1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "Win64Exception.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/JumpInstrTableInfo.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/GCMetadataPrinter.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBundle.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCExpr.h" 40 #include "llvm/MC/MCInst.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/MCValue.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Target/TargetFrameLowering.h" 51 #include "llvm/Target/TargetInstrInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetLoweringObjectFile.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 using namespace llvm; 57 58 #define DEBUG_TYPE "asm-printer" 59 60 static const char *const DWARFGroupName = "DWARF Emission"; 61 static const char *const DbgTimerName = "Debug Info Emission"; 62 static const char *const EHTimerName = "DWARF Exception Writer"; 63 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 64 65 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 66 67 char AsmPrinter::ID = 0; 68 69 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 70 static gcp_map_type &getGCMap(void *&P) { 71 if (!P) 72 P = new gcp_map_type(); 73 return *(gcp_map_type*)P; 74 } 75 76 77 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 78 /// value in log2 form. This rounds up to the preferred alignment if possible 79 /// and legal. 80 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 81 unsigned InBits = 0) { 82 unsigned NumBits = 0; 83 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 84 NumBits = TD.getPreferredAlignmentLog(GVar); 85 86 // If InBits is specified, round it to it. 87 if (InBits > NumBits) 88 NumBits = InBits; 89 90 // If the GV has a specified alignment, take it into account. 91 if (GV->getAlignment() == 0) 92 return NumBits; 93 94 unsigned GVAlign = Log2_32(GV->getAlignment()); 95 96 // If the GVAlign is larger than NumBits, or if we are required to obey 97 // NumBits because the GV has an assigned section, obey it. 98 if (GVAlign > NumBits || GV->hasSection()) 99 NumBits = GVAlign; 100 return NumBits; 101 } 102 103 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 104 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 105 OutContext(Streamer->getContext()), OutStreamer(*Streamer.release()), 106 LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) { 107 DD = nullptr; 108 MMI = nullptr; 109 LI = nullptr; 110 MF = nullptr; 111 CurrentFnSym = CurrentFnSymForSize = nullptr; 112 CurrentFnBegin = nullptr; 113 CurrentFnEnd = nullptr; 114 GCMetadataPrinters = nullptr; 115 VerboseAsm = OutStreamer.isVerboseAsm(); 116 } 117 118 AsmPrinter::~AsmPrinter() { 119 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 120 121 if (GCMetadataPrinters) { 122 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 123 124 delete &GCMap; 125 GCMetadataPrinters = nullptr; 126 } 127 128 delete &OutStreamer; 129 } 130 131 /// getFunctionNumber - Return a unique ID for the current function. 132 /// 133 unsigned AsmPrinter::getFunctionNumber() const { 134 return MF->getFunctionNumber(); 135 } 136 137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 138 return *TM.getObjFileLowering(); 139 } 140 141 /// getDataLayout - Return information about data layout. 142 const DataLayout &AsmPrinter::getDataLayout() const { 143 return *TM.getDataLayout(); 144 } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer.getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 MMI->AnalyzeModule(M); 178 179 // Initialize TargetLoweringObjectFile. 180 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 181 .Initialize(OutContext, TM); 182 183 OutStreamer.InitSections(false); 184 185 Mang = new Mangler(TM.getDataLayout()); 186 187 // Emit the version-min deplyment target directive if needed. 188 // 189 // FIXME: If we end up with a collection of these sorts of Darwin-specific 190 // or ELF-specific things, it may make sense to have a platform helper class 191 // that will work with the target helper class. For now keep it here, as the 192 // alternative is duplicated code in each of the target asm printers that 193 // use the directive, where it would need the same conditionalization 194 // anyway. 195 Triple TT(getTargetTriple()); 196 if (TT.isOSDarwin()) { 197 unsigned Major, Minor, Update; 198 TT.getOSVersion(Major, Minor, Update); 199 // If there is a version specified, Major will be non-zero. 200 if (Major) 201 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 202 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 203 Major, Minor, Update); 204 } 205 206 // Allow the target to emit any magic that it wants at the start of the file. 207 EmitStartOfAsmFile(M); 208 209 // Very minimal debug info. It is ignored if we emit actual debug info. If we 210 // don't, this at least helps the user find where a global came from. 211 if (MAI->hasSingleParameterDotFile()) { 212 // .file "foo.c" 213 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 214 } 215 216 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 217 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 218 for (auto &I : *MI) 219 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 220 MP->beginAssembly(M, *MI, *this); 221 222 // Emit module-level inline asm if it exists. 223 if (!M.getModuleInlineAsm().empty()) { 224 OutStreamer.AddComment("Start of file scope inline assembly"); 225 OutStreamer.AddBlankLine(); 226 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 227 OutStreamer.AddComment("End of file scope inline assembly"); 228 OutStreamer.AddBlankLine(); 229 } 230 231 if (MAI->doesSupportDebugInformation()) { 232 bool skip_dwarf = false; 233 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 234 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 235 DbgTimerName, 236 CodeViewLineTablesGroupName)); 237 // FIXME: Don't emit DWARF debug info if there's at least one function 238 // with AddressSanitizer instrumentation. 239 // This is a band-aid fix for PR22032. 240 for (auto &F : M.functions()) { 241 if (F.hasFnAttribute(Attribute::SanitizeAddress)) { 242 skip_dwarf = true; 243 break; 244 } 245 } 246 } 247 if (!skip_dwarf) { 248 DD = new DwarfDebug(this, &M); 249 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 250 } 251 } 252 253 EHStreamer *ES = nullptr; 254 switch (MAI->getExceptionHandlingType()) { 255 case ExceptionHandling::None: 256 break; 257 case ExceptionHandling::SjLj: 258 case ExceptionHandling::DwarfCFI: 259 ES = new DwarfCFIException(this); 260 break; 261 case ExceptionHandling::ARM: 262 ES = new ARMException(this); 263 break; 264 case ExceptionHandling::WinEH: 265 switch (MAI->getWinEHEncodingType()) { 266 default: llvm_unreachable("unsupported unwinding information encoding"); 267 case WinEH::EncodingType::Itanium: 268 ES = new Win64Exception(this); 269 break; 270 } 271 break; 272 } 273 if (ES) 274 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 275 return false; 276 } 277 278 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 279 if (!MAI.hasWeakDefCanBeHiddenDirective()) 280 return false; 281 282 return canBeOmittedFromSymbolTable(GV); 283 } 284 285 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 286 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 287 switch (Linkage) { 288 case GlobalValue::CommonLinkage: 289 case GlobalValue::LinkOnceAnyLinkage: 290 case GlobalValue::LinkOnceODRLinkage: 291 case GlobalValue::WeakAnyLinkage: 292 case GlobalValue::WeakODRLinkage: 293 if (MAI->hasWeakDefDirective()) { 294 // .globl _foo 295 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 296 297 if (!canBeHidden(GV, *MAI)) 298 // .weak_definition _foo 299 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 300 else 301 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 302 } else if (MAI->hasLinkOnceDirective()) { 303 // .globl _foo 304 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 305 //NOTE: linkonce is handled by the section the symbol was assigned to. 306 } else { 307 // .weak _foo 308 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 309 } 310 return; 311 case GlobalValue::AppendingLinkage: 312 // FIXME: appending linkage variables should go into a section of 313 // their name or something. For now, just emit them as external. 314 case GlobalValue::ExternalLinkage: 315 // If external or appending, declare as a global symbol. 316 // .globl _foo 317 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 318 return; 319 case GlobalValue::PrivateLinkage: 320 case GlobalValue::InternalLinkage: 321 return; 322 case GlobalValue::AvailableExternallyLinkage: 323 llvm_unreachable("Should never emit this"); 324 case GlobalValue::ExternalWeakLinkage: 325 llvm_unreachable("Don't know how to emit these"); 326 } 327 llvm_unreachable("Unknown linkage type!"); 328 } 329 330 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 331 const GlobalValue *GV) const { 332 TM.getNameWithPrefix(Name, GV, *Mang); 333 } 334 335 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 336 return TM.getSymbol(GV, *Mang); 337 } 338 339 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 340 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 341 if (GV->hasInitializer()) { 342 // Check to see if this is a special global used by LLVM, if so, emit it. 343 if (EmitSpecialLLVMGlobal(GV)) 344 return; 345 346 // Skip the emission of global equivalents. The symbol can be emitted later 347 // on by emitGlobalGOTEquivs in case it turns out to be needed. 348 if (GlobalGOTEquivs.count(getSymbol(GV))) 349 return; 350 351 if (isVerbose()) { 352 GV->printAsOperand(OutStreamer.GetCommentOS(), 353 /*PrintType=*/false, GV->getParent()); 354 OutStreamer.GetCommentOS() << '\n'; 355 } 356 } 357 358 MCSymbol *GVSym = getSymbol(GV); 359 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 360 361 if (!GV->hasInitializer()) // External globals require no extra code. 362 return; 363 364 GVSym->redefineIfPossible(); 365 if (GVSym->isDefined() || GVSym->isVariable()) 366 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 367 "' is already defined"); 368 369 if (MAI->hasDotTypeDotSizeDirective()) 370 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 371 372 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 373 374 const DataLayout *DL = TM.getDataLayout(); 375 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 376 377 // If the alignment is specified, we *must* obey it. Overaligning a global 378 // with a specified alignment is a prompt way to break globals emitted to 379 // sections and expected to be contiguous (e.g. ObjC metadata). 380 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 381 382 for (const HandlerInfo &HI : Handlers) { 383 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 384 HI.Handler->setSymbolSize(GVSym, Size); 385 } 386 387 // Handle common and BSS local symbols (.lcomm). 388 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 389 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 390 unsigned Align = 1 << AlignLog; 391 392 // Handle common symbols. 393 if (GVKind.isCommon()) { 394 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 395 Align = 0; 396 397 // .comm _foo, 42, 4 398 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 399 return; 400 } 401 402 // Handle local BSS symbols. 403 if (MAI->hasMachoZeroFillDirective()) { 404 const MCSection *TheSection = 405 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 406 // .zerofill __DATA, __bss, _foo, 400, 5 407 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 408 return; 409 } 410 411 // Use .lcomm only if it supports user-specified alignment. 412 // Otherwise, while it would still be correct to use .lcomm in some 413 // cases (e.g. when Align == 1), the external assembler might enfore 414 // some -unknown- default alignment behavior, which could cause 415 // spurious differences between external and integrated assembler. 416 // Prefer to simply fall back to .local / .comm in this case. 417 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 418 // .lcomm _foo, 42 419 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 420 return; 421 } 422 423 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 424 Align = 0; 425 426 // .local _foo 427 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 428 // .comm _foo, 42, 4 429 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 430 return; 431 } 432 433 const MCSection *TheSection = 434 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 435 436 // Handle the zerofill directive on darwin, which is a special form of BSS 437 // emission. 438 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 439 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 440 441 // .globl _foo 442 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 443 // .zerofill __DATA, __common, _foo, 400, 5 444 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 445 return; 446 } 447 448 // Handle thread local data for mach-o which requires us to output an 449 // additional structure of data and mangle the original symbol so that we 450 // can reference it later. 451 // 452 // TODO: This should become an "emit thread local global" method on TLOF. 453 // All of this macho specific stuff should be sunk down into TLOFMachO and 454 // stuff like "TLSExtraDataSection" should no longer be part of the parent 455 // TLOF class. This will also make it more obvious that stuff like 456 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 457 // specific code. 458 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 459 // Emit the .tbss symbol 460 MCSymbol *MangSym = 461 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 462 463 if (GVKind.isThreadBSS()) { 464 TheSection = getObjFileLowering().getTLSBSSSection(); 465 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 466 } else if (GVKind.isThreadData()) { 467 OutStreamer.SwitchSection(TheSection); 468 469 EmitAlignment(AlignLog, GV); 470 OutStreamer.EmitLabel(MangSym); 471 472 EmitGlobalConstant(GV->getInitializer()); 473 } 474 475 OutStreamer.AddBlankLine(); 476 477 // Emit the variable struct for the runtime. 478 const MCSection *TLVSect 479 = getObjFileLowering().getTLSExtraDataSection(); 480 481 OutStreamer.SwitchSection(TLVSect); 482 // Emit the linkage here. 483 EmitLinkage(GV, GVSym); 484 OutStreamer.EmitLabel(GVSym); 485 486 // Three pointers in size: 487 // - __tlv_bootstrap - used to make sure support exists 488 // - spare pointer, used when mapped by the runtime 489 // - pointer to mangled symbol above with initializer 490 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 491 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 492 PtrSize); 493 OutStreamer.EmitIntValue(0, PtrSize); 494 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 495 496 OutStreamer.AddBlankLine(); 497 return; 498 } 499 500 OutStreamer.SwitchSection(TheSection); 501 502 EmitLinkage(GV, GVSym); 503 EmitAlignment(AlignLog, GV); 504 505 OutStreamer.EmitLabel(GVSym); 506 507 EmitGlobalConstant(GV->getInitializer()); 508 509 if (MAI->hasDotTypeDotSizeDirective()) 510 // .size foo, 42 511 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 512 513 OutStreamer.AddBlankLine(); 514 } 515 516 /// EmitFunctionHeader - This method emits the header for the current 517 /// function. 518 void AsmPrinter::EmitFunctionHeader() { 519 // Print out constants referenced by the function 520 EmitConstantPool(); 521 522 // Print the 'header' of function. 523 const Function *F = MF->getFunction(); 524 525 OutStreamer.SwitchSection( 526 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 527 EmitVisibility(CurrentFnSym, F->getVisibility()); 528 529 EmitLinkage(F, CurrentFnSym); 530 EmitAlignment(MF->getAlignment(), F); 531 532 if (MAI->hasDotTypeDotSizeDirective()) 533 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 534 535 if (isVerbose()) { 536 F->printAsOperand(OutStreamer.GetCommentOS(), 537 /*PrintType=*/false, F->getParent()); 538 OutStreamer.GetCommentOS() << '\n'; 539 } 540 541 // Emit the prefix data. 542 if (F->hasPrefixData()) 543 EmitGlobalConstant(F->getPrefixData()); 544 545 // Emit the CurrentFnSym. This is a virtual function to allow targets to 546 // do their wild and crazy things as required. 547 EmitFunctionEntryLabel(); 548 549 // If the function had address-taken blocks that got deleted, then we have 550 // references to the dangling symbols. Emit them at the start of the function 551 // so that we don't get references to undefined symbols. 552 std::vector<MCSymbol*> DeadBlockSyms; 553 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 554 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 555 OutStreamer.AddComment("Address taken block that was later removed"); 556 OutStreamer.EmitLabel(DeadBlockSyms[i]); 557 } 558 559 if (!MMI->getLandingPads().empty()) { 560 CurrentFnBegin = createTempSymbol("func_begin", getFunctionNumber()); 561 562 if (MAI->useAssignmentForEHBegin()) { 563 MCSymbol *CurPos = OutContext.CreateTempSymbol(); 564 OutStreamer.EmitLabel(CurPos); 565 OutStreamer.EmitAssignment(CurrentFnBegin, 566 MCSymbolRefExpr::Create(CurPos, OutContext)); 567 } else { 568 OutStreamer.EmitLabel(CurrentFnBegin); 569 } 570 } 571 572 // Emit pre-function debug and/or EH information. 573 for (const HandlerInfo &HI : Handlers) { 574 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 575 HI.Handler->beginFunction(MF); 576 } 577 578 // Emit the prologue data. 579 if (F->hasPrologueData()) 580 EmitGlobalConstant(F->getPrologueData()); 581 } 582 583 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 584 /// function. This can be overridden by targets as required to do custom stuff. 585 void AsmPrinter::EmitFunctionEntryLabel() { 586 CurrentFnSym->redefineIfPossible(); 587 588 // The function label could have already been emitted if two symbols end up 589 // conflicting due to asm renaming. Detect this and emit an error. 590 if (CurrentFnSym->isVariable()) 591 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 592 "' is a protected alias"); 593 if (CurrentFnSym->isDefined()) 594 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 595 "' label emitted multiple times to assembly file"); 596 597 return OutStreamer.EmitLabel(CurrentFnSym); 598 } 599 600 /// emitComments - Pretty-print comments for instructions. 601 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 602 const MachineFunction *MF = MI.getParent()->getParent(); 603 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 604 605 // Check for spills and reloads 606 int FI; 607 608 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 609 610 // We assume a single instruction only has a spill or reload, not 611 // both. 612 const MachineMemOperand *MMO; 613 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 614 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 615 MMO = *MI.memoperands_begin(); 616 CommentOS << MMO->getSize() << "-byte Reload\n"; 617 } 618 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 619 if (FrameInfo->isSpillSlotObjectIndex(FI)) 620 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 621 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 622 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 623 MMO = *MI.memoperands_begin(); 624 CommentOS << MMO->getSize() << "-byte Spill\n"; 625 } 626 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 627 if (FrameInfo->isSpillSlotObjectIndex(FI)) 628 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 629 } 630 631 // Check for spill-induced copies 632 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 633 CommentOS << " Reload Reuse\n"; 634 } 635 636 /// emitImplicitDef - This method emits the specified machine instruction 637 /// that is an implicit def. 638 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 639 unsigned RegNo = MI->getOperand(0).getReg(); 640 OutStreamer.AddComment(Twine("implicit-def: ") + 641 MMI->getContext().getRegisterInfo()->getName(RegNo)); 642 OutStreamer.AddBlankLine(); 643 } 644 645 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 646 std::string Str = "kill:"; 647 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 648 const MachineOperand &Op = MI->getOperand(i); 649 assert(Op.isReg() && "KILL instruction must have only register operands"); 650 Str += ' '; 651 Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg()); 652 Str += (Op.isDef() ? "<def>" : "<kill>"); 653 } 654 AP.OutStreamer.AddComment(Str); 655 AP.OutStreamer.AddBlankLine(); 656 } 657 658 /// emitDebugValueComment - This method handles the target-independent form 659 /// of DBG_VALUE, returning true if it was able to do so. A false return 660 /// means the target will need to handle MI in EmitInstruction. 661 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 662 // This code handles only the 4-operand target-independent form. 663 if (MI->getNumOperands() != 4) 664 return false; 665 666 SmallString<128> Str; 667 raw_svector_ostream OS(Str); 668 OS << "DEBUG_VALUE: "; 669 670 DIVariable V = MI->getDebugVariable(); 671 if (V.getContext().isSubprogram()) { 672 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 673 if (!Name.empty()) 674 OS << Name << ":"; 675 } 676 OS << V.getName(); 677 678 DIExpression Expr = MI->getDebugExpression(); 679 if (Expr.isBitPiece()) 680 OS << " [bit_piece offset=" << Expr.getBitPieceOffset() 681 << " size=" << Expr.getBitPieceSize() << "]"; 682 OS << " <- "; 683 684 // The second operand is only an offset if it's an immediate. 685 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 686 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 687 688 // Register or immediate value. Register 0 means undef. 689 if (MI->getOperand(0).isFPImm()) { 690 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 691 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 692 OS << (double)APF.convertToFloat(); 693 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 694 OS << APF.convertToDouble(); 695 } else { 696 // There is no good way to print long double. Convert a copy to 697 // double. Ah well, it's only a comment. 698 bool ignored; 699 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 700 &ignored); 701 OS << "(long double) " << APF.convertToDouble(); 702 } 703 } else if (MI->getOperand(0).isImm()) { 704 OS << MI->getOperand(0).getImm(); 705 } else if (MI->getOperand(0).isCImm()) { 706 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 707 } else { 708 unsigned Reg; 709 if (MI->getOperand(0).isReg()) { 710 Reg = MI->getOperand(0).getReg(); 711 } else { 712 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 713 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 714 Offset += TFI->getFrameIndexReference(*AP.MF, 715 MI->getOperand(0).getIndex(), Reg); 716 Deref = true; 717 } 718 if (Reg == 0) { 719 // Suppress offset, it is not meaningful here. 720 OS << "undef"; 721 // NOTE: Want this comment at start of line, don't emit with AddComment. 722 AP.OutStreamer.emitRawComment(OS.str()); 723 return true; 724 } 725 if (Deref) 726 OS << '['; 727 OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg); 728 } 729 730 if (Deref) 731 OS << '+' << Offset << ']'; 732 733 // NOTE: Want this comment at start of line, don't emit with AddComment. 734 AP.OutStreamer.emitRawComment(OS.str()); 735 return true; 736 } 737 738 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 739 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 740 MF->getFunction()->needsUnwindTableEntry()) 741 return CFI_M_EH; 742 743 if (MMI->hasDebugInfo()) 744 return CFI_M_Debug; 745 746 return CFI_M_None; 747 } 748 749 bool AsmPrinter::needsSEHMoves() { 750 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 751 } 752 753 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 754 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 755 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 756 ExceptionHandlingType != ExceptionHandling::ARM) 757 return; 758 759 if (needsCFIMoves() == CFI_M_None) 760 return; 761 762 const MachineModuleInfo &MMI = MF->getMMI(); 763 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 764 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 765 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 766 emitCFIInstruction(CFI); 767 } 768 769 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 770 // The operands are the MCSymbol and the frame offset of the allocation. 771 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 772 int FrameOffset = MI.getOperand(1).getImm(); 773 774 // Emit a symbol assignment. 775 OutStreamer.EmitAssignment(FrameAllocSym, 776 MCConstantExpr::Create(FrameOffset, OutContext)); 777 } 778 779 /// EmitFunctionBody - This method emits the body and trailer for a 780 /// function. 781 void AsmPrinter::EmitFunctionBody() { 782 // Emit target-specific gunk before the function body. 783 EmitFunctionBodyStart(); 784 785 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 786 787 // Print out code for the function. 788 bool HasAnyRealCode = false; 789 for (auto &MBB : *MF) { 790 // Print a label for the basic block. 791 EmitBasicBlockStart(MBB); 792 for (auto &MI : MBB) { 793 794 // Print the assembly for the instruction. 795 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 796 !MI.isDebugValue()) { 797 HasAnyRealCode = true; 798 ++EmittedInsts; 799 } 800 801 if (ShouldPrintDebugScopes) { 802 for (const HandlerInfo &HI : Handlers) { 803 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 804 TimePassesIsEnabled); 805 HI.Handler->beginInstruction(&MI); 806 } 807 } 808 809 if (isVerbose()) 810 emitComments(MI, OutStreamer.GetCommentOS()); 811 812 switch (MI.getOpcode()) { 813 case TargetOpcode::CFI_INSTRUCTION: 814 emitCFIInstruction(MI); 815 break; 816 817 case TargetOpcode::FRAME_ALLOC: 818 emitFrameAlloc(MI); 819 break; 820 821 case TargetOpcode::EH_LABEL: 822 case TargetOpcode::GC_LABEL: 823 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 824 break; 825 case TargetOpcode::INLINEASM: 826 EmitInlineAsm(&MI); 827 break; 828 case TargetOpcode::DBG_VALUE: 829 if (isVerbose()) { 830 if (!emitDebugValueComment(&MI, *this)) 831 EmitInstruction(&MI); 832 } 833 break; 834 case TargetOpcode::IMPLICIT_DEF: 835 if (isVerbose()) emitImplicitDef(&MI); 836 break; 837 case TargetOpcode::KILL: 838 if (isVerbose()) emitKill(&MI, *this); 839 break; 840 default: 841 EmitInstruction(&MI); 842 break; 843 } 844 845 if (ShouldPrintDebugScopes) { 846 for (const HandlerInfo &HI : Handlers) { 847 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 848 TimePassesIsEnabled); 849 HI.Handler->endInstruction(); 850 } 851 } 852 } 853 854 EmitBasicBlockEnd(MBB); 855 } 856 857 // If the function is empty and the object file uses .subsections_via_symbols, 858 // then we need to emit *something* to the function body to prevent the 859 // labels from collapsing together. Just emit a noop. 860 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 861 MCInst Noop; 862 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 863 OutStreamer.AddComment("avoids zero-length function"); 864 865 // Targets can opt-out of emitting the noop here by leaving the opcode 866 // unspecified. 867 if (Noop.getOpcode()) 868 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 869 } 870 871 const Function *F = MF->getFunction(); 872 for (const auto &BB : *F) { 873 if (!BB.hasAddressTaken()) 874 continue; 875 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 876 if (Sym->isDefined()) 877 continue; 878 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 879 OutStreamer.EmitLabel(Sym); 880 } 881 882 // Emit target-specific gunk after the function body. 883 EmitFunctionBodyEnd(); 884 885 if (!MMI->getLandingPads().empty() || MAI->hasDotTypeDotSizeDirective()) { 886 // Create a symbol for the end of function. 887 CurrentFnEnd = createTempSymbol("func_end", getFunctionNumber()); 888 OutStreamer.EmitLabel(CurrentFnEnd); 889 } 890 891 // If the target wants a .size directive for the size of the function, emit 892 // it. 893 if (MAI->hasDotTypeDotSizeDirective()) { 894 // We can get the size as difference between the function label and the 895 // temp label. 896 const MCExpr *SizeExp = 897 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(CurrentFnEnd, OutContext), 898 MCSymbolRefExpr::Create(CurrentFnSymForSize, 899 OutContext), 900 OutContext); 901 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 902 } 903 904 // Emit post-function debug and/or EH information. 905 for (const HandlerInfo &HI : Handlers) { 906 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 907 HI.Handler->endFunction(MF); 908 } 909 MMI->EndFunction(); 910 911 // Print out jump tables referenced by the function. 912 EmitJumpTableInfo(); 913 914 OutStreamer.AddBlankLine(); 915 } 916 917 /// \brief Compute the number of Global Variables that uses a Constant. 918 static unsigned getNumGlobalVariableUses(const Constant *C) { 919 if (!C) 920 return 0; 921 922 if (isa<GlobalVariable>(C)) 923 return 1; 924 925 unsigned NumUses = 0; 926 for (auto *CU : C->users()) 927 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 928 929 return NumUses; 930 } 931 932 /// \brief Only consider global GOT equivalents if at least one user is a 933 /// cstexpr inside an initializer of another global variables. Also, don't 934 /// handle cstexpr inside instructions. During global variable emission, 935 /// candidates are skipped and are emitted later in case at least one cstexpr 936 /// isn't replaced by a PC relative GOT entry access. 937 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 938 unsigned &NumGOTEquivUsers) { 939 // Global GOT equivalents are unnamed private globals with a constant 940 // pointer initializer to another global symbol. They must point to a 941 // GlobalVariable or Function, i.e., as GlobalValue. 942 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 943 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 944 return false; 945 946 // To be a got equivalent, at least one of its users need to be a constant 947 // expression used by another global variable. 948 for (auto *U : GV->users()) 949 NumGOTEquivUsers += getNumGlobalVariableUses(cast<Constant>(U)); 950 951 return NumGOTEquivUsers > 0; 952 } 953 954 /// \brief Unnamed constant global variables solely contaning a pointer to 955 /// another globals variable is equivalent to a GOT table entry; it contains the 956 /// the address of another symbol. Optimize it and replace accesses to these 957 /// "GOT equivalents" by using the GOT entry for the final global instead. 958 /// Compute GOT equivalent candidates among all global variables to avoid 959 /// emitting them if possible later on, after it use is replaced by a GOT entry 960 /// access. 961 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 962 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 963 return; 964 965 for (const auto &G : M.globals()) { 966 unsigned NumGOTEquivUsers = 0; 967 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 968 continue; 969 970 const MCSymbol *GOTEquivSym = getSymbol(&G); 971 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 972 } 973 } 974 975 /// \brief Constant expressions using GOT equivalent globals may not be eligible 976 /// for PC relative GOT entry conversion, in such cases we need to emit such 977 /// globals we previously omitted in EmitGlobalVariable. 978 void AsmPrinter::emitGlobalGOTEquivs() { 979 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 980 return; 981 982 while (!GlobalGOTEquivs.empty()) { 983 DenseMap<const MCSymbol *, GOTEquivUsePair>::iterator I = 984 GlobalGOTEquivs.begin(); 985 const MCSymbol *S = I->first; 986 const GlobalVariable *GV = I->second.first; 987 GlobalGOTEquivs.erase(S); 988 EmitGlobalVariable(GV); 989 } 990 } 991 992 bool AsmPrinter::doFinalization(Module &M) { 993 // Gather all GOT equivalent globals in the module. We really need two 994 // passes over the globals: one to compute and another to avoid its emission 995 // in EmitGlobalVariable, otherwise we would not be able to handle cases 996 // where the got equivalent shows up before its use. 997 computeGlobalGOTEquivs(M); 998 999 // Emit global variables. 1000 for (const auto &G : M.globals()) 1001 EmitGlobalVariable(&G); 1002 1003 // Emit remaining GOT equivalent globals. 1004 emitGlobalGOTEquivs(); 1005 1006 // Emit visibility info for declarations 1007 for (const Function &F : M) { 1008 if (!F.isDeclaration()) 1009 continue; 1010 GlobalValue::VisibilityTypes V = F.getVisibility(); 1011 if (V == GlobalValue::DefaultVisibility) 1012 continue; 1013 1014 MCSymbol *Name = getSymbol(&F); 1015 EmitVisibility(Name, V, false); 1016 } 1017 1018 // Emit module flags. 1019 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1020 M.getModuleFlagsMetadata(ModuleFlags); 1021 if (!ModuleFlags.empty()) 1022 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 1023 1024 // Make sure we wrote out everything we need. 1025 OutStreamer.Flush(); 1026 1027 // Finalize debug and EH information. 1028 for (const HandlerInfo &HI : Handlers) { 1029 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1030 TimePassesIsEnabled); 1031 HI.Handler->endModule(); 1032 delete HI.Handler; 1033 } 1034 Handlers.clear(); 1035 DD = nullptr; 1036 1037 // If the target wants to know about weak references, print them all. 1038 if (MAI->getWeakRefDirective()) { 1039 // FIXME: This is not lazy, it would be nice to only print weak references 1040 // to stuff that is actually used. Note that doing so would require targets 1041 // to notice uses in operands (due to constant exprs etc). This should 1042 // happen with the MC stuff eventually. 1043 1044 // Print out module-level global variables here. 1045 for (const auto &G : M.globals()) { 1046 if (!G.hasExternalWeakLinkage()) 1047 continue; 1048 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1049 } 1050 1051 for (const auto &F : M) { 1052 if (!F.hasExternalWeakLinkage()) 1053 continue; 1054 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1055 } 1056 } 1057 1058 OutStreamer.AddBlankLine(); 1059 for (const auto &Alias : M.aliases()) { 1060 MCSymbol *Name = getSymbol(&Alias); 1061 1062 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1063 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 1064 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1065 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 1066 else 1067 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1068 1069 EmitVisibility(Name, Alias.getVisibility()); 1070 1071 // Emit the directives as assignments aka .set: 1072 OutStreamer.EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1073 } 1074 1075 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1076 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1077 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1078 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1079 MP->finishAssembly(M, *MI, *this); 1080 1081 // Emit llvm.ident metadata in an '.ident' directive. 1082 EmitModuleIdents(M); 1083 1084 // Emit __morestack address if needed for indirect calls. 1085 if (MMI->usesMorestackAddr()) { 1086 const MCSection *ReadOnlySection = 1087 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1088 /*C=*/nullptr); 1089 OutStreamer.SwitchSection(ReadOnlySection); 1090 1091 MCSymbol *AddrSymbol = 1092 OutContext.GetOrCreateSymbol(StringRef("__morestack_addr")); 1093 OutStreamer.EmitLabel(AddrSymbol); 1094 1095 unsigned PtrSize = TM.getDataLayout()->getPointerSize(0); 1096 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1097 PtrSize); 1098 } 1099 1100 // If we don't have any trampolines, then we don't require stack memory 1101 // to be executable. Some targets have a directive to declare this. 1102 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1103 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1104 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1105 OutStreamer.SwitchSection(S); 1106 1107 // Allow the target to emit any magic that it wants at the end of the file, 1108 // after everything else has gone out. 1109 EmitEndOfAsmFile(M); 1110 1111 delete Mang; Mang = nullptr; 1112 MMI = nullptr; 1113 1114 OutStreamer.Finish(); 1115 OutStreamer.reset(); 1116 1117 return false; 1118 } 1119 1120 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1121 this->MF = &MF; 1122 // Get the function symbol. 1123 CurrentFnSym = getSymbol(MF.getFunction()); 1124 CurrentFnSymForSize = CurrentFnSym; 1125 1126 if (isVerbose()) 1127 LI = &getAnalysis<MachineLoopInfo>(); 1128 } 1129 1130 namespace { 1131 // SectionCPs - Keep track the alignment, constpool entries per Section. 1132 struct SectionCPs { 1133 const MCSection *S; 1134 unsigned Alignment; 1135 SmallVector<unsigned, 4> CPEs; 1136 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1137 }; 1138 } 1139 1140 /// EmitConstantPool - Print to the current output stream assembly 1141 /// representations of the constants in the constant pool MCP. This is 1142 /// used to print out constants which have been "spilled to memory" by 1143 /// the code generator. 1144 /// 1145 void AsmPrinter::EmitConstantPool() { 1146 const MachineConstantPool *MCP = MF->getConstantPool(); 1147 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1148 if (CP.empty()) return; 1149 1150 // Calculate sections for constant pool entries. We collect entries to go into 1151 // the same section together to reduce amount of section switch statements. 1152 SmallVector<SectionCPs, 4> CPSections; 1153 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1154 const MachineConstantPoolEntry &CPE = CP[i]; 1155 unsigned Align = CPE.getAlignment(); 1156 1157 SectionKind Kind = 1158 CPE.getSectionKind(TM.getDataLayout()); 1159 1160 const Constant *C = nullptr; 1161 if (!CPE.isMachineConstantPoolEntry()) 1162 C = CPE.Val.ConstVal; 1163 1164 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C); 1165 1166 // The number of sections are small, just do a linear search from the 1167 // last section to the first. 1168 bool Found = false; 1169 unsigned SecIdx = CPSections.size(); 1170 while (SecIdx != 0) { 1171 if (CPSections[--SecIdx].S == S) { 1172 Found = true; 1173 break; 1174 } 1175 } 1176 if (!Found) { 1177 SecIdx = CPSections.size(); 1178 CPSections.push_back(SectionCPs(S, Align)); 1179 } 1180 1181 if (Align > CPSections[SecIdx].Alignment) 1182 CPSections[SecIdx].Alignment = Align; 1183 CPSections[SecIdx].CPEs.push_back(i); 1184 } 1185 1186 // Now print stuff into the calculated sections. 1187 const MCSection *CurSection = nullptr; 1188 unsigned Offset = 0; 1189 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1190 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1191 unsigned CPI = CPSections[i].CPEs[j]; 1192 MCSymbol *Sym = GetCPISymbol(CPI); 1193 if (!Sym->isUndefined()) 1194 continue; 1195 1196 if (CurSection != CPSections[i].S) { 1197 OutStreamer.SwitchSection(CPSections[i].S); 1198 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1199 CurSection = CPSections[i].S; 1200 Offset = 0; 1201 } 1202 1203 MachineConstantPoolEntry CPE = CP[CPI]; 1204 1205 // Emit inter-object padding for alignment. 1206 unsigned AlignMask = CPE.getAlignment() - 1; 1207 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1208 OutStreamer.EmitZeros(NewOffset - Offset); 1209 1210 Type *Ty = CPE.getType(); 1211 Offset = NewOffset + 1212 TM.getDataLayout()->getTypeAllocSize(Ty); 1213 1214 OutStreamer.EmitLabel(Sym); 1215 if (CPE.isMachineConstantPoolEntry()) 1216 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1217 else 1218 EmitGlobalConstant(CPE.Val.ConstVal); 1219 } 1220 } 1221 } 1222 1223 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1224 /// by the current function to the current output stream. 1225 /// 1226 void AsmPrinter::EmitJumpTableInfo() { 1227 const DataLayout *DL = MF->getTarget().getDataLayout(); 1228 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1229 if (!MJTI) return; 1230 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1231 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1232 if (JT.empty()) return; 1233 1234 // Pick the directive to use to print the jump table entries, and switch to 1235 // the appropriate section. 1236 const Function *F = MF->getFunction(); 1237 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1238 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1239 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1240 *F); 1241 if (!JTInDiffSection) { 1242 OutStreamer.SwitchSection(TLOF.SectionForGlobal(F, *Mang, TM)); 1243 } else { 1244 // Otherwise, drop it in the readonly section. 1245 const MCSection *ReadOnlySection = 1246 TLOF.getSectionForJumpTable(*F, *Mang, TM); 1247 OutStreamer.SwitchSection(ReadOnlySection); 1248 } 1249 1250 EmitAlignment(Log2_32( 1251 MJTI->getEntryAlignment(*TM.getDataLayout()))); 1252 1253 // Jump tables in code sections are marked with a data_region directive 1254 // where that's supported. 1255 if (!JTInDiffSection) 1256 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1257 1258 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1259 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1260 1261 // If this jump table was deleted, ignore it. 1262 if (JTBBs.empty()) continue; 1263 1264 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1265 /// emit a .set directive for each unique entry. 1266 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1267 MAI->doesSetDirectiveSuppressesReloc()) { 1268 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1269 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1270 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1271 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1272 const MachineBasicBlock *MBB = JTBBs[ii]; 1273 if (!EmittedSets.insert(MBB).second) 1274 continue; 1275 1276 // .set LJTSet, LBB32-base 1277 const MCExpr *LHS = 1278 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1279 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1280 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1281 } 1282 } 1283 1284 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1285 // before each jump table. The first label is never referenced, but tells 1286 // the assembler and linker the extents of the jump table object. The 1287 // second label is actually referenced by the code. 1288 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1289 // FIXME: This doesn't have to have any specific name, just any randomly 1290 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1291 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1292 1293 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1294 1295 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1296 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1297 } 1298 if (!JTInDiffSection) 1299 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1300 } 1301 1302 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1303 /// current stream. 1304 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1305 const MachineBasicBlock *MBB, 1306 unsigned UID) const { 1307 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1308 const MCExpr *Value = nullptr; 1309 switch (MJTI->getEntryKind()) { 1310 case MachineJumpTableInfo::EK_Inline: 1311 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1312 case MachineJumpTableInfo::EK_Custom32: 1313 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1314 MJTI, MBB, UID, OutContext); 1315 break; 1316 case MachineJumpTableInfo::EK_BlockAddress: 1317 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1318 // .word LBB123 1319 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1320 break; 1321 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1322 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1323 // with a relocation as gp-relative, e.g.: 1324 // .gprel32 LBB123 1325 MCSymbol *MBBSym = MBB->getSymbol(); 1326 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1327 return; 1328 } 1329 1330 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1331 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1332 // with a relocation as gp-relative, e.g.: 1333 // .gpdword LBB123 1334 MCSymbol *MBBSym = MBB->getSymbol(); 1335 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1336 return; 1337 } 1338 1339 case MachineJumpTableInfo::EK_LabelDifference32: { 1340 // Each entry is the address of the block minus the address of the jump 1341 // table. This is used for PIC jump tables where gprel32 is not supported. 1342 // e.g.: 1343 // .word LBB123 - LJTI1_2 1344 // If the .set directive avoids relocations, this is emitted as: 1345 // .set L4_5_set_123, LBB123 - LJTI1_2 1346 // .word L4_5_set_123 1347 if (MAI->doesSetDirectiveSuppressesReloc()) { 1348 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1349 OutContext); 1350 break; 1351 } 1352 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1353 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1354 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1355 Value = MCBinaryExpr::CreateSub(Value, Base, OutContext); 1356 break; 1357 } 1358 } 1359 1360 assert(Value && "Unknown entry kind!"); 1361 1362 unsigned EntrySize = 1363 MJTI->getEntrySize(*TM.getDataLayout()); 1364 OutStreamer.EmitValue(Value, EntrySize); 1365 } 1366 1367 1368 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1369 /// special global used by LLVM. If so, emit it and return true, otherwise 1370 /// do nothing and return false. 1371 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1372 if (GV->getName() == "llvm.used") { 1373 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1374 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1375 return true; 1376 } 1377 1378 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1379 if (StringRef(GV->getSection()) == "llvm.metadata" || 1380 GV->hasAvailableExternallyLinkage()) 1381 return true; 1382 1383 if (!GV->hasAppendingLinkage()) return false; 1384 1385 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1386 1387 if (GV->getName() == "llvm.global_ctors") { 1388 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1389 1390 if (TM.getRelocationModel() == Reloc::Static && 1391 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1392 StringRef Sym(".constructors_used"); 1393 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1394 MCSA_Reference); 1395 } 1396 return true; 1397 } 1398 1399 if (GV->getName() == "llvm.global_dtors") { 1400 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1401 1402 if (TM.getRelocationModel() == Reloc::Static && 1403 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1404 StringRef Sym(".destructors_used"); 1405 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1406 MCSA_Reference); 1407 } 1408 return true; 1409 } 1410 1411 return false; 1412 } 1413 1414 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1415 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1416 /// is true, as being used with this directive. 1417 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1418 // Should be an array of 'i8*'. 1419 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1420 const GlobalValue *GV = 1421 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1422 if (GV) 1423 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1424 } 1425 } 1426 1427 namespace { 1428 struct Structor { 1429 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1430 int Priority; 1431 llvm::Constant *Func; 1432 llvm::GlobalValue *ComdatKey; 1433 }; 1434 } // end namespace 1435 1436 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1437 /// priority. 1438 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1439 // Should be an array of '{ int, void ()* }' structs. The first value is the 1440 // init priority. 1441 if (!isa<ConstantArray>(List)) return; 1442 1443 // Sanity check the structors list. 1444 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1445 if (!InitList) return; // Not an array! 1446 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1447 // FIXME: Only allow the 3-field form in LLVM 4.0. 1448 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1449 return; // Not an array of two or three elements! 1450 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1451 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1452 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1453 return; // Not (int, ptr, ptr). 1454 1455 // Gather the structors in a form that's convenient for sorting by priority. 1456 SmallVector<Structor, 8> Structors; 1457 for (Value *O : InitList->operands()) { 1458 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1459 if (!CS) continue; // Malformed. 1460 if (CS->getOperand(1)->isNullValue()) 1461 break; // Found a null terminator, skip the rest. 1462 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1463 if (!Priority) continue; // Malformed. 1464 Structors.push_back(Structor()); 1465 Structor &S = Structors.back(); 1466 S.Priority = Priority->getLimitedValue(65535); 1467 S.Func = CS->getOperand(1); 1468 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1469 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1470 } 1471 1472 // Emit the function pointers in the target-specific order 1473 const DataLayout *DL = TM.getDataLayout(); 1474 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1475 std::stable_sort(Structors.begin(), Structors.end(), 1476 [](const Structor &L, 1477 const Structor &R) { return L.Priority < R.Priority; }); 1478 for (Structor &S : Structors) { 1479 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1480 const MCSymbol *KeySym = nullptr; 1481 if (GlobalValue *GV = S.ComdatKey) { 1482 if (GV->hasAvailableExternallyLinkage()) 1483 // If the associated variable is available_externally, some other TU 1484 // will provide its dynamic initializer. 1485 continue; 1486 1487 KeySym = getSymbol(GV); 1488 } 1489 const MCSection *OutputSection = 1490 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1491 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1492 OutStreamer.SwitchSection(OutputSection); 1493 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1494 EmitAlignment(Align); 1495 EmitXXStructor(S.Func); 1496 } 1497 } 1498 1499 void AsmPrinter::EmitModuleIdents(Module &M) { 1500 if (!MAI->hasIdentDirective()) 1501 return; 1502 1503 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1504 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1505 const MDNode *N = NMD->getOperand(i); 1506 assert(N->getNumOperands() == 1 && 1507 "llvm.ident metadata entry can have only one operand"); 1508 const MDString *S = cast<MDString>(N->getOperand(0)); 1509 OutStreamer.EmitIdent(S->getString()); 1510 } 1511 } 1512 } 1513 1514 //===--------------------------------------------------------------------===// 1515 // Emission and print routines 1516 // 1517 1518 /// EmitInt8 - Emit a byte directive and value. 1519 /// 1520 void AsmPrinter::EmitInt8(int Value) const { 1521 OutStreamer.EmitIntValue(Value, 1); 1522 } 1523 1524 /// EmitInt16 - Emit a short directive and value. 1525 /// 1526 void AsmPrinter::EmitInt16(int Value) const { 1527 OutStreamer.EmitIntValue(Value, 2); 1528 } 1529 1530 /// EmitInt32 - Emit a long directive and value. 1531 /// 1532 void AsmPrinter::EmitInt32(int Value) const { 1533 OutStreamer.EmitIntValue(Value, 4); 1534 } 1535 1536 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1537 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1538 /// .set if it avoids relocations. 1539 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1540 unsigned Size) const { 1541 // Get the Hi-Lo expression. 1542 const MCExpr *Diff = 1543 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1544 MCSymbolRefExpr::Create(Lo, OutContext), 1545 OutContext); 1546 1547 if (!MAI->doesSetDirectiveSuppressesReloc()) { 1548 OutStreamer.EmitValue(Diff, Size); 1549 return; 1550 } 1551 1552 // Otherwise, emit with .set (aka assignment). 1553 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1554 OutStreamer.EmitAssignment(SetLabel, Diff); 1555 OutStreamer.EmitSymbolValue(SetLabel, Size); 1556 } 1557 1558 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1559 /// where the size in bytes of the directive is specified by Size and Label 1560 /// specifies the label. This implicitly uses .set if it is available. 1561 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1562 unsigned Size, 1563 bool IsSectionRelative) const { 1564 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1565 OutStreamer.EmitCOFFSecRel32(Label); 1566 return; 1567 } 1568 1569 // Emit Label+Offset (or just Label if Offset is zero) 1570 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1571 if (Offset) 1572 Expr = MCBinaryExpr::CreateAdd( 1573 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1574 1575 OutStreamer.EmitValue(Expr, Size); 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 1580 // EmitAlignment - Emit an alignment directive to the specified power of 1581 // two boundary. For example, if you pass in 3 here, you will get an 8 1582 // byte alignment. If a global value is specified, and if that global has 1583 // an explicit alignment requested, it will override the alignment request 1584 // if required for correctness. 1585 // 1586 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1587 if (GV) 1588 NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), 1589 NumBits); 1590 1591 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1592 1593 assert(NumBits < 1594 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1595 "undefined behavior"); 1596 if (getCurrentSection()->getKind().isText()) 1597 OutStreamer.EmitCodeAlignment(1u << NumBits); 1598 else 1599 OutStreamer.EmitValueToAlignment(1u << NumBits); 1600 } 1601 1602 //===----------------------------------------------------------------------===// 1603 // Constant emission. 1604 //===----------------------------------------------------------------------===// 1605 1606 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1607 MCContext &Ctx = OutContext; 1608 1609 if (CV->isNullValue() || isa<UndefValue>(CV)) 1610 return MCConstantExpr::Create(0, Ctx); 1611 1612 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1613 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1614 1615 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1616 return MCSymbolRefExpr::Create(getSymbol(GV), Ctx); 1617 1618 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1619 return MCSymbolRefExpr::Create(GetBlockAddressSymbol(BA), Ctx); 1620 1621 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1622 if (!CE) { 1623 llvm_unreachable("Unknown constant value to lower!"); 1624 } 1625 1626 if (const MCExpr *RelocExpr 1627 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1628 return RelocExpr; 1629 1630 switch (CE->getOpcode()) { 1631 default: 1632 // If the code isn't optimized, there may be outstanding folding 1633 // opportunities. Attempt to fold the expression using DataLayout as a 1634 // last resort before giving up. 1635 if (Constant *C = ConstantFoldConstantExpression( 1636 CE, TM.getDataLayout())) 1637 if (C != CE) 1638 return lowerConstant(C); 1639 1640 // Otherwise report the problem to the user. 1641 { 1642 std::string S; 1643 raw_string_ostream OS(S); 1644 OS << "Unsupported expression in static initializer: "; 1645 CE->printAsOperand(OS, /*PrintType=*/false, 1646 !MF ? nullptr : MF->getFunction()->getParent()); 1647 report_fatal_error(OS.str()); 1648 } 1649 case Instruction::GetElementPtr: { 1650 const DataLayout &DL = *TM.getDataLayout(); 1651 1652 // Generate a symbolic expression for the byte address 1653 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1654 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1655 1656 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1657 if (!OffsetAI) 1658 return Base; 1659 1660 int64_t Offset = OffsetAI.getSExtValue(); 1661 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1662 Ctx); 1663 } 1664 1665 case Instruction::Trunc: 1666 // We emit the value and depend on the assembler to truncate the generated 1667 // expression properly. This is important for differences between 1668 // blockaddress labels. Since the two labels are in the same function, it 1669 // is reasonable to treat their delta as a 32-bit value. 1670 // FALL THROUGH. 1671 case Instruction::BitCast: 1672 return lowerConstant(CE->getOperand(0)); 1673 1674 case Instruction::IntToPtr: { 1675 const DataLayout &DL = *TM.getDataLayout(); 1676 1677 // Handle casts to pointers by changing them into casts to the appropriate 1678 // integer type. This promotes constant folding and simplifies this code. 1679 Constant *Op = CE->getOperand(0); 1680 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1681 false/*ZExt*/); 1682 return lowerConstant(Op); 1683 } 1684 1685 case Instruction::PtrToInt: { 1686 const DataLayout &DL = *TM.getDataLayout(); 1687 1688 // Support only foldable casts to/from pointers that can be eliminated by 1689 // changing the pointer to the appropriately sized integer type. 1690 Constant *Op = CE->getOperand(0); 1691 Type *Ty = CE->getType(); 1692 1693 const MCExpr *OpExpr = lowerConstant(Op); 1694 1695 // We can emit the pointer value into this slot if the slot is an 1696 // integer slot equal to the size of the pointer. 1697 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1698 return OpExpr; 1699 1700 // Otherwise the pointer is smaller than the resultant integer, mask off 1701 // the high bits so we are sure to get a proper truncation if the input is 1702 // a constant expr. 1703 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1704 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1705 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1706 } 1707 1708 // The MC library also has a right-shift operator, but it isn't consistently 1709 // signed or unsigned between different targets. 1710 case Instruction::Add: 1711 case Instruction::Sub: 1712 case Instruction::Mul: 1713 case Instruction::SDiv: 1714 case Instruction::SRem: 1715 case Instruction::Shl: 1716 case Instruction::And: 1717 case Instruction::Or: 1718 case Instruction::Xor: { 1719 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1720 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1721 switch (CE->getOpcode()) { 1722 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1723 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1724 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1725 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1726 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1727 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1728 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1729 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1730 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1731 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1732 } 1733 } 1734 } 1735 } 1736 1737 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP, 1738 const Constant *BaseCV = nullptr, 1739 uint64_t Offset = 0); 1740 1741 /// isRepeatedByteSequence - Determine whether the given value is 1742 /// composed of a repeated sequence of identical bytes and return the 1743 /// byte value. If it is not a repeated sequence, return -1. 1744 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1745 StringRef Data = V->getRawDataValues(); 1746 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1747 char C = Data[0]; 1748 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1749 if (Data[i] != C) return -1; 1750 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1751 } 1752 1753 1754 /// isRepeatedByteSequence - Determine whether the given value is 1755 /// composed of a repeated sequence of identical bytes and return the 1756 /// byte value. If it is not a repeated sequence, return -1. 1757 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1758 1759 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1760 if (CI->getBitWidth() > 64) return -1; 1761 1762 uint64_t Size = 1763 TM.getDataLayout()->getTypeAllocSize(V->getType()); 1764 uint64_t Value = CI->getZExtValue(); 1765 1766 // Make sure the constant is at least 8 bits long and has a power 1767 // of 2 bit width. This guarantees the constant bit width is 1768 // always a multiple of 8 bits, avoiding issues with padding out 1769 // to Size and other such corner cases. 1770 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1771 1772 uint8_t Byte = static_cast<uint8_t>(Value); 1773 1774 for (unsigned i = 1; i < Size; ++i) { 1775 Value >>= 8; 1776 if (static_cast<uint8_t>(Value) != Byte) return -1; 1777 } 1778 return Byte; 1779 } 1780 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1781 // Make sure all array elements are sequences of the same repeated 1782 // byte. 1783 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1784 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1785 if (Byte == -1) return -1; 1786 1787 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1788 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1789 if (ThisByte == -1) return -1; 1790 if (Byte != ThisByte) return -1; 1791 } 1792 return Byte; 1793 } 1794 1795 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1796 return isRepeatedByteSequence(CDS); 1797 1798 return -1; 1799 } 1800 1801 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1802 AsmPrinter &AP){ 1803 1804 // See if we can aggregate this into a .fill, if so, emit it as such. 1805 int Value = isRepeatedByteSequence(CDS, AP.TM); 1806 if (Value != -1) { 1807 uint64_t Bytes = 1808 AP.TM.getDataLayout()->getTypeAllocSize( 1809 CDS->getType()); 1810 // Don't emit a 1-byte object as a .fill. 1811 if (Bytes > 1) 1812 return AP.OutStreamer.EmitFill(Bytes, Value); 1813 } 1814 1815 // If this can be emitted with .ascii/.asciz, emit it as such. 1816 if (CDS->isString()) 1817 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1818 1819 // Otherwise, emit the values in successive locations. 1820 unsigned ElementByteSize = CDS->getElementByteSize(); 1821 if (isa<IntegerType>(CDS->getElementType())) { 1822 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1823 if (AP.isVerbose()) 1824 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1825 CDS->getElementAsInteger(i)); 1826 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1827 ElementByteSize); 1828 } 1829 } else if (ElementByteSize == 4) { 1830 // FP Constants are printed as integer constants to avoid losing 1831 // precision. 1832 assert(CDS->getElementType()->isFloatTy()); 1833 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1834 union { 1835 float F; 1836 uint32_t I; 1837 }; 1838 1839 F = CDS->getElementAsFloat(i); 1840 if (AP.isVerbose()) 1841 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1842 AP.OutStreamer.EmitIntValue(I, 4); 1843 } 1844 } else { 1845 assert(CDS->getElementType()->isDoubleTy()); 1846 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1847 union { 1848 double F; 1849 uint64_t I; 1850 }; 1851 1852 F = CDS->getElementAsDouble(i); 1853 if (AP.isVerbose()) 1854 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1855 AP.OutStreamer.EmitIntValue(I, 8); 1856 } 1857 } 1858 1859 const DataLayout &DL = *AP.TM.getDataLayout(); 1860 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1861 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1862 CDS->getNumElements(); 1863 if (unsigned Padding = Size - EmittedSize) 1864 AP.OutStreamer.EmitZeros(Padding); 1865 1866 } 1867 1868 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP, 1869 const Constant *BaseCV, uint64_t Offset) { 1870 // See if we can aggregate some values. Make sure it can be 1871 // represented as a series of bytes of the constant value. 1872 int Value = isRepeatedByteSequence(CA, AP.TM); 1873 const DataLayout &DL = *AP.TM.getDataLayout(); 1874 1875 if (Value != -1) { 1876 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1877 AP.OutStreamer.EmitFill(Bytes, Value); 1878 } 1879 else { 1880 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1881 emitGlobalConstantImpl(CA->getOperand(i), AP, BaseCV, Offset); 1882 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1883 } 1884 } 1885 } 1886 1887 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1888 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1889 emitGlobalConstantImpl(CV->getOperand(i), AP); 1890 1891 const DataLayout &DL = *AP.TM.getDataLayout(); 1892 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1893 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1894 CV->getType()->getNumElements(); 1895 if (unsigned Padding = Size - EmittedSize) 1896 AP.OutStreamer.EmitZeros(Padding); 1897 } 1898 1899 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP, 1900 const Constant *BaseCV, uint64_t Offset) { 1901 // Print the fields in successive locations. Pad to align if needed! 1902 const DataLayout *DL = AP.TM.getDataLayout(); 1903 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1904 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1905 uint64_t SizeSoFar = 0; 1906 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1907 const Constant *Field = CS->getOperand(i); 1908 1909 // Print the actual field value. 1910 emitGlobalConstantImpl(Field, AP, BaseCV, Offset+SizeSoFar); 1911 1912 // Check if padding is needed and insert one or more 0s. 1913 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1914 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1915 - Layout->getElementOffset(i)) - FieldSize; 1916 SizeSoFar += FieldSize + PadSize; 1917 1918 // Insert padding - this may include padding to increase the size of the 1919 // current field up to the ABI size (if the struct is not packed) as well 1920 // as padding to ensure that the next field starts at the right offset. 1921 AP.OutStreamer.EmitZeros(PadSize); 1922 } 1923 assert(SizeSoFar == Layout->getSizeInBytes() && 1924 "Layout of constant struct may be incorrect!"); 1925 } 1926 1927 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1928 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1929 1930 // First print a comment with what we think the original floating-point value 1931 // should have been. 1932 if (AP.isVerbose()) { 1933 SmallString<8> StrVal; 1934 CFP->getValueAPF().toString(StrVal); 1935 1936 if (CFP->getType()) 1937 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1938 else 1939 AP.OutStreamer.GetCommentOS() << "Printing <null> Type"; 1940 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1941 } 1942 1943 // Now iterate through the APInt chunks, emitting them in endian-correct 1944 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1945 // floats). 1946 unsigned NumBytes = API.getBitWidth() / 8; 1947 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1948 const uint64_t *p = API.getRawData(); 1949 1950 // PPC's long double has odd notions of endianness compared to how LLVM 1951 // handles it: p[0] goes first for *big* endian on PPC. 1952 if (AP.TM.getDataLayout()->isBigEndian() && 1953 !CFP->getType()->isPPC_FP128Ty()) { 1954 int Chunk = API.getNumWords() - 1; 1955 1956 if (TrailingBytes) 1957 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1958 1959 for (; Chunk >= 0; --Chunk) 1960 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1961 } else { 1962 unsigned Chunk; 1963 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1964 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1965 1966 if (TrailingBytes) 1967 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1968 } 1969 1970 // Emit the tail padding for the long double. 1971 const DataLayout &DL = *AP.TM.getDataLayout(); 1972 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1973 DL.getTypeStoreSize(CFP->getType())); 1974 } 1975 1976 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1977 const DataLayout *DL = AP.TM.getDataLayout(); 1978 unsigned BitWidth = CI->getBitWidth(); 1979 1980 // Copy the value as we may massage the layout for constants whose bit width 1981 // is not a multiple of 64-bits. 1982 APInt Realigned(CI->getValue()); 1983 uint64_t ExtraBits = 0; 1984 unsigned ExtraBitsSize = BitWidth & 63; 1985 1986 if (ExtraBitsSize) { 1987 // The bit width of the data is not a multiple of 64-bits. 1988 // The extra bits are expected to be at the end of the chunk of the memory. 1989 // Little endian: 1990 // * Nothing to be done, just record the extra bits to emit. 1991 // Big endian: 1992 // * Record the extra bits to emit. 1993 // * Realign the raw data to emit the chunks of 64-bits. 1994 if (DL->isBigEndian()) { 1995 // Basically the structure of the raw data is a chunk of 64-bits cells: 1996 // 0 1 BitWidth / 64 1997 // [chunk1][chunk2] ... [chunkN]. 1998 // The most significant chunk is chunkN and it should be emitted first. 1999 // However, due to the alignment issue chunkN contains useless bits. 2000 // Realign the chunks so that they contain only useless information: 2001 // ExtraBits 0 1 (BitWidth / 64) - 1 2002 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2003 ExtraBits = Realigned.getRawData()[0] & 2004 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2005 Realigned = Realigned.lshr(ExtraBitsSize); 2006 } else 2007 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2008 } 2009 2010 // We don't expect assemblers to support integer data directives 2011 // for more than 64 bits, so we emit the data in at most 64-bit 2012 // quantities at a time. 2013 const uint64_t *RawData = Realigned.getRawData(); 2014 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2015 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2016 AP.OutStreamer.EmitIntValue(Val, 8); 2017 } 2018 2019 if (ExtraBitsSize) { 2020 // Emit the extra bits after the 64-bits chunks. 2021 2022 // Emit a directive that fills the expected size. 2023 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize( 2024 CI->getType()); 2025 Size -= (BitWidth / 64) * 8; 2026 assert(Size && Size * 8 >= ExtraBitsSize && 2027 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2028 == ExtraBits && "Directive too small for extra bits."); 2029 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 2030 } 2031 } 2032 2033 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2034 /// equivalent global, by a target specific GOT pc relative access to the 2035 /// final symbol. 2036 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2037 const Constant *BaseCst, 2038 uint64_t Offset) { 2039 // The global @foo below illustrates a global that uses a got equivalent. 2040 // 2041 // @bar = global i32 42 2042 // @gotequiv = private unnamed_addr constant i32* @bar 2043 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2044 // i64 ptrtoint (i32* @foo to i64)) 2045 // to i32) 2046 // 2047 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2048 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2049 // form: 2050 // 2051 // foo = cstexpr, where 2052 // cstexpr := <gotequiv> - "." + <cst> 2053 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2054 // 2055 // After canonicalization by EvaluateAsRelocatable `ME` turns into: 2056 // 2057 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2058 // gotpcrelcst := <offset from @foo base> + <cst> 2059 // 2060 MCValue MV; 2061 if (!(*ME)->EvaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2062 return; 2063 2064 const MCSymbol *GOTEquivSym = &MV.getSymA()->getSymbol(); 2065 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2066 return; 2067 2068 const GlobalValue *BaseGV = dyn_cast<GlobalValue>(BaseCst); 2069 if (!BaseGV) 2070 return; 2071 2072 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2073 if (BaseSym != &MV.getSymB()->getSymbol()) 2074 return; 2075 2076 // Make sure to match: 2077 // 2078 // gotpcrelcst := <offset from @foo base> + <cst> 2079 // 2080 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2081 if (GOTPCRelCst < 0) 2082 return; 2083 2084 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2085 // 2086 // bar: 2087 // .long 42 2088 // gotequiv: 2089 // .quad bar 2090 // foo: 2091 // .long gotequiv - "." + <cst> 2092 // 2093 // is replaced by the target specific equivalent to: 2094 // 2095 // bar: 2096 // .long 42 2097 // foo: 2098 // .long bar@GOTPCREL+<gotpcrelcst> 2099 // 2100 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2101 const GlobalVariable *GV = Result.first; 2102 unsigned NumUses = Result.second; 2103 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2104 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2105 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(FinalSym, 2106 GOTPCRelCst); 2107 2108 // Update GOT equivalent usage information 2109 --NumUses; 2110 if (NumUses) 2111 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2112 else 2113 AP.GlobalGOTEquivs.erase(GOTEquivSym); 2114 } 2115 2116 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP, 2117 const Constant *BaseCV, uint64_t Offset) { 2118 const DataLayout *DL = AP.TM.getDataLayout(); 2119 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 2120 2121 // Globals with sub-elements such as combinations of arrays and structs 2122 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2123 // constant symbol base and the current position with BaseCV and Offset. 2124 if (!BaseCV && CV->hasOneUse()) 2125 BaseCV = dyn_cast<Constant>(CV->user_back()); 2126 2127 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2128 return AP.OutStreamer.EmitZeros(Size); 2129 2130 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2131 switch (Size) { 2132 case 1: 2133 case 2: 2134 case 4: 2135 case 8: 2136 if (AP.isVerbose()) 2137 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 2138 CI->getZExtValue()); 2139 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 2140 return; 2141 default: 2142 emitGlobalConstantLargeInt(CI, AP); 2143 return; 2144 } 2145 } 2146 2147 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2148 return emitGlobalConstantFP(CFP, AP); 2149 2150 if (isa<ConstantPointerNull>(CV)) { 2151 AP.OutStreamer.EmitIntValue(0, Size); 2152 return; 2153 } 2154 2155 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2156 return emitGlobalConstantDataSequential(CDS, AP); 2157 2158 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2159 return emitGlobalConstantArray(CVA, AP, BaseCV, Offset); 2160 2161 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2162 return emitGlobalConstantStruct(CVS, AP, BaseCV, Offset); 2163 2164 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2165 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2166 // vectors). 2167 if (CE->getOpcode() == Instruction::BitCast) 2168 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2169 2170 if (Size > 8) { 2171 // If the constant expression's size is greater than 64-bits, then we have 2172 // to emit the value in chunks. Try to constant fold the value and emit it 2173 // that way. 2174 Constant *New = ConstantFoldConstantExpression(CE, DL); 2175 if (New && New != CE) 2176 return emitGlobalConstantImpl(New, AP); 2177 } 2178 } 2179 2180 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2181 return emitGlobalConstantVector(V, AP); 2182 2183 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2184 // thread the streamer with EmitValue. 2185 const MCExpr *ME = AP.lowerConstant(CV); 2186 2187 // Since lowerConstant already folded and got rid of all IR pointer and 2188 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2189 // directly. 2190 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2191 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2192 2193 AP.OutStreamer.EmitValue(ME, Size); 2194 } 2195 2196 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2197 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2198 uint64_t Size = 2199 TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2200 if (Size) 2201 emitGlobalConstantImpl(CV, *this); 2202 else if (MAI->hasSubsectionsViaSymbols()) { 2203 // If the global has zero size, emit a single byte so that two labels don't 2204 // look like they are at the same location. 2205 OutStreamer.EmitIntValue(0, 1); 2206 } 2207 } 2208 2209 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2210 // Target doesn't support this yet! 2211 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2212 } 2213 2214 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2215 if (Offset > 0) 2216 OS << '+' << Offset; 2217 else if (Offset < 0) 2218 OS << Offset; 2219 } 2220 2221 //===----------------------------------------------------------------------===// 2222 // Symbol Lowering Routines. 2223 //===----------------------------------------------------------------------===// 2224 2225 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2226 /// temporary label with the specified stem and unique ID. 2227 MCSymbol *AsmPrinter::GetTempSymbol(const Twine &Name, unsigned ID) const { 2228 const DataLayout *DL = TM.getDataLayout(); 2229 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2230 Name + Twine(ID)); 2231 } 2232 2233 /// GetTempSymbol - Return an assembler temporary label with the specified 2234 /// stem. 2235 MCSymbol *AsmPrinter::GetTempSymbol(const Twine &Name) const { 2236 const DataLayout *DL = TM.getDataLayout(); 2237 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2238 Name); 2239 } 2240 2241 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name, unsigned ID) const { 2242 return OutContext.createTempSymbol(Name + Twine(ID)); 2243 } 2244 2245 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2246 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2247 } 2248 2249 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2250 return MMI->getAddrLabelSymbol(BB); 2251 } 2252 2253 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2254 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2255 const DataLayout *DL = TM.getDataLayout(); 2256 return OutContext.GetOrCreateSymbol 2257 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2258 + "_" + Twine(CPID)); 2259 } 2260 2261 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2262 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2263 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2264 } 2265 2266 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2267 /// FIXME: privatize to AsmPrinter. 2268 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2269 const DataLayout *DL = TM.getDataLayout(); 2270 return OutContext.GetOrCreateSymbol 2271 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2272 Twine(UID) + "_set_" + Twine(MBBID)); 2273 } 2274 2275 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2276 StringRef Suffix) const { 2277 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2278 TM); 2279 } 2280 2281 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2282 /// ExternalSymbol. 2283 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2284 SmallString<60> NameStr; 2285 Mang->getNameWithPrefix(NameStr, Sym); 2286 return OutContext.GetOrCreateSymbol(NameStr.str()); 2287 } 2288 2289 2290 2291 /// PrintParentLoopComment - Print comments about parent loops of this one. 2292 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2293 unsigned FunctionNumber) { 2294 if (!Loop) return; 2295 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2296 OS.indent(Loop->getLoopDepth()*2) 2297 << "Parent Loop BB" << FunctionNumber << "_" 2298 << Loop->getHeader()->getNumber() 2299 << " Depth=" << Loop->getLoopDepth() << '\n'; 2300 } 2301 2302 2303 /// PrintChildLoopComment - Print comments about child loops within 2304 /// the loop for this basic block, with nesting. 2305 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2306 unsigned FunctionNumber) { 2307 // Add child loop information 2308 for (const MachineLoop *CL : *Loop) { 2309 OS.indent(CL->getLoopDepth()*2) 2310 << "Child Loop BB" << FunctionNumber << "_" 2311 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2312 << '\n'; 2313 PrintChildLoopComment(OS, CL, FunctionNumber); 2314 } 2315 } 2316 2317 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2318 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2319 const MachineLoopInfo *LI, 2320 const AsmPrinter &AP) { 2321 // Add loop depth information 2322 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2323 if (!Loop) return; 2324 2325 MachineBasicBlock *Header = Loop->getHeader(); 2326 assert(Header && "No header for loop"); 2327 2328 // If this block is not a loop header, just print out what is the loop header 2329 // and return. 2330 if (Header != &MBB) { 2331 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2332 Twine(AP.getFunctionNumber())+"_" + 2333 Twine(Loop->getHeader()->getNumber())+ 2334 " Depth="+Twine(Loop->getLoopDepth())); 2335 return; 2336 } 2337 2338 // Otherwise, it is a loop header. Print out information about child and 2339 // parent loops. 2340 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2341 2342 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2343 2344 OS << "=>"; 2345 OS.indent(Loop->getLoopDepth()*2-2); 2346 2347 OS << "This "; 2348 if (Loop->empty()) 2349 OS << "Inner "; 2350 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2351 2352 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2353 } 2354 2355 2356 /// EmitBasicBlockStart - This method prints the label for the specified 2357 /// MachineBasicBlock, an alignment (if present) and a comment describing 2358 /// it if appropriate. 2359 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2360 // Emit an alignment directive for this block, if needed. 2361 if (unsigned Align = MBB.getAlignment()) 2362 EmitAlignment(Align); 2363 2364 // If the block has its address taken, emit any labels that were used to 2365 // reference the block. It is possible that there is more than one label 2366 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2367 // the references were generated. 2368 if (MBB.hasAddressTaken()) { 2369 const BasicBlock *BB = MBB.getBasicBlock(); 2370 if (isVerbose()) 2371 OutStreamer.AddComment("Block address taken"); 2372 2373 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2374 for (auto *Sym : Symbols) 2375 OutStreamer.EmitLabel(Sym); 2376 } 2377 2378 // Print some verbose block comments. 2379 if (isVerbose()) { 2380 if (const BasicBlock *BB = MBB.getBasicBlock()) 2381 if (BB->hasName()) 2382 OutStreamer.AddComment("%" + BB->getName()); 2383 emitBasicBlockLoopComments(MBB, LI, *this); 2384 } 2385 2386 // Print the main label for the block. 2387 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2388 if (isVerbose()) { 2389 // NOTE: Want this comment at start of line, don't emit with AddComment. 2390 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2391 } 2392 } else { 2393 OutStreamer.EmitLabel(MBB.getSymbol()); 2394 } 2395 } 2396 2397 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2398 bool IsDefinition) const { 2399 MCSymbolAttr Attr = MCSA_Invalid; 2400 2401 switch (Visibility) { 2402 default: break; 2403 case GlobalValue::HiddenVisibility: 2404 if (IsDefinition) 2405 Attr = MAI->getHiddenVisibilityAttr(); 2406 else 2407 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2408 break; 2409 case GlobalValue::ProtectedVisibility: 2410 Attr = MAI->getProtectedVisibilityAttr(); 2411 break; 2412 } 2413 2414 if (Attr != MCSA_Invalid) 2415 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2416 } 2417 2418 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2419 /// exactly one predecessor and the control transfer mechanism between 2420 /// the predecessor and this block is a fall-through. 2421 bool AsmPrinter:: 2422 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2423 // If this is a landing pad, it isn't a fall through. If it has no preds, 2424 // then nothing falls through to it. 2425 if (MBB->isLandingPad() || MBB->pred_empty()) 2426 return false; 2427 2428 // If there isn't exactly one predecessor, it can't be a fall through. 2429 if (MBB->pred_size() > 1) 2430 return false; 2431 2432 // The predecessor has to be immediately before this block. 2433 MachineBasicBlock *Pred = *MBB->pred_begin(); 2434 if (!Pred->isLayoutSuccessor(MBB)) 2435 return false; 2436 2437 // If the block is completely empty, then it definitely does fall through. 2438 if (Pred->empty()) 2439 return true; 2440 2441 // Check the terminators in the previous blocks 2442 for (const auto &MI : Pred->terminators()) { 2443 // If it is not a simple branch, we are in a table somewhere. 2444 if (!MI.isBranch() || MI.isIndirectBranch()) 2445 return false; 2446 2447 // If we are the operands of one of the branches, this is not a fall 2448 // through. Note that targets with delay slots will usually bundle 2449 // terminators with the delay slot instruction. 2450 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2451 if (OP->isJTI()) 2452 return false; 2453 if (OP->isMBB() && OP->getMBB() == MBB) 2454 return false; 2455 } 2456 } 2457 2458 return true; 2459 } 2460 2461 2462 2463 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2464 if (!S.usesMetadata()) 2465 return nullptr; 2466 2467 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2468 " stackmap formats, please see the documentation for a description of" 2469 " the default format. If you really need a custom serialized format," 2470 " please file a bug"); 2471 2472 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2473 gcp_map_type::iterator GCPI = GCMap.find(&S); 2474 if (GCPI != GCMap.end()) 2475 return GCPI->second.get(); 2476 2477 const char *Name = S.getName().c_str(); 2478 2479 for (GCMetadataPrinterRegistry::iterator 2480 I = GCMetadataPrinterRegistry::begin(), 2481 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2482 if (strcmp(Name, I->getName()) == 0) { 2483 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2484 GMP->S = &S; 2485 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2486 return IterBool.first->second.get(); 2487 } 2488 2489 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2490 } 2491 2492 /// Pin vtable to this file. 2493 AsmPrinterHandler::~AsmPrinterHandler() {} 2494