1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/BinaryFormat/COFF.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBundle.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineModuleInfo.h"
55 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/StackMaps.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Comdat.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalIFunc.h"
75 #include "llvm/IR/GlobalIndirectSymbol.h"
76 #include "llvm/IR/GlobalObject.h"
77 #include "llvm/IR/GlobalValue.h"
78 #include "llvm/IR/GlobalVariable.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Mangler.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/RemarkStreamer.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCAsmInfo.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/MC/MCDirectives.h"
90 #include "llvm/MC/MCDwarf.h"
91 #include "llvm/MC/MCExpr.h"
92 #include "llvm/MC/MCInst.h"
93 #include "llvm/MC/MCSection.h"
94 #include "llvm/MC/MCSectionCOFF.h"
95 #include "llvm/MC/MCSectionELF.h"
96 #include "llvm/MC/MCSectionMachO.h"
97 #include "llvm/MC/MCSectionXCOFF.h"
98 #include "llvm/MC/MCStreamer.h"
99 #include "llvm/MC/MCSubtargetInfo.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/MC/MCSymbolELF.h"
102 #include "llvm/MC/MCSymbolXCOFF.h"
103 #include "llvm/MC/MCTargetOptions.h"
104 #include "llvm/MC/MCValue.h"
105 #include "llvm/MC/SectionKind.h"
106 #include "llvm/Pass.h"
107 #include "llvm/Remarks/Remark.h"
108 #include "llvm/Remarks/RemarkFormat.h"
109 #include "llvm/Remarks/RemarkStringTable.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 static const char *const DWARFGroupName = "dwarf";
139 static const char *const DWARFGroupDescription = "DWARF Emission";
140 static const char *const DbgTimerName = "emit";
141 static const char *const DbgTimerDescription = "Debug Info Emission";
142 static const char *const EHTimerName = "write_exception";
143 static const char *const EHTimerDescription = "DWARF Exception Writer";
144 static const char *const CFGuardName = "Control Flow Guard";
145 static const char *const CFGuardDescription = "Control Flow Guard";
146 static const char *const CodeViewLineTablesGroupName = "linetables";
147 static const char *const CodeViewLineTablesGroupDescription =
148   "CodeView Line Tables";
149 
150 STATISTIC(EmittedInsts, "Number of machine instrs printed");
151 
152 char AsmPrinter::ID = 0;
153 
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155 
156 static gcp_map_type &getGCMap(void *&P) {
157   if (!P)
158     P = new gcp_map_type();
159   return *(gcp_map_type*)P;
160 }
161 
162 /// getGVAlignment - Return the alignment to use for the specified global
163 /// value.  This rounds up to the preferred alignment if possible and legal.
164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
165                                  Align InAlign) {
166   Align Alignment;
167   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
168     Alignment = Align(DL.getPreferredAlignment(GVar));
169 
170   // If InAlign is specified, round it to it.
171   if (InAlign > Alignment)
172     Alignment = InAlign;
173 
174   // If the GV has a specified alignment, take it into account.
175   const MaybeAlign GVAlign(GV->getAlignment());
176   if (!GVAlign)
177     return Alignment;
178 
179   assert(GVAlign && "GVAlign must be set");
180 
181   // If the GVAlign is larger than NumBits, or if we are required to obey
182   // NumBits because the GV has an assigned section, obey it.
183   if (*GVAlign > Alignment || GV->hasSection())
184     Alignment = *GVAlign;
185   return Alignment;
186 }
187 
188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191   VerboseAsm = OutStreamer->isVerboseAsm();
192 }
193 
194 AsmPrinter::~AsmPrinter() {
195   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
196 
197   if (GCMetadataPrinters) {
198     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
199 
200     delete &GCMap;
201     GCMetadataPrinters = nullptr;
202   }
203 }
204 
205 bool AsmPrinter::isPositionIndependent() const {
206   return TM.isPositionIndependent();
207 }
208 
209 /// getFunctionNumber - Return a unique ID for the current function.
210 unsigned AsmPrinter::getFunctionNumber() const {
211   return MF->getFunctionNumber();
212 }
213 
214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
215   return *TM.getObjFileLowering();
216 }
217 
218 const DataLayout &AsmPrinter::getDataLayout() const {
219   return MMI->getModule()->getDataLayout();
220 }
221 
222 // Do not use the cached DataLayout because some client use it without a Module
223 // (dsymutil, llvm-dwarfdump).
224 unsigned AsmPrinter::getPointerSize() const {
225   return TM.getPointerSize(0); // FIXME: Default address space
226 }
227 
228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
229   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
230   return MF->getSubtarget<MCSubtargetInfo>();
231 }
232 
233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
234   S.EmitInstruction(Inst, getSubtargetInfo());
235 }
236 
237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
238   assert(DD && "Dwarf debug file is not defined.");
239   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
240   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
241 }
242 
243 /// getCurrentSection() - Return the current section we are emitting to.
244 const MCSection *AsmPrinter::getCurrentSection() const {
245   return OutStreamer->getCurrentSectionOnly();
246 }
247 
248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
249   AU.setPreservesAll();
250   MachineFunctionPass::getAnalysisUsage(AU);
251   AU.addRequired<MachineModuleInfoWrapperPass>();
252   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
253   AU.addRequired<GCModuleInfo>();
254   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
255   AU.addRequired<ProfileSummaryInfoWrapperPass>();
256 }
257 
258 bool AsmPrinter::doInitialization(Module &M) {
259   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
261 
262   // Initialize TargetLoweringObjectFile.
263   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264     .Initialize(OutContext, TM);
265 
266   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267       .getModuleMetadata(M);
268 
269   OutStreamer->InitSections(false);
270 
271   // Emit the version-min deployment target directive if needed.
272   //
273   // FIXME: If we end up with a collection of these sorts of Darwin-specific
274   // or ELF-specific things, it may make sense to have a platform helper class
275   // that will work with the target helper class. For now keep it here, as the
276   // alternative is duplicated code in each of the target asm printers that
277   // use the directive, where it would need the same conditionalization
278   // anyway.
279   const Triple &Target = TM.getTargetTriple();
280   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
281 
282   // Allow the target to emit any magic that it wants at the start of the file.
283   EmitStartOfAsmFile(M);
284 
285   // Very minimal debug info. It is ignored if we emit actual debug info. If we
286   // don't, this at least helps the user find where a global came from.
287   if (MAI->hasSingleParameterDotFile()) {
288     // .file "foo.c"
289     OutStreamer->EmitFileDirective(
290         llvm::sys::path::filename(M.getSourceFileName()));
291   }
292 
293   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
294   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
295   for (auto &I : *MI)
296     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
297       MP->beginAssembly(M, *MI, *this);
298 
299   // Emit module-level inline asm if it exists.
300   if (!M.getModuleInlineAsm().empty()) {
301     // We're at the module level. Construct MCSubtarget from the default CPU
302     // and target triple.
303     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
304         TM.getTargetTriple().str(), TM.getTargetCPU(),
305         TM.getTargetFeatureString()));
306     OutStreamer->AddComment("Start of file scope inline assembly");
307     OutStreamer->AddBlankLine();
308     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
309                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
310     OutStreamer->AddComment("End of file scope inline assembly");
311     OutStreamer->AddBlankLine();
312   }
313 
314   if (MAI->doesSupportDebugInformation()) {
315     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
316     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
317       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
318                             DbgTimerName, DbgTimerDescription,
319                             CodeViewLineTablesGroupName,
320                             CodeViewLineTablesGroupDescription);
321     }
322     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
323       DD = new DwarfDebug(this, &M);
324       DD->beginModule();
325       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
326                             DbgTimerDescription, DWARFGroupName,
327                             DWARFGroupDescription);
328     }
329   }
330 
331   switch (MAI->getExceptionHandlingType()) {
332   case ExceptionHandling::SjLj:
333   case ExceptionHandling::DwarfCFI:
334   case ExceptionHandling::ARM:
335     isCFIMoveForDebugging = true;
336     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
337       break;
338     for (auto &F: M.getFunctionList()) {
339       // If the module contains any function with unwind data,
340       // .eh_frame has to be emitted.
341       // Ignore functions that won't get emitted.
342       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
343         isCFIMoveForDebugging = false;
344         break;
345       }
346     }
347     break;
348   default:
349     isCFIMoveForDebugging = false;
350     break;
351   }
352 
353   EHStreamer *ES = nullptr;
354   switch (MAI->getExceptionHandlingType()) {
355   case ExceptionHandling::None:
356     break;
357   case ExceptionHandling::SjLj:
358   case ExceptionHandling::DwarfCFI:
359     ES = new DwarfCFIException(this);
360     break;
361   case ExceptionHandling::ARM:
362     ES = new ARMException(this);
363     break;
364   case ExceptionHandling::WinEH:
365     switch (MAI->getWinEHEncodingType()) {
366     default: llvm_unreachable("unsupported unwinding information encoding");
367     case WinEH::EncodingType::Invalid:
368       break;
369     case WinEH::EncodingType::X86:
370     case WinEH::EncodingType::Itanium:
371       ES = new WinException(this);
372       break;
373     }
374     break;
375   case ExceptionHandling::Wasm:
376     ES = new WasmException(this);
377     break;
378   }
379   if (ES)
380     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
381                           EHTimerDescription, DWARFGroupName,
382                           DWARFGroupDescription);
383 
384   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
385   if (mdconst::extract_or_null<ConstantInt>(
386           MMI->getModule()->getModuleFlag("cfguard")))
387     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
388                           CFGuardDescription, DWARFGroupName,
389                           DWARFGroupDescription);
390   return false;
391 }
392 
393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
394   if (!MAI.hasWeakDefCanBeHiddenDirective())
395     return false;
396 
397   return GV->canBeOmittedFromSymbolTable();
398 }
399 
400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
401   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
402   switch (Linkage) {
403   case GlobalValue::CommonLinkage:
404   case GlobalValue::LinkOnceAnyLinkage:
405   case GlobalValue::LinkOnceODRLinkage:
406   case GlobalValue::WeakAnyLinkage:
407   case GlobalValue::WeakODRLinkage:
408     if (MAI->hasWeakDefDirective()) {
409       // .globl _foo
410       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
411 
412       if (!canBeHidden(GV, *MAI))
413         // .weak_definition _foo
414         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
415       else
416         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
417     } else if (MAI->hasLinkOnceDirective()) {
418       // .globl _foo
419       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
420       //NOTE: linkonce is handled by the section the symbol was assigned to.
421     } else {
422       // .weak _foo
423       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
424     }
425     return;
426   case GlobalValue::ExternalLinkage:
427     // If external, declare as a global symbol: .globl _foo
428     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
429     return;
430   case GlobalValue::PrivateLinkage:
431     return;
432   case GlobalValue::InternalLinkage:
433     if (MAI->hasDotLGloblDirective())
434       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal);
435     return;
436   case GlobalValue::AppendingLinkage:
437   case GlobalValue::AvailableExternallyLinkage:
438   case GlobalValue::ExternalWeakLinkage:
439     llvm_unreachable("Should never emit this");
440   }
441   llvm_unreachable("Unknown linkage type!");
442 }
443 
444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
445                                    const GlobalValue *GV) const {
446   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
447 }
448 
449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
450   return TM.getSymbol(GV);
451 }
452 
453 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
455   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
456   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
457          "No emulated TLS variables in the common section");
458 
459   // Never emit TLS variable xyz in emulated TLS model.
460   // The initialization value is in __emutls_t.xyz instead of xyz.
461   if (IsEmuTLSVar)
462     return;
463 
464   if (GV->hasInitializer()) {
465     // Check to see if this is a special global used by LLVM, if so, emit it.
466     if (EmitSpecialLLVMGlobal(GV))
467       return;
468 
469     // Skip the emission of global equivalents. The symbol can be emitted later
470     // on by emitGlobalGOTEquivs in case it turns out to be needed.
471     if (GlobalGOTEquivs.count(getSymbol(GV)))
472       return;
473 
474     if (isVerbose()) {
475       // When printing the control variable __emutls_v.*,
476       // we don't need to print the original TLS variable name.
477       GV->printAsOperand(OutStreamer->GetCommentOS(),
478                      /*PrintType=*/false, GV->getParent());
479       OutStreamer->GetCommentOS() << '\n';
480     }
481   }
482 
483   MCSymbol *GVSym = getSymbol(GV);
484   MCSymbol *EmittedSym = GVSym;
485 
486   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
487   // attributes.
488   // GV's or GVSym's attributes will be used for the EmittedSym.
489   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
490 
491   if (!GV->hasInitializer())   // External globals require no extra code.
492     return;
493 
494   GVSym->redefineIfPossible();
495   if (GVSym->isDefined() || GVSym->isVariable())
496     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
497                        "' is already defined");
498 
499   if (MAI->hasDotTypeDotSizeDirective())
500     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
501 
502   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
503 
504   const DataLayout &DL = GV->getParent()->getDataLayout();
505   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
506 
507   // If the alignment is specified, we *must* obey it.  Overaligning a global
508   // with a specified alignment is a prompt way to break globals emitted to
509   // sections and expected to be contiguous (e.g. ObjC metadata).
510   const Align Alignment = getGVAlignment(GV, DL);
511 
512   for (const HandlerInfo &HI : Handlers) {
513     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
514                        HI.TimerGroupName, HI.TimerGroupDescription,
515                        TimePassesIsEnabled);
516     HI.Handler->setSymbolSize(GVSym, Size);
517   }
518 
519   // Handle common symbols
520   if (GVKind.isCommon()) {
521     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
522     // .comm _foo, 42, 4
523     const bool SupportsAlignment =
524         getObjFileLowering().getCommDirectiveSupportsAlignment();
525     OutStreamer->EmitCommonSymbol(GVSym, Size,
526                                   SupportsAlignment ? Alignment.value() : 0);
527     return;
528   }
529 
530   // Determine to which section this global should be emitted.
531   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
532 
533   // If we have a bss global going to a section that supports the
534   // zerofill directive, do so here.
535   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
536       TheSection->isVirtualSection()) {
537     if (Size == 0)
538       Size = 1; // zerofill of 0 bytes is undefined.
539     EmitLinkage(GV, GVSym);
540     // .zerofill __DATA, __bss, _foo, 400, 5
541     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value());
542     return;
543   }
544 
545   // If this is a BSS local symbol and we are emitting in the BSS
546   // section use .lcomm/.comm directive.
547   if (GVKind.isBSSLocal() &&
548       getObjFileLowering().getBSSSection() == TheSection) {
549     if (Size == 0)
550       Size = 1; // .comm Foo, 0 is undefined, avoid it.
551 
552     // Use .lcomm only if it supports user-specified alignment.
553     // Otherwise, while it would still be correct to use .lcomm in some
554     // cases (e.g. when Align == 1), the external assembler might enfore
555     // some -unknown- default alignment behavior, which could cause
556     // spurious differences between external and integrated assembler.
557     // Prefer to simply fall back to .local / .comm in this case.
558     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
559       // .lcomm _foo, 42
560       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value());
561       return;
562     }
563 
564     // .local _foo
565     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566     // .comm _foo, 42, 4
567     const bool SupportsAlignment =
568         getObjFileLowering().getCommDirectiveSupportsAlignment();
569     OutStreamer->EmitCommonSymbol(GVSym, Size,
570                                   SupportsAlignment ? Alignment.value() : 0);
571     return;
572   }
573 
574   // Handle thread local data for mach-o which requires us to output an
575   // additional structure of data and mangle the original symbol so that we
576   // can reference it later.
577   //
578   // TODO: This should become an "emit thread local global" method on TLOF.
579   // All of this macho specific stuff should be sunk down into TLOFMachO and
580   // stuff like "TLSExtraDataSection" should no longer be part of the parent
581   // TLOF class.  This will also make it more obvious that stuff like
582   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
583   // specific code.
584   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
585     // Emit the .tbss symbol
586     MCSymbol *MangSym =
587         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
588 
589     if (GVKind.isThreadBSS()) {
590       TheSection = getObjFileLowering().getTLSBSSSection();
591       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
592     } else if (GVKind.isThreadData()) {
593       OutStreamer->SwitchSection(TheSection);
594 
595       EmitAlignment(Alignment, GV);
596       OutStreamer->EmitLabel(MangSym);
597 
598       EmitGlobalConstant(GV->getParent()->getDataLayout(),
599                          GV->getInitializer());
600     }
601 
602     OutStreamer->AddBlankLine();
603 
604     // Emit the variable struct for the runtime.
605     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
606 
607     OutStreamer->SwitchSection(TLVSect);
608     // Emit the linkage here.
609     EmitLinkage(GV, GVSym);
610     OutStreamer->EmitLabel(GVSym);
611 
612     // Three pointers in size:
613     //   - __tlv_bootstrap - used to make sure support exists
614     //   - spare pointer, used when mapped by the runtime
615     //   - pointer to mangled symbol above with initializer
616     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
617     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
618                                 PtrSize);
619     OutStreamer->EmitIntValue(0, PtrSize);
620     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
621 
622     OutStreamer->AddBlankLine();
623     return;
624   }
625 
626   MCSymbol *EmittedInitSym = GVSym;
627 
628   OutStreamer->SwitchSection(TheSection);
629 
630   EmitLinkage(GV, EmittedInitSym);
631   EmitAlignment(Alignment, GV);
632 
633   OutStreamer->EmitLabel(EmittedInitSym);
634 
635   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
636 
637   if (MAI->hasDotTypeDotSizeDirective())
638     // .size foo, 42
639     OutStreamer->emitELFSize(EmittedInitSym,
640                              MCConstantExpr::create(Size, OutContext));
641 
642   OutStreamer->AddBlankLine();
643 }
644 
645 /// Emit the directive and value for debug thread local expression
646 ///
647 /// \p Value - The value to emit.
648 /// \p Size - The size of the integer (in bytes) to emit.
649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
650   OutStreamer->EmitValue(Value, Size);
651 }
652 
653 /// EmitFunctionHeader - This method emits the header for the current
654 /// function.
655 void AsmPrinter::EmitFunctionHeader() {
656   const Function &F = MF->getFunction();
657 
658   if (isVerbose())
659     OutStreamer->GetCommentOS()
660         << "-- Begin function "
661         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
662 
663   // Print out constants referenced by the function
664   EmitConstantPool();
665 
666   // Print the 'header' of function.
667   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
668   EmitVisibility(CurrentFnSym, F.getVisibility());
669 
670   if (MAI->needsFunctionDescriptors() &&
671       F.getLinkage() != GlobalValue::InternalLinkage)
672     EmitLinkage(&F, CurrentFnDescSym);
673 
674   EmitLinkage(&F, CurrentFnSym);
675   if (MAI->hasFunctionAlignment())
676     EmitAlignment(MF->getAlignment(), &F);
677 
678   if (MAI->hasDotTypeDotSizeDirective())
679     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
680 
681   if (F.hasFnAttribute(Attribute::Cold))
682     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
683 
684   if (isVerbose()) {
685     F.printAsOperand(OutStreamer->GetCommentOS(),
686                    /*PrintType=*/false, F.getParent());
687     OutStreamer->GetCommentOS() << '\n';
688   }
689 
690   // Emit the prefix data.
691   if (F.hasPrefixData()) {
692     if (MAI->hasSubsectionsViaSymbols()) {
693       // Preserving prefix data on platforms which use subsections-via-symbols
694       // is a bit tricky. Here we introduce a symbol for the prefix data
695       // and use the .alt_entry attribute to mark the function's real entry point
696       // as an alternative entry point to the prefix-data symbol.
697       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
698       OutStreamer->EmitLabel(PrefixSym);
699 
700       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
701 
702       // Emit an .alt_entry directive for the actual function symbol.
703       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
704     } else {
705       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
706     }
707   }
708 
709   // Emit the function descriptor. This is a virtual function to allow targets
710   // to emit their specific function descriptor.
711   if (MAI->needsFunctionDescriptors())
712     EmitFunctionDescriptor();
713 
714   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
715   // their wild and crazy things as required.
716   EmitFunctionEntryLabel();
717 
718   if (CurrentFnBegin) {
719     if (MAI->useAssignmentForEHBegin()) {
720       MCSymbol *CurPos = OutContext.createTempSymbol();
721       OutStreamer->EmitLabel(CurPos);
722       OutStreamer->EmitAssignment(CurrentFnBegin,
723                                  MCSymbolRefExpr::create(CurPos, OutContext));
724     } else {
725       OutStreamer->EmitLabel(CurrentFnBegin);
726     }
727   }
728 
729   // Emit pre-function debug and/or EH information.
730   for (const HandlerInfo &HI : Handlers) {
731     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
732                        HI.TimerGroupDescription, TimePassesIsEnabled);
733     HI.Handler->beginFunction(MF);
734   }
735 
736   // Emit the prologue data.
737   if (F.hasPrologueData())
738     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
739 }
740 
741 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
742 /// function.  This can be overridden by targets as required to do custom stuff.
743 void AsmPrinter::EmitFunctionEntryLabel() {
744   CurrentFnSym->redefineIfPossible();
745 
746   // The function label could have already been emitted if two symbols end up
747   // conflicting due to asm renaming.  Detect this and emit an error.
748   if (CurrentFnSym->isVariable())
749     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
750                        "' is a protected alias");
751   if (CurrentFnSym->isDefined())
752     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
753                        "' label emitted multiple times to assembly file");
754 
755   return OutStreamer->EmitLabel(CurrentFnSym);
756 }
757 
758 /// emitComments - Pretty-print comments for instructions.
759 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
760   const MachineFunction *MF = MI.getMF();
761   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
762 
763   // Check for spills and reloads
764 
765   // We assume a single instruction only has a spill or reload, not
766   // both.
767   Optional<unsigned> Size;
768   if ((Size = MI.getRestoreSize(TII))) {
769     CommentOS << *Size << "-byte Reload\n";
770   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
771     if (*Size)
772       CommentOS << *Size << "-byte Folded Reload\n";
773   } else if ((Size = MI.getSpillSize(TII))) {
774     CommentOS << *Size << "-byte Spill\n";
775   } else if ((Size = MI.getFoldedSpillSize(TII))) {
776     if (*Size)
777       CommentOS << *Size << "-byte Folded Spill\n";
778   }
779 
780   // Check for spill-induced copies
781   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
782     CommentOS << " Reload Reuse\n";
783 }
784 
785 /// emitImplicitDef - This method emits the specified machine instruction
786 /// that is an implicit def.
787 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
788   Register RegNo = MI->getOperand(0).getReg();
789 
790   SmallString<128> Str;
791   raw_svector_ostream OS(Str);
792   OS << "implicit-def: "
793      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
794 
795   OutStreamer->AddComment(OS.str());
796   OutStreamer->AddBlankLine();
797 }
798 
799 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
800   std::string Str;
801   raw_string_ostream OS(Str);
802   OS << "kill:";
803   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
804     const MachineOperand &Op = MI->getOperand(i);
805     assert(Op.isReg() && "KILL instruction must have only register operands");
806     OS << ' ' << (Op.isDef() ? "def " : "killed ")
807        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
808   }
809   AP.OutStreamer->AddComment(OS.str());
810   AP.OutStreamer->AddBlankLine();
811 }
812 
813 /// emitDebugValueComment - This method handles the target-independent form
814 /// of DBG_VALUE, returning true if it was able to do so.  A false return
815 /// means the target will need to handle MI in EmitInstruction.
816 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
817   // This code handles only the 4-operand target-independent form.
818   if (MI->getNumOperands() != 4)
819     return false;
820 
821   SmallString<128> Str;
822   raw_svector_ostream OS(Str);
823   OS << "DEBUG_VALUE: ";
824 
825   const DILocalVariable *V = MI->getDebugVariable();
826   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
827     StringRef Name = SP->getName();
828     if (!Name.empty())
829       OS << Name << ":";
830   }
831   OS << V->getName();
832   OS << " <- ";
833 
834   // The second operand is only an offset if it's an immediate.
835   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
836   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
837   const DIExpression *Expr = MI->getDebugExpression();
838   if (Expr->getNumElements()) {
839     OS << '[';
840     bool NeedSep = false;
841     for (auto Op : Expr->expr_ops()) {
842       if (NeedSep)
843         OS << ", ";
844       else
845         NeedSep = true;
846       OS << dwarf::OperationEncodingString(Op.getOp());
847       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
848         OS << ' ' << Op.getArg(I);
849     }
850     OS << "] ";
851   }
852 
853   // Register or immediate value. Register 0 means undef.
854   if (MI->getOperand(0).isFPImm()) {
855     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
856     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
857       OS << (double)APF.convertToFloat();
858     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
859       OS << APF.convertToDouble();
860     } else {
861       // There is no good way to print long double.  Convert a copy to
862       // double.  Ah well, it's only a comment.
863       bool ignored;
864       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
865                   &ignored);
866       OS << "(long double) " << APF.convertToDouble();
867     }
868   } else if (MI->getOperand(0).isImm()) {
869     OS << MI->getOperand(0).getImm();
870   } else if (MI->getOperand(0).isCImm()) {
871     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
872   } else if (MI->getOperand(0).isTargetIndex()) {
873     auto Op = MI->getOperand(0);
874     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
875     return true;
876   } else {
877     unsigned Reg;
878     if (MI->getOperand(0).isReg()) {
879       Reg = MI->getOperand(0).getReg();
880     } else {
881       assert(MI->getOperand(0).isFI() && "Unknown operand type");
882       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
883       Offset += TFI->getFrameIndexReference(*AP.MF,
884                                             MI->getOperand(0).getIndex(), Reg);
885       MemLoc = true;
886     }
887     if (Reg == 0) {
888       // Suppress offset, it is not meaningful here.
889       OS << "undef";
890       // NOTE: Want this comment at start of line, don't emit with AddComment.
891       AP.OutStreamer->emitRawComment(OS.str());
892       return true;
893     }
894     if (MemLoc)
895       OS << '[';
896     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
897   }
898 
899   if (MemLoc)
900     OS << '+' << Offset << ']';
901 
902   // NOTE: Want this comment at start of line, don't emit with AddComment.
903   AP.OutStreamer->emitRawComment(OS.str());
904   return true;
905 }
906 
907 /// This method handles the target-independent form of DBG_LABEL, returning
908 /// true if it was able to do so.  A false return means the target will need
909 /// to handle MI in EmitInstruction.
910 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
911   if (MI->getNumOperands() != 1)
912     return false;
913 
914   SmallString<128> Str;
915   raw_svector_ostream OS(Str);
916   OS << "DEBUG_LABEL: ";
917 
918   const DILabel *V = MI->getDebugLabel();
919   if (auto *SP = dyn_cast<DISubprogram>(
920           V->getScope()->getNonLexicalBlockFileScope())) {
921     StringRef Name = SP->getName();
922     if (!Name.empty())
923       OS << Name << ":";
924   }
925   OS << V->getName();
926 
927   // NOTE: Want this comment at start of line, don't emit with AddComment.
928   AP.OutStreamer->emitRawComment(OS.str());
929   return true;
930 }
931 
932 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
933   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
934       MF->getFunction().needsUnwindTableEntry())
935     return CFI_M_EH;
936 
937   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
938     return CFI_M_Debug;
939 
940   return CFI_M_None;
941 }
942 
943 bool AsmPrinter::needsSEHMoves() {
944   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
945 }
946 
947 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
948   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
949   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
950       ExceptionHandlingType != ExceptionHandling::ARM)
951     return;
952 
953   if (needsCFIMoves() == CFI_M_None)
954     return;
955 
956   // If there is no "real" instruction following this CFI instruction, skip
957   // emitting it; it would be beyond the end of the function's FDE range.
958   auto *MBB = MI.getParent();
959   auto I = std::next(MI.getIterator());
960   while (I != MBB->end() && I->isTransient())
961     ++I;
962   if (I == MBB->instr_end() &&
963       MBB->getReverseIterator() == MBB->getParent()->rbegin())
964     return;
965 
966   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
967   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
968   const MCCFIInstruction &CFI = Instrs[CFIIndex];
969   emitCFIInstruction(CFI);
970 }
971 
972 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
973   // The operands are the MCSymbol and the frame offset of the allocation.
974   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
975   int FrameOffset = MI.getOperand(1).getImm();
976 
977   // Emit a symbol assignment.
978   OutStreamer->EmitAssignment(FrameAllocSym,
979                              MCConstantExpr::create(FrameOffset, OutContext));
980 }
981 
982 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
983   if (!MF.getTarget().Options.EmitStackSizeSection)
984     return;
985 
986   MCSection *StackSizeSection =
987       getObjFileLowering().getStackSizesSection(*getCurrentSection());
988   if (!StackSizeSection)
989     return;
990 
991   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
992   // Don't emit functions with dynamic stack allocations.
993   if (FrameInfo.hasVarSizedObjects())
994     return;
995 
996   OutStreamer->PushSection();
997   OutStreamer->SwitchSection(StackSizeSection);
998 
999   const MCSymbol *FunctionSymbol = getFunctionBegin();
1000   uint64_t StackSize = FrameInfo.getStackSize();
1001   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1002   OutStreamer->EmitULEB128IntValue(StackSize);
1003 
1004   OutStreamer->PopSection();
1005 }
1006 
1007 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1008                                            MachineModuleInfo *MMI) {
1009   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1010     return true;
1011 
1012   // We might emit an EH table that uses function begin and end labels even if
1013   // we don't have any landingpads.
1014   if (!MF.getFunction().hasPersonalityFn())
1015     return false;
1016   return !isNoOpWithoutInvoke(
1017       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1018 }
1019 
1020 /// EmitFunctionBody - This method emits the body and trailer for a
1021 /// function.
1022 void AsmPrinter::EmitFunctionBody() {
1023   EmitFunctionHeader();
1024 
1025   // Emit target-specific gunk before the function body.
1026   EmitFunctionBodyStart();
1027 
1028   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1029 
1030   if (isVerbose()) {
1031     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1032     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1033     if (!MDT) {
1034       OwnedMDT = std::make_unique<MachineDominatorTree>();
1035       OwnedMDT->getBase().recalculate(*MF);
1036       MDT = OwnedMDT.get();
1037     }
1038 
1039     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1040     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1041     if (!MLI) {
1042       OwnedMLI = std::make_unique<MachineLoopInfo>();
1043       OwnedMLI->getBase().analyze(MDT->getBase());
1044       MLI = OwnedMLI.get();
1045     }
1046   }
1047 
1048   // Print out code for the function.
1049   bool HasAnyRealCode = false;
1050   int NumInstsInFunction = 0;
1051   for (auto &MBB : *MF) {
1052     // Print a label for the basic block.
1053     EmitBasicBlockStart(MBB);
1054     for (auto &MI : MBB) {
1055       // Print the assembly for the instruction.
1056       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1057           !MI.isDebugInstr()) {
1058         HasAnyRealCode = true;
1059         ++NumInstsInFunction;
1060       }
1061 
1062       // If there is a pre-instruction symbol, emit a label for it here.
1063       if (MCSymbol *S = MI.getPreInstrSymbol())
1064         OutStreamer->EmitLabel(S);
1065 
1066       if (ShouldPrintDebugScopes) {
1067         for (const HandlerInfo &HI : Handlers) {
1068           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1069                              HI.TimerGroupName, HI.TimerGroupDescription,
1070                              TimePassesIsEnabled);
1071           HI.Handler->beginInstruction(&MI);
1072         }
1073       }
1074 
1075       if (isVerbose())
1076         emitComments(MI, OutStreamer->GetCommentOS());
1077 
1078       switch (MI.getOpcode()) {
1079       case TargetOpcode::CFI_INSTRUCTION:
1080         emitCFIInstruction(MI);
1081         break;
1082       case TargetOpcode::LOCAL_ESCAPE:
1083         emitFrameAlloc(MI);
1084         break;
1085       case TargetOpcode::ANNOTATION_LABEL:
1086       case TargetOpcode::EH_LABEL:
1087       case TargetOpcode::GC_LABEL:
1088         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1089         break;
1090       case TargetOpcode::INLINEASM:
1091       case TargetOpcode::INLINEASM_BR:
1092         EmitInlineAsm(&MI);
1093         break;
1094       case TargetOpcode::DBG_VALUE:
1095         if (isVerbose()) {
1096           if (!emitDebugValueComment(&MI, *this))
1097             EmitInstruction(&MI);
1098         }
1099         break;
1100       case TargetOpcode::DBG_LABEL:
1101         if (isVerbose()) {
1102           if (!emitDebugLabelComment(&MI, *this))
1103             EmitInstruction(&MI);
1104         }
1105         break;
1106       case TargetOpcode::IMPLICIT_DEF:
1107         if (isVerbose()) emitImplicitDef(&MI);
1108         break;
1109       case TargetOpcode::KILL:
1110         if (isVerbose()) emitKill(&MI, *this);
1111         break;
1112       default:
1113         EmitInstruction(&MI);
1114         break;
1115       }
1116 
1117       // If there is a post-instruction symbol, emit a label for it here.
1118       if (MCSymbol *S = MI.getPostInstrSymbol())
1119         OutStreamer->EmitLabel(S);
1120 
1121       if (ShouldPrintDebugScopes) {
1122         for (const HandlerInfo &HI : Handlers) {
1123           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1124                              HI.TimerGroupName, HI.TimerGroupDescription,
1125                              TimePassesIsEnabled);
1126           HI.Handler->endInstruction();
1127         }
1128       }
1129     }
1130 
1131     EmitBasicBlockEnd(MBB);
1132   }
1133 
1134   EmittedInsts += NumInstsInFunction;
1135   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1136                                       MF->getFunction().getSubprogram(),
1137                                       &MF->front());
1138   R << ore::NV("NumInstructions", NumInstsInFunction)
1139     << " instructions in function";
1140   ORE->emit(R);
1141 
1142   // If the function is empty and the object file uses .subsections_via_symbols,
1143   // then we need to emit *something* to the function body to prevent the
1144   // labels from collapsing together.  Just emit a noop.
1145   // Similarly, don't emit empty functions on Windows either. It can lead to
1146   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1147   // after linking, causing the kernel not to load the binary:
1148   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1149   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1150   const Triple &TT = TM.getTargetTriple();
1151   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1152                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1153     MCInst Noop;
1154     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1155 
1156     // Targets can opt-out of emitting the noop here by leaving the opcode
1157     // unspecified.
1158     if (Noop.getOpcode()) {
1159       OutStreamer->AddComment("avoids zero-length function");
1160       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1161     }
1162   }
1163 
1164   const Function &F = MF->getFunction();
1165   for (const auto &BB : F) {
1166     if (!BB.hasAddressTaken())
1167       continue;
1168     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1169     if (Sym->isDefined())
1170       continue;
1171     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1172     OutStreamer->EmitLabel(Sym);
1173   }
1174 
1175   // Emit target-specific gunk after the function body.
1176   EmitFunctionBodyEnd();
1177 
1178   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1179       MAI->hasDotTypeDotSizeDirective()) {
1180     // Create a symbol for the end of function.
1181     CurrentFnEnd = createTempSymbol("func_end");
1182     OutStreamer->EmitLabel(CurrentFnEnd);
1183   }
1184 
1185   // If the target wants a .size directive for the size of the function, emit
1186   // it.
1187   if (MAI->hasDotTypeDotSizeDirective()) {
1188     // We can get the size as difference between the function label and the
1189     // temp label.
1190     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1191         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1192         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1193     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1194   }
1195 
1196   for (const HandlerInfo &HI : Handlers) {
1197     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1198                        HI.TimerGroupDescription, TimePassesIsEnabled);
1199     HI.Handler->markFunctionEnd();
1200   }
1201 
1202   // Print out jump tables referenced by the function.
1203   EmitJumpTableInfo();
1204 
1205   // Emit post-function debug and/or EH information.
1206   for (const HandlerInfo &HI : Handlers) {
1207     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1208                        HI.TimerGroupDescription, TimePassesIsEnabled);
1209     HI.Handler->endFunction(MF);
1210   }
1211 
1212   // Emit section containing stack size metadata.
1213   emitStackSizeSection(*MF);
1214 
1215   emitPatchableFunctionEntries();
1216 
1217   if (isVerbose())
1218     OutStreamer->GetCommentOS() << "-- End function\n";
1219 
1220   OutStreamer->AddBlankLine();
1221 }
1222 
1223 /// Compute the number of Global Variables that uses a Constant.
1224 static unsigned getNumGlobalVariableUses(const Constant *C) {
1225   if (!C)
1226     return 0;
1227 
1228   if (isa<GlobalVariable>(C))
1229     return 1;
1230 
1231   unsigned NumUses = 0;
1232   for (auto *CU : C->users())
1233     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1234 
1235   return NumUses;
1236 }
1237 
1238 /// Only consider global GOT equivalents if at least one user is a
1239 /// cstexpr inside an initializer of another global variables. Also, don't
1240 /// handle cstexpr inside instructions. During global variable emission,
1241 /// candidates are skipped and are emitted later in case at least one cstexpr
1242 /// isn't replaced by a PC relative GOT entry access.
1243 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1244                                      unsigned &NumGOTEquivUsers) {
1245   // Global GOT equivalents are unnamed private globals with a constant
1246   // pointer initializer to another global symbol. They must point to a
1247   // GlobalVariable or Function, i.e., as GlobalValue.
1248   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1249       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1250       !isa<GlobalValue>(GV->getOperand(0)))
1251     return false;
1252 
1253   // To be a got equivalent, at least one of its users need to be a constant
1254   // expression used by another global variable.
1255   for (auto *U : GV->users())
1256     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1257 
1258   return NumGOTEquivUsers > 0;
1259 }
1260 
1261 /// Unnamed constant global variables solely contaning a pointer to
1262 /// another globals variable is equivalent to a GOT table entry; it contains the
1263 /// the address of another symbol. Optimize it and replace accesses to these
1264 /// "GOT equivalents" by using the GOT entry for the final global instead.
1265 /// Compute GOT equivalent candidates among all global variables to avoid
1266 /// emitting them if possible later on, after it use is replaced by a GOT entry
1267 /// access.
1268 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1269   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1270     return;
1271 
1272   for (const auto &G : M.globals()) {
1273     unsigned NumGOTEquivUsers = 0;
1274     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1275       continue;
1276 
1277     const MCSymbol *GOTEquivSym = getSymbol(&G);
1278     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1279   }
1280 }
1281 
1282 /// Constant expressions using GOT equivalent globals may not be eligible
1283 /// for PC relative GOT entry conversion, in such cases we need to emit such
1284 /// globals we previously omitted in EmitGlobalVariable.
1285 void AsmPrinter::emitGlobalGOTEquivs() {
1286   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1287     return;
1288 
1289   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1290   for (auto &I : GlobalGOTEquivs) {
1291     const GlobalVariable *GV = I.second.first;
1292     unsigned Cnt = I.second.second;
1293     if (Cnt)
1294       FailedCandidates.push_back(GV);
1295   }
1296   GlobalGOTEquivs.clear();
1297 
1298   for (auto *GV : FailedCandidates)
1299     EmitGlobalVariable(GV);
1300 }
1301 
1302 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1303                                           const GlobalIndirectSymbol& GIS) {
1304   MCSymbol *Name = getSymbol(&GIS);
1305 
1306   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1307     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1308   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1309     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1310   else
1311     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1312 
1313   bool IsFunction = GIS.getValueType()->isFunctionTy();
1314 
1315   // Treat bitcasts of functions as functions also. This is important at least
1316   // on WebAssembly where object and function addresses can't alias each other.
1317   if (!IsFunction)
1318     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1319       if (CE->getOpcode() == Instruction::BitCast)
1320         IsFunction =
1321           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1322 
1323   // Set the symbol type to function if the alias has a function type.
1324   // This affects codegen when the aliasee is not a function.
1325   if (IsFunction)
1326     OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1327                                                ? MCSA_ELF_TypeIndFunction
1328                                                : MCSA_ELF_TypeFunction);
1329 
1330   EmitVisibility(Name, GIS.getVisibility());
1331 
1332   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1333 
1334   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1335     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1336 
1337   // Emit the directives as assignments aka .set:
1338   OutStreamer->EmitAssignment(Name, Expr);
1339 
1340   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1341     // If the aliasee does not correspond to a symbol in the output, i.e. the
1342     // alias is not of an object or the aliased object is private, then set the
1343     // size of the alias symbol from the type of the alias. We don't do this in
1344     // other situations as the alias and aliasee having differing types but same
1345     // size may be intentional.
1346     const GlobalObject *BaseObject = GA->getBaseObject();
1347     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1348         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1349       const DataLayout &DL = M.getDataLayout();
1350       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1351       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1352     }
1353   }
1354 }
1355 
1356 void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) {
1357   if (!RS.needsSection())
1358     return;
1359 
1360   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1361 
1362   Optional<SmallString<128>> Filename;
1363   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1364     Filename = *FilenameRef;
1365     sys::fs::make_absolute(*Filename);
1366     assert(!Filename->empty() && "The filename can't be empty.");
1367   }
1368 
1369   std::string Buf;
1370   raw_string_ostream OS(Buf);
1371   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1372       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1373                : RemarkSerializer.metaSerializer(OS);
1374   MetaSerializer->emit();
1375 
1376   // Switch to the remarks section.
1377   MCSection *RemarksSection =
1378       OutContext.getObjectFileInfo()->getRemarksSection();
1379   OutStreamer->SwitchSection(RemarksSection);
1380 
1381   OutStreamer->EmitBinaryData(OS.str());
1382 }
1383 
1384 bool AsmPrinter::doFinalization(Module &M) {
1385   // Set the MachineFunction to nullptr so that we can catch attempted
1386   // accesses to MF specific features at the module level and so that
1387   // we can conditionalize accesses based on whether or not it is nullptr.
1388   MF = nullptr;
1389 
1390   // Gather all GOT equivalent globals in the module. We really need two
1391   // passes over the globals: one to compute and another to avoid its emission
1392   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1393   // where the got equivalent shows up before its use.
1394   computeGlobalGOTEquivs(M);
1395 
1396   // Emit global variables.
1397   for (const auto &G : M.globals())
1398     EmitGlobalVariable(&G);
1399 
1400   // Emit remaining GOT equivalent globals.
1401   emitGlobalGOTEquivs();
1402 
1403   // Emit visibility info for declarations
1404   for (const Function &F : M) {
1405     if (!F.isDeclarationForLinker())
1406       continue;
1407     GlobalValue::VisibilityTypes V = F.getVisibility();
1408     if (V == GlobalValue::DefaultVisibility)
1409       continue;
1410 
1411     MCSymbol *Name = getSymbol(&F);
1412     EmitVisibility(Name, V, false);
1413   }
1414 
1415   // Emit the remarks section contents.
1416   // FIXME: Figure out when is the safest time to emit this section. It should
1417   // not come after debug info.
1418   if (RemarkStreamer *RS = M.getContext().getRemarkStreamer())
1419     emitRemarksSection(*RS);
1420 
1421   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1422 
1423   TLOF.emitModuleMetadata(*OutStreamer, M);
1424 
1425   if (TM.getTargetTriple().isOSBinFormatELF()) {
1426     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1427 
1428     // Output stubs for external and common global variables.
1429     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1430     if (!Stubs.empty()) {
1431       OutStreamer->SwitchSection(TLOF.getDataSection());
1432       const DataLayout &DL = M.getDataLayout();
1433 
1434       EmitAlignment(Align(DL.getPointerSize()));
1435       for (const auto &Stub : Stubs) {
1436         OutStreamer->EmitLabel(Stub.first);
1437         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1438                                      DL.getPointerSize());
1439       }
1440     }
1441   }
1442 
1443   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1444     MachineModuleInfoCOFF &MMICOFF =
1445         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1446 
1447     // Output stubs for external and common global variables.
1448     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1449     if (!Stubs.empty()) {
1450       const DataLayout &DL = M.getDataLayout();
1451 
1452       for (const auto &Stub : Stubs) {
1453         SmallString<256> SectionName = StringRef(".rdata$");
1454         SectionName += Stub.first->getName();
1455         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1456             SectionName,
1457             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1458                 COFF::IMAGE_SCN_LNK_COMDAT,
1459             SectionKind::getReadOnly(), Stub.first->getName(),
1460             COFF::IMAGE_COMDAT_SELECT_ANY));
1461         EmitAlignment(Align(DL.getPointerSize()));
1462         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1463         OutStreamer->EmitLabel(Stub.first);
1464         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1465                                      DL.getPointerSize());
1466       }
1467     }
1468   }
1469 
1470   // Finalize debug and EH information.
1471   for (const HandlerInfo &HI : Handlers) {
1472     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1473                        HI.TimerGroupDescription, TimePassesIsEnabled);
1474     HI.Handler->endModule();
1475   }
1476   Handlers.clear();
1477   DD = nullptr;
1478 
1479   // If the target wants to know about weak references, print them all.
1480   if (MAI->getWeakRefDirective()) {
1481     // FIXME: This is not lazy, it would be nice to only print weak references
1482     // to stuff that is actually used.  Note that doing so would require targets
1483     // to notice uses in operands (due to constant exprs etc).  This should
1484     // happen with the MC stuff eventually.
1485 
1486     // Print out module-level global objects here.
1487     for (const auto &GO : M.global_objects()) {
1488       if (!GO.hasExternalWeakLinkage())
1489         continue;
1490       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1491     }
1492   }
1493 
1494   // Print aliases in topological order, that is, for each alias a = b,
1495   // b must be printed before a.
1496   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1497   // such an order to generate correct TOC information.
1498   SmallVector<const GlobalAlias *, 16> AliasStack;
1499   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1500   for (const auto &Alias : M.aliases()) {
1501     for (const GlobalAlias *Cur = &Alias; Cur;
1502          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1503       if (!AliasVisited.insert(Cur).second)
1504         break;
1505       AliasStack.push_back(Cur);
1506     }
1507     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1508       emitGlobalIndirectSymbol(M, *AncestorAlias);
1509     AliasStack.clear();
1510   }
1511   for (const auto &IFunc : M.ifuncs())
1512     emitGlobalIndirectSymbol(M, IFunc);
1513 
1514   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1515   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1516   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1517     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1518       MP->finishAssembly(M, *MI, *this);
1519 
1520   // Emit llvm.ident metadata in an '.ident' directive.
1521   EmitModuleIdents(M);
1522 
1523   // Emit bytes for llvm.commandline metadata.
1524   EmitModuleCommandLines(M);
1525 
1526   // Emit __morestack address if needed for indirect calls.
1527   if (MMI->usesMorestackAddr()) {
1528     unsigned Align = 1;
1529     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1530         getDataLayout(), SectionKind::getReadOnly(),
1531         /*C=*/nullptr, Align);
1532     OutStreamer->SwitchSection(ReadOnlySection);
1533 
1534     MCSymbol *AddrSymbol =
1535         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1536     OutStreamer->EmitLabel(AddrSymbol);
1537 
1538     unsigned PtrSize = MAI->getCodePointerSize();
1539     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1540                                  PtrSize);
1541   }
1542 
1543   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1544   // split-stack is used.
1545   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1546     OutStreamer->SwitchSection(
1547         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1548     if (MMI->hasNosplitStack())
1549       OutStreamer->SwitchSection(
1550           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1551   }
1552 
1553   // If we don't have any trampolines, then we don't require stack memory
1554   // to be executable. Some targets have a directive to declare this.
1555   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1556   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1557     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1558       OutStreamer->SwitchSection(S);
1559 
1560   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1561     // Emit /EXPORT: flags for each exported global as necessary.
1562     const auto &TLOF = getObjFileLowering();
1563     std::string Flags;
1564 
1565     for (const GlobalValue &GV : M.global_values()) {
1566       raw_string_ostream OS(Flags);
1567       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1568       OS.flush();
1569       if (!Flags.empty()) {
1570         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1571         OutStreamer->EmitBytes(Flags);
1572       }
1573       Flags.clear();
1574     }
1575 
1576     // Emit /INCLUDE: flags for each used global as necessary.
1577     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1578       assert(LU->hasInitializer() &&
1579              "expected llvm.used to have an initializer");
1580       assert(isa<ArrayType>(LU->getValueType()) &&
1581              "expected llvm.used to be an array type");
1582       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1583         for (const Value *Op : A->operands()) {
1584           const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1585           // Global symbols with internal or private linkage are not visible to
1586           // the linker, and thus would cause an error when the linker tried to
1587           // preserve the symbol due to the `/include:` directive.
1588           if (GV->hasLocalLinkage())
1589             continue;
1590 
1591           raw_string_ostream OS(Flags);
1592           TLOF.emitLinkerFlagsForUsed(OS, GV);
1593           OS.flush();
1594 
1595           if (!Flags.empty()) {
1596             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1597             OutStreamer->EmitBytes(Flags);
1598           }
1599           Flags.clear();
1600         }
1601       }
1602     }
1603   }
1604 
1605   if (TM.Options.EmitAddrsig) {
1606     // Emit address-significance attributes for all globals.
1607     OutStreamer->EmitAddrsig();
1608     for (const GlobalValue &GV : M.global_values())
1609       if (!GV.use_empty() && !GV.isThreadLocal() &&
1610           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1611           !GV.hasAtLeastLocalUnnamedAddr())
1612         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1613   }
1614 
1615   // Emit symbol partition specifications (ELF only).
1616   if (TM.getTargetTriple().isOSBinFormatELF()) {
1617     unsigned UniqueID = 0;
1618     for (const GlobalValue &GV : M.global_values()) {
1619       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1620           GV.getVisibility() != GlobalValue::DefaultVisibility)
1621         continue;
1622 
1623       OutStreamer->SwitchSection(OutContext.getELFSection(
1624           ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1625       OutStreamer->EmitBytes(GV.getPartition());
1626       OutStreamer->EmitZeros(1);
1627       OutStreamer->EmitValue(
1628           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1629           MAI->getCodePointerSize());
1630     }
1631   }
1632 
1633   // Allow the target to emit any magic that it wants at the end of the file,
1634   // after everything else has gone out.
1635   EmitEndOfAsmFile(M);
1636 
1637   MMI = nullptr;
1638 
1639   OutStreamer->Finish();
1640   OutStreamer->reset();
1641   OwnedMLI.reset();
1642   OwnedMDT.reset();
1643 
1644   return false;
1645 }
1646 
1647 MCSymbol *AsmPrinter::getCurExceptionSym() {
1648   if (!CurExceptionSym)
1649     CurExceptionSym = createTempSymbol("exception");
1650   return CurExceptionSym;
1651 }
1652 
1653 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1654   this->MF = &MF;
1655   const Function &F = MF.getFunction();
1656 
1657   // Get the function symbol.
1658   if (MAI->needsFunctionDescriptors()) {
1659     assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only"
1660                                              " supported on AIX.");
1661     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1662 		                           " initalized first.");
1663 
1664     // Get the function entry point symbol.
1665     CurrentFnSym =
1666         OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName());
1667 
1668     MCSectionXCOFF *FnEntryPointSec =
1669         cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM));
1670     // Set the containing csect.
1671     cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec);
1672   } else {
1673     CurrentFnSym = getSymbol(&MF.getFunction());
1674   }
1675 
1676   CurrentFnSymForSize = CurrentFnSym;
1677   CurrentFnBegin = nullptr;
1678   CurExceptionSym = nullptr;
1679   bool NeedsLocalForSize = MAI->needsLocalForSize();
1680   if (F.hasFnAttribute("patchable-function-entry") ||
1681       needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1682       MF.getTarget().Options.EmitStackSizeSection) {
1683     CurrentFnBegin = createTempSymbol("func_begin");
1684     if (NeedsLocalForSize)
1685       CurrentFnSymForSize = CurrentFnBegin;
1686   }
1687 
1688   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1689   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1690   MBFI = (PSI && PSI->hasProfileSummary()) ?
1691          // ORE conditionally computes MBFI. If available, use it, otherwise
1692          // request it.
1693          (ORE->getBFI() ? ORE->getBFI() :
1694           &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) :
1695          nullptr;
1696 }
1697 
1698 namespace {
1699 
1700 // Keep track the alignment, constpool entries per Section.
1701   struct SectionCPs {
1702     MCSection *S;
1703     unsigned Alignment;
1704     SmallVector<unsigned, 4> CPEs;
1705 
1706     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1707   };
1708 
1709 } // end anonymous namespace
1710 
1711 /// EmitConstantPool - Print to the current output stream assembly
1712 /// representations of the constants in the constant pool MCP. This is
1713 /// used to print out constants which have been "spilled to memory" by
1714 /// the code generator.
1715 void AsmPrinter::EmitConstantPool() {
1716   const MachineConstantPool *MCP = MF->getConstantPool();
1717   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1718   if (CP.empty()) return;
1719 
1720   // Calculate sections for constant pool entries. We collect entries to go into
1721   // the same section together to reduce amount of section switch statements.
1722   SmallVector<SectionCPs, 4> CPSections;
1723   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1724     const MachineConstantPoolEntry &CPE = CP[i];
1725     unsigned Align = CPE.getAlignment();
1726 
1727     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1728 
1729     const Constant *C = nullptr;
1730     if (!CPE.isMachineConstantPoolEntry())
1731       C = CPE.Val.ConstVal;
1732 
1733     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1734                                                               Kind, C, Align);
1735 
1736     // The number of sections are small, just do a linear search from the
1737     // last section to the first.
1738     bool Found = false;
1739     unsigned SecIdx = CPSections.size();
1740     while (SecIdx != 0) {
1741       if (CPSections[--SecIdx].S == S) {
1742         Found = true;
1743         break;
1744       }
1745     }
1746     if (!Found) {
1747       SecIdx = CPSections.size();
1748       CPSections.push_back(SectionCPs(S, Align));
1749     }
1750 
1751     if (Align > CPSections[SecIdx].Alignment)
1752       CPSections[SecIdx].Alignment = Align;
1753     CPSections[SecIdx].CPEs.push_back(i);
1754   }
1755 
1756   // Now print stuff into the calculated sections.
1757   const MCSection *CurSection = nullptr;
1758   unsigned Offset = 0;
1759   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1760     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1761       unsigned CPI = CPSections[i].CPEs[j];
1762       MCSymbol *Sym = GetCPISymbol(CPI);
1763       if (!Sym->isUndefined())
1764         continue;
1765 
1766       if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1767         cast<MCSymbolXCOFF>(Sym)->setContainingCsect(
1768             cast<MCSectionXCOFF>(CPSections[i].S));
1769       }
1770 
1771       if (CurSection != CPSections[i].S) {
1772         OutStreamer->SwitchSection(CPSections[i].S);
1773         EmitAlignment(Align(CPSections[i].Alignment));
1774         CurSection = CPSections[i].S;
1775         Offset = 0;
1776       }
1777 
1778       MachineConstantPoolEntry CPE = CP[CPI];
1779 
1780       // Emit inter-object padding for alignment.
1781       unsigned AlignMask = CPE.getAlignment() - 1;
1782       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1783       OutStreamer->EmitZeros(NewOffset - Offset);
1784 
1785       Type *Ty = CPE.getType();
1786       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1787 
1788       OutStreamer->EmitLabel(Sym);
1789       if (CPE.isMachineConstantPoolEntry())
1790         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1791       else
1792         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1793     }
1794   }
1795 }
1796 
1797 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1798 /// by the current function to the current output stream.
1799 void AsmPrinter::EmitJumpTableInfo() {
1800   const DataLayout &DL = MF->getDataLayout();
1801   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1802   if (!MJTI) return;
1803   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1804   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1805   if (JT.empty()) return;
1806 
1807   // Pick the directive to use to print the jump table entries, and switch to
1808   // the appropriate section.
1809   const Function &F = MF->getFunction();
1810   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1811   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1812       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1813       F);
1814   if (JTInDiffSection) {
1815     // Drop it in the readonly section.
1816     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1817     OutStreamer->SwitchSection(ReadOnlySection);
1818   }
1819 
1820   EmitAlignment(Align(MJTI->getEntryAlignment(DL)));
1821 
1822   // Jump tables in code sections are marked with a data_region directive
1823   // where that's supported.
1824   if (!JTInDiffSection)
1825     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1826 
1827   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1828     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1829 
1830     // If this jump table was deleted, ignore it.
1831     if (JTBBs.empty()) continue;
1832 
1833     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1834     /// emit a .set directive for each unique entry.
1835     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1836         MAI->doesSetDirectiveSuppressReloc()) {
1837       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1838       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1839       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1840       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1841         const MachineBasicBlock *MBB = JTBBs[ii];
1842         if (!EmittedSets.insert(MBB).second)
1843           continue;
1844 
1845         // .set LJTSet, LBB32-base
1846         const MCExpr *LHS =
1847           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1848         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1849                                     MCBinaryExpr::createSub(LHS, Base,
1850                                                             OutContext));
1851       }
1852     }
1853 
1854     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1855     // before each jump table.  The first label is never referenced, but tells
1856     // the assembler and linker the extents of the jump table object.  The
1857     // second label is actually referenced by the code.
1858     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1859       // FIXME: This doesn't have to have any specific name, just any randomly
1860       // named and numbered local label started with 'l' would work.  Simplify
1861       // GetJTISymbol.
1862       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1863 
1864     MCSymbol* JTISymbol = GetJTISymbol(JTI);
1865     if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1866       cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect(
1867           cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM)));
1868     }
1869     OutStreamer->EmitLabel(JTISymbol);
1870 
1871     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1872       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1873   }
1874   if (!JTInDiffSection)
1875     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1876 }
1877 
1878 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1879 /// current stream.
1880 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1881                                     const MachineBasicBlock *MBB,
1882                                     unsigned UID) const {
1883   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1884   const MCExpr *Value = nullptr;
1885   switch (MJTI->getEntryKind()) {
1886   case MachineJumpTableInfo::EK_Inline:
1887     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1888   case MachineJumpTableInfo::EK_Custom32:
1889     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1890         MJTI, MBB, UID, OutContext);
1891     break;
1892   case MachineJumpTableInfo::EK_BlockAddress:
1893     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1894     //     .word LBB123
1895     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1896     break;
1897   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1898     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1899     // with a relocation as gp-relative, e.g.:
1900     //     .gprel32 LBB123
1901     MCSymbol *MBBSym = MBB->getSymbol();
1902     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1903     return;
1904   }
1905 
1906   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1907     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1908     // with a relocation as gp-relative, e.g.:
1909     //     .gpdword LBB123
1910     MCSymbol *MBBSym = MBB->getSymbol();
1911     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1912     return;
1913   }
1914 
1915   case MachineJumpTableInfo::EK_LabelDifference32: {
1916     // Each entry is the address of the block minus the address of the jump
1917     // table. This is used for PIC jump tables where gprel32 is not supported.
1918     // e.g.:
1919     //      .word LBB123 - LJTI1_2
1920     // If the .set directive avoids relocations, this is emitted as:
1921     //      .set L4_5_set_123, LBB123 - LJTI1_2
1922     //      .word L4_5_set_123
1923     if (MAI->doesSetDirectiveSuppressReloc()) {
1924       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1925                                       OutContext);
1926       break;
1927     }
1928     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1929     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1930     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1931     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1932     break;
1933   }
1934   }
1935 
1936   assert(Value && "Unknown entry kind!");
1937 
1938   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1939   OutStreamer->EmitValue(Value, EntrySize);
1940 }
1941 
1942 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1943 /// special global used by LLVM.  If so, emit it and return true, otherwise
1944 /// do nothing and return false.
1945 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1946   if (GV->getName() == "llvm.used") {
1947     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1948       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1949     return true;
1950   }
1951 
1952   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1953   if (GV->getSection() == "llvm.metadata" ||
1954       GV->hasAvailableExternallyLinkage())
1955     return true;
1956 
1957   if (!GV->hasAppendingLinkage()) return false;
1958 
1959   assert(GV->hasInitializer() && "Not a special LLVM global!");
1960 
1961   if (GV->getName() == "llvm.global_ctors") {
1962     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1963                        /* isCtor */ true);
1964 
1965     return true;
1966   }
1967 
1968   if (GV->getName() == "llvm.global_dtors") {
1969     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1970                        /* isCtor */ false);
1971 
1972     return true;
1973   }
1974 
1975   report_fatal_error("unknown special variable");
1976 }
1977 
1978 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1979 /// global in the specified llvm.used list.
1980 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1981   // Should be an array of 'i8*'.
1982   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1983     const GlobalValue *GV =
1984       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1985     if (GV)
1986       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1987   }
1988 }
1989 
1990 namespace {
1991 
1992 struct Structor {
1993   int Priority = 0;
1994   Constant *Func = nullptr;
1995   GlobalValue *ComdatKey = nullptr;
1996 
1997   Structor() = default;
1998 };
1999 
2000 } // end anonymous namespace
2001 
2002 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2003 /// priority.
2004 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
2005                                     bool isCtor) {
2006   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
2007   // init priority.
2008   if (!isa<ConstantArray>(List)) return;
2009 
2010   // Sanity check the structors list.
2011   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
2012   if (!InitList) return; // Not an array!
2013   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
2014   if (!ETy || ETy->getNumElements() != 3 ||
2015       !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
2016       !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
2017       !isa<PointerType>(ETy->getTypeAtIndex(2U)))
2018     return; // Not (int, ptr, ptr).
2019 
2020   // Gather the structors in a form that's convenient for sorting by priority.
2021   SmallVector<Structor, 8> Structors;
2022   for (Value *O : InitList->operands()) {
2023     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
2024     if (!CS) continue; // Malformed.
2025     if (CS->getOperand(1)->isNullValue())
2026       break;  // Found a null terminator, skip the rest.
2027     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2028     if (!Priority) continue; // Malformed.
2029     Structors.push_back(Structor());
2030     Structor &S = Structors.back();
2031     S.Priority = Priority->getLimitedValue(65535);
2032     S.Func = CS->getOperand(1);
2033     if (!CS->getOperand(2)->isNullValue())
2034       S.ComdatKey =
2035           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2036   }
2037 
2038   // Emit the function pointers in the target-specific order
2039   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2040     return L.Priority < R.Priority;
2041   });
2042   const Align Align = DL.getPointerPrefAlignment();
2043   for (Structor &S : Structors) {
2044     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2045     const MCSymbol *KeySym = nullptr;
2046     if (GlobalValue *GV = S.ComdatKey) {
2047       if (GV->isDeclarationForLinker())
2048         // If the associated variable is not defined in this module
2049         // (it might be available_externally, or have been an
2050         // available_externally definition that was dropped by the
2051         // EliminateAvailableExternally pass), some other TU
2052         // will provide its dynamic initializer.
2053         continue;
2054 
2055       KeySym = getSymbol(GV);
2056     }
2057     MCSection *OutputSection =
2058         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2059                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2060     OutStreamer->SwitchSection(OutputSection);
2061     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2062       EmitAlignment(Align);
2063     EmitXXStructor(DL, S.Func);
2064   }
2065 }
2066 
2067 void AsmPrinter::EmitModuleIdents(Module &M) {
2068   if (!MAI->hasIdentDirective())
2069     return;
2070 
2071   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2072     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2073       const MDNode *N = NMD->getOperand(i);
2074       assert(N->getNumOperands() == 1 &&
2075              "llvm.ident metadata entry can have only one operand");
2076       const MDString *S = cast<MDString>(N->getOperand(0));
2077       OutStreamer->EmitIdent(S->getString());
2078     }
2079   }
2080 }
2081 
2082 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2083   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2084   if (!CommandLine)
2085     return;
2086 
2087   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2088   if (!NMD || !NMD->getNumOperands())
2089     return;
2090 
2091   OutStreamer->PushSection();
2092   OutStreamer->SwitchSection(CommandLine);
2093   OutStreamer->EmitZeros(1);
2094   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2095     const MDNode *N = NMD->getOperand(i);
2096     assert(N->getNumOperands() == 1 &&
2097            "llvm.commandline metadata entry can have only one operand");
2098     const MDString *S = cast<MDString>(N->getOperand(0));
2099     OutStreamer->EmitBytes(S->getString());
2100     OutStreamer->EmitZeros(1);
2101   }
2102   OutStreamer->PopSection();
2103 }
2104 
2105 //===--------------------------------------------------------------------===//
2106 // Emission and print routines
2107 //
2108 
2109 /// Emit a byte directive and value.
2110 ///
2111 void AsmPrinter::emitInt8(int Value) const {
2112   OutStreamer->EmitIntValue(Value, 1);
2113 }
2114 
2115 /// Emit a short directive and value.
2116 void AsmPrinter::emitInt16(int Value) const {
2117   OutStreamer->EmitIntValue(Value, 2);
2118 }
2119 
2120 /// Emit a long directive and value.
2121 void AsmPrinter::emitInt32(int Value) const {
2122   OutStreamer->EmitIntValue(Value, 4);
2123 }
2124 
2125 /// Emit a long long directive and value.
2126 void AsmPrinter::emitInt64(uint64_t Value) const {
2127   OutStreamer->EmitIntValue(Value, 8);
2128 }
2129 
2130 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2131 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2132 /// .set if it avoids relocations.
2133 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2134                                      unsigned Size) const {
2135   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2136 }
2137 
2138 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2139 /// where the size in bytes of the directive is specified by Size and Label
2140 /// specifies the label.  This implicitly uses .set if it is available.
2141 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2142                                      unsigned Size,
2143                                      bool IsSectionRelative) const {
2144   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2145     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2146     if (Size > 4)
2147       OutStreamer->EmitZeros(Size - 4);
2148     return;
2149   }
2150 
2151   // Emit Label+Offset (or just Label if Offset is zero)
2152   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2153   if (Offset)
2154     Expr = MCBinaryExpr::createAdd(
2155         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2156 
2157   OutStreamer->EmitValue(Expr, Size);
2158 }
2159 
2160 //===----------------------------------------------------------------------===//
2161 
2162 // EmitAlignment - Emit an alignment directive to the specified power of
2163 // two boundary.  If a global value is specified, and if that global has
2164 // an explicit alignment requested, it will override the alignment request
2165 // if required for correctness.
2166 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const {
2167   if (GV)
2168     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2169 
2170   if (Alignment == Align::None())
2171     return; // 1-byte aligned: no need to emit alignment.
2172 
2173   if (getCurrentSection()->getKind().isText())
2174     OutStreamer->EmitCodeAlignment(Alignment.value());
2175   else
2176     OutStreamer->EmitValueToAlignment(Alignment.value());
2177 }
2178 
2179 //===----------------------------------------------------------------------===//
2180 // Constant emission.
2181 //===----------------------------------------------------------------------===//
2182 
2183 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2184   MCContext &Ctx = OutContext;
2185 
2186   if (CV->isNullValue() || isa<UndefValue>(CV))
2187     return MCConstantExpr::create(0, Ctx);
2188 
2189   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2190     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2191 
2192   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2193     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2194 
2195   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2196     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2197 
2198   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2199   if (!CE) {
2200     llvm_unreachable("Unknown constant value to lower!");
2201   }
2202 
2203   switch (CE->getOpcode()) {
2204   default:
2205     // If the code isn't optimized, there may be outstanding folding
2206     // opportunities. Attempt to fold the expression using DataLayout as a
2207     // last resort before giving up.
2208     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2209       if (C != CE)
2210         return lowerConstant(C);
2211 
2212     // Otherwise report the problem to the user.
2213     {
2214       std::string S;
2215       raw_string_ostream OS(S);
2216       OS << "Unsupported expression in static initializer: ";
2217       CE->printAsOperand(OS, /*PrintType=*/false,
2218                      !MF ? nullptr : MF->getFunction().getParent());
2219       report_fatal_error(OS.str());
2220     }
2221   case Instruction::GetElementPtr: {
2222     // Generate a symbolic expression for the byte address
2223     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2224     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2225 
2226     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2227     if (!OffsetAI)
2228       return Base;
2229 
2230     int64_t Offset = OffsetAI.getSExtValue();
2231     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2232                                    Ctx);
2233   }
2234 
2235   case Instruction::Trunc:
2236     // We emit the value and depend on the assembler to truncate the generated
2237     // expression properly.  This is important for differences between
2238     // blockaddress labels.  Since the two labels are in the same function, it
2239     // is reasonable to treat their delta as a 32-bit value.
2240     LLVM_FALLTHROUGH;
2241   case Instruction::BitCast:
2242     return lowerConstant(CE->getOperand(0));
2243 
2244   case Instruction::IntToPtr: {
2245     const DataLayout &DL = getDataLayout();
2246 
2247     // Handle casts to pointers by changing them into casts to the appropriate
2248     // integer type.  This promotes constant folding and simplifies this code.
2249     Constant *Op = CE->getOperand(0);
2250     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2251                                       false/*ZExt*/);
2252     return lowerConstant(Op);
2253   }
2254 
2255   case Instruction::PtrToInt: {
2256     const DataLayout &DL = getDataLayout();
2257 
2258     // Support only foldable casts to/from pointers that can be eliminated by
2259     // changing the pointer to the appropriately sized integer type.
2260     Constant *Op = CE->getOperand(0);
2261     Type *Ty = CE->getType();
2262 
2263     const MCExpr *OpExpr = lowerConstant(Op);
2264 
2265     // We can emit the pointer value into this slot if the slot is an
2266     // integer slot equal to the size of the pointer.
2267     //
2268     // If the pointer is larger than the resultant integer, then
2269     // as with Trunc just depend on the assembler to truncate it.
2270     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2271       return OpExpr;
2272 
2273     // Otherwise the pointer is smaller than the resultant integer, mask off
2274     // the high bits so we are sure to get a proper truncation if the input is
2275     // a constant expr.
2276     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2277     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2278     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2279   }
2280 
2281   case Instruction::Sub: {
2282     GlobalValue *LHSGV;
2283     APInt LHSOffset;
2284     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2285                                    getDataLayout())) {
2286       GlobalValue *RHSGV;
2287       APInt RHSOffset;
2288       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2289                                      getDataLayout())) {
2290         const MCExpr *RelocExpr =
2291             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2292         if (!RelocExpr)
2293           RelocExpr = MCBinaryExpr::createSub(
2294               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2295               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2296         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2297         if (Addend != 0)
2298           RelocExpr = MCBinaryExpr::createAdd(
2299               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2300         return RelocExpr;
2301       }
2302     }
2303   }
2304   // else fallthrough
2305   LLVM_FALLTHROUGH;
2306 
2307   // The MC library also has a right-shift operator, but it isn't consistently
2308   // signed or unsigned between different targets.
2309   case Instruction::Add:
2310   case Instruction::Mul:
2311   case Instruction::SDiv:
2312   case Instruction::SRem:
2313   case Instruction::Shl:
2314   case Instruction::And:
2315   case Instruction::Or:
2316   case Instruction::Xor: {
2317     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2318     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2319     switch (CE->getOpcode()) {
2320     default: llvm_unreachable("Unknown binary operator constant cast expr");
2321     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2322     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2323     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2324     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2325     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2326     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2327     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2328     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2329     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2330     }
2331   }
2332   }
2333 }
2334 
2335 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2336                                    AsmPrinter &AP,
2337                                    const Constant *BaseCV = nullptr,
2338                                    uint64_t Offset = 0);
2339 
2340 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2341 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2342 
2343 /// isRepeatedByteSequence - Determine whether the given value is
2344 /// composed of a repeated sequence of identical bytes and return the
2345 /// byte value.  If it is not a repeated sequence, return -1.
2346 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2347   StringRef Data = V->getRawDataValues();
2348   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2349   char C = Data[0];
2350   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2351     if (Data[i] != C) return -1;
2352   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2353 }
2354 
2355 /// isRepeatedByteSequence - Determine whether the given value is
2356 /// composed of a repeated sequence of identical bytes and return the
2357 /// byte value.  If it is not a repeated sequence, return -1.
2358 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2359   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2360     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2361     assert(Size % 8 == 0);
2362 
2363     // Extend the element to take zero padding into account.
2364     APInt Value = CI->getValue().zextOrSelf(Size);
2365     if (!Value.isSplat(8))
2366       return -1;
2367 
2368     return Value.zextOrTrunc(8).getZExtValue();
2369   }
2370   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2371     // Make sure all array elements are sequences of the same repeated
2372     // byte.
2373     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2374     Constant *Op0 = CA->getOperand(0);
2375     int Byte = isRepeatedByteSequence(Op0, DL);
2376     if (Byte == -1)
2377       return -1;
2378 
2379     // All array elements must be equal.
2380     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2381       if (CA->getOperand(i) != Op0)
2382         return -1;
2383     return Byte;
2384   }
2385 
2386   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2387     return isRepeatedByteSequence(CDS);
2388 
2389   return -1;
2390 }
2391 
2392 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2393                                              const ConstantDataSequential *CDS,
2394                                              AsmPrinter &AP) {
2395   // See if we can aggregate this into a .fill, if so, emit it as such.
2396   int Value = isRepeatedByteSequence(CDS, DL);
2397   if (Value != -1) {
2398     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2399     // Don't emit a 1-byte object as a .fill.
2400     if (Bytes > 1)
2401       return AP.OutStreamer->emitFill(Bytes, Value);
2402   }
2403 
2404   // If this can be emitted with .ascii/.asciz, emit it as such.
2405   if (CDS->isString())
2406     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2407 
2408   // Otherwise, emit the values in successive locations.
2409   unsigned ElementByteSize = CDS->getElementByteSize();
2410   if (isa<IntegerType>(CDS->getElementType())) {
2411     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2412       if (AP.isVerbose())
2413         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2414                                                  CDS->getElementAsInteger(i));
2415       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2416                                    ElementByteSize);
2417     }
2418   } else {
2419     Type *ET = CDS->getElementType();
2420     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2421       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2422   }
2423 
2424   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2425   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2426                         CDS->getNumElements();
2427   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2428   if (unsigned Padding = Size - EmittedSize)
2429     AP.OutStreamer->EmitZeros(Padding);
2430 }
2431 
2432 static void emitGlobalConstantArray(const DataLayout &DL,
2433                                     const ConstantArray *CA, AsmPrinter &AP,
2434                                     const Constant *BaseCV, uint64_t Offset) {
2435   // See if we can aggregate some values.  Make sure it can be
2436   // represented as a series of bytes of the constant value.
2437   int Value = isRepeatedByteSequence(CA, DL);
2438 
2439   if (Value != -1) {
2440     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2441     AP.OutStreamer->emitFill(Bytes, Value);
2442   }
2443   else {
2444     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2445       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2446       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2447     }
2448   }
2449 }
2450 
2451 static void emitGlobalConstantVector(const DataLayout &DL,
2452                                      const ConstantVector *CV, AsmPrinter &AP) {
2453   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2454     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2455 
2456   unsigned Size = DL.getTypeAllocSize(CV->getType());
2457   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2458                          CV->getType()->getNumElements();
2459   if (unsigned Padding = Size - EmittedSize)
2460     AP.OutStreamer->EmitZeros(Padding);
2461 }
2462 
2463 static void emitGlobalConstantStruct(const DataLayout &DL,
2464                                      const ConstantStruct *CS, AsmPrinter &AP,
2465                                      const Constant *BaseCV, uint64_t Offset) {
2466   // Print the fields in successive locations. Pad to align if needed!
2467   unsigned Size = DL.getTypeAllocSize(CS->getType());
2468   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2469   uint64_t SizeSoFar = 0;
2470   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2471     const Constant *Field = CS->getOperand(i);
2472 
2473     // Print the actual field value.
2474     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2475 
2476     // Check if padding is needed and insert one or more 0s.
2477     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2478     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2479                         - Layout->getElementOffset(i)) - FieldSize;
2480     SizeSoFar += FieldSize + PadSize;
2481 
2482     // Insert padding - this may include padding to increase the size of the
2483     // current field up to the ABI size (if the struct is not packed) as well
2484     // as padding to ensure that the next field starts at the right offset.
2485     AP.OutStreamer->EmitZeros(PadSize);
2486   }
2487   assert(SizeSoFar == Layout->getSizeInBytes() &&
2488          "Layout of constant struct may be incorrect!");
2489 }
2490 
2491 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2492   assert(ET && "Unknown float type");
2493   APInt API = APF.bitcastToAPInt();
2494 
2495   // First print a comment with what we think the original floating-point value
2496   // should have been.
2497   if (AP.isVerbose()) {
2498     SmallString<8> StrVal;
2499     APF.toString(StrVal);
2500     ET->print(AP.OutStreamer->GetCommentOS());
2501     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2502   }
2503 
2504   // Now iterate through the APInt chunks, emitting them in endian-correct
2505   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2506   // floats).
2507   unsigned NumBytes = API.getBitWidth() / 8;
2508   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2509   const uint64_t *p = API.getRawData();
2510 
2511   // PPC's long double has odd notions of endianness compared to how LLVM
2512   // handles it: p[0] goes first for *big* endian on PPC.
2513   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2514     int Chunk = API.getNumWords() - 1;
2515 
2516     if (TrailingBytes)
2517       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2518 
2519     for (; Chunk >= 0; --Chunk)
2520       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2521   } else {
2522     unsigned Chunk;
2523     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2524       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2525 
2526     if (TrailingBytes)
2527       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2528   }
2529 
2530   // Emit the tail padding for the long double.
2531   const DataLayout &DL = AP.getDataLayout();
2532   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2533 }
2534 
2535 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2536   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2537 }
2538 
2539 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2540   const DataLayout &DL = AP.getDataLayout();
2541   unsigned BitWidth = CI->getBitWidth();
2542 
2543   // Copy the value as we may massage the layout for constants whose bit width
2544   // is not a multiple of 64-bits.
2545   APInt Realigned(CI->getValue());
2546   uint64_t ExtraBits = 0;
2547   unsigned ExtraBitsSize = BitWidth & 63;
2548 
2549   if (ExtraBitsSize) {
2550     // The bit width of the data is not a multiple of 64-bits.
2551     // The extra bits are expected to be at the end of the chunk of the memory.
2552     // Little endian:
2553     // * Nothing to be done, just record the extra bits to emit.
2554     // Big endian:
2555     // * Record the extra bits to emit.
2556     // * Realign the raw data to emit the chunks of 64-bits.
2557     if (DL.isBigEndian()) {
2558       // Basically the structure of the raw data is a chunk of 64-bits cells:
2559       //    0        1         BitWidth / 64
2560       // [chunk1][chunk2] ... [chunkN].
2561       // The most significant chunk is chunkN and it should be emitted first.
2562       // However, due to the alignment issue chunkN contains useless bits.
2563       // Realign the chunks so that they contain only useless information:
2564       // ExtraBits     0       1       (BitWidth / 64) - 1
2565       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2566       ExtraBits = Realigned.getRawData()[0] &
2567         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2568       Realigned.lshrInPlace(ExtraBitsSize);
2569     } else
2570       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2571   }
2572 
2573   // We don't expect assemblers to support integer data directives
2574   // for more than 64 bits, so we emit the data in at most 64-bit
2575   // quantities at a time.
2576   const uint64_t *RawData = Realigned.getRawData();
2577   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2578     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2579     AP.OutStreamer->EmitIntValue(Val, 8);
2580   }
2581 
2582   if (ExtraBitsSize) {
2583     // Emit the extra bits after the 64-bits chunks.
2584 
2585     // Emit a directive that fills the expected size.
2586     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2587     Size -= (BitWidth / 64) * 8;
2588     assert(Size && Size * 8 >= ExtraBitsSize &&
2589            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2590            == ExtraBits && "Directive too small for extra bits.");
2591     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2592   }
2593 }
2594 
2595 /// Transform a not absolute MCExpr containing a reference to a GOT
2596 /// equivalent global, by a target specific GOT pc relative access to the
2597 /// final symbol.
2598 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2599                                          const Constant *BaseCst,
2600                                          uint64_t Offset) {
2601   // The global @foo below illustrates a global that uses a got equivalent.
2602   //
2603   //  @bar = global i32 42
2604   //  @gotequiv = private unnamed_addr constant i32* @bar
2605   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2606   //                             i64 ptrtoint (i32* @foo to i64))
2607   //                        to i32)
2608   //
2609   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2610   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2611   // form:
2612   //
2613   //  foo = cstexpr, where
2614   //    cstexpr := <gotequiv> - "." + <cst>
2615   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2616   //
2617   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2618   //
2619   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2620   //    gotpcrelcst := <offset from @foo base> + <cst>
2621   MCValue MV;
2622   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2623     return;
2624   const MCSymbolRefExpr *SymA = MV.getSymA();
2625   if (!SymA)
2626     return;
2627 
2628   // Check that GOT equivalent symbol is cached.
2629   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2630   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2631     return;
2632 
2633   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2634   if (!BaseGV)
2635     return;
2636 
2637   // Check for a valid base symbol
2638   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2639   const MCSymbolRefExpr *SymB = MV.getSymB();
2640 
2641   if (!SymB || BaseSym != &SymB->getSymbol())
2642     return;
2643 
2644   // Make sure to match:
2645   //
2646   //    gotpcrelcst := <offset from @foo base> + <cst>
2647   //
2648   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2649   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2650   // if the target knows how to encode it.
2651   int64_t GOTPCRelCst = Offset + MV.getConstant();
2652   if (GOTPCRelCst < 0)
2653     return;
2654   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2655     return;
2656 
2657   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2658   //
2659   //  bar:
2660   //    .long 42
2661   //  gotequiv:
2662   //    .quad bar
2663   //  foo:
2664   //    .long gotequiv - "." + <cst>
2665   //
2666   // is replaced by the target specific equivalent to:
2667   //
2668   //  bar:
2669   //    .long 42
2670   //  foo:
2671   //    .long bar@GOTPCREL+<gotpcrelcst>
2672   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2673   const GlobalVariable *GV = Result.first;
2674   int NumUses = (int)Result.second;
2675   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2676   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2677   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2678       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2679 
2680   // Update GOT equivalent usage information
2681   --NumUses;
2682   if (NumUses >= 0)
2683     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2684 }
2685 
2686 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2687                                    AsmPrinter &AP, const Constant *BaseCV,
2688                                    uint64_t Offset) {
2689   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2690 
2691   // Globals with sub-elements such as combinations of arrays and structs
2692   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2693   // constant symbol base and the current position with BaseCV and Offset.
2694   if (!BaseCV && CV->hasOneUse())
2695     BaseCV = dyn_cast<Constant>(CV->user_back());
2696 
2697   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2698     return AP.OutStreamer->EmitZeros(Size);
2699 
2700   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2701     switch (Size) {
2702     case 1:
2703     case 2:
2704     case 4:
2705     case 8:
2706       if (AP.isVerbose())
2707         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2708                                                  CI->getZExtValue());
2709       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2710       return;
2711     default:
2712       emitGlobalConstantLargeInt(CI, AP);
2713       return;
2714     }
2715   }
2716 
2717   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2718     return emitGlobalConstantFP(CFP, AP);
2719 
2720   if (isa<ConstantPointerNull>(CV)) {
2721     AP.OutStreamer->EmitIntValue(0, Size);
2722     return;
2723   }
2724 
2725   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2726     return emitGlobalConstantDataSequential(DL, CDS, AP);
2727 
2728   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2729     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2730 
2731   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2732     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2733 
2734   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2735     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2736     // vectors).
2737     if (CE->getOpcode() == Instruction::BitCast)
2738       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2739 
2740     if (Size > 8) {
2741       // If the constant expression's size is greater than 64-bits, then we have
2742       // to emit the value in chunks. Try to constant fold the value and emit it
2743       // that way.
2744       Constant *New = ConstantFoldConstant(CE, DL);
2745       if (New && New != CE)
2746         return emitGlobalConstantImpl(DL, New, AP);
2747     }
2748   }
2749 
2750   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2751     return emitGlobalConstantVector(DL, V, AP);
2752 
2753   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2754   // thread the streamer with EmitValue.
2755   const MCExpr *ME = AP.lowerConstant(CV);
2756 
2757   // Since lowerConstant already folded and got rid of all IR pointer and
2758   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2759   // directly.
2760   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2761     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2762 
2763   AP.OutStreamer->EmitValue(ME, Size);
2764 }
2765 
2766 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2767 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2768   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2769   if (Size)
2770     emitGlobalConstantImpl(DL, CV, *this);
2771   else if (MAI->hasSubsectionsViaSymbols()) {
2772     // If the global has zero size, emit a single byte so that two labels don't
2773     // look like they are at the same location.
2774     OutStreamer->EmitIntValue(0, 1);
2775   }
2776 }
2777 
2778 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2779   // Target doesn't support this yet!
2780   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2781 }
2782 
2783 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2784   if (Offset > 0)
2785     OS << '+' << Offset;
2786   else if (Offset < 0)
2787     OS << Offset;
2788 }
2789 
2790 //===----------------------------------------------------------------------===//
2791 // Symbol Lowering Routines.
2792 //===----------------------------------------------------------------------===//
2793 
2794 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2795   return OutContext.createTempSymbol(Name, true);
2796 }
2797 
2798 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2799   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2800 }
2801 
2802 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2803   return MMI->getAddrLabelSymbol(BB);
2804 }
2805 
2806 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2807 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2808   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2809     const MachineConstantPoolEntry &CPE =
2810         MF->getConstantPool()->getConstants()[CPID];
2811     if (!CPE.isMachineConstantPoolEntry()) {
2812       const DataLayout &DL = MF->getDataLayout();
2813       SectionKind Kind = CPE.getSectionKind(&DL);
2814       const Constant *C = CPE.Val.ConstVal;
2815       unsigned Align = CPE.Alignment;
2816       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2817               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2818         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2819           if (Sym->isUndefined())
2820             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2821           return Sym;
2822         }
2823       }
2824     }
2825   }
2826 
2827   const DataLayout &DL = getDataLayout();
2828   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2829                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2830                                       Twine(CPID));
2831 }
2832 
2833 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2834 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2835   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2836 }
2837 
2838 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2839 /// FIXME: privatize to AsmPrinter.
2840 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2841   const DataLayout &DL = getDataLayout();
2842   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2843                                       Twine(getFunctionNumber()) + "_" +
2844                                       Twine(UID) + "_set_" + Twine(MBBID));
2845 }
2846 
2847 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2848                                                    StringRef Suffix) const {
2849   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2850 }
2851 
2852 /// Return the MCSymbol for the specified ExternalSymbol.
2853 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2854   SmallString<60> NameStr;
2855   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2856   return OutContext.getOrCreateSymbol(NameStr);
2857 }
2858 
2859 /// PrintParentLoopComment - Print comments about parent loops of this one.
2860 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2861                                    unsigned FunctionNumber) {
2862   if (!Loop) return;
2863   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2864   OS.indent(Loop->getLoopDepth()*2)
2865     << "Parent Loop BB" << FunctionNumber << "_"
2866     << Loop->getHeader()->getNumber()
2867     << " Depth=" << Loop->getLoopDepth() << '\n';
2868 }
2869 
2870 /// PrintChildLoopComment - Print comments about child loops within
2871 /// the loop for this basic block, with nesting.
2872 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2873                                   unsigned FunctionNumber) {
2874   // Add child loop information
2875   for (const MachineLoop *CL : *Loop) {
2876     OS.indent(CL->getLoopDepth()*2)
2877       << "Child Loop BB" << FunctionNumber << "_"
2878       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2879       << '\n';
2880     PrintChildLoopComment(OS, CL, FunctionNumber);
2881   }
2882 }
2883 
2884 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2885 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2886                                        const MachineLoopInfo *LI,
2887                                        const AsmPrinter &AP) {
2888   // Add loop depth information
2889   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2890   if (!Loop) return;
2891 
2892   MachineBasicBlock *Header = Loop->getHeader();
2893   assert(Header && "No header for loop");
2894 
2895   // If this block is not a loop header, just print out what is the loop header
2896   // and return.
2897   if (Header != &MBB) {
2898     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2899                                Twine(AP.getFunctionNumber())+"_" +
2900                                Twine(Loop->getHeader()->getNumber())+
2901                                " Depth="+Twine(Loop->getLoopDepth()));
2902     return;
2903   }
2904 
2905   // Otherwise, it is a loop header.  Print out information about child and
2906   // parent loops.
2907   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2908 
2909   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2910 
2911   OS << "=>";
2912   OS.indent(Loop->getLoopDepth()*2-2);
2913 
2914   OS << "This ";
2915   if (Loop->empty())
2916     OS << "Inner ";
2917   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2918 
2919   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2920 }
2921 
2922 /// EmitBasicBlockStart - This method prints the label for the specified
2923 /// MachineBasicBlock, an alignment (if present) and a comment describing
2924 /// it if appropriate.
2925 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) {
2926   // End the previous funclet and start a new one.
2927   if (MBB.isEHFuncletEntry()) {
2928     for (const HandlerInfo &HI : Handlers) {
2929       HI.Handler->endFunclet();
2930       HI.Handler->beginFunclet(MBB);
2931     }
2932   }
2933 
2934   // Emit an alignment directive for this block, if needed.
2935   const Align Alignment = MBB.getAlignment();
2936   if (Alignment != Align::None())
2937     EmitAlignment(Alignment);
2938 
2939   // If the block has its address taken, emit any labels that were used to
2940   // reference the block.  It is possible that there is more than one label
2941   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2942   // the references were generated.
2943   if (MBB.hasAddressTaken()) {
2944     const BasicBlock *BB = MBB.getBasicBlock();
2945     if (isVerbose())
2946       OutStreamer->AddComment("Block address taken");
2947 
2948     // MBBs can have their address taken as part of CodeGen without having
2949     // their corresponding BB's address taken in IR
2950     if (BB->hasAddressTaken())
2951       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2952         OutStreamer->EmitLabel(Sym);
2953   }
2954 
2955   // Print some verbose block comments.
2956   if (isVerbose()) {
2957     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2958       if (BB->hasName()) {
2959         BB->printAsOperand(OutStreamer->GetCommentOS(),
2960                            /*PrintType=*/false, BB->getModule());
2961         OutStreamer->GetCommentOS() << '\n';
2962       }
2963     }
2964 
2965     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2966     emitBasicBlockLoopComments(MBB, MLI, *this);
2967   }
2968 
2969   // Print the main label for the block.
2970   if (MBB.pred_empty() ||
2971       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2972        !MBB.hasLabelMustBeEmitted())) {
2973     if (isVerbose()) {
2974       // NOTE: Want this comment at start of line, don't emit with AddComment.
2975       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2976                                   false);
2977     }
2978   } else {
2979     if (isVerbose() && MBB.hasLabelMustBeEmitted())
2980       OutStreamer->AddComment("Label of block must be emitted");
2981     OutStreamer->EmitLabel(MBB.getSymbol());
2982   }
2983 }
2984 
2985 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {}
2986 
2987 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2988                                 bool IsDefinition) const {
2989   MCSymbolAttr Attr = MCSA_Invalid;
2990 
2991   switch (Visibility) {
2992   default: break;
2993   case GlobalValue::HiddenVisibility:
2994     if (IsDefinition)
2995       Attr = MAI->getHiddenVisibilityAttr();
2996     else
2997       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2998     break;
2999   case GlobalValue::ProtectedVisibility:
3000     Attr = MAI->getProtectedVisibilityAttr();
3001     break;
3002   }
3003 
3004   if (Attr != MCSA_Invalid)
3005     OutStreamer->EmitSymbolAttribute(Sym, Attr);
3006 }
3007 
3008 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3009 /// exactly one predecessor and the control transfer mechanism between
3010 /// the predecessor and this block is a fall-through.
3011 bool AsmPrinter::
3012 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3013   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3014   // then nothing falls through to it.
3015   if (MBB->isEHPad() || MBB->pred_empty())
3016     return false;
3017 
3018   // If there isn't exactly one predecessor, it can't be a fall through.
3019   if (MBB->pred_size() > 1)
3020     return false;
3021 
3022   // The predecessor has to be immediately before this block.
3023   MachineBasicBlock *Pred = *MBB->pred_begin();
3024   if (!Pred->isLayoutSuccessor(MBB))
3025     return false;
3026 
3027   // If the block is completely empty, then it definitely does fall through.
3028   if (Pred->empty())
3029     return true;
3030 
3031   // Check the terminators in the previous blocks
3032   for (const auto &MI : Pred->terminators()) {
3033     // If it is not a simple branch, we are in a table somewhere.
3034     if (!MI.isBranch() || MI.isIndirectBranch())
3035       return false;
3036 
3037     // If we are the operands of one of the branches, this is not a fall
3038     // through. Note that targets with delay slots will usually bundle
3039     // terminators with the delay slot instruction.
3040     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3041       if (OP->isJTI())
3042         return false;
3043       if (OP->isMBB() && OP->getMBB() == MBB)
3044         return false;
3045     }
3046   }
3047 
3048   return true;
3049 }
3050 
3051 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3052   if (!S.usesMetadata())
3053     return nullptr;
3054 
3055   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3056   gcp_map_type::iterator GCPI = GCMap.find(&S);
3057   if (GCPI != GCMap.end())
3058     return GCPI->second.get();
3059 
3060   auto Name = S.getName();
3061 
3062   for (GCMetadataPrinterRegistry::iterator
3063          I = GCMetadataPrinterRegistry::begin(),
3064          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3065     if (Name == I->getName()) {
3066       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3067       GMP->S = &S;
3068       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3069       return IterBool.first->second.get();
3070     }
3071 
3072   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3073 }
3074 
3075 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3076   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3077   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3078   bool NeedsDefault = false;
3079   if (MI->begin() == MI->end())
3080     // No GC strategy, use the default format.
3081     NeedsDefault = true;
3082   else
3083     for (auto &I : *MI) {
3084       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3085         if (MP->emitStackMaps(SM, *this))
3086           continue;
3087       // The strategy doesn't have printer or doesn't emit custom stack maps.
3088       // Use the default format.
3089       NeedsDefault = true;
3090     }
3091 
3092   if (NeedsDefault)
3093     SM.serializeToStackMapSection();
3094 }
3095 
3096 /// Pin vtable to this file.
3097 AsmPrinterHandler::~AsmPrinterHandler() = default;
3098 
3099 void AsmPrinterHandler::markFunctionEnd() {}
3100 
3101 // In the binary's "xray_instr_map" section, an array of these function entries
3102 // describes each instrumentation point.  When XRay patches your code, the index
3103 // into this table will be given to your handler as a patch point identifier.
3104 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3105                                          const MCSymbol *CurrentFnSym) const {
3106   Out->EmitSymbolValue(Sled, Bytes);
3107   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3108   auto Kind8 = static_cast<uint8_t>(Kind);
3109   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3110   Out->EmitBinaryData(
3111       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3112   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3113   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3114   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3115   Out->EmitZeros(Padding);
3116 }
3117 
3118 void AsmPrinter::emitXRayTable() {
3119   if (Sleds.empty())
3120     return;
3121 
3122   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3123   const Function &F = MF->getFunction();
3124   MCSection *InstMap = nullptr;
3125   MCSection *FnSledIndex = nullptr;
3126   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3127     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3128     assert(Associated != nullptr);
3129     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3130     std::string GroupName;
3131     if (F.hasComdat()) {
3132       Flags |= ELF::SHF_GROUP;
3133       GroupName = F.getComdat()->getName();
3134     }
3135 
3136     auto UniqueID = ++XRayFnUniqueID;
3137     InstMap =
3138         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3139                                  GroupName, UniqueID, Associated);
3140     FnSledIndex =
3141         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3142                                  GroupName, UniqueID, Associated);
3143   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3144     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3145                                          SectionKind::getReadOnlyWithRel());
3146     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3147                                              SectionKind::getReadOnlyWithRel());
3148   } else {
3149     llvm_unreachable("Unsupported target");
3150   }
3151 
3152   auto WordSizeBytes = MAI->getCodePointerSize();
3153 
3154   // Now we switch to the instrumentation map section. Because this is done
3155   // per-function, we are able to create an index entry that will represent the
3156   // range of sleds associated with a function.
3157   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3158   OutStreamer->SwitchSection(InstMap);
3159   OutStreamer->EmitLabel(SledsStart);
3160   for (const auto &Sled : Sleds)
3161     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3162   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3163   OutStreamer->EmitLabel(SledsEnd);
3164 
3165   // We then emit a single entry in the index per function. We use the symbols
3166   // that bound the instrumentation map as the range for a specific function.
3167   // Each entry here will be 2 * word size aligned, as we're writing down two
3168   // pointers. This should work for both 32-bit and 64-bit platforms.
3169   OutStreamer->SwitchSection(FnSledIndex);
3170   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3171   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3172   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3173   OutStreamer->SwitchSection(PrevSection);
3174   Sleds.clear();
3175 }
3176 
3177 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3178                             SledKind Kind, uint8_t Version) {
3179   const Function &F = MI.getMF()->getFunction();
3180   auto Attr = F.getFnAttribute("function-instrument");
3181   bool LogArgs = F.hasFnAttribute("xray-log-args");
3182   bool AlwaysInstrument =
3183     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3184   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3185     Kind = SledKind::LOG_ARGS_ENTER;
3186   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3187                                        AlwaysInstrument, &F, Version});
3188 }
3189 
3190 void AsmPrinter::emitPatchableFunctionEntries() {
3191   const Function &F = MF->getFunction();
3192   unsigned PatchableFunctionEntry = 0;
3193   (void)F.getFnAttribute("patchable-function-entry")
3194       .getValueAsString()
3195       .getAsInteger(10, PatchableFunctionEntry);
3196   if (!PatchableFunctionEntry)
3197     return;
3198   const unsigned PointerSize = getPointerSize();
3199   if (TM.getTargetTriple().isOSBinFormatELF()) {
3200     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3201 
3202     // As of binutils 2.33, GNU as does not support section flag "o" or linkage
3203     // field "unique". Use SHF_LINK_ORDER if we are using the integrated
3204     // assembler.
3205     if (MAI->useIntegratedAssembler()) {
3206       Flags |= ELF::SHF_LINK_ORDER;
3207       std::string GroupName;
3208       if (F.hasComdat()) {
3209         Flags |= ELF::SHF_GROUP;
3210         GroupName = F.getComdat()->getName();
3211       }
3212       MCSection *Section = getObjFileLowering().SectionForGlobal(&F, TM);
3213       unsigned UniqueID =
3214           PatchableFunctionEntryID
3215               .try_emplace(Section, PatchableFunctionEntryID.size())
3216               .first->second;
3217       OutStreamer->SwitchSection(OutContext.getELFSection(
3218           "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0,
3219           GroupName, UniqueID, cast<MCSymbolELF>(CurrentFnSym)));
3220     } else {
3221       OutStreamer->SwitchSection(OutContext.getELFSection(
3222           "__patchable_function_entries", ELF::SHT_PROGBITS, Flags));
3223     }
3224     EmitAlignment(Align(PointerSize));
3225     OutStreamer->EmitSymbolValue(CurrentFnBegin, PointerSize);
3226   }
3227 }
3228 
3229 uint16_t AsmPrinter::getDwarfVersion() const {
3230   return OutStreamer->getContext().getDwarfVersion();
3231 }
3232 
3233 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3234   OutStreamer->getContext().setDwarfVersion(Version);
3235 }
3236