1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/ObjectUtils.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetLoweringObjectFile.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSubtargetInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalIFunc.h"
72 #include "llvm/IR/GlobalIndirectSymbol.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionELF.h"
92 #include "llvm/MC/MCSectionMachO.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCTargetOptions.h"
98 #include "llvm/MC/MCValue.h"
99 #include "llvm/MC/SectionKind.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/Format.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/Path.h"
108 #include "llvm/Support/TargetRegistry.h"
109 #include "llvm/Support/Timer.h"
110 #include "llvm/Support/raw_ostream.h"
111 #include "llvm/Target/TargetMachine.h"
112 #include "llvm/Target/TargetOptions.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cinttypes>
116 #include <cstdint>
117 #include <iterator>
118 #include <limits>
119 #include <memory>
120 #include <string>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 
126 #define DEBUG_TYPE "asm-printer"
127 
128 static const char *const DWARFGroupName = "dwarf";
129 static const char *const DWARFGroupDescription = "DWARF Emission";
130 static const char *const DbgTimerName = "emit";
131 static const char *const DbgTimerDescription = "Debug Info Emission";
132 static const char *const EHTimerName = "write_exception";
133 static const char *const EHTimerDescription = "DWARF Exception Writer";
134 static const char *const CFGuardName = "Control Flow Guard";
135 static const char *const CFGuardDescription = "Control Flow Guard Tables";
136 static const char *const CodeViewLineTablesGroupName = "linetables";
137 static const char *const CodeViewLineTablesGroupDescription =
138   "CodeView Line Tables";
139 
140 STATISTIC(EmittedInsts, "Number of machine instrs printed");
141 
142 static cl::opt<bool>
143     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
144                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
145 
146 char AsmPrinter::ID = 0;
147 
148 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
149 
150 static gcp_map_type &getGCMap(void *&P) {
151   if (!P)
152     P = new gcp_map_type();
153   return *(gcp_map_type*)P;
154 }
155 
156 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
157 /// value in log2 form.  This rounds up to the preferred alignment if possible
158 /// and legal.
159 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
160                                    unsigned InBits = 0) {
161   unsigned NumBits = 0;
162   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
163     NumBits = DL.getPreferredAlignmentLog(GVar);
164 
165   // If InBits is specified, round it to it.
166   if (InBits > NumBits)
167     NumBits = InBits;
168 
169   // If the GV has a specified alignment, take it into account.
170   if (GV->getAlignment() == 0)
171     return NumBits;
172 
173   unsigned GVAlign = Log2_32(GV->getAlignment());
174 
175   // If the GVAlign is larger than NumBits, or if we are required to obey
176   // NumBits because the GV has an assigned section, obey it.
177   if (GVAlign > NumBits || GV->hasSection())
178     NumBits = GVAlign;
179   return NumBits;
180 }
181 
182 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
183     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
184       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
185   VerboseAsm = OutStreamer->isVerboseAsm();
186 }
187 
188 AsmPrinter::~AsmPrinter() {
189   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
190 
191   if (GCMetadataPrinters) {
192     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
193 
194     delete &GCMap;
195     GCMetadataPrinters = nullptr;
196   }
197 }
198 
199 bool AsmPrinter::isPositionIndependent() const {
200   return TM.isPositionIndependent();
201 }
202 
203 /// getFunctionNumber - Return a unique ID for the current function.
204 unsigned AsmPrinter::getFunctionNumber() const {
205   return MF->getFunctionNumber();
206 }
207 
208 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
209   return *TM.getObjFileLowering();
210 }
211 
212 const DataLayout &AsmPrinter::getDataLayout() const {
213   return MMI->getModule()->getDataLayout();
214 }
215 
216 // Do not use the cached DataLayout because some client use it without a Module
217 // (llvm-dsymutil, llvm-dwarfdump).
218 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
219 
220 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
221   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
222   return MF->getSubtarget<MCSubtargetInfo>();
223 }
224 
225 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
226   S.EmitInstruction(Inst, getSubtargetInfo());
227 }
228 
229 /// getCurrentSection() - Return the current section we are emitting to.
230 const MCSection *AsmPrinter::getCurrentSection() const {
231   return OutStreamer->getCurrentSectionOnly();
232 }
233 
234 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
235   AU.setPreservesAll();
236   MachineFunctionPass::getAnalysisUsage(AU);
237   AU.addRequired<MachineModuleInfo>();
238   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
239   AU.addRequired<GCModuleInfo>();
240   AU.addRequired<MachineLoopInfo>();
241 }
242 
243 bool AsmPrinter::doInitialization(Module &M) {
244   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
245 
246   // Initialize TargetLoweringObjectFile.
247   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
248     .Initialize(OutContext, TM);
249 
250   OutStreamer->InitSections(false);
251 
252   // Emit the version-min deplyment target directive if needed.
253   //
254   // FIXME: If we end up with a collection of these sorts of Darwin-specific
255   // or ELF-specific things, it may make sense to have a platform helper class
256   // that will work with the target helper class. For now keep it here, as the
257   // alternative is duplicated code in each of the target asm printers that
258   // use the directive, where it would need the same conditionalization
259   // anyway.
260   const Triple &Target = TM.getTargetTriple();
261   OutStreamer->EmitVersionForTarget(Target);
262 
263   // Allow the target to emit any magic that it wants at the start of the file.
264   EmitStartOfAsmFile(M);
265 
266   // Very minimal debug info. It is ignored if we emit actual debug info. If we
267   // don't, this at least helps the user find where a global came from.
268   if (MAI->hasSingleParameterDotFile()) {
269     // .file "foo.c"
270     OutStreamer->EmitFileDirective(
271         llvm::sys::path::filename(M.getSourceFileName()));
272   }
273 
274   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
275   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
276   for (auto &I : *MI)
277     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
278       MP->beginAssembly(M, *MI, *this);
279 
280   // Emit module-level inline asm if it exists.
281   if (!M.getModuleInlineAsm().empty()) {
282     // We're at the module level. Construct MCSubtarget from the default CPU
283     // and target triple.
284     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
285         TM.getTargetTriple().str(), TM.getTargetCPU(),
286         TM.getTargetFeatureString()));
287     OutStreamer->AddComment("Start of file scope inline assembly");
288     OutStreamer->AddBlankLine();
289     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
290                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
291     OutStreamer->AddComment("End of file scope inline assembly");
292     OutStreamer->AddBlankLine();
293   }
294 
295   if (MAI->doesSupportDebugInformation()) {
296     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
297     if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
298                          TM.getTargetTriple().isWindowsItaniumEnvironment())) {
299       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
300                                      DbgTimerName, DbgTimerDescription,
301                                      CodeViewLineTablesGroupName,
302                                      CodeViewLineTablesGroupDescription));
303     }
304     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
305       DD = new DwarfDebug(this, &M);
306       DD->beginModule();
307       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
308                                      DWARFGroupName, DWARFGroupDescription));
309     }
310   }
311 
312   switch (MAI->getExceptionHandlingType()) {
313   case ExceptionHandling::SjLj:
314   case ExceptionHandling::DwarfCFI:
315   case ExceptionHandling::ARM:
316     isCFIMoveForDebugging = true;
317     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
318       break;
319     for (auto &F: M.getFunctionList()) {
320       // If the module contains any function with unwind data,
321       // .eh_frame has to be emitted.
322       // Ignore functions that won't get emitted.
323       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
324         isCFIMoveForDebugging = false;
325         break;
326       }
327     }
328     break;
329   default:
330     isCFIMoveForDebugging = false;
331     break;
332   }
333 
334   EHStreamer *ES = nullptr;
335   switch (MAI->getExceptionHandlingType()) {
336   case ExceptionHandling::None:
337     break;
338   case ExceptionHandling::SjLj:
339   case ExceptionHandling::DwarfCFI:
340     ES = new DwarfCFIException(this);
341     break;
342   case ExceptionHandling::ARM:
343     ES = new ARMException(this);
344     break;
345   case ExceptionHandling::WinEH:
346     switch (MAI->getWinEHEncodingType()) {
347     default: llvm_unreachable("unsupported unwinding information encoding");
348     case WinEH::EncodingType::Invalid:
349       break;
350     case WinEH::EncodingType::X86:
351     case WinEH::EncodingType::Itanium:
352       ES = new WinException(this);
353       break;
354     }
355     break;
356   }
357   if (ES)
358     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
359                                    DWARFGroupName, DWARFGroupDescription));
360 
361   if (mdconst::extract_or_null<ConstantInt>(
362           MMI->getModule()->getModuleFlag("cfguard")))
363     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
364                                    CFGuardDescription, DWARFGroupName,
365                                    DWARFGroupDescription));
366 
367   return false;
368 }
369 
370 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
371   if (!MAI.hasWeakDefCanBeHiddenDirective())
372     return false;
373 
374   return canBeOmittedFromSymbolTable(GV);
375 }
376 
377 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
378   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
379   switch (Linkage) {
380   case GlobalValue::CommonLinkage:
381   case GlobalValue::LinkOnceAnyLinkage:
382   case GlobalValue::LinkOnceODRLinkage:
383   case GlobalValue::WeakAnyLinkage:
384   case GlobalValue::WeakODRLinkage:
385     if (MAI->hasWeakDefDirective()) {
386       // .globl _foo
387       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
388 
389       if (!canBeHidden(GV, *MAI))
390         // .weak_definition _foo
391         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
392       else
393         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
394     } else if (MAI->hasLinkOnceDirective()) {
395       // .globl _foo
396       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
397       //NOTE: linkonce is handled by the section the symbol was assigned to.
398     } else {
399       // .weak _foo
400       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
401     }
402     return;
403   case GlobalValue::ExternalLinkage:
404     // If external, declare as a global symbol: .globl _foo
405     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
406     return;
407   case GlobalValue::PrivateLinkage:
408   case GlobalValue::InternalLinkage:
409     return;
410   case GlobalValue::AppendingLinkage:
411   case GlobalValue::AvailableExternallyLinkage:
412   case GlobalValue::ExternalWeakLinkage:
413     llvm_unreachable("Should never emit this");
414   }
415   llvm_unreachable("Unknown linkage type!");
416 }
417 
418 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
419                                    const GlobalValue *GV) const {
420   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
421 }
422 
423 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
424   return TM.getSymbol(GV);
425 }
426 
427 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
428 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
429   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
430   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
431          "No emulated TLS variables in the common section");
432 
433   // Never emit TLS variable xyz in emulated TLS model.
434   // The initialization value is in __emutls_t.xyz instead of xyz.
435   if (IsEmuTLSVar)
436     return;
437 
438   if (GV->hasInitializer()) {
439     // Check to see if this is a special global used by LLVM, if so, emit it.
440     if (EmitSpecialLLVMGlobal(GV))
441       return;
442 
443     // Skip the emission of global equivalents. The symbol can be emitted later
444     // on by emitGlobalGOTEquivs in case it turns out to be needed.
445     if (GlobalGOTEquivs.count(getSymbol(GV)))
446       return;
447 
448     if (isVerbose()) {
449       // When printing the control variable __emutls_v.*,
450       // we don't need to print the original TLS variable name.
451       GV->printAsOperand(OutStreamer->GetCommentOS(),
452                      /*PrintType=*/false, GV->getParent());
453       OutStreamer->GetCommentOS() << '\n';
454     }
455   }
456 
457   MCSymbol *GVSym = getSymbol(GV);
458   MCSymbol *EmittedSym = GVSym;
459 
460   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
461   // attributes.
462   // GV's or GVSym's attributes will be used for the EmittedSym.
463   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
464 
465   if (!GV->hasInitializer())   // External globals require no extra code.
466     return;
467 
468   GVSym->redefineIfPossible();
469   if (GVSym->isDefined() || GVSym->isVariable())
470     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
471                        "' is already defined");
472 
473   if (MAI->hasDotTypeDotSizeDirective())
474     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
475 
476   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
477 
478   const DataLayout &DL = GV->getParent()->getDataLayout();
479   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
480 
481   // If the alignment is specified, we *must* obey it.  Overaligning a global
482   // with a specified alignment is a prompt way to break globals emitted to
483   // sections and expected to be contiguous (e.g. ObjC metadata).
484   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
485 
486   for (const HandlerInfo &HI : Handlers) {
487     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
488                        HI.TimerGroupName, HI.TimerGroupDescription,
489                        TimePassesIsEnabled);
490     HI.Handler->setSymbolSize(GVSym, Size);
491   }
492 
493   // Handle common symbols
494   if (GVKind.isCommon()) {
495     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
496     unsigned Align = 1 << AlignLog;
497     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
498       Align = 0;
499 
500     // .comm _foo, 42, 4
501     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
502     return;
503   }
504 
505   // Determine to which section this global should be emitted.
506   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
507 
508   // If we have a bss global going to a section that supports the
509   // zerofill directive, do so here.
510   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
511       TheSection->isVirtualSection()) {
512     if (Size == 0)
513       Size = 1; // zerofill of 0 bytes is undefined.
514     unsigned Align = 1 << AlignLog;
515     EmitLinkage(GV, GVSym);
516     // .zerofill __DATA, __bss, _foo, 400, 5
517     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
518     return;
519   }
520 
521   // If this is a BSS local symbol and we are emitting in the BSS
522   // section use .lcomm/.comm directive.
523   if (GVKind.isBSSLocal() &&
524       getObjFileLowering().getBSSSection() == TheSection) {
525     if (Size == 0)
526       Size = 1; // .comm Foo, 0 is undefined, avoid it.
527     unsigned Align = 1 << AlignLog;
528 
529     // Use .lcomm only if it supports user-specified alignment.
530     // Otherwise, while it would still be correct to use .lcomm in some
531     // cases (e.g. when Align == 1), the external assembler might enfore
532     // some -unknown- default alignment behavior, which could cause
533     // spurious differences between external and integrated assembler.
534     // Prefer to simply fall back to .local / .comm in this case.
535     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
536       // .lcomm _foo, 42
537       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
538       return;
539     }
540 
541     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
542       Align = 0;
543 
544     // .local _foo
545     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
546     // .comm _foo, 42, 4
547     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
548     return;
549   }
550 
551   // Handle thread local data for mach-o which requires us to output an
552   // additional structure of data and mangle the original symbol so that we
553   // can reference it later.
554   //
555   // TODO: This should become an "emit thread local global" method on TLOF.
556   // All of this macho specific stuff should be sunk down into TLOFMachO and
557   // stuff like "TLSExtraDataSection" should no longer be part of the parent
558   // TLOF class.  This will also make it more obvious that stuff like
559   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
560   // specific code.
561   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
562     // Emit the .tbss symbol
563     MCSymbol *MangSym =
564         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
565 
566     if (GVKind.isThreadBSS()) {
567       TheSection = getObjFileLowering().getTLSBSSSection();
568       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
569     } else if (GVKind.isThreadData()) {
570       OutStreamer->SwitchSection(TheSection);
571 
572       EmitAlignment(AlignLog, GV);
573       OutStreamer->EmitLabel(MangSym);
574 
575       EmitGlobalConstant(GV->getParent()->getDataLayout(),
576                          GV->getInitializer());
577     }
578 
579     OutStreamer->AddBlankLine();
580 
581     // Emit the variable struct for the runtime.
582     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
583 
584     OutStreamer->SwitchSection(TLVSect);
585     // Emit the linkage here.
586     EmitLinkage(GV, GVSym);
587     OutStreamer->EmitLabel(GVSym);
588 
589     // Three pointers in size:
590     //   - __tlv_bootstrap - used to make sure support exists
591     //   - spare pointer, used when mapped by the runtime
592     //   - pointer to mangled symbol above with initializer
593     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
594     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
595                                 PtrSize);
596     OutStreamer->EmitIntValue(0, PtrSize);
597     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
598 
599     OutStreamer->AddBlankLine();
600     return;
601   }
602 
603   MCSymbol *EmittedInitSym = GVSym;
604 
605   OutStreamer->SwitchSection(TheSection);
606 
607   EmitLinkage(GV, EmittedInitSym);
608   EmitAlignment(AlignLog, GV);
609 
610   OutStreamer->EmitLabel(EmittedInitSym);
611 
612   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
613 
614   if (MAI->hasDotTypeDotSizeDirective())
615     // .size foo, 42
616     OutStreamer->emitELFSize(EmittedInitSym,
617                              MCConstantExpr::create(Size, OutContext));
618 
619   OutStreamer->AddBlankLine();
620 }
621 
622 /// Emit the directive and value for debug thread local expression
623 ///
624 /// \p Value - The value to emit.
625 /// \p Size - The size of the integer (in bytes) to emit.
626 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
627                                       unsigned Size) const {
628   OutStreamer->EmitValue(Value, Size);
629 }
630 
631 /// EmitFunctionHeader - This method emits the header for the current
632 /// function.
633 void AsmPrinter::EmitFunctionHeader() {
634   const Function &F = MF->getFunction();
635 
636   if (isVerbose())
637     OutStreamer->GetCommentOS()
638         << "-- Begin function "
639         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
640 
641   // Print out constants referenced by the function
642   EmitConstantPool();
643 
644   // Print the 'header' of function.
645   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
646   EmitVisibility(CurrentFnSym, F.getVisibility());
647 
648   EmitLinkage(&F, CurrentFnSym);
649   if (MAI->hasFunctionAlignment())
650     EmitAlignment(MF->getAlignment(), &F);
651 
652   if (MAI->hasDotTypeDotSizeDirective())
653     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
654 
655   if (isVerbose()) {
656     F.printAsOperand(OutStreamer->GetCommentOS(),
657                    /*PrintType=*/false, F.getParent());
658     OutStreamer->GetCommentOS() << '\n';
659   }
660 
661   // Emit the prefix data.
662   if (F.hasPrefixData()) {
663     if (MAI->hasSubsectionsViaSymbols()) {
664       // Preserving prefix data on platforms which use subsections-via-symbols
665       // is a bit tricky. Here we introduce a symbol for the prefix data
666       // and use the .alt_entry attribute to mark the function's real entry point
667       // as an alternative entry point to the prefix-data symbol.
668       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
669       OutStreamer->EmitLabel(PrefixSym);
670 
671       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
672 
673       // Emit an .alt_entry directive for the actual function symbol.
674       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
675     } else {
676       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
677     }
678   }
679 
680   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
681   // do their wild and crazy things as required.
682   EmitFunctionEntryLabel();
683 
684   // If the function had address-taken blocks that got deleted, then we have
685   // references to the dangling symbols.  Emit them at the start of the function
686   // so that we don't get references to undefined symbols.
687   std::vector<MCSymbol*> DeadBlockSyms;
688   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
689   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
690     OutStreamer->AddComment("Address taken block that was later removed");
691     OutStreamer->EmitLabel(DeadBlockSyms[i]);
692   }
693 
694   if (CurrentFnBegin) {
695     if (MAI->useAssignmentForEHBegin()) {
696       MCSymbol *CurPos = OutContext.createTempSymbol();
697       OutStreamer->EmitLabel(CurPos);
698       OutStreamer->EmitAssignment(CurrentFnBegin,
699                                  MCSymbolRefExpr::create(CurPos, OutContext));
700     } else {
701       OutStreamer->EmitLabel(CurrentFnBegin);
702     }
703   }
704 
705   // Emit pre-function debug and/or EH information.
706   for (const HandlerInfo &HI : Handlers) {
707     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
708                        HI.TimerGroupDescription, TimePassesIsEnabled);
709     HI.Handler->beginFunction(MF);
710   }
711 
712   // Emit the prologue data.
713   if (F.hasPrologueData())
714     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
715 }
716 
717 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
718 /// function.  This can be overridden by targets as required to do custom stuff.
719 void AsmPrinter::EmitFunctionEntryLabel() {
720   CurrentFnSym->redefineIfPossible();
721 
722   // The function label could have already been emitted if two symbols end up
723   // conflicting due to asm renaming.  Detect this and emit an error.
724   if (CurrentFnSym->isVariable())
725     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
726                        "' is a protected alias");
727   if (CurrentFnSym->isDefined())
728     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
729                        "' label emitted multiple times to assembly file");
730 
731   return OutStreamer->EmitLabel(CurrentFnSym);
732 }
733 
734 /// emitComments - Pretty-print comments for instructions.
735 /// It returns true iff the sched comment was emitted.
736 ///   Otherwise it returns false.
737 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
738                          AsmPrinter *AP) {
739   const MachineFunction *MF = MI.getMF();
740   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
741 
742   // Check for spills and reloads
743   int FI;
744 
745   const MachineFrameInfo &MFI = MF->getFrameInfo();
746   bool Commented = false;
747 
748   // We assume a single instruction only has a spill or reload, not
749   // both.
750   const MachineMemOperand *MMO;
751   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
752     if (MFI.isSpillSlotObjectIndex(FI)) {
753       MMO = *MI.memoperands_begin();
754       CommentOS << MMO->getSize() << "-byte Reload";
755       Commented = true;
756     }
757   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
758     if (MFI.isSpillSlotObjectIndex(FI)) {
759       CommentOS << MMO->getSize() << "-byte Folded Reload";
760       Commented = true;
761     }
762   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
763     if (MFI.isSpillSlotObjectIndex(FI)) {
764       MMO = *MI.memoperands_begin();
765       CommentOS << MMO->getSize() << "-byte Spill";
766       Commented = true;
767     }
768   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
769     if (MFI.isSpillSlotObjectIndex(FI)) {
770       CommentOS << MMO->getSize() << "-byte Folded Spill";
771       Commented = true;
772     }
773   }
774 
775   // Check for spill-induced copies
776   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
777     Commented = true;
778     CommentOS << " Reload Reuse";
779   }
780 
781   if (Commented) {
782     if (AP->EnablePrintSchedInfo) {
783       // If any comment was added above and we need sched info comment then add
784       // this new comment just after the above comment w/o "\n" between them.
785       CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
786       return true;
787     }
788     CommentOS << "\n";
789   }
790   return false;
791 }
792 
793 /// emitImplicitDef - This method emits the specified machine instruction
794 /// that is an implicit def.
795 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
796   unsigned RegNo = MI->getOperand(0).getReg();
797 
798   SmallString<128> Str;
799   raw_svector_ostream OS(Str);
800   OS << "implicit-def: "
801      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
802 
803   OutStreamer->AddComment(OS.str());
804   OutStreamer->AddBlankLine();
805 }
806 
807 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
808   std::string Str;
809   raw_string_ostream OS(Str);
810   OS << "kill:";
811   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
812     const MachineOperand &Op = MI->getOperand(i);
813     assert(Op.isReg() && "KILL instruction must have only register operands");
814     OS << ' ' << (Op.isDef() ? "def " : "killed ")
815        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
816   }
817   AP.OutStreamer->AddComment(OS.str());
818   AP.OutStreamer->AddBlankLine();
819 }
820 
821 /// emitDebugValueComment - This method handles the target-independent form
822 /// of DBG_VALUE, returning true if it was able to do so.  A false return
823 /// means the target will need to handle MI in EmitInstruction.
824 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
825   // This code handles only the 4-operand target-independent form.
826   if (MI->getNumOperands() != 4)
827     return false;
828 
829   SmallString<128> Str;
830   raw_svector_ostream OS(Str);
831   OS << "DEBUG_VALUE: ";
832 
833   const DILocalVariable *V = MI->getDebugVariable();
834   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
835     StringRef Name = SP->getName();
836     if (!Name.empty())
837       OS << Name << ":";
838   }
839   OS << V->getName();
840   OS << " <- ";
841 
842   // The second operand is only an offset if it's an immediate.
843   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
844   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
845   const DIExpression *Expr = MI->getDebugExpression();
846   if (Expr->getNumElements()) {
847     OS << '[';
848     bool NeedSep = false;
849     for (auto Op : Expr->expr_ops()) {
850       if (NeedSep)
851         OS << ", ";
852       else
853         NeedSep = true;
854       OS << dwarf::OperationEncodingString(Op.getOp());
855       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
856         OS << ' ' << Op.getArg(I);
857     }
858     OS << "] ";
859   }
860 
861   // Register or immediate value. Register 0 means undef.
862   if (MI->getOperand(0).isFPImm()) {
863     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
864     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
865       OS << (double)APF.convertToFloat();
866     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
867       OS << APF.convertToDouble();
868     } else {
869       // There is no good way to print long double.  Convert a copy to
870       // double.  Ah well, it's only a comment.
871       bool ignored;
872       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
873                   &ignored);
874       OS << "(long double) " << APF.convertToDouble();
875     }
876   } else if (MI->getOperand(0).isImm()) {
877     OS << MI->getOperand(0).getImm();
878   } else if (MI->getOperand(0).isCImm()) {
879     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
880   } else {
881     unsigned Reg;
882     if (MI->getOperand(0).isReg()) {
883       Reg = MI->getOperand(0).getReg();
884     } else {
885       assert(MI->getOperand(0).isFI() && "Unknown operand type");
886       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
887       Offset += TFI->getFrameIndexReference(*AP.MF,
888                                             MI->getOperand(0).getIndex(), Reg);
889       MemLoc = true;
890     }
891     if (Reg == 0) {
892       // Suppress offset, it is not meaningful here.
893       OS << "undef";
894       // NOTE: Want this comment at start of line, don't emit with AddComment.
895       AP.OutStreamer->emitRawComment(OS.str());
896       return true;
897     }
898     if (MemLoc)
899       OS << '[';
900     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
901   }
902 
903   if (MemLoc)
904     OS << '+' << Offset << ']';
905 
906   // NOTE: Want this comment at start of line, don't emit with AddComment.
907   AP.OutStreamer->emitRawComment(OS.str());
908   return true;
909 }
910 
911 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
912   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
913       MF->getFunction().needsUnwindTableEntry())
914     return CFI_M_EH;
915 
916   if (MMI->hasDebugInfo())
917     return CFI_M_Debug;
918 
919   return CFI_M_None;
920 }
921 
922 bool AsmPrinter::needsSEHMoves() {
923   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
924 }
925 
926 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
927   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
928   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
929       ExceptionHandlingType != ExceptionHandling::ARM)
930     return;
931 
932   if (needsCFIMoves() == CFI_M_None)
933     return;
934 
935   // If there is no "real" instruction following this CFI instruction, skip
936   // emitting it; it would be beyond the end of the function's FDE range.
937   auto *MBB = MI.getParent();
938   auto I = std::next(MI.getIterator());
939   while (I != MBB->end() && I->isTransient())
940     ++I;
941   if (I == MBB->instr_end() &&
942       MBB->getReverseIterator() == MBB->getParent()->rbegin())
943     return;
944 
945   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
946   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
947   const MCCFIInstruction &CFI = Instrs[CFIIndex];
948   emitCFIInstruction(CFI);
949 }
950 
951 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
952   // The operands are the MCSymbol and the frame offset of the allocation.
953   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
954   int FrameOffset = MI.getOperand(1).getImm();
955 
956   // Emit a symbol assignment.
957   OutStreamer->EmitAssignment(FrameAllocSym,
958                              MCConstantExpr::create(FrameOffset, OutContext));
959 }
960 
961 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
962   if (!MF.getTarget().Options.EmitStackSizeSection)
963     return;
964 
965   MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection();
966   if (!StackSizeSection)
967     return;
968 
969   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
970   // Don't emit functions with dynamic stack allocations.
971   if (FrameInfo.hasVarSizedObjects())
972     return;
973 
974   OutStreamer->PushSection();
975   OutStreamer->SwitchSection(StackSizeSection);
976 
977   const MCSymbol *FunctionSymbol = getSymbol(&MF.getFunction());
978   uint64_t StackSize = FrameInfo.getStackSize();
979   OutStreamer->EmitValue(MCSymbolRefExpr::create(FunctionSymbol, OutContext),
980                          /* size = */ 8);
981   OutStreamer->EmitULEB128IntValue(StackSize);
982 
983   OutStreamer->PopSection();
984 }
985 
986 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
987                                            MachineModuleInfo *MMI) {
988   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
989     return true;
990 
991   // We might emit an EH table that uses function begin and end labels even if
992   // we don't have any landingpads.
993   if (!MF.getFunction().hasPersonalityFn())
994     return false;
995   return !isNoOpWithoutInvoke(
996       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
997 }
998 
999 /// EmitFunctionBody - This method emits the body and trailer for a
1000 /// function.
1001 void AsmPrinter::EmitFunctionBody() {
1002   EmitFunctionHeader();
1003 
1004   // Emit target-specific gunk before the function body.
1005   EmitFunctionBodyStart();
1006 
1007   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1008 
1009   // Print out code for the function.
1010   bool HasAnyRealCode = false;
1011   int NumInstsInFunction = 0;
1012   for (auto &MBB : *MF) {
1013     // Print a label for the basic block.
1014     EmitBasicBlockStart(MBB);
1015     for (auto &MI : MBB) {
1016       // Print the assembly for the instruction.
1017       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1018           !MI.isDebugValue()) {
1019         HasAnyRealCode = true;
1020         ++NumInstsInFunction;
1021       }
1022 
1023       if (ShouldPrintDebugScopes) {
1024         for (const HandlerInfo &HI : Handlers) {
1025           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1026                              HI.TimerGroupName, HI.TimerGroupDescription,
1027                              TimePassesIsEnabled);
1028           HI.Handler->beginInstruction(&MI);
1029         }
1030       }
1031 
1032       if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) {
1033         MachineInstr *MIP = const_cast<MachineInstr *>(&MI);
1034         MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment);
1035       }
1036 
1037       switch (MI.getOpcode()) {
1038       case TargetOpcode::CFI_INSTRUCTION:
1039         emitCFIInstruction(MI);
1040         break;
1041       case TargetOpcode::LOCAL_ESCAPE:
1042         emitFrameAlloc(MI);
1043         break;
1044       case TargetOpcode::EH_LABEL:
1045       case TargetOpcode::GC_LABEL:
1046         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1047         break;
1048       case TargetOpcode::INLINEASM:
1049         EmitInlineAsm(&MI);
1050         break;
1051       case TargetOpcode::DBG_VALUE:
1052         if (isVerbose()) {
1053           if (!emitDebugValueComment(&MI, *this))
1054             EmitInstruction(&MI);
1055         }
1056         break;
1057       case TargetOpcode::IMPLICIT_DEF:
1058         if (isVerbose()) emitImplicitDef(&MI);
1059         break;
1060       case TargetOpcode::KILL:
1061         if (isVerbose()) emitKill(&MI, *this);
1062         break;
1063       default:
1064         EmitInstruction(&MI);
1065         break;
1066       }
1067 
1068       if (ShouldPrintDebugScopes) {
1069         for (const HandlerInfo &HI : Handlers) {
1070           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1071                              HI.TimerGroupName, HI.TimerGroupDescription,
1072                              TimePassesIsEnabled);
1073           HI.Handler->endInstruction();
1074         }
1075       }
1076     }
1077 
1078     EmitBasicBlockEnd(MBB);
1079   }
1080 
1081   EmittedInsts += NumInstsInFunction;
1082   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1083                                       MF->getFunction().getSubprogram(),
1084                                       &MF->front());
1085   R << ore::NV("NumInstructions", NumInstsInFunction)
1086     << " instructions in function";
1087   ORE->emit(R);
1088 
1089   // If the function is empty and the object file uses .subsections_via_symbols,
1090   // then we need to emit *something* to the function body to prevent the
1091   // labels from collapsing together.  Just emit a noop.
1092   // Similarly, don't emit empty functions on Windows either. It can lead to
1093   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1094   // after linking, causing the kernel not to load the binary:
1095   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1096   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1097   const Triple &TT = TM.getTargetTriple();
1098   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1099                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1100     MCInst Noop;
1101     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1102 
1103     // Targets can opt-out of emitting the noop here by leaving the opcode
1104     // unspecified.
1105     if (Noop.getOpcode()) {
1106       OutStreamer->AddComment("avoids zero-length function");
1107       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1108     }
1109   }
1110 
1111   const Function &F = MF->getFunction();
1112   for (const auto &BB : F) {
1113     if (!BB.hasAddressTaken())
1114       continue;
1115     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1116     if (Sym->isDefined())
1117       continue;
1118     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1119     OutStreamer->EmitLabel(Sym);
1120   }
1121 
1122   // Emit target-specific gunk after the function body.
1123   EmitFunctionBodyEnd();
1124 
1125   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1126       MAI->hasDotTypeDotSizeDirective()) {
1127     // Create a symbol for the end of function.
1128     CurrentFnEnd = createTempSymbol("func_end");
1129     OutStreamer->EmitLabel(CurrentFnEnd);
1130   }
1131 
1132   // If the target wants a .size directive for the size of the function, emit
1133   // it.
1134   if (MAI->hasDotTypeDotSizeDirective()) {
1135     // We can get the size as difference between the function label and the
1136     // temp label.
1137     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1138         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1139         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1140     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1141   }
1142 
1143   for (const HandlerInfo &HI : Handlers) {
1144     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1145                        HI.TimerGroupDescription, TimePassesIsEnabled);
1146     HI.Handler->markFunctionEnd();
1147   }
1148 
1149   // Print out jump tables referenced by the function.
1150   EmitJumpTableInfo();
1151 
1152   // Emit post-function debug and/or EH information.
1153   for (const HandlerInfo &HI : Handlers) {
1154     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1155                        HI.TimerGroupDescription, TimePassesIsEnabled);
1156     HI.Handler->endFunction(MF);
1157   }
1158 
1159   // Emit section containing stack size metadata.
1160   emitStackSizeSection(*MF);
1161 
1162   if (isVerbose())
1163     OutStreamer->GetCommentOS() << "-- End function\n";
1164 
1165   OutStreamer->AddBlankLine();
1166 }
1167 
1168 /// \brief Compute the number of Global Variables that uses a Constant.
1169 static unsigned getNumGlobalVariableUses(const Constant *C) {
1170   if (!C)
1171     return 0;
1172 
1173   if (isa<GlobalVariable>(C))
1174     return 1;
1175 
1176   unsigned NumUses = 0;
1177   for (auto *CU : C->users())
1178     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1179 
1180   return NumUses;
1181 }
1182 
1183 /// \brief Only consider global GOT equivalents if at least one user is a
1184 /// cstexpr inside an initializer of another global variables. Also, don't
1185 /// handle cstexpr inside instructions. During global variable emission,
1186 /// candidates are skipped and are emitted later in case at least one cstexpr
1187 /// isn't replaced by a PC relative GOT entry access.
1188 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1189                                      unsigned &NumGOTEquivUsers) {
1190   // Global GOT equivalents are unnamed private globals with a constant
1191   // pointer initializer to another global symbol. They must point to a
1192   // GlobalVariable or Function, i.e., as GlobalValue.
1193   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1194       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1195       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1196     return false;
1197 
1198   // To be a got equivalent, at least one of its users need to be a constant
1199   // expression used by another global variable.
1200   for (auto *U : GV->users())
1201     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1202 
1203   return NumGOTEquivUsers > 0;
1204 }
1205 
1206 /// \brief Unnamed constant global variables solely contaning a pointer to
1207 /// another globals variable is equivalent to a GOT table entry; it contains the
1208 /// the address of another symbol. Optimize it and replace accesses to these
1209 /// "GOT equivalents" by using the GOT entry for the final global instead.
1210 /// Compute GOT equivalent candidates among all global variables to avoid
1211 /// emitting them if possible later on, after it use is replaced by a GOT entry
1212 /// access.
1213 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1214   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1215     return;
1216 
1217   for (const auto &G : M.globals()) {
1218     unsigned NumGOTEquivUsers = 0;
1219     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1220       continue;
1221 
1222     const MCSymbol *GOTEquivSym = getSymbol(&G);
1223     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1224   }
1225 }
1226 
1227 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1228 /// for PC relative GOT entry conversion, in such cases we need to emit such
1229 /// globals we previously omitted in EmitGlobalVariable.
1230 void AsmPrinter::emitGlobalGOTEquivs() {
1231   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1232     return;
1233 
1234   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1235   for (auto &I : GlobalGOTEquivs) {
1236     const GlobalVariable *GV = I.second.first;
1237     unsigned Cnt = I.second.second;
1238     if (Cnt)
1239       FailedCandidates.push_back(GV);
1240   }
1241   GlobalGOTEquivs.clear();
1242 
1243   for (auto *GV : FailedCandidates)
1244     EmitGlobalVariable(GV);
1245 }
1246 
1247 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1248                                           const GlobalIndirectSymbol& GIS) {
1249   MCSymbol *Name = getSymbol(&GIS);
1250 
1251   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1252     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1253   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1254     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1255   else
1256     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1257 
1258   // Set the symbol type to function if the alias has a function type.
1259   // This affects codegen when the aliasee is not a function.
1260   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1261     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1262     if (isa<GlobalIFunc>(GIS))
1263       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1264   }
1265 
1266   EmitVisibility(Name, GIS.getVisibility());
1267 
1268   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1269 
1270   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1271     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1272 
1273   // Emit the directives as assignments aka .set:
1274   OutStreamer->EmitAssignment(Name, Expr);
1275 
1276   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1277     // If the aliasee does not correspond to a symbol in the output, i.e. the
1278     // alias is not of an object or the aliased object is private, then set the
1279     // size of the alias symbol from the type of the alias. We don't do this in
1280     // other situations as the alias and aliasee having differing types but same
1281     // size may be intentional.
1282     const GlobalObject *BaseObject = GA->getBaseObject();
1283     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1284         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1285       const DataLayout &DL = M.getDataLayout();
1286       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1287       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1288     }
1289   }
1290 }
1291 
1292 bool AsmPrinter::doFinalization(Module &M) {
1293   // Set the MachineFunction to nullptr so that we can catch attempted
1294   // accesses to MF specific features at the module level and so that
1295   // we can conditionalize accesses based on whether or not it is nullptr.
1296   MF = nullptr;
1297 
1298   // Gather all GOT equivalent globals in the module. We really need two
1299   // passes over the globals: one to compute and another to avoid its emission
1300   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1301   // where the got equivalent shows up before its use.
1302   computeGlobalGOTEquivs(M);
1303 
1304   // Emit global variables.
1305   for (const auto &G : M.globals())
1306     EmitGlobalVariable(&G);
1307 
1308   // Emit remaining GOT equivalent globals.
1309   emitGlobalGOTEquivs();
1310 
1311   // Emit visibility info for declarations
1312   for (const Function &F : M) {
1313     if (!F.isDeclarationForLinker())
1314       continue;
1315     GlobalValue::VisibilityTypes V = F.getVisibility();
1316     if (V == GlobalValue::DefaultVisibility)
1317       continue;
1318 
1319     MCSymbol *Name = getSymbol(&F);
1320     EmitVisibility(Name, V, false);
1321   }
1322 
1323   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1324 
1325   TLOF.emitModuleMetadata(*OutStreamer, M, TM);
1326 
1327   if (TM.getTargetTriple().isOSBinFormatELF()) {
1328     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1329 
1330     // Output stubs for external and common global variables.
1331     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1332     if (!Stubs.empty()) {
1333       OutStreamer->SwitchSection(TLOF.getDataSection());
1334       const DataLayout &DL = M.getDataLayout();
1335 
1336       for (const auto &Stub : Stubs) {
1337         OutStreamer->EmitLabel(Stub.first);
1338         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1339                                      DL.getPointerSize());
1340       }
1341     }
1342   }
1343 
1344   // Finalize debug and EH information.
1345   for (const HandlerInfo &HI : Handlers) {
1346     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1347                        HI.TimerGroupDescription, TimePassesIsEnabled);
1348     HI.Handler->endModule();
1349     delete HI.Handler;
1350   }
1351   Handlers.clear();
1352   DD = nullptr;
1353 
1354   // If the target wants to know about weak references, print them all.
1355   if (MAI->getWeakRefDirective()) {
1356     // FIXME: This is not lazy, it would be nice to only print weak references
1357     // to stuff that is actually used.  Note that doing so would require targets
1358     // to notice uses in operands (due to constant exprs etc).  This should
1359     // happen with the MC stuff eventually.
1360 
1361     // Print out module-level global objects here.
1362     for (const auto &GO : M.global_objects()) {
1363       if (!GO.hasExternalWeakLinkage())
1364         continue;
1365       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1366     }
1367   }
1368 
1369   OutStreamer->AddBlankLine();
1370 
1371   // Print aliases in topological order, that is, for each alias a = b,
1372   // b must be printed before a.
1373   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1374   // such an order to generate correct TOC information.
1375   SmallVector<const GlobalAlias *, 16> AliasStack;
1376   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1377   for (const auto &Alias : M.aliases()) {
1378     for (const GlobalAlias *Cur = &Alias; Cur;
1379          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1380       if (!AliasVisited.insert(Cur).second)
1381         break;
1382       AliasStack.push_back(Cur);
1383     }
1384     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1385       emitGlobalIndirectSymbol(M, *AncestorAlias);
1386     AliasStack.clear();
1387   }
1388   for (const auto &IFunc : M.ifuncs())
1389     emitGlobalIndirectSymbol(M, IFunc);
1390 
1391   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1392   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1393   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1394     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1395       MP->finishAssembly(M, *MI, *this);
1396 
1397   // Emit llvm.ident metadata in an '.ident' directive.
1398   EmitModuleIdents(M);
1399 
1400   // Emit __morestack address if needed for indirect calls.
1401   if (MMI->usesMorestackAddr()) {
1402     unsigned Align = 1;
1403     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1404         getDataLayout(), SectionKind::getReadOnly(),
1405         /*C=*/nullptr, Align);
1406     OutStreamer->SwitchSection(ReadOnlySection);
1407 
1408     MCSymbol *AddrSymbol =
1409         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1410     OutStreamer->EmitLabel(AddrSymbol);
1411 
1412     unsigned PtrSize = MAI->getCodePointerSize();
1413     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1414                                  PtrSize);
1415   }
1416 
1417   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1418   // split-stack is used.
1419   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1420     OutStreamer->SwitchSection(
1421         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1422     if (MMI->hasNosplitStack())
1423       OutStreamer->SwitchSection(
1424           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1425   }
1426 
1427   // If we don't have any trampolines, then we don't require stack memory
1428   // to be executable. Some targets have a directive to declare this.
1429   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1430   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1431     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1432       OutStreamer->SwitchSection(S);
1433 
1434   // Allow the target to emit any magic that it wants at the end of the file,
1435   // after everything else has gone out.
1436   EmitEndOfAsmFile(M);
1437 
1438   MMI = nullptr;
1439 
1440   OutStreamer->Finish();
1441   OutStreamer->reset();
1442 
1443   return false;
1444 }
1445 
1446 MCSymbol *AsmPrinter::getCurExceptionSym() {
1447   if (!CurExceptionSym)
1448     CurExceptionSym = createTempSymbol("exception");
1449   return CurExceptionSym;
1450 }
1451 
1452 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1453   this->MF = &MF;
1454   // Get the function symbol.
1455   CurrentFnSym = getSymbol(&MF.getFunction());
1456   CurrentFnSymForSize = CurrentFnSym;
1457   CurrentFnBegin = nullptr;
1458   CurExceptionSym = nullptr;
1459   bool NeedsLocalForSize = MAI->needsLocalForSize();
1460   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) {
1461     CurrentFnBegin = createTempSymbol("func_begin");
1462     if (NeedsLocalForSize)
1463       CurrentFnSymForSize = CurrentFnBegin;
1464   }
1465 
1466   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1467   LI = &getAnalysis<MachineLoopInfo>();
1468 
1469   const TargetSubtargetInfo &STI = MF.getSubtarget();
1470   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1471                              ? PrintSchedule
1472                              : STI.supportPrintSchedInfo();
1473 }
1474 
1475 namespace {
1476 
1477 // Keep track the alignment, constpool entries per Section.
1478   struct SectionCPs {
1479     MCSection *S;
1480     unsigned Alignment;
1481     SmallVector<unsigned, 4> CPEs;
1482 
1483     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1484   };
1485 
1486 } // end anonymous namespace
1487 
1488 /// EmitConstantPool - Print to the current output stream assembly
1489 /// representations of the constants in the constant pool MCP. This is
1490 /// used to print out constants which have been "spilled to memory" by
1491 /// the code generator.
1492 void AsmPrinter::EmitConstantPool() {
1493   const MachineConstantPool *MCP = MF->getConstantPool();
1494   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1495   if (CP.empty()) return;
1496 
1497   // Calculate sections for constant pool entries. We collect entries to go into
1498   // the same section together to reduce amount of section switch statements.
1499   SmallVector<SectionCPs, 4> CPSections;
1500   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1501     const MachineConstantPoolEntry &CPE = CP[i];
1502     unsigned Align = CPE.getAlignment();
1503 
1504     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1505 
1506     const Constant *C = nullptr;
1507     if (!CPE.isMachineConstantPoolEntry())
1508       C = CPE.Val.ConstVal;
1509 
1510     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1511                                                               Kind, C, Align);
1512 
1513     // The number of sections are small, just do a linear search from the
1514     // last section to the first.
1515     bool Found = false;
1516     unsigned SecIdx = CPSections.size();
1517     while (SecIdx != 0) {
1518       if (CPSections[--SecIdx].S == S) {
1519         Found = true;
1520         break;
1521       }
1522     }
1523     if (!Found) {
1524       SecIdx = CPSections.size();
1525       CPSections.push_back(SectionCPs(S, Align));
1526     }
1527 
1528     if (Align > CPSections[SecIdx].Alignment)
1529       CPSections[SecIdx].Alignment = Align;
1530     CPSections[SecIdx].CPEs.push_back(i);
1531   }
1532 
1533   // Now print stuff into the calculated sections.
1534   const MCSection *CurSection = nullptr;
1535   unsigned Offset = 0;
1536   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1537     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1538       unsigned CPI = CPSections[i].CPEs[j];
1539       MCSymbol *Sym = GetCPISymbol(CPI);
1540       if (!Sym->isUndefined())
1541         continue;
1542 
1543       if (CurSection != CPSections[i].S) {
1544         OutStreamer->SwitchSection(CPSections[i].S);
1545         EmitAlignment(Log2_32(CPSections[i].Alignment));
1546         CurSection = CPSections[i].S;
1547         Offset = 0;
1548       }
1549 
1550       MachineConstantPoolEntry CPE = CP[CPI];
1551 
1552       // Emit inter-object padding for alignment.
1553       unsigned AlignMask = CPE.getAlignment() - 1;
1554       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1555       OutStreamer->EmitZeros(NewOffset - Offset);
1556 
1557       Type *Ty = CPE.getType();
1558       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1559 
1560       OutStreamer->EmitLabel(Sym);
1561       if (CPE.isMachineConstantPoolEntry())
1562         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1563       else
1564         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1565     }
1566   }
1567 }
1568 
1569 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1570 /// by the current function to the current output stream.
1571 void AsmPrinter::EmitJumpTableInfo() {
1572   const DataLayout &DL = MF->getDataLayout();
1573   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1574   if (!MJTI) return;
1575   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1576   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1577   if (JT.empty()) return;
1578 
1579   // Pick the directive to use to print the jump table entries, and switch to
1580   // the appropriate section.
1581   const Function &F = MF->getFunction();
1582   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1583   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1584       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1585       F);
1586   if (JTInDiffSection) {
1587     // Drop it in the readonly section.
1588     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1589     OutStreamer->SwitchSection(ReadOnlySection);
1590   }
1591 
1592   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1593 
1594   // Jump tables in code sections are marked with a data_region directive
1595   // where that's supported.
1596   if (!JTInDiffSection)
1597     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1598 
1599   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1600     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1601 
1602     // If this jump table was deleted, ignore it.
1603     if (JTBBs.empty()) continue;
1604 
1605     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1606     /// emit a .set directive for each unique entry.
1607     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1608         MAI->doesSetDirectiveSuppressReloc()) {
1609       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1610       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1611       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1612       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1613         const MachineBasicBlock *MBB = JTBBs[ii];
1614         if (!EmittedSets.insert(MBB).second)
1615           continue;
1616 
1617         // .set LJTSet, LBB32-base
1618         const MCExpr *LHS =
1619           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1620         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1621                                     MCBinaryExpr::createSub(LHS, Base,
1622                                                             OutContext));
1623       }
1624     }
1625 
1626     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1627     // before each jump table.  The first label is never referenced, but tells
1628     // the assembler and linker the extents of the jump table object.  The
1629     // second label is actually referenced by the code.
1630     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1631       // FIXME: This doesn't have to have any specific name, just any randomly
1632       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1633       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1634 
1635     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1636 
1637     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1638       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1639   }
1640   if (!JTInDiffSection)
1641     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1642 }
1643 
1644 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1645 /// current stream.
1646 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1647                                     const MachineBasicBlock *MBB,
1648                                     unsigned UID) const {
1649   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1650   const MCExpr *Value = nullptr;
1651   switch (MJTI->getEntryKind()) {
1652   case MachineJumpTableInfo::EK_Inline:
1653     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1654   case MachineJumpTableInfo::EK_Custom32:
1655     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1656         MJTI, MBB, UID, OutContext);
1657     break;
1658   case MachineJumpTableInfo::EK_BlockAddress:
1659     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1660     //     .word LBB123
1661     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1662     break;
1663   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1664     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1665     // with a relocation as gp-relative, e.g.:
1666     //     .gprel32 LBB123
1667     MCSymbol *MBBSym = MBB->getSymbol();
1668     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1669     return;
1670   }
1671 
1672   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1673     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1674     // with a relocation as gp-relative, e.g.:
1675     //     .gpdword LBB123
1676     MCSymbol *MBBSym = MBB->getSymbol();
1677     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1678     return;
1679   }
1680 
1681   case MachineJumpTableInfo::EK_LabelDifference32: {
1682     // Each entry is the address of the block minus the address of the jump
1683     // table. This is used for PIC jump tables where gprel32 is not supported.
1684     // e.g.:
1685     //      .word LBB123 - LJTI1_2
1686     // If the .set directive avoids relocations, this is emitted as:
1687     //      .set L4_5_set_123, LBB123 - LJTI1_2
1688     //      .word L4_5_set_123
1689     if (MAI->doesSetDirectiveSuppressReloc()) {
1690       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1691                                       OutContext);
1692       break;
1693     }
1694     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1695     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1696     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1697     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1698     break;
1699   }
1700   }
1701 
1702   assert(Value && "Unknown entry kind!");
1703 
1704   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1705   OutStreamer->EmitValue(Value, EntrySize);
1706 }
1707 
1708 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1709 /// special global used by LLVM.  If so, emit it and return true, otherwise
1710 /// do nothing and return false.
1711 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1712   if (GV->getName() == "llvm.used") {
1713     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1714       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1715     return true;
1716   }
1717 
1718   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1719   if (GV->getSection() == "llvm.metadata" ||
1720       GV->hasAvailableExternallyLinkage())
1721     return true;
1722 
1723   if (!GV->hasAppendingLinkage()) return false;
1724 
1725   assert(GV->hasInitializer() && "Not a special LLVM global!");
1726 
1727   if (GV->getName() == "llvm.global_ctors") {
1728     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1729                        /* isCtor */ true);
1730 
1731     return true;
1732   }
1733 
1734   if (GV->getName() == "llvm.global_dtors") {
1735     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1736                        /* isCtor */ false);
1737 
1738     return true;
1739   }
1740 
1741   report_fatal_error("unknown special variable");
1742 }
1743 
1744 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1745 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1746 /// is true, as being used with this directive.
1747 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1748   // Should be an array of 'i8*'.
1749   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1750     const GlobalValue *GV =
1751       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1752     if (GV)
1753       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1754   }
1755 }
1756 
1757 namespace {
1758 
1759 struct Structor {
1760   int Priority = 0;
1761   Constant *Func = nullptr;
1762   GlobalValue *ComdatKey = nullptr;
1763 
1764   Structor() = default;
1765 };
1766 
1767 } // end anonymous namespace
1768 
1769 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1770 /// priority.
1771 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1772                                     bool isCtor) {
1773   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1774   // init priority.
1775   if (!isa<ConstantArray>(List)) return;
1776 
1777   // Sanity check the structors list.
1778   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1779   if (!InitList) return; // Not an array!
1780   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1781   // FIXME: Only allow the 3-field form in LLVM 4.0.
1782   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1783     return; // Not an array of two or three elements!
1784   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1785       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1786   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1787     return; // Not (int, ptr, ptr).
1788 
1789   // Gather the structors in a form that's convenient for sorting by priority.
1790   SmallVector<Structor, 8> Structors;
1791   for (Value *O : InitList->operands()) {
1792     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1793     if (!CS) continue; // Malformed.
1794     if (CS->getOperand(1)->isNullValue())
1795       break;  // Found a null terminator, skip the rest.
1796     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1797     if (!Priority) continue; // Malformed.
1798     Structors.push_back(Structor());
1799     Structor &S = Structors.back();
1800     S.Priority = Priority->getLimitedValue(65535);
1801     S.Func = CS->getOperand(1);
1802     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1803       S.ComdatKey =
1804           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1805   }
1806 
1807   // Emit the function pointers in the target-specific order
1808   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1809   std::stable_sort(Structors.begin(), Structors.end(),
1810                    [](const Structor &L,
1811                       const Structor &R) { return L.Priority < R.Priority; });
1812   for (Structor &S : Structors) {
1813     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1814     const MCSymbol *KeySym = nullptr;
1815     if (GlobalValue *GV = S.ComdatKey) {
1816       if (GV->isDeclarationForLinker())
1817         // If the associated variable is not defined in this module
1818         // (it might be available_externally, or have been an
1819         // available_externally definition that was dropped by the
1820         // EliminateAvailableExternally pass), some other TU
1821         // will provide its dynamic initializer.
1822         continue;
1823 
1824       KeySym = getSymbol(GV);
1825     }
1826     MCSection *OutputSection =
1827         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1828                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1829     OutStreamer->SwitchSection(OutputSection);
1830     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1831       EmitAlignment(Align);
1832     EmitXXStructor(DL, S.Func);
1833   }
1834 }
1835 
1836 void AsmPrinter::EmitModuleIdents(Module &M) {
1837   if (!MAI->hasIdentDirective())
1838     return;
1839 
1840   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1841     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1842       const MDNode *N = NMD->getOperand(i);
1843       assert(N->getNumOperands() == 1 &&
1844              "llvm.ident metadata entry can have only one operand");
1845       const MDString *S = cast<MDString>(N->getOperand(0));
1846       OutStreamer->EmitIdent(S->getString());
1847     }
1848   }
1849 }
1850 
1851 //===--------------------------------------------------------------------===//
1852 // Emission and print routines
1853 //
1854 
1855 /// EmitInt8 - Emit a byte directive and value.
1856 ///
1857 void AsmPrinter::EmitInt8(int Value) const {
1858   OutStreamer->EmitIntValue(Value, 1);
1859 }
1860 
1861 /// EmitInt16 - Emit a short directive and value.
1862 void AsmPrinter::EmitInt16(int Value) const {
1863   OutStreamer->EmitIntValue(Value, 2);
1864 }
1865 
1866 /// EmitInt32 - Emit a long directive and value.
1867 void AsmPrinter::EmitInt32(int Value) const {
1868   OutStreamer->EmitIntValue(Value, 4);
1869 }
1870 
1871 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1872 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1873 /// .set if it avoids relocations.
1874 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1875                                      unsigned Size) const {
1876   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1877 }
1878 
1879 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1880 /// where the size in bytes of the directive is specified by Size and Label
1881 /// specifies the label.  This implicitly uses .set if it is available.
1882 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1883                                      unsigned Size,
1884                                      bool IsSectionRelative) const {
1885   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1886     OutStreamer->EmitCOFFSecRel32(Label, Offset);
1887     if (Size > 4)
1888       OutStreamer->EmitZeros(Size - 4);
1889     return;
1890   }
1891 
1892   // Emit Label+Offset (or just Label if Offset is zero)
1893   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1894   if (Offset)
1895     Expr = MCBinaryExpr::createAdd(
1896         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1897 
1898   OutStreamer->EmitValue(Expr, Size);
1899 }
1900 
1901 //===----------------------------------------------------------------------===//
1902 
1903 // EmitAlignment - Emit an alignment directive to the specified power of
1904 // two boundary.  For example, if you pass in 3 here, you will get an 8
1905 // byte alignment.  If a global value is specified, and if that global has
1906 // an explicit alignment requested, it will override the alignment request
1907 // if required for correctness.
1908 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1909   if (GV)
1910     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1911 
1912   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1913 
1914   assert(NumBits <
1915              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1916          "undefined behavior");
1917   if (getCurrentSection()->getKind().isText())
1918     OutStreamer->EmitCodeAlignment(1u << NumBits);
1919   else
1920     OutStreamer->EmitValueToAlignment(1u << NumBits);
1921 }
1922 
1923 //===----------------------------------------------------------------------===//
1924 // Constant emission.
1925 //===----------------------------------------------------------------------===//
1926 
1927 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1928   MCContext &Ctx = OutContext;
1929 
1930   if (CV->isNullValue() || isa<UndefValue>(CV))
1931     return MCConstantExpr::create(0, Ctx);
1932 
1933   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1934     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1935 
1936   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1937     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1938 
1939   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1940     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1941 
1942   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1943   if (!CE) {
1944     llvm_unreachable("Unknown constant value to lower!");
1945   }
1946 
1947   switch (CE->getOpcode()) {
1948   default:
1949     // If the code isn't optimized, there may be outstanding folding
1950     // opportunities. Attempt to fold the expression using DataLayout as a
1951     // last resort before giving up.
1952     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1953       if (C != CE)
1954         return lowerConstant(C);
1955 
1956     // Otherwise report the problem to the user.
1957     {
1958       std::string S;
1959       raw_string_ostream OS(S);
1960       OS << "Unsupported expression in static initializer: ";
1961       CE->printAsOperand(OS, /*PrintType=*/false,
1962                      !MF ? nullptr : MF->getFunction().getParent());
1963       report_fatal_error(OS.str());
1964     }
1965   case Instruction::GetElementPtr: {
1966     // Generate a symbolic expression for the byte address
1967     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1968     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1969 
1970     const MCExpr *Base = lowerConstant(CE->getOperand(0));
1971     if (!OffsetAI)
1972       return Base;
1973 
1974     int64_t Offset = OffsetAI.getSExtValue();
1975     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1976                                    Ctx);
1977   }
1978 
1979   case Instruction::Trunc:
1980     // We emit the value and depend on the assembler to truncate the generated
1981     // expression properly.  This is important for differences between
1982     // blockaddress labels.  Since the two labels are in the same function, it
1983     // is reasonable to treat their delta as a 32-bit value.
1984     LLVM_FALLTHROUGH;
1985   case Instruction::BitCast:
1986     return lowerConstant(CE->getOperand(0));
1987 
1988   case Instruction::IntToPtr: {
1989     const DataLayout &DL = getDataLayout();
1990 
1991     // Handle casts to pointers by changing them into casts to the appropriate
1992     // integer type.  This promotes constant folding and simplifies this code.
1993     Constant *Op = CE->getOperand(0);
1994     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1995                                       false/*ZExt*/);
1996     return lowerConstant(Op);
1997   }
1998 
1999   case Instruction::PtrToInt: {
2000     const DataLayout &DL = getDataLayout();
2001 
2002     // Support only foldable casts to/from pointers that can be eliminated by
2003     // changing the pointer to the appropriately sized integer type.
2004     Constant *Op = CE->getOperand(0);
2005     Type *Ty = CE->getType();
2006 
2007     const MCExpr *OpExpr = lowerConstant(Op);
2008 
2009     // We can emit the pointer value into this slot if the slot is an
2010     // integer slot equal to the size of the pointer.
2011     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2012       return OpExpr;
2013 
2014     // Otherwise the pointer is smaller than the resultant integer, mask off
2015     // the high bits so we are sure to get a proper truncation if the input is
2016     // a constant expr.
2017     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2018     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2019     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2020   }
2021 
2022   case Instruction::Sub: {
2023     GlobalValue *LHSGV;
2024     APInt LHSOffset;
2025     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2026                                    getDataLayout())) {
2027       GlobalValue *RHSGV;
2028       APInt RHSOffset;
2029       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2030                                      getDataLayout())) {
2031         const MCExpr *RelocExpr =
2032             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2033         if (!RelocExpr)
2034           RelocExpr = MCBinaryExpr::createSub(
2035               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2036               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2037         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2038         if (Addend != 0)
2039           RelocExpr = MCBinaryExpr::createAdd(
2040               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2041         return RelocExpr;
2042       }
2043     }
2044   }
2045   // else fallthrough
2046   LLVM_FALLTHROUGH;
2047 
2048   // The MC library also has a right-shift operator, but it isn't consistently
2049   // signed or unsigned between different targets.
2050   case Instruction::Add:
2051   case Instruction::Mul:
2052   case Instruction::SDiv:
2053   case Instruction::SRem:
2054   case Instruction::Shl:
2055   case Instruction::And:
2056   case Instruction::Or:
2057   case Instruction::Xor: {
2058     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2059     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2060     switch (CE->getOpcode()) {
2061     default: llvm_unreachable("Unknown binary operator constant cast expr");
2062     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2063     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2064     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2065     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2066     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2067     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2068     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2069     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2070     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2071     }
2072   }
2073   }
2074 }
2075 
2076 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2077                                    AsmPrinter &AP,
2078                                    const Constant *BaseCV = nullptr,
2079                                    uint64_t Offset = 0);
2080 
2081 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2082 
2083 /// isRepeatedByteSequence - Determine whether the given value is
2084 /// composed of a repeated sequence of identical bytes and return the
2085 /// byte value.  If it is not a repeated sequence, return -1.
2086 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2087   StringRef Data = V->getRawDataValues();
2088   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2089   char C = Data[0];
2090   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2091     if (Data[i] != C) return -1;
2092   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2093 }
2094 
2095 /// isRepeatedByteSequence - Determine whether the given value is
2096 /// composed of a repeated sequence of identical bytes and return the
2097 /// byte value.  If it is not a repeated sequence, return -1.
2098 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2099   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2100     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2101     assert(Size % 8 == 0);
2102 
2103     // Extend the element to take zero padding into account.
2104     APInt Value = CI->getValue().zextOrSelf(Size);
2105     if (!Value.isSplat(8))
2106       return -1;
2107 
2108     return Value.zextOrTrunc(8).getZExtValue();
2109   }
2110   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2111     // Make sure all array elements are sequences of the same repeated
2112     // byte.
2113     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2114     Constant *Op0 = CA->getOperand(0);
2115     int Byte = isRepeatedByteSequence(Op0, DL);
2116     if (Byte == -1)
2117       return -1;
2118 
2119     // All array elements must be equal.
2120     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2121       if (CA->getOperand(i) != Op0)
2122         return -1;
2123     return Byte;
2124   }
2125 
2126   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2127     return isRepeatedByteSequence(CDS);
2128 
2129   return -1;
2130 }
2131 
2132 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2133                                              const ConstantDataSequential *CDS,
2134                                              AsmPrinter &AP) {
2135   // See if we can aggregate this into a .fill, if so, emit it as such.
2136   int Value = isRepeatedByteSequence(CDS, DL);
2137   if (Value != -1) {
2138     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2139     // Don't emit a 1-byte object as a .fill.
2140     if (Bytes > 1)
2141       return AP.OutStreamer->emitFill(Bytes, Value);
2142   }
2143 
2144   // If this can be emitted with .ascii/.asciz, emit it as such.
2145   if (CDS->isString())
2146     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2147 
2148   // Otherwise, emit the values in successive locations.
2149   unsigned ElementByteSize = CDS->getElementByteSize();
2150   if (isa<IntegerType>(CDS->getElementType())) {
2151     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2152       if (AP.isVerbose())
2153         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2154                                                  CDS->getElementAsInteger(i));
2155       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2156                                    ElementByteSize);
2157     }
2158   } else {
2159     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2160       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
2161   }
2162 
2163   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2164   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2165                         CDS->getNumElements();
2166   if (unsigned Padding = Size - EmittedSize)
2167     AP.OutStreamer->EmitZeros(Padding);
2168 }
2169 
2170 static void emitGlobalConstantArray(const DataLayout &DL,
2171                                     const ConstantArray *CA, AsmPrinter &AP,
2172                                     const Constant *BaseCV, uint64_t Offset) {
2173   // See if we can aggregate some values.  Make sure it can be
2174   // represented as a series of bytes of the constant value.
2175   int Value = isRepeatedByteSequence(CA, DL);
2176 
2177   if (Value != -1) {
2178     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2179     AP.OutStreamer->emitFill(Bytes, Value);
2180   }
2181   else {
2182     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2183       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2184       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2185     }
2186   }
2187 }
2188 
2189 static void emitGlobalConstantVector(const DataLayout &DL,
2190                                      const ConstantVector *CV, AsmPrinter &AP) {
2191   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2192     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2193 
2194   unsigned Size = DL.getTypeAllocSize(CV->getType());
2195   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2196                          CV->getType()->getNumElements();
2197   if (unsigned Padding = Size - EmittedSize)
2198     AP.OutStreamer->EmitZeros(Padding);
2199 }
2200 
2201 static void emitGlobalConstantStruct(const DataLayout &DL,
2202                                      const ConstantStruct *CS, AsmPrinter &AP,
2203                                      const Constant *BaseCV, uint64_t Offset) {
2204   // Print the fields in successive locations. Pad to align if needed!
2205   unsigned Size = DL.getTypeAllocSize(CS->getType());
2206   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2207   uint64_t SizeSoFar = 0;
2208   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2209     const Constant *Field = CS->getOperand(i);
2210 
2211     // Print the actual field value.
2212     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2213 
2214     // Check if padding is needed and insert one or more 0s.
2215     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2216     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2217                         - Layout->getElementOffset(i)) - FieldSize;
2218     SizeSoFar += FieldSize + PadSize;
2219 
2220     // Insert padding - this may include padding to increase the size of the
2221     // current field up to the ABI size (if the struct is not packed) as well
2222     // as padding to ensure that the next field starts at the right offset.
2223     AP.OutStreamer->EmitZeros(PadSize);
2224   }
2225   assert(SizeSoFar == Layout->getSizeInBytes() &&
2226          "Layout of constant struct may be incorrect!");
2227 }
2228 
2229 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2230   APInt API = CFP->getValueAPF().bitcastToAPInt();
2231 
2232   // First print a comment with what we think the original floating-point value
2233   // should have been.
2234   if (AP.isVerbose()) {
2235     SmallString<8> StrVal;
2236     CFP->getValueAPF().toString(StrVal);
2237 
2238     if (CFP->getType())
2239       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2240     else
2241       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2242     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2243   }
2244 
2245   // Now iterate through the APInt chunks, emitting them in endian-correct
2246   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2247   // floats).
2248   unsigned NumBytes = API.getBitWidth() / 8;
2249   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2250   const uint64_t *p = API.getRawData();
2251 
2252   // PPC's long double has odd notions of endianness compared to how LLVM
2253   // handles it: p[0] goes first for *big* endian on PPC.
2254   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2255     int Chunk = API.getNumWords() - 1;
2256 
2257     if (TrailingBytes)
2258       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2259 
2260     for (; Chunk >= 0; --Chunk)
2261       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2262   } else {
2263     unsigned Chunk;
2264     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2265       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2266 
2267     if (TrailingBytes)
2268       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2269   }
2270 
2271   // Emit the tail padding for the long double.
2272   const DataLayout &DL = AP.getDataLayout();
2273   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2274                             DL.getTypeStoreSize(CFP->getType()));
2275 }
2276 
2277 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2278   const DataLayout &DL = AP.getDataLayout();
2279   unsigned BitWidth = CI->getBitWidth();
2280 
2281   // Copy the value as we may massage the layout for constants whose bit width
2282   // is not a multiple of 64-bits.
2283   APInt Realigned(CI->getValue());
2284   uint64_t ExtraBits = 0;
2285   unsigned ExtraBitsSize = BitWidth & 63;
2286 
2287   if (ExtraBitsSize) {
2288     // The bit width of the data is not a multiple of 64-bits.
2289     // The extra bits are expected to be at the end of the chunk of the memory.
2290     // Little endian:
2291     // * Nothing to be done, just record the extra bits to emit.
2292     // Big endian:
2293     // * Record the extra bits to emit.
2294     // * Realign the raw data to emit the chunks of 64-bits.
2295     if (DL.isBigEndian()) {
2296       // Basically the structure of the raw data is a chunk of 64-bits cells:
2297       //    0        1         BitWidth / 64
2298       // [chunk1][chunk2] ... [chunkN].
2299       // The most significant chunk is chunkN and it should be emitted first.
2300       // However, due to the alignment issue chunkN contains useless bits.
2301       // Realign the chunks so that they contain only useless information:
2302       // ExtraBits     0       1       (BitWidth / 64) - 1
2303       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2304       ExtraBits = Realigned.getRawData()[0] &
2305         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2306       Realigned.lshrInPlace(ExtraBitsSize);
2307     } else
2308       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2309   }
2310 
2311   // We don't expect assemblers to support integer data directives
2312   // for more than 64 bits, so we emit the data in at most 64-bit
2313   // quantities at a time.
2314   const uint64_t *RawData = Realigned.getRawData();
2315   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2316     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2317     AP.OutStreamer->EmitIntValue(Val, 8);
2318   }
2319 
2320   if (ExtraBitsSize) {
2321     // Emit the extra bits after the 64-bits chunks.
2322 
2323     // Emit a directive that fills the expected size.
2324     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2325     Size -= (BitWidth / 64) * 8;
2326     assert(Size && Size * 8 >= ExtraBitsSize &&
2327            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2328            == ExtraBits && "Directive too small for extra bits.");
2329     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2330   }
2331 }
2332 
2333 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2334 /// equivalent global, by a target specific GOT pc relative access to the
2335 /// final symbol.
2336 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2337                                          const Constant *BaseCst,
2338                                          uint64_t Offset) {
2339   // The global @foo below illustrates a global that uses a got equivalent.
2340   //
2341   //  @bar = global i32 42
2342   //  @gotequiv = private unnamed_addr constant i32* @bar
2343   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2344   //                             i64 ptrtoint (i32* @foo to i64))
2345   //                        to i32)
2346   //
2347   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2348   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2349   // form:
2350   //
2351   //  foo = cstexpr, where
2352   //    cstexpr := <gotequiv> - "." + <cst>
2353   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2354   //
2355   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2356   //
2357   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2358   //    gotpcrelcst := <offset from @foo base> + <cst>
2359   MCValue MV;
2360   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2361     return;
2362   const MCSymbolRefExpr *SymA = MV.getSymA();
2363   if (!SymA)
2364     return;
2365 
2366   // Check that GOT equivalent symbol is cached.
2367   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2368   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2369     return;
2370 
2371   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2372   if (!BaseGV)
2373     return;
2374 
2375   // Check for a valid base symbol
2376   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2377   const MCSymbolRefExpr *SymB = MV.getSymB();
2378 
2379   if (!SymB || BaseSym != &SymB->getSymbol())
2380     return;
2381 
2382   // Make sure to match:
2383   //
2384   //    gotpcrelcst := <offset from @foo base> + <cst>
2385   //
2386   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2387   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2388   // if the target knows how to encode it.
2389   int64_t GOTPCRelCst = Offset + MV.getConstant();
2390   if (GOTPCRelCst < 0)
2391     return;
2392   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2393     return;
2394 
2395   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2396   //
2397   //  bar:
2398   //    .long 42
2399   //  gotequiv:
2400   //    .quad bar
2401   //  foo:
2402   //    .long gotequiv - "." + <cst>
2403   //
2404   // is replaced by the target specific equivalent to:
2405   //
2406   //  bar:
2407   //    .long 42
2408   //  foo:
2409   //    .long bar@GOTPCREL+<gotpcrelcst>
2410   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2411   const GlobalVariable *GV = Result.first;
2412   int NumUses = (int)Result.second;
2413   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2414   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2415   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2416       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2417 
2418   // Update GOT equivalent usage information
2419   --NumUses;
2420   if (NumUses >= 0)
2421     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2422 }
2423 
2424 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2425                                    AsmPrinter &AP, const Constant *BaseCV,
2426                                    uint64_t Offset) {
2427   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2428 
2429   // Globals with sub-elements such as combinations of arrays and structs
2430   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2431   // constant symbol base and the current position with BaseCV and Offset.
2432   if (!BaseCV && CV->hasOneUse())
2433     BaseCV = dyn_cast<Constant>(CV->user_back());
2434 
2435   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2436     return AP.OutStreamer->EmitZeros(Size);
2437 
2438   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2439     switch (Size) {
2440     case 1:
2441     case 2:
2442     case 4:
2443     case 8:
2444       if (AP.isVerbose())
2445         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2446                                                  CI->getZExtValue());
2447       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2448       return;
2449     default:
2450       emitGlobalConstantLargeInt(CI, AP);
2451       return;
2452     }
2453   }
2454 
2455   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2456     return emitGlobalConstantFP(CFP, AP);
2457 
2458   if (isa<ConstantPointerNull>(CV)) {
2459     AP.OutStreamer->EmitIntValue(0, Size);
2460     return;
2461   }
2462 
2463   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2464     return emitGlobalConstantDataSequential(DL, CDS, AP);
2465 
2466   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2467     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2468 
2469   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2470     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2471 
2472   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2473     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2474     // vectors).
2475     if (CE->getOpcode() == Instruction::BitCast)
2476       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2477 
2478     if (Size > 8) {
2479       // If the constant expression's size is greater than 64-bits, then we have
2480       // to emit the value in chunks. Try to constant fold the value and emit it
2481       // that way.
2482       Constant *New = ConstantFoldConstant(CE, DL);
2483       if (New && New != CE)
2484         return emitGlobalConstantImpl(DL, New, AP);
2485     }
2486   }
2487 
2488   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2489     return emitGlobalConstantVector(DL, V, AP);
2490 
2491   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2492   // thread the streamer with EmitValue.
2493   const MCExpr *ME = AP.lowerConstant(CV);
2494 
2495   // Since lowerConstant already folded and got rid of all IR pointer and
2496   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2497   // directly.
2498   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2499     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2500 
2501   AP.OutStreamer->EmitValue(ME, Size);
2502 }
2503 
2504 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2505 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2506   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2507   if (Size)
2508     emitGlobalConstantImpl(DL, CV, *this);
2509   else if (MAI->hasSubsectionsViaSymbols()) {
2510     // If the global has zero size, emit a single byte so that two labels don't
2511     // look like they are at the same location.
2512     OutStreamer->EmitIntValue(0, 1);
2513   }
2514 }
2515 
2516 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2517   // Target doesn't support this yet!
2518   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2519 }
2520 
2521 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2522   if (Offset > 0)
2523     OS << '+' << Offset;
2524   else if (Offset < 0)
2525     OS << Offset;
2526 }
2527 
2528 //===----------------------------------------------------------------------===//
2529 // Symbol Lowering Routines.
2530 //===----------------------------------------------------------------------===//
2531 
2532 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2533   return OutContext.createTempSymbol(Name, true);
2534 }
2535 
2536 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2537   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2538 }
2539 
2540 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2541   return MMI->getAddrLabelSymbol(BB);
2542 }
2543 
2544 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2545 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2546   const DataLayout &DL = getDataLayout();
2547   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2548                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2549                                       Twine(CPID));
2550 }
2551 
2552 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2553 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2554   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2555 }
2556 
2557 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2558 /// FIXME: privatize to AsmPrinter.
2559 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2560   const DataLayout &DL = getDataLayout();
2561   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2562                                       Twine(getFunctionNumber()) + "_" +
2563                                       Twine(UID) + "_set_" + Twine(MBBID));
2564 }
2565 
2566 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2567                                                    StringRef Suffix) const {
2568   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2569 }
2570 
2571 /// Return the MCSymbol for the specified ExternalSymbol.
2572 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2573   SmallString<60> NameStr;
2574   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2575   return OutContext.getOrCreateSymbol(NameStr);
2576 }
2577 
2578 /// PrintParentLoopComment - Print comments about parent loops of this one.
2579 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2580                                    unsigned FunctionNumber) {
2581   if (!Loop) return;
2582   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2583   OS.indent(Loop->getLoopDepth()*2)
2584     << "Parent Loop BB" << FunctionNumber << "_"
2585     << Loop->getHeader()->getNumber()
2586     << " Depth=" << Loop->getLoopDepth() << '\n';
2587 }
2588 
2589 /// PrintChildLoopComment - Print comments about child loops within
2590 /// the loop for this basic block, with nesting.
2591 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2592                                   unsigned FunctionNumber) {
2593   // Add child loop information
2594   for (const MachineLoop *CL : *Loop) {
2595     OS.indent(CL->getLoopDepth()*2)
2596       << "Child Loop BB" << FunctionNumber << "_"
2597       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2598       << '\n';
2599     PrintChildLoopComment(OS, CL, FunctionNumber);
2600   }
2601 }
2602 
2603 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2604 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2605                                        const MachineLoopInfo *LI,
2606                                        const AsmPrinter &AP) {
2607   // Add loop depth information
2608   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2609   if (!Loop) return;
2610 
2611   MachineBasicBlock *Header = Loop->getHeader();
2612   assert(Header && "No header for loop");
2613 
2614   // If this block is not a loop header, just print out what is the loop header
2615   // and return.
2616   if (Header != &MBB) {
2617     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2618                                Twine(AP.getFunctionNumber())+"_" +
2619                                Twine(Loop->getHeader()->getNumber())+
2620                                " Depth="+Twine(Loop->getLoopDepth()));
2621     return;
2622   }
2623 
2624   // Otherwise, it is a loop header.  Print out information about child and
2625   // parent loops.
2626   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2627 
2628   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2629 
2630   OS << "=>";
2631   OS.indent(Loop->getLoopDepth()*2-2);
2632 
2633   OS << "This ";
2634   if (Loop->empty())
2635     OS << "Inner ";
2636   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2637 
2638   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2639 }
2640 
2641 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2642                                          MCCodePaddingContext &Context) const {
2643   assert(MF != nullptr && "Machine function must be valid");
2644   assert(LI != nullptr && "Loop info must be valid");
2645   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2646                             !MF->getFunction().optForSize() &&
2647                             TM.getOptLevel() != CodeGenOpt::None;
2648   const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB);
2649   Context.IsBasicBlockInsideInnermostLoop =
2650       CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty();
2651   Context.IsBasicBlockReachableViaFallthrough =
2652       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2653       MBB.pred_end();
2654   Context.IsBasicBlockReachableViaBranch =
2655       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2656 }
2657 
2658 /// EmitBasicBlockStart - This method prints the label for the specified
2659 /// MachineBasicBlock, an alignment (if present) and a comment describing
2660 /// it if appropriate.
2661 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2662   // End the previous funclet and start a new one.
2663   if (MBB.isEHFuncletEntry()) {
2664     for (const HandlerInfo &HI : Handlers) {
2665       HI.Handler->endFunclet();
2666       HI.Handler->beginFunclet(MBB);
2667     }
2668   }
2669 
2670   // Emit an alignment directive for this block, if needed.
2671   if (unsigned Align = MBB.getAlignment())
2672     EmitAlignment(Align);
2673   MCCodePaddingContext Context;
2674   setupCodePaddingContext(MBB, Context);
2675   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2676 
2677   // If the block has its address taken, emit any labels that were used to
2678   // reference the block.  It is possible that there is more than one label
2679   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2680   // the references were generated.
2681   if (MBB.hasAddressTaken()) {
2682     const BasicBlock *BB = MBB.getBasicBlock();
2683     if (isVerbose())
2684       OutStreamer->AddComment("Block address taken");
2685 
2686     // MBBs can have their address taken as part of CodeGen without having
2687     // their corresponding BB's address taken in IR
2688     if (BB->hasAddressTaken())
2689       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2690         OutStreamer->EmitLabel(Sym);
2691   }
2692 
2693   // Print some verbose block comments.
2694   if (isVerbose()) {
2695     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2696       if (BB->hasName()) {
2697         BB->printAsOperand(OutStreamer->GetCommentOS(),
2698                            /*PrintType=*/false, BB->getModule());
2699         OutStreamer->GetCommentOS() << '\n';
2700       }
2701     }
2702     emitBasicBlockLoopComments(MBB, LI, *this);
2703   }
2704 
2705   // Print the main label for the block.
2706   if (MBB.pred_empty() ||
2707       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2708     if (isVerbose()) {
2709       // NOTE: Want this comment at start of line, don't emit with AddComment.
2710       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2711                                   false);
2712     }
2713   } else {
2714     OutStreamer->EmitLabel(MBB.getSymbol());
2715   }
2716 }
2717 
2718 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2719   MCCodePaddingContext Context;
2720   setupCodePaddingContext(MBB, Context);
2721   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2722 }
2723 
2724 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2725                                 bool IsDefinition) const {
2726   MCSymbolAttr Attr = MCSA_Invalid;
2727 
2728   switch (Visibility) {
2729   default: break;
2730   case GlobalValue::HiddenVisibility:
2731     if (IsDefinition)
2732       Attr = MAI->getHiddenVisibilityAttr();
2733     else
2734       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2735     break;
2736   case GlobalValue::ProtectedVisibility:
2737     Attr = MAI->getProtectedVisibilityAttr();
2738     break;
2739   }
2740 
2741   if (Attr != MCSA_Invalid)
2742     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2743 }
2744 
2745 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2746 /// exactly one predecessor and the control transfer mechanism between
2747 /// the predecessor and this block is a fall-through.
2748 bool AsmPrinter::
2749 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2750   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2751   // then nothing falls through to it.
2752   if (MBB->isEHPad() || MBB->pred_empty())
2753     return false;
2754 
2755   // If there isn't exactly one predecessor, it can't be a fall through.
2756   if (MBB->pred_size() > 1)
2757     return false;
2758 
2759   // The predecessor has to be immediately before this block.
2760   MachineBasicBlock *Pred = *MBB->pred_begin();
2761   if (!Pred->isLayoutSuccessor(MBB))
2762     return false;
2763 
2764   // If the block is completely empty, then it definitely does fall through.
2765   if (Pred->empty())
2766     return true;
2767 
2768   // Check the terminators in the previous blocks
2769   for (const auto &MI : Pred->terminators()) {
2770     // If it is not a simple branch, we are in a table somewhere.
2771     if (!MI.isBranch() || MI.isIndirectBranch())
2772       return false;
2773 
2774     // If we are the operands of one of the branches, this is not a fall
2775     // through. Note that targets with delay slots will usually bundle
2776     // terminators with the delay slot instruction.
2777     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2778       if (OP->isJTI())
2779         return false;
2780       if (OP->isMBB() && OP->getMBB() == MBB)
2781         return false;
2782     }
2783   }
2784 
2785   return true;
2786 }
2787 
2788 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2789   if (!S.usesMetadata())
2790     return nullptr;
2791 
2792   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2793          " stackmap formats, please see the documentation for a description of"
2794          " the default format.  If you really need a custom serialized format,"
2795          " please file a bug");
2796 
2797   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2798   gcp_map_type::iterator GCPI = GCMap.find(&S);
2799   if (GCPI != GCMap.end())
2800     return GCPI->second.get();
2801 
2802   auto Name = S.getName();
2803 
2804   for (GCMetadataPrinterRegistry::iterator
2805          I = GCMetadataPrinterRegistry::begin(),
2806          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2807     if (Name == I->getName()) {
2808       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2809       GMP->S = &S;
2810       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2811       return IterBool.first->second.get();
2812     }
2813 
2814   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2815 }
2816 
2817 /// Pin vtable to this file.
2818 AsmPrinterHandler::~AsmPrinterHandler() = default;
2819 
2820 void AsmPrinterHandler::markFunctionEnd() {}
2821 
2822 // In the binary's "xray_instr_map" section, an array of these function entries
2823 // describes each instrumentation point.  When XRay patches your code, the index
2824 // into this table will be given to your handler as a patch point identifier.
2825 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2826                                          const MCSymbol *CurrentFnSym) const {
2827   Out->EmitSymbolValue(Sled, Bytes);
2828   Out->EmitSymbolValue(CurrentFnSym, Bytes);
2829   auto Kind8 = static_cast<uint8_t>(Kind);
2830   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2831   Out->EmitBinaryData(
2832       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2833   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
2834   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
2835   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
2836   Out->EmitZeros(Padding);
2837 }
2838 
2839 void AsmPrinter::emitXRayTable() {
2840   if (Sleds.empty())
2841     return;
2842 
2843   auto PrevSection = OutStreamer->getCurrentSectionOnly();
2844   const Function &F = MF->getFunction();
2845   MCSection *InstMap = nullptr;
2846   MCSection *FnSledIndex = nullptr;
2847   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2848     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
2849     assert(Associated != nullptr);
2850     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
2851     std::string GroupName;
2852     if (F.hasComdat()) {
2853       Flags |= ELF::SHF_GROUP;
2854       GroupName = F.getComdat()->getName();
2855     }
2856 
2857     auto UniqueID = ++XRayFnUniqueID;
2858     InstMap =
2859         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
2860                                  GroupName, UniqueID, Associated);
2861     FnSledIndex =
2862         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
2863                                  GroupName, UniqueID, Associated);
2864   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
2865     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
2866                                          SectionKind::getReadOnlyWithRel());
2867     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
2868                                              SectionKind::getReadOnlyWithRel());
2869   } else {
2870     llvm_unreachable("Unsupported target");
2871   }
2872 
2873   auto WordSizeBytes = MAI->getCodePointerSize();
2874 
2875   // Now we switch to the instrumentation map section. Because this is done
2876   // per-function, we are able to create an index entry that will represent the
2877   // range of sleds associated with a function.
2878   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
2879   OutStreamer->SwitchSection(InstMap);
2880   OutStreamer->EmitLabel(SledsStart);
2881   for (const auto &Sled : Sleds)
2882     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
2883   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
2884   OutStreamer->EmitLabel(SledsEnd);
2885 
2886   // We then emit a single entry in the index per function. We use the symbols
2887   // that bound the instrumentation map as the range for a specific function.
2888   // Each entry here will be 2 * word size aligned, as we're writing down two
2889   // pointers. This should work for both 32-bit and 64-bit platforms.
2890   OutStreamer->SwitchSection(FnSledIndex);
2891   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
2892   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
2893   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
2894   OutStreamer->SwitchSection(PrevSection);
2895   Sleds.clear();
2896 }
2897 
2898 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2899                             SledKind Kind, uint8_t Version) {
2900   const Function &F = MI.getMF()->getFunction();
2901   auto Attr = F.getFnAttribute("function-instrument");
2902   bool LogArgs = F.hasFnAttribute("xray-log-args");
2903   bool AlwaysInstrument =
2904     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2905   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
2906     Kind = SledKind::LOG_ARGS_ENTER;
2907   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
2908                                        AlwaysInstrument, &F, Version});
2909 }
2910 
2911 uint16_t AsmPrinter::getDwarfVersion() const {
2912   return OutStreamer->getContext().getDwarfVersion();
2913 }
2914 
2915 void AsmPrinter::setDwarfVersion(uint16_t Version) {
2916   OutStreamer->getContext().setDwarfVersion(Version);
2917 }
2918