1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WasmException.h"
20 #include "WinCFGuard.h"
21 #include "WinException.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/ConstantFolding.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/GCStrategy.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
55 #include "llvm/CodeGen/MachineOperand.h"
56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/MC/MCAsmInfo.h"
85 #include "llvm/MC/MCCodePadder.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCTargetOptions.h"
100 #include "llvm/MC/MCValue.h"
101 #include "llvm/MC/SectionKind.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/Format.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/Path.h"
110 #include "llvm/Support/TargetRegistry.h"
111 #include "llvm/Support/Timer.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetLoweringObjectFile.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cinttypes>
119 #include <cstdint>
120 #include <iterator>
121 #include <limits>
122 #include <memory>
123 #include <string>
124 #include <utility>
125 #include <vector>
126 
127 using namespace llvm;
128 
129 #define DEBUG_TYPE "asm-printer"
130 
131 static const char *const DWARFGroupName = "dwarf";
132 static const char *const DWARFGroupDescription = "DWARF Emission";
133 static const char *const DbgTimerName = "emit";
134 static const char *const DbgTimerDescription = "Debug Info Emission";
135 static const char *const EHTimerName = "write_exception";
136 static const char *const EHTimerDescription = "DWARF Exception Writer";
137 static const char *const CFGuardName = "Control Flow Guard";
138 static const char *const CFGuardDescription = "Control Flow Guard Tables";
139 static const char *const CodeViewLineTablesGroupName = "linetables";
140 static const char *const CodeViewLineTablesGroupDescription =
141   "CodeView Line Tables";
142 
143 STATISTIC(EmittedInsts, "Number of machine instrs printed");
144 
145 static cl::opt<bool>
146     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
147                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
148 
149 char AsmPrinter::ID = 0;
150 
151 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
152 
153 static gcp_map_type &getGCMap(void *&P) {
154   if (!P)
155     P = new gcp_map_type();
156   return *(gcp_map_type*)P;
157 }
158 
159 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
160 /// value in log2 form.  This rounds up to the preferred alignment if possible
161 /// and legal.
162 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
163                                    unsigned InBits = 0) {
164   unsigned NumBits = 0;
165   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
166     NumBits = DL.getPreferredAlignmentLog(GVar);
167 
168   // If InBits is specified, round it to it.
169   if (InBits > NumBits)
170     NumBits = InBits;
171 
172   // If the GV has a specified alignment, take it into account.
173   if (GV->getAlignment() == 0)
174     return NumBits;
175 
176   unsigned GVAlign = Log2_32(GV->getAlignment());
177 
178   // If the GVAlign is larger than NumBits, or if we are required to obey
179   // NumBits because the GV has an assigned section, obey it.
180   if (GVAlign > NumBits || GV->hasSection())
181     NumBits = GVAlign;
182   return NumBits;
183 }
184 
185 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
186     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
187       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
188   VerboseAsm = OutStreamer->isVerboseAsm();
189 }
190 
191 AsmPrinter::~AsmPrinter() {
192   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
193 
194   if (GCMetadataPrinters) {
195     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
196 
197     delete &GCMap;
198     GCMetadataPrinters = nullptr;
199   }
200 }
201 
202 bool AsmPrinter::isPositionIndependent() const {
203   return TM.isPositionIndependent();
204 }
205 
206 /// getFunctionNumber - Return a unique ID for the current function.
207 unsigned AsmPrinter::getFunctionNumber() const {
208   return MF->getFunctionNumber();
209 }
210 
211 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
212   return *TM.getObjFileLowering();
213 }
214 
215 const DataLayout &AsmPrinter::getDataLayout() const {
216   return MMI->getModule()->getDataLayout();
217 }
218 
219 // Do not use the cached DataLayout because some client use it without a Module
220 // (dsymutil, llvm-dwarfdump).
221 unsigned AsmPrinter::getPointerSize() const {
222   return TM.getPointerSize(0); // FIXME: Default address space
223 }
224 
225 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
226   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
227   return MF->getSubtarget<MCSubtargetInfo>();
228 }
229 
230 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
231   S.EmitInstruction(Inst, getSubtargetInfo());
232 }
233 
234 /// getCurrentSection() - Return the current section we are emitting to.
235 const MCSection *AsmPrinter::getCurrentSection() const {
236   return OutStreamer->getCurrentSectionOnly();
237 }
238 
239 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
240   AU.setPreservesAll();
241   MachineFunctionPass::getAnalysisUsage(AU);
242   AU.addRequired<MachineModuleInfo>();
243   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
244   AU.addRequired<GCModuleInfo>();
245 }
246 
247 bool AsmPrinter::doInitialization(Module &M) {
248   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
249 
250   // Initialize TargetLoweringObjectFile.
251   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
252     .Initialize(OutContext, TM);
253 
254   OutStreamer->InitSections(false);
255 
256   // Emit the version-min deployment target directive if needed.
257   //
258   // FIXME: If we end up with a collection of these sorts of Darwin-specific
259   // or ELF-specific things, it may make sense to have a platform helper class
260   // that will work with the target helper class. For now keep it here, as the
261   // alternative is duplicated code in each of the target asm printers that
262   // use the directive, where it would need the same conditionalization
263   // anyway.
264   const Triple &Target = TM.getTargetTriple();
265   OutStreamer->EmitVersionForTarget(Target);
266 
267   // Allow the target to emit any magic that it wants at the start of the file.
268   EmitStartOfAsmFile(M);
269 
270   // Very minimal debug info. It is ignored if we emit actual debug info. If we
271   // don't, this at least helps the user find where a global came from.
272   if (MAI->hasSingleParameterDotFile()) {
273     // .file "foo.c"
274     OutStreamer->EmitFileDirective(
275         llvm::sys::path::filename(M.getSourceFileName()));
276   }
277 
278   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
279   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
280   for (auto &I : *MI)
281     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
282       MP->beginAssembly(M, *MI, *this);
283 
284   // Emit module-level inline asm if it exists.
285   if (!M.getModuleInlineAsm().empty()) {
286     // We're at the module level. Construct MCSubtarget from the default CPU
287     // and target triple.
288     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
289         TM.getTargetTriple().str(), TM.getTargetCPU(),
290         TM.getTargetFeatureString()));
291     OutStreamer->AddComment("Start of file scope inline assembly");
292     OutStreamer->AddBlankLine();
293     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
294                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
295     OutStreamer->AddComment("End of file scope inline assembly");
296     OutStreamer->AddBlankLine();
297   }
298 
299   if (MAI->doesSupportDebugInformation()) {
300     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
301     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
302       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
303                                      DbgTimerName, DbgTimerDescription,
304                                      CodeViewLineTablesGroupName,
305                                      CodeViewLineTablesGroupDescription));
306     }
307     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
308       DD = new DwarfDebug(this, &M);
309       DD->beginModule();
310       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
311                                      DWARFGroupName, DWARFGroupDescription));
312     }
313   }
314 
315   switch (MAI->getExceptionHandlingType()) {
316   case ExceptionHandling::SjLj:
317   case ExceptionHandling::DwarfCFI:
318   case ExceptionHandling::ARM:
319     isCFIMoveForDebugging = true;
320     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
321       break;
322     for (auto &F: M.getFunctionList()) {
323       // If the module contains any function with unwind data,
324       // .eh_frame has to be emitted.
325       // Ignore functions that won't get emitted.
326       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
327         isCFIMoveForDebugging = false;
328         break;
329       }
330     }
331     break;
332   default:
333     isCFIMoveForDebugging = false;
334     break;
335   }
336 
337   EHStreamer *ES = nullptr;
338   switch (MAI->getExceptionHandlingType()) {
339   case ExceptionHandling::None:
340     break;
341   case ExceptionHandling::SjLj:
342   case ExceptionHandling::DwarfCFI:
343     ES = new DwarfCFIException(this);
344     break;
345   case ExceptionHandling::ARM:
346     ES = new ARMException(this);
347     break;
348   case ExceptionHandling::WinEH:
349     switch (MAI->getWinEHEncodingType()) {
350     default: llvm_unreachable("unsupported unwinding information encoding");
351     case WinEH::EncodingType::Invalid:
352       break;
353     case WinEH::EncodingType::X86:
354     case WinEH::EncodingType::Itanium:
355       ES = new WinException(this);
356       break;
357     }
358     break;
359   case ExceptionHandling::Wasm:
360     ES = new WasmException(this);
361     break;
362   }
363   if (ES)
364     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
365                                    DWARFGroupName, DWARFGroupDescription));
366 
367   if (mdconst::extract_or_null<ConstantInt>(
368           MMI->getModule()->getModuleFlag("cfguardtable")))
369     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
370                                    CFGuardDescription, DWARFGroupName,
371                                    DWARFGroupDescription));
372 
373   return false;
374 }
375 
376 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
377   if (!MAI.hasWeakDefCanBeHiddenDirective())
378     return false;
379 
380   return GV->canBeOmittedFromSymbolTable();
381 }
382 
383 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
384   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
385   switch (Linkage) {
386   case GlobalValue::CommonLinkage:
387   case GlobalValue::LinkOnceAnyLinkage:
388   case GlobalValue::LinkOnceODRLinkage:
389   case GlobalValue::WeakAnyLinkage:
390   case GlobalValue::WeakODRLinkage:
391     if (MAI->hasWeakDefDirective()) {
392       // .globl _foo
393       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
394 
395       if (!canBeHidden(GV, *MAI))
396         // .weak_definition _foo
397         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
398       else
399         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
400     } else if (MAI->hasLinkOnceDirective()) {
401       // .globl _foo
402       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
403       //NOTE: linkonce is handled by the section the symbol was assigned to.
404     } else {
405       // .weak _foo
406       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
407     }
408     return;
409   case GlobalValue::ExternalLinkage:
410     // If external, declare as a global symbol: .globl _foo
411     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
412     return;
413   case GlobalValue::PrivateLinkage:
414   case GlobalValue::InternalLinkage:
415     return;
416   case GlobalValue::AppendingLinkage:
417   case GlobalValue::AvailableExternallyLinkage:
418   case GlobalValue::ExternalWeakLinkage:
419     llvm_unreachable("Should never emit this");
420   }
421   llvm_unreachable("Unknown linkage type!");
422 }
423 
424 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
425                                    const GlobalValue *GV) const {
426   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
427 }
428 
429 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
430   return TM.getSymbol(GV);
431 }
432 
433 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
434 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
435   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
436   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
437          "No emulated TLS variables in the common section");
438 
439   // Never emit TLS variable xyz in emulated TLS model.
440   // The initialization value is in __emutls_t.xyz instead of xyz.
441   if (IsEmuTLSVar)
442     return;
443 
444   if (GV->hasInitializer()) {
445     // Check to see if this is a special global used by LLVM, if so, emit it.
446     if (EmitSpecialLLVMGlobal(GV))
447       return;
448 
449     // Skip the emission of global equivalents. The symbol can be emitted later
450     // on by emitGlobalGOTEquivs in case it turns out to be needed.
451     if (GlobalGOTEquivs.count(getSymbol(GV)))
452       return;
453 
454     if (isVerbose()) {
455       // When printing the control variable __emutls_v.*,
456       // we don't need to print the original TLS variable name.
457       GV->printAsOperand(OutStreamer->GetCommentOS(),
458                      /*PrintType=*/false, GV->getParent());
459       OutStreamer->GetCommentOS() << '\n';
460     }
461   }
462 
463   MCSymbol *GVSym = getSymbol(GV);
464   MCSymbol *EmittedSym = GVSym;
465 
466   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
467   // attributes.
468   // GV's or GVSym's attributes will be used for the EmittedSym.
469   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
470 
471   if (!GV->hasInitializer())   // External globals require no extra code.
472     return;
473 
474   GVSym->redefineIfPossible();
475   if (GVSym->isDefined() || GVSym->isVariable())
476     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
477                        "' is already defined");
478 
479   if (MAI->hasDotTypeDotSizeDirective())
480     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
481 
482   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
483 
484   const DataLayout &DL = GV->getParent()->getDataLayout();
485   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
486 
487   // If the alignment is specified, we *must* obey it.  Overaligning a global
488   // with a specified alignment is a prompt way to break globals emitted to
489   // sections and expected to be contiguous (e.g. ObjC metadata).
490   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
491 
492   for (const HandlerInfo &HI : Handlers) {
493     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
494                        HI.TimerGroupName, HI.TimerGroupDescription,
495                        TimePassesIsEnabled);
496     HI.Handler->setSymbolSize(GVSym, Size);
497   }
498 
499   // Handle common symbols
500   if (GVKind.isCommon()) {
501     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
502     unsigned Align = 1 << AlignLog;
503     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
504       Align = 0;
505 
506     // .comm _foo, 42, 4
507     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
508     return;
509   }
510 
511   // Determine to which section this global should be emitted.
512   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
513 
514   // If we have a bss global going to a section that supports the
515   // zerofill directive, do so here.
516   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
517       TheSection->isVirtualSection()) {
518     if (Size == 0)
519       Size = 1; // zerofill of 0 bytes is undefined.
520     unsigned Align = 1 << AlignLog;
521     EmitLinkage(GV, GVSym);
522     // .zerofill __DATA, __bss, _foo, 400, 5
523     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
524     return;
525   }
526 
527   // If this is a BSS local symbol and we are emitting in the BSS
528   // section use .lcomm/.comm directive.
529   if (GVKind.isBSSLocal() &&
530       getObjFileLowering().getBSSSection() == TheSection) {
531     if (Size == 0)
532       Size = 1; // .comm Foo, 0 is undefined, avoid it.
533     unsigned Align = 1 << AlignLog;
534 
535     // Use .lcomm only if it supports user-specified alignment.
536     // Otherwise, while it would still be correct to use .lcomm in some
537     // cases (e.g. when Align == 1), the external assembler might enfore
538     // some -unknown- default alignment behavior, which could cause
539     // spurious differences between external and integrated assembler.
540     // Prefer to simply fall back to .local / .comm in this case.
541     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
542       // .lcomm _foo, 42
543       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
544       return;
545     }
546 
547     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
548       Align = 0;
549 
550     // .local _foo
551     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
552     // .comm _foo, 42, 4
553     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
554     return;
555   }
556 
557   // Handle thread local data for mach-o which requires us to output an
558   // additional structure of data and mangle the original symbol so that we
559   // can reference it later.
560   //
561   // TODO: This should become an "emit thread local global" method on TLOF.
562   // All of this macho specific stuff should be sunk down into TLOFMachO and
563   // stuff like "TLSExtraDataSection" should no longer be part of the parent
564   // TLOF class.  This will also make it more obvious that stuff like
565   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
566   // specific code.
567   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
568     // Emit the .tbss symbol
569     MCSymbol *MangSym =
570         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
571 
572     if (GVKind.isThreadBSS()) {
573       TheSection = getObjFileLowering().getTLSBSSSection();
574       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
575     } else if (GVKind.isThreadData()) {
576       OutStreamer->SwitchSection(TheSection);
577 
578       EmitAlignment(AlignLog, GV);
579       OutStreamer->EmitLabel(MangSym);
580 
581       EmitGlobalConstant(GV->getParent()->getDataLayout(),
582                          GV->getInitializer());
583     }
584 
585     OutStreamer->AddBlankLine();
586 
587     // Emit the variable struct for the runtime.
588     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
589 
590     OutStreamer->SwitchSection(TLVSect);
591     // Emit the linkage here.
592     EmitLinkage(GV, GVSym);
593     OutStreamer->EmitLabel(GVSym);
594 
595     // Three pointers in size:
596     //   - __tlv_bootstrap - used to make sure support exists
597     //   - spare pointer, used when mapped by the runtime
598     //   - pointer to mangled symbol above with initializer
599     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
600     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
601                                 PtrSize);
602     OutStreamer->EmitIntValue(0, PtrSize);
603     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
604 
605     OutStreamer->AddBlankLine();
606     return;
607   }
608 
609   MCSymbol *EmittedInitSym = GVSym;
610 
611   OutStreamer->SwitchSection(TheSection);
612 
613   EmitLinkage(GV, EmittedInitSym);
614   EmitAlignment(AlignLog, GV);
615 
616   OutStreamer->EmitLabel(EmittedInitSym);
617 
618   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
619 
620   if (MAI->hasDotTypeDotSizeDirective())
621     // .size foo, 42
622     OutStreamer->emitELFSize(EmittedInitSym,
623                              MCConstantExpr::create(Size, OutContext));
624 
625   OutStreamer->AddBlankLine();
626 }
627 
628 /// Emit the directive and value for debug thread local expression
629 ///
630 /// \p Value - The value to emit.
631 /// \p Size - The size of the integer (in bytes) to emit.
632 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
633                                       unsigned Size) const {
634   OutStreamer->EmitValue(Value, Size);
635 }
636 
637 /// EmitFunctionHeader - This method emits the header for the current
638 /// function.
639 void AsmPrinter::EmitFunctionHeader() {
640   const Function &F = MF->getFunction();
641 
642   if (isVerbose())
643     OutStreamer->GetCommentOS()
644         << "-- Begin function "
645         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
646 
647   // Print out constants referenced by the function
648   EmitConstantPool();
649 
650   // Print the 'header' of function.
651   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
652   EmitVisibility(CurrentFnSym, F.getVisibility());
653 
654   EmitLinkage(&F, CurrentFnSym);
655   if (MAI->hasFunctionAlignment())
656     EmitAlignment(MF->getAlignment(), &F);
657 
658   if (MAI->hasDotTypeDotSizeDirective())
659     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
660 
661   if (isVerbose()) {
662     F.printAsOperand(OutStreamer->GetCommentOS(),
663                    /*PrintType=*/false, F.getParent());
664     OutStreamer->GetCommentOS() << '\n';
665   }
666 
667   // Emit the prefix data.
668   if (F.hasPrefixData()) {
669     if (MAI->hasSubsectionsViaSymbols()) {
670       // Preserving prefix data on platforms which use subsections-via-symbols
671       // is a bit tricky. Here we introduce a symbol for the prefix data
672       // and use the .alt_entry attribute to mark the function's real entry point
673       // as an alternative entry point to the prefix-data symbol.
674       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
675       OutStreamer->EmitLabel(PrefixSym);
676 
677       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
678 
679       // Emit an .alt_entry directive for the actual function symbol.
680       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
681     } else {
682       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
683     }
684   }
685 
686   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
687   // do their wild and crazy things as required.
688   EmitFunctionEntryLabel();
689 
690   // If the function had address-taken blocks that got deleted, then we have
691   // references to the dangling symbols.  Emit them at the start of the function
692   // so that we don't get references to undefined symbols.
693   std::vector<MCSymbol*> DeadBlockSyms;
694   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
695   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
696     OutStreamer->AddComment("Address taken block that was later removed");
697     OutStreamer->EmitLabel(DeadBlockSyms[i]);
698   }
699 
700   if (CurrentFnBegin) {
701     if (MAI->useAssignmentForEHBegin()) {
702       MCSymbol *CurPos = OutContext.createTempSymbol();
703       OutStreamer->EmitLabel(CurPos);
704       OutStreamer->EmitAssignment(CurrentFnBegin,
705                                  MCSymbolRefExpr::create(CurPos, OutContext));
706     } else {
707       OutStreamer->EmitLabel(CurrentFnBegin);
708     }
709   }
710 
711   // Emit pre-function debug and/or EH information.
712   for (const HandlerInfo &HI : Handlers) {
713     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
714                        HI.TimerGroupDescription, TimePassesIsEnabled);
715     HI.Handler->beginFunction(MF);
716   }
717 
718   // Emit the prologue data.
719   if (F.hasPrologueData())
720     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
721 }
722 
723 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
724 /// function.  This can be overridden by targets as required to do custom stuff.
725 void AsmPrinter::EmitFunctionEntryLabel() {
726   CurrentFnSym->redefineIfPossible();
727 
728   // The function label could have already been emitted if two symbols end up
729   // conflicting due to asm renaming.  Detect this and emit an error.
730   if (CurrentFnSym->isVariable())
731     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
732                        "' is a protected alias");
733   if (CurrentFnSym->isDefined())
734     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
735                        "' label emitted multiple times to assembly file");
736 
737   return OutStreamer->EmitLabel(CurrentFnSym);
738 }
739 
740 /// emitComments - Pretty-print comments for instructions.
741 /// It returns true iff the sched comment was emitted.
742 ///   Otherwise it returns false.
743 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
744                          AsmPrinter *AP) {
745   const MachineFunction *MF = MI.getMF();
746   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
747 
748   // Check for spills and reloads
749   int FI;
750 
751   const MachineFrameInfo &MFI = MF->getFrameInfo();
752   bool Commented = false;
753 
754   auto getSize =
755       [&MFI](const SmallVectorImpl<const MachineMemOperand *> &Accesses) {
756         unsigned Size = 0;
757         for (auto A : Accesses)
758           if (MFI.isSpillSlotObjectIndex(
759                   cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
760                       ->getFrameIndex()))
761             Size += A->getSize();
762         return Size;
763       };
764 
765   // We assume a single instruction only has a spill or reload, not
766   // both.
767   const MachineMemOperand *MMO;
768   SmallVector<const MachineMemOperand *, 2> Accesses;
769   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
770     if (MFI.isSpillSlotObjectIndex(FI)) {
771       MMO = *MI.memoperands_begin();
772       CommentOS << MMO->getSize() << "-byte Reload";
773       Commented = true;
774     }
775   } else if (TII->hasLoadFromStackSlot(MI, Accesses)) {
776     if (auto Size = getSize(Accesses)) {
777       CommentOS << Size << "-byte Folded Reload";
778       Commented = true;
779     }
780   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
781     if (MFI.isSpillSlotObjectIndex(FI)) {
782       MMO = *MI.memoperands_begin();
783       CommentOS << MMO->getSize() << "-byte Spill";
784       Commented = true;
785     }
786   } else if (TII->hasStoreToStackSlot(MI, Accesses)) {
787     if (auto Size = getSize(Accesses)) {
788       CommentOS << Size << "-byte Folded Spill";
789       Commented = true;
790     }
791   }
792 
793   // Check for spill-induced copies
794   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
795     Commented = true;
796     CommentOS << " Reload Reuse";
797   }
798 
799   if (Commented) {
800     if (AP->EnablePrintSchedInfo) {
801       // If any comment was added above and we need sched info comment then add
802       // this new comment just after the above comment w/o "\n" between them.
803       CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
804       return true;
805     }
806     CommentOS << "\n";
807   }
808   return false;
809 }
810 
811 /// emitImplicitDef - This method emits the specified machine instruction
812 /// that is an implicit def.
813 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
814   unsigned RegNo = MI->getOperand(0).getReg();
815 
816   SmallString<128> Str;
817   raw_svector_ostream OS(Str);
818   OS << "implicit-def: "
819      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
820 
821   OutStreamer->AddComment(OS.str());
822   OutStreamer->AddBlankLine();
823 }
824 
825 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
826   std::string Str;
827   raw_string_ostream OS(Str);
828   OS << "kill:";
829   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
830     const MachineOperand &Op = MI->getOperand(i);
831     assert(Op.isReg() && "KILL instruction must have only register operands");
832     OS << ' ' << (Op.isDef() ? "def " : "killed ")
833        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
834   }
835   AP.OutStreamer->AddComment(OS.str());
836   AP.OutStreamer->AddBlankLine();
837 }
838 
839 /// emitDebugValueComment - This method handles the target-independent form
840 /// of DBG_VALUE, returning true if it was able to do so.  A false return
841 /// means the target will need to handle MI in EmitInstruction.
842 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
843   // This code handles only the 4-operand target-independent form.
844   if (MI->getNumOperands() != 4)
845     return false;
846 
847   SmallString<128> Str;
848   raw_svector_ostream OS(Str);
849   OS << "DEBUG_VALUE: ";
850 
851   const DILocalVariable *V = MI->getDebugVariable();
852   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
853     StringRef Name = SP->getName();
854     if (!Name.empty())
855       OS << Name << ":";
856   }
857   OS << V->getName();
858   OS << " <- ";
859 
860   // The second operand is only an offset if it's an immediate.
861   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
862   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
863   const DIExpression *Expr = MI->getDebugExpression();
864   if (Expr->getNumElements()) {
865     OS << '[';
866     bool NeedSep = false;
867     for (auto Op : Expr->expr_ops()) {
868       if (NeedSep)
869         OS << ", ";
870       else
871         NeedSep = true;
872       OS << dwarf::OperationEncodingString(Op.getOp());
873       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
874         OS << ' ' << Op.getArg(I);
875     }
876     OS << "] ";
877   }
878 
879   // Register or immediate value. Register 0 means undef.
880   if (MI->getOperand(0).isFPImm()) {
881     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
882     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
883       OS << (double)APF.convertToFloat();
884     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
885       OS << APF.convertToDouble();
886     } else {
887       // There is no good way to print long double.  Convert a copy to
888       // double.  Ah well, it's only a comment.
889       bool ignored;
890       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
891                   &ignored);
892       OS << "(long double) " << APF.convertToDouble();
893     }
894   } else if (MI->getOperand(0).isImm()) {
895     OS << MI->getOperand(0).getImm();
896   } else if (MI->getOperand(0).isCImm()) {
897     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
898   } else {
899     unsigned Reg;
900     if (MI->getOperand(0).isReg()) {
901       Reg = MI->getOperand(0).getReg();
902     } else {
903       assert(MI->getOperand(0).isFI() && "Unknown operand type");
904       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
905       Offset += TFI->getFrameIndexReference(*AP.MF,
906                                             MI->getOperand(0).getIndex(), Reg);
907       MemLoc = true;
908     }
909     if (Reg == 0) {
910       // Suppress offset, it is not meaningful here.
911       OS << "undef";
912       // NOTE: Want this comment at start of line, don't emit with AddComment.
913       AP.OutStreamer->emitRawComment(OS.str());
914       return true;
915     }
916     if (MemLoc)
917       OS << '[';
918     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
919   }
920 
921   if (MemLoc)
922     OS << '+' << Offset << ']';
923 
924   // NOTE: Want this comment at start of line, don't emit with AddComment.
925   AP.OutStreamer->emitRawComment(OS.str());
926   return true;
927 }
928 
929 /// This method handles the target-independent form of DBG_LABEL, returning
930 /// true if it was able to do so.  A false return means the target will need
931 /// to handle MI in EmitInstruction.
932 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
933   if (MI->getNumOperands() != 1)
934     return false;
935 
936   SmallString<128> Str;
937   raw_svector_ostream OS(Str);
938   OS << "DEBUG_LABEL: ";
939 
940   const DILabel *V = MI->getDebugLabel();
941   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
942     StringRef Name = SP->getName();
943     if (!Name.empty())
944       OS << Name << ":";
945   }
946   OS << V->getName();
947 
948   // NOTE: Want this comment at start of line, don't emit with AddComment.
949   AP.OutStreamer->emitRawComment(OS.str());
950   return true;
951 }
952 
953 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
954   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
955       MF->getFunction().needsUnwindTableEntry())
956     return CFI_M_EH;
957 
958   if (MMI->hasDebugInfo())
959     return CFI_M_Debug;
960 
961   return CFI_M_None;
962 }
963 
964 bool AsmPrinter::needsSEHMoves() {
965   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
966 }
967 
968 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
969   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
970   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
971       ExceptionHandlingType != ExceptionHandling::ARM)
972     return;
973 
974   if (needsCFIMoves() == CFI_M_None)
975     return;
976 
977   // If there is no "real" instruction following this CFI instruction, skip
978   // emitting it; it would be beyond the end of the function's FDE range.
979   auto *MBB = MI.getParent();
980   auto I = std::next(MI.getIterator());
981   while (I != MBB->end() && I->isTransient())
982     ++I;
983   if (I == MBB->instr_end() &&
984       MBB->getReverseIterator() == MBB->getParent()->rbegin())
985     return;
986 
987   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
988   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
989   const MCCFIInstruction &CFI = Instrs[CFIIndex];
990   emitCFIInstruction(CFI);
991 }
992 
993 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
994   // The operands are the MCSymbol and the frame offset of the allocation.
995   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
996   int FrameOffset = MI.getOperand(1).getImm();
997 
998   // Emit a symbol assignment.
999   OutStreamer->EmitAssignment(FrameAllocSym,
1000                              MCConstantExpr::create(FrameOffset, OutContext));
1001 }
1002 
1003 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1004   if (!MF.getTarget().Options.EmitStackSizeSection)
1005     return;
1006 
1007   MCSection *StackSizeSection =
1008       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1009   if (!StackSizeSection)
1010     return;
1011 
1012   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1013   // Don't emit functions with dynamic stack allocations.
1014   if (FrameInfo.hasVarSizedObjects())
1015     return;
1016 
1017   OutStreamer->PushSection();
1018   OutStreamer->SwitchSection(StackSizeSection);
1019 
1020   const MCSymbol *FunctionSymbol = getFunctionBegin();
1021   uint64_t StackSize = FrameInfo.getStackSize();
1022   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1023   OutStreamer->EmitULEB128IntValue(StackSize);
1024 
1025   OutStreamer->PopSection();
1026 }
1027 
1028 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1029                                            MachineModuleInfo *MMI) {
1030   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1031     return true;
1032 
1033   // We might emit an EH table that uses function begin and end labels even if
1034   // we don't have any landingpads.
1035   if (!MF.getFunction().hasPersonalityFn())
1036     return false;
1037   return !isNoOpWithoutInvoke(
1038       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1039 }
1040 
1041 /// EmitFunctionBody - This method emits the body and trailer for a
1042 /// function.
1043 void AsmPrinter::EmitFunctionBody() {
1044   EmitFunctionHeader();
1045 
1046   // Emit target-specific gunk before the function body.
1047   EmitFunctionBodyStart();
1048 
1049   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1050 
1051   if (isVerbose()) {
1052     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1053     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1054     if (!MDT) {
1055       OwnedMDT = make_unique<MachineDominatorTree>();
1056       OwnedMDT->getBase().recalculate(*MF);
1057       MDT = OwnedMDT.get();
1058     }
1059 
1060     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1061     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1062     if (!MLI) {
1063       OwnedMLI = make_unique<MachineLoopInfo>();
1064       OwnedMLI->getBase().analyze(MDT->getBase());
1065       MLI = OwnedMLI.get();
1066     }
1067   }
1068 
1069   // Print out code for the function.
1070   bool HasAnyRealCode = false;
1071   int NumInstsInFunction = 0;
1072   for (auto &MBB : *MF) {
1073     // Print a label for the basic block.
1074     EmitBasicBlockStart(MBB);
1075     for (auto &MI : MBB) {
1076       // Print the assembly for the instruction.
1077       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1078           !MI.isDebugInstr()) {
1079         HasAnyRealCode = true;
1080         ++NumInstsInFunction;
1081       }
1082 
1083       // If there is a pre-instruction symbol, emit a label for it here.
1084       if (MCSymbol *S = MI.getPreInstrSymbol())
1085         OutStreamer->EmitLabel(S);
1086 
1087       if (ShouldPrintDebugScopes) {
1088         for (const HandlerInfo &HI : Handlers) {
1089           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1090                              HI.TimerGroupName, HI.TimerGroupDescription,
1091                              TimePassesIsEnabled);
1092           HI.Handler->beginInstruction(&MI);
1093         }
1094       }
1095 
1096       if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) {
1097         MachineInstr *MIP = const_cast<MachineInstr *>(&MI);
1098         MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment);
1099       }
1100 
1101       switch (MI.getOpcode()) {
1102       case TargetOpcode::CFI_INSTRUCTION:
1103         emitCFIInstruction(MI);
1104         break;
1105       case TargetOpcode::LOCAL_ESCAPE:
1106         emitFrameAlloc(MI);
1107         break;
1108       case TargetOpcode::EH_LABEL:
1109       case TargetOpcode::GC_LABEL:
1110         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1111         break;
1112       case TargetOpcode::INLINEASM:
1113         EmitInlineAsm(&MI);
1114         break;
1115       case TargetOpcode::DBG_VALUE:
1116         if (isVerbose()) {
1117           if (!emitDebugValueComment(&MI, *this))
1118             EmitInstruction(&MI);
1119         }
1120         break;
1121       case TargetOpcode::DBG_LABEL:
1122         if (isVerbose()) {
1123           if (!emitDebugLabelComment(&MI, *this))
1124             EmitInstruction(&MI);
1125         }
1126         break;
1127       case TargetOpcode::IMPLICIT_DEF:
1128         if (isVerbose()) emitImplicitDef(&MI);
1129         break;
1130       case TargetOpcode::KILL:
1131         if (isVerbose()) emitKill(&MI, *this);
1132         break;
1133       default:
1134         EmitInstruction(&MI);
1135         break;
1136       }
1137 
1138       // If there is a post-instruction symbol, emit a label for it here.
1139       if (MCSymbol *S = MI.getPostInstrSymbol())
1140         OutStreamer->EmitLabel(S);
1141 
1142       if (ShouldPrintDebugScopes) {
1143         for (const HandlerInfo &HI : Handlers) {
1144           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1145                              HI.TimerGroupName, HI.TimerGroupDescription,
1146                              TimePassesIsEnabled);
1147           HI.Handler->endInstruction();
1148         }
1149       }
1150     }
1151 
1152     EmitBasicBlockEnd(MBB);
1153   }
1154 
1155   EmittedInsts += NumInstsInFunction;
1156   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1157                                       MF->getFunction().getSubprogram(),
1158                                       &MF->front());
1159   R << ore::NV("NumInstructions", NumInstsInFunction)
1160     << " instructions in function";
1161   ORE->emit(R);
1162 
1163   // If the function is empty and the object file uses .subsections_via_symbols,
1164   // then we need to emit *something* to the function body to prevent the
1165   // labels from collapsing together.  Just emit a noop.
1166   // Similarly, don't emit empty functions on Windows either. It can lead to
1167   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1168   // after linking, causing the kernel not to load the binary:
1169   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1170   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1171   const Triple &TT = TM.getTargetTriple();
1172   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1173                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1174     MCInst Noop;
1175     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1176 
1177     // Targets can opt-out of emitting the noop here by leaving the opcode
1178     // unspecified.
1179     if (Noop.getOpcode()) {
1180       OutStreamer->AddComment("avoids zero-length function");
1181       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1182     }
1183   }
1184 
1185   const Function &F = MF->getFunction();
1186   for (const auto &BB : F) {
1187     if (!BB.hasAddressTaken())
1188       continue;
1189     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1190     if (Sym->isDefined())
1191       continue;
1192     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1193     OutStreamer->EmitLabel(Sym);
1194   }
1195 
1196   // Emit target-specific gunk after the function body.
1197   EmitFunctionBodyEnd();
1198 
1199   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1200       MAI->hasDotTypeDotSizeDirective()) {
1201     // Create a symbol for the end of function.
1202     CurrentFnEnd = createTempSymbol("func_end");
1203     OutStreamer->EmitLabel(CurrentFnEnd);
1204   }
1205 
1206   // If the target wants a .size directive for the size of the function, emit
1207   // it.
1208   if (MAI->hasDotTypeDotSizeDirective()) {
1209     // We can get the size as difference between the function label and the
1210     // temp label.
1211     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1212         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1213         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1214     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1215   }
1216 
1217   for (const HandlerInfo &HI : Handlers) {
1218     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1219                        HI.TimerGroupDescription, TimePassesIsEnabled);
1220     HI.Handler->markFunctionEnd();
1221   }
1222 
1223   // Print out jump tables referenced by the function.
1224   EmitJumpTableInfo();
1225 
1226   // Emit post-function debug and/or EH information.
1227   for (const HandlerInfo &HI : Handlers) {
1228     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1229                        HI.TimerGroupDescription, TimePassesIsEnabled);
1230     HI.Handler->endFunction(MF);
1231   }
1232 
1233   // Emit section containing stack size metadata.
1234   emitStackSizeSection(*MF);
1235 
1236   if (isVerbose())
1237     OutStreamer->GetCommentOS() << "-- End function\n";
1238 
1239   OutStreamer->AddBlankLine();
1240 }
1241 
1242 /// Compute the number of Global Variables that uses a Constant.
1243 static unsigned getNumGlobalVariableUses(const Constant *C) {
1244   if (!C)
1245     return 0;
1246 
1247   if (isa<GlobalVariable>(C))
1248     return 1;
1249 
1250   unsigned NumUses = 0;
1251   for (auto *CU : C->users())
1252     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1253 
1254   return NumUses;
1255 }
1256 
1257 /// Only consider global GOT equivalents if at least one user is a
1258 /// cstexpr inside an initializer of another global variables. Also, don't
1259 /// handle cstexpr inside instructions. During global variable emission,
1260 /// candidates are skipped and are emitted later in case at least one cstexpr
1261 /// isn't replaced by a PC relative GOT entry access.
1262 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1263                                      unsigned &NumGOTEquivUsers) {
1264   // Global GOT equivalents are unnamed private globals with a constant
1265   // pointer initializer to another global symbol. They must point to a
1266   // GlobalVariable or Function, i.e., as GlobalValue.
1267   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1268       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1269       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1270     return false;
1271 
1272   // To be a got equivalent, at least one of its users need to be a constant
1273   // expression used by another global variable.
1274   for (auto *U : GV->users())
1275     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1276 
1277   return NumGOTEquivUsers > 0;
1278 }
1279 
1280 /// Unnamed constant global variables solely contaning a pointer to
1281 /// another globals variable is equivalent to a GOT table entry; it contains the
1282 /// the address of another symbol. Optimize it and replace accesses to these
1283 /// "GOT equivalents" by using the GOT entry for the final global instead.
1284 /// Compute GOT equivalent candidates among all global variables to avoid
1285 /// emitting them if possible later on, after it use is replaced by a GOT entry
1286 /// access.
1287 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1288   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1289     return;
1290 
1291   for (const auto &G : M.globals()) {
1292     unsigned NumGOTEquivUsers = 0;
1293     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1294       continue;
1295 
1296     const MCSymbol *GOTEquivSym = getSymbol(&G);
1297     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1298   }
1299 }
1300 
1301 /// Constant expressions using GOT equivalent globals may not be eligible
1302 /// for PC relative GOT entry conversion, in such cases we need to emit such
1303 /// globals we previously omitted in EmitGlobalVariable.
1304 void AsmPrinter::emitGlobalGOTEquivs() {
1305   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1306     return;
1307 
1308   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1309   for (auto &I : GlobalGOTEquivs) {
1310     const GlobalVariable *GV = I.second.first;
1311     unsigned Cnt = I.second.second;
1312     if (Cnt)
1313       FailedCandidates.push_back(GV);
1314   }
1315   GlobalGOTEquivs.clear();
1316 
1317   for (auto *GV : FailedCandidates)
1318     EmitGlobalVariable(GV);
1319 }
1320 
1321 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1322                                           const GlobalIndirectSymbol& GIS) {
1323   MCSymbol *Name = getSymbol(&GIS);
1324 
1325   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1326     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1327   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1328     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1329   else
1330     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1331 
1332   // Set the symbol type to function if the alias has a function type.
1333   // This affects codegen when the aliasee is not a function.
1334   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1335     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1336     if (isa<GlobalIFunc>(GIS))
1337       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1338   }
1339 
1340   EmitVisibility(Name, GIS.getVisibility());
1341 
1342   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1343 
1344   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1345     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1346 
1347   // Emit the directives as assignments aka .set:
1348   OutStreamer->EmitAssignment(Name, Expr);
1349 
1350   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1351     // If the aliasee does not correspond to a symbol in the output, i.e. the
1352     // alias is not of an object or the aliased object is private, then set the
1353     // size of the alias symbol from the type of the alias. We don't do this in
1354     // other situations as the alias and aliasee having differing types but same
1355     // size may be intentional.
1356     const GlobalObject *BaseObject = GA->getBaseObject();
1357     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1358         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1359       const DataLayout &DL = M.getDataLayout();
1360       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1361       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1362     }
1363   }
1364 }
1365 
1366 bool AsmPrinter::doFinalization(Module &M) {
1367   // Set the MachineFunction to nullptr so that we can catch attempted
1368   // accesses to MF specific features at the module level and so that
1369   // we can conditionalize accesses based on whether or not it is nullptr.
1370   MF = nullptr;
1371 
1372   // Gather all GOT equivalent globals in the module. We really need two
1373   // passes over the globals: one to compute and another to avoid its emission
1374   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1375   // where the got equivalent shows up before its use.
1376   computeGlobalGOTEquivs(M);
1377 
1378   // Emit global variables.
1379   for (const auto &G : M.globals())
1380     EmitGlobalVariable(&G);
1381 
1382   // Emit remaining GOT equivalent globals.
1383   emitGlobalGOTEquivs();
1384 
1385   // Emit visibility info for declarations
1386   for (const Function &F : M) {
1387     if (!F.isDeclarationForLinker())
1388       continue;
1389     GlobalValue::VisibilityTypes V = F.getVisibility();
1390     if (V == GlobalValue::DefaultVisibility)
1391       continue;
1392 
1393     MCSymbol *Name = getSymbol(&F);
1394     EmitVisibility(Name, V, false);
1395   }
1396 
1397   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1398 
1399   TLOF.emitModuleMetadata(*OutStreamer, M);
1400 
1401   if (TM.getTargetTriple().isOSBinFormatELF()) {
1402     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1403 
1404     // Output stubs for external and common global variables.
1405     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1406     if (!Stubs.empty()) {
1407       OutStreamer->SwitchSection(TLOF.getDataSection());
1408       const DataLayout &DL = M.getDataLayout();
1409 
1410       EmitAlignment(Log2_32(DL.getPointerSize()));
1411       for (const auto &Stub : Stubs) {
1412         OutStreamer->EmitLabel(Stub.first);
1413         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1414                                      DL.getPointerSize());
1415       }
1416     }
1417   }
1418 
1419   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1420     MachineModuleInfoCOFF &MMICOFF =
1421         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1422 
1423     // Output stubs for external and common global variables.
1424     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1425     if (!Stubs.empty()) {
1426       const DataLayout &DL = M.getDataLayout();
1427 
1428       for (const auto &Stub : Stubs) {
1429         SmallString<256> SectionName = StringRef(".rdata$");
1430         SectionName += Stub.first->getName();
1431         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1432             SectionName,
1433             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1434                 COFF::IMAGE_SCN_LNK_COMDAT,
1435             SectionKind::getReadOnly(), Stub.first->getName(),
1436             COFF::IMAGE_COMDAT_SELECT_ANY));
1437         EmitAlignment(Log2_32(DL.getPointerSize()));
1438         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1439         OutStreamer->EmitLabel(Stub.first);
1440         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1441                                      DL.getPointerSize());
1442       }
1443     }
1444   }
1445 
1446   // Finalize debug and EH information.
1447   for (const HandlerInfo &HI : Handlers) {
1448     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1449                        HI.TimerGroupDescription, TimePassesIsEnabled);
1450     HI.Handler->endModule();
1451     delete HI.Handler;
1452   }
1453   Handlers.clear();
1454   DD = nullptr;
1455 
1456   // If the target wants to know about weak references, print them all.
1457   if (MAI->getWeakRefDirective()) {
1458     // FIXME: This is not lazy, it would be nice to only print weak references
1459     // to stuff that is actually used.  Note that doing so would require targets
1460     // to notice uses in operands (due to constant exprs etc).  This should
1461     // happen with the MC stuff eventually.
1462 
1463     // Print out module-level global objects here.
1464     for (const auto &GO : M.global_objects()) {
1465       if (!GO.hasExternalWeakLinkage())
1466         continue;
1467       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1468     }
1469   }
1470 
1471   OutStreamer->AddBlankLine();
1472 
1473   // Print aliases in topological order, that is, for each alias a = b,
1474   // b must be printed before a.
1475   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1476   // such an order to generate correct TOC information.
1477   SmallVector<const GlobalAlias *, 16> AliasStack;
1478   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1479   for (const auto &Alias : M.aliases()) {
1480     for (const GlobalAlias *Cur = &Alias; Cur;
1481          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1482       if (!AliasVisited.insert(Cur).second)
1483         break;
1484       AliasStack.push_back(Cur);
1485     }
1486     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1487       emitGlobalIndirectSymbol(M, *AncestorAlias);
1488     AliasStack.clear();
1489   }
1490   for (const auto &IFunc : M.ifuncs())
1491     emitGlobalIndirectSymbol(M, IFunc);
1492 
1493   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1494   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1495   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1496     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1497       MP->finishAssembly(M, *MI, *this);
1498 
1499   // Emit llvm.ident metadata in an '.ident' directive.
1500   EmitModuleIdents(M);
1501 
1502   // Emit __morestack address if needed for indirect calls.
1503   if (MMI->usesMorestackAddr()) {
1504     unsigned Align = 1;
1505     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1506         getDataLayout(), SectionKind::getReadOnly(),
1507         /*C=*/nullptr, Align);
1508     OutStreamer->SwitchSection(ReadOnlySection);
1509 
1510     MCSymbol *AddrSymbol =
1511         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1512     OutStreamer->EmitLabel(AddrSymbol);
1513 
1514     unsigned PtrSize = MAI->getCodePointerSize();
1515     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1516                                  PtrSize);
1517   }
1518 
1519   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1520   // split-stack is used.
1521   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1522     OutStreamer->SwitchSection(
1523         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1524     if (MMI->hasNosplitStack())
1525       OutStreamer->SwitchSection(
1526           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1527   }
1528 
1529   // If we don't have any trampolines, then we don't require stack memory
1530   // to be executable. Some targets have a directive to declare this.
1531   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1532   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1533     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1534       OutStreamer->SwitchSection(S);
1535 
1536   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1537     // Emit /EXPORT: flags for each exported global as necessary.
1538     const auto &TLOF = getObjFileLowering();
1539     std::string Flags;
1540 
1541     for (const GlobalValue &GV : M.global_values()) {
1542       raw_string_ostream OS(Flags);
1543       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1544       OS.flush();
1545       if (!Flags.empty()) {
1546         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1547         OutStreamer->EmitBytes(Flags);
1548       }
1549       Flags.clear();
1550     }
1551 
1552     // Emit /INCLUDE: flags for each used global as necessary.
1553     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1554       assert(LU->hasInitializer() &&
1555              "expected llvm.used to have an initializer");
1556       assert(isa<ArrayType>(LU->getValueType()) &&
1557              "expected llvm.used to be an array type");
1558       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1559         for (const Value *Op : A->operands()) {
1560           const auto *GV =
1561               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1562           // Global symbols with internal or private linkage are not visible to
1563           // the linker, and thus would cause an error when the linker tried to
1564           // preserve the symbol due to the `/include:` directive.
1565           if (GV->hasLocalLinkage())
1566             continue;
1567 
1568           raw_string_ostream OS(Flags);
1569           TLOF.emitLinkerFlagsForUsed(OS, GV);
1570           OS.flush();
1571 
1572           if (!Flags.empty()) {
1573             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1574             OutStreamer->EmitBytes(Flags);
1575           }
1576           Flags.clear();
1577         }
1578       }
1579     }
1580   }
1581 
1582   if (TM.Options.EmitAddrsig) {
1583     // Emit address-significance attributes for all globals.
1584     OutStreamer->EmitAddrsig();
1585     for (const GlobalValue &GV : M.global_values())
1586       if (!GV.use_empty() && !GV.isThreadLocal() &&
1587           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1588           !GV.hasAtLeastLocalUnnamedAddr())
1589         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1590   }
1591 
1592   // Allow the target to emit any magic that it wants at the end of the file,
1593   // after everything else has gone out.
1594   EmitEndOfAsmFile(M);
1595 
1596   MMI = nullptr;
1597 
1598   OutStreamer->Finish();
1599   OutStreamer->reset();
1600   OwnedMLI.reset();
1601   OwnedMDT.reset();
1602 
1603   return false;
1604 }
1605 
1606 MCSymbol *AsmPrinter::getCurExceptionSym() {
1607   if (!CurExceptionSym)
1608     CurExceptionSym = createTempSymbol("exception");
1609   return CurExceptionSym;
1610 }
1611 
1612 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1613   this->MF = &MF;
1614   // Get the function symbol.
1615   CurrentFnSym = getSymbol(&MF.getFunction());
1616   CurrentFnSymForSize = CurrentFnSym;
1617   CurrentFnBegin = nullptr;
1618   CurExceptionSym = nullptr;
1619   bool NeedsLocalForSize = MAI->needsLocalForSize();
1620   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1621       MF.getTarget().Options.EmitStackSizeSection) {
1622     CurrentFnBegin = createTempSymbol("func_begin");
1623     if (NeedsLocalForSize)
1624       CurrentFnSymForSize = CurrentFnBegin;
1625   }
1626 
1627   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1628 
1629   const TargetSubtargetInfo &STI = MF.getSubtarget();
1630   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1631                              ? PrintSchedule
1632                              : STI.supportPrintSchedInfo();
1633 }
1634 
1635 namespace {
1636 
1637 // Keep track the alignment, constpool entries per Section.
1638   struct SectionCPs {
1639     MCSection *S;
1640     unsigned Alignment;
1641     SmallVector<unsigned, 4> CPEs;
1642 
1643     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1644   };
1645 
1646 } // end anonymous namespace
1647 
1648 /// EmitConstantPool - Print to the current output stream assembly
1649 /// representations of the constants in the constant pool MCP. This is
1650 /// used to print out constants which have been "spilled to memory" by
1651 /// the code generator.
1652 void AsmPrinter::EmitConstantPool() {
1653   const MachineConstantPool *MCP = MF->getConstantPool();
1654   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1655   if (CP.empty()) return;
1656 
1657   // Calculate sections for constant pool entries. We collect entries to go into
1658   // the same section together to reduce amount of section switch statements.
1659   SmallVector<SectionCPs, 4> CPSections;
1660   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1661     const MachineConstantPoolEntry &CPE = CP[i];
1662     unsigned Align = CPE.getAlignment();
1663 
1664     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1665 
1666     const Constant *C = nullptr;
1667     if (!CPE.isMachineConstantPoolEntry())
1668       C = CPE.Val.ConstVal;
1669 
1670     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1671                                                               Kind, C, Align);
1672 
1673     // The number of sections are small, just do a linear search from the
1674     // last section to the first.
1675     bool Found = false;
1676     unsigned SecIdx = CPSections.size();
1677     while (SecIdx != 0) {
1678       if (CPSections[--SecIdx].S == S) {
1679         Found = true;
1680         break;
1681       }
1682     }
1683     if (!Found) {
1684       SecIdx = CPSections.size();
1685       CPSections.push_back(SectionCPs(S, Align));
1686     }
1687 
1688     if (Align > CPSections[SecIdx].Alignment)
1689       CPSections[SecIdx].Alignment = Align;
1690     CPSections[SecIdx].CPEs.push_back(i);
1691   }
1692 
1693   // Now print stuff into the calculated sections.
1694   const MCSection *CurSection = nullptr;
1695   unsigned Offset = 0;
1696   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1697     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1698       unsigned CPI = CPSections[i].CPEs[j];
1699       MCSymbol *Sym = GetCPISymbol(CPI);
1700       if (!Sym->isUndefined())
1701         continue;
1702 
1703       if (CurSection != CPSections[i].S) {
1704         OutStreamer->SwitchSection(CPSections[i].S);
1705         EmitAlignment(Log2_32(CPSections[i].Alignment));
1706         CurSection = CPSections[i].S;
1707         Offset = 0;
1708       }
1709 
1710       MachineConstantPoolEntry CPE = CP[CPI];
1711 
1712       // Emit inter-object padding for alignment.
1713       unsigned AlignMask = CPE.getAlignment() - 1;
1714       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1715       OutStreamer->EmitZeros(NewOffset - Offset);
1716 
1717       Type *Ty = CPE.getType();
1718       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1719 
1720       OutStreamer->EmitLabel(Sym);
1721       if (CPE.isMachineConstantPoolEntry())
1722         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1723       else
1724         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1725     }
1726   }
1727 }
1728 
1729 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1730 /// by the current function to the current output stream.
1731 void AsmPrinter::EmitJumpTableInfo() {
1732   const DataLayout &DL = MF->getDataLayout();
1733   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1734   if (!MJTI) return;
1735   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1736   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1737   if (JT.empty()) return;
1738 
1739   // Pick the directive to use to print the jump table entries, and switch to
1740   // the appropriate section.
1741   const Function &F = MF->getFunction();
1742   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1743   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1744       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1745       F);
1746   if (JTInDiffSection) {
1747     // Drop it in the readonly section.
1748     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1749     OutStreamer->SwitchSection(ReadOnlySection);
1750   }
1751 
1752   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1753 
1754   // Jump tables in code sections are marked with a data_region directive
1755   // where that's supported.
1756   if (!JTInDiffSection)
1757     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1758 
1759   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1760     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1761 
1762     // If this jump table was deleted, ignore it.
1763     if (JTBBs.empty()) continue;
1764 
1765     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1766     /// emit a .set directive for each unique entry.
1767     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1768         MAI->doesSetDirectiveSuppressReloc()) {
1769       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1770       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1771       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1772       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1773         const MachineBasicBlock *MBB = JTBBs[ii];
1774         if (!EmittedSets.insert(MBB).second)
1775           continue;
1776 
1777         // .set LJTSet, LBB32-base
1778         const MCExpr *LHS =
1779           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1780         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1781                                     MCBinaryExpr::createSub(LHS, Base,
1782                                                             OutContext));
1783       }
1784     }
1785 
1786     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1787     // before each jump table.  The first label is never referenced, but tells
1788     // the assembler and linker the extents of the jump table object.  The
1789     // second label is actually referenced by the code.
1790     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1791       // FIXME: This doesn't have to have any specific name, just any randomly
1792       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1793       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1794 
1795     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1796 
1797     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1798       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1799   }
1800   if (!JTInDiffSection)
1801     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1802 }
1803 
1804 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1805 /// current stream.
1806 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1807                                     const MachineBasicBlock *MBB,
1808                                     unsigned UID) const {
1809   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1810   const MCExpr *Value = nullptr;
1811   switch (MJTI->getEntryKind()) {
1812   case MachineJumpTableInfo::EK_Inline:
1813     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1814   case MachineJumpTableInfo::EK_Custom32:
1815     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1816         MJTI, MBB, UID, OutContext);
1817     break;
1818   case MachineJumpTableInfo::EK_BlockAddress:
1819     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1820     //     .word LBB123
1821     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1822     break;
1823   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1824     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1825     // with a relocation as gp-relative, e.g.:
1826     //     .gprel32 LBB123
1827     MCSymbol *MBBSym = MBB->getSymbol();
1828     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1829     return;
1830   }
1831 
1832   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1833     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1834     // with a relocation as gp-relative, e.g.:
1835     //     .gpdword LBB123
1836     MCSymbol *MBBSym = MBB->getSymbol();
1837     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1838     return;
1839   }
1840 
1841   case MachineJumpTableInfo::EK_LabelDifference32: {
1842     // Each entry is the address of the block minus the address of the jump
1843     // table. This is used for PIC jump tables where gprel32 is not supported.
1844     // e.g.:
1845     //      .word LBB123 - LJTI1_2
1846     // If the .set directive avoids relocations, this is emitted as:
1847     //      .set L4_5_set_123, LBB123 - LJTI1_2
1848     //      .word L4_5_set_123
1849     if (MAI->doesSetDirectiveSuppressReloc()) {
1850       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1851                                       OutContext);
1852       break;
1853     }
1854     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1855     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1856     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1857     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1858     break;
1859   }
1860   }
1861 
1862   assert(Value && "Unknown entry kind!");
1863 
1864   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1865   OutStreamer->EmitValue(Value, EntrySize);
1866 }
1867 
1868 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1869 /// special global used by LLVM.  If so, emit it and return true, otherwise
1870 /// do nothing and return false.
1871 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1872   if (GV->getName() == "llvm.used") {
1873     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1874       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1875     return true;
1876   }
1877 
1878   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1879   if (GV->getSection() == "llvm.metadata" ||
1880       GV->hasAvailableExternallyLinkage())
1881     return true;
1882 
1883   if (!GV->hasAppendingLinkage()) return false;
1884 
1885   assert(GV->hasInitializer() && "Not a special LLVM global!");
1886 
1887   if (GV->getName() == "llvm.global_ctors") {
1888     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1889                        /* isCtor */ true);
1890 
1891     return true;
1892   }
1893 
1894   if (GV->getName() == "llvm.global_dtors") {
1895     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1896                        /* isCtor */ false);
1897 
1898     return true;
1899   }
1900 
1901   report_fatal_error("unknown special variable");
1902 }
1903 
1904 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1905 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1906 /// is true, as being used with this directive.
1907 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1908   // Should be an array of 'i8*'.
1909   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1910     const GlobalValue *GV =
1911       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1912     if (GV)
1913       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1914   }
1915 }
1916 
1917 namespace {
1918 
1919 struct Structor {
1920   int Priority = 0;
1921   Constant *Func = nullptr;
1922   GlobalValue *ComdatKey = nullptr;
1923 
1924   Structor() = default;
1925 };
1926 
1927 } // end anonymous namespace
1928 
1929 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1930 /// priority.
1931 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1932                                     bool isCtor) {
1933   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1934   // init priority.
1935   if (!isa<ConstantArray>(List)) return;
1936 
1937   // Sanity check the structors list.
1938   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1939   if (!InitList) return; // Not an array!
1940   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1941   // FIXME: Only allow the 3-field form in LLVM 4.0.
1942   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1943     return; // Not an array of two or three elements!
1944   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1945       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1946   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1947     return; // Not (int, ptr, ptr).
1948 
1949   // Gather the structors in a form that's convenient for sorting by priority.
1950   SmallVector<Structor, 8> Structors;
1951   for (Value *O : InitList->operands()) {
1952     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1953     if (!CS) continue; // Malformed.
1954     if (CS->getOperand(1)->isNullValue())
1955       break;  // Found a null terminator, skip the rest.
1956     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1957     if (!Priority) continue; // Malformed.
1958     Structors.push_back(Structor());
1959     Structor &S = Structors.back();
1960     S.Priority = Priority->getLimitedValue(65535);
1961     S.Func = CS->getOperand(1);
1962     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1963       S.ComdatKey =
1964           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1965   }
1966 
1967   // Emit the function pointers in the target-specific order
1968   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1969   std::stable_sort(Structors.begin(), Structors.end(),
1970                    [](const Structor &L,
1971                       const Structor &R) { return L.Priority < R.Priority; });
1972   for (Structor &S : Structors) {
1973     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1974     const MCSymbol *KeySym = nullptr;
1975     if (GlobalValue *GV = S.ComdatKey) {
1976       if (GV->isDeclarationForLinker())
1977         // If the associated variable is not defined in this module
1978         // (it might be available_externally, or have been an
1979         // available_externally definition that was dropped by the
1980         // EliminateAvailableExternally pass), some other TU
1981         // will provide its dynamic initializer.
1982         continue;
1983 
1984       KeySym = getSymbol(GV);
1985     }
1986     MCSection *OutputSection =
1987         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1988                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1989     OutStreamer->SwitchSection(OutputSection);
1990     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1991       EmitAlignment(Align);
1992     EmitXXStructor(DL, S.Func);
1993   }
1994 }
1995 
1996 void AsmPrinter::EmitModuleIdents(Module &M) {
1997   if (!MAI->hasIdentDirective())
1998     return;
1999 
2000   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2001     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2002       const MDNode *N = NMD->getOperand(i);
2003       assert(N->getNumOperands() == 1 &&
2004              "llvm.ident metadata entry can have only one operand");
2005       const MDString *S = cast<MDString>(N->getOperand(0));
2006       OutStreamer->EmitIdent(S->getString());
2007     }
2008   }
2009 }
2010 
2011 //===--------------------------------------------------------------------===//
2012 // Emission and print routines
2013 //
2014 
2015 /// Emit a byte directive and value.
2016 ///
2017 void AsmPrinter::emitInt8(int Value) const {
2018   OutStreamer->EmitIntValue(Value, 1);
2019 }
2020 
2021 /// Emit a short directive and value.
2022 void AsmPrinter::emitInt16(int Value) const {
2023   OutStreamer->EmitIntValue(Value, 2);
2024 }
2025 
2026 /// Emit a long directive and value.
2027 void AsmPrinter::emitInt32(int Value) const {
2028   OutStreamer->EmitIntValue(Value, 4);
2029 }
2030 
2031 /// Emit a long long directive and value.
2032 void AsmPrinter::emitInt64(uint64_t Value) const {
2033   OutStreamer->EmitIntValue(Value, 8);
2034 }
2035 
2036 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2037 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2038 /// .set if it avoids relocations.
2039 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2040                                      unsigned Size) const {
2041   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2042 }
2043 
2044 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2045 /// where the size in bytes of the directive is specified by Size and Label
2046 /// specifies the label.  This implicitly uses .set if it is available.
2047 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2048                                      unsigned Size,
2049                                      bool IsSectionRelative) const {
2050   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2051     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2052     if (Size > 4)
2053       OutStreamer->EmitZeros(Size - 4);
2054     return;
2055   }
2056 
2057   // Emit Label+Offset (or just Label if Offset is zero)
2058   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2059   if (Offset)
2060     Expr = MCBinaryExpr::createAdd(
2061         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2062 
2063   OutStreamer->EmitValue(Expr, Size);
2064 }
2065 
2066 //===----------------------------------------------------------------------===//
2067 
2068 // EmitAlignment - Emit an alignment directive to the specified power of
2069 // two boundary.  For example, if you pass in 3 here, you will get an 8
2070 // byte alignment.  If a global value is specified, and if that global has
2071 // an explicit alignment requested, it will override the alignment request
2072 // if required for correctness.
2073 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2074   if (GV)
2075     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2076 
2077   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2078 
2079   assert(NumBits <
2080              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2081          "undefined behavior");
2082   if (getCurrentSection()->getKind().isText())
2083     OutStreamer->EmitCodeAlignment(1u << NumBits);
2084   else
2085     OutStreamer->EmitValueToAlignment(1u << NumBits);
2086 }
2087 
2088 //===----------------------------------------------------------------------===//
2089 // Constant emission.
2090 //===----------------------------------------------------------------------===//
2091 
2092 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2093   MCContext &Ctx = OutContext;
2094 
2095   if (CV->isNullValue() || isa<UndefValue>(CV))
2096     return MCConstantExpr::create(0, Ctx);
2097 
2098   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2099     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2100 
2101   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2102     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2103 
2104   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2105     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2106 
2107   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2108   if (!CE) {
2109     llvm_unreachable("Unknown constant value to lower!");
2110   }
2111 
2112   switch (CE->getOpcode()) {
2113   default:
2114     // If the code isn't optimized, there may be outstanding folding
2115     // opportunities. Attempt to fold the expression using DataLayout as a
2116     // last resort before giving up.
2117     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2118       if (C != CE)
2119         return lowerConstant(C);
2120 
2121     // Otherwise report the problem to the user.
2122     {
2123       std::string S;
2124       raw_string_ostream OS(S);
2125       OS << "Unsupported expression in static initializer: ";
2126       CE->printAsOperand(OS, /*PrintType=*/false,
2127                      !MF ? nullptr : MF->getFunction().getParent());
2128       report_fatal_error(OS.str());
2129     }
2130   case Instruction::GetElementPtr: {
2131     // Generate a symbolic expression for the byte address
2132     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2133     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2134 
2135     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2136     if (!OffsetAI)
2137       return Base;
2138 
2139     int64_t Offset = OffsetAI.getSExtValue();
2140     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2141                                    Ctx);
2142   }
2143 
2144   case Instruction::Trunc:
2145     // We emit the value and depend on the assembler to truncate the generated
2146     // expression properly.  This is important for differences between
2147     // blockaddress labels.  Since the two labels are in the same function, it
2148     // is reasonable to treat their delta as a 32-bit value.
2149     LLVM_FALLTHROUGH;
2150   case Instruction::BitCast:
2151     return lowerConstant(CE->getOperand(0));
2152 
2153   case Instruction::IntToPtr: {
2154     const DataLayout &DL = getDataLayout();
2155 
2156     // Handle casts to pointers by changing them into casts to the appropriate
2157     // integer type.  This promotes constant folding and simplifies this code.
2158     Constant *Op = CE->getOperand(0);
2159     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2160                                       false/*ZExt*/);
2161     return lowerConstant(Op);
2162   }
2163 
2164   case Instruction::PtrToInt: {
2165     const DataLayout &DL = getDataLayout();
2166 
2167     // Support only foldable casts to/from pointers that can be eliminated by
2168     // changing the pointer to the appropriately sized integer type.
2169     Constant *Op = CE->getOperand(0);
2170     Type *Ty = CE->getType();
2171 
2172     const MCExpr *OpExpr = lowerConstant(Op);
2173 
2174     // We can emit the pointer value into this slot if the slot is an
2175     // integer slot equal to the size of the pointer.
2176     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2177       return OpExpr;
2178 
2179     // Otherwise the pointer is smaller than the resultant integer, mask off
2180     // the high bits so we are sure to get a proper truncation if the input is
2181     // a constant expr.
2182     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2183     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2184     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2185   }
2186 
2187   case Instruction::Sub: {
2188     GlobalValue *LHSGV;
2189     APInt LHSOffset;
2190     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2191                                    getDataLayout())) {
2192       GlobalValue *RHSGV;
2193       APInt RHSOffset;
2194       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2195                                      getDataLayout())) {
2196         const MCExpr *RelocExpr =
2197             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2198         if (!RelocExpr)
2199           RelocExpr = MCBinaryExpr::createSub(
2200               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2201               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2202         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2203         if (Addend != 0)
2204           RelocExpr = MCBinaryExpr::createAdd(
2205               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2206         return RelocExpr;
2207       }
2208     }
2209   }
2210   // else fallthrough
2211   LLVM_FALLTHROUGH;
2212 
2213   // The MC library also has a right-shift operator, but it isn't consistently
2214   // signed or unsigned between different targets.
2215   case Instruction::Add:
2216   case Instruction::Mul:
2217   case Instruction::SDiv:
2218   case Instruction::SRem:
2219   case Instruction::Shl:
2220   case Instruction::And:
2221   case Instruction::Or:
2222   case Instruction::Xor: {
2223     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2224     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2225     switch (CE->getOpcode()) {
2226     default: llvm_unreachable("Unknown binary operator constant cast expr");
2227     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2228     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2229     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2230     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2231     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2232     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2233     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2234     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2235     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2236     }
2237   }
2238   }
2239 }
2240 
2241 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2242                                    AsmPrinter &AP,
2243                                    const Constant *BaseCV = nullptr,
2244                                    uint64_t Offset = 0);
2245 
2246 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2247 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2248 
2249 /// isRepeatedByteSequence - Determine whether the given value is
2250 /// composed of a repeated sequence of identical bytes and return the
2251 /// byte value.  If it is not a repeated sequence, return -1.
2252 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2253   StringRef Data = V->getRawDataValues();
2254   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2255   char C = Data[0];
2256   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2257     if (Data[i] != C) return -1;
2258   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2259 }
2260 
2261 /// isRepeatedByteSequence - Determine whether the given value is
2262 /// composed of a repeated sequence of identical bytes and return the
2263 /// byte value.  If it is not a repeated sequence, return -1.
2264 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2265   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2266     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2267     assert(Size % 8 == 0);
2268 
2269     // Extend the element to take zero padding into account.
2270     APInt Value = CI->getValue().zextOrSelf(Size);
2271     if (!Value.isSplat(8))
2272       return -1;
2273 
2274     return Value.zextOrTrunc(8).getZExtValue();
2275   }
2276   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2277     // Make sure all array elements are sequences of the same repeated
2278     // byte.
2279     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2280     Constant *Op0 = CA->getOperand(0);
2281     int Byte = isRepeatedByteSequence(Op0, DL);
2282     if (Byte == -1)
2283       return -1;
2284 
2285     // All array elements must be equal.
2286     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2287       if (CA->getOperand(i) != Op0)
2288         return -1;
2289     return Byte;
2290   }
2291 
2292   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2293     return isRepeatedByteSequence(CDS);
2294 
2295   return -1;
2296 }
2297 
2298 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2299                                              const ConstantDataSequential *CDS,
2300                                              AsmPrinter &AP) {
2301   // See if we can aggregate this into a .fill, if so, emit it as such.
2302   int Value = isRepeatedByteSequence(CDS, DL);
2303   if (Value != -1) {
2304     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2305     // Don't emit a 1-byte object as a .fill.
2306     if (Bytes > 1)
2307       return AP.OutStreamer->emitFill(Bytes, Value);
2308   }
2309 
2310   // If this can be emitted with .ascii/.asciz, emit it as such.
2311   if (CDS->isString())
2312     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2313 
2314   // Otherwise, emit the values in successive locations.
2315   unsigned ElementByteSize = CDS->getElementByteSize();
2316   if (isa<IntegerType>(CDS->getElementType())) {
2317     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2318       if (AP.isVerbose())
2319         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2320                                                  CDS->getElementAsInteger(i));
2321       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2322                                    ElementByteSize);
2323     }
2324   } else {
2325     Type *ET = CDS->getElementType();
2326     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2327       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2328   }
2329 
2330   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2331   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2332                         CDS->getNumElements();
2333   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2334   if (unsigned Padding = Size - EmittedSize)
2335     AP.OutStreamer->EmitZeros(Padding);
2336 }
2337 
2338 static void emitGlobalConstantArray(const DataLayout &DL,
2339                                     const ConstantArray *CA, AsmPrinter &AP,
2340                                     const Constant *BaseCV, uint64_t Offset) {
2341   // See if we can aggregate some values.  Make sure it can be
2342   // represented as a series of bytes of the constant value.
2343   int Value = isRepeatedByteSequence(CA, DL);
2344 
2345   if (Value != -1) {
2346     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2347     AP.OutStreamer->emitFill(Bytes, Value);
2348   }
2349   else {
2350     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2351       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2352       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2353     }
2354   }
2355 }
2356 
2357 static void emitGlobalConstantVector(const DataLayout &DL,
2358                                      const ConstantVector *CV, AsmPrinter &AP) {
2359   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2360     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2361 
2362   unsigned Size = DL.getTypeAllocSize(CV->getType());
2363   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2364                          CV->getType()->getNumElements();
2365   if (unsigned Padding = Size - EmittedSize)
2366     AP.OutStreamer->EmitZeros(Padding);
2367 }
2368 
2369 static void emitGlobalConstantStruct(const DataLayout &DL,
2370                                      const ConstantStruct *CS, AsmPrinter &AP,
2371                                      const Constant *BaseCV, uint64_t Offset) {
2372   // Print the fields in successive locations. Pad to align if needed!
2373   unsigned Size = DL.getTypeAllocSize(CS->getType());
2374   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2375   uint64_t SizeSoFar = 0;
2376   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2377     const Constant *Field = CS->getOperand(i);
2378 
2379     // Print the actual field value.
2380     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2381 
2382     // Check if padding is needed and insert one or more 0s.
2383     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2384     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2385                         - Layout->getElementOffset(i)) - FieldSize;
2386     SizeSoFar += FieldSize + PadSize;
2387 
2388     // Insert padding - this may include padding to increase the size of the
2389     // current field up to the ABI size (if the struct is not packed) as well
2390     // as padding to ensure that the next field starts at the right offset.
2391     AP.OutStreamer->EmitZeros(PadSize);
2392   }
2393   assert(SizeSoFar == Layout->getSizeInBytes() &&
2394          "Layout of constant struct may be incorrect!");
2395 }
2396 
2397 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2398   APInt API = APF.bitcastToAPInt();
2399 
2400   // First print a comment with what we think the original floating-point value
2401   // should have been.
2402   if (AP.isVerbose()) {
2403     SmallString<8> StrVal;
2404     APF.toString(StrVal);
2405 
2406     if (ET)
2407       ET->print(AP.OutStreamer->GetCommentOS());
2408     else
2409       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2410     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2411   }
2412 
2413   // Now iterate through the APInt chunks, emitting them in endian-correct
2414   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2415   // floats).
2416   unsigned NumBytes = API.getBitWidth() / 8;
2417   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2418   const uint64_t *p = API.getRawData();
2419 
2420   // PPC's long double has odd notions of endianness compared to how LLVM
2421   // handles it: p[0] goes first for *big* endian on PPC.
2422   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2423     int Chunk = API.getNumWords() - 1;
2424 
2425     if (TrailingBytes)
2426       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2427 
2428     for (; Chunk >= 0; --Chunk)
2429       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2430   } else {
2431     unsigned Chunk;
2432     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2433       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2434 
2435     if (TrailingBytes)
2436       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2437   }
2438 
2439   // Emit the tail padding for the long double.
2440   const DataLayout &DL = AP.getDataLayout();
2441   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2442 }
2443 
2444 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2445   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2446 }
2447 
2448 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2449   const DataLayout &DL = AP.getDataLayout();
2450   unsigned BitWidth = CI->getBitWidth();
2451 
2452   // Copy the value as we may massage the layout for constants whose bit width
2453   // is not a multiple of 64-bits.
2454   APInt Realigned(CI->getValue());
2455   uint64_t ExtraBits = 0;
2456   unsigned ExtraBitsSize = BitWidth & 63;
2457 
2458   if (ExtraBitsSize) {
2459     // The bit width of the data is not a multiple of 64-bits.
2460     // The extra bits are expected to be at the end of the chunk of the memory.
2461     // Little endian:
2462     // * Nothing to be done, just record the extra bits to emit.
2463     // Big endian:
2464     // * Record the extra bits to emit.
2465     // * Realign the raw data to emit the chunks of 64-bits.
2466     if (DL.isBigEndian()) {
2467       // Basically the structure of the raw data is a chunk of 64-bits cells:
2468       //    0        1         BitWidth / 64
2469       // [chunk1][chunk2] ... [chunkN].
2470       // The most significant chunk is chunkN and it should be emitted first.
2471       // However, due to the alignment issue chunkN contains useless bits.
2472       // Realign the chunks so that they contain only useless information:
2473       // ExtraBits     0       1       (BitWidth / 64) - 1
2474       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2475       ExtraBits = Realigned.getRawData()[0] &
2476         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2477       Realigned.lshrInPlace(ExtraBitsSize);
2478     } else
2479       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2480   }
2481 
2482   // We don't expect assemblers to support integer data directives
2483   // for more than 64 bits, so we emit the data in at most 64-bit
2484   // quantities at a time.
2485   const uint64_t *RawData = Realigned.getRawData();
2486   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2487     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2488     AP.OutStreamer->EmitIntValue(Val, 8);
2489   }
2490 
2491   if (ExtraBitsSize) {
2492     // Emit the extra bits after the 64-bits chunks.
2493 
2494     // Emit a directive that fills the expected size.
2495     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2496     Size -= (BitWidth / 64) * 8;
2497     assert(Size && Size * 8 >= ExtraBitsSize &&
2498            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2499            == ExtraBits && "Directive too small for extra bits.");
2500     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2501   }
2502 }
2503 
2504 /// Transform a not absolute MCExpr containing a reference to a GOT
2505 /// equivalent global, by a target specific GOT pc relative access to the
2506 /// final symbol.
2507 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2508                                          const Constant *BaseCst,
2509                                          uint64_t Offset) {
2510   // The global @foo below illustrates a global that uses a got equivalent.
2511   //
2512   //  @bar = global i32 42
2513   //  @gotequiv = private unnamed_addr constant i32* @bar
2514   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2515   //                             i64 ptrtoint (i32* @foo to i64))
2516   //                        to i32)
2517   //
2518   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2519   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2520   // form:
2521   //
2522   //  foo = cstexpr, where
2523   //    cstexpr := <gotequiv> - "." + <cst>
2524   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2525   //
2526   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2527   //
2528   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2529   //    gotpcrelcst := <offset from @foo base> + <cst>
2530   MCValue MV;
2531   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2532     return;
2533   const MCSymbolRefExpr *SymA = MV.getSymA();
2534   if (!SymA)
2535     return;
2536 
2537   // Check that GOT equivalent symbol is cached.
2538   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2539   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2540     return;
2541 
2542   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2543   if (!BaseGV)
2544     return;
2545 
2546   // Check for a valid base symbol
2547   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2548   const MCSymbolRefExpr *SymB = MV.getSymB();
2549 
2550   if (!SymB || BaseSym != &SymB->getSymbol())
2551     return;
2552 
2553   // Make sure to match:
2554   //
2555   //    gotpcrelcst := <offset from @foo base> + <cst>
2556   //
2557   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2558   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2559   // if the target knows how to encode it.
2560   int64_t GOTPCRelCst = Offset + MV.getConstant();
2561   if (GOTPCRelCst < 0)
2562     return;
2563   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2564     return;
2565 
2566   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2567   //
2568   //  bar:
2569   //    .long 42
2570   //  gotequiv:
2571   //    .quad bar
2572   //  foo:
2573   //    .long gotequiv - "." + <cst>
2574   //
2575   // is replaced by the target specific equivalent to:
2576   //
2577   //  bar:
2578   //    .long 42
2579   //  foo:
2580   //    .long bar@GOTPCREL+<gotpcrelcst>
2581   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2582   const GlobalVariable *GV = Result.first;
2583   int NumUses = (int)Result.second;
2584   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2585   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2586   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2587       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2588 
2589   // Update GOT equivalent usage information
2590   --NumUses;
2591   if (NumUses >= 0)
2592     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2593 }
2594 
2595 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2596                                    AsmPrinter &AP, const Constant *BaseCV,
2597                                    uint64_t Offset) {
2598   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2599 
2600   // Globals with sub-elements such as combinations of arrays and structs
2601   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2602   // constant symbol base and the current position with BaseCV and Offset.
2603   if (!BaseCV && CV->hasOneUse())
2604     BaseCV = dyn_cast<Constant>(CV->user_back());
2605 
2606   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2607     return AP.OutStreamer->EmitZeros(Size);
2608 
2609   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2610     switch (Size) {
2611     case 1:
2612     case 2:
2613     case 4:
2614     case 8:
2615       if (AP.isVerbose())
2616         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2617                                                  CI->getZExtValue());
2618       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2619       return;
2620     default:
2621       emitGlobalConstantLargeInt(CI, AP);
2622       return;
2623     }
2624   }
2625 
2626   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2627     return emitGlobalConstantFP(CFP, AP);
2628 
2629   if (isa<ConstantPointerNull>(CV)) {
2630     AP.OutStreamer->EmitIntValue(0, Size);
2631     return;
2632   }
2633 
2634   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2635     return emitGlobalConstantDataSequential(DL, CDS, AP);
2636 
2637   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2638     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2639 
2640   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2641     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2642 
2643   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2644     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2645     // vectors).
2646     if (CE->getOpcode() == Instruction::BitCast)
2647       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2648 
2649     if (Size > 8) {
2650       // If the constant expression's size is greater than 64-bits, then we have
2651       // to emit the value in chunks. Try to constant fold the value and emit it
2652       // that way.
2653       Constant *New = ConstantFoldConstant(CE, DL);
2654       if (New && New != CE)
2655         return emitGlobalConstantImpl(DL, New, AP);
2656     }
2657   }
2658 
2659   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2660     return emitGlobalConstantVector(DL, V, AP);
2661 
2662   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2663   // thread the streamer with EmitValue.
2664   const MCExpr *ME = AP.lowerConstant(CV);
2665 
2666   // Since lowerConstant already folded and got rid of all IR pointer and
2667   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2668   // directly.
2669   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2670     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2671 
2672   AP.OutStreamer->EmitValue(ME, Size);
2673 }
2674 
2675 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2676 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2677   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2678   if (Size)
2679     emitGlobalConstantImpl(DL, CV, *this);
2680   else if (MAI->hasSubsectionsViaSymbols()) {
2681     // If the global has zero size, emit a single byte so that two labels don't
2682     // look like they are at the same location.
2683     OutStreamer->EmitIntValue(0, 1);
2684   }
2685 }
2686 
2687 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2688   // Target doesn't support this yet!
2689   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2690 }
2691 
2692 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2693   if (Offset > 0)
2694     OS << '+' << Offset;
2695   else if (Offset < 0)
2696     OS << Offset;
2697 }
2698 
2699 //===----------------------------------------------------------------------===//
2700 // Symbol Lowering Routines.
2701 //===----------------------------------------------------------------------===//
2702 
2703 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2704   return OutContext.createTempSymbol(Name, true);
2705 }
2706 
2707 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2708   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2709 }
2710 
2711 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2712   return MMI->getAddrLabelSymbol(BB);
2713 }
2714 
2715 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2716 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2717   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2718     const MachineConstantPoolEntry &CPE =
2719         MF->getConstantPool()->getConstants()[CPID];
2720     if (!CPE.isMachineConstantPoolEntry()) {
2721       const DataLayout &DL = MF->getDataLayout();
2722       SectionKind Kind = CPE.getSectionKind(&DL);
2723       const Constant *C = CPE.Val.ConstVal;
2724       unsigned Align = CPE.Alignment;
2725       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2726               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2727         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2728           if (Sym->isUndefined())
2729             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2730           return Sym;
2731         }
2732       }
2733     }
2734   }
2735 
2736   const DataLayout &DL = getDataLayout();
2737   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2738                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2739                                       Twine(CPID));
2740 }
2741 
2742 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2743 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2744   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2745 }
2746 
2747 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2748 /// FIXME: privatize to AsmPrinter.
2749 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2750   const DataLayout &DL = getDataLayout();
2751   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2752                                       Twine(getFunctionNumber()) + "_" +
2753                                       Twine(UID) + "_set_" + Twine(MBBID));
2754 }
2755 
2756 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2757                                                    StringRef Suffix) const {
2758   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2759 }
2760 
2761 /// Return the MCSymbol for the specified ExternalSymbol.
2762 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2763   SmallString<60> NameStr;
2764   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2765   return OutContext.getOrCreateSymbol(NameStr);
2766 }
2767 
2768 /// PrintParentLoopComment - Print comments about parent loops of this one.
2769 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2770                                    unsigned FunctionNumber) {
2771   if (!Loop) return;
2772   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2773   OS.indent(Loop->getLoopDepth()*2)
2774     << "Parent Loop BB" << FunctionNumber << "_"
2775     << Loop->getHeader()->getNumber()
2776     << " Depth=" << Loop->getLoopDepth() << '\n';
2777 }
2778 
2779 /// PrintChildLoopComment - Print comments about child loops within
2780 /// the loop for this basic block, with nesting.
2781 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2782                                   unsigned FunctionNumber) {
2783   // Add child loop information
2784   for (const MachineLoop *CL : *Loop) {
2785     OS.indent(CL->getLoopDepth()*2)
2786       << "Child Loop BB" << FunctionNumber << "_"
2787       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2788       << '\n';
2789     PrintChildLoopComment(OS, CL, FunctionNumber);
2790   }
2791 }
2792 
2793 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2794 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2795                                        const MachineLoopInfo *LI,
2796                                        const AsmPrinter &AP) {
2797   // Add loop depth information
2798   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2799   if (!Loop) return;
2800 
2801   MachineBasicBlock *Header = Loop->getHeader();
2802   assert(Header && "No header for loop");
2803 
2804   // If this block is not a loop header, just print out what is the loop header
2805   // and return.
2806   if (Header != &MBB) {
2807     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2808                                Twine(AP.getFunctionNumber())+"_" +
2809                                Twine(Loop->getHeader()->getNumber())+
2810                                " Depth="+Twine(Loop->getLoopDepth()));
2811     return;
2812   }
2813 
2814   // Otherwise, it is a loop header.  Print out information about child and
2815   // parent loops.
2816   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2817 
2818   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2819 
2820   OS << "=>";
2821   OS.indent(Loop->getLoopDepth()*2-2);
2822 
2823   OS << "This ";
2824   if (Loop->empty())
2825     OS << "Inner ";
2826   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2827 
2828   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2829 }
2830 
2831 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2832                                          MCCodePaddingContext &Context) const {
2833   assert(MF != nullptr && "Machine function must be valid");
2834   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2835                             !MF->getFunction().optForSize() &&
2836                             TM.getOptLevel() != CodeGenOpt::None;
2837   Context.IsBasicBlockReachableViaFallthrough =
2838       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2839       MBB.pred_end();
2840   Context.IsBasicBlockReachableViaBranch =
2841       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2842 }
2843 
2844 /// EmitBasicBlockStart - This method prints the label for the specified
2845 /// MachineBasicBlock, an alignment (if present) and a comment describing
2846 /// it if appropriate.
2847 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2848   // End the previous funclet and start a new one.
2849   if (MBB.isEHFuncletEntry()) {
2850     for (const HandlerInfo &HI : Handlers) {
2851       HI.Handler->endFunclet();
2852       HI.Handler->beginFunclet(MBB);
2853     }
2854   }
2855 
2856   // Emit an alignment directive for this block, if needed.
2857   if (unsigned Align = MBB.getAlignment())
2858     EmitAlignment(Align);
2859   MCCodePaddingContext Context;
2860   setupCodePaddingContext(MBB, Context);
2861   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2862 
2863   // If the block has its address taken, emit any labels that were used to
2864   // reference the block.  It is possible that there is more than one label
2865   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2866   // the references were generated.
2867   if (MBB.hasAddressTaken()) {
2868     const BasicBlock *BB = MBB.getBasicBlock();
2869     if (isVerbose())
2870       OutStreamer->AddComment("Block address taken");
2871 
2872     // MBBs can have their address taken as part of CodeGen without having
2873     // their corresponding BB's address taken in IR
2874     if (BB->hasAddressTaken())
2875       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2876         OutStreamer->EmitLabel(Sym);
2877   }
2878 
2879   // Print some verbose block comments.
2880   if (isVerbose()) {
2881     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2882       if (BB->hasName()) {
2883         BB->printAsOperand(OutStreamer->GetCommentOS(),
2884                            /*PrintType=*/false, BB->getModule());
2885         OutStreamer->GetCommentOS() << '\n';
2886       }
2887     }
2888 
2889     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2890     emitBasicBlockLoopComments(MBB, MLI, *this);
2891   }
2892 
2893   // Print the main label for the block.
2894   if (MBB.pred_empty() ||
2895       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2896     if (isVerbose()) {
2897       // NOTE: Want this comment at start of line, don't emit with AddComment.
2898       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2899                                   false);
2900     }
2901   } else {
2902     OutStreamer->EmitLabel(MBB.getSymbol());
2903   }
2904 }
2905 
2906 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2907   MCCodePaddingContext Context;
2908   setupCodePaddingContext(MBB, Context);
2909   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2910 }
2911 
2912 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2913                                 bool IsDefinition) const {
2914   MCSymbolAttr Attr = MCSA_Invalid;
2915 
2916   switch (Visibility) {
2917   default: break;
2918   case GlobalValue::HiddenVisibility:
2919     if (IsDefinition)
2920       Attr = MAI->getHiddenVisibilityAttr();
2921     else
2922       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2923     break;
2924   case GlobalValue::ProtectedVisibility:
2925     Attr = MAI->getProtectedVisibilityAttr();
2926     break;
2927   }
2928 
2929   if (Attr != MCSA_Invalid)
2930     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2931 }
2932 
2933 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2934 /// exactly one predecessor and the control transfer mechanism between
2935 /// the predecessor and this block is a fall-through.
2936 bool AsmPrinter::
2937 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2938   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2939   // then nothing falls through to it.
2940   if (MBB->isEHPad() || MBB->pred_empty())
2941     return false;
2942 
2943   // If there isn't exactly one predecessor, it can't be a fall through.
2944   if (MBB->pred_size() > 1)
2945     return false;
2946 
2947   // The predecessor has to be immediately before this block.
2948   MachineBasicBlock *Pred = *MBB->pred_begin();
2949   if (!Pred->isLayoutSuccessor(MBB))
2950     return false;
2951 
2952   // If the block is completely empty, then it definitely does fall through.
2953   if (Pred->empty())
2954     return true;
2955 
2956   // Check the terminators in the previous blocks
2957   for (const auto &MI : Pred->terminators()) {
2958     // If it is not a simple branch, we are in a table somewhere.
2959     if (!MI.isBranch() || MI.isIndirectBranch())
2960       return false;
2961 
2962     // If we are the operands of one of the branches, this is not a fall
2963     // through. Note that targets with delay slots will usually bundle
2964     // terminators with the delay slot instruction.
2965     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2966       if (OP->isJTI())
2967         return false;
2968       if (OP->isMBB() && OP->getMBB() == MBB)
2969         return false;
2970     }
2971   }
2972 
2973   return true;
2974 }
2975 
2976 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2977   if (!S.usesMetadata())
2978     return nullptr;
2979 
2980   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2981          " stackmap formats, please see the documentation for a description of"
2982          " the default format.  If you really need a custom serialized format,"
2983          " please file a bug");
2984 
2985   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2986   gcp_map_type::iterator GCPI = GCMap.find(&S);
2987   if (GCPI != GCMap.end())
2988     return GCPI->second.get();
2989 
2990   auto Name = S.getName();
2991 
2992   for (GCMetadataPrinterRegistry::iterator
2993          I = GCMetadataPrinterRegistry::begin(),
2994          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2995     if (Name == I->getName()) {
2996       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2997       GMP->S = &S;
2998       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2999       return IterBool.first->second.get();
3000     }
3001 
3002   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3003 }
3004 
3005 /// Pin vtable to this file.
3006 AsmPrinterHandler::~AsmPrinterHandler() = default;
3007 
3008 void AsmPrinterHandler::markFunctionEnd() {}
3009 
3010 // In the binary's "xray_instr_map" section, an array of these function entries
3011 // describes each instrumentation point.  When XRay patches your code, the index
3012 // into this table will be given to your handler as a patch point identifier.
3013 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3014                                          const MCSymbol *CurrentFnSym) const {
3015   Out->EmitSymbolValue(Sled, Bytes);
3016   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3017   auto Kind8 = static_cast<uint8_t>(Kind);
3018   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3019   Out->EmitBinaryData(
3020       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3021   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3022   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3023   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3024   Out->EmitZeros(Padding);
3025 }
3026 
3027 void AsmPrinter::emitXRayTable() {
3028   if (Sleds.empty())
3029     return;
3030 
3031   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3032   const Function &F = MF->getFunction();
3033   MCSection *InstMap = nullptr;
3034   MCSection *FnSledIndex = nullptr;
3035   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3036     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3037     assert(Associated != nullptr);
3038     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3039     std::string GroupName;
3040     if (F.hasComdat()) {
3041       Flags |= ELF::SHF_GROUP;
3042       GroupName = F.getComdat()->getName();
3043     }
3044 
3045     auto UniqueID = ++XRayFnUniqueID;
3046     InstMap =
3047         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3048                                  GroupName, UniqueID, Associated);
3049     FnSledIndex =
3050         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3051                                  GroupName, UniqueID, Associated);
3052   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3053     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3054                                          SectionKind::getReadOnlyWithRel());
3055     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3056                                              SectionKind::getReadOnlyWithRel());
3057   } else {
3058     llvm_unreachable("Unsupported target");
3059   }
3060 
3061   auto WordSizeBytes = MAI->getCodePointerSize();
3062 
3063   // Now we switch to the instrumentation map section. Because this is done
3064   // per-function, we are able to create an index entry that will represent the
3065   // range of sleds associated with a function.
3066   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3067   OutStreamer->SwitchSection(InstMap);
3068   OutStreamer->EmitLabel(SledsStart);
3069   for (const auto &Sled : Sleds)
3070     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3071   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3072   OutStreamer->EmitLabel(SledsEnd);
3073 
3074   // We then emit a single entry in the index per function. We use the symbols
3075   // that bound the instrumentation map as the range for a specific function.
3076   // Each entry here will be 2 * word size aligned, as we're writing down two
3077   // pointers. This should work for both 32-bit and 64-bit platforms.
3078   OutStreamer->SwitchSection(FnSledIndex);
3079   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3080   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3081   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3082   OutStreamer->SwitchSection(PrevSection);
3083   Sleds.clear();
3084 }
3085 
3086 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3087                             SledKind Kind, uint8_t Version) {
3088   const Function &F = MI.getMF()->getFunction();
3089   auto Attr = F.getFnAttribute("function-instrument");
3090   bool LogArgs = F.hasFnAttribute("xray-log-args");
3091   bool AlwaysInstrument =
3092     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3093   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3094     Kind = SledKind::LOG_ARGS_ENTER;
3095   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3096                                        AlwaysInstrument, &F, Version});
3097 }
3098 
3099 uint16_t AsmPrinter::getDwarfVersion() const {
3100   return OutStreamer->getContext().getDwarfVersion();
3101 }
3102 
3103 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3104   OutStreamer->getContext().setDwarfVersion(Version);
3105 }
3106