB.getEndSymbol()); 1368 1369 if (MBB.isEndSection()) { 1370 // The size directive for the section containing the entry block is 1371 // handled separately by the function section. 1372 if (!MBB.sameSection(&MF->front())) { 1373 if (MAI->hasDotTypeDotSizeDirective()) { 1374 // Emit the size directive for the basic block section. 1375 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1376 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1377 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1378 OutContext); 1379 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1380 } 1381 MBBSectionRanges[MBB.getSectionIDNum()] = 1382 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1383 } 1384 } 1385 emitBasicBlockEnd(MBB); 1386 1387 if (CanDoExtraAnalysis) { 1388 // Skip empty blocks. 1389 if (MBB.empty()) 1390 continue; 1391 1392 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1393 MBB.begin()->getDebugLoc(), &MBB); 1394 1395 // Generate instruction mix remark. First, sort counts in descending order 1396 // by count and name. 1397 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1398 for (auto &KV : MnemonicCounts) 1399 MnemonicVec.emplace_back(KV.first, KV.second); 1400 1401 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1402 const std::pair<StringRef, unsigned> &B) { 1403 if (A.second > B.second) 1404 return true; 1405 if (A.second == B.second) 1406 return StringRef(A.first) < StringRef(B.first); 1407 return false; 1408 }); 1409 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1410 for (auto &KV : MnemonicVec) { 1411 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1412 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1413 } 1414 ORE->emit(R); 1415 } 1416 } 1417 1418 EmittedInsts += NumInstsInFunction; 1419 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1420 MF->getFunction().getSubprogram(), 1421 &MF->front()); 1422 R << ore::NV("NumInstructions", NumInstsInFunction) 1423 << " instructions in function"; 1424 ORE->emit(R); 1425 1426 // If the function is empty and the object file uses .subsections_via_symbols, 1427 // then we need to emit *something* to the function body to prevent the 1428 // labels from collapsing together. Just emit a noop. 1429 // Similarly, don't emit empty functions on Windows either. It can lead to 1430 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1431 // after linking, causing the kernel not to load the binary: 1432 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1433 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1434 const Triple &TT = TM.getTargetTriple(); 1435 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1436 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1437 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1438 1439 // Targets can opt-out of emitting the noop here by leaving the opcode 1440 // unspecified. 1441 if (Noop.getOpcode()) { 1442 OutStreamer->AddComment("avoids zero-length function"); 1443 emitNops(1); 1444 } 1445 } 1446 1447 // Switch to the original section in case basic block sections was used. 1448 OutStreamer->SwitchSection(MF->getSection()); 1449 1450 const Function &F = MF->getFunction(); 1451 for (const auto &BB : F) { 1452 if (!BB.hasAddressTaken()) 1453 continue; 1454 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1455 if (Sym->isDefined()) 1456 continue; 1457 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1458 OutStreamer->emitLabel(Sym); 1459 } 1460 1461 // Emit target-specific gunk after the function body. 1462 emitFunctionBodyEnd(); 1463 1464 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1465 MAI->hasDotTypeDotSizeDirective()) { 1466 // Create a symbol for the end of function. 1467 CurrentFnEnd = createTempSymbol("func_end"); 1468 OutStreamer->emitLabel(CurrentFnEnd); 1469 } 1470 1471 // If the target wants a .size directive for the size of the function, emit 1472 // it. 1473 if (MAI->hasDotTypeDotSizeDirective()) { 1474 // We can get the size as difference between the function label and the 1475 // temp label. 1476 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1477 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1478 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1479 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1480 } 1481 1482 for (const HandlerInfo &HI : Handlers) { 1483 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1484 HI.TimerGroupDescription, TimePassesIsEnabled); 1485 HI.Handler->markFunctionEnd(); 1486 } 1487 1488 MBBSectionRanges[MF->front().getSectionIDNum()] = 1489 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1490 1491 // Print out jump tables referenced by the function. 1492 emitJumpTableInfo(); 1493 1494 // Emit post-function debug and/or EH information. 1495 for (const HandlerInfo &HI : Handlers) { 1496 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1497 HI.TimerGroupDescription, TimePassesIsEnabled); 1498 HI.Handler->endFunction(MF); 1499 } 1500 1501 // Emit section containing BB address offsets and their metadata, when 1502 // BB labels are requested for this function. Skip empty functions. 1503 if (MF->hasBBLabels() && HasAnyRealCode) 1504 emitBBAddrMapSection(*MF); 1505 1506 // Emit section containing stack size metadata. 1507 emitStackSizeSection(*MF); 1508 1509 // Emit .su file containing function stack size information. 1510 emitStackUsage(*MF); 1511 1512 emitPatchableFunctionEntries(); 1513 1514 if (isVerbose()) 1515 OutStreamer->GetCommentOS() << "-- End function\n"; 1516 1517 OutStreamer->AddBlankLine(); 1518 } 1519 1520 /// Compute the number of Global Variables that uses a Constant. 1521 static unsigned getNumGlobalVariableUses(const Constant *C) { 1522 if (!C) 1523 return 0; 1524 1525 if (isa<GlobalVariable>(C)) 1526 return 1; 1527 1528 unsigned NumUses = 0; 1529 for (auto *CU : C->users()) 1530 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1531 1532 return NumUses; 1533 } 1534 1535 /// Only consider global GOT equivalents if at least one user is a 1536 /// cstexpr inside an initializer of another global variables. Also, don't 1537 /// handle cstexpr inside instructions. During global variable emission, 1538 /// candidates are skipped and are emitted later in case at least one cstexpr 1539 /// isn't replaced by a PC relative GOT entry access. 1540 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1541 unsigned &NumGOTEquivUsers) { 1542 // Global GOT equivalents are unnamed private globals with a constant 1543 // pointer initializer to another global symbol. They must point to a 1544 // GlobalVariable or Function, i.e., as GlobalValue. 1545 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1546 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1547 !isa<GlobalValue>(GV->getOperand(0))) 1548 return false; 1549 1550 // To be a got equivalent, at least one of its users need to be a constant 1551 // expression used by another global variable. 1552 for (auto *U : GV->users()) 1553 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1554 1555 return NumGOTEquivUsers > 0; 1556 } 1557 1558 /// Unnamed constant global variables solely contaning a pointer to 1559 /// another globals variable is equivalent to a GOT table entry; it contains the 1560 /// the address of another symbol. Optimize it and replace accesses to these 1561 /// "GOT equivalents" by using the GOT entry for the final global instead. 1562 /// Compute GOT equivalent candidates among all global variables to avoid 1563 /// emitting them if possible later on, after it use is replaced by a GOT entry 1564 /// access. 1565 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1566 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1567 return; 1568 1569 for (const auto &G : M.globals()) { 1570 unsigned NumGOTEquivUsers = 0; 1571 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1572 continue; 1573 1574 const MCSymbol *GOTEquivSym = getSymbol(&G); 1575 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1576 } 1577 } 1578 1579 /// Constant expressions using GOT equivalent globals may not be eligible 1580 /// for PC relative GOT entry conversion, in such cases we need to emit such 1581 /// globals we previously omitted in EmitGlobalVariable. 1582 void AsmPrinter::emitGlobalGOTEquivs() { 1583 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1584 return; 1585 1586 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1587 for (auto &I : GlobalGOTEquivs) { 1588 const GlobalVariable *GV = I.second.first; 1589 unsigned Cnt = I.second.second; 1590 if (Cnt) 1591 FailedCandidates.push_back(GV); 1592 } 1593 GlobalGOTEquivs.clear(); 1594 1595 for (auto *GV : FailedCandidates) 1596 emitGlobalVariable(GV); 1597 } 1598 1599 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1600 const GlobalIndirectSymbol& GIS) { 1601 MCSymbol *Name = getSymbol(&GIS); 1602 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1603 // Treat bitcasts of functions as functions also. This is important at least 1604 // on WebAssembly where object and function addresses can't alias each other. 1605 if (!IsFunction) 1606 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1607 if (CE->getOpcode() == Instruction::BitCast) 1608 IsFunction = 1609 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1610 1611 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1612 // so AIX has to use the extra-label-at-definition strategy. At this 1613 // point, all the extra label is emitted, we just have to emit linkage for 1614 // those labels. 1615 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1616 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1617 assert(MAI->hasVisibilityOnlyWithLinkage() && 1618 "Visibility should be handled with emitLinkage() on AIX."); 1619 emitLinkage(&GIS, Name); 1620 // If it's a function, also emit linkage for aliases of function entry 1621 // point. 1622 if (IsFunction) 1623 emitLinkage(&GIS, 1624 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1625 return; 1626 } 1627 1628 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1629 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1630 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1631 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1632 else 1633 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1634 1635 // Set the symbol type to function if the alias has a function type. 1636 // This affects codegen when the aliasee is not a function. 1637 if (IsFunction) 1638 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1639 ? MCSA_ELF_TypeIndFunction 1640 : MCSA_ELF_TypeFunction); 1641 1642 emitVisibility(Name, GIS.getVisibility()); 1643 1644 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1645 1646 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1647 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1648 1649 // Emit the directives as assignments aka .set: 1650 OutStreamer->emitAssignment(Name, Expr); 1651 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1652 if (LocalAlias != Name) 1653 OutStreamer->emitAssignment(LocalAlias, Expr); 1654 1655 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1656 // If the aliasee does not correspond to a symbol in the output, i.e. the 1657 // alias is not of an object or the aliased object is private, then set the 1658 // size of the alias symbol from the type of the alias. We don't do this in 1659 // other situations as the alias and aliasee having differing types but same 1660 // size may be intentional. 1661 const GlobalObject *BaseObject = GA->getBaseObject(); 1662 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1663 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1664 const DataLayout &DL = M.getDataLayout(); 1665 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1666 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1667 } 1668 } 1669 } 1670 1671 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1672 if (!RS.needsSection()) 1673 return; 1674 1675 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1676 1677 Optional<SmallString<128>> Filename; 1678 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1679 Filename = *FilenameRef; 1680 sys::fs::make_absolute(*Filename); 1681 assert(!Filename->empty() && "The filename can't be empty."); 1682 } 1683 1684 std::string Buf; 1685 raw_string_ostream OS(Buf); 1686 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1687 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1688 : RemarkSerializer.metaSerializer(OS); 1689 MetaSerializer->emit(); 1690 1691 // Switch to the remarks section. 1692 MCSection *RemarksSection = 1693 OutContext.getObjectFileInfo()->getRemarksSection(); 1694 OutStreamer->SwitchSection(RemarksSection); 1695 1696 OutStreamer->emitBinaryData(OS.str()); 1697 } 1698 1699 bool AsmPrinter::doFinalization(Module &M) { 1700 // Set the MachineFunction to nullptr so that we can catch attempted 1701 // accesses to MF specific features at the module level and so that 1702 // we can conditionalize accesses based on whether or not it is nullptr. 1703 MF = nullptr; 1704 1705 // Gather all GOT equivalent globals in the module. We really need two 1706 // passes over the globals: one to compute and another to avoid its emission 1707 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1708 // where the got equivalent shows up before its use. 1709 computeGlobalGOTEquivs(M); 1710 1711 // Emit global variables. 1712 for (const auto &G : M.globals()) 1713 emitGlobalVariable(&G); 1714 1715 // Emit remaining GOT equivalent globals. 1716 emitGlobalGOTEquivs(); 1717 1718 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1719 1720 // Emit linkage(XCOFF) and visibility info for declarations 1721 for (const Function &F : M) { 1722 if (!F.isDeclarationForLinker()) 1723 continue; 1724 1725 MCSymbol *Name = getSymbol(&F); 1726 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1727 1728 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1729 GlobalValue::VisibilityTypes V = F.getVisibility(); 1730 if (V == GlobalValue::DefaultVisibility) 1731 continue; 1732 1733 emitVisibility(Name, V, false); 1734 continue; 1735 } 1736 1737 if (F.isIntrinsic()) 1738 continue; 1739 1740 // Handle the XCOFF case. 1741 // Variable `Name` is the function descriptor symbol (see above). Get the 1742 // function entry point symbol. 1743 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1744 // Emit linkage for the function entry point. 1745 emitLinkage(&F, FnEntryPointSym); 1746 1747 // Emit linkage for the function descriptor. 1748 emitLinkage(&F, Name); 1749 } 1750 1751 // Emit the remarks section contents. 1752 // FIXME: Figure out when is the safest time to emit this section. It should 1753 // not come after debug info. 1754 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1755 emitRemarksSection(*RS); 1756 1757 TLOF.emitModuleMetadata(*OutStreamer, M); 1758 1759 if (TM.getTargetTriple().isOSBinFormatELF()) { 1760 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1761 1762 // Output stubs for external and common global variables. 1763 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1764 if (!Stubs.empty()) { 1765 OutStreamer->SwitchSection(TLOF.getDataSection()); 1766 const DataLayout &DL = M.getDataLayout(); 1767 1768 emitAlignment(Align(DL.getPointerSize())); 1769 for (const auto &Stub : Stubs) { 1770 OutStreamer->emitLabel(Stub.first); 1771 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1772 DL.getPointerSize()); 1773 } 1774 } 1775 } 1776 1777 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1778 MachineModuleInfoCOFF &MMICOFF = 1779 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1780 1781 // Output stubs for external and common global variables. 1782 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1783 if (!Stubs.empty()) { 1784 const DataLayout &DL = M.getDataLayout(); 1785 1786 for (const auto &Stub : Stubs) { 1787 SmallString<256> SectionName = StringRef(".rdata$"); 1788 SectionName += Stub.first->getName(); 1789 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1790 SectionName, 1791 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1792 COFF::IMAGE_SCN_LNK_COMDAT, 1793 SectionKind::getReadOnly(), Stub.first->getName(), 1794 COFF::IMAGE_COMDAT_SELECT_ANY)); 1795 emitAlignment(Align(DL.getPointerSize())); 1796 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1797 OutStreamer->emitLabel(Stub.first); 1798 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1799 DL.getPointerSize()); 1800 } 1801 } 1802 } 1803 1804 // Finalize debug and EH information. 1805 for (const HandlerInfo &HI : Handlers) { 1806 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1807 HI.TimerGroupDescription, TimePassesIsEnabled); 1808 HI.Handler->endModule(); 1809 } 1810 1811 // This deletes all the ephemeral handlers that AsmPrinter added, while 1812 // keeping all the user-added handlers alive until the AsmPrinter is 1813 // destroyed. 1814 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1815 DD = nullptr; 1816 1817 // If the target wants to know about weak references, print them all. 1818 if (MAI->getWeakRefDirective()) { 1819 // FIXME: This is not lazy, it would be nice to only print weak references 1820 // to stuff that is actually used. Note that doing so would require targets 1821 // to notice uses in operands (due to constant exprs etc). This should 1822 // happen with the MC stuff eventually. 1823 1824 // Print out module-level global objects here. 1825 for (const auto &GO : M.global_objects()) { 1826 if (!GO.hasExternalWeakLinkage()) 1827 continue; 1828 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1829 } 1830 } 1831 1832 // Print aliases in topological order, that is, for each alias a = b, 1833 // b must be printed before a. 1834 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1835 // such an order to generate correct TOC information. 1836 SmallVector<const GlobalAlias *, 16> AliasStack; 1837 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1838 for (const auto &Alias : M.aliases()) { 1839 for (const GlobalAlias *Cur = &Alias; Cur; 1840 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1841 if (!AliasVisited.insert(Cur).second) 1842 break; 1843 AliasStack.push_back(Cur); 1844 } 1845 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1846 emitGlobalIndirectSymbol(M, *AncestorAlias); 1847 AliasStack.clear(); 1848 } 1849 for (const auto &IFunc : M.ifuncs()) 1850 emitGlobalIndirectSymbol(M, IFunc); 1851 1852 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1853 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1854 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1855 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1856 MP->finishAssembly(M, *MI, *this); 1857 1858 // Emit llvm.ident metadata in an '.ident' directive. 1859 emitModuleIdents(M); 1860 1861 // Emit bytes for llvm.commandline metadata. 1862 emitModuleCommandLines(M); 1863 1864 // Emit __morestack address if needed for indirect calls. 1865 if (MMI->usesMorestackAddr()) { 1866 Align Alignment(1); 1867 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1868 getDataLayout(), SectionKind::getReadOnly(), 1869 /*C=*/nullptr, Alignment); 1870 OutStreamer->SwitchSection(ReadOnlySection); 1871 1872 MCSymbol *AddrSymbol = 1873 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1874 OutStreamer->emitLabel(AddrSymbol); 1875 1876 unsigned PtrSize = MAI->getCodePointerSize(); 1877 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1878 PtrSize); 1879 } 1880 1881 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1882 // split-stack is used. 1883 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1884 OutStreamer->SwitchSection( 1885 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1886 if (MMI->hasNosplitStack()) 1887 OutStreamer->SwitchSection( 1888 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1889 } 1890 1891 // If we don't have any trampolines, then we don't require stack memory 1892 // to be executable. Some targets have a directive to declare this. 1893 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1894 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1895 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1896 OutStreamer->SwitchSection(S); 1897 1898 if (TM.Options.EmitAddrsig) { 1899 // Emit address-significance attributes for all globals. 1900 OutStreamer->emitAddrsig(); 1901 for (const GlobalValue &GV : M.global_values()) { 1902 if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() && 1903 !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() && 1904 !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr()) 1905 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1906 } 1907 } 1908 1909 // Emit symbol partition specifications (ELF only). 1910 if (TM.getTargetTriple().isOSBinFormatELF()) { 1911 unsigned UniqueID = 0; 1912 for (const GlobalValue &GV : M.global_values()) { 1913 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1914 GV.getVisibility() != GlobalValue::DefaultVisibility) 1915 continue; 1916 1917 OutStreamer->SwitchSection( 1918 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1919 "", false, ++UniqueID, nullptr)); 1920 OutStreamer->emitBytes(GV.getPartition()); 1921 OutStreamer->emitZeros(1); 1922 OutStreamer->emitValue( 1923 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1924 MAI->getCodePointerSize()); 1925 } 1926 } 1927 1928 // Allow the target to emit any magic that it wants at the end of the file, 1929 // after everything else has gone out. 1930 emitEndOfAsmFile(M); 1931 1932 MMI = nullptr; 1933 1934 OutStreamer->Finish(); 1935 OutStreamer->reset(); 1936 OwnedMLI.reset(); 1937 OwnedMDT.reset(); 1938 1939 return false; 1940 } 1941 1942 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1943 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1944 if (Res.second) 1945 Res.first->second = createTempSymbol("exception"); 1946 return Res.first->second; 1947 } 1948 1949 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1950 this->MF = &MF; 1951 const Function &F = MF.getFunction(); 1952 1953 // Get the function symbol. 1954 if (!MAI->needsFunctionDescriptors()) { 1955 CurrentFnSym = getSymbol(&MF.getFunction()); 1956 } else { 1957 assert(TM.getTargetTriple().isOSAIX() && 1958 "Only AIX uses the function descriptor hooks."); 1959 // AIX is unique here in that the name of the symbol emitted for the 1960 // function body does not have the same name as the source function's 1961 // C-linkage name. 1962 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1963 " initalized first."); 1964 1965 // Get the function entry point symbol. 1966 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1967 } 1968 1969 CurrentFnSymForSize = CurrentFnSym; 1970 CurrentFnBegin = nullptr; 1971 CurrentSectionBeginSym = nullptr; 1972 MBBSectionRanges.clear(); 1973 MBBSectionExceptionSyms.clear(); 1974 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1975 if (F.hasFnAttribute("patchable-function-entry") || 1976 F.hasFnAttribute("function-instrument") || 1977 F.hasFnAttribute("xray-instruction-threshold") || 1978 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1979 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1980 CurrentFnBegin = createTempSymbol("func_begin"); 1981 if (NeedsLocalForSize) 1982 CurrentFnSymForSize = CurrentFnBegin; 1983 } 1984 1985 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1986 } 1987 1988 namespace { 1989 1990 // Keep track the alignment, constpool entries per Section. 1991 struct SectionCPs { 1992 MCSection *S; 1993 Align Alignment; 1994 SmallVector<unsigned, 4> CPEs; 1995 1996 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1997 }; 1998 1999 } // end anonymous namespace 2000 2001 /// EmitConstantPool - Print to the current output stream assembly 2002 /// representations of the constants in the constant pool MCP. This is 2003 /// used to print out constants which have been "spilled to memory" by 2004 /// the code generator. 2005 void AsmPrinter::emitConstantPool() { 2006 const MachineConstantPool *MCP = MF->getConstantPool(); 2007 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2008 if (CP.empty()) return; 2009 2010 // Calculate sections for constant pool entries. We collect entries to go into 2011 // the same section together to reduce amount of section switch statements. 2012 SmallVector<SectionCPs, 4> CPSections; 2013 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2014 const MachineConstantPoolEntry &CPE = CP[i]; 2015 Align Alignment = CPE.getAlign(); 2016 2017 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2018 2019 const Constant *C = nullptr; 2020 if (!CPE.isMachineConstantPoolEntry()) 2021 C = CPE.Val.ConstVal; 2022 2023 MCSection *S = getObjFileLowering().getSectionForConstant( 2024 getDataLayout(), Kind, C, Alignment); 2025 2026 // The number of sections are small, just do a linear search from the 2027 // last section to the first. 2028 bool Found = false; 2029 unsigned SecIdx = CPSections.size(); 2030 while (SecIdx != 0) { 2031 if (CPSections[--SecIdx].S == S) { 2032 Found = true; 2033 break; 2034 } 2035 } 2036 if (!Found) { 2037 SecIdx = CPSections.size(); 2038 CPSections.push_back(SectionCPs(S, Alignment)); 2039 } 2040 2041 if (Alignment > CPSections[SecIdx].Alignment) 2042 CPSections[SecIdx].Alignment = Alignment; 2043 CPSections[SecIdx].CPEs.push_back(i); 2044 } 2045 2046 // Now print stuff into the calculated sections. 2047 const MCSection *CurSection = nullptr; 2048 unsigned Offset = 0; 2049 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2050 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2051 unsigned CPI = CPSections[i].CPEs[j]; 2052 MCSymbol *Sym = GetCPISymbol(CPI); 2053 if (!Sym->isUndefined()) 2054 continue; 2055 2056 if (CurSection != CPSections[i].S) { 2057 OutStreamer->SwitchSection(CPSections[i].S); 2058 emitAlignment(Align(CPSections[i].Alignment)); 2059 CurSection = CPSections[i].S; 2060 Offset = 0; 2061 } 2062 2063 MachineConstantPoolEntry CPE = CP[CPI]; 2064 2065 // Emit inter-object padding for alignment. 2066 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2067 OutStreamer->emitZeros(NewOffset - Offset); 2068 2069 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2070 2071 OutStreamer->emitLabel(Sym); 2072 if (CPE.isMachineConstantPoolEntry()) 2073 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2074 else 2075 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2076 } 2077 } 2078 } 2079 2080 // Print assembly representations of the jump tables used by the current 2081 // function. 2082 void AsmPrinter::emitJumpTableInfo() { 2083 const DataLayout &DL = MF->getDataLayout(); 2084 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2085 if (!MJTI) return; 2086 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2087 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2088 if (JT.empty()) return; 2089 2090 // Pick the directive to use to print the jump table entries, and switch to 2091 // the appropriate section. 2092 const Function &F = MF->getFunction(); 2093 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2094 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2095 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2096 F); 2097 if (JTInDiffSection) { 2098 // Drop it in the readonly section. 2099 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2100 OutStreamer->SwitchSection(ReadOnlySection); 2101 } 2102 2103 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2104 2105 // Jump tables in code sections are marked with a data_region directive 2106 // where that's supported. 2107 if (!JTInDiffSection) 2108 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2109 2110 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2111 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2112 2113 // If this jump table was deleted, ignore it. 2114 if (JTBBs.empty()) continue; 2115 2116 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2117 /// emit a .set directive for each unique entry. 2118 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2119 MAI->doesSetDirectiveSuppressReloc()) { 2120 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2121 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2122 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2123 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2124 const MachineBasicBlock *MBB = JTBBs[ii]; 2125 if (!EmittedSets.insert(MBB).second) 2126 continue; 2127 2128 // .set LJTSet, LBB32-base 2129 const MCExpr *LHS = 2130 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2131 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2132 MCBinaryExpr::createSub(LHS, Base, 2133 OutContext)); 2134 } 2135 } 2136 2137 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2138 // before each jump table. The first label is never referenced, but tells 2139 // the assembler and linker the extents of the jump table object. The 2140 // second label is actually referenced by the code. 2141 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2142 // FIXME: This doesn't have to have any specific name, just any randomly 2143 // named and numbered local label started with 'l' would work. Simplify 2144 // GetJTISymbol. 2145 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2146 2147 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2148 OutStreamer->emitLabel(JTISymbol); 2149 2150 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2151 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2152 } 2153 if (!JTInDiffSection) 2154 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2155 } 2156 2157 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2158 /// current stream. 2159 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2160 const MachineBasicBlock *MBB, 2161 unsigned UID) const { 2162 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2163 const MCExpr *Value = nullptr; 2164 switch (MJTI->getEntryKind()) { 2165 case MachineJumpTableInfo::EK_Inline: 2166 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2167 case MachineJumpTableInfo::EK_Custom32: 2168 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2169 MJTI, MBB, UID, OutContext); 2170 break; 2171 case MachineJumpTableInfo::EK_BlockAddress: 2172 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2173 // .word LBB123 2174 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2175 break; 2176 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2177 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2178 // with a relocation as gp-relative, e.g.: 2179 // .gprel32 LBB123 2180 MCSymbol *MBBSym = MBB->getSymbol(); 2181 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2182 return; 2183 } 2184 2185 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2186 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2187 // with a relocation as gp-relative, e.g.: 2188 // .gpdword LBB123 2189 MCSymbol *MBBSym = MBB->getSymbol(); 2190 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2191 return; 2192 } 2193 2194 case MachineJumpTableInfo::EK_LabelDifference32: { 2195 // Each entry is the address of the block minus the address of the jump 2196 // table. This is used for PIC jump tables where gprel32 is not supported. 2197 // e.g.: 2198 // .word LBB123 - LJTI1_2 2199 // If the .set directive avoids relocations, this is emitted as: 2200 // .set L4_5_set_123, LBB123 - LJTI1_2 2201 // .word L4_5_set_123 2202 if (MAI->doesSetDirectiveSuppressReloc()) { 2203 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2204 OutContext); 2205 break; 2206 } 2207 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2208 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2209 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2210 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2211 break; 2212 } 2213 } 2214 2215 assert(Value && "Unknown entry kind!"); 2216 2217 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2218 OutStreamer->emitValue(Value, EntrySize); 2219 } 2220 2221 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2222 /// special global used by LLVM. If so, emit it and return true, otherwise 2223 /// do nothing and return false. 2224 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2225 if (GV->getName() == "llvm.used") { 2226 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2227 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2228 return true; 2229 } 2230 2231 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2232 if (GV->getSection() == "llvm.metadata" || 2233 GV->hasAvailableExternallyLinkage()) 2234 return true; 2235 2236 if (!GV->hasAppendingLinkage()) return false; 2237 2238 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2239 2240 if (GV->getName() == "llvm.global_ctors") { 2241 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2242 /* isCtor */ true); 2243 2244 return true; 2245 } 2246 2247 if (GV->getName() == "llvm.global_dtors") { 2248 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2249 /* isCtor */ false); 2250 2251 return true; 2252 } 2253 2254 report_fatal_error("unknown special variable"); 2255 } 2256 2257 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2258 /// global in the specified llvm.used list. 2259 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2260 // Should be an array of 'i8*'. 2261 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2262 const GlobalValue *GV = 2263 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2264 if (GV) 2265 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2266 } 2267 } 2268 2269 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2270 const Constant *List, 2271 SmallVector<Structor, 8> &Structors) { 2272 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2273 // the init priority. 2274 if (!isa<ConstantArray>(List)) 2275 return; 2276 2277 // Gather the structors in a form that's convenient for sorting by priority. 2278 for (Value *O : cast<ConstantArray>(List)->operands()) { 2279 auto *CS = cast<ConstantStruct>(O); 2280 if (CS->getOperand(1)->isNullValue()) 2281 break; // Found a null terminator, skip the rest. 2282 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2283 if (!Priority) 2284 continue; // Malformed. 2285 Structors.push_back(Structor()); 2286 Structor &S = Structors.back(); 2287 S.Priority = Priority->getLimitedValue(65535); 2288 S.Func = CS->getOperand(1); 2289 if (!CS->getOperand(2)->isNullValue()) { 2290 if (TM.getTargetTriple().isOSAIX()) 2291 llvm::report_fatal_error( 2292 "associated data of XXStructor list is not yet supported on AIX"); 2293 S.ComdatKey = 2294 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2295 } 2296 } 2297 2298 // Emit the function pointers in the target-specific order 2299 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2300 return L.Priority < R.Priority; 2301 }); 2302 } 2303 2304 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2305 /// priority. 2306 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2307 bool IsCtor) { 2308 SmallVector<Structor, 8> Structors; 2309 preprocessXXStructorList(DL, List, Structors); 2310 if (Structors.empty()) 2311 return; 2312 2313 // Emit the structors in reverse order if we are using the .ctor/.dtor 2314 // initialization scheme. 2315 if (!TM.Options.UseInitArray) 2316 std::reverse(Structors.begin(), Structors.end()); 2317 2318 const Align Align = DL.getPointerPrefAlignment(); 2319 for (Structor &S : Structors) { 2320 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2321 const MCSymbol *KeySym = nullptr; 2322 if (GlobalValue *GV = S.ComdatKey) { 2323 if (GV->isDeclarationForLinker()) 2324 // If the associated variable is not defined in this module 2325 // (it might be available_externally, or have been an 2326 // available_externally definition that was dropped by the 2327 // EliminateAvailableExternally pass), some other TU 2328 // will provide its dynamic initializer. 2329 continue; 2330 2331 KeySym = getSymbol(GV); 2332 } 2333 2334 MCSection *OutputSection = 2335 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2336 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2337 OutStreamer->SwitchSection(OutputSection); 2338 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2339 emitAlignment(Align); 2340 emitXXStructor(DL, S.Func); 2341 } 2342 } 2343 2344 void AsmPrinter::emitModuleIdents(Module &M) { 2345 if (!MAI->hasIdentDirective()) 2346 return; 2347 2348 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2349 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2350 const MDNode *N = NMD->getOperand(i); 2351 assert(N->getNumOperands() == 1 && 2352 "llvm.ident metadata entry can have only one operand"); 2353 const MDString *S = cast<MDString>(N->getOperand(0)); 2354 OutStreamer->emitIdent(S->getString()); 2355 } 2356 } 2357 } 2358 2359 void AsmPrinter::emitModuleCommandLines(Module &M) { 2360 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2361 if (!CommandLine) 2362 return; 2363 2364 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2365 if (!NMD || !NMD->getNumOperands()) 2366 return; 2367 2368 OutStreamer->PushSection(); 2369 OutStreamer->SwitchSection(CommandLine); 2370 OutStreamer->emitZeros(1); 2371 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2372 const MDNode *N = NMD->getOperand(i); 2373 assert(N->getNumOperands() == 1 && 2374 "llvm.commandline metadata entry can have only one operand"); 2375 const MDString *S = cast<MDString>(N->getOperand(0)); 2376 OutStreamer->emitBytes(S->getString()); 2377 OutStreamer->emitZeros(1); 2378 } 2379 OutStreamer->PopSection(); 2380 } 2381 2382 //===--------------------------------------------------------------------===// 2383 // Emission and print routines 2384 // 2385 2386 /// Emit a byte directive and value. 2387 /// 2388 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2389 2390 /// Emit a short directive and value. 2391 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2392 2393 /// Emit a long directive and value. 2394 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2395 2396 /// Emit a long long directive and value. 2397 void AsmPrinter::emitInt64(uint64_t Value) const { 2398 OutStreamer->emitInt64(Value); 2399 } 2400 2401 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2402 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2403 /// .set if it avoids relocations. 2404 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2405 unsigned Size) const { 2406 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2407 } 2408 2409 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2410 /// where the size in bytes of the directive is specified by Size and Label 2411 /// specifies the label. This implicitly uses .set if it is available. 2412 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2413 unsigned Size, 2414 bool IsSectionRelative) const { 2415 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2416 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2417 if (Size > 4) 2418 OutStreamer->emitZeros(Size - 4); 2419 return; 2420 } 2421 2422 // Emit Label+Offset (or just Label if Offset is zero) 2423 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2424 if (Offset) 2425 Expr = MCBinaryExpr::createAdd( 2426 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2427 2428 OutStreamer->emitValue(Expr, Size); 2429 } 2430 2431 //===----------------------------------------------------------------------===// 2432 2433 // EmitAlignment - Emit an alignment directive to the specified power of 2434 // two boundary. If a global value is specified, and if that global has 2435 // an explicit alignment requested, it will override the alignment request 2436 // if required for correctness. 2437 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2438 if (GV) 2439 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2440 2441 if (Alignment == Align(1)) 2442 return; // 1-byte aligned: no need to emit alignment. 2443 2444 if (getCurrentSection()->getKind().isText()) 2445 OutStreamer->emitCodeAlignment(Alignment.value()); 2446 else 2447 OutStreamer->emitValueToAlignment(Alignment.value()); 2448 } 2449 2450 //===----------------------------------------------------------------------===// 2451 // Constant emission. 2452 //===----------------------------------------------------------------------===// 2453 2454 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2455 MCContext &Ctx = OutContext; 2456 2457 if (CV->isNullValue() || isa<UndefValue>(CV)) 2458 return MCConstantExpr::create(0, Ctx); 2459 2460 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2461 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2462 2463 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2464 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2465 2466 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2467 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2468 2469 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2470 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2471 2472 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2473 if (!CE) { 2474 llvm_unreachable("Unknown constant value to lower!"); 2475 } 2476 2477 switch (CE->getOpcode()) { 2478 case Instruction::AddrSpaceCast: { 2479 const Constant *Op = CE->getOperand(0); 2480 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2481 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2482 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2483 return lowerConstant(Op); 2484 2485 // Fallthrough to error. 2486 LLVM_FALLTHROUGH; 2487 } 2488 default: { 2489 // If the code isn't optimized, there may be outstanding folding 2490 // opportunities. Attempt to fold the expression using DataLayout as a 2491 // last resort before giving up. 2492 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2493 if (C != CE) 2494 return lowerConstant(C); 2495 2496 // Otherwise report the problem to the user. 2497 std::string S; 2498 raw_string_ostream OS(S); 2499 OS << "Unsupported expression in static initializer: "; 2500 CE->printAsOperand(OS, /*PrintType=*/false, 2501 !MF ? nullptr : MF->getFunction().getParent()); 2502 report_fatal_error(OS.str()); 2503 } 2504 case Instruction::GetElementPtr: { 2505 // Generate a symbolic expression for the byte address 2506 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2507 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2508 2509 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2510 if (!OffsetAI) 2511 return Base; 2512 2513 int64_t Offset = OffsetAI.getSExtValue(); 2514 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2515 Ctx); 2516 } 2517 2518 case Instruction::Trunc: 2519 // We emit the value and depend on the assembler to truncate the generated 2520 // expression properly. This is important for differences between 2521 // blockaddress labels. Since the two labels are in the same function, it 2522 // is reasonable to treat their delta as a 32-bit value. 2523 LLVM_FALLTHROUGH; 2524 case Instruction::BitCast: 2525 return lowerConstant(CE->getOperand(0)); 2526 2527 case Instruction::IntToPtr: { 2528 const DataLayout &DL = getDataLayout(); 2529 2530 // Handle casts to pointers by changing them into casts to the appropriate 2531 // integer type. This promotes constant folding and simplifies this code. 2532 Constant *Op = CE->getOperand(0); 2533 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2534 false/*ZExt*/); 2535 return lowerConstant(Op); 2536 } 2537 2538 case Instruction::PtrToInt: { 2539 const DataLayout &DL = getDataLayout(); 2540 2541 // Support only foldable casts to/from pointers that can be eliminated by 2542 // changing the pointer to the appropriately sized integer type. 2543 Constant *Op = CE->getOperand(0); 2544 Type *Ty = CE->getType(); 2545 2546 const MCExpr *OpExpr = lowerConstant(Op); 2547 2548 // We can emit the pointer value into this slot if the slot is an 2549 // integer slot equal to the size of the pointer. 2550 // 2551 // If the pointer is larger than the resultant integer, then 2552 // as with Trunc just depend on the assembler to truncate it. 2553 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2554 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2555 return OpExpr; 2556 2557 // Otherwise the pointer is smaller than the resultant integer, mask off 2558 // the high bits so we are sure to get a proper truncation if the input is 2559 // a constant expr. 2560 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2561 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2562 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2563 } 2564 2565 case Instruction::Sub: { 2566 GlobalValue *LHSGV; 2567 APInt LHSOffset; 2568 DSOLocalEquivalent *DSOEquiv; 2569 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2570 getDataLayout(), &DSOEquiv)) { 2571 GlobalValue *RHSGV; 2572 APInt RHSOffset; 2573 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2574 getDataLayout())) { 2575 const MCExpr *RelocExpr = 2576 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2577 if (!RelocExpr) { 2578 const MCExpr *LHSExpr = 2579 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2580 if (DSOEquiv && 2581 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2582 LHSExpr = 2583 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2584 RelocExpr = MCBinaryExpr::createSub( 2585 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2586 } 2587 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2588 if (Addend != 0) 2589 RelocExpr = MCBinaryExpr::createAdd( 2590 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2591 return RelocExpr; 2592 } 2593 } 2594 } 2595 // else fallthrough 2596 LLVM_FALLTHROUGH; 2597 2598 // The MC library also has a right-shift operator, but it isn't consistently 2599 // signed or unsigned between different targets. 2600 case Instruction::Add: 2601 case Instruction::Mul: 2602 case Instruction::SDiv: 2603 case Instruction::SRem: 2604 case Instruction::Shl: 2605 case Instruction::And: 2606 case Instruction::Or: 2607 case Instruction::Xor: { 2608 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2609 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2610 switch (CE->getOpcode()) { 2611 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2612 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2613 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2614 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2615 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2616 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2617 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2618 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2619 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2620 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2621 } 2622 } 2623 } 2624 } 2625 2626 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2627 AsmPrinter &AP, 2628 const Constant *BaseCV = nullptr, 2629 uint64_t Offset = 0); 2630 2631 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2632 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2633 2634 /// isRepeatedByteSequence - Determine whether the given value is 2635 /// composed of a repeated sequence of identical bytes and return the 2636 /// byte value. If it is not a repeated sequence, return -1. 2637 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2638 StringRef Data = V->getRawDataValues(); 2639 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2640 char C = Data[0]; 2641 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2642 if (Data[i] != C) return -1; 2643 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2644 } 2645 2646 /// isRepeatedByteSequence - Determine whether the given value is 2647 /// composed of a repeated sequence of identical bytes and return the 2648 /// byte value. If it is not a repeated sequence, return -1. 2649 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2650 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2651 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2652 assert(Size % 8 == 0); 2653 2654 // Extend the element to take zero padding into account. 2655 APInt Value = CI->getValue().zextOrSelf(Size); 2656 if (!Value.isSplat(8)) 2657 return -1; 2658 2659 return Value.zextOrTrunc(8).getZExtValue(); 2660 } 2661 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2662 // Make sure all array elements are sequences of the same repeated 2663 // byte. 2664 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2665 Constant *Op0 = CA->getOperand(0); 2666 int Byte = isRepeatedByteSequence(Op0, DL); 2667 if (Byte == -1) 2668 return -1; 2669 2670 // All array elements must be equal. 2671 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2672 if (CA->getOperand(i) != Op0) 2673 return -1; 2674 return Byte; 2675 } 2676 2677 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2678 return isRepeatedByteSequence(CDS); 2679 2680 return -1; 2681 } 2682 2683 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2684 const ConstantDataSequential *CDS, 2685 AsmPrinter &AP) { 2686 // See if we can aggregate this into a .fill, if so, emit it as such. 2687 int Value = isRepeatedByteSequence(CDS, DL); 2688 if (Value != -1) { 2689 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2690 // Don't emit a 1-byte object as a .fill. 2691 if (Bytes > 1) 2692 return AP.OutStreamer->emitFill(Bytes, Value); 2693 } 2694 2695 // If this can be emitted with .ascii/.asciz, emit it as such. 2696 if (CDS->isString()) 2697 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2698 2699 // Otherwise, emit the values in successive locations. 2700 unsigned ElementByteSize = CDS->getElementByteSize(); 2701 if (isa<IntegerType>(CDS->getElementType())) { 2702 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2703 if (AP.isVerbose()) 2704 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2705 CDS->getElementAsInteger(i)); 2706 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2707 ElementByteSize); 2708 } 2709 } else { 2710 Type *ET = CDS->getElementType(); 2711 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2712 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2713 } 2714 2715 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2716 unsigned EmittedSize = 2717 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2718 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2719 if (unsigned Padding = Size - EmittedSize) 2720 AP.OutStreamer->emitZeros(Padding); 2721 } 2722 2723 static void emitGlobalConstantArray(const DataLayout &DL, 2724 const ConstantArray *CA, AsmPrinter &AP, 2725 const Constant *BaseCV, uint64_t Offset) { 2726 // See if we can aggregate some values. Make sure it can be 2727 // represented as a series of bytes of the constant value. 2728 int Value = isRepeatedByteSequence(CA, DL); 2729 2730 if (Value != -1) { 2731 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2732 AP.OutStreamer->emitFill(Bytes, Value); 2733 } 2734 else { 2735 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2736 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2737 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2738 } 2739 } 2740 } 2741 2742 static void emitGlobalConstantVector(const DataLayout &DL, 2743 const ConstantVector *CV, AsmPrinter &AP) { 2744 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2745 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2746 2747 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2748 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2749 CV->getType()->getNumElements(); 2750 if (unsigned Padding = Size - EmittedSize) 2751 AP.OutStreamer->emitZeros(Padding); 2752 } 2753 2754 static void emitGlobalConstantStruct(const DataLayout &DL, 2755 const ConstantStruct *CS, AsmPrinter &AP, 2756 const Constant *BaseCV, uint64_t Offset) { 2757 // Print the fields in successive locations. Pad to align if needed! 2758 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2759 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2760 uint64_t SizeSoFar = 0; 2761 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2762 const Constant *Field = CS->getOperand(i); 2763 2764 // Print the actual field value. 2765 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2766 2767 // Check if padding is needed and insert one or more 0s. 2768 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2769 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2770 - Layout->getElementOffset(i)) - FieldSize; 2771 SizeSoFar += FieldSize + PadSize; 2772 2773 // Insert padding - this may include padding to increase the size of the 2774 // current field up to the ABI size (if the struct is not packed) as well 2775 // as padding to ensure that the next field starts at the right offset. 2776 AP.OutStreamer->emitZeros(PadSize); 2777 } 2778 assert(SizeSoFar == Layout->getSizeInBytes() && 2779 "Layout of constant struct may be incorrect!"); 2780 } 2781 2782 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2783 assert(ET && "Unknown float type"); 2784 APInt API = APF.bitcastToAPInt(); 2785 2786 // First print a comment with what we think the original floating-point value 2787 // should have been. 2788 if (AP.isVerbose()) { 2789 SmallString<8> StrVal; 2790 APF.toString(StrVal); 2791 ET->print(AP.OutStreamer->GetCommentOS()); 2792 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2793 } 2794 2795 // Now iterate through the APInt chunks, emitting them in endian-correct 2796 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2797 // floats). 2798 unsigned NumBytes = API.getBitWidth() / 8; 2799 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2800 const uint64_t *p = API.getRawData(); 2801 2802 // PPC's long double has odd notions of endianness compared to how LLVM 2803 // handles it: p[0] goes first for *big* endian on PPC. 2804 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2805 int Chunk = API.getNumWords() - 1; 2806 2807 if (TrailingBytes) 2808 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2809 2810 for (; Chunk >= 0; --Chunk) 2811 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2812 } else { 2813 unsigned Chunk; 2814 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2815 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2816 2817 if (TrailingBytes) 2818 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2819 } 2820 2821 // Emit the tail padding for the long double. 2822 const DataLayout &DL = AP.getDataLayout(); 2823 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2824 } 2825 2826 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2827 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2828 } 2829 2830 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2831 const DataLayout &DL = AP.getDataLayout(); 2832 unsigned BitWidth = CI->getBitWidth(); 2833 2834 // Copy the value as we may massage the layout for constants whose bit width 2835 // is not a multiple of 64-bits. 2836 APInt Realigned(CI->getValue()); 2837 uint64_t ExtraBits = 0; 2838 unsigned ExtraBitsSize = BitWidth & 63; 2839 2840 if (ExtraBitsSize) { 2841 // The bit width of the data is not a multiple of 64-bits. 2842 // The extra bits are expected to be at the end of the chunk of the memory. 2843 // Little endian: 2844 // * Nothing to be done, just record the extra bits to emit. 2845 // Big endian: 2846 // * Record the extra bits to emit. 2847 // * Realign the raw data to emit the chunks of 64-bits. 2848 if (DL.isBigEndian()) { 2849 // Basically the structure of the raw data is a chunk of 64-bits cells: 2850 // 0 1 BitWidth / 64 2851 // [chunk1][chunk2] ... [chunkN]. 2852 // The most significant chunk is chunkN and it should be emitted first. 2853 // However, due to the alignment issue chunkN contains useless bits. 2854 // Realign the chunks so that they contain only useful information: 2855 // ExtraBits 0 1 (BitWidth / 64) - 1 2856 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2857 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2858 ExtraBits = Realigned.getRawData()[0] & 2859 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2860 Realigned.lshrInPlace(ExtraBitsSize); 2861 } else 2862 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2863 } 2864 2865 // We don't expect assemblers to support integer data directives 2866 // for more than 64 bits, so we emit the data in at most 64-bit 2867 // quantities at a time. 2868 const uint64_t *RawData = Realigned.getRawData(); 2869 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2870 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2871 AP.OutStreamer->emitIntValue(Val, 8); 2872 } 2873 2874 if (ExtraBitsSize) { 2875 // Emit the extra bits after the 64-bits chunks. 2876 2877 // Emit a directive that fills the expected size. 2878 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2879 Size -= (BitWidth / 64) * 8; 2880 assert(Size && Size * 8 >= ExtraBitsSize && 2881 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2882 == ExtraBits && "Directive too small for extra bits."); 2883 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2884 } 2885 } 2886 2887 /// Transform a not absolute MCExpr containing a reference to a GOT 2888 /// equivalent global, by a target specific GOT pc relative access to the 2889 /// final symbol. 2890 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2891 const Constant *BaseCst, 2892 uint64_t Offset) { 2893 // The global @foo below illustrates a global that uses a got equivalent. 2894 // 2895 // @bar = global i32 42 2896 // @gotequiv = private unnamed_addr constant i32* @bar 2897 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2898 // i64 ptrtoint (i32* @foo to i64)) 2899 // to i32) 2900 // 2901 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2902 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2903 // form: 2904 // 2905 // foo = cstexpr, where 2906 // cstexpr := <gotequiv> - "." + <cst> 2907 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2908 // 2909 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2910 // 2911 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2912 // gotpcrelcst := <offset from @foo base> + <cst> 2913 MCValue MV; 2914 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2915 return; 2916 const MCSymbolRefExpr *SymA = MV.getSymA(); 2917 if (!SymA) 2918 return; 2919 2920 // Check that GOT equivalent symbol is cached. 2921 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2922 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2923 return; 2924 2925 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2926 if (!BaseGV) 2927 return; 2928 2929 // Check for a valid base symbol 2930 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2931 const MCSymbolRefExpr *SymB = MV.getSymB(); 2932 2933 if (!SymB || BaseSym != &SymB->getSymbol()) 2934 return; 2935 2936 // Make sure to match: 2937 // 2938 // gotpcrelcst := <offset from @foo base> + <cst> 2939 // 2940 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2941 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2942 // if the target knows how to encode it. 2943 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2944 if (GOTPCRelCst < 0) 2945 return; 2946 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2947 return; 2948 2949 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2950 // 2951 // bar: 2952 // .long 42 2953 // gotequiv: 2954 // .quad bar 2955 // foo: 2956 // .long gotequiv - "." + <cst> 2957 // 2958 // is replaced by the target specific equivalent to: 2959 // 2960 // bar: 2961 // .long 42 2962 // foo: 2963 // .long bar@GOTPCREL+<gotpcrelcst> 2964 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2965 const GlobalVariable *GV = Result.first; 2966 int NumUses = (int)Result.second; 2967 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2968 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2969 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2970 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2971 2972 // Update GOT equivalent usage information 2973 --NumUses; 2974 if (NumUses >= 0) 2975 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2976 } 2977 2978 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2979 AsmPrinter &AP, const Constant *BaseCV, 2980 uint64_t Offset) { 2981 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2982 2983 // Globals with sub-elements such as combinations of arrays and structs 2984 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2985 // constant symbol base and the current position with BaseCV and Offset. 2986 if (!BaseCV && CV->hasOneUse()) 2987 BaseCV = dyn_cast<Constant>(CV->user_back()); 2988 2989 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2990 return AP.OutStreamer->emitZeros(Size); 2991 2992 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2993 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2994 2995 if (StoreSize <= 8) { 2996 if (AP.isVerbose()) 2997 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2998 CI->getZExtValue()); 2999 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3000 } else { 3001 emitGlobalConstantLargeInt(CI, AP); 3002 } 3003 3004 // Emit tail padding if needed 3005 if (Size != StoreSize) 3006 AP.OutStreamer->emitZeros(Size - StoreSize); 3007 3008 return; 3009 } 3010 3011 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3012 return emitGlobalConstantFP(CFP, AP); 3013 3014 if (isa<ConstantPointerNull>(CV)) { 3015 AP.OutStreamer->emitIntValue(0, Size); 3016 return; 3017 } 3018 3019 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3020 return emitGlobalConstantDataSequential(DL, CDS, AP); 3021 3022 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3023 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 3024 3025 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3026 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 3027 3028 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3029 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3030 // vectors). 3031 if (CE->getOpcode() == Instruction::BitCast) 3032 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3033 3034 if (Size > 8) { 3035 // If the constant expression's size is greater than 64-bits, then we have 3036 // to emit the value in chunks. Try to constant fold the value and emit it 3037 // that way. 3038 Constant *New = ConstantFoldConstant(CE, DL); 3039 if (New != CE) 3040 return emitGlobalConstantImpl(DL, New, AP); 3041 } 3042 } 3043 3044 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3045 return emitGlobalConstantVector(DL, V, AP); 3046 3047 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3048 // thread the streamer with EmitValue. 3049 const MCExpr *ME = AP.lowerConstant(CV); 3050 3051 // Since lowerConstant already folded and got rid of all IR pointer and 3052 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3053 // directly. 3054 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3055 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3056 3057 AP.OutStreamer->emitValue(ME, Size); 3058 } 3059 3060 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3061 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 3062 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3063 if (Size) 3064 emitGlobalConstantImpl(DL, CV, *this); 3065 else if (MAI->hasSubsectionsViaSymbols()) { 3066 // If the global has zero size, emit a single byte so that two labels don't 3067 // look like they are at the same location. 3068 OutStreamer->emitIntValue(0, 1); 3069 } 3070 } 3071 3072 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3073 // Target doesn't support this yet! 3074 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3075 } 3076 3077 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3078 if (Offset > 0) 3079 OS << '+' << Offset; 3080 else if (Offset < 0) 3081 OS << Offset; 3082 } 3083 3084 void AsmPrinter::emitNops(unsigned N) { 3085 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3086 for (; N; --N) 3087 EmitToStreamer(*OutStreamer, Nop); 3088 } 3089 3090 //===----------------------------------------------------------------------===// 3091 // Symbol Lowering Routines. 3092 //===----------------------------------------------------------------------===// 3093 3094 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3095 return OutContext.createTempSymbol(Name, true); 3096 } 3097 3098 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3099 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3100 } 3101 3102 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3103 return MMI->getAddrLabelSymbol(BB); 3104 } 3105 3106 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3107 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3108 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3109 const MachineConstantPoolEntry &CPE = 3110 MF->getConstantPool()->getConstants()[CPID]; 3111 if (!CPE.isMachineConstantPoolEntry()) { 3112 const DataLayout &DL = MF->getDataLayout(); 3113 SectionKind Kind = CPE.getSectionKind(&DL); 3114 const Constant *C = CPE.Val.ConstVal; 3115 Align Alignment = CPE.Alignment; 3116 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3117 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3118 Alignment))) { 3119 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3120 if (Sym->isUndefined()) 3121 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3122 return Sym; 3123 } 3124 } 3125 } 3126 } 3127 3128 const DataLayout &DL = getDataLayout(); 3129 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3130 "CPI" + Twine(getFunctionNumber()) + "_" + 3131 Twine(CPID)); 3132 } 3133 3134 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3135 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3136 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3137 } 3138 3139 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3140 /// FIXME: privatize to AsmPrinter. 3141 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3142 const DataLayout &DL = getDataLayout(); 3143 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3144 Twine(getFunctionNumber()) + "_" + 3145 Twine(UID) + "_set_" + Twine(MBBID)); 3146 } 3147 3148 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3149 StringRef Suffix) const { 3150 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3151 } 3152 3153 /// Return the MCSymbol for the specified ExternalSymbol. 3154 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3155 SmallString<60> NameStr; 3156 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3157 return OutContext.getOrCreateSymbol(NameStr); 3158 } 3159 3160 /// PrintParentLoopComment - Print comments about parent loops of this one. 3161 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3162 unsigned FunctionNumber) { 3163 if (!Loop) return; 3164 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3165 OS.indent(Loop->getLoopDepth()*2) 3166 << "Parent Loop BB" << FunctionNumber << "_" 3167 << Loop->getHeader()->getNumber() 3168 << " Depth=" << Loop->getLoopDepth() << '\n'; 3169 } 3170 3171 /// PrintChildLoopComment - Print comments about child loops within 3172 /// the loop for this basic block, with nesting. 3173 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3174 unsigned FunctionNumber) { 3175 // Add child loop information 3176 for (const MachineLoop *CL : *Loop) { 3177 OS.indent(CL->getLoopDepth()*2) 3178 << "Child Loop BB" << FunctionNumber << "_" 3179 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3180 << '\n'; 3181 PrintChildLoopComment(OS, CL, FunctionNumber); 3182 } 3183 } 3184 3185 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3186 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3187 const MachineLoopInfo *LI, 3188 const AsmPrinter &AP) { 3189 // Add loop depth information 3190 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3191 if (!Loop) return; 3192 3193 MachineBasicBlock *Header = Loop->getHeader(); 3194 assert(Header && "No header for loop"); 3195 3196 // If this block is not a loop header, just print out what is the loop header 3197 // and return. 3198 if (Header != &MBB) { 3199 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3200 Twine(AP.getFunctionNumber())+"_" + 3201 Twine(Loop->getHeader()->getNumber())+ 3202 " Depth="+Twine(Loop->getLoopDepth())); 3203 return; 3204 } 3205 3206 // Otherwise, it is a loop header. Print out information about child and 3207 // parent loops. 3208 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3209 3210 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3211 3212 OS << "=>"; 3213 OS.indent(Loop->getLoopDepth()*2-2); 3214 3215 OS << "This "; 3216 if (Loop->isInnermost()) 3217 OS << "Inner "; 3218 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3219 3220 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3221 } 3222 3223 /// emitBasicBlockStart - This method prints the label for the specified 3224 /// MachineBasicBlock, an alignment (if present) and a comment describing 3225 /// it if appropriate. 3226 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3227 // End the previous funclet and start a new one. 3228 if (MBB.isEHFuncletEntry()) { 3229 for (const HandlerInfo &HI : Handlers) { 3230 HI.Handler->endFunclet(); 3231 HI.Handler->beginFunclet(MBB); 3232 } 3233 } 3234 3235 // Emit an alignment directive for this block, if needed. 3236 const Align Alignment = MBB.getAlignment(); 3237 if (Alignment != Align(1)) 3238 emitAlignment(Alignment); 3239 3240 // Switch to a new section if this basic block must begin a section. The 3241 // entry block is always placed in the function section and is handled 3242 // separately. 3243 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3244 OutStreamer->SwitchSection( 3245 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3246 MBB, TM)); 3247 CurrentSectionBeginSym = MBB.getSymbol(); 3248 } 3249 3250 // If the block has its address taken, emit any labels that were used to 3251 // reference the block. It is possible that there is more than one label 3252 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3253 // the references were generated. 3254 if (MBB.hasAddressTaken()) { 3255 const BasicBlock *BB = MBB.getBasicBlock(); 3256 if (isVerbose()) 3257 OutStreamer->AddComment("Block address taken"); 3258 3259 // MBBs can have their address taken as part of CodeGen without having 3260 // their corresponding BB's address taken in IR 3261 if (BB->hasAddressTaken()) 3262 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3263 OutStreamer->emitLabel(Sym); 3264 } 3265 3266 // Print some verbose block comments. 3267 if (isVerbose()) { 3268 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3269 if (BB->hasName()) { 3270 BB->printAsOperand(OutStreamer->GetCommentOS(), 3271 /*PrintType=*/false, BB->getModule()); 3272 OutStreamer->GetCommentOS() << '\n'; 3273 } 3274 } 3275 3276 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3277 emitBasicBlockLoopComments(MBB, MLI, *this); 3278 } 3279 3280 // Print the main label for the block. 3281 if (shouldEmitLabelForBasicBlock(MBB)) { 3282 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3283 OutStreamer->AddComment("Label of block must be emitted"); 3284 OutStreamer->emitLabel(MBB.getSymbol()); 3285 } else { 3286 if (isVerbose()) { 3287 // NOTE: Want this comment at start of line, don't emit with AddComment. 3288 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3289 false); 3290 } 3291 } 3292 3293 if (MBB.isEHCatchretTarget() && 3294 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3295 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3296 } 3297 3298 // With BB sections, each basic block must handle CFI information on its own 3299 // if it begins a section (Entry block is handled separately by 3300 // AsmPrinterHandler::beginFunction). 3301 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3302 for (const HandlerInfo &HI : Handlers) 3303 HI.Handler->beginBasicBlock(MBB); 3304 } 3305 3306 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3307 // Check if CFI information needs to be updated for this MBB with basic block 3308 // sections. 3309 if (MBB.isEndSection()) 3310 for (const HandlerInfo &HI : Handlers) 3311 HI.Handler->endBasicBlock(MBB); 3312 } 3313 3314 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3315 bool IsDefinition) const { 3316 MCSymbolAttr Attr = MCSA_Invalid; 3317 3318 switch (Visibility) { 3319 default: break; 3320 case GlobalValue::HiddenVisibility: 3321 if (IsDefinition) 3322 Attr = MAI->getHiddenVisibilityAttr(); 3323 else 3324 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3325 break; 3326 case GlobalValue::ProtectedVisibility: 3327 Attr = MAI->getProtectedVisibilityAttr(); 3328 break; 3329 } 3330 3331 if (Attr != MCSA_Invalid) 3332 OutStreamer->emitSymbolAttribute(Sym, Attr); 3333 } 3334 3335 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3336 const MachineBasicBlock &MBB) const { 3337 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3338 // in the labels mode (option `=labels`) and every section beginning in the 3339 // sections mode (`=all` and `=list=`). 3340 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3341 return true; 3342 // A label is needed for any block with at least one predecessor (when that 3343 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3344 // entry, or if a label is forced). 3345 return !MBB.pred_empty() && 3346 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3347 MBB.hasLabelMustBeEmitted()); 3348 } 3349 3350 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3351 /// exactly one predecessor and the control transfer mechanism between 3352 /// the predecessor and this block is a fall-through. 3353 bool AsmPrinter:: 3354 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3355 // If this is a landing pad, it isn't a fall through. If it has no preds, 3356 // then nothing falls through to it. 3357 if (MBB->isEHPad() || MBB->pred_empty()) 3358 return false; 3359 3360 // If there isn't exactly one predecessor, it can't be a fall through. 3361 if (MBB->pred_size() > 1) 3362 return false; 3363 3364 // The predecessor has to be immediately before this block. 3365 MachineBasicBlock *Pred = *MBB->pred_begin(); 3366 if (!Pred->isLayoutSuccessor(MBB)) 3367 return false; 3368 3369 // If the block is completely empty, then it definitely does fall through. 3370 if (Pred->empty()) 3371 return true; 3372 3373 // Check the terminators in the previous blocks 3374 for (const auto &MI : Pred->terminators()) { 3375 // If it is not a simple branch, we are in a table somewhere. 3376 if (!MI.isBranch() || MI.isIndirectBranch()) 3377 return false; 3378 3379 // If we are the operands of one of the branches, this is not a fall 3380 // through. Note that targets with delay slots will usually bundle 3381 // terminators with the delay slot instruction. 3382 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3383 if (OP->isJTI()) 3384 return false; 3385 if (OP->isMBB() && OP->getMBB() == MBB) 3386 return false; 3387 } 3388 } 3389 3390 return true; 3391 } 3392 3393 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3394 if (!S.usesMetadata()) 3395 return nullptr; 3396 3397 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3398 gcp_map_type::iterator GCPI = GCMap.find(&S); 3399 if (GCPI != GCMap.end()) 3400 return GCPI->second.get(); 3401 3402 auto Name = S.getName(); 3403 3404 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3405 GCMetadataPrinterRegistry::entries()) 3406 if (Name == GCMetaPrinter.getName()) { 3407 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3408 GMP->S = &S; 3409 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3410 return IterBool.first->second.get(); 3411 } 3412 3413 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3414 } 3415 3416 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3417 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3418 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3419 bool NeedsDefault = false; 3420 if (MI->begin() == MI->end()) 3421 // No GC strategy, use the default format. 3422 NeedsDefault = true; 3423 else 3424 for (auto &I : *MI) { 3425 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3426 if (MP->emitStackMaps(SM, *this)) 3427 continue; 3428 // The strategy doesn't have printer or doesn't emit custom stack maps. 3429 // Use the default format. 3430 NeedsDefault = true; 3431 } 3432 3433 if (NeedsDefault) 3434 SM.serializeToStackMapSection(); 3435 } 3436 3437 /// Pin vtable to this file. 3438 AsmPrinterHandler::~AsmPrinterHandler() = default; 3439 3440 void AsmPrinterHandler::markFunctionEnd() {} 3441 3442 // In the binary's "xray_instr_map" section, an array of these function entries 3443 // describes each instrumentation point. When XRay patches your code, the index 3444 // into this table will be given to your handler as a patch point identifier. 3445 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3446 auto Kind8 = static_cast<uint8_t>(Kind); 3447 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3448 Out->emitBinaryData( 3449 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3450 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3451 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3452 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3453 Out->emitZeros(Padding); 3454 } 3455 3456 void AsmPrinter::emitXRayTable() { 3457 if (Sleds.empty()) 3458 return; 3459 3460 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3461 const Function &F = MF->getFunction(); 3462 MCSection *InstMap = nullptr; 3463 MCSection *FnSledIndex = nullptr; 3464 const Triple &TT = TM.getTargetTriple(); 3465 // Use PC-relative addresses on all targets. 3466 if (TT.isOSBinFormatELF()) { 3467 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3468 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3469 StringRef GroupName; 3470 if (F.hasComdat()) { 3471 Flags |= ELF::SHF_GROUP; 3472 GroupName = F.getComdat()->getName(); 3473 } 3474 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3475 Flags, 0, GroupName, F.hasComdat(), 3476 MCSection::NonUniqueID, LinkedToSym); 3477 3478 if (!TM.Options.XRayOmitFunctionIndex) 3479 FnSledIndex = OutContext.getELFSection( 3480 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3481 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3482 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3483 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3484 SectionKind::getReadOnlyWithRel()); 3485 if (!TM.Options.XRayOmitFunctionIndex) 3486 FnSledIndex = OutContext.getMachOSection( 3487 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3488 } else { 3489 llvm_unreachable("Unsupported target"); 3490 } 3491 3492 auto WordSizeBytes = MAI->getCodePointerSize(); 3493 3494 // Now we switch to the instrumentation map section. Because this is done 3495 // per-function, we are able to create an index entry that will represent the 3496 // range of sleds associated with a function. 3497 auto &Ctx = OutContext; 3498 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3499 OutStreamer->SwitchSection(InstMap); 3500 OutStreamer->emitLabel(SledsStart); 3501 for (const auto &Sled : Sleds) { 3502 MCSymbol *Dot = Ctx.createTempSymbol(); 3503 OutStreamer->emitLabel(Dot); 3504 OutStreamer->emitValueImpl( 3505 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3506 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3507 WordSizeBytes); 3508 OutStreamer->emitValueImpl( 3509 MCBinaryExpr::createSub( 3510 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3511 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3512 MCConstantExpr::create(WordSizeBytes, Ctx), 3513 Ctx), 3514 Ctx), 3515 WordSizeBytes); 3516 Sled.emit(WordSizeBytes, OutStreamer.get()); 3517 } 3518 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3519 OutStreamer->emitLabel(SledsEnd); 3520 3521 // We then emit a single entry in the index per function. We use the symbols 3522 // that bound the instrumentation map as the range for a specific function. 3523 // Each entry here will be 2 * word size aligned, as we're writing down two 3524 // pointers. This should work for both 32-bit and 64-bit platforms. 3525 if (FnSledIndex) { 3526 OutStreamer->SwitchSection(FnSledIndex); 3527 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3528 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3529 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3530 OutStreamer->SwitchSection(PrevSection); 3531 } 3532 Sleds.clear(); 3533 } 3534 3535 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3536 SledKind Kind, uint8_t Version) { 3537 const Function &F = MI.getMF()->getFunction(); 3538 auto Attr = F.getFnAttribute("function-instrument"); 3539 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3540 bool AlwaysInstrument = 3541 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3542 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3543 Kind = SledKind::LOG_ARGS_ENTER; 3544 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3545 AlwaysInstrument, &F, Version}); 3546 } 3547 3548 void AsmPrinter::emitPatchableFunctionEntries() { 3549 const Function &F = MF->getFunction(); 3550 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3551 (void)F.getFnAttribute("patchable-function-prefix") 3552 .getValueAsString() 3553 .getAsInteger(10, PatchableFunctionPrefix); 3554 (void)F.getFnAttribute("patchable-function-entry") 3555 .getValueAsString() 3556 .getAsInteger(10, PatchableFunctionEntry); 3557 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3558 return; 3559 const unsigned PointerSize = getPointerSize(); 3560 if (TM.getTargetTriple().isOSBinFormatELF()) { 3561 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3562 const MCSymbolELF *LinkedToSym = nullptr; 3563 StringRef GroupName; 3564 3565 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3566 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3567 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3568 Flags |= ELF::SHF_LINK_ORDER; 3569 if (F.hasComdat()) { 3570 Flags |= ELF::SHF_GROUP; 3571 GroupName = F.getComdat()->getName(); 3572 } 3573 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3574 } 3575 OutStreamer->SwitchSection(OutContext.getELFSection( 3576 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3577 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3578 emitAlignment(Align(PointerSize)); 3579 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3580 } 3581 } 3582 3583 uint16_t AsmPrinter::getDwarfVersion() const { 3584 return OutStreamer->getContext().getDwarfVersion(); 3585 } 3586 3587 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3588 OutStreamer->getContext().setDwarfVersion(Version); 3589 } 3590 3591 bool AsmPrinter::isDwarf64() const { 3592 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3593 } 3594 3595 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3596 return dwarf::getDwarfOffsetByteSize( 3597 OutStreamer->getContext().getDwarfFormat()); 3598 } 3599 3600 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3601 return dwarf::getUnitLengthFieldByteSize( 3602 OutStreamer->getContext().getDwarfFormat()); 3603 } 3604