1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinCodeViewLineTables.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/JumpInstrTableInfo.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/Format.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Target/TargetFrameLowering.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetLoweringObjectFile.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include "llvm/Transforms/Utils/GlobalStatus.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "asm-printer" 56 57 static const char *const DWARFGroupName = "DWARF Emission"; 58 static const char *const DbgTimerName = "Debug Info Emission"; 59 static const char *const EHTimerName = "DWARF Exception Writer"; 60 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 61 62 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 63 64 char AsmPrinter::ID = 0; 65 66 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 67 static gcp_map_type &getGCMap(void *&P) { 68 if (!P) 69 P = new gcp_map_type(); 70 return *(gcp_map_type*)P; 71 } 72 73 74 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 75 /// value in log2 form. This rounds up to the preferred alignment if possible 76 /// and legal. 77 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 78 unsigned InBits = 0) { 79 unsigned NumBits = 0; 80 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 81 NumBits = TD.getPreferredAlignmentLog(GVar); 82 83 // If InBits is specified, round it to it. 84 if (InBits > NumBits) 85 NumBits = InBits; 86 87 // If the GV has a specified alignment, take it into account. 88 if (GV->getAlignment() == 0) 89 return NumBits; 90 91 unsigned GVAlign = Log2_32(GV->getAlignment()); 92 93 // If the GVAlign is larger than NumBits, or if we are required to obey 94 // NumBits because the GV has an assigned section, obey it. 95 if (GVAlign > NumBits || GV->hasSection()) 96 NumBits = GVAlign; 97 return NumBits; 98 } 99 100 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 101 : MachineFunctionPass(ID), 102 TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()), 103 OutContext(Streamer.getContext()), 104 OutStreamer(Streamer), 105 LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) { 106 DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr; 107 CurrentFnSym = CurrentFnSymForSize = nullptr; 108 GCMetadataPrinters = nullptr; 109 VerboseAsm = Streamer.isVerboseAsm(); 110 } 111 112 AsmPrinter::~AsmPrinter() { 113 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 114 115 if (GCMetadataPrinters) { 116 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 117 118 delete &GCMap; 119 GCMetadataPrinters = nullptr; 120 } 121 122 delete &OutStreamer; 123 } 124 125 /// getFunctionNumber - Return a unique ID for the current function. 126 /// 127 unsigned AsmPrinter::getFunctionNumber() const { 128 return MF->getFunctionNumber(); 129 } 130 131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 132 return TM.getTargetLowering()->getObjFileLowering(); 133 } 134 135 /// getDataLayout - Return information about data layout. 136 const DataLayout &AsmPrinter::getDataLayout() const { 137 return *TM.getDataLayout(); 138 } 139 140 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 141 return TM.getSubtarget<MCSubtargetInfo>(); 142 } 143 144 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 145 S.EmitInstruction(Inst, getSubtargetInfo()); 146 } 147 148 StringRef AsmPrinter::getTargetTriple() const { 149 return TM.getTargetTriple(); 150 } 151 152 /// getCurrentSection() - Return the current section we are emitting to. 153 const MCSection *AsmPrinter::getCurrentSection() const { 154 return OutStreamer.getCurrentSection().first; 155 } 156 157 158 159 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 160 AU.setPreservesAll(); 161 MachineFunctionPass::getAnalysisUsage(AU); 162 AU.addRequired<MachineModuleInfo>(); 163 AU.addRequired<GCModuleInfo>(); 164 if (isVerbose()) 165 AU.addRequired<MachineLoopInfo>(); 166 } 167 168 bool AsmPrinter::doInitialization(Module &M) { 169 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 170 MMI->AnalyzeModule(M); 171 172 // Initialize TargetLoweringObjectFile. 173 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 174 .Initialize(OutContext, TM); 175 176 OutStreamer.InitSections(); 177 178 Mang = new Mangler(TM.getDataLayout()); 179 180 // Emit the version-min deplyment target directive if needed. 181 // 182 // FIXME: If we end up with a collection of these sorts of Darwin-specific 183 // or ELF-specific things, it may make sense to have a platform helper class 184 // that will work with the target helper class. For now keep it here, as the 185 // alternative is duplicated code in each of the target asm printers that 186 // use the directive, where it would need the same conditionalization 187 // anyway. 188 Triple TT(getTargetTriple()); 189 if (TT.isOSDarwin()) { 190 unsigned Major, Minor, Update; 191 TT.getOSVersion(Major, Minor, Update); 192 // If there is a version specified, Major will be non-zero. 193 if (Major) 194 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 195 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 196 Major, Minor, Update); 197 } 198 199 // Allow the target to emit any magic that it wants at the start of the file. 200 EmitStartOfAsmFile(M); 201 202 // Very minimal debug info. It is ignored if we emit actual debug info. If we 203 // don't, this at least helps the user find where a global came from. 204 if (MAI->hasSingleParameterDotFile()) { 205 // .file "foo.c" 206 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 207 } 208 209 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 210 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 211 for (auto &I : *MI) 212 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 213 MP->beginAssembly(*this); 214 215 // Emit module-level inline asm if it exists. 216 if (!M.getModuleInlineAsm().empty()) { 217 OutStreamer.AddComment("Start of file scope inline assembly"); 218 OutStreamer.AddBlankLine(); 219 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 220 OutStreamer.AddComment("End of file scope inline assembly"); 221 OutStreamer.AddBlankLine(); 222 } 223 224 if (MAI->doesSupportDebugInformation()) { 225 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 226 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 227 DbgTimerName, 228 CodeViewLineTablesGroupName)); 229 } else { 230 DD = new DwarfDebug(this, &M); 231 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 232 } 233 } 234 235 EHStreamer *ES = nullptr; 236 switch (MAI->getExceptionHandlingType()) { 237 case ExceptionHandling::None: 238 break; 239 case ExceptionHandling::SjLj: 240 case ExceptionHandling::DwarfCFI: 241 ES = new DwarfCFIException(this); 242 break; 243 case ExceptionHandling::ARM: 244 ES = new ARMException(this); 245 break; 246 case ExceptionHandling::Win64: 247 ES = new Win64Exception(this); 248 break; 249 } 250 if (ES) 251 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 252 return false; 253 } 254 255 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 256 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 257 if (Linkage != GlobalValue::LinkOnceODRLinkage) 258 return false; 259 260 if (!MAI.hasWeakDefCanBeHiddenDirective()) 261 return false; 262 263 if (GV->hasUnnamedAddr()) 264 return true; 265 266 // This is only used for MachO, so right now it doesn't really matter how 267 // we handle alias. Revisit this once the MachO linker implements aliases. 268 if (isa<GlobalAlias>(GV)) 269 return false; 270 271 // If it is a non constant variable, it needs to be uniqued across shared 272 // objects. 273 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 274 if (!Var->isConstant()) 275 return false; 276 } 277 278 GlobalStatus GS; 279 if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared) 280 return true; 281 282 return false; 283 } 284 285 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 286 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 287 switch (Linkage) { 288 case GlobalValue::CommonLinkage: 289 case GlobalValue::LinkOnceAnyLinkage: 290 case GlobalValue::LinkOnceODRLinkage: 291 case GlobalValue::WeakAnyLinkage: 292 case GlobalValue::WeakODRLinkage: 293 if (MAI->hasWeakDefDirective()) { 294 // .globl _foo 295 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 296 297 if (!canBeHidden(GV, *MAI)) 298 // .weak_definition _foo 299 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 300 else 301 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 302 } else if (MAI->hasLinkOnceDirective()) { 303 // .globl _foo 304 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 305 //NOTE: linkonce is handled by the section the symbol was assigned to. 306 } else { 307 // .weak _foo 308 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 309 } 310 return; 311 case GlobalValue::AppendingLinkage: 312 // FIXME: appending linkage variables should go into a section of 313 // their name or something. For now, just emit them as external. 314 case GlobalValue::ExternalLinkage: 315 // If external or appending, declare as a global symbol. 316 // .globl _foo 317 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 318 return; 319 case GlobalValue::PrivateLinkage: 320 case GlobalValue::InternalLinkage: 321 return; 322 case GlobalValue::AvailableExternallyLinkage: 323 llvm_unreachable("Should never emit this"); 324 case GlobalValue::ExternalWeakLinkage: 325 llvm_unreachable("Don't know how to emit these"); 326 } 327 llvm_unreachable("Unknown linkage type!"); 328 } 329 330 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 331 const GlobalValue *GV) const { 332 TM.getNameWithPrefix(Name, GV, *Mang); 333 } 334 335 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 336 return TM.getSymbol(GV, *Mang); 337 } 338 339 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 340 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 341 if (GV->hasInitializer()) { 342 // Check to see if this is a special global used by LLVM, if so, emit it. 343 if (EmitSpecialLLVMGlobal(GV)) 344 return; 345 346 if (isVerbose()) { 347 GV->printAsOperand(OutStreamer.GetCommentOS(), 348 /*PrintType=*/false, GV->getParent()); 349 OutStreamer.GetCommentOS() << '\n'; 350 } 351 } 352 353 MCSymbol *GVSym = getSymbol(GV); 354 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 355 356 if (!GV->hasInitializer()) // External globals require no extra code. 357 return; 358 359 if (MAI->hasDotTypeDotSizeDirective()) 360 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 361 362 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 363 364 const DataLayout *DL = TM.getDataLayout(); 365 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 366 367 // If the alignment is specified, we *must* obey it. Overaligning a global 368 // with a specified alignment is a prompt way to break globals emitted to 369 // sections and expected to be contiguous (e.g. ObjC metadata). 370 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 371 372 for (const HandlerInfo &HI : Handlers) { 373 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 374 HI.Handler->setSymbolSize(GVSym, Size); 375 } 376 377 // Handle common and BSS local symbols (.lcomm). 378 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 379 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 380 unsigned Align = 1 << AlignLog; 381 382 // Handle common symbols. 383 if (GVKind.isCommon()) { 384 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 385 Align = 0; 386 387 // .comm _foo, 42, 4 388 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 389 return; 390 } 391 392 // Handle local BSS symbols. 393 if (MAI->hasMachoZeroFillDirective()) { 394 const MCSection *TheSection = 395 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 396 // .zerofill __DATA, __bss, _foo, 400, 5 397 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 398 return; 399 } 400 401 // Use .lcomm only if it supports user-specified alignment. 402 // Otherwise, while it would still be correct to use .lcomm in some 403 // cases (e.g. when Align == 1), the external assembler might enfore 404 // some -unknown- default alignment behavior, which could cause 405 // spurious differences between external and integrated assembler. 406 // Prefer to simply fall back to .local / .comm in this case. 407 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 408 // .lcomm _foo, 42 409 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 410 return; 411 } 412 413 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 414 Align = 0; 415 416 // .local _foo 417 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 418 // .comm _foo, 42, 4 419 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 420 return; 421 } 422 423 const MCSection *TheSection = 424 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 425 426 // Handle the zerofill directive on darwin, which is a special form of BSS 427 // emission. 428 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 429 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 430 431 // .globl _foo 432 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 433 // .zerofill __DATA, __common, _foo, 400, 5 434 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 435 return; 436 } 437 438 // Handle thread local data for mach-o which requires us to output an 439 // additional structure of data and mangle the original symbol so that we 440 // can reference it later. 441 // 442 // TODO: This should become an "emit thread local global" method on TLOF. 443 // All of this macho specific stuff should be sunk down into TLOFMachO and 444 // stuff like "TLSExtraDataSection" should no longer be part of the parent 445 // TLOF class. This will also make it more obvious that stuff like 446 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 447 // specific code. 448 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 449 // Emit the .tbss symbol 450 MCSymbol *MangSym = 451 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 452 453 if (GVKind.isThreadBSS()) { 454 TheSection = getObjFileLowering().getTLSBSSSection(); 455 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 456 } else if (GVKind.isThreadData()) { 457 OutStreamer.SwitchSection(TheSection); 458 459 EmitAlignment(AlignLog, GV); 460 OutStreamer.EmitLabel(MangSym); 461 462 EmitGlobalConstant(GV->getInitializer()); 463 } 464 465 OutStreamer.AddBlankLine(); 466 467 // Emit the variable struct for the runtime. 468 const MCSection *TLVSect 469 = getObjFileLowering().getTLSExtraDataSection(); 470 471 OutStreamer.SwitchSection(TLVSect); 472 // Emit the linkage here. 473 EmitLinkage(GV, GVSym); 474 OutStreamer.EmitLabel(GVSym); 475 476 // Three pointers in size: 477 // - __tlv_bootstrap - used to make sure support exists 478 // - spare pointer, used when mapped by the runtime 479 // - pointer to mangled symbol above with initializer 480 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 481 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 482 PtrSize); 483 OutStreamer.EmitIntValue(0, PtrSize); 484 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 485 486 OutStreamer.AddBlankLine(); 487 return; 488 } 489 490 OutStreamer.SwitchSection(TheSection); 491 492 EmitLinkage(GV, GVSym); 493 EmitAlignment(AlignLog, GV); 494 495 OutStreamer.EmitLabel(GVSym); 496 497 EmitGlobalConstant(GV->getInitializer()); 498 499 if (MAI->hasDotTypeDotSizeDirective()) 500 // .size foo, 42 501 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 502 503 OutStreamer.AddBlankLine(); 504 } 505 506 /// EmitFunctionHeader - This method emits the header for the current 507 /// function. 508 void AsmPrinter::EmitFunctionHeader() { 509 // Print out constants referenced by the function 510 EmitConstantPool(); 511 512 // Print the 'header' of function. 513 const Function *F = MF->getFunction(); 514 515 OutStreamer.SwitchSection( 516 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 517 EmitVisibility(CurrentFnSym, F->getVisibility()); 518 519 EmitLinkage(F, CurrentFnSym); 520 EmitAlignment(MF->getAlignment(), F); 521 522 if (MAI->hasDotTypeDotSizeDirective()) 523 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 524 525 if (isVerbose()) { 526 F->printAsOperand(OutStreamer.GetCommentOS(), 527 /*PrintType=*/false, F->getParent()); 528 OutStreamer.GetCommentOS() << '\n'; 529 } 530 531 // Emit the CurrentFnSym. This is a virtual function to allow targets to 532 // do their wild and crazy things as required. 533 EmitFunctionEntryLabel(); 534 535 // If the function had address-taken blocks that got deleted, then we have 536 // references to the dangling symbols. Emit them at the start of the function 537 // so that we don't get references to undefined symbols. 538 std::vector<MCSymbol*> DeadBlockSyms; 539 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 540 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 541 OutStreamer.AddComment("Address taken block that was later removed"); 542 OutStreamer.EmitLabel(DeadBlockSyms[i]); 543 } 544 545 // Emit pre-function debug and/or EH information. 546 for (const HandlerInfo &HI : Handlers) { 547 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 548 HI.Handler->beginFunction(MF); 549 } 550 551 // Emit the prefix data. 552 if (F->hasPrefixData()) 553 EmitGlobalConstant(F->getPrefixData()); 554 } 555 556 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 557 /// function. This can be overridden by targets as required to do custom stuff. 558 void AsmPrinter::EmitFunctionEntryLabel() { 559 // The function label could have already been emitted if two symbols end up 560 // conflicting due to asm renaming. Detect this and emit an error. 561 if (CurrentFnSym->isUndefined()) 562 return OutStreamer.EmitLabel(CurrentFnSym); 563 564 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 565 "' label emitted multiple times to assembly file"); 566 } 567 568 /// emitComments - Pretty-print comments for instructions. 569 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 570 const MachineFunction *MF = MI.getParent()->getParent(); 571 const TargetMachine &TM = MF->getTarget(); 572 573 // Check for spills and reloads 574 int FI; 575 576 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 577 578 // We assume a single instruction only has a spill or reload, not 579 // both. 580 const MachineMemOperand *MMO; 581 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 582 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 583 MMO = *MI.memoperands_begin(); 584 CommentOS << MMO->getSize() << "-byte Reload\n"; 585 } 586 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 587 if (FrameInfo->isSpillSlotObjectIndex(FI)) 588 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 589 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 590 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 591 MMO = *MI.memoperands_begin(); 592 CommentOS << MMO->getSize() << "-byte Spill\n"; 593 } 594 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 595 if (FrameInfo->isSpillSlotObjectIndex(FI)) 596 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 597 } 598 599 // Check for spill-induced copies 600 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 601 CommentOS << " Reload Reuse\n"; 602 } 603 604 /// emitImplicitDef - This method emits the specified machine instruction 605 /// that is an implicit def. 606 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 607 unsigned RegNo = MI->getOperand(0).getReg(); 608 OutStreamer.AddComment(Twine("implicit-def: ") + 609 TM.getRegisterInfo()->getName(RegNo)); 610 OutStreamer.AddBlankLine(); 611 } 612 613 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 614 std::string Str = "kill:"; 615 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 616 const MachineOperand &Op = MI->getOperand(i); 617 assert(Op.isReg() && "KILL instruction must have only register operands"); 618 Str += ' '; 619 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 620 Str += (Op.isDef() ? "<def>" : "<kill>"); 621 } 622 AP.OutStreamer.AddComment(Str); 623 AP.OutStreamer.AddBlankLine(); 624 } 625 626 /// emitDebugValueComment - This method handles the target-independent form 627 /// of DBG_VALUE, returning true if it was able to do so. A false return 628 /// means the target will need to handle MI in EmitInstruction. 629 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 630 // This code handles only the 3-operand target-independent form. 631 if (MI->getNumOperands() != 3) 632 return false; 633 634 SmallString<128> Str; 635 raw_svector_ostream OS(Str); 636 OS << "DEBUG_VALUE: "; 637 638 DIVariable V(MI->getOperand(2).getMetadata()); 639 if (V.getContext().isSubprogram()) { 640 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 641 if (!Name.empty()) 642 OS << Name << ":"; 643 } 644 OS << V.getName() << " <- "; 645 646 // The second operand is only an offset if it's an immediate. 647 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 648 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 649 650 // Register or immediate value. Register 0 means undef. 651 if (MI->getOperand(0).isFPImm()) { 652 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 653 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 654 OS << (double)APF.convertToFloat(); 655 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 656 OS << APF.convertToDouble(); 657 } else { 658 // There is no good way to print long double. Convert a copy to 659 // double. Ah well, it's only a comment. 660 bool ignored; 661 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 662 &ignored); 663 OS << "(long double) " << APF.convertToDouble(); 664 } 665 } else if (MI->getOperand(0).isImm()) { 666 OS << MI->getOperand(0).getImm(); 667 } else if (MI->getOperand(0).isCImm()) { 668 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 669 } else { 670 unsigned Reg; 671 if (MI->getOperand(0).isReg()) { 672 Reg = MI->getOperand(0).getReg(); 673 } else { 674 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 675 const TargetFrameLowering *TFI = AP.TM.getFrameLowering(); 676 Offset += TFI->getFrameIndexReference(*AP.MF, 677 MI->getOperand(0).getIndex(), Reg); 678 Deref = true; 679 } 680 if (Reg == 0) { 681 // Suppress offset, it is not meaningful here. 682 OS << "undef"; 683 // NOTE: Want this comment at start of line, don't emit with AddComment. 684 AP.OutStreamer.emitRawComment(OS.str()); 685 return true; 686 } 687 if (Deref) 688 OS << '['; 689 OS << AP.TM.getRegisterInfo()->getName(Reg); 690 } 691 692 if (Deref) 693 OS << '+' << Offset << ']'; 694 695 // NOTE: Want this comment at start of line, don't emit with AddComment. 696 AP.OutStreamer.emitRawComment(OS.str()); 697 return true; 698 } 699 700 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 701 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 702 MF->getFunction()->needsUnwindTableEntry()) 703 return CFI_M_EH; 704 705 if (MMI->hasDebugInfo()) 706 return CFI_M_Debug; 707 708 return CFI_M_None; 709 } 710 711 bool AsmPrinter::needsSEHMoves() { 712 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 713 MF->getFunction()->needsUnwindTableEntry(); 714 } 715 716 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 717 ExceptionHandling::ExceptionsType ExceptionHandlingType = 718 MAI->getExceptionHandlingType(); 719 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 720 ExceptionHandlingType != ExceptionHandling::ARM) 721 return; 722 723 if (needsCFIMoves() == CFI_M_None) 724 return; 725 726 if (MMI->getCompactUnwindEncoding() != 0) 727 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 728 729 const MachineModuleInfo &MMI = MF->getMMI(); 730 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 731 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 732 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 733 emitCFIInstruction(CFI); 734 } 735 736 /// EmitFunctionBody - This method emits the body and trailer for a 737 /// function. 738 void AsmPrinter::EmitFunctionBody() { 739 // Emit target-specific gunk before the function body. 740 EmitFunctionBodyStart(); 741 742 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 743 744 // Print out code for the function. 745 bool HasAnyRealCode = false; 746 const MachineInstr *LastMI = nullptr; 747 for (auto &MBB : *MF) { 748 // Print a label for the basic block. 749 EmitBasicBlockStart(MBB); 750 for (auto &MI : MBB) { 751 LastMI = &MI; 752 753 // Print the assembly for the instruction. 754 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 755 !MI.isDebugValue()) { 756 HasAnyRealCode = true; 757 ++EmittedInsts; 758 } 759 760 if (ShouldPrintDebugScopes) { 761 for (const HandlerInfo &HI : Handlers) { 762 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 763 TimePassesIsEnabled); 764 HI.Handler->beginInstruction(&MI); 765 } 766 } 767 768 if (isVerbose()) 769 emitComments(MI, OutStreamer.GetCommentOS()); 770 771 switch (MI.getOpcode()) { 772 case TargetOpcode::CFI_INSTRUCTION: 773 emitCFIInstruction(MI); 774 break; 775 776 case TargetOpcode::EH_LABEL: 777 case TargetOpcode::GC_LABEL: 778 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 779 break; 780 case TargetOpcode::INLINEASM: 781 EmitInlineAsm(&MI); 782 break; 783 case TargetOpcode::DBG_VALUE: 784 if (isVerbose()) { 785 if (!emitDebugValueComment(&MI, *this)) 786 EmitInstruction(&MI); 787 } 788 break; 789 case TargetOpcode::IMPLICIT_DEF: 790 if (isVerbose()) emitImplicitDef(&MI); 791 break; 792 case TargetOpcode::KILL: 793 if (isVerbose()) emitKill(&MI, *this); 794 break; 795 default: 796 EmitInstruction(&MI); 797 break; 798 } 799 800 if (ShouldPrintDebugScopes) { 801 for (const HandlerInfo &HI : Handlers) { 802 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 803 TimePassesIsEnabled); 804 HI.Handler->endInstruction(); 805 } 806 } 807 } 808 } 809 810 // If the last instruction was a prolog label, then we have a situation where 811 // we emitted a prolog but no function body. This results in the ending prolog 812 // label equaling the end of function label and an invalid "row" in the 813 // FDE. We need to emit a noop in this situation so that the FDE's rows are 814 // valid. 815 bool RequiresNoop = LastMI && LastMI->isCFIInstruction(); 816 817 // If the function is empty and the object file uses .subsections_via_symbols, 818 // then we need to emit *something* to the function body to prevent the 819 // labels from collapsing together. Just emit a noop. 820 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 821 MCInst Noop; 822 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 823 if (Noop.getOpcode()) { 824 OutStreamer.AddComment("avoids zero-length function"); 825 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 826 } else // Target not mc-ized yet. 827 OutStreamer.EmitRawText(StringRef("\tnop\n")); 828 } 829 830 const Function *F = MF->getFunction(); 831 for (const auto &BB : *F) { 832 if (!BB.hasAddressTaken()) 833 continue; 834 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 835 if (Sym->isDefined()) 836 continue; 837 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 838 OutStreamer.EmitLabel(Sym); 839 } 840 841 // Emit target-specific gunk after the function body. 842 EmitFunctionBodyEnd(); 843 844 // If the target wants a .size directive for the size of the function, emit 845 // it. 846 if (MAI->hasDotTypeDotSizeDirective()) { 847 // Create a symbol for the end of function, so we can get the size as 848 // difference between the function label and the temp label. 849 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 850 OutStreamer.EmitLabel(FnEndLabel); 851 852 const MCExpr *SizeExp = 853 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 854 MCSymbolRefExpr::Create(CurrentFnSymForSize, 855 OutContext), 856 OutContext); 857 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 858 } 859 860 // Emit post-function debug and/or EH information. 861 for (const HandlerInfo &HI : Handlers) { 862 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 863 HI.Handler->endFunction(MF); 864 } 865 MMI->EndFunction(); 866 867 // Print out jump tables referenced by the function. 868 EmitJumpTableInfo(); 869 870 OutStreamer.AddBlankLine(); 871 } 872 873 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP); 874 875 bool AsmPrinter::doFinalization(Module &M) { 876 // Emit global variables. 877 for (const auto &G : M.globals()) 878 EmitGlobalVariable(&G); 879 880 // Emit visibility info for declarations 881 for (const Function &F : M) { 882 if (!F.isDeclaration()) 883 continue; 884 GlobalValue::VisibilityTypes V = F.getVisibility(); 885 if (V == GlobalValue::DefaultVisibility) 886 continue; 887 888 MCSymbol *Name = getSymbol(&F); 889 EmitVisibility(Name, V, false); 890 } 891 892 // Get information about jump-instruction tables to print. 893 JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>(); 894 895 if (JITI && !JITI->getTables().empty()) { 896 unsigned Arch = Triple(getTargetTriple()).getArch(); 897 bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb); 898 MCInst TrapInst; 899 TM.getInstrInfo()->getTrap(TrapInst); 900 for (const auto &KV : JITI->getTables()) { 901 uint64_t Count = 0; 902 for (const auto &FunPair : KV.second) { 903 // Emit the function labels to make this be a function entry point. 904 MCSymbol *FunSym = 905 OutContext.GetOrCreateSymbol(FunPair.second->getName()); 906 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global); 907 // FIXME: JumpTableInstrInfo should store information about the required 908 // alignment of table entries and the size of the padding instruction. 909 EmitAlignment(3); 910 if (IsThumb) 911 OutStreamer.EmitThumbFunc(FunSym); 912 if (MAI->hasDotTypeDotSizeDirective()) 913 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction); 914 OutStreamer.EmitLabel(FunSym); 915 916 // Emit the jump instruction to transfer control to the original 917 // function. 918 MCInst JumpToFun; 919 MCSymbol *TargetSymbol = 920 OutContext.GetOrCreateSymbol(FunPair.first->getName()); 921 const MCSymbolRefExpr *TargetSymRef = 922 MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT, 923 OutContext); 924 TM.getInstrInfo()->getUnconditionalBranch(JumpToFun, TargetSymRef); 925 OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo()); 926 ++Count; 927 } 928 929 // Emit enough padding instructions to fill up to the next power of two. 930 // This assumes that the trap instruction takes 8 bytes or fewer. 931 uint64_t Remaining = NextPowerOf2(Count) - Count; 932 for (uint64_t C = 0; C < Remaining; ++C) { 933 EmitAlignment(3); 934 OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo()); 935 } 936 937 } 938 } 939 940 // Emit module flags. 941 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 942 M.getModuleFlagsMetadata(ModuleFlags); 943 if (!ModuleFlags.empty()) 944 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 945 946 // Make sure we wrote out everything we need. 947 OutStreamer.Flush(); 948 949 // Finalize debug and EH information. 950 for (const HandlerInfo &HI : Handlers) { 951 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 952 TimePassesIsEnabled); 953 HI.Handler->endModule(); 954 delete HI.Handler; 955 } 956 Handlers.clear(); 957 DD = nullptr; 958 959 // If the target wants to know about weak references, print them all. 960 if (MAI->getWeakRefDirective()) { 961 // FIXME: This is not lazy, it would be nice to only print weak references 962 // to stuff that is actually used. Note that doing so would require targets 963 // to notice uses in operands (due to constant exprs etc). This should 964 // happen with the MC stuff eventually. 965 966 // Print out module-level global variables here. 967 for (const auto &G : M.globals()) { 968 if (!G.hasExternalWeakLinkage()) 969 continue; 970 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 971 } 972 973 for (const auto &F : M) { 974 if (!F.hasExternalWeakLinkage()) 975 continue; 976 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 977 } 978 } 979 980 if (MAI->hasSetDirective()) { 981 OutStreamer.AddBlankLine(); 982 for (const auto &Alias : M.aliases()) { 983 MCSymbol *Name = getSymbol(&Alias); 984 985 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 986 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 987 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 988 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 989 else 990 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 991 992 EmitVisibility(Name, Alias.getVisibility()); 993 994 // Emit the directives as assignments aka .set: 995 OutStreamer.EmitAssignment(Name, 996 lowerConstant(Alias.getAliasee(), *this)); 997 } 998 } 999 1000 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1001 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1002 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1003 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1004 MP->finishAssembly(*this); 1005 1006 // Emit llvm.ident metadata in an '.ident' directive. 1007 EmitModuleIdents(M); 1008 1009 // If we don't have any trampolines, then we don't require stack memory 1010 // to be executable. Some targets have a directive to declare this. 1011 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1012 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1013 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1014 OutStreamer.SwitchSection(S); 1015 1016 // Allow the target to emit any magic that it wants at the end of the file, 1017 // after everything else has gone out. 1018 EmitEndOfAsmFile(M); 1019 1020 delete Mang; Mang = nullptr; 1021 MMI = nullptr; 1022 1023 OutStreamer.Finish(); 1024 OutStreamer.reset(); 1025 1026 return false; 1027 } 1028 1029 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1030 this->MF = &MF; 1031 // Get the function symbol. 1032 CurrentFnSym = getSymbol(MF.getFunction()); 1033 CurrentFnSymForSize = CurrentFnSym; 1034 1035 if (isVerbose()) 1036 LI = &getAnalysis<MachineLoopInfo>(); 1037 } 1038 1039 namespace { 1040 // SectionCPs - Keep track the alignment, constpool entries per Section. 1041 struct SectionCPs { 1042 const MCSection *S; 1043 unsigned Alignment; 1044 SmallVector<unsigned, 4> CPEs; 1045 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1046 }; 1047 } 1048 1049 /// EmitConstantPool - Print to the current output stream assembly 1050 /// representations of the constants in the constant pool MCP. This is 1051 /// used to print out constants which have been "spilled to memory" by 1052 /// the code generator. 1053 /// 1054 void AsmPrinter::EmitConstantPool() { 1055 const MachineConstantPool *MCP = MF->getConstantPool(); 1056 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1057 if (CP.empty()) return; 1058 1059 // Calculate sections for constant pool entries. We collect entries to go into 1060 // the same section together to reduce amount of section switch statements. 1061 SmallVector<SectionCPs, 4> CPSections; 1062 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1063 const MachineConstantPoolEntry &CPE = CP[i]; 1064 unsigned Align = CPE.getAlignment(); 1065 1066 SectionKind Kind; 1067 switch (CPE.getRelocationInfo()) { 1068 default: llvm_unreachable("Unknown section kind"); 1069 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1070 case 1: 1071 Kind = SectionKind::getReadOnlyWithRelLocal(); 1072 break; 1073 case 0: 1074 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1075 case 4: Kind = SectionKind::getMergeableConst4(); break; 1076 case 8: Kind = SectionKind::getMergeableConst8(); break; 1077 case 16: Kind = SectionKind::getMergeableConst16();break; 1078 default: Kind = SectionKind::getMergeableConst(); break; 1079 } 1080 } 1081 1082 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1083 1084 // The number of sections are small, just do a linear search from the 1085 // last section to the first. 1086 bool Found = false; 1087 unsigned SecIdx = CPSections.size(); 1088 while (SecIdx != 0) { 1089 if (CPSections[--SecIdx].S == S) { 1090 Found = true; 1091 break; 1092 } 1093 } 1094 if (!Found) { 1095 SecIdx = CPSections.size(); 1096 CPSections.push_back(SectionCPs(S, Align)); 1097 } 1098 1099 if (Align > CPSections[SecIdx].Alignment) 1100 CPSections[SecIdx].Alignment = Align; 1101 CPSections[SecIdx].CPEs.push_back(i); 1102 } 1103 1104 // Now print stuff into the calculated sections. 1105 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1106 OutStreamer.SwitchSection(CPSections[i].S); 1107 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1108 1109 unsigned Offset = 0; 1110 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1111 unsigned CPI = CPSections[i].CPEs[j]; 1112 MachineConstantPoolEntry CPE = CP[CPI]; 1113 1114 // Emit inter-object padding for alignment. 1115 unsigned AlignMask = CPE.getAlignment() - 1; 1116 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1117 OutStreamer.EmitZeros(NewOffset - Offset); 1118 1119 Type *Ty = CPE.getType(); 1120 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1121 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1122 1123 if (CPE.isMachineConstantPoolEntry()) 1124 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1125 else 1126 EmitGlobalConstant(CPE.Val.ConstVal); 1127 } 1128 } 1129 } 1130 1131 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1132 /// by the current function to the current output stream. 1133 /// 1134 void AsmPrinter::EmitJumpTableInfo() { 1135 const DataLayout *DL = MF->getTarget().getDataLayout(); 1136 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1137 if (!MJTI) return; 1138 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1139 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1140 if (JT.empty()) return; 1141 1142 // Pick the directive to use to print the jump table entries, and switch to 1143 // the appropriate section. 1144 const Function *F = MF->getFunction(); 1145 bool JTInDiffSection = false; 1146 if (// In PIC mode, we need to emit the jump table to the same section as the 1147 // function body itself, otherwise the label differences won't make sense. 1148 // FIXME: Need a better predicate for this: what about custom entries? 1149 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1150 // We should also do if the section name is NULL or function is declared 1151 // in discardable section 1152 // FIXME: this isn't the right predicate, should be based on the MCSection 1153 // for the function. 1154 F->isWeakForLinker()) { 1155 OutStreamer.SwitchSection( 1156 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 1157 } else { 1158 // Otherwise, drop it in the readonly section. 1159 const MCSection *ReadOnlySection = 1160 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1161 OutStreamer.SwitchSection(ReadOnlySection); 1162 JTInDiffSection = true; 1163 } 1164 1165 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1166 1167 // Jump tables in code sections are marked with a data_region directive 1168 // where that's supported. 1169 if (!JTInDiffSection) 1170 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1171 1172 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1173 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1174 1175 // If this jump table was deleted, ignore it. 1176 if (JTBBs.empty()) continue; 1177 1178 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1179 // .set directive for each unique entry. This reduces the number of 1180 // relocations the assembler will generate for the jump table. 1181 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1182 MAI->hasSetDirective()) { 1183 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1184 const TargetLowering *TLI = TM.getTargetLowering(); 1185 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1186 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1187 const MachineBasicBlock *MBB = JTBBs[ii]; 1188 if (!EmittedSets.insert(MBB)) continue; 1189 1190 // .set LJTSet, LBB32-base 1191 const MCExpr *LHS = 1192 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1193 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1194 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1195 } 1196 } 1197 1198 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1199 // before each jump table. The first label is never referenced, but tells 1200 // the assembler and linker the extents of the jump table object. The 1201 // second label is actually referenced by the code. 1202 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1203 // FIXME: This doesn't have to have any specific name, just any randomly 1204 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1205 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1206 1207 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1208 1209 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1210 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1211 } 1212 if (!JTInDiffSection) 1213 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1214 } 1215 1216 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1217 /// current stream. 1218 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1219 const MachineBasicBlock *MBB, 1220 unsigned UID) const { 1221 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1222 const MCExpr *Value = nullptr; 1223 switch (MJTI->getEntryKind()) { 1224 case MachineJumpTableInfo::EK_Inline: 1225 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1226 case MachineJumpTableInfo::EK_Custom32: 1227 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1228 OutContext); 1229 break; 1230 case MachineJumpTableInfo::EK_BlockAddress: 1231 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1232 // .word LBB123 1233 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1234 break; 1235 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1236 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1237 // with a relocation as gp-relative, e.g.: 1238 // .gprel32 LBB123 1239 MCSymbol *MBBSym = MBB->getSymbol(); 1240 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1241 return; 1242 } 1243 1244 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1245 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1246 // with a relocation as gp-relative, e.g.: 1247 // .gpdword LBB123 1248 MCSymbol *MBBSym = MBB->getSymbol(); 1249 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1250 return; 1251 } 1252 1253 case MachineJumpTableInfo::EK_LabelDifference32: { 1254 // EK_LabelDifference32 - Each entry is the address of the block minus 1255 // the address of the jump table. This is used for PIC jump tables where 1256 // gprel32 is not supported. e.g.: 1257 // .word LBB123 - LJTI1_2 1258 // If the .set directive is supported, this is emitted as: 1259 // .set L4_5_set_123, LBB123 - LJTI1_2 1260 // .word L4_5_set_123 1261 1262 // If we have emitted set directives for the jump table entries, print 1263 // them rather than the entries themselves. If we're emitting PIC, then 1264 // emit the table entries as differences between two text section labels. 1265 if (MAI->hasSetDirective()) { 1266 // If we used .set, reference the .set's symbol. 1267 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1268 OutContext); 1269 break; 1270 } 1271 // Otherwise, use the difference as the jump table entry. 1272 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1273 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1274 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1275 break; 1276 } 1277 } 1278 1279 assert(Value && "Unknown entry kind!"); 1280 1281 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1282 OutStreamer.EmitValue(Value, EntrySize); 1283 } 1284 1285 1286 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1287 /// special global used by LLVM. If so, emit it and return true, otherwise 1288 /// do nothing and return false. 1289 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1290 if (GV->getName() == "llvm.used") { 1291 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1292 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1293 return true; 1294 } 1295 1296 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1297 if (StringRef(GV->getSection()) == "llvm.metadata" || 1298 GV->hasAvailableExternallyLinkage()) 1299 return true; 1300 1301 if (!GV->hasAppendingLinkage()) return false; 1302 1303 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1304 1305 if (GV->getName() == "llvm.global_ctors") { 1306 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1307 1308 if (TM.getRelocationModel() == Reloc::Static && 1309 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1310 StringRef Sym(".constructors_used"); 1311 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1312 MCSA_Reference); 1313 } 1314 return true; 1315 } 1316 1317 if (GV->getName() == "llvm.global_dtors") { 1318 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1319 1320 if (TM.getRelocationModel() == Reloc::Static && 1321 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1322 StringRef Sym(".destructors_used"); 1323 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1324 MCSA_Reference); 1325 } 1326 return true; 1327 } 1328 1329 return false; 1330 } 1331 1332 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1333 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1334 /// is true, as being used with this directive. 1335 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1336 // Should be an array of 'i8*'. 1337 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1338 const GlobalValue *GV = 1339 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1340 if (GV) 1341 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1342 } 1343 } 1344 1345 namespace { 1346 struct Structor { 1347 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1348 int Priority; 1349 llvm::Constant *Func; 1350 llvm::GlobalValue *ComdatKey; 1351 }; 1352 } // end namespace 1353 1354 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1355 /// priority. 1356 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1357 // Should be an array of '{ int, void ()* }' structs. The first value is the 1358 // init priority. 1359 if (!isa<ConstantArray>(List)) return; 1360 1361 // Sanity check the structors list. 1362 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1363 if (!InitList) return; // Not an array! 1364 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1365 // FIXME: Only allow the 3-field form in LLVM 4.0. 1366 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1367 return; // Not an array of two or three elements! 1368 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1369 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1370 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1371 return; // Not (int, ptr, ptr). 1372 1373 // Gather the structors in a form that's convenient for sorting by priority. 1374 SmallVector<Structor, 8> Structors; 1375 for (Value *O : InitList->operands()) { 1376 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1377 if (!CS) continue; // Malformed. 1378 if (CS->getOperand(1)->isNullValue()) 1379 break; // Found a null terminator, skip the rest. 1380 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1381 if (!Priority) continue; // Malformed. 1382 Structors.push_back(Structor()); 1383 Structor &S = Structors.back(); 1384 S.Priority = Priority->getLimitedValue(65535); 1385 S.Func = CS->getOperand(1); 1386 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1387 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1388 } 1389 1390 // Emit the function pointers in the target-specific order 1391 const DataLayout *DL = TM.getDataLayout(); 1392 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1393 std::stable_sort(Structors.begin(), Structors.end(), 1394 [](const Structor &L, 1395 const Structor &R) { return L.Priority < R.Priority; }); 1396 for (Structor &S : Structors) { 1397 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1398 const MCSymbol *KeySym = nullptr; 1399 if (GlobalValue *GV = S.ComdatKey) { 1400 if (GV->hasAvailableExternallyLinkage()) 1401 // If the associated variable is available_externally, some other TU 1402 // will provide its dynamic initializer. 1403 continue; 1404 1405 KeySym = getSymbol(GV); 1406 } 1407 const MCSection *OutputSection = 1408 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1409 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1410 OutStreamer.SwitchSection(OutputSection); 1411 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1412 EmitAlignment(Align); 1413 EmitXXStructor(S.Func); 1414 } 1415 } 1416 1417 void AsmPrinter::EmitModuleIdents(Module &M) { 1418 if (!MAI->hasIdentDirective()) 1419 return; 1420 1421 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1422 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1423 const MDNode *N = NMD->getOperand(i); 1424 assert(N->getNumOperands() == 1 && 1425 "llvm.ident metadata entry can have only one operand"); 1426 const MDString *S = cast<MDString>(N->getOperand(0)); 1427 OutStreamer.EmitIdent(S->getString()); 1428 } 1429 } 1430 } 1431 1432 //===--------------------------------------------------------------------===// 1433 // Emission and print routines 1434 // 1435 1436 /// EmitInt8 - Emit a byte directive and value. 1437 /// 1438 void AsmPrinter::EmitInt8(int Value) const { 1439 OutStreamer.EmitIntValue(Value, 1); 1440 } 1441 1442 /// EmitInt16 - Emit a short directive and value. 1443 /// 1444 void AsmPrinter::EmitInt16(int Value) const { 1445 OutStreamer.EmitIntValue(Value, 2); 1446 } 1447 1448 /// EmitInt32 - Emit a long directive and value. 1449 /// 1450 void AsmPrinter::EmitInt32(int Value) const { 1451 OutStreamer.EmitIntValue(Value, 4); 1452 } 1453 1454 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1455 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1456 /// labels. This implicitly uses .set if it is available. 1457 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1458 unsigned Size) const { 1459 // Get the Hi-Lo expression. 1460 const MCExpr *Diff = 1461 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1462 MCSymbolRefExpr::Create(Lo, OutContext), 1463 OutContext); 1464 1465 if (!MAI->hasSetDirective()) { 1466 OutStreamer.EmitValue(Diff, Size); 1467 return; 1468 } 1469 1470 // Otherwise, emit with .set (aka assignment). 1471 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1472 OutStreamer.EmitAssignment(SetLabel, Diff); 1473 OutStreamer.EmitSymbolValue(SetLabel, Size); 1474 } 1475 1476 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1477 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1478 /// specify the labels. This implicitly uses .set if it is available. 1479 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1480 const MCSymbol *Lo, 1481 unsigned Size) const { 1482 1483 // Emit Hi+Offset - Lo 1484 // Get the Hi+Offset expression. 1485 const MCExpr *Plus = 1486 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1487 MCConstantExpr::Create(Offset, OutContext), 1488 OutContext); 1489 1490 // Get the Hi+Offset-Lo expression. 1491 const MCExpr *Diff = 1492 MCBinaryExpr::CreateSub(Plus, 1493 MCSymbolRefExpr::Create(Lo, OutContext), 1494 OutContext); 1495 1496 if (!MAI->hasSetDirective()) 1497 OutStreamer.EmitValue(Diff, Size); 1498 else { 1499 // Otherwise, emit with .set (aka assignment). 1500 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1501 OutStreamer.EmitAssignment(SetLabel, Diff); 1502 OutStreamer.EmitSymbolValue(SetLabel, Size); 1503 } 1504 } 1505 1506 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1507 /// where the size in bytes of the directive is specified by Size and Label 1508 /// specifies the label. This implicitly uses .set if it is available. 1509 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1510 unsigned Size, 1511 bool IsSectionRelative) const { 1512 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1513 OutStreamer.EmitCOFFSecRel32(Label); 1514 return; 1515 } 1516 1517 // Emit Label+Offset (or just Label if Offset is zero) 1518 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1519 if (Offset) 1520 Expr = MCBinaryExpr::CreateAdd( 1521 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1522 1523 OutStreamer.EmitValue(Expr, Size); 1524 } 1525 1526 //===----------------------------------------------------------------------===// 1527 1528 // EmitAlignment - Emit an alignment directive to the specified power of 1529 // two boundary. For example, if you pass in 3 here, you will get an 8 1530 // byte alignment. If a global value is specified, and if that global has 1531 // an explicit alignment requested, it will override the alignment request 1532 // if required for correctness. 1533 // 1534 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1535 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1536 1537 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1538 1539 if (getCurrentSection()->getKind().isText()) 1540 OutStreamer.EmitCodeAlignment(1 << NumBits); 1541 else 1542 OutStreamer.EmitValueToAlignment(1 << NumBits); 1543 } 1544 1545 //===----------------------------------------------------------------------===// 1546 // Constant emission. 1547 //===----------------------------------------------------------------------===// 1548 1549 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1550 /// 1551 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1552 MCContext &Ctx = AP.OutContext; 1553 1554 if (CV->isNullValue() || isa<UndefValue>(CV)) 1555 return MCConstantExpr::Create(0, Ctx); 1556 1557 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1558 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1559 1560 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1561 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx); 1562 1563 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1564 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1565 1566 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1567 if (!CE) { 1568 llvm_unreachable("Unknown constant value to lower!"); 1569 } 1570 1571 if (const MCExpr *RelocExpr = 1572 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang, 1573 AP.TM)) 1574 return RelocExpr; 1575 1576 switch (CE->getOpcode()) { 1577 default: 1578 // If the code isn't optimized, there may be outstanding folding 1579 // opportunities. Attempt to fold the expression using DataLayout as a 1580 // last resort before giving up. 1581 if (Constant *C = 1582 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1583 if (C != CE) 1584 return lowerConstant(C, AP); 1585 1586 // Otherwise report the problem to the user. 1587 { 1588 std::string S; 1589 raw_string_ostream OS(S); 1590 OS << "Unsupported expression in static initializer: "; 1591 CE->printAsOperand(OS, /*PrintType=*/false, 1592 !AP.MF ? nullptr : AP.MF->getFunction()->getParent()); 1593 report_fatal_error(OS.str()); 1594 } 1595 case Instruction::GetElementPtr: { 1596 const DataLayout &DL = *AP.TM.getDataLayout(); 1597 // Generate a symbolic expression for the byte address 1598 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1599 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1600 1601 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1602 if (!OffsetAI) 1603 return Base; 1604 1605 int64_t Offset = OffsetAI.getSExtValue(); 1606 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1607 Ctx); 1608 } 1609 1610 case Instruction::Trunc: 1611 // We emit the value and depend on the assembler to truncate the generated 1612 // expression properly. This is important for differences between 1613 // blockaddress labels. Since the two labels are in the same function, it 1614 // is reasonable to treat their delta as a 32-bit value. 1615 // FALL THROUGH. 1616 case Instruction::BitCast: 1617 return lowerConstant(CE->getOperand(0), AP); 1618 1619 case Instruction::IntToPtr: { 1620 const DataLayout &DL = *AP.TM.getDataLayout(); 1621 // Handle casts to pointers by changing them into casts to the appropriate 1622 // integer type. This promotes constant folding and simplifies this code. 1623 Constant *Op = CE->getOperand(0); 1624 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1625 false/*ZExt*/); 1626 return lowerConstant(Op, AP); 1627 } 1628 1629 case Instruction::PtrToInt: { 1630 const DataLayout &DL = *AP.TM.getDataLayout(); 1631 // Support only foldable casts to/from pointers that can be eliminated by 1632 // changing the pointer to the appropriately sized integer type. 1633 Constant *Op = CE->getOperand(0); 1634 Type *Ty = CE->getType(); 1635 1636 const MCExpr *OpExpr = lowerConstant(Op, AP); 1637 1638 // We can emit the pointer value into this slot if the slot is an 1639 // integer slot equal to the size of the pointer. 1640 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1641 return OpExpr; 1642 1643 // Otherwise the pointer is smaller than the resultant integer, mask off 1644 // the high bits so we are sure to get a proper truncation if the input is 1645 // a constant expr. 1646 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1647 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1648 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1649 } 1650 1651 // The MC library also has a right-shift operator, but it isn't consistently 1652 // signed or unsigned between different targets. 1653 case Instruction::Add: 1654 case Instruction::Sub: 1655 case Instruction::Mul: 1656 case Instruction::SDiv: 1657 case Instruction::SRem: 1658 case Instruction::Shl: 1659 case Instruction::And: 1660 case Instruction::Or: 1661 case Instruction::Xor: { 1662 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1663 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1664 switch (CE->getOpcode()) { 1665 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1666 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1667 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1668 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1669 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1670 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1671 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1672 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1673 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1674 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1675 } 1676 } 1677 } 1678 } 1679 1680 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1681 1682 /// isRepeatedByteSequence - Determine whether the given value is 1683 /// composed of a repeated sequence of identical bytes and return the 1684 /// byte value. If it is not a repeated sequence, return -1. 1685 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1686 StringRef Data = V->getRawDataValues(); 1687 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1688 char C = Data[0]; 1689 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1690 if (Data[i] != C) return -1; 1691 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1692 } 1693 1694 1695 /// isRepeatedByteSequence - Determine whether the given value is 1696 /// composed of a repeated sequence of identical bytes and return the 1697 /// byte value. If it is not a repeated sequence, return -1. 1698 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1699 1700 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1701 if (CI->getBitWidth() > 64) return -1; 1702 1703 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1704 uint64_t Value = CI->getZExtValue(); 1705 1706 // Make sure the constant is at least 8 bits long and has a power 1707 // of 2 bit width. This guarantees the constant bit width is 1708 // always a multiple of 8 bits, avoiding issues with padding out 1709 // to Size and other such corner cases. 1710 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1711 1712 uint8_t Byte = static_cast<uint8_t>(Value); 1713 1714 for (unsigned i = 1; i < Size; ++i) { 1715 Value >>= 8; 1716 if (static_cast<uint8_t>(Value) != Byte) return -1; 1717 } 1718 return Byte; 1719 } 1720 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1721 // Make sure all array elements are sequences of the same repeated 1722 // byte. 1723 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1724 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1725 if (Byte == -1) return -1; 1726 1727 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1728 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1729 if (ThisByte == -1) return -1; 1730 if (Byte != ThisByte) return -1; 1731 } 1732 return Byte; 1733 } 1734 1735 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1736 return isRepeatedByteSequence(CDS); 1737 1738 return -1; 1739 } 1740 1741 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1742 AsmPrinter &AP){ 1743 1744 // See if we can aggregate this into a .fill, if so, emit it as such. 1745 int Value = isRepeatedByteSequence(CDS, AP.TM); 1746 if (Value != -1) { 1747 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1748 // Don't emit a 1-byte object as a .fill. 1749 if (Bytes > 1) 1750 return AP.OutStreamer.EmitFill(Bytes, Value); 1751 } 1752 1753 // If this can be emitted with .ascii/.asciz, emit it as such. 1754 if (CDS->isString()) 1755 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1756 1757 // Otherwise, emit the values in successive locations. 1758 unsigned ElementByteSize = CDS->getElementByteSize(); 1759 if (isa<IntegerType>(CDS->getElementType())) { 1760 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1761 if (AP.isVerbose()) 1762 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1763 CDS->getElementAsInteger(i)); 1764 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1765 ElementByteSize); 1766 } 1767 } else if (ElementByteSize == 4) { 1768 // FP Constants are printed as integer constants to avoid losing 1769 // precision. 1770 assert(CDS->getElementType()->isFloatTy()); 1771 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1772 union { 1773 float F; 1774 uint32_t I; 1775 }; 1776 1777 F = CDS->getElementAsFloat(i); 1778 if (AP.isVerbose()) 1779 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1780 AP.OutStreamer.EmitIntValue(I, 4); 1781 } 1782 } else { 1783 assert(CDS->getElementType()->isDoubleTy()); 1784 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1785 union { 1786 double F; 1787 uint64_t I; 1788 }; 1789 1790 F = CDS->getElementAsDouble(i); 1791 if (AP.isVerbose()) 1792 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1793 AP.OutStreamer.EmitIntValue(I, 8); 1794 } 1795 } 1796 1797 const DataLayout &DL = *AP.TM.getDataLayout(); 1798 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1799 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1800 CDS->getNumElements(); 1801 if (unsigned Padding = Size - EmittedSize) 1802 AP.OutStreamer.EmitZeros(Padding); 1803 1804 } 1805 1806 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1807 // See if we can aggregate some values. Make sure it can be 1808 // represented as a series of bytes of the constant value. 1809 int Value = isRepeatedByteSequence(CA, AP.TM); 1810 1811 if (Value != -1) { 1812 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1813 AP.OutStreamer.EmitFill(Bytes, Value); 1814 } 1815 else { 1816 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1817 emitGlobalConstantImpl(CA->getOperand(i), AP); 1818 } 1819 } 1820 1821 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1822 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1823 emitGlobalConstantImpl(CV->getOperand(i), AP); 1824 1825 const DataLayout &DL = *AP.TM.getDataLayout(); 1826 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1827 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1828 CV->getType()->getNumElements(); 1829 if (unsigned Padding = Size - EmittedSize) 1830 AP.OutStreamer.EmitZeros(Padding); 1831 } 1832 1833 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1834 // Print the fields in successive locations. Pad to align if needed! 1835 const DataLayout *DL = AP.TM.getDataLayout(); 1836 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1837 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1838 uint64_t SizeSoFar = 0; 1839 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1840 const Constant *Field = CS->getOperand(i); 1841 1842 // Check if padding is needed and insert one or more 0s. 1843 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1844 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1845 - Layout->getElementOffset(i)) - FieldSize; 1846 SizeSoFar += FieldSize + PadSize; 1847 1848 // Now print the actual field value. 1849 emitGlobalConstantImpl(Field, AP); 1850 1851 // Insert padding - this may include padding to increase the size of the 1852 // current field up to the ABI size (if the struct is not packed) as well 1853 // as padding to ensure that the next field starts at the right offset. 1854 AP.OutStreamer.EmitZeros(PadSize); 1855 } 1856 assert(SizeSoFar == Layout->getSizeInBytes() && 1857 "Layout of constant struct may be incorrect!"); 1858 } 1859 1860 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1861 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1862 1863 // First print a comment with what we think the original floating-point value 1864 // should have been. 1865 if (AP.isVerbose()) { 1866 SmallString<8> StrVal; 1867 CFP->getValueAPF().toString(StrVal); 1868 1869 if (CFP->getType()) 1870 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1871 else 1872 AP.OutStreamer.GetCommentOS() << "Printing <null> Type"; 1873 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1874 } 1875 1876 // Now iterate through the APInt chunks, emitting them in endian-correct 1877 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1878 // floats). 1879 unsigned NumBytes = API.getBitWidth() / 8; 1880 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1881 const uint64_t *p = API.getRawData(); 1882 1883 // PPC's long double has odd notions of endianness compared to how LLVM 1884 // handles it: p[0] goes first for *big* endian on PPC. 1885 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { 1886 int Chunk = API.getNumWords() - 1; 1887 1888 if (TrailingBytes) 1889 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1890 1891 for (; Chunk >= 0; --Chunk) 1892 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1893 } else { 1894 unsigned Chunk; 1895 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1896 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1897 1898 if (TrailingBytes) 1899 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1900 } 1901 1902 // Emit the tail padding for the long double. 1903 const DataLayout &DL = *AP.TM.getDataLayout(); 1904 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1905 DL.getTypeStoreSize(CFP->getType())); 1906 } 1907 1908 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1909 const DataLayout *DL = AP.TM.getDataLayout(); 1910 unsigned BitWidth = CI->getBitWidth(); 1911 1912 // Copy the value as we may massage the layout for constants whose bit width 1913 // is not a multiple of 64-bits. 1914 APInt Realigned(CI->getValue()); 1915 uint64_t ExtraBits = 0; 1916 unsigned ExtraBitsSize = BitWidth & 63; 1917 1918 if (ExtraBitsSize) { 1919 // The bit width of the data is not a multiple of 64-bits. 1920 // The extra bits are expected to be at the end of the chunk of the memory. 1921 // Little endian: 1922 // * Nothing to be done, just record the extra bits to emit. 1923 // Big endian: 1924 // * Record the extra bits to emit. 1925 // * Realign the raw data to emit the chunks of 64-bits. 1926 if (DL->isBigEndian()) { 1927 // Basically the structure of the raw data is a chunk of 64-bits cells: 1928 // 0 1 BitWidth / 64 1929 // [chunk1][chunk2] ... [chunkN]. 1930 // The most significant chunk is chunkN and it should be emitted first. 1931 // However, due to the alignment issue chunkN contains useless bits. 1932 // Realign the chunks so that they contain only useless information: 1933 // ExtraBits 0 1 (BitWidth / 64) - 1 1934 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1935 ExtraBits = Realigned.getRawData()[0] & 1936 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1937 Realigned = Realigned.lshr(ExtraBitsSize); 1938 } else 1939 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1940 } 1941 1942 // We don't expect assemblers to support integer data directives 1943 // for more than 64 bits, so we emit the data in at most 64-bit 1944 // quantities at a time. 1945 const uint64_t *RawData = Realigned.getRawData(); 1946 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1947 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1948 AP.OutStreamer.EmitIntValue(Val, 8); 1949 } 1950 1951 if (ExtraBitsSize) { 1952 // Emit the extra bits after the 64-bits chunks. 1953 1954 // Emit a directive that fills the expected size. 1955 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType()); 1956 Size -= (BitWidth / 64) * 8; 1957 assert(Size && Size * 8 >= ExtraBitsSize && 1958 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1959 == ExtraBits && "Directive too small for extra bits."); 1960 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1961 } 1962 } 1963 1964 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1965 const DataLayout *DL = AP.TM.getDataLayout(); 1966 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1967 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1968 return AP.OutStreamer.EmitZeros(Size); 1969 1970 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1971 switch (Size) { 1972 case 1: 1973 case 2: 1974 case 4: 1975 case 8: 1976 if (AP.isVerbose()) 1977 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1978 CI->getZExtValue()); 1979 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1980 return; 1981 default: 1982 emitGlobalConstantLargeInt(CI, AP); 1983 return; 1984 } 1985 } 1986 1987 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1988 return emitGlobalConstantFP(CFP, AP); 1989 1990 if (isa<ConstantPointerNull>(CV)) { 1991 AP.OutStreamer.EmitIntValue(0, Size); 1992 return; 1993 } 1994 1995 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1996 return emitGlobalConstantDataSequential(CDS, AP); 1997 1998 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1999 return emitGlobalConstantArray(CVA, AP); 2000 2001 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2002 return emitGlobalConstantStruct(CVS, AP); 2003 2004 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2005 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2006 // vectors). 2007 if (CE->getOpcode() == Instruction::BitCast) 2008 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2009 2010 if (Size > 8) { 2011 // If the constant expression's size is greater than 64-bits, then we have 2012 // to emit the value in chunks. Try to constant fold the value and emit it 2013 // that way. 2014 Constant *New = ConstantFoldConstantExpression(CE, DL); 2015 if (New && New != CE) 2016 return emitGlobalConstantImpl(New, AP); 2017 } 2018 } 2019 2020 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2021 return emitGlobalConstantVector(V, AP); 2022 2023 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2024 // thread the streamer with EmitValue. 2025 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 2026 } 2027 2028 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2029 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2030 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2031 if (Size) 2032 emitGlobalConstantImpl(CV, *this); 2033 else if (MAI->hasSubsectionsViaSymbols()) { 2034 // If the global has zero size, emit a single byte so that two labels don't 2035 // look like they are at the same location. 2036 OutStreamer.EmitIntValue(0, 1); 2037 } 2038 } 2039 2040 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2041 // Target doesn't support this yet! 2042 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2043 } 2044 2045 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2046 if (Offset > 0) 2047 OS << '+' << Offset; 2048 else if (Offset < 0) 2049 OS << Offset; 2050 } 2051 2052 //===----------------------------------------------------------------------===// 2053 // Symbol Lowering Routines. 2054 //===----------------------------------------------------------------------===// 2055 2056 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2057 /// temporary label with the specified stem and unique ID. 2058 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const { 2059 const DataLayout *DL = TM.getDataLayout(); 2060 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2061 Name + Twine(ID)); 2062 } 2063 2064 /// GetTempSymbol - Return an assembler temporary label with the specified 2065 /// stem. 2066 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const { 2067 const DataLayout *DL = TM.getDataLayout(); 2068 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2069 Name); 2070 } 2071 2072 2073 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2074 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2075 } 2076 2077 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2078 return MMI->getAddrLabelSymbol(BB); 2079 } 2080 2081 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2082 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2083 const DataLayout *DL = TM.getDataLayout(); 2084 return OutContext.GetOrCreateSymbol 2085 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2086 + "_" + Twine(CPID)); 2087 } 2088 2089 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2090 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2091 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2092 } 2093 2094 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2095 /// FIXME: privatize to AsmPrinter. 2096 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2097 const DataLayout *DL = TM.getDataLayout(); 2098 return OutContext.GetOrCreateSymbol 2099 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2100 Twine(UID) + "_set_" + Twine(MBBID)); 2101 } 2102 2103 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2104 StringRef Suffix) const { 2105 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2106 TM); 2107 } 2108 2109 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2110 /// ExternalSymbol. 2111 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2112 SmallString<60> NameStr; 2113 Mang->getNameWithPrefix(NameStr, Sym); 2114 return OutContext.GetOrCreateSymbol(NameStr.str()); 2115 } 2116 2117 2118 2119 /// PrintParentLoopComment - Print comments about parent loops of this one. 2120 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2121 unsigned FunctionNumber) { 2122 if (!Loop) return; 2123 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2124 OS.indent(Loop->getLoopDepth()*2) 2125 << "Parent Loop BB" << FunctionNumber << "_" 2126 << Loop->getHeader()->getNumber() 2127 << " Depth=" << Loop->getLoopDepth() << '\n'; 2128 } 2129 2130 2131 /// PrintChildLoopComment - Print comments about child loops within 2132 /// the loop for this basic block, with nesting. 2133 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2134 unsigned FunctionNumber) { 2135 // Add child loop information 2136 for (const MachineLoop *CL : *Loop) { 2137 OS.indent(CL->getLoopDepth()*2) 2138 << "Child Loop BB" << FunctionNumber << "_" 2139 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2140 << '\n'; 2141 PrintChildLoopComment(OS, CL, FunctionNumber); 2142 } 2143 } 2144 2145 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2146 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2147 const MachineLoopInfo *LI, 2148 const AsmPrinter &AP) { 2149 // Add loop depth information 2150 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2151 if (!Loop) return; 2152 2153 MachineBasicBlock *Header = Loop->getHeader(); 2154 assert(Header && "No header for loop"); 2155 2156 // If this block is not a loop header, just print out what is the loop header 2157 // and return. 2158 if (Header != &MBB) { 2159 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2160 Twine(AP.getFunctionNumber())+"_" + 2161 Twine(Loop->getHeader()->getNumber())+ 2162 " Depth="+Twine(Loop->getLoopDepth())); 2163 return; 2164 } 2165 2166 // Otherwise, it is a loop header. Print out information about child and 2167 // parent loops. 2168 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2169 2170 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2171 2172 OS << "=>"; 2173 OS.indent(Loop->getLoopDepth()*2-2); 2174 2175 OS << "This "; 2176 if (Loop->empty()) 2177 OS << "Inner "; 2178 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2179 2180 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2181 } 2182 2183 2184 /// EmitBasicBlockStart - This method prints the label for the specified 2185 /// MachineBasicBlock, an alignment (if present) and a comment describing 2186 /// it if appropriate. 2187 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2188 // Emit an alignment directive for this block, if needed. 2189 if (unsigned Align = MBB.getAlignment()) 2190 EmitAlignment(Align); 2191 2192 // If the block has its address taken, emit any labels that were used to 2193 // reference the block. It is possible that there is more than one label 2194 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2195 // the references were generated. 2196 if (MBB.hasAddressTaken()) { 2197 const BasicBlock *BB = MBB.getBasicBlock(); 2198 if (isVerbose()) 2199 OutStreamer.AddComment("Block address taken"); 2200 2201 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2202 for (auto *Sym : Symbols) 2203 OutStreamer.EmitLabel(Sym); 2204 } 2205 2206 // Print some verbose block comments. 2207 if (isVerbose()) { 2208 if (const BasicBlock *BB = MBB.getBasicBlock()) 2209 if (BB->hasName()) 2210 OutStreamer.AddComment("%" + BB->getName()); 2211 emitBasicBlockLoopComments(MBB, LI, *this); 2212 } 2213 2214 // Print the main label for the block. 2215 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2216 if (isVerbose()) { 2217 // NOTE: Want this comment at start of line, don't emit with AddComment. 2218 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2219 } 2220 } else { 2221 OutStreamer.EmitLabel(MBB.getSymbol()); 2222 } 2223 } 2224 2225 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2226 bool IsDefinition) const { 2227 MCSymbolAttr Attr = MCSA_Invalid; 2228 2229 switch (Visibility) { 2230 default: break; 2231 case GlobalValue::HiddenVisibility: 2232 if (IsDefinition) 2233 Attr = MAI->getHiddenVisibilityAttr(); 2234 else 2235 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2236 break; 2237 case GlobalValue::ProtectedVisibility: 2238 Attr = MAI->getProtectedVisibilityAttr(); 2239 break; 2240 } 2241 2242 if (Attr != MCSA_Invalid) 2243 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2244 } 2245 2246 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2247 /// exactly one predecessor and the control transfer mechanism between 2248 /// the predecessor and this block is a fall-through. 2249 bool AsmPrinter:: 2250 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2251 // If this is a landing pad, it isn't a fall through. If it has no preds, 2252 // then nothing falls through to it. 2253 if (MBB->isLandingPad() || MBB->pred_empty()) 2254 return false; 2255 2256 // If there isn't exactly one predecessor, it can't be a fall through. 2257 if (MBB->pred_size() > 1) 2258 return false; 2259 2260 // The predecessor has to be immediately before this block. 2261 MachineBasicBlock *Pred = *MBB->pred_begin(); 2262 if (!Pred->isLayoutSuccessor(MBB)) 2263 return false; 2264 2265 // If the block is completely empty, then it definitely does fall through. 2266 if (Pred->empty()) 2267 return true; 2268 2269 // Check the terminators in the previous blocks 2270 for (const auto &MI : Pred->terminators()) { 2271 // If it is not a simple branch, we are in a table somewhere. 2272 if (!MI.isBranch() || MI.isIndirectBranch()) 2273 return false; 2274 2275 // If we are the operands of one of the branches, this is not a fall 2276 // through. Note that targets with delay slots will usually bundle 2277 // terminators with the delay slot instruction. 2278 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2279 if (OP->isJTI()) 2280 return false; 2281 if (OP->isMBB() && OP->getMBB() == MBB) 2282 return false; 2283 } 2284 } 2285 2286 return true; 2287 } 2288 2289 2290 2291 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2292 if (!S.usesMetadata()) 2293 return nullptr; 2294 2295 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2296 gcp_map_type::iterator GCPI = GCMap.find(&S); 2297 if (GCPI != GCMap.end()) 2298 return GCPI->second.get(); 2299 2300 const char *Name = S.getName().c_str(); 2301 2302 for (GCMetadataPrinterRegistry::iterator 2303 I = GCMetadataPrinterRegistry::begin(), 2304 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2305 if (strcmp(Name, I->getName()) == 0) { 2306 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2307 GMP->S = &S; 2308 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2309 return IterBool.first->second.get(); 2310 } 2311 2312 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2313 } 2314 2315 /// Pin vtable to this file. 2316 AsmPrinterHandler::~AsmPrinterHandler() {} 2317