1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/AsmPrinterHandler.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/MC/MCAsmInfo.h"
85 #include "llvm/MC/MCCodePadder.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCTargetOptions.h"
100 #include "llvm/MC/MCValue.h"
101 #include "llvm/MC/SectionKind.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/Format.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/Path.h"
110 #include "llvm/Support/TargetRegistry.h"
111 #include "llvm/Support/Timer.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetLoweringObjectFile.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cinttypes>
119 #include <cstdint>
120 #include <iterator>
121 #include <limits>
122 #include <memory>
123 #include <string>
124 #include <utility>
125 #include <vector>
126 
127 using namespace llvm;
128 
129 #define DEBUG_TYPE "asm-printer"
130 
131 static const char *const DWARFGroupName = "dwarf";
132 static const char *const DWARFGroupDescription = "DWARF Emission";
133 static const char *const DbgTimerName = "emit";
134 static const char *const DbgTimerDescription = "Debug Info Emission";
135 static const char *const EHTimerName = "write_exception";
136 static const char *const EHTimerDescription = "DWARF Exception Writer";
137 static const char *const CFGuardName = "Control Flow Guard";
138 static const char *const CFGuardDescription = "Control Flow Guard Tables";
139 static const char *const CodeViewLineTablesGroupName = "linetables";
140 static const char *const CodeViewLineTablesGroupDescription =
141   "CodeView Line Tables";
142 
143 STATISTIC(EmittedInsts, "Number of machine instrs printed");
144 
145 static cl::opt<bool>
146     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
147                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
148 
149 char AsmPrinter::ID = 0;
150 
151 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
152 
153 static gcp_map_type &getGCMap(void *&P) {
154   if (!P)
155     P = new gcp_map_type();
156   return *(gcp_map_type*)P;
157 }
158 
159 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
160 /// value in log2 form.  This rounds up to the preferred alignment if possible
161 /// and legal.
162 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
163                                    unsigned InBits = 0) {
164   unsigned NumBits = 0;
165   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
166     NumBits = DL.getPreferredAlignmentLog(GVar);
167 
168   // If InBits is specified, round it to it.
169   if (InBits > NumBits)
170     NumBits = InBits;
171 
172   // If the GV has a specified alignment, take it into account.
173   if (GV->getAlignment() == 0)
174     return NumBits;
175 
176   unsigned GVAlign = Log2_32(GV->getAlignment());
177 
178   // If the GVAlign is larger than NumBits, or if we are required to obey
179   // NumBits because the GV has an assigned section, obey it.
180   if (GVAlign > NumBits || GV->hasSection())
181     NumBits = GVAlign;
182   return NumBits;
183 }
184 
185 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
186     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
187       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
188   VerboseAsm = OutStreamer->isVerboseAsm();
189 }
190 
191 AsmPrinter::~AsmPrinter() {
192   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
193 
194   if (GCMetadataPrinters) {
195     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
196 
197     delete &GCMap;
198     GCMetadataPrinters = nullptr;
199   }
200 }
201 
202 bool AsmPrinter::isPositionIndependent() const {
203   return TM.isPositionIndependent();
204 }
205 
206 /// getFunctionNumber - Return a unique ID for the current function.
207 unsigned AsmPrinter::getFunctionNumber() const {
208   return MF->getFunctionNumber();
209 }
210 
211 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
212   return *TM.getObjFileLowering();
213 }
214 
215 const DataLayout &AsmPrinter::getDataLayout() const {
216   return MMI->getModule()->getDataLayout();
217 }
218 
219 // Do not use the cached DataLayout because some client use it without a Module
220 // (dsymutil, llvm-dwarfdump).
221 unsigned AsmPrinter::getPointerSize() const {
222   return TM.getPointerSize(0); // FIXME: Default address space
223 }
224 
225 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
226   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
227   return MF->getSubtarget<MCSubtargetInfo>();
228 }
229 
230 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
231   S.EmitInstruction(Inst, getSubtargetInfo());
232 }
233 
234 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
235   assert(DD && "Dwarf debug file is not defined.");
236   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
237   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
238 }
239 
240 /// getCurrentSection() - Return the current section we are emitting to.
241 const MCSection *AsmPrinter::getCurrentSection() const {
242   return OutStreamer->getCurrentSectionOnly();
243 }
244 
245 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
246   AU.setPreservesAll();
247   MachineFunctionPass::getAnalysisUsage(AU);
248   AU.addRequired<MachineModuleInfo>();
249   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
250   AU.addRequired<GCModuleInfo>();
251 }
252 
253 bool AsmPrinter::doInitialization(Module &M) {
254   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
255 
256   // Initialize TargetLoweringObjectFile.
257   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
258     .Initialize(OutContext, TM);
259 
260   OutStreamer->InitSections(false);
261 
262   // Emit the version-min deployment target directive if needed.
263   //
264   // FIXME: If we end up with a collection of these sorts of Darwin-specific
265   // or ELF-specific things, it may make sense to have a platform helper class
266   // that will work with the target helper class. For now keep it here, as the
267   // alternative is duplicated code in each of the target asm printers that
268   // use the directive, where it would need the same conditionalization
269   // anyway.
270   const Triple &Target = TM.getTargetTriple();
271   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
272 
273   // Allow the target to emit any magic that it wants at the start of the file.
274   EmitStartOfAsmFile(M);
275 
276   // Very minimal debug info. It is ignored if we emit actual debug info. If we
277   // don't, this at least helps the user find where a global came from.
278   if (MAI->hasSingleParameterDotFile()) {
279     // .file "foo.c"
280     OutStreamer->EmitFileDirective(
281         llvm::sys::path::filename(M.getSourceFileName()));
282   }
283 
284   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
285   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
286   for (auto &I : *MI)
287     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
288       MP->beginAssembly(M, *MI, *this);
289 
290   // Emit module-level inline asm if it exists.
291   if (!M.getModuleInlineAsm().empty()) {
292     // We're at the module level. Construct MCSubtarget from the default CPU
293     // and target triple.
294     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
295         TM.getTargetTriple().str(), TM.getTargetCPU(),
296         TM.getTargetFeatureString()));
297     OutStreamer->AddComment("Start of file scope inline assembly");
298     OutStreamer->AddBlankLine();
299     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
300                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
301     OutStreamer->AddComment("End of file scope inline assembly");
302     OutStreamer->AddBlankLine();
303   }
304 
305   if (MAI->doesSupportDebugInformation()) {
306     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
307     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
308       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
309                                      DbgTimerName, DbgTimerDescription,
310                                      CodeViewLineTablesGroupName,
311                                      CodeViewLineTablesGroupDescription));
312     }
313     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
314       DD = new DwarfDebug(this, &M);
315       DD->beginModule();
316       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
317                                      DWARFGroupName, DWARFGroupDescription));
318     }
319   }
320 
321   switch (MAI->getExceptionHandlingType()) {
322   case ExceptionHandling::SjLj:
323   case ExceptionHandling::DwarfCFI:
324   case ExceptionHandling::ARM:
325     isCFIMoveForDebugging = true;
326     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
327       break;
328     for (auto &F: M.getFunctionList()) {
329       // If the module contains any function with unwind data,
330       // .eh_frame has to be emitted.
331       // Ignore functions that won't get emitted.
332       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
333         isCFIMoveForDebugging = false;
334         break;
335       }
336     }
337     break;
338   default:
339     isCFIMoveForDebugging = false;
340     break;
341   }
342 
343   EHStreamer *ES = nullptr;
344   switch (MAI->getExceptionHandlingType()) {
345   case ExceptionHandling::None:
346     break;
347   case ExceptionHandling::SjLj:
348   case ExceptionHandling::DwarfCFI:
349     ES = new DwarfCFIException(this);
350     break;
351   case ExceptionHandling::ARM:
352     ES = new ARMException(this);
353     break;
354   case ExceptionHandling::WinEH:
355     switch (MAI->getWinEHEncodingType()) {
356     default: llvm_unreachable("unsupported unwinding information encoding");
357     case WinEH::EncodingType::Invalid:
358       break;
359     case WinEH::EncodingType::X86:
360     case WinEH::EncodingType::Itanium:
361       ES = new WinException(this);
362       break;
363     }
364     break;
365   case ExceptionHandling::Wasm:
366     ES = new WasmException(this);
367     break;
368   }
369   if (ES)
370     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
371                                    DWARFGroupName, DWARFGroupDescription));
372 
373   if (mdconst::extract_or_null<ConstantInt>(
374           MMI->getModule()->getModuleFlag("cfguardtable")))
375     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
376                                    CFGuardDescription, DWARFGroupName,
377                                    DWARFGroupDescription));
378 
379   return false;
380 }
381 
382 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
383   if (!MAI.hasWeakDefCanBeHiddenDirective())
384     return false;
385 
386   return GV->canBeOmittedFromSymbolTable();
387 }
388 
389 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
390   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
391   switch (Linkage) {
392   case GlobalValue::CommonLinkage:
393   case GlobalValue::LinkOnceAnyLinkage:
394   case GlobalValue::LinkOnceODRLinkage:
395   case GlobalValue::WeakAnyLinkage:
396   case GlobalValue::WeakODRLinkage:
397     if (MAI->hasWeakDefDirective()) {
398       // .globl _foo
399       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
400 
401       if (!canBeHidden(GV, *MAI))
402         // .weak_definition _foo
403         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
404       else
405         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
406     } else if (MAI->hasLinkOnceDirective()) {
407       // .globl _foo
408       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
409       //NOTE: linkonce is handled by the section the symbol was assigned to.
410     } else {
411       // .weak _foo
412       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
413     }
414     return;
415   case GlobalValue::ExternalLinkage:
416     // If external, declare as a global symbol: .globl _foo
417     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
418     return;
419   case GlobalValue::PrivateLinkage:
420   case GlobalValue::InternalLinkage:
421     return;
422   case GlobalValue::AppendingLinkage:
423   case GlobalValue::AvailableExternallyLinkage:
424   case GlobalValue::ExternalWeakLinkage:
425     llvm_unreachable("Should never emit this");
426   }
427   llvm_unreachable("Unknown linkage type!");
428 }
429 
430 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
431                                    const GlobalValue *GV) const {
432   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
433 }
434 
435 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
436   return TM.getSymbol(GV);
437 }
438 
439 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
440 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
441   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
442   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
443          "No emulated TLS variables in the common section");
444 
445   // Never emit TLS variable xyz in emulated TLS model.
446   // The initialization value is in __emutls_t.xyz instead of xyz.
447   if (IsEmuTLSVar)
448     return;
449 
450   if (GV->hasInitializer()) {
451     // Check to see if this is a special global used by LLVM, if so, emit it.
452     if (EmitSpecialLLVMGlobal(GV))
453       return;
454 
455     // Skip the emission of global equivalents. The symbol can be emitted later
456     // on by emitGlobalGOTEquivs in case it turns out to be needed.
457     if (GlobalGOTEquivs.count(getSymbol(GV)))
458       return;
459 
460     if (isVerbose()) {
461       // When printing the control variable __emutls_v.*,
462       // we don't need to print the original TLS variable name.
463       GV->printAsOperand(OutStreamer->GetCommentOS(),
464                      /*PrintType=*/false, GV->getParent());
465       OutStreamer->GetCommentOS() << '\n';
466     }
467   }
468 
469   MCSymbol *GVSym = getSymbol(GV);
470   MCSymbol *EmittedSym = GVSym;
471 
472   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
473   // attributes.
474   // GV's or GVSym's attributes will be used for the EmittedSym.
475   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
476 
477   if (!GV->hasInitializer())   // External globals require no extra code.
478     return;
479 
480   GVSym->redefineIfPossible();
481   if (GVSym->isDefined() || GVSym->isVariable())
482     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
483                        "' is already defined");
484 
485   if (MAI->hasDotTypeDotSizeDirective())
486     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
487 
488   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
489 
490   const DataLayout &DL = GV->getParent()->getDataLayout();
491   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
492 
493   // If the alignment is specified, we *must* obey it.  Overaligning a global
494   // with a specified alignment is a prompt way to break globals emitted to
495   // sections and expected to be contiguous (e.g. ObjC metadata).
496   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
497 
498   for (const HandlerInfo &HI : Handlers) {
499     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
500                        HI.TimerGroupName, HI.TimerGroupDescription,
501                        TimePassesIsEnabled);
502     HI.Handler->setSymbolSize(GVSym, Size);
503   }
504 
505   // Handle common symbols
506   if (GVKind.isCommon()) {
507     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
508     unsigned Align = 1 << AlignLog;
509     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
510       Align = 0;
511 
512     // .comm _foo, 42, 4
513     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
514     return;
515   }
516 
517   // Determine to which section this global should be emitted.
518   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
519 
520   // If we have a bss global going to a section that supports the
521   // zerofill directive, do so here.
522   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
523       TheSection->isVirtualSection()) {
524     if (Size == 0)
525       Size = 1; // zerofill of 0 bytes is undefined.
526     unsigned Align = 1 << AlignLog;
527     EmitLinkage(GV, GVSym);
528     // .zerofill __DATA, __bss, _foo, 400, 5
529     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
530     return;
531   }
532 
533   // If this is a BSS local symbol and we are emitting in the BSS
534   // section use .lcomm/.comm directive.
535   if (GVKind.isBSSLocal() &&
536       getObjFileLowering().getBSSSection() == TheSection) {
537     if (Size == 0)
538       Size = 1; // .comm Foo, 0 is undefined, avoid it.
539     unsigned Align = 1 << AlignLog;
540 
541     // Use .lcomm only if it supports user-specified alignment.
542     // Otherwise, while it would still be correct to use .lcomm in some
543     // cases (e.g. when Align == 1), the external assembler might enfore
544     // some -unknown- default alignment behavior, which could cause
545     // spurious differences between external and integrated assembler.
546     // Prefer to simply fall back to .local / .comm in this case.
547     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
548       // .lcomm _foo, 42
549       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
550       return;
551     }
552 
553     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
554       Align = 0;
555 
556     // .local _foo
557     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
558     // .comm _foo, 42, 4
559     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
560     return;
561   }
562 
563   // Handle thread local data for mach-o which requires us to output an
564   // additional structure of data and mangle the original symbol so that we
565   // can reference it later.
566   //
567   // TODO: This should become an "emit thread local global" method on TLOF.
568   // All of this macho specific stuff should be sunk down into TLOFMachO and
569   // stuff like "TLSExtraDataSection" should no longer be part of the parent
570   // TLOF class.  This will also make it more obvious that stuff like
571   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
572   // specific code.
573   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
574     // Emit the .tbss symbol
575     MCSymbol *MangSym =
576         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
577 
578     if (GVKind.isThreadBSS()) {
579       TheSection = getObjFileLowering().getTLSBSSSection();
580       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
581     } else if (GVKind.isThreadData()) {
582       OutStreamer->SwitchSection(TheSection);
583 
584       EmitAlignment(AlignLog, GV);
585       OutStreamer->EmitLabel(MangSym);
586 
587       EmitGlobalConstant(GV->getParent()->getDataLayout(),
588                          GV->getInitializer());
589     }
590 
591     OutStreamer->AddBlankLine();
592 
593     // Emit the variable struct for the runtime.
594     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
595 
596     OutStreamer->SwitchSection(TLVSect);
597     // Emit the linkage here.
598     EmitLinkage(GV, GVSym);
599     OutStreamer->EmitLabel(GVSym);
600 
601     // Three pointers in size:
602     //   - __tlv_bootstrap - used to make sure support exists
603     //   - spare pointer, used when mapped by the runtime
604     //   - pointer to mangled symbol above with initializer
605     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
606     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
607                                 PtrSize);
608     OutStreamer->EmitIntValue(0, PtrSize);
609     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
610 
611     OutStreamer->AddBlankLine();
612     return;
613   }
614 
615   MCSymbol *EmittedInitSym = GVSym;
616 
617   OutStreamer->SwitchSection(TheSection);
618 
619   EmitLinkage(GV, EmittedInitSym);
620   EmitAlignment(AlignLog, GV);
621 
622   OutStreamer->EmitLabel(EmittedInitSym);
623 
624   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
625 
626   if (MAI->hasDotTypeDotSizeDirective())
627     // .size foo, 42
628     OutStreamer->emitELFSize(EmittedInitSym,
629                              MCConstantExpr::create(Size, OutContext));
630 
631   OutStreamer->AddBlankLine();
632 }
633 
634 /// Emit the directive and value for debug thread local expression
635 ///
636 /// \p Value - The value to emit.
637 /// \p Size - The size of the integer (in bytes) to emit.
638 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
639   OutStreamer->EmitValue(Value, Size);
640 }
641 
642 /// EmitFunctionHeader - This method emits the header for the current
643 /// function.
644 void AsmPrinter::EmitFunctionHeader() {
645   const Function &F = MF->getFunction();
646 
647   if (isVerbose())
648     OutStreamer->GetCommentOS()
649         << "-- Begin function "
650         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
651 
652   // Print out constants referenced by the function
653   EmitConstantPool();
654 
655   // Print the 'header' of function.
656   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
657   EmitVisibility(CurrentFnSym, F.getVisibility());
658 
659   EmitLinkage(&F, CurrentFnSym);
660   if (MAI->hasFunctionAlignment())
661     EmitAlignment(MF->getAlignment(), &F);
662 
663   if (MAI->hasDotTypeDotSizeDirective())
664     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
665 
666   if (isVerbose()) {
667     F.printAsOperand(OutStreamer->GetCommentOS(),
668                    /*PrintType=*/false, F.getParent());
669     OutStreamer->GetCommentOS() << '\n';
670   }
671 
672   // Emit the prefix data.
673   if (F.hasPrefixData()) {
674     if (MAI->hasSubsectionsViaSymbols()) {
675       // Preserving prefix data on platforms which use subsections-via-symbols
676       // is a bit tricky. Here we introduce a symbol for the prefix data
677       // and use the .alt_entry attribute to mark the function's real entry point
678       // as an alternative entry point to the prefix-data symbol.
679       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
680       OutStreamer->EmitLabel(PrefixSym);
681 
682       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
683 
684       // Emit an .alt_entry directive for the actual function symbol.
685       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
686     } else {
687       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
688     }
689   }
690 
691   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
692   // do their wild and crazy things as required.
693   EmitFunctionEntryLabel();
694 
695   // If the function had address-taken blocks that got deleted, then we have
696   // references to the dangling symbols.  Emit them at the start of the function
697   // so that we don't get references to undefined symbols.
698   std::vector<MCSymbol*> DeadBlockSyms;
699   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
700   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
701     OutStreamer->AddComment("Address taken block that was later removed");
702     OutStreamer->EmitLabel(DeadBlockSyms[i]);
703   }
704 
705   if (CurrentFnBegin) {
706     if (MAI->useAssignmentForEHBegin()) {
707       MCSymbol *CurPos = OutContext.createTempSymbol();
708       OutStreamer->EmitLabel(CurPos);
709       OutStreamer->EmitAssignment(CurrentFnBegin,
710                                  MCSymbolRefExpr::create(CurPos, OutContext));
711     } else {
712       OutStreamer->EmitLabel(CurrentFnBegin);
713     }
714   }
715 
716   // Emit pre-function debug and/or EH information.
717   for (const HandlerInfo &HI : Handlers) {
718     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
719                        HI.TimerGroupDescription, TimePassesIsEnabled);
720     HI.Handler->beginFunction(MF);
721   }
722 
723   // Emit the prologue data.
724   if (F.hasPrologueData())
725     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
726 }
727 
728 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
729 /// function.  This can be overridden by targets as required to do custom stuff.
730 void AsmPrinter::EmitFunctionEntryLabel() {
731   CurrentFnSym->redefineIfPossible();
732 
733   // The function label could have already been emitted if two symbols end up
734   // conflicting due to asm renaming.  Detect this and emit an error.
735   if (CurrentFnSym->isVariable())
736     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
737                        "' is a protected alias");
738   if (CurrentFnSym->isDefined())
739     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
740                        "' label emitted multiple times to assembly file");
741 
742   return OutStreamer->EmitLabel(CurrentFnSym);
743 }
744 
745 /// emitComments - Pretty-print comments for instructions.
746 /// It returns true iff the sched comment was emitted.
747 ///   Otherwise it returns false.
748 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
749                          AsmPrinter *AP) {
750   const MachineFunction *MF = MI.getMF();
751   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
752 
753   // Check for spills and reloads
754   int FI;
755 
756   const MachineFrameInfo &MFI = MF->getFrameInfo();
757   bool Commented = false;
758 
759   auto getSize =
760       [&MFI](const SmallVectorImpl<const MachineMemOperand *> &Accesses) {
761         unsigned Size = 0;
762         for (auto A : Accesses)
763           if (MFI.isSpillSlotObjectIndex(
764                   cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
765                       ->getFrameIndex()))
766             Size += A->getSize();
767         return Size;
768       };
769 
770   // We assume a single instruction only has a spill or reload, not
771   // both.
772   const MachineMemOperand *MMO;
773   SmallVector<const MachineMemOperand *, 2> Accesses;
774   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
775     if (MFI.isSpillSlotObjectIndex(FI)) {
776       MMO = *MI.memoperands_begin();
777       CommentOS << MMO->getSize() << "-byte Reload";
778       Commented = true;
779     }
780   } else if (TII->hasLoadFromStackSlot(MI, Accesses)) {
781     if (auto Size = getSize(Accesses)) {
782       CommentOS << Size << "-byte Folded Reload";
783       Commented = true;
784     }
785   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
786     if (MFI.isSpillSlotObjectIndex(FI)) {
787       MMO = *MI.memoperands_begin();
788       CommentOS << MMO->getSize() << "-byte Spill";
789       Commented = true;
790     }
791   } else if (TII->hasStoreToStackSlot(MI, Accesses)) {
792     if (auto Size = getSize(Accesses)) {
793       CommentOS << Size << "-byte Folded Spill";
794       Commented = true;
795     }
796   }
797 
798   // Check for spill-induced copies
799   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
800     Commented = true;
801     CommentOS << " Reload Reuse";
802   }
803 
804   if (Commented) {
805     if (AP->EnablePrintSchedInfo) {
806       // If any comment was added above and we need sched info comment then add
807       // this new comment just after the above comment w/o "\n" between them.
808       CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
809       return true;
810     }
811     CommentOS << "\n";
812   }
813   return false;
814 }
815 
816 /// emitImplicitDef - This method emits the specified machine instruction
817 /// that is an implicit def.
818 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
819   unsigned RegNo = MI->getOperand(0).getReg();
820 
821   SmallString<128> Str;
822   raw_svector_ostream OS(Str);
823   OS << "implicit-def: "
824      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
825 
826   OutStreamer->AddComment(OS.str());
827   OutStreamer->AddBlankLine();
828 }
829 
830 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
831   std::string Str;
832   raw_string_ostream OS(Str);
833   OS << "kill:";
834   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
835     const MachineOperand &Op = MI->getOperand(i);
836     assert(Op.isReg() && "KILL instruction must have only register operands");
837     OS << ' ' << (Op.isDef() ? "def " : "killed ")
838        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
839   }
840   AP.OutStreamer->AddComment(OS.str());
841   AP.OutStreamer->AddBlankLine();
842 }
843 
844 /// emitDebugValueComment - This method handles the target-independent form
845 /// of DBG_VALUE, returning true if it was able to do so.  A false return
846 /// means the target will need to handle MI in EmitInstruction.
847 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
848   // This code handles only the 4-operand target-independent form.
849   if (MI->getNumOperands() != 4)
850     return false;
851 
852   SmallString<128> Str;
853   raw_svector_ostream OS(Str);
854   OS << "DEBUG_VALUE: ";
855 
856   const DILocalVariable *V = MI->getDebugVariable();
857   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
858     StringRef Name = SP->getName();
859     if (!Name.empty())
860       OS << Name << ":";
861   }
862   OS << V->getName();
863   OS << " <- ";
864 
865   // The second operand is only an offset if it's an immediate.
866   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
867   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
868   const DIExpression *Expr = MI->getDebugExpression();
869   if (Expr->getNumElements()) {
870     OS << '[';
871     bool NeedSep = false;
872     for (auto Op : Expr->expr_ops()) {
873       if (NeedSep)
874         OS << ", ";
875       else
876         NeedSep = true;
877       OS << dwarf::OperationEncodingString(Op.getOp());
878       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
879         OS << ' ' << Op.getArg(I);
880     }
881     OS << "] ";
882   }
883 
884   // Register or immediate value. Register 0 means undef.
885   if (MI->getOperand(0).isFPImm()) {
886     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
887     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
888       OS << (double)APF.convertToFloat();
889     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
890       OS << APF.convertToDouble();
891     } else {
892       // There is no good way to print long double.  Convert a copy to
893       // double.  Ah well, it's only a comment.
894       bool ignored;
895       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
896                   &ignored);
897       OS << "(long double) " << APF.convertToDouble();
898     }
899   } else if (MI->getOperand(0).isImm()) {
900     OS << MI->getOperand(0).getImm();
901   } else if (MI->getOperand(0).isCImm()) {
902     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
903   } else {
904     unsigned Reg;
905     if (MI->getOperand(0).isReg()) {
906       Reg = MI->getOperand(0).getReg();
907     } else {
908       assert(MI->getOperand(0).isFI() && "Unknown operand type");
909       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
910       Offset += TFI->getFrameIndexReference(*AP.MF,
911                                             MI->getOperand(0).getIndex(), Reg);
912       MemLoc = true;
913     }
914     if (Reg == 0) {
915       // Suppress offset, it is not meaningful here.
916       OS << "undef";
917       // NOTE: Want this comment at start of line, don't emit with AddComment.
918       AP.OutStreamer->emitRawComment(OS.str());
919       return true;
920     }
921     if (MemLoc)
922       OS << '[';
923     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
924   }
925 
926   if (MemLoc)
927     OS << '+' << Offset << ']';
928 
929   // NOTE: Want this comment at start of line, don't emit with AddComment.
930   AP.OutStreamer->emitRawComment(OS.str());
931   return true;
932 }
933 
934 /// This method handles the target-independent form of DBG_LABEL, returning
935 /// true if it was able to do so.  A false return means the target will need
936 /// to handle MI in EmitInstruction.
937 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
938   if (MI->getNumOperands() != 1)
939     return false;
940 
941   SmallString<128> Str;
942   raw_svector_ostream OS(Str);
943   OS << "DEBUG_LABEL: ";
944 
945   const DILabel *V = MI->getDebugLabel();
946   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
947     StringRef Name = SP->getName();
948     if (!Name.empty())
949       OS << Name << ":";
950   }
951   OS << V->getName();
952 
953   // NOTE: Want this comment at start of line, don't emit with AddComment.
954   AP.OutStreamer->emitRawComment(OS.str());
955   return true;
956 }
957 
958 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
959   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
960       MF->getFunction().needsUnwindTableEntry())
961     return CFI_M_EH;
962 
963   if (MMI->hasDebugInfo())
964     return CFI_M_Debug;
965 
966   return CFI_M_None;
967 }
968 
969 bool AsmPrinter::needsSEHMoves() {
970   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
971 }
972 
973 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
974   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
975   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
976       ExceptionHandlingType != ExceptionHandling::ARM)
977     return;
978 
979   if (needsCFIMoves() == CFI_M_None)
980     return;
981 
982   // If there is no "real" instruction following this CFI instruction, skip
983   // emitting it; it would be beyond the end of the function's FDE range.
984   auto *MBB = MI.getParent();
985   auto I = std::next(MI.getIterator());
986   while (I != MBB->end() && I->isTransient())
987     ++I;
988   if (I == MBB->instr_end() &&
989       MBB->getReverseIterator() == MBB->getParent()->rbegin())
990     return;
991 
992   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
993   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
994   const MCCFIInstruction &CFI = Instrs[CFIIndex];
995   emitCFIInstruction(CFI);
996 }
997 
998 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
999   // The operands are the MCSymbol and the frame offset of the allocation.
1000   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1001   int FrameOffset = MI.getOperand(1).getImm();
1002 
1003   // Emit a symbol assignment.
1004   OutStreamer->EmitAssignment(FrameAllocSym,
1005                              MCConstantExpr::create(FrameOffset, OutContext));
1006 }
1007 
1008 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1009   if (!MF.getTarget().Options.EmitStackSizeSection)
1010     return;
1011 
1012   MCSection *StackSizeSection =
1013       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1014   if (!StackSizeSection)
1015     return;
1016 
1017   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1018   // Don't emit functions with dynamic stack allocations.
1019   if (FrameInfo.hasVarSizedObjects())
1020     return;
1021 
1022   OutStreamer->PushSection();
1023   OutStreamer->SwitchSection(StackSizeSection);
1024 
1025   const MCSymbol *FunctionSymbol = getFunctionBegin();
1026   uint64_t StackSize = FrameInfo.getStackSize();
1027   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1028   OutStreamer->EmitULEB128IntValue(StackSize);
1029 
1030   OutStreamer->PopSection();
1031 }
1032 
1033 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1034                                            MachineModuleInfo *MMI) {
1035   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1036     return true;
1037 
1038   // We might emit an EH table that uses function begin and end labels even if
1039   // we don't have any landingpads.
1040   if (!MF.getFunction().hasPersonalityFn())
1041     return false;
1042   return !isNoOpWithoutInvoke(
1043       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1044 }
1045 
1046 /// EmitFunctionBody - This method emits the body and trailer for a
1047 /// function.
1048 void AsmPrinter::EmitFunctionBody() {
1049   EmitFunctionHeader();
1050 
1051   // Emit target-specific gunk before the function body.
1052   EmitFunctionBodyStart();
1053 
1054   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1055 
1056   if (isVerbose()) {
1057     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1058     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1059     if (!MDT) {
1060       OwnedMDT = make_unique<MachineDominatorTree>();
1061       OwnedMDT->getBase().recalculate(*MF);
1062       MDT = OwnedMDT.get();
1063     }
1064 
1065     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1066     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1067     if (!MLI) {
1068       OwnedMLI = make_unique<MachineLoopInfo>();
1069       OwnedMLI->getBase().analyze(MDT->getBase());
1070       MLI = OwnedMLI.get();
1071     }
1072   }
1073 
1074   // Print out code for the function.
1075   bool HasAnyRealCode = false;
1076   int NumInstsInFunction = 0;
1077   for (auto &MBB : *MF) {
1078     // Print a label for the basic block.
1079     EmitBasicBlockStart(MBB);
1080     for (auto &MI : MBB) {
1081       // Print the assembly for the instruction.
1082       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1083           !MI.isDebugInstr()) {
1084         HasAnyRealCode = true;
1085         ++NumInstsInFunction;
1086       }
1087 
1088       // If there is a pre-instruction symbol, emit a label for it here.
1089       if (MCSymbol *S = MI.getPreInstrSymbol())
1090         OutStreamer->EmitLabel(S);
1091 
1092       if (ShouldPrintDebugScopes) {
1093         for (const HandlerInfo &HI : Handlers) {
1094           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1095                              HI.TimerGroupName, HI.TimerGroupDescription,
1096                              TimePassesIsEnabled);
1097           HI.Handler->beginInstruction(&MI);
1098         }
1099       }
1100 
1101       if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) {
1102         MachineInstr *MIP = const_cast<MachineInstr *>(&MI);
1103         MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment);
1104       }
1105 
1106       switch (MI.getOpcode()) {
1107       case TargetOpcode::CFI_INSTRUCTION:
1108         emitCFIInstruction(MI);
1109         break;
1110       case TargetOpcode::LOCAL_ESCAPE:
1111         emitFrameAlloc(MI);
1112         break;
1113       case TargetOpcode::EH_LABEL:
1114       case TargetOpcode::GC_LABEL:
1115         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1116         break;
1117       case TargetOpcode::INLINEASM:
1118         EmitInlineAsm(&MI);
1119         break;
1120       case TargetOpcode::DBG_VALUE:
1121         if (isVerbose()) {
1122           if (!emitDebugValueComment(&MI, *this))
1123             EmitInstruction(&MI);
1124         }
1125         break;
1126       case TargetOpcode::DBG_LABEL:
1127         if (isVerbose()) {
1128           if (!emitDebugLabelComment(&MI, *this))
1129             EmitInstruction(&MI);
1130         }
1131         break;
1132       case TargetOpcode::IMPLICIT_DEF:
1133         if (isVerbose()) emitImplicitDef(&MI);
1134         break;
1135       case TargetOpcode::KILL:
1136         if (isVerbose()) emitKill(&MI, *this);
1137         break;
1138       default:
1139         EmitInstruction(&MI);
1140         break;
1141       }
1142 
1143       // If there is a post-instruction symbol, emit a label for it here.
1144       if (MCSymbol *S = MI.getPostInstrSymbol())
1145         OutStreamer->EmitLabel(S);
1146 
1147       if (ShouldPrintDebugScopes) {
1148         for (const HandlerInfo &HI : Handlers) {
1149           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1150                              HI.TimerGroupName, HI.TimerGroupDescription,
1151                              TimePassesIsEnabled);
1152           HI.Handler->endInstruction();
1153         }
1154       }
1155     }
1156 
1157     EmitBasicBlockEnd(MBB);
1158   }
1159 
1160   EmittedInsts += NumInstsInFunction;
1161   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1162                                       MF->getFunction().getSubprogram(),
1163                                       &MF->front());
1164   R << ore::NV("NumInstructions", NumInstsInFunction)
1165     << " instructions in function";
1166   ORE->emit(R);
1167 
1168   // If the function is empty and the object file uses .subsections_via_symbols,
1169   // then we need to emit *something* to the function body to prevent the
1170   // labels from collapsing together.  Just emit a noop.
1171   // Similarly, don't emit empty functions on Windows either. It can lead to
1172   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1173   // after linking, causing the kernel not to load the binary:
1174   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1175   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1176   const Triple &TT = TM.getTargetTriple();
1177   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1178                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1179     MCInst Noop;
1180     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1181 
1182     // Targets can opt-out of emitting the noop here by leaving the opcode
1183     // unspecified.
1184     if (Noop.getOpcode()) {
1185       OutStreamer->AddComment("avoids zero-length function");
1186       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1187     }
1188   }
1189 
1190   const Function &F = MF->getFunction();
1191   for (const auto &BB : F) {
1192     if (!BB.hasAddressTaken())
1193       continue;
1194     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1195     if (Sym->isDefined())
1196       continue;
1197     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1198     OutStreamer->EmitLabel(Sym);
1199   }
1200 
1201   // Emit target-specific gunk after the function body.
1202   EmitFunctionBodyEnd();
1203 
1204   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1205       MAI->hasDotTypeDotSizeDirective()) {
1206     // Create a symbol for the end of function.
1207     CurrentFnEnd = createTempSymbol("func_end");
1208     OutStreamer->EmitLabel(CurrentFnEnd);
1209   }
1210 
1211   // If the target wants a .size directive for the size of the function, emit
1212   // it.
1213   if (MAI->hasDotTypeDotSizeDirective()) {
1214     // We can get the size as difference between the function label and the
1215     // temp label.
1216     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1217         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1218         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1219     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1220   }
1221 
1222   for (const HandlerInfo &HI : Handlers) {
1223     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1224                        HI.TimerGroupDescription, TimePassesIsEnabled);
1225     HI.Handler->markFunctionEnd();
1226   }
1227 
1228   // Print out jump tables referenced by the function.
1229   EmitJumpTableInfo();
1230 
1231   // Emit post-function debug and/or EH information.
1232   for (const HandlerInfo &HI : Handlers) {
1233     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1234                        HI.TimerGroupDescription, TimePassesIsEnabled);
1235     HI.Handler->endFunction(MF);
1236   }
1237 
1238   // Emit section containing stack size metadata.
1239   emitStackSizeSection(*MF);
1240 
1241   if (isVerbose())
1242     OutStreamer->GetCommentOS() << "-- End function\n";
1243 
1244   OutStreamer->AddBlankLine();
1245 }
1246 
1247 /// Compute the number of Global Variables that uses a Constant.
1248 static unsigned getNumGlobalVariableUses(const Constant *C) {
1249   if (!C)
1250     return 0;
1251 
1252   if (isa<GlobalVariable>(C))
1253     return 1;
1254 
1255   unsigned NumUses = 0;
1256   for (auto *CU : C->users())
1257     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1258 
1259   return NumUses;
1260 }
1261 
1262 /// Only consider global GOT equivalents if at least one user is a
1263 /// cstexpr inside an initializer of another global variables. Also, don't
1264 /// handle cstexpr inside instructions. During global variable emission,
1265 /// candidates are skipped and are emitted later in case at least one cstexpr
1266 /// isn't replaced by a PC relative GOT entry access.
1267 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1268                                      unsigned &NumGOTEquivUsers) {
1269   // Global GOT equivalents are unnamed private globals with a constant
1270   // pointer initializer to another global symbol. They must point to a
1271   // GlobalVariable or Function, i.e., as GlobalValue.
1272   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1273       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1274       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1275     return false;
1276 
1277   // To be a got equivalent, at least one of its users need to be a constant
1278   // expression used by another global variable.
1279   for (auto *U : GV->users())
1280     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1281 
1282   return NumGOTEquivUsers > 0;
1283 }
1284 
1285 /// Unnamed constant global variables solely contaning a pointer to
1286 /// another globals variable is equivalent to a GOT table entry; it contains the
1287 /// the address of another symbol. Optimize it and replace accesses to these
1288 /// "GOT equivalents" by using the GOT entry for the final global instead.
1289 /// Compute GOT equivalent candidates among all global variables to avoid
1290 /// emitting them if possible later on, after it use is replaced by a GOT entry
1291 /// access.
1292 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1293   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1294     return;
1295 
1296   for (const auto &G : M.globals()) {
1297     unsigned NumGOTEquivUsers = 0;
1298     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1299       continue;
1300 
1301     const MCSymbol *GOTEquivSym = getSymbol(&G);
1302     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1303   }
1304 }
1305 
1306 /// Constant expressions using GOT equivalent globals may not be eligible
1307 /// for PC relative GOT entry conversion, in such cases we need to emit such
1308 /// globals we previously omitted in EmitGlobalVariable.
1309 void AsmPrinter::emitGlobalGOTEquivs() {
1310   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1311     return;
1312 
1313   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1314   for (auto &I : GlobalGOTEquivs) {
1315     const GlobalVariable *GV = I.second.first;
1316     unsigned Cnt = I.second.second;
1317     if (Cnt)
1318       FailedCandidates.push_back(GV);
1319   }
1320   GlobalGOTEquivs.clear();
1321 
1322   for (auto *GV : FailedCandidates)
1323     EmitGlobalVariable(GV);
1324 }
1325 
1326 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1327                                           const GlobalIndirectSymbol& GIS) {
1328   MCSymbol *Name = getSymbol(&GIS);
1329 
1330   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1331     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1332   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1333     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1334   else
1335     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1336 
1337   // Set the symbol type to function if the alias has a function type.
1338   // This affects codegen when the aliasee is not a function.
1339   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1340     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1341     if (isa<GlobalIFunc>(GIS))
1342       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1343   }
1344 
1345   EmitVisibility(Name, GIS.getVisibility());
1346 
1347   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1348 
1349   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1350     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1351 
1352   // Emit the directives as assignments aka .set:
1353   OutStreamer->EmitAssignment(Name, Expr);
1354 
1355   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1356     // If the aliasee does not correspond to a symbol in the output, i.e. the
1357     // alias is not of an object or the aliased object is private, then set the
1358     // size of the alias symbol from the type of the alias. We don't do this in
1359     // other situations as the alias and aliasee having differing types but same
1360     // size may be intentional.
1361     const GlobalObject *BaseObject = GA->getBaseObject();
1362     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1363         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1364       const DataLayout &DL = M.getDataLayout();
1365       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1366       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1367     }
1368   }
1369 }
1370 
1371 bool AsmPrinter::doFinalization(Module &M) {
1372   // Set the MachineFunction to nullptr so that we can catch attempted
1373   // accesses to MF specific features at the module level and so that
1374   // we can conditionalize accesses based on whether or not it is nullptr.
1375   MF = nullptr;
1376 
1377   // Gather all GOT equivalent globals in the module. We really need two
1378   // passes over the globals: one to compute and another to avoid its emission
1379   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1380   // where the got equivalent shows up before its use.
1381   computeGlobalGOTEquivs(M);
1382 
1383   // Emit global variables.
1384   for (const auto &G : M.globals())
1385     EmitGlobalVariable(&G);
1386 
1387   // Emit remaining GOT equivalent globals.
1388   emitGlobalGOTEquivs();
1389 
1390   // Emit visibility info for declarations
1391   for (const Function &F : M) {
1392     if (!F.isDeclarationForLinker())
1393       continue;
1394     GlobalValue::VisibilityTypes V = F.getVisibility();
1395     if (V == GlobalValue::DefaultVisibility)
1396       continue;
1397 
1398     MCSymbol *Name = getSymbol(&F);
1399     EmitVisibility(Name, V, false);
1400   }
1401 
1402   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1403 
1404   TLOF.emitModuleMetadata(*OutStreamer, M);
1405 
1406   if (TM.getTargetTriple().isOSBinFormatELF()) {
1407     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1408 
1409     // Output stubs for external and common global variables.
1410     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1411     if (!Stubs.empty()) {
1412       OutStreamer->SwitchSection(TLOF.getDataSection());
1413       const DataLayout &DL = M.getDataLayout();
1414 
1415       EmitAlignment(Log2_32(DL.getPointerSize()));
1416       for (const auto &Stub : Stubs) {
1417         OutStreamer->EmitLabel(Stub.first);
1418         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1419                                      DL.getPointerSize());
1420       }
1421     }
1422   }
1423 
1424   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1425     MachineModuleInfoCOFF &MMICOFF =
1426         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1427 
1428     // Output stubs for external and common global variables.
1429     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1430     if (!Stubs.empty()) {
1431       const DataLayout &DL = M.getDataLayout();
1432 
1433       for (const auto &Stub : Stubs) {
1434         SmallString<256> SectionName = StringRef(".rdata$");
1435         SectionName += Stub.first->getName();
1436         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1437             SectionName,
1438             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1439                 COFF::IMAGE_SCN_LNK_COMDAT,
1440             SectionKind::getReadOnly(), Stub.first->getName(),
1441             COFF::IMAGE_COMDAT_SELECT_ANY));
1442         EmitAlignment(Log2_32(DL.getPointerSize()));
1443         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1444         OutStreamer->EmitLabel(Stub.first);
1445         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1446                                      DL.getPointerSize());
1447       }
1448     }
1449   }
1450 
1451   // Finalize debug and EH information.
1452   for (const HandlerInfo &HI : Handlers) {
1453     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1454                        HI.TimerGroupDescription, TimePassesIsEnabled);
1455     HI.Handler->endModule();
1456     delete HI.Handler;
1457   }
1458   Handlers.clear();
1459   DD = nullptr;
1460 
1461   // If the target wants to know about weak references, print them all.
1462   if (MAI->getWeakRefDirective()) {
1463     // FIXME: This is not lazy, it would be nice to only print weak references
1464     // to stuff that is actually used.  Note that doing so would require targets
1465     // to notice uses in operands (due to constant exprs etc).  This should
1466     // happen with the MC stuff eventually.
1467 
1468     // Print out module-level global objects here.
1469     for (const auto &GO : M.global_objects()) {
1470       if (!GO.hasExternalWeakLinkage())
1471         continue;
1472       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1473     }
1474   }
1475 
1476   OutStreamer->AddBlankLine();
1477 
1478   // Print aliases in topological order, that is, for each alias a = b,
1479   // b must be printed before a.
1480   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1481   // such an order to generate correct TOC information.
1482   SmallVector<const GlobalAlias *, 16> AliasStack;
1483   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1484   for (const auto &Alias : M.aliases()) {
1485     for (const GlobalAlias *Cur = &Alias; Cur;
1486          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1487       if (!AliasVisited.insert(Cur).second)
1488         break;
1489       AliasStack.push_back(Cur);
1490     }
1491     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1492       emitGlobalIndirectSymbol(M, *AncestorAlias);
1493     AliasStack.clear();
1494   }
1495   for (const auto &IFunc : M.ifuncs())
1496     emitGlobalIndirectSymbol(M, IFunc);
1497 
1498   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1499   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1500   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1501     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1502       MP->finishAssembly(M, *MI, *this);
1503 
1504   // Emit llvm.ident metadata in an '.ident' directive.
1505   EmitModuleIdents(M);
1506 
1507   // Emit bytes for llvm.commandline metadata.
1508   EmitModuleCommandLines(M);
1509 
1510   // Emit __morestack address if needed for indirect calls.
1511   if (MMI->usesMorestackAddr()) {
1512     unsigned Align = 1;
1513     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1514         getDataLayout(), SectionKind::getReadOnly(),
1515         /*C=*/nullptr, Align);
1516     OutStreamer->SwitchSection(ReadOnlySection);
1517 
1518     MCSymbol *AddrSymbol =
1519         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1520     OutStreamer->EmitLabel(AddrSymbol);
1521 
1522     unsigned PtrSize = MAI->getCodePointerSize();
1523     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1524                                  PtrSize);
1525   }
1526 
1527   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1528   // split-stack is used.
1529   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1530     OutStreamer->SwitchSection(
1531         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1532     if (MMI->hasNosplitStack())
1533       OutStreamer->SwitchSection(
1534           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1535   }
1536 
1537   // If we don't have any trampolines, then we don't require stack memory
1538   // to be executable. Some targets have a directive to declare this.
1539   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1540   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1541     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1542       OutStreamer->SwitchSection(S);
1543 
1544   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1545     // Emit /EXPORT: flags for each exported global as necessary.
1546     const auto &TLOF = getObjFileLowering();
1547     std::string Flags;
1548 
1549     for (const GlobalValue &GV : M.global_values()) {
1550       raw_string_ostream OS(Flags);
1551       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1552       OS.flush();
1553       if (!Flags.empty()) {
1554         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1555         OutStreamer->EmitBytes(Flags);
1556       }
1557       Flags.clear();
1558     }
1559 
1560     // Emit /INCLUDE: flags for each used global as necessary.
1561     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1562       assert(LU->hasInitializer() &&
1563              "expected llvm.used to have an initializer");
1564       assert(isa<ArrayType>(LU->getValueType()) &&
1565              "expected llvm.used to be an array type");
1566       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1567         for (const Value *Op : A->operands()) {
1568           const auto *GV =
1569               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1570           // Global symbols with internal or private linkage are not visible to
1571           // the linker, and thus would cause an error when the linker tried to
1572           // preserve the symbol due to the `/include:` directive.
1573           if (GV->hasLocalLinkage())
1574             continue;
1575 
1576           raw_string_ostream OS(Flags);
1577           TLOF.emitLinkerFlagsForUsed(OS, GV);
1578           OS.flush();
1579 
1580           if (!Flags.empty()) {
1581             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1582             OutStreamer->EmitBytes(Flags);
1583           }
1584           Flags.clear();
1585         }
1586       }
1587     }
1588   }
1589 
1590   if (TM.Options.EmitAddrsig) {
1591     // Emit address-significance attributes for all globals.
1592     OutStreamer->EmitAddrsig();
1593     for (const GlobalValue &GV : M.global_values())
1594       if (!GV.use_empty() && !GV.isThreadLocal() &&
1595           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1596           !GV.hasAtLeastLocalUnnamedAddr())
1597         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1598   }
1599 
1600   // Allow the target to emit any magic that it wants at the end of the file,
1601   // after everything else has gone out.
1602   EmitEndOfAsmFile(M);
1603 
1604   MMI = nullptr;
1605 
1606   OutStreamer->Finish();
1607   OutStreamer->reset();
1608   OwnedMLI.reset();
1609   OwnedMDT.reset();
1610 
1611   return false;
1612 }
1613 
1614 MCSymbol *AsmPrinter::getCurExceptionSym() {
1615   if (!CurExceptionSym)
1616     CurExceptionSym = createTempSymbol("exception");
1617   return CurExceptionSym;
1618 }
1619 
1620 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1621   this->MF = &MF;
1622   // Get the function symbol.
1623   CurrentFnSym = getSymbol(&MF.getFunction());
1624   CurrentFnSymForSize = CurrentFnSym;
1625   CurrentFnBegin = nullptr;
1626   CurExceptionSym = nullptr;
1627   bool NeedsLocalForSize = MAI->needsLocalForSize();
1628   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1629       MF.getTarget().Options.EmitStackSizeSection) {
1630     CurrentFnBegin = createTempSymbol("func_begin");
1631     if (NeedsLocalForSize)
1632       CurrentFnSymForSize = CurrentFnBegin;
1633   }
1634 
1635   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1636 
1637   const TargetSubtargetInfo &STI = MF.getSubtarget();
1638   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1639                              ? PrintSchedule
1640                              : STI.supportPrintSchedInfo();
1641 }
1642 
1643 namespace {
1644 
1645 // Keep track the alignment, constpool entries per Section.
1646   struct SectionCPs {
1647     MCSection *S;
1648     unsigned Alignment;
1649     SmallVector<unsigned, 4> CPEs;
1650 
1651     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1652   };
1653 
1654 } // end anonymous namespace
1655 
1656 /// EmitConstantPool - Print to the current output stream assembly
1657 /// representations of the constants in the constant pool MCP. This is
1658 /// used to print out constants which have been "spilled to memory" by
1659 /// the code generator.
1660 void AsmPrinter::EmitConstantPool() {
1661   const MachineConstantPool *MCP = MF->getConstantPool();
1662   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1663   if (CP.empty()) return;
1664 
1665   // Calculate sections for constant pool entries. We collect entries to go into
1666   // the same section together to reduce amount of section switch statements.
1667   SmallVector<SectionCPs, 4> CPSections;
1668   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1669     const MachineConstantPoolEntry &CPE = CP[i];
1670     unsigned Align = CPE.getAlignment();
1671 
1672     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1673 
1674     const Constant *C = nullptr;
1675     if (!CPE.isMachineConstantPoolEntry())
1676       C = CPE.Val.ConstVal;
1677 
1678     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1679                                                               Kind, C, Align);
1680 
1681     // The number of sections are small, just do a linear search from the
1682     // last section to the first.
1683     bool Found = false;
1684     unsigned SecIdx = CPSections.size();
1685     while (SecIdx != 0) {
1686       if (CPSections[--SecIdx].S == S) {
1687         Found = true;
1688         break;
1689       }
1690     }
1691     if (!Found) {
1692       SecIdx = CPSections.size();
1693       CPSections.push_back(SectionCPs(S, Align));
1694     }
1695 
1696     if (Align > CPSections[SecIdx].Alignment)
1697       CPSections[SecIdx].Alignment = Align;
1698     CPSections[SecIdx].CPEs.push_back(i);
1699   }
1700 
1701   // Now print stuff into the calculated sections.
1702   const MCSection *CurSection = nullptr;
1703   unsigned Offset = 0;
1704   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1705     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1706       unsigned CPI = CPSections[i].CPEs[j];
1707       MCSymbol *Sym = GetCPISymbol(CPI);
1708       if (!Sym->isUndefined())
1709         continue;
1710 
1711       if (CurSection != CPSections[i].S) {
1712         OutStreamer->SwitchSection(CPSections[i].S);
1713         EmitAlignment(Log2_32(CPSections[i].Alignment));
1714         CurSection = CPSections[i].S;
1715         Offset = 0;
1716       }
1717 
1718       MachineConstantPoolEntry CPE = CP[CPI];
1719 
1720       // Emit inter-object padding for alignment.
1721       unsigned AlignMask = CPE.getAlignment() - 1;
1722       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1723       OutStreamer->EmitZeros(NewOffset - Offset);
1724 
1725       Type *Ty = CPE.getType();
1726       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1727 
1728       OutStreamer->EmitLabel(Sym);
1729       if (CPE.isMachineConstantPoolEntry())
1730         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1731       else
1732         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1733     }
1734   }
1735 }
1736 
1737 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1738 /// by the current function to the current output stream.
1739 void AsmPrinter::EmitJumpTableInfo() {
1740   const DataLayout &DL = MF->getDataLayout();
1741   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1742   if (!MJTI) return;
1743   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1744   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1745   if (JT.empty()) return;
1746 
1747   // Pick the directive to use to print the jump table entries, and switch to
1748   // the appropriate section.
1749   const Function &F = MF->getFunction();
1750   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1751   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1752       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1753       F);
1754   if (JTInDiffSection) {
1755     // Drop it in the readonly section.
1756     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1757     OutStreamer->SwitchSection(ReadOnlySection);
1758   }
1759 
1760   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1761 
1762   // Jump tables in code sections are marked with a data_region directive
1763   // where that's supported.
1764   if (!JTInDiffSection)
1765     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1766 
1767   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1768     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1769 
1770     // If this jump table was deleted, ignore it.
1771     if (JTBBs.empty()) continue;
1772 
1773     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1774     /// emit a .set directive for each unique entry.
1775     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1776         MAI->doesSetDirectiveSuppressReloc()) {
1777       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1778       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1779       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1780       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1781         const MachineBasicBlock *MBB = JTBBs[ii];
1782         if (!EmittedSets.insert(MBB).second)
1783           continue;
1784 
1785         // .set LJTSet, LBB32-base
1786         const MCExpr *LHS =
1787           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1788         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1789                                     MCBinaryExpr::createSub(LHS, Base,
1790                                                             OutContext));
1791       }
1792     }
1793 
1794     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1795     // before each jump table.  The first label is never referenced, but tells
1796     // the assembler and linker the extents of the jump table object.  The
1797     // second label is actually referenced by the code.
1798     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1799       // FIXME: This doesn't have to have any specific name, just any randomly
1800       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1801       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1802 
1803     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1804 
1805     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1806       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1807   }
1808   if (!JTInDiffSection)
1809     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1810 }
1811 
1812 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1813 /// current stream.
1814 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1815                                     const MachineBasicBlock *MBB,
1816                                     unsigned UID) const {
1817   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1818   const MCExpr *Value = nullptr;
1819   switch (MJTI->getEntryKind()) {
1820   case MachineJumpTableInfo::EK_Inline:
1821     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1822   case MachineJumpTableInfo::EK_Custom32:
1823     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1824         MJTI, MBB, UID, OutContext);
1825     break;
1826   case MachineJumpTableInfo::EK_BlockAddress:
1827     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1828     //     .word LBB123
1829     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1830     break;
1831   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1832     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1833     // with a relocation as gp-relative, e.g.:
1834     //     .gprel32 LBB123
1835     MCSymbol *MBBSym = MBB->getSymbol();
1836     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1837     return;
1838   }
1839 
1840   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1841     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1842     // with a relocation as gp-relative, e.g.:
1843     //     .gpdword LBB123
1844     MCSymbol *MBBSym = MBB->getSymbol();
1845     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1846     return;
1847   }
1848 
1849   case MachineJumpTableInfo::EK_LabelDifference32: {
1850     // Each entry is the address of the block minus the address of the jump
1851     // table. This is used for PIC jump tables where gprel32 is not supported.
1852     // e.g.:
1853     //      .word LBB123 - LJTI1_2
1854     // If the .set directive avoids relocations, this is emitted as:
1855     //      .set L4_5_set_123, LBB123 - LJTI1_2
1856     //      .word L4_5_set_123
1857     if (MAI->doesSetDirectiveSuppressReloc()) {
1858       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1859                                       OutContext);
1860       break;
1861     }
1862     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1863     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1864     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1865     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1866     break;
1867   }
1868   }
1869 
1870   assert(Value && "Unknown entry kind!");
1871 
1872   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1873   OutStreamer->EmitValue(Value, EntrySize);
1874 }
1875 
1876 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1877 /// special global used by LLVM.  If so, emit it and return true, otherwise
1878 /// do nothing and return false.
1879 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1880   if (GV->getName() == "llvm.used") {
1881     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1882       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1883     return true;
1884   }
1885 
1886   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1887   if (GV->getSection() == "llvm.metadata" ||
1888       GV->hasAvailableExternallyLinkage())
1889     return true;
1890 
1891   if (!GV->hasAppendingLinkage()) return false;
1892 
1893   assert(GV->hasInitializer() && "Not a special LLVM global!");
1894 
1895   if (GV->getName() == "llvm.global_ctors") {
1896     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1897                        /* isCtor */ true);
1898 
1899     return true;
1900   }
1901 
1902   if (GV->getName() == "llvm.global_dtors") {
1903     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1904                        /* isCtor */ false);
1905 
1906     return true;
1907   }
1908 
1909   report_fatal_error("unknown special variable");
1910 }
1911 
1912 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1913 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1914 /// is true, as being used with this directive.
1915 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1916   // Should be an array of 'i8*'.
1917   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1918     const GlobalValue *GV =
1919       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1920     if (GV)
1921       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1922   }
1923 }
1924 
1925 namespace {
1926 
1927 struct Structor {
1928   int Priority = 0;
1929   Constant *Func = nullptr;
1930   GlobalValue *ComdatKey = nullptr;
1931 
1932   Structor() = default;
1933 };
1934 
1935 } // end anonymous namespace
1936 
1937 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1938 /// priority.
1939 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1940                                     bool isCtor) {
1941   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1942   // init priority.
1943   if (!isa<ConstantArray>(List)) return;
1944 
1945   // Sanity check the structors list.
1946   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1947   if (!InitList) return; // Not an array!
1948   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1949   // FIXME: Only allow the 3-field form in LLVM 4.0.
1950   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1951     return; // Not an array of two or three elements!
1952   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1953       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1954   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1955     return; // Not (int, ptr, ptr).
1956 
1957   // Gather the structors in a form that's convenient for sorting by priority.
1958   SmallVector<Structor, 8> Structors;
1959   for (Value *O : InitList->operands()) {
1960     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1961     if (!CS) continue; // Malformed.
1962     if (CS->getOperand(1)->isNullValue())
1963       break;  // Found a null terminator, skip the rest.
1964     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1965     if (!Priority) continue; // Malformed.
1966     Structors.push_back(Structor());
1967     Structor &S = Structors.back();
1968     S.Priority = Priority->getLimitedValue(65535);
1969     S.Func = CS->getOperand(1);
1970     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1971       S.ComdatKey =
1972           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1973   }
1974 
1975   // Emit the function pointers in the target-specific order
1976   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1977   std::stable_sort(Structors.begin(), Structors.end(),
1978                    [](const Structor &L,
1979                       const Structor &R) { return L.Priority < R.Priority; });
1980   for (Structor &S : Structors) {
1981     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1982     const MCSymbol *KeySym = nullptr;
1983     if (GlobalValue *GV = S.ComdatKey) {
1984       if (GV->isDeclarationForLinker())
1985         // If the associated variable is not defined in this module
1986         // (it might be available_externally, or have been an
1987         // available_externally definition that was dropped by the
1988         // EliminateAvailableExternally pass), some other TU
1989         // will provide its dynamic initializer.
1990         continue;
1991 
1992       KeySym = getSymbol(GV);
1993     }
1994     MCSection *OutputSection =
1995         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1996                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1997     OutStreamer->SwitchSection(OutputSection);
1998     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1999       EmitAlignment(Align);
2000     EmitXXStructor(DL, S.Func);
2001   }
2002 }
2003 
2004 void AsmPrinter::EmitModuleIdents(Module &M) {
2005   if (!MAI->hasIdentDirective())
2006     return;
2007 
2008   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2009     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2010       const MDNode *N = NMD->getOperand(i);
2011       assert(N->getNumOperands() == 1 &&
2012              "llvm.ident metadata entry can have only one operand");
2013       const MDString *S = cast<MDString>(N->getOperand(0));
2014       OutStreamer->EmitIdent(S->getString());
2015     }
2016   }
2017 }
2018 
2019 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2020   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2021   if (!CommandLine)
2022     return;
2023 
2024   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2025   if (!NMD || !NMD->getNumOperands())
2026     return;
2027 
2028   OutStreamer->PushSection();
2029   OutStreamer->SwitchSection(CommandLine);
2030   OutStreamer->EmitZeros(1);
2031   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2032     const MDNode *N = NMD->getOperand(i);
2033     assert(N->getNumOperands() == 1 &&
2034            "llvm.commandline metadata entry can have only one operand");
2035     const MDString *S = cast<MDString>(N->getOperand(0));
2036     OutStreamer->EmitBytes(S->getString());
2037     OutStreamer->EmitZeros(1);
2038   }
2039   OutStreamer->PopSection();
2040 }
2041 
2042 //===--------------------------------------------------------------------===//
2043 // Emission and print routines
2044 //
2045 
2046 /// Emit a byte directive and value.
2047 ///
2048 void AsmPrinter::emitInt8(int Value) const {
2049   OutStreamer->EmitIntValue(Value, 1);
2050 }
2051 
2052 /// Emit a short directive and value.
2053 void AsmPrinter::emitInt16(int Value) const {
2054   OutStreamer->EmitIntValue(Value, 2);
2055 }
2056 
2057 /// Emit a long directive and value.
2058 void AsmPrinter::emitInt32(int Value) const {
2059   OutStreamer->EmitIntValue(Value, 4);
2060 }
2061 
2062 /// Emit a long long directive and value.
2063 void AsmPrinter::emitInt64(uint64_t Value) const {
2064   OutStreamer->EmitIntValue(Value, 8);
2065 }
2066 
2067 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2068 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2069 /// .set if it avoids relocations.
2070 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2071                                      unsigned Size) const {
2072   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2073 }
2074 
2075 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2076 /// where the size in bytes of the directive is specified by Size and Label
2077 /// specifies the label.  This implicitly uses .set if it is available.
2078 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2079                                      unsigned Size,
2080                                      bool IsSectionRelative) const {
2081   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2082     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2083     if (Size > 4)
2084       OutStreamer->EmitZeros(Size - 4);
2085     return;
2086   }
2087 
2088   // Emit Label+Offset (or just Label if Offset is zero)
2089   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2090   if (Offset)
2091     Expr = MCBinaryExpr::createAdd(
2092         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2093 
2094   OutStreamer->EmitValue(Expr, Size);
2095 }
2096 
2097 //===----------------------------------------------------------------------===//
2098 
2099 // EmitAlignment - Emit an alignment directive to the specified power of
2100 // two boundary.  For example, if you pass in 3 here, you will get an 8
2101 // byte alignment.  If a global value is specified, and if that global has
2102 // an explicit alignment requested, it will override the alignment request
2103 // if required for correctness.
2104 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2105   if (GV)
2106     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2107 
2108   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2109 
2110   assert(NumBits <
2111              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2112          "undefined behavior");
2113   if (getCurrentSection()->getKind().isText())
2114     OutStreamer->EmitCodeAlignment(1u << NumBits);
2115   else
2116     OutStreamer->EmitValueToAlignment(1u << NumBits);
2117 }
2118 
2119 //===----------------------------------------------------------------------===//
2120 // Constant emission.
2121 //===----------------------------------------------------------------------===//
2122 
2123 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2124   MCContext &Ctx = OutContext;
2125 
2126   if (CV->isNullValue() || isa<UndefValue>(CV))
2127     return MCConstantExpr::create(0, Ctx);
2128 
2129   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2130     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2131 
2132   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2133     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2134 
2135   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2136     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2137 
2138   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2139   if (!CE) {
2140     llvm_unreachable("Unknown constant value to lower!");
2141   }
2142 
2143   switch (CE->getOpcode()) {
2144   default:
2145     // If the code isn't optimized, there may be outstanding folding
2146     // opportunities. Attempt to fold the expression using DataLayout as a
2147     // last resort before giving up.
2148     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2149       if (C != CE)
2150         return lowerConstant(C);
2151 
2152     // Otherwise report the problem to the user.
2153     {
2154       std::string S;
2155       raw_string_ostream OS(S);
2156       OS << "Unsupported expression in static initializer: ";
2157       CE->printAsOperand(OS, /*PrintType=*/false,
2158                      !MF ? nullptr : MF->getFunction().getParent());
2159       report_fatal_error(OS.str());
2160     }
2161   case Instruction::GetElementPtr: {
2162     // Generate a symbolic expression for the byte address
2163     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2164     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2165 
2166     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2167     if (!OffsetAI)
2168       return Base;
2169 
2170     int64_t Offset = OffsetAI.getSExtValue();
2171     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2172                                    Ctx);
2173   }
2174 
2175   case Instruction::Trunc:
2176     // We emit the value and depend on the assembler to truncate the generated
2177     // expression properly.  This is important for differences between
2178     // blockaddress labels.  Since the two labels are in the same function, it
2179     // is reasonable to treat their delta as a 32-bit value.
2180     LLVM_FALLTHROUGH;
2181   case Instruction::BitCast:
2182     return lowerConstant(CE->getOperand(0));
2183 
2184   case Instruction::IntToPtr: {
2185     const DataLayout &DL = getDataLayout();
2186 
2187     // Handle casts to pointers by changing them into casts to the appropriate
2188     // integer type.  This promotes constant folding and simplifies this code.
2189     Constant *Op = CE->getOperand(0);
2190     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2191                                       false/*ZExt*/);
2192     return lowerConstant(Op);
2193   }
2194 
2195   case Instruction::PtrToInt: {
2196     const DataLayout &DL = getDataLayout();
2197 
2198     // Support only foldable casts to/from pointers that can be eliminated by
2199     // changing the pointer to the appropriately sized integer type.
2200     Constant *Op = CE->getOperand(0);
2201     Type *Ty = CE->getType();
2202 
2203     const MCExpr *OpExpr = lowerConstant(Op);
2204 
2205     // We can emit the pointer value into this slot if the slot is an
2206     // integer slot equal to the size of the pointer.
2207     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2208       return OpExpr;
2209 
2210     // Otherwise the pointer is smaller than the resultant integer, mask off
2211     // the high bits so we are sure to get a proper truncation if the input is
2212     // a constant expr.
2213     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2214     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2215     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2216   }
2217 
2218   case Instruction::Sub: {
2219     GlobalValue *LHSGV;
2220     APInt LHSOffset;
2221     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2222                                    getDataLayout())) {
2223       GlobalValue *RHSGV;
2224       APInt RHSOffset;
2225       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2226                                      getDataLayout())) {
2227         const MCExpr *RelocExpr =
2228             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2229         if (!RelocExpr)
2230           RelocExpr = MCBinaryExpr::createSub(
2231               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2232               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2233         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2234         if (Addend != 0)
2235           RelocExpr = MCBinaryExpr::createAdd(
2236               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2237         return RelocExpr;
2238       }
2239     }
2240   }
2241   // else fallthrough
2242   LLVM_FALLTHROUGH;
2243 
2244   // The MC library also has a right-shift operator, but it isn't consistently
2245   // signed or unsigned between different targets.
2246   case Instruction::Add:
2247   case Instruction::Mul:
2248   case Instruction::SDiv:
2249   case Instruction::SRem:
2250   case Instruction::Shl:
2251   case Instruction::And:
2252   case Instruction::Or:
2253   case Instruction::Xor: {
2254     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2255     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2256     switch (CE->getOpcode()) {
2257     default: llvm_unreachable("Unknown binary operator constant cast expr");
2258     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2259     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2260     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2261     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2262     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2263     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2264     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2265     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2266     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2267     }
2268   }
2269   }
2270 }
2271 
2272 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2273                                    AsmPrinter &AP,
2274                                    const Constant *BaseCV = nullptr,
2275                                    uint64_t Offset = 0);
2276 
2277 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2278 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2279 
2280 /// isRepeatedByteSequence - Determine whether the given value is
2281 /// composed of a repeated sequence of identical bytes and return the
2282 /// byte value.  If it is not a repeated sequence, return -1.
2283 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2284   StringRef Data = V->getRawDataValues();
2285   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2286   char C = Data[0];
2287   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2288     if (Data[i] != C) return -1;
2289   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2290 }
2291 
2292 /// isRepeatedByteSequence - Determine whether the given value is
2293 /// composed of a repeated sequence of identical bytes and return the
2294 /// byte value.  If it is not a repeated sequence, return -1.
2295 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2296   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2297     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2298     assert(Size % 8 == 0);
2299 
2300     // Extend the element to take zero padding into account.
2301     APInt Value = CI->getValue().zextOrSelf(Size);
2302     if (!Value.isSplat(8))
2303       return -1;
2304 
2305     return Value.zextOrTrunc(8).getZExtValue();
2306   }
2307   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2308     // Make sure all array elements are sequences of the same repeated
2309     // byte.
2310     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2311     Constant *Op0 = CA->getOperand(0);
2312     int Byte = isRepeatedByteSequence(Op0, DL);
2313     if (Byte == -1)
2314       return -1;
2315 
2316     // All array elements must be equal.
2317     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2318       if (CA->getOperand(i) != Op0)
2319         return -1;
2320     return Byte;
2321   }
2322 
2323   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2324     return isRepeatedByteSequence(CDS);
2325 
2326   return -1;
2327 }
2328 
2329 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2330                                              const ConstantDataSequential *CDS,
2331                                              AsmPrinter &AP) {
2332   // See if we can aggregate this into a .fill, if so, emit it as such.
2333   int Value = isRepeatedByteSequence(CDS, DL);
2334   if (Value != -1) {
2335     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2336     // Don't emit a 1-byte object as a .fill.
2337     if (Bytes > 1)
2338       return AP.OutStreamer->emitFill(Bytes, Value);
2339   }
2340 
2341   // If this can be emitted with .ascii/.asciz, emit it as such.
2342   if (CDS->isString())
2343     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2344 
2345   // Otherwise, emit the values in successive locations.
2346   unsigned ElementByteSize = CDS->getElementByteSize();
2347   if (isa<IntegerType>(CDS->getElementType())) {
2348     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2349       if (AP.isVerbose())
2350         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2351                                                  CDS->getElementAsInteger(i));
2352       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2353                                    ElementByteSize);
2354     }
2355   } else {
2356     Type *ET = CDS->getElementType();
2357     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2358       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2359   }
2360 
2361   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2362   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2363                         CDS->getNumElements();
2364   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2365   if (unsigned Padding = Size - EmittedSize)
2366     AP.OutStreamer->EmitZeros(Padding);
2367 }
2368 
2369 static void emitGlobalConstantArray(const DataLayout &DL,
2370                                     const ConstantArray *CA, AsmPrinter &AP,
2371                                     const Constant *BaseCV, uint64_t Offset) {
2372   // See if we can aggregate some values.  Make sure it can be
2373   // represented as a series of bytes of the constant value.
2374   int Value = isRepeatedByteSequence(CA, DL);
2375 
2376   if (Value != -1) {
2377     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2378     AP.OutStreamer->emitFill(Bytes, Value);
2379   }
2380   else {
2381     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2382       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2383       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2384     }
2385   }
2386 }
2387 
2388 static void emitGlobalConstantVector(const DataLayout &DL,
2389                                      const ConstantVector *CV, AsmPrinter &AP) {
2390   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2391     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2392 
2393   unsigned Size = DL.getTypeAllocSize(CV->getType());
2394   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2395                          CV->getType()->getNumElements();
2396   if (unsigned Padding = Size - EmittedSize)
2397     AP.OutStreamer->EmitZeros(Padding);
2398 }
2399 
2400 static void emitGlobalConstantStruct(const DataLayout &DL,
2401                                      const ConstantStruct *CS, AsmPrinter &AP,
2402                                      const Constant *BaseCV, uint64_t Offset) {
2403   // Print the fields in successive locations. Pad to align if needed!
2404   unsigned Size = DL.getTypeAllocSize(CS->getType());
2405   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2406   uint64_t SizeSoFar = 0;
2407   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2408     const Constant *Field = CS->getOperand(i);
2409 
2410     // Print the actual field value.
2411     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2412 
2413     // Check if padding is needed and insert one or more 0s.
2414     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2415     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2416                         - Layout->getElementOffset(i)) - FieldSize;
2417     SizeSoFar += FieldSize + PadSize;
2418 
2419     // Insert padding - this may include padding to increase the size of the
2420     // current field up to the ABI size (if the struct is not packed) as well
2421     // as padding to ensure that the next field starts at the right offset.
2422     AP.OutStreamer->EmitZeros(PadSize);
2423   }
2424   assert(SizeSoFar == Layout->getSizeInBytes() &&
2425          "Layout of constant struct may be incorrect!");
2426 }
2427 
2428 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2429   APInt API = APF.bitcastToAPInt();
2430 
2431   // First print a comment with what we think the original floating-point value
2432   // should have been.
2433   if (AP.isVerbose()) {
2434     SmallString<8> StrVal;
2435     APF.toString(StrVal);
2436 
2437     if (ET)
2438       ET->print(AP.OutStreamer->GetCommentOS());
2439     else
2440       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2441     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2442   }
2443 
2444   // Now iterate through the APInt chunks, emitting them in endian-correct
2445   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2446   // floats).
2447   unsigned NumBytes = API.getBitWidth() / 8;
2448   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2449   const uint64_t *p = API.getRawData();
2450 
2451   // PPC's long double has odd notions of endianness compared to how LLVM
2452   // handles it: p[0] goes first for *big* endian on PPC.
2453   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2454     int Chunk = API.getNumWords() - 1;
2455 
2456     if (TrailingBytes)
2457       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2458 
2459     for (; Chunk >= 0; --Chunk)
2460       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2461   } else {
2462     unsigned Chunk;
2463     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2464       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2465 
2466     if (TrailingBytes)
2467       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2468   }
2469 
2470   // Emit the tail padding for the long double.
2471   const DataLayout &DL = AP.getDataLayout();
2472   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2473 }
2474 
2475 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2476   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2477 }
2478 
2479 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2480   const DataLayout &DL = AP.getDataLayout();
2481   unsigned BitWidth = CI->getBitWidth();
2482 
2483   // Copy the value as we may massage the layout for constants whose bit width
2484   // is not a multiple of 64-bits.
2485   APInt Realigned(CI->getValue());
2486   uint64_t ExtraBits = 0;
2487   unsigned ExtraBitsSize = BitWidth & 63;
2488 
2489   if (ExtraBitsSize) {
2490     // The bit width of the data is not a multiple of 64-bits.
2491     // The extra bits are expected to be at the end of the chunk of the memory.
2492     // Little endian:
2493     // * Nothing to be done, just record the extra bits to emit.
2494     // Big endian:
2495     // * Record the extra bits to emit.
2496     // * Realign the raw data to emit the chunks of 64-bits.
2497     if (DL.isBigEndian()) {
2498       // Basically the structure of the raw data is a chunk of 64-bits cells:
2499       //    0        1         BitWidth / 64
2500       // [chunk1][chunk2] ... [chunkN].
2501       // The most significant chunk is chunkN and it should be emitted first.
2502       // However, due to the alignment issue chunkN contains useless bits.
2503       // Realign the chunks so that they contain only useless information:
2504       // ExtraBits     0       1       (BitWidth / 64) - 1
2505       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2506       ExtraBits = Realigned.getRawData()[0] &
2507         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2508       Realigned.lshrInPlace(ExtraBitsSize);
2509     } else
2510       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2511   }
2512 
2513   // We don't expect assemblers to support integer data directives
2514   // for more than 64 bits, so we emit the data in at most 64-bit
2515   // quantities at a time.
2516   const uint64_t *RawData = Realigned.getRawData();
2517   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2518     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2519     AP.OutStreamer->EmitIntValue(Val, 8);
2520   }
2521 
2522   if (ExtraBitsSize) {
2523     // Emit the extra bits after the 64-bits chunks.
2524 
2525     // Emit a directive that fills the expected size.
2526     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2527     Size -= (BitWidth / 64) * 8;
2528     assert(Size && Size * 8 >= ExtraBitsSize &&
2529            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2530            == ExtraBits && "Directive too small for extra bits.");
2531     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2532   }
2533 }
2534 
2535 /// Transform a not absolute MCExpr containing a reference to a GOT
2536 /// equivalent global, by a target specific GOT pc relative access to the
2537 /// final symbol.
2538 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2539                                          const Constant *BaseCst,
2540                                          uint64_t Offset) {
2541   // The global @foo below illustrates a global that uses a got equivalent.
2542   //
2543   //  @bar = global i32 42
2544   //  @gotequiv = private unnamed_addr constant i32* @bar
2545   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2546   //                             i64 ptrtoint (i32* @foo to i64))
2547   //                        to i32)
2548   //
2549   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2550   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2551   // form:
2552   //
2553   //  foo = cstexpr, where
2554   //    cstexpr := <gotequiv> - "." + <cst>
2555   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2556   //
2557   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2558   //
2559   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2560   //    gotpcrelcst := <offset from @foo base> + <cst>
2561   MCValue MV;
2562   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2563     return;
2564   const MCSymbolRefExpr *SymA = MV.getSymA();
2565   if (!SymA)
2566     return;
2567 
2568   // Check that GOT equivalent symbol is cached.
2569   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2570   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2571     return;
2572 
2573   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2574   if (!BaseGV)
2575     return;
2576 
2577   // Check for a valid base symbol
2578   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2579   const MCSymbolRefExpr *SymB = MV.getSymB();
2580 
2581   if (!SymB || BaseSym != &SymB->getSymbol())
2582     return;
2583 
2584   // Make sure to match:
2585   //
2586   //    gotpcrelcst := <offset from @foo base> + <cst>
2587   //
2588   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2589   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2590   // if the target knows how to encode it.
2591   int64_t GOTPCRelCst = Offset + MV.getConstant();
2592   if (GOTPCRelCst < 0)
2593     return;
2594   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2595     return;
2596 
2597   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2598   //
2599   //  bar:
2600   //    .long 42
2601   //  gotequiv:
2602   //    .quad bar
2603   //  foo:
2604   //    .long gotequiv - "." + <cst>
2605   //
2606   // is replaced by the target specific equivalent to:
2607   //
2608   //  bar:
2609   //    .long 42
2610   //  foo:
2611   //    .long bar@GOTPCREL+<gotpcrelcst>
2612   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2613   const GlobalVariable *GV = Result.first;
2614   int NumUses = (int)Result.second;
2615   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2616   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2617   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2618       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2619 
2620   // Update GOT equivalent usage information
2621   --NumUses;
2622   if (NumUses >= 0)
2623     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2624 }
2625 
2626 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2627                                    AsmPrinter &AP, const Constant *BaseCV,
2628                                    uint64_t Offset) {
2629   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2630 
2631   // Globals with sub-elements such as combinations of arrays and structs
2632   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2633   // constant symbol base and the current position with BaseCV and Offset.
2634   if (!BaseCV && CV->hasOneUse())
2635     BaseCV = dyn_cast<Constant>(CV->user_back());
2636 
2637   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2638     return AP.OutStreamer->EmitZeros(Size);
2639 
2640   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2641     switch (Size) {
2642     case 1:
2643     case 2:
2644     case 4:
2645     case 8:
2646       if (AP.isVerbose())
2647         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2648                                                  CI->getZExtValue());
2649       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2650       return;
2651     default:
2652       emitGlobalConstantLargeInt(CI, AP);
2653       return;
2654     }
2655   }
2656 
2657   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2658     return emitGlobalConstantFP(CFP, AP);
2659 
2660   if (isa<ConstantPointerNull>(CV)) {
2661     AP.OutStreamer->EmitIntValue(0, Size);
2662     return;
2663   }
2664 
2665   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2666     return emitGlobalConstantDataSequential(DL, CDS, AP);
2667 
2668   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2669     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2670 
2671   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2672     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2673 
2674   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2675     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2676     // vectors).
2677     if (CE->getOpcode() == Instruction::BitCast)
2678       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2679 
2680     if (Size > 8) {
2681       // If the constant expression's size is greater than 64-bits, then we have
2682       // to emit the value in chunks. Try to constant fold the value and emit it
2683       // that way.
2684       Constant *New = ConstantFoldConstant(CE, DL);
2685       if (New && New != CE)
2686         return emitGlobalConstantImpl(DL, New, AP);
2687     }
2688   }
2689 
2690   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2691     return emitGlobalConstantVector(DL, V, AP);
2692 
2693   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2694   // thread the streamer with EmitValue.
2695   const MCExpr *ME = AP.lowerConstant(CV);
2696 
2697   // Since lowerConstant already folded and got rid of all IR pointer and
2698   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2699   // directly.
2700   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2701     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2702 
2703   AP.OutStreamer->EmitValue(ME, Size);
2704 }
2705 
2706 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2707 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2708   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2709   if (Size)
2710     emitGlobalConstantImpl(DL, CV, *this);
2711   else if (MAI->hasSubsectionsViaSymbols()) {
2712     // If the global has zero size, emit a single byte so that two labels don't
2713     // look like they are at the same location.
2714     OutStreamer->EmitIntValue(0, 1);
2715   }
2716 }
2717 
2718 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2719   // Target doesn't support this yet!
2720   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2721 }
2722 
2723 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2724   if (Offset > 0)
2725     OS << '+' << Offset;
2726   else if (Offset < 0)
2727     OS << Offset;
2728 }
2729 
2730 //===----------------------------------------------------------------------===//
2731 // Symbol Lowering Routines.
2732 //===----------------------------------------------------------------------===//
2733 
2734 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2735   return OutContext.createTempSymbol(Name, true);
2736 }
2737 
2738 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2739   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2740 }
2741 
2742 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2743   return MMI->getAddrLabelSymbol(BB);
2744 }
2745 
2746 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2747 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2748   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2749     const MachineConstantPoolEntry &CPE =
2750         MF->getConstantPool()->getConstants()[CPID];
2751     if (!CPE.isMachineConstantPoolEntry()) {
2752       const DataLayout &DL = MF->getDataLayout();
2753       SectionKind Kind = CPE.getSectionKind(&DL);
2754       const Constant *C = CPE.Val.ConstVal;
2755       unsigned Align = CPE.Alignment;
2756       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2757               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2758         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2759           if (Sym->isUndefined())
2760             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2761           return Sym;
2762         }
2763       }
2764     }
2765   }
2766 
2767   const DataLayout &DL = getDataLayout();
2768   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2769                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2770                                       Twine(CPID));
2771 }
2772 
2773 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2774 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2775   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2776 }
2777 
2778 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2779 /// FIXME: privatize to AsmPrinter.
2780 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2781   const DataLayout &DL = getDataLayout();
2782   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2783                                       Twine(getFunctionNumber()) + "_" +
2784                                       Twine(UID) + "_set_" + Twine(MBBID));
2785 }
2786 
2787 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2788                                                    StringRef Suffix) const {
2789   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2790 }
2791 
2792 /// Return the MCSymbol for the specified ExternalSymbol.
2793 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2794   SmallString<60> NameStr;
2795   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2796   return OutContext.getOrCreateSymbol(NameStr);
2797 }
2798 
2799 /// PrintParentLoopComment - Print comments about parent loops of this one.
2800 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2801                                    unsigned FunctionNumber) {
2802   if (!Loop) return;
2803   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2804   OS.indent(Loop->getLoopDepth()*2)
2805     << "Parent Loop BB" << FunctionNumber << "_"
2806     << Loop->getHeader()->getNumber()
2807     << " Depth=" << Loop->getLoopDepth() << '\n';
2808 }
2809 
2810 /// PrintChildLoopComment - Print comments about child loops within
2811 /// the loop for this basic block, with nesting.
2812 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2813                                   unsigned FunctionNumber) {
2814   // Add child loop information
2815   for (const MachineLoop *CL : *Loop) {
2816     OS.indent(CL->getLoopDepth()*2)
2817       << "Child Loop BB" << FunctionNumber << "_"
2818       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2819       << '\n';
2820     PrintChildLoopComment(OS, CL, FunctionNumber);
2821   }
2822 }
2823 
2824 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2825 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2826                                        const MachineLoopInfo *LI,
2827                                        const AsmPrinter &AP) {
2828   // Add loop depth information
2829   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2830   if (!Loop) return;
2831 
2832   MachineBasicBlock *Header = Loop->getHeader();
2833   assert(Header && "No header for loop");
2834 
2835   // If this block is not a loop header, just print out what is the loop header
2836   // and return.
2837   if (Header != &MBB) {
2838     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2839                                Twine(AP.getFunctionNumber())+"_" +
2840                                Twine(Loop->getHeader()->getNumber())+
2841                                " Depth="+Twine(Loop->getLoopDepth()));
2842     return;
2843   }
2844 
2845   // Otherwise, it is a loop header.  Print out information about child and
2846   // parent loops.
2847   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2848 
2849   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2850 
2851   OS << "=>";
2852   OS.indent(Loop->getLoopDepth()*2-2);
2853 
2854   OS << "This ";
2855   if (Loop->empty())
2856     OS << "Inner ";
2857   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2858 
2859   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2860 }
2861 
2862 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2863                                          MCCodePaddingContext &Context) const {
2864   assert(MF != nullptr && "Machine function must be valid");
2865   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2866                             !MF->getFunction().optForSize() &&
2867                             TM.getOptLevel() != CodeGenOpt::None;
2868   Context.IsBasicBlockReachableViaFallthrough =
2869       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2870       MBB.pred_end();
2871   Context.IsBasicBlockReachableViaBranch =
2872       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2873 }
2874 
2875 /// EmitBasicBlockStart - This method prints the label for the specified
2876 /// MachineBasicBlock, an alignment (if present) and a comment describing
2877 /// it if appropriate.
2878 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2879   // End the previous funclet and start a new one.
2880   if (MBB.isEHFuncletEntry()) {
2881     for (const HandlerInfo &HI : Handlers) {
2882       HI.Handler->endFunclet();
2883       HI.Handler->beginFunclet(MBB);
2884     }
2885   }
2886 
2887   // Emit an alignment directive for this block, if needed.
2888   if (unsigned Align = MBB.getAlignment())
2889     EmitAlignment(Align);
2890   MCCodePaddingContext Context;
2891   setupCodePaddingContext(MBB, Context);
2892   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2893 
2894   // If the block has its address taken, emit any labels that were used to
2895   // reference the block.  It is possible that there is more than one label
2896   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2897   // the references were generated.
2898   if (MBB.hasAddressTaken()) {
2899     const BasicBlock *BB = MBB.getBasicBlock();
2900     if (isVerbose())
2901       OutStreamer->AddComment("Block address taken");
2902 
2903     // MBBs can have their address taken as part of CodeGen without having
2904     // their corresponding BB's address taken in IR
2905     if (BB->hasAddressTaken())
2906       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2907         OutStreamer->EmitLabel(Sym);
2908   }
2909 
2910   // Print some verbose block comments.
2911   if (isVerbose()) {
2912     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2913       if (BB->hasName()) {
2914         BB->printAsOperand(OutStreamer->GetCommentOS(),
2915                            /*PrintType=*/false, BB->getModule());
2916         OutStreamer->GetCommentOS() << '\n';
2917       }
2918     }
2919 
2920     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2921     emitBasicBlockLoopComments(MBB, MLI, *this);
2922   }
2923 
2924   // Print the main label for the block.
2925   if (MBB.pred_empty() ||
2926       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2927     if (isVerbose()) {
2928       // NOTE: Want this comment at start of line, don't emit with AddComment.
2929       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2930                                   false);
2931     }
2932   } else {
2933     OutStreamer->EmitLabel(MBB.getSymbol());
2934   }
2935 }
2936 
2937 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2938   MCCodePaddingContext Context;
2939   setupCodePaddingContext(MBB, Context);
2940   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2941 }
2942 
2943 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2944                                 bool IsDefinition) const {
2945   MCSymbolAttr Attr = MCSA_Invalid;
2946 
2947   switch (Visibility) {
2948   default: break;
2949   case GlobalValue::HiddenVisibility:
2950     if (IsDefinition)
2951       Attr = MAI->getHiddenVisibilityAttr();
2952     else
2953       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2954     break;
2955   case GlobalValue::ProtectedVisibility:
2956     Attr = MAI->getProtectedVisibilityAttr();
2957     break;
2958   }
2959 
2960   if (Attr != MCSA_Invalid)
2961     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2962 }
2963 
2964 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2965 /// exactly one predecessor and the control transfer mechanism between
2966 /// the predecessor and this block is a fall-through.
2967 bool AsmPrinter::
2968 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2969   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2970   // then nothing falls through to it.
2971   if (MBB->isEHPad() || MBB->pred_empty())
2972     return false;
2973 
2974   // If there isn't exactly one predecessor, it can't be a fall through.
2975   if (MBB->pred_size() > 1)
2976     return false;
2977 
2978   // The predecessor has to be immediately before this block.
2979   MachineBasicBlock *Pred = *MBB->pred_begin();
2980   if (!Pred->isLayoutSuccessor(MBB))
2981     return false;
2982 
2983   // If the block is completely empty, then it definitely does fall through.
2984   if (Pred->empty())
2985     return true;
2986 
2987   // Check the terminators in the previous blocks
2988   for (const auto &MI : Pred->terminators()) {
2989     // If it is not a simple branch, we are in a table somewhere.
2990     if (!MI.isBranch() || MI.isIndirectBranch())
2991       return false;
2992 
2993     // If we are the operands of one of the branches, this is not a fall
2994     // through. Note that targets with delay slots will usually bundle
2995     // terminators with the delay slot instruction.
2996     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2997       if (OP->isJTI())
2998         return false;
2999       if (OP->isMBB() && OP->getMBB() == MBB)
3000         return false;
3001     }
3002   }
3003 
3004   return true;
3005 }
3006 
3007 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3008   if (!S.usesMetadata())
3009     return nullptr;
3010 
3011   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3012   gcp_map_type::iterator GCPI = GCMap.find(&S);
3013   if (GCPI != GCMap.end())
3014     return GCPI->second.get();
3015 
3016   auto Name = S.getName();
3017 
3018   for (GCMetadataPrinterRegistry::iterator
3019          I = GCMetadataPrinterRegistry::begin(),
3020          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3021     if (Name == I->getName()) {
3022       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3023       GMP->S = &S;
3024       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3025       return IterBool.first->second.get();
3026     }
3027 
3028   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3029 }
3030 
3031 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3032   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3033   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3034   bool NeedsDefault = false;
3035   if (MI->begin() == MI->end())
3036     // No GC strategy, use the default format.
3037     NeedsDefault = true;
3038   else
3039     for (auto &I : *MI) {
3040       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3041         if (MP->emitStackMaps(SM, *this))
3042           continue;
3043       // The strategy doesn't have printer or doesn't emit custom stack maps.
3044       // Use the default format.
3045       NeedsDefault = true;
3046     }
3047 
3048   if (NeedsDefault)
3049     SM.serializeToStackMapSection();
3050 }
3051 
3052 /// Pin vtable to this file.
3053 AsmPrinterHandler::~AsmPrinterHandler() = default;
3054 
3055 void AsmPrinterHandler::markFunctionEnd() {}
3056 
3057 // In the binary's "xray_instr_map" section, an array of these function entries
3058 // describes each instrumentation point.  When XRay patches your code, the index
3059 // into this table will be given to your handler as a patch point identifier.
3060 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3061                                          const MCSymbol *CurrentFnSym) const {
3062   Out->EmitSymbolValue(Sled, Bytes);
3063   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3064   auto Kind8 = static_cast<uint8_t>(Kind);
3065   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3066   Out->EmitBinaryData(
3067       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3068   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3069   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3070   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3071   Out->EmitZeros(Padding);
3072 }
3073 
3074 void AsmPrinter::emitXRayTable() {
3075   if (Sleds.empty())
3076     return;
3077 
3078   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3079   const Function &F = MF->getFunction();
3080   MCSection *InstMap = nullptr;
3081   MCSection *FnSledIndex = nullptr;
3082   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3083     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3084     assert(Associated != nullptr);
3085     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3086     std::string GroupName;
3087     if (F.hasComdat()) {
3088       Flags |= ELF::SHF_GROUP;
3089       GroupName = F.getComdat()->getName();
3090     }
3091 
3092     auto UniqueID = ++XRayFnUniqueID;
3093     InstMap =
3094         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3095                                  GroupName, UniqueID, Associated);
3096     FnSledIndex =
3097         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3098                                  GroupName, UniqueID, Associated);
3099   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3100     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3101                                          SectionKind::getReadOnlyWithRel());
3102     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3103                                              SectionKind::getReadOnlyWithRel());
3104   } else {
3105     llvm_unreachable("Unsupported target");
3106   }
3107 
3108   auto WordSizeBytes = MAI->getCodePointerSize();
3109 
3110   // Now we switch to the instrumentation map section. Because this is done
3111   // per-function, we are able to create an index entry that will represent the
3112   // range of sleds associated with a function.
3113   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3114   OutStreamer->SwitchSection(InstMap);
3115   OutStreamer->EmitLabel(SledsStart);
3116   for (const auto &Sled : Sleds)
3117     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3118   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3119   OutStreamer->EmitLabel(SledsEnd);
3120 
3121   // We then emit a single entry in the index per function. We use the symbols
3122   // that bound the instrumentation map as the range for a specific function.
3123   // Each entry here will be 2 * word size aligned, as we're writing down two
3124   // pointers. This should work for both 32-bit and 64-bit platforms.
3125   OutStreamer->SwitchSection(FnSledIndex);
3126   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3127   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3128   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3129   OutStreamer->SwitchSection(PrevSection);
3130   Sleds.clear();
3131 }
3132 
3133 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3134                             SledKind Kind, uint8_t Version) {
3135   const Function &F = MI.getMF()->getFunction();
3136   auto Attr = F.getFnAttribute("function-instrument");
3137   bool LogArgs = F.hasFnAttribute("xray-log-args");
3138   bool AlwaysInstrument =
3139     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3140   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3141     Kind = SledKind::LOG_ARGS_ENTER;
3142   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3143                                        AlwaysInstrument, &F, Version});
3144 }
3145 
3146 uint16_t AsmPrinter::getDwarfVersion() const {
3147   return OutStreamer->getContext().getDwarfVersion();
3148 }
3149 
3150 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3151   OutStreamer->getContext().setDwarfVersion(Version);
3152 }
3153