1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "Win64Exception.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/JumpInstrTableInfo.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/GCMetadataPrinter.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBundle.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCExpr.h" 40 #include "llvm/MC/MCInst.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "asm-printer" 57 58 static const char *const DWARFGroupName = "DWARF Emission"; 59 static const char *const DbgTimerName = "Debug Info Emission"; 60 static const char *const EHTimerName = "DWARF Exception Writer"; 61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 62 63 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 64 65 char AsmPrinter::ID = 0; 66 67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 68 static gcp_map_type &getGCMap(void *&P) { 69 if (!P) 70 P = new gcp_map_type(); 71 return *(gcp_map_type*)P; 72 } 73 74 75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 76 /// value in log2 form. This rounds up to the preferred alignment if possible 77 /// and legal. 78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 79 unsigned InBits = 0) { 80 unsigned NumBits = 0; 81 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 82 NumBits = TD.getPreferredAlignmentLog(GVar); 83 84 // If InBits is specified, round it to it. 85 if (InBits > NumBits) 86 NumBits = InBits; 87 88 // If the GV has a specified alignment, take it into account. 89 if (GV->getAlignment() == 0) 90 return NumBits; 91 92 unsigned GVAlign = Log2_32(GV->getAlignment()); 93 94 // If the GVAlign is larger than NumBits, or if we are required to obey 95 // NumBits because the GV has an assigned section, obey it. 96 if (GVAlign > NumBits || GV->hasSection()) 97 NumBits = GVAlign; 98 return NumBits; 99 } 100 101 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 102 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 103 MII(tm.getSubtargetImpl()->getInstrInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(*Streamer.release()), 105 LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) { 106 DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr; 107 CurrentFnSym = CurrentFnSymForSize = nullptr; 108 GCMetadataPrinters = nullptr; 109 VerboseAsm = OutStreamer.isVerboseAsm(); 110 } 111 112 AsmPrinter::~AsmPrinter() { 113 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 114 115 if (GCMetadataPrinters) { 116 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 117 118 delete &GCMap; 119 GCMetadataPrinters = nullptr; 120 } 121 122 delete &OutStreamer; 123 } 124 125 /// getFunctionNumber - Return a unique ID for the current function. 126 /// 127 unsigned AsmPrinter::getFunctionNumber() const { 128 return MF->getFunctionNumber(); 129 } 130 131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 132 return *TM.getObjFileLowering(); 133 } 134 135 /// getDataLayout - Return information about data layout. 136 const DataLayout &AsmPrinter::getDataLayout() const { 137 return *TM.getDataLayout(); 138 } 139 140 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 141 return TM.getSubtarget<MCSubtargetInfo>(); 142 } 143 144 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 145 S.EmitInstruction(Inst, getSubtargetInfo()); 146 } 147 148 StringRef AsmPrinter::getTargetTriple() const { 149 return TM.getTargetTriple(); 150 } 151 152 /// getCurrentSection() - Return the current section we are emitting to. 153 const MCSection *AsmPrinter::getCurrentSection() const { 154 return OutStreamer.getCurrentSection().first; 155 } 156 157 158 159 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 160 AU.setPreservesAll(); 161 MachineFunctionPass::getAnalysisUsage(AU); 162 AU.addRequired<MachineModuleInfo>(); 163 AU.addRequired<GCModuleInfo>(); 164 if (isVerbose()) 165 AU.addRequired<MachineLoopInfo>(); 166 } 167 168 bool AsmPrinter::doInitialization(Module &M) { 169 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 170 MMI->AnalyzeModule(M); 171 172 // Initialize TargetLoweringObjectFile. 173 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 174 .Initialize(OutContext, TM); 175 176 OutStreamer.InitSections(false); 177 178 Mang = new Mangler(TM.getDataLayout()); 179 180 // Emit the version-min deplyment target directive if needed. 181 // 182 // FIXME: If we end up with a collection of these sorts of Darwin-specific 183 // or ELF-specific things, it may make sense to have a platform helper class 184 // that will work with the target helper class. For now keep it here, as the 185 // alternative is duplicated code in each of the target asm printers that 186 // use the directive, where it would need the same conditionalization 187 // anyway. 188 Triple TT(getTargetTriple()); 189 if (TT.isOSDarwin()) { 190 unsigned Major, Minor, Update; 191 TT.getOSVersion(Major, Minor, Update); 192 // If there is a version specified, Major will be non-zero. 193 if (Major) 194 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 195 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 196 Major, Minor, Update); 197 } 198 199 // Allow the target to emit any magic that it wants at the start of the file. 200 EmitStartOfAsmFile(M); 201 202 // Very minimal debug info. It is ignored if we emit actual debug info. If we 203 // don't, this at least helps the user find where a global came from. 204 if (MAI->hasSingleParameterDotFile()) { 205 // .file "foo.c" 206 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 207 } 208 209 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 210 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 211 for (auto &I : *MI) 212 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 213 MP->beginAssembly(M, *MI, *this); 214 215 // Emit module-level inline asm if it exists. 216 if (!M.getModuleInlineAsm().empty()) { 217 OutStreamer.AddComment("Start of file scope inline assembly"); 218 OutStreamer.AddBlankLine(); 219 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 220 OutStreamer.AddComment("End of file scope inline assembly"); 221 OutStreamer.AddBlankLine(); 222 } 223 224 if (MAI->doesSupportDebugInformation()) { 225 bool skip_dwarf = false; 226 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 227 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 228 DbgTimerName, 229 CodeViewLineTablesGroupName)); 230 // FIXME: Don't emit DWARF debug info if there's at least one function 231 // with AddressSanitizer instrumentation. 232 // This is a band-aid fix for PR22032. 233 for (auto &F : M.functions()) { 234 if (F.hasFnAttribute(Attribute::SanitizeAddress)) { 235 skip_dwarf = true; 236 break; 237 } 238 } 239 } 240 if (!skip_dwarf) { 241 DD = new DwarfDebug(this, &M); 242 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 243 } 244 } 245 246 EHStreamer *ES = nullptr; 247 switch (MAI->getExceptionHandlingType()) { 248 case ExceptionHandling::None: 249 break; 250 case ExceptionHandling::SjLj: 251 case ExceptionHandling::DwarfCFI: 252 ES = new DwarfCFIException(this); 253 break; 254 case ExceptionHandling::ARM: 255 ES = new ARMException(this); 256 break; 257 case ExceptionHandling::WinEH: 258 switch (MAI->getWinEHEncodingType()) { 259 default: llvm_unreachable("unsupported unwinding information encoding"); 260 case WinEH::EncodingType::Itanium: 261 ES = new Win64Exception(this); 262 break; 263 } 264 break; 265 } 266 if (ES) 267 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 268 return false; 269 } 270 271 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 272 if (!MAI.hasWeakDefCanBeHiddenDirective()) 273 return false; 274 275 return canBeOmittedFromSymbolTable(GV); 276 } 277 278 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 279 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 280 switch (Linkage) { 281 case GlobalValue::CommonLinkage: 282 case GlobalValue::LinkOnceAnyLinkage: 283 case GlobalValue::LinkOnceODRLinkage: 284 case GlobalValue::WeakAnyLinkage: 285 case GlobalValue::WeakODRLinkage: 286 if (MAI->hasWeakDefDirective()) { 287 // .globl _foo 288 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 289 290 if (!canBeHidden(GV, *MAI)) 291 // .weak_definition _foo 292 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 293 else 294 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 295 } else if (MAI->hasLinkOnceDirective()) { 296 // .globl _foo 297 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 298 //NOTE: linkonce is handled by the section the symbol was assigned to. 299 } else { 300 // .weak _foo 301 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 302 } 303 return; 304 case GlobalValue::AppendingLinkage: 305 // FIXME: appending linkage variables should go into a section of 306 // their name or something. For now, just emit them as external. 307 case GlobalValue::ExternalLinkage: 308 // If external or appending, declare as a global symbol. 309 // .globl _foo 310 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 311 return; 312 case GlobalValue::PrivateLinkage: 313 case GlobalValue::InternalLinkage: 314 return; 315 case GlobalValue::AvailableExternallyLinkage: 316 llvm_unreachable("Should never emit this"); 317 case GlobalValue::ExternalWeakLinkage: 318 llvm_unreachable("Don't know how to emit these"); 319 } 320 llvm_unreachable("Unknown linkage type!"); 321 } 322 323 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 324 const GlobalValue *GV) const { 325 TM.getNameWithPrefix(Name, GV, *Mang); 326 } 327 328 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 329 return TM.getSymbol(GV, *Mang); 330 } 331 332 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 333 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 334 if (GV->hasInitializer()) { 335 // Check to see if this is a special global used by LLVM, if so, emit it. 336 if (EmitSpecialLLVMGlobal(GV)) 337 return; 338 339 if (isVerbose()) { 340 GV->printAsOperand(OutStreamer.GetCommentOS(), 341 /*PrintType=*/false, GV->getParent()); 342 OutStreamer.GetCommentOS() << '\n'; 343 } 344 } 345 346 MCSymbol *GVSym = getSymbol(GV); 347 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 348 349 if (!GV->hasInitializer()) // External globals require no extra code. 350 return; 351 352 GVSym->redefineIfPossible(); 353 if (GVSym->isDefined() || GVSym->isVariable()) 354 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 355 "' is already defined"); 356 357 if (MAI->hasDotTypeDotSizeDirective()) 358 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 359 360 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 361 362 const DataLayout *DL = TM.getDataLayout(); 363 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 364 365 // If the alignment is specified, we *must* obey it. Overaligning a global 366 // with a specified alignment is a prompt way to break globals emitted to 367 // sections and expected to be contiguous (e.g. ObjC metadata). 368 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 369 370 for (const HandlerInfo &HI : Handlers) { 371 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 372 HI.Handler->setSymbolSize(GVSym, Size); 373 } 374 375 // Handle common and BSS local symbols (.lcomm). 376 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 377 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 378 unsigned Align = 1 << AlignLog; 379 380 // Handle common symbols. 381 if (GVKind.isCommon()) { 382 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 383 Align = 0; 384 385 // .comm _foo, 42, 4 386 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 387 return; 388 } 389 390 // Handle local BSS symbols. 391 if (MAI->hasMachoZeroFillDirective()) { 392 const MCSection *TheSection = 393 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 394 // .zerofill __DATA, __bss, _foo, 400, 5 395 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 396 return; 397 } 398 399 // Use .lcomm only if it supports user-specified alignment. 400 // Otherwise, while it would still be correct to use .lcomm in some 401 // cases (e.g. when Align == 1), the external assembler might enfore 402 // some -unknown- default alignment behavior, which could cause 403 // spurious differences between external and integrated assembler. 404 // Prefer to simply fall back to .local / .comm in this case. 405 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 406 // .lcomm _foo, 42 407 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 408 return; 409 } 410 411 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 412 Align = 0; 413 414 // .local _foo 415 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 416 // .comm _foo, 42, 4 417 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 418 return; 419 } 420 421 const MCSection *TheSection = 422 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 423 424 // Handle the zerofill directive on darwin, which is a special form of BSS 425 // emission. 426 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 427 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 428 429 // .globl _foo 430 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 431 // .zerofill __DATA, __common, _foo, 400, 5 432 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 433 return; 434 } 435 436 // Handle thread local data for mach-o which requires us to output an 437 // additional structure of data and mangle the original symbol so that we 438 // can reference it later. 439 // 440 // TODO: This should become an "emit thread local global" method on TLOF. 441 // All of this macho specific stuff should be sunk down into TLOFMachO and 442 // stuff like "TLSExtraDataSection" should no longer be part of the parent 443 // TLOF class. This will also make it more obvious that stuff like 444 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 445 // specific code. 446 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 447 // Emit the .tbss symbol 448 MCSymbol *MangSym = 449 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 450 451 if (GVKind.isThreadBSS()) { 452 TheSection = getObjFileLowering().getTLSBSSSection(); 453 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 454 } else if (GVKind.isThreadData()) { 455 OutStreamer.SwitchSection(TheSection); 456 457 EmitAlignment(AlignLog, GV); 458 OutStreamer.EmitLabel(MangSym); 459 460 EmitGlobalConstant(GV->getInitializer()); 461 } 462 463 OutStreamer.AddBlankLine(); 464 465 // Emit the variable struct for the runtime. 466 const MCSection *TLVSect 467 = getObjFileLowering().getTLSExtraDataSection(); 468 469 OutStreamer.SwitchSection(TLVSect); 470 // Emit the linkage here. 471 EmitLinkage(GV, GVSym); 472 OutStreamer.EmitLabel(GVSym); 473 474 // Three pointers in size: 475 // - __tlv_bootstrap - used to make sure support exists 476 // - spare pointer, used when mapped by the runtime 477 // - pointer to mangled symbol above with initializer 478 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 479 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 480 PtrSize); 481 OutStreamer.EmitIntValue(0, PtrSize); 482 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 483 484 OutStreamer.AddBlankLine(); 485 return; 486 } 487 488 OutStreamer.SwitchSection(TheSection); 489 490 EmitLinkage(GV, GVSym); 491 EmitAlignment(AlignLog, GV); 492 493 OutStreamer.EmitLabel(GVSym); 494 495 EmitGlobalConstant(GV->getInitializer()); 496 497 if (MAI->hasDotTypeDotSizeDirective()) 498 // .size foo, 42 499 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 500 501 OutStreamer.AddBlankLine(); 502 } 503 504 /// EmitFunctionHeader - This method emits the header for the current 505 /// function. 506 void AsmPrinter::EmitFunctionHeader() { 507 // Print out constants referenced by the function 508 EmitConstantPool(); 509 510 // Print the 'header' of function. 511 const Function *F = MF->getFunction(); 512 513 OutStreamer.SwitchSection( 514 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 515 EmitVisibility(CurrentFnSym, F->getVisibility()); 516 517 EmitLinkage(F, CurrentFnSym); 518 EmitAlignment(MF->getAlignment(), F); 519 520 if (MAI->hasDotTypeDotSizeDirective()) 521 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 522 523 if (isVerbose()) { 524 F->printAsOperand(OutStreamer.GetCommentOS(), 525 /*PrintType=*/false, F->getParent()); 526 OutStreamer.GetCommentOS() << '\n'; 527 } 528 529 // Emit the prefix data. 530 if (F->hasPrefixData()) 531 EmitGlobalConstant(F->getPrefixData()); 532 533 // Emit the CurrentFnSym. This is a virtual function to allow targets to 534 // do their wild and crazy things as required. 535 EmitFunctionEntryLabel(); 536 537 // If the function had address-taken blocks that got deleted, then we have 538 // references to the dangling symbols. Emit them at the start of the function 539 // so that we don't get references to undefined symbols. 540 std::vector<MCSymbol*> DeadBlockSyms; 541 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 542 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 543 OutStreamer.AddComment("Address taken block that was later removed"); 544 OutStreamer.EmitLabel(DeadBlockSyms[i]); 545 } 546 547 // Emit pre-function debug and/or EH information. 548 for (const HandlerInfo &HI : Handlers) { 549 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 550 HI.Handler->beginFunction(MF); 551 } 552 553 // Emit the prologue data. 554 if (F->hasPrologueData()) 555 EmitGlobalConstant(F->getPrologueData()); 556 } 557 558 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 559 /// function. This can be overridden by targets as required to do custom stuff. 560 void AsmPrinter::EmitFunctionEntryLabel() { 561 CurrentFnSym->redefineIfPossible(); 562 563 // The function label could have already been emitted if two symbols end up 564 // conflicting due to asm renaming. Detect this and emit an error. 565 if (CurrentFnSym->isVariable()) 566 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 567 "' is a protected alias"); 568 if (CurrentFnSym->isDefined()) 569 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 570 "' label emitted multiple times to assembly file"); 571 572 return OutStreamer.EmitLabel(CurrentFnSym); 573 } 574 575 /// emitComments - Pretty-print comments for instructions. 576 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 577 const MachineFunction *MF = MI.getParent()->getParent(); 578 const TargetMachine &TM = MF->getTarget(); 579 580 // Check for spills and reloads 581 int FI; 582 583 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 584 585 // We assume a single instruction only has a spill or reload, not 586 // both. 587 const MachineMemOperand *MMO; 588 if (TM.getSubtargetImpl()->getInstrInfo()->isLoadFromStackSlotPostFE(&MI, 589 FI)) { 590 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 591 MMO = *MI.memoperands_begin(); 592 CommentOS << MMO->getSize() << "-byte Reload\n"; 593 } 594 } else if (TM.getSubtargetImpl()->getInstrInfo()->hasLoadFromStackSlot( 595 &MI, MMO, FI)) { 596 if (FrameInfo->isSpillSlotObjectIndex(FI)) 597 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 598 } else if (TM.getSubtargetImpl()->getInstrInfo()->isStoreToStackSlotPostFE( 599 &MI, FI)) { 600 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 601 MMO = *MI.memoperands_begin(); 602 CommentOS << MMO->getSize() << "-byte Spill\n"; 603 } 604 } else if (TM.getSubtargetImpl()->getInstrInfo()->hasStoreToStackSlot( 605 &MI, MMO, FI)) { 606 if (FrameInfo->isSpillSlotObjectIndex(FI)) 607 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 608 } 609 610 // Check for spill-induced copies 611 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 612 CommentOS << " Reload Reuse\n"; 613 } 614 615 /// emitImplicitDef - This method emits the specified machine instruction 616 /// that is an implicit def. 617 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 618 unsigned RegNo = MI->getOperand(0).getReg(); 619 OutStreamer.AddComment( 620 Twine("implicit-def: ") + 621 TM.getSubtargetImpl()->getRegisterInfo()->getName(RegNo)); 622 OutStreamer.AddBlankLine(); 623 } 624 625 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 626 std::string Str = "kill:"; 627 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 628 const MachineOperand &Op = MI->getOperand(i); 629 assert(Op.isReg() && "KILL instruction must have only register operands"); 630 Str += ' '; 631 Str += AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Op.getReg()); 632 Str += (Op.isDef() ? "<def>" : "<kill>"); 633 } 634 AP.OutStreamer.AddComment(Str); 635 AP.OutStreamer.AddBlankLine(); 636 } 637 638 /// emitDebugValueComment - This method handles the target-independent form 639 /// of DBG_VALUE, returning true if it was able to do so. A false return 640 /// means the target will need to handle MI in EmitInstruction. 641 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 642 // This code handles only the 4-operand target-independent form. 643 if (MI->getNumOperands() != 4) 644 return false; 645 646 SmallString<128> Str; 647 raw_svector_ostream OS(Str); 648 OS << "DEBUG_VALUE: "; 649 650 DIVariable V = MI->getDebugVariable(); 651 if (V.getContext().isSubprogram()) { 652 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 653 if (!Name.empty()) 654 OS << Name << ":"; 655 } 656 OS << V.getName(); 657 658 DIExpression Expr = MI->getDebugExpression(); 659 if (Expr.isBitPiece()) 660 OS << " [bit_piece offset=" << Expr.getBitPieceOffset() 661 << " size=" << Expr.getBitPieceSize() << "]"; 662 OS << " <- "; 663 664 // The second operand is only an offset if it's an immediate. 665 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 666 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 667 668 // Register or immediate value. Register 0 means undef. 669 if (MI->getOperand(0).isFPImm()) { 670 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 671 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 672 OS << (double)APF.convertToFloat(); 673 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 674 OS << APF.convertToDouble(); 675 } else { 676 // There is no good way to print long double. Convert a copy to 677 // double. Ah well, it's only a comment. 678 bool ignored; 679 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 680 &ignored); 681 OS << "(long double) " << APF.convertToDouble(); 682 } 683 } else if (MI->getOperand(0).isImm()) { 684 OS << MI->getOperand(0).getImm(); 685 } else if (MI->getOperand(0).isCImm()) { 686 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 687 } else { 688 unsigned Reg; 689 if (MI->getOperand(0).isReg()) { 690 Reg = MI->getOperand(0).getReg(); 691 } else { 692 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 693 const TargetFrameLowering *TFI = 694 AP.TM.getSubtargetImpl()->getFrameLowering(); 695 Offset += TFI->getFrameIndexReference(*AP.MF, 696 MI->getOperand(0).getIndex(), Reg); 697 Deref = true; 698 } 699 if (Reg == 0) { 700 // Suppress offset, it is not meaningful here. 701 OS << "undef"; 702 // NOTE: Want this comment at start of line, don't emit with AddComment. 703 AP.OutStreamer.emitRawComment(OS.str()); 704 return true; 705 } 706 if (Deref) 707 OS << '['; 708 OS << AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Reg); 709 } 710 711 if (Deref) 712 OS << '+' << Offset << ']'; 713 714 // NOTE: Want this comment at start of line, don't emit with AddComment. 715 AP.OutStreamer.emitRawComment(OS.str()); 716 return true; 717 } 718 719 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 720 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 721 MF->getFunction()->needsUnwindTableEntry()) 722 return CFI_M_EH; 723 724 if (MMI->hasDebugInfo()) 725 return CFI_M_Debug; 726 727 return CFI_M_None; 728 } 729 730 bool AsmPrinter::needsSEHMoves() { 731 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 732 } 733 734 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 735 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 736 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 737 ExceptionHandlingType != ExceptionHandling::ARM) 738 return; 739 740 if (needsCFIMoves() == CFI_M_None) 741 return; 742 743 const MachineModuleInfo &MMI = MF->getMMI(); 744 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 745 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 746 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 747 emitCFIInstruction(CFI); 748 } 749 750 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 751 // The operands are the MCSymbol and the frame offset of the allocation. 752 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 753 int FrameOffset = MI.getOperand(1).getImm(); 754 755 // Emit a symbol assignment. 756 OutStreamer.EmitAssignment(FrameAllocSym, 757 MCConstantExpr::Create(FrameOffset, OutContext)); 758 } 759 760 /// EmitFunctionBody - This method emits the body and trailer for a 761 /// function. 762 void AsmPrinter::EmitFunctionBody() { 763 // Emit target-specific gunk before the function body. 764 EmitFunctionBodyStart(); 765 766 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 767 768 // Print out code for the function. 769 bool HasAnyRealCode = false; 770 for (auto &MBB : *MF) { 771 // Print a label for the basic block. 772 EmitBasicBlockStart(MBB); 773 for (auto &MI : MBB) { 774 775 // Print the assembly for the instruction. 776 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 777 !MI.isDebugValue()) { 778 HasAnyRealCode = true; 779 ++EmittedInsts; 780 } 781 782 if (ShouldPrintDebugScopes) { 783 for (const HandlerInfo &HI : Handlers) { 784 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 785 TimePassesIsEnabled); 786 HI.Handler->beginInstruction(&MI); 787 } 788 } 789 790 if (isVerbose()) 791 emitComments(MI, OutStreamer.GetCommentOS()); 792 793 switch (MI.getOpcode()) { 794 case TargetOpcode::CFI_INSTRUCTION: 795 emitCFIInstruction(MI); 796 break; 797 798 case TargetOpcode::FRAME_ALLOC: 799 emitFrameAlloc(MI); 800 break; 801 802 case TargetOpcode::EH_LABEL: 803 case TargetOpcode::GC_LABEL: 804 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 805 break; 806 case TargetOpcode::INLINEASM: 807 EmitInlineAsm(&MI); 808 break; 809 case TargetOpcode::DBG_VALUE: 810 if (isVerbose()) { 811 if (!emitDebugValueComment(&MI, *this)) 812 EmitInstruction(&MI); 813 } 814 break; 815 case TargetOpcode::IMPLICIT_DEF: 816 if (isVerbose()) emitImplicitDef(&MI); 817 break; 818 case TargetOpcode::KILL: 819 if (isVerbose()) emitKill(&MI, *this); 820 break; 821 default: 822 EmitInstruction(&MI); 823 break; 824 } 825 826 if (ShouldPrintDebugScopes) { 827 for (const HandlerInfo &HI : Handlers) { 828 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 829 TimePassesIsEnabled); 830 HI.Handler->endInstruction(); 831 } 832 } 833 } 834 835 EmitBasicBlockEnd(MBB); 836 } 837 838 // If the function is empty and the object file uses .subsections_via_symbols, 839 // then we need to emit *something* to the function body to prevent the 840 // labels from collapsing together. Just emit a noop. 841 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 842 MCInst Noop; 843 TM.getSubtargetImpl()->getInstrInfo()->getNoopForMachoTarget(Noop); 844 OutStreamer.AddComment("avoids zero-length function"); 845 846 // Targets can opt-out of emitting the noop here by leaving the opcode 847 // unspecified. 848 if (Noop.getOpcode()) 849 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 850 } 851 852 const Function *F = MF->getFunction(); 853 for (const auto &BB : *F) { 854 if (!BB.hasAddressTaken()) 855 continue; 856 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 857 if (Sym->isDefined()) 858 continue; 859 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 860 OutStreamer.EmitLabel(Sym); 861 } 862 863 // Emit target-specific gunk after the function body. 864 EmitFunctionBodyEnd(); 865 866 // If the target wants a .size directive for the size of the function, emit 867 // it. 868 if (MAI->hasDotTypeDotSizeDirective()) { 869 // Create a symbol for the end of function, so we can get the size as 870 // difference between the function label and the temp label. 871 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 872 OutStreamer.EmitLabel(FnEndLabel); 873 874 const MCExpr *SizeExp = 875 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 876 MCSymbolRefExpr::Create(CurrentFnSymForSize, 877 OutContext), 878 OutContext); 879 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 880 } 881 882 // Emit post-function debug and/or EH information. 883 for (const HandlerInfo &HI : Handlers) { 884 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 885 HI.Handler->endFunction(MF); 886 } 887 MMI->EndFunction(); 888 889 // Print out jump tables referenced by the function. 890 EmitJumpTableInfo(); 891 892 OutStreamer.AddBlankLine(); 893 } 894 895 bool AsmPrinter::doFinalization(Module &M) { 896 // Emit global variables. 897 for (const auto &G : M.globals()) 898 EmitGlobalVariable(&G); 899 900 // Emit visibility info for declarations 901 for (const Function &F : M) { 902 if (!F.isDeclaration()) 903 continue; 904 GlobalValue::VisibilityTypes V = F.getVisibility(); 905 if (V == GlobalValue::DefaultVisibility) 906 continue; 907 908 MCSymbol *Name = getSymbol(&F); 909 EmitVisibility(Name, V, false); 910 } 911 912 // Get information about jump-instruction tables to print. 913 JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>(); 914 915 if (JITI && !JITI->getTables().empty()) { 916 unsigned Arch = Triple(getTargetTriple()).getArch(); 917 bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb); 918 MCInst TrapInst; 919 TM.getSubtargetImpl()->getInstrInfo()->getTrap(TrapInst); 920 unsigned LogAlignment = llvm::Log2_64(JITI->entryByteAlignment()); 921 922 // Emit the right section for these functions. 923 OutStreamer.SwitchSection(OutContext.getObjectFileInfo()->getTextSection()); 924 for (const auto &KV : JITI->getTables()) { 925 uint64_t Count = 0; 926 for (const auto &FunPair : KV.second) { 927 // Emit the function labels to make this be a function entry point. 928 MCSymbol *FunSym = 929 OutContext.GetOrCreateSymbol(FunPair.second->getName()); 930 EmitAlignment(LogAlignment); 931 if (IsThumb) 932 OutStreamer.EmitThumbFunc(FunSym); 933 if (MAI->hasDotTypeDotSizeDirective()) 934 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction); 935 OutStreamer.EmitLabel(FunSym); 936 937 // Emit the jump instruction to transfer control to the original 938 // function. 939 MCInst JumpToFun; 940 MCSymbol *TargetSymbol = 941 OutContext.GetOrCreateSymbol(FunPair.first->getName()); 942 const MCSymbolRefExpr *TargetSymRef = 943 MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT, 944 OutContext); 945 TM.getSubtargetImpl()->getInstrInfo()->getUnconditionalBranch( 946 JumpToFun, TargetSymRef); 947 OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo()); 948 ++Count; 949 } 950 951 // Emit enough padding instructions to fill up to the next power of two. 952 uint64_t Remaining = NextPowerOf2(Count) - Count; 953 for (uint64_t C = 0; C < Remaining; ++C) { 954 EmitAlignment(LogAlignment); 955 OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo()); 956 } 957 958 } 959 } 960 961 // Emit module flags. 962 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 963 M.getModuleFlagsMetadata(ModuleFlags); 964 if (!ModuleFlags.empty()) 965 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 966 967 // Make sure we wrote out everything we need. 968 OutStreamer.Flush(); 969 970 // Finalize debug and EH information. 971 for (const HandlerInfo &HI : Handlers) { 972 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 973 TimePassesIsEnabled); 974 HI.Handler->endModule(); 975 delete HI.Handler; 976 } 977 Handlers.clear(); 978 DD = nullptr; 979 980 // If the target wants to know about weak references, print them all. 981 if (MAI->getWeakRefDirective()) { 982 // FIXME: This is not lazy, it would be nice to only print weak references 983 // to stuff that is actually used. Note that doing so would require targets 984 // to notice uses in operands (due to constant exprs etc). This should 985 // happen with the MC stuff eventually. 986 987 // Print out module-level global variables here. 988 for (const auto &G : M.globals()) { 989 if (!G.hasExternalWeakLinkage()) 990 continue; 991 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 992 } 993 994 for (const auto &F : M) { 995 if (!F.hasExternalWeakLinkage()) 996 continue; 997 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 998 } 999 } 1000 1001 OutStreamer.AddBlankLine(); 1002 for (const auto &Alias : M.aliases()) { 1003 MCSymbol *Name = getSymbol(&Alias); 1004 1005 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1006 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 1007 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1008 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 1009 else 1010 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1011 1012 EmitVisibility(Name, Alias.getVisibility()); 1013 1014 // Emit the directives as assignments aka .set: 1015 OutStreamer.EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1016 } 1017 1018 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1019 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1020 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1021 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1022 MP->finishAssembly(M, *MI, *this); 1023 1024 // Emit llvm.ident metadata in an '.ident' directive. 1025 EmitModuleIdents(M); 1026 1027 // Emit __morestack address if needed for indirect calls. 1028 if (MMI->usesMorestackAddr()) { 1029 const MCSection *ReadOnlySection = 1030 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1031 /*C=*/nullptr); 1032 OutStreamer.SwitchSection(ReadOnlySection); 1033 1034 MCSymbol *AddrSymbol = 1035 OutContext.GetOrCreateSymbol(StringRef("__morestack_addr")); 1036 OutStreamer.EmitLabel(AddrSymbol); 1037 1038 unsigned PtrSize = TM.getDataLayout()->getPointerSize(0); 1039 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1040 PtrSize); 1041 } 1042 1043 // If we don't have any trampolines, then we don't require stack memory 1044 // to be executable. Some targets have a directive to declare this. 1045 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1046 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1047 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1048 OutStreamer.SwitchSection(S); 1049 1050 // Allow the target to emit any magic that it wants at the end of the file, 1051 // after everything else has gone out. 1052 EmitEndOfAsmFile(M); 1053 1054 delete Mang; Mang = nullptr; 1055 MMI = nullptr; 1056 1057 OutStreamer.Finish(); 1058 OutStreamer.reset(); 1059 1060 return false; 1061 } 1062 1063 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1064 this->MF = &MF; 1065 // Get the function symbol. 1066 CurrentFnSym = getSymbol(MF.getFunction()); 1067 CurrentFnSymForSize = CurrentFnSym; 1068 1069 if (isVerbose()) 1070 LI = &getAnalysis<MachineLoopInfo>(); 1071 } 1072 1073 namespace { 1074 // SectionCPs - Keep track the alignment, constpool entries per Section. 1075 struct SectionCPs { 1076 const MCSection *S; 1077 unsigned Alignment; 1078 SmallVector<unsigned, 4> CPEs; 1079 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1080 }; 1081 } 1082 1083 /// EmitConstantPool - Print to the current output stream assembly 1084 /// representations of the constants in the constant pool MCP. This is 1085 /// used to print out constants which have been "spilled to memory" by 1086 /// the code generator. 1087 /// 1088 void AsmPrinter::EmitConstantPool() { 1089 const MachineConstantPool *MCP = MF->getConstantPool(); 1090 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1091 if (CP.empty()) return; 1092 1093 // Calculate sections for constant pool entries. We collect entries to go into 1094 // the same section together to reduce amount of section switch statements. 1095 SmallVector<SectionCPs, 4> CPSections; 1096 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1097 const MachineConstantPoolEntry &CPE = CP[i]; 1098 unsigned Align = CPE.getAlignment(); 1099 1100 SectionKind Kind = 1101 CPE.getSectionKind(TM.getDataLayout()); 1102 1103 const Constant *C = nullptr; 1104 if (!CPE.isMachineConstantPoolEntry()) 1105 C = CPE.Val.ConstVal; 1106 1107 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C); 1108 1109 // The number of sections are small, just do a linear search from the 1110 // last section to the first. 1111 bool Found = false; 1112 unsigned SecIdx = CPSections.size(); 1113 while (SecIdx != 0) { 1114 if (CPSections[--SecIdx].S == S) { 1115 Found = true; 1116 break; 1117 } 1118 } 1119 if (!Found) { 1120 SecIdx = CPSections.size(); 1121 CPSections.push_back(SectionCPs(S, Align)); 1122 } 1123 1124 if (Align > CPSections[SecIdx].Alignment) 1125 CPSections[SecIdx].Alignment = Align; 1126 CPSections[SecIdx].CPEs.push_back(i); 1127 } 1128 1129 // Now print stuff into the calculated sections. 1130 const MCSection *CurSection = nullptr; 1131 unsigned Offset = 0; 1132 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1133 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1134 unsigned CPI = CPSections[i].CPEs[j]; 1135 MCSymbol *Sym = GetCPISymbol(CPI); 1136 if (!Sym->isUndefined()) 1137 continue; 1138 1139 if (CurSection != CPSections[i].S) { 1140 OutStreamer.SwitchSection(CPSections[i].S); 1141 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1142 CurSection = CPSections[i].S; 1143 Offset = 0; 1144 } 1145 1146 MachineConstantPoolEntry CPE = CP[CPI]; 1147 1148 // Emit inter-object padding for alignment. 1149 unsigned AlignMask = CPE.getAlignment() - 1; 1150 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1151 OutStreamer.EmitZeros(NewOffset - Offset); 1152 1153 Type *Ty = CPE.getType(); 1154 Offset = NewOffset + 1155 TM.getDataLayout()->getTypeAllocSize(Ty); 1156 1157 OutStreamer.EmitLabel(Sym); 1158 if (CPE.isMachineConstantPoolEntry()) 1159 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1160 else 1161 EmitGlobalConstant(CPE.Val.ConstVal); 1162 } 1163 } 1164 } 1165 1166 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1167 /// by the current function to the current output stream. 1168 /// 1169 void AsmPrinter::EmitJumpTableInfo() { 1170 const DataLayout *DL = MF->getTarget().getDataLayout(); 1171 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1172 if (!MJTI) return; 1173 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1174 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1175 if (JT.empty()) return; 1176 1177 // Pick the directive to use to print the jump table entries, and switch to 1178 // the appropriate section. 1179 const Function *F = MF->getFunction(); 1180 bool JTInDiffSection = false; 1181 if (// In PIC mode, we need to emit the jump table to the same section as the 1182 // function body itself, otherwise the label differences won't make sense. 1183 // FIXME: Need a better predicate for this: what about custom entries? 1184 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1185 // We should also do if the section name is NULL or function is declared 1186 // in discardable section 1187 // FIXME: this isn't the right predicate, should be based on the MCSection 1188 // for the function. 1189 F->isWeakForLinker()) { 1190 OutStreamer.SwitchSection( 1191 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 1192 } else { 1193 // Otherwise, drop it in the readonly section. 1194 const MCSection *ReadOnlySection = 1195 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1196 /*C=*/nullptr); 1197 OutStreamer.SwitchSection(ReadOnlySection); 1198 JTInDiffSection = true; 1199 } 1200 1201 EmitAlignment(Log2_32( 1202 MJTI->getEntryAlignment(*TM.getDataLayout()))); 1203 1204 // Jump tables in code sections are marked with a data_region directive 1205 // where that's supported. 1206 if (!JTInDiffSection) 1207 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1208 1209 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1210 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1211 1212 // If this jump table was deleted, ignore it. 1213 if (JTBBs.empty()) continue; 1214 1215 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1216 /// emit a .set directive for each unique entry. 1217 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1218 MAI->doesSetDirectiveSuppressesReloc()) { 1219 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1220 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1221 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1222 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1223 const MachineBasicBlock *MBB = JTBBs[ii]; 1224 if (!EmittedSets.insert(MBB).second) 1225 continue; 1226 1227 // .set LJTSet, LBB32-base 1228 const MCExpr *LHS = 1229 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1230 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1231 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1232 } 1233 } 1234 1235 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1236 // before each jump table. The first label is never referenced, but tells 1237 // the assembler and linker the extents of the jump table object. The 1238 // second label is actually referenced by the code. 1239 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1240 // FIXME: This doesn't have to have any specific name, just any randomly 1241 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1242 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1243 1244 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1245 1246 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1247 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1248 } 1249 if (!JTInDiffSection) 1250 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1251 } 1252 1253 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1254 /// current stream. 1255 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1256 const MachineBasicBlock *MBB, 1257 unsigned UID) const { 1258 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1259 const MCExpr *Value = nullptr; 1260 switch (MJTI->getEntryKind()) { 1261 case MachineJumpTableInfo::EK_Inline: 1262 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1263 case MachineJumpTableInfo::EK_Custom32: 1264 Value = 1265 TM.getSubtargetImpl()->getTargetLowering()->LowerCustomJumpTableEntry( 1266 MJTI, MBB, UID, OutContext); 1267 break; 1268 case MachineJumpTableInfo::EK_BlockAddress: 1269 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1270 // .word LBB123 1271 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1272 break; 1273 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1274 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1275 // with a relocation as gp-relative, e.g.: 1276 // .gprel32 LBB123 1277 MCSymbol *MBBSym = MBB->getSymbol(); 1278 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1279 return; 1280 } 1281 1282 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1283 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1284 // with a relocation as gp-relative, e.g.: 1285 // .gpdword LBB123 1286 MCSymbol *MBBSym = MBB->getSymbol(); 1287 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1288 return; 1289 } 1290 1291 case MachineJumpTableInfo::EK_LabelDifference32: { 1292 // Each entry is the address of the block minus the address of the jump 1293 // table. This is used for PIC jump tables where gprel32 is not supported. 1294 // e.g.: 1295 // .word LBB123 - LJTI1_2 1296 // If the .set directive avoids relocations, this is emitted as: 1297 // .set L4_5_set_123, LBB123 - LJTI1_2 1298 // .word L4_5_set_123 1299 if (MAI->doesSetDirectiveSuppressesReloc()) { 1300 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1301 OutContext); 1302 break; 1303 } 1304 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1305 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1306 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1307 Value = MCBinaryExpr::CreateSub(Value, Base, OutContext); 1308 break; 1309 } 1310 } 1311 1312 assert(Value && "Unknown entry kind!"); 1313 1314 unsigned EntrySize = 1315 MJTI->getEntrySize(*TM.getDataLayout()); 1316 OutStreamer.EmitValue(Value, EntrySize); 1317 } 1318 1319 1320 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1321 /// special global used by LLVM. If so, emit it and return true, otherwise 1322 /// do nothing and return false. 1323 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1324 if (GV->getName() == "llvm.used") { 1325 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1326 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1327 return true; 1328 } 1329 1330 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1331 if (StringRef(GV->getSection()) == "llvm.metadata" || 1332 GV->hasAvailableExternallyLinkage()) 1333 return true; 1334 1335 if (!GV->hasAppendingLinkage()) return false; 1336 1337 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1338 1339 if (GV->getName() == "llvm.global_ctors") { 1340 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1341 1342 if (TM.getRelocationModel() == Reloc::Static && 1343 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1344 StringRef Sym(".constructors_used"); 1345 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1346 MCSA_Reference); 1347 } 1348 return true; 1349 } 1350 1351 if (GV->getName() == "llvm.global_dtors") { 1352 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1353 1354 if (TM.getRelocationModel() == Reloc::Static && 1355 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1356 StringRef Sym(".destructors_used"); 1357 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1358 MCSA_Reference); 1359 } 1360 return true; 1361 } 1362 1363 return false; 1364 } 1365 1366 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1367 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1368 /// is true, as being used with this directive. 1369 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1370 // Should be an array of 'i8*'. 1371 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1372 const GlobalValue *GV = 1373 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1374 if (GV) 1375 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1376 } 1377 } 1378 1379 namespace { 1380 struct Structor { 1381 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1382 int Priority; 1383 llvm::Constant *Func; 1384 llvm::GlobalValue *ComdatKey; 1385 }; 1386 } // end namespace 1387 1388 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1389 /// priority. 1390 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1391 // Should be an array of '{ int, void ()* }' structs. The first value is the 1392 // init priority. 1393 if (!isa<ConstantArray>(List)) return; 1394 1395 // Sanity check the structors list. 1396 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1397 if (!InitList) return; // Not an array! 1398 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1399 // FIXME: Only allow the 3-field form in LLVM 4.0. 1400 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1401 return; // Not an array of two or three elements! 1402 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1403 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1404 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1405 return; // Not (int, ptr, ptr). 1406 1407 // Gather the structors in a form that's convenient for sorting by priority. 1408 SmallVector<Structor, 8> Structors; 1409 for (Value *O : InitList->operands()) { 1410 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1411 if (!CS) continue; // Malformed. 1412 if (CS->getOperand(1)->isNullValue()) 1413 break; // Found a null terminator, skip the rest. 1414 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1415 if (!Priority) continue; // Malformed. 1416 Structors.push_back(Structor()); 1417 Structor &S = Structors.back(); 1418 S.Priority = Priority->getLimitedValue(65535); 1419 S.Func = CS->getOperand(1); 1420 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1421 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1422 } 1423 1424 // Emit the function pointers in the target-specific order 1425 const DataLayout *DL = TM.getDataLayout(); 1426 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1427 std::stable_sort(Structors.begin(), Structors.end(), 1428 [](const Structor &L, 1429 const Structor &R) { return L.Priority < R.Priority; }); 1430 for (Structor &S : Structors) { 1431 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1432 const MCSymbol *KeySym = nullptr; 1433 if (GlobalValue *GV = S.ComdatKey) { 1434 if (GV->hasAvailableExternallyLinkage()) 1435 // If the associated variable is available_externally, some other TU 1436 // will provide its dynamic initializer. 1437 continue; 1438 1439 KeySym = getSymbol(GV); 1440 } 1441 const MCSection *OutputSection = 1442 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1443 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1444 OutStreamer.SwitchSection(OutputSection); 1445 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1446 EmitAlignment(Align); 1447 EmitXXStructor(S.Func); 1448 } 1449 } 1450 1451 void AsmPrinter::EmitModuleIdents(Module &M) { 1452 if (!MAI->hasIdentDirective()) 1453 return; 1454 1455 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1456 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1457 const MDNode *N = NMD->getOperand(i); 1458 assert(N->getNumOperands() == 1 && 1459 "llvm.ident metadata entry can have only one operand"); 1460 const MDString *S = cast<MDString>(N->getOperand(0)); 1461 OutStreamer.EmitIdent(S->getString()); 1462 } 1463 } 1464 } 1465 1466 //===--------------------------------------------------------------------===// 1467 // Emission and print routines 1468 // 1469 1470 /// EmitInt8 - Emit a byte directive and value. 1471 /// 1472 void AsmPrinter::EmitInt8(int Value) const { 1473 OutStreamer.EmitIntValue(Value, 1); 1474 } 1475 1476 /// EmitInt16 - Emit a short directive and value. 1477 /// 1478 void AsmPrinter::EmitInt16(int Value) const { 1479 OutStreamer.EmitIntValue(Value, 2); 1480 } 1481 1482 /// EmitInt32 - Emit a long directive and value. 1483 /// 1484 void AsmPrinter::EmitInt32(int Value) const { 1485 OutStreamer.EmitIntValue(Value, 4); 1486 } 1487 1488 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1489 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1490 /// .set if it avoids relocations. 1491 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1492 unsigned Size) const { 1493 // Get the Hi-Lo expression. 1494 const MCExpr *Diff = 1495 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1496 MCSymbolRefExpr::Create(Lo, OutContext), 1497 OutContext); 1498 1499 if (!MAI->doesSetDirectiveSuppressesReloc()) { 1500 OutStreamer.EmitValue(Diff, Size); 1501 return; 1502 } 1503 1504 // Otherwise, emit with .set (aka assignment). 1505 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1506 OutStreamer.EmitAssignment(SetLabel, Diff); 1507 OutStreamer.EmitSymbolValue(SetLabel, Size); 1508 } 1509 1510 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1511 /// where the size in bytes of the directive is specified by Size and Label 1512 /// specifies the label. This implicitly uses .set if it is available. 1513 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1514 unsigned Size, 1515 bool IsSectionRelative) const { 1516 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1517 OutStreamer.EmitCOFFSecRel32(Label); 1518 return; 1519 } 1520 1521 // Emit Label+Offset (or just Label if Offset is zero) 1522 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1523 if (Offset) 1524 Expr = MCBinaryExpr::CreateAdd( 1525 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1526 1527 OutStreamer.EmitValue(Expr, Size); 1528 } 1529 1530 //===----------------------------------------------------------------------===// 1531 1532 // EmitAlignment - Emit an alignment directive to the specified power of 1533 // two boundary. For example, if you pass in 3 here, you will get an 8 1534 // byte alignment. If a global value is specified, and if that global has 1535 // an explicit alignment requested, it will override the alignment request 1536 // if required for correctness. 1537 // 1538 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1539 if (GV) 1540 NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), 1541 NumBits); 1542 1543 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1544 1545 assert(NumBits < 1546 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1547 "undefined behavior"); 1548 if (getCurrentSection()->getKind().isText()) 1549 OutStreamer.EmitCodeAlignment(1u << NumBits); 1550 else 1551 OutStreamer.EmitValueToAlignment(1u << NumBits); 1552 } 1553 1554 //===----------------------------------------------------------------------===// 1555 // Constant emission. 1556 //===----------------------------------------------------------------------===// 1557 1558 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1559 MCContext &Ctx = OutContext; 1560 1561 if (CV->isNullValue() || isa<UndefValue>(CV)) 1562 return MCConstantExpr::Create(0, Ctx); 1563 1564 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1565 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1566 1567 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1568 return MCSymbolRefExpr::Create(getSymbol(GV), Ctx); 1569 1570 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1571 return MCSymbolRefExpr::Create(GetBlockAddressSymbol(BA), Ctx); 1572 1573 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1574 if (!CE) { 1575 llvm_unreachable("Unknown constant value to lower!"); 1576 } 1577 1578 if (const MCExpr *RelocExpr 1579 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1580 return RelocExpr; 1581 1582 switch (CE->getOpcode()) { 1583 default: 1584 // If the code isn't optimized, there may be outstanding folding 1585 // opportunities. Attempt to fold the expression using DataLayout as a 1586 // last resort before giving up. 1587 if (Constant *C = ConstantFoldConstantExpression( 1588 CE, TM.getDataLayout())) 1589 if (C != CE) 1590 return lowerConstant(C); 1591 1592 // Otherwise report the problem to the user. 1593 { 1594 std::string S; 1595 raw_string_ostream OS(S); 1596 OS << "Unsupported expression in static initializer: "; 1597 CE->printAsOperand(OS, /*PrintType=*/false, 1598 !MF ? nullptr : MF->getFunction()->getParent()); 1599 report_fatal_error(OS.str()); 1600 } 1601 case Instruction::GetElementPtr: { 1602 const DataLayout &DL = *TM.getDataLayout(); 1603 1604 // Generate a symbolic expression for the byte address 1605 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1606 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1607 1608 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1609 if (!OffsetAI) 1610 return Base; 1611 1612 int64_t Offset = OffsetAI.getSExtValue(); 1613 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1614 Ctx); 1615 } 1616 1617 case Instruction::Trunc: 1618 // We emit the value and depend on the assembler to truncate the generated 1619 // expression properly. This is important for differences between 1620 // blockaddress labels. Since the two labels are in the same function, it 1621 // is reasonable to treat their delta as a 32-bit value. 1622 // FALL THROUGH. 1623 case Instruction::BitCast: 1624 return lowerConstant(CE->getOperand(0)); 1625 1626 case Instruction::IntToPtr: { 1627 const DataLayout &DL = *TM.getDataLayout(); 1628 1629 // Handle casts to pointers by changing them into casts to the appropriate 1630 // integer type. This promotes constant folding and simplifies this code. 1631 Constant *Op = CE->getOperand(0); 1632 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1633 false/*ZExt*/); 1634 return lowerConstant(Op); 1635 } 1636 1637 case Instruction::PtrToInt: { 1638 const DataLayout &DL = *TM.getDataLayout(); 1639 1640 // Support only foldable casts to/from pointers that can be eliminated by 1641 // changing the pointer to the appropriately sized integer type. 1642 Constant *Op = CE->getOperand(0); 1643 Type *Ty = CE->getType(); 1644 1645 const MCExpr *OpExpr = lowerConstant(Op); 1646 1647 // We can emit the pointer value into this slot if the slot is an 1648 // integer slot equal to the size of the pointer. 1649 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1650 return OpExpr; 1651 1652 // Otherwise the pointer is smaller than the resultant integer, mask off 1653 // the high bits so we are sure to get a proper truncation if the input is 1654 // a constant expr. 1655 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1656 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1657 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1658 } 1659 1660 // The MC library also has a right-shift operator, but it isn't consistently 1661 // signed or unsigned between different targets. 1662 case Instruction::Add: 1663 case Instruction::Sub: 1664 case Instruction::Mul: 1665 case Instruction::SDiv: 1666 case Instruction::SRem: 1667 case Instruction::Shl: 1668 case Instruction::And: 1669 case Instruction::Or: 1670 case Instruction::Xor: { 1671 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1672 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1673 switch (CE->getOpcode()) { 1674 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1675 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1676 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1677 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1678 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1679 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1680 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1681 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1682 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1683 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1684 } 1685 } 1686 } 1687 } 1688 1689 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1690 1691 /// isRepeatedByteSequence - Determine whether the given value is 1692 /// composed of a repeated sequence of identical bytes and return the 1693 /// byte value. If it is not a repeated sequence, return -1. 1694 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1695 StringRef Data = V->getRawDataValues(); 1696 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1697 char C = Data[0]; 1698 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1699 if (Data[i] != C) return -1; 1700 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1701 } 1702 1703 1704 /// isRepeatedByteSequence - Determine whether the given value is 1705 /// composed of a repeated sequence of identical bytes and return the 1706 /// byte value. If it is not a repeated sequence, return -1. 1707 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1708 1709 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1710 if (CI->getBitWidth() > 64) return -1; 1711 1712 uint64_t Size = 1713 TM.getDataLayout()->getTypeAllocSize(V->getType()); 1714 uint64_t Value = CI->getZExtValue(); 1715 1716 // Make sure the constant is at least 8 bits long and has a power 1717 // of 2 bit width. This guarantees the constant bit width is 1718 // always a multiple of 8 bits, avoiding issues with padding out 1719 // to Size and other such corner cases. 1720 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1721 1722 uint8_t Byte = static_cast<uint8_t>(Value); 1723 1724 for (unsigned i = 1; i < Size; ++i) { 1725 Value >>= 8; 1726 if (static_cast<uint8_t>(Value) != Byte) return -1; 1727 } 1728 return Byte; 1729 } 1730 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1731 // Make sure all array elements are sequences of the same repeated 1732 // byte. 1733 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1734 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1735 if (Byte == -1) return -1; 1736 1737 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1738 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1739 if (ThisByte == -1) return -1; 1740 if (Byte != ThisByte) return -1; 1741 } 1742 return Byte; 1743 } 1744 1745 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1746 return isRepeatedByteSequence(CDS); 1747 1748 return -1; 1749 } 1750 1751 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1752 AsmPrinter &AP){ 1753 1754 // See if we can aggregate this into a .fill, if so, emit it as such. 1755 int Value = isRepeatedByteSequence(CDS, AP.TM); 1756 if (Value != -1) { 1757 uint64_t Bytes = 1758 AP.TM.getDataLayout()->getTypeAllocSize( 1759 CDS->getType()); 1760 // Don't emit a 1-byte object as a .fill. 1761 if (Bytes > 1) 1762 return AP.OutStreamer.EmitFill(Bytes, Value); 1763 } 1764 1765 // If this can be emitted with .ascii/.asciz, emit it as such. 1766 if (CDS->isString()) 1767 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1768 1769 // Otherwise, emit the values in successive locations. 1770 unsigned ElementByteSize = CDS->getElementByteSize(); 1771 if (isa<IntegerType>(CDS->getElementType())) { 1772 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1773 if (AP.isVerbose()) 1774 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1775 CDS->getElementAsInteger(i)); 1776 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1777 ElementByteSize); 1778 } 1779 } else if (ElementByteSize == 4) { 1780 // FP Constants are printed as integer constants to avoid losing 1781 // precision. 1782 assert(CDS->getElementType()->isFloatTy()); 1783 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1784 union { 1785 float F; 1786 uint32_t I; 1787 }; 1788 1789 F = CDS->getElementAsFloat(i); 1790 if (AP.isVerbose()) 1791 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1792 AP.OutStreamer.EmitIntValue(I, 4); 1793 } 1794 } else { 1795 assert(CDS->getElementType()->isDoubleTy()); 1796 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1797 union { 1798 double F; 1799 uint64_t I; 1800 }; 1801 1802 F = CDS->getElementAsDouble(i); 1803 if (AP.isVerbose()) 1804 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1805 AP.OutStreamer.EmitIntValue(I, 8); 1806 } 1807 } 1808 1809 const DataLayout &DL = *AP.TM.getDataLayout(); 1810 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1811 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1812 CDS->getNumElements(); 1813 if (unsigned Padding = Size - EmittedSize) 1814 AP.OutStreamer.EmitZeros(Padding); 1815 1816 } 1817 1818 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1819 // See if we can aggregate some values. Make sure it can be 1820 // represented as a series of bytes of the constant value. 1821 int Value = isRepeatedByteSequence(CA, AP.TM); 1822 1823 if (Value != -1) { 1824 uint64_t Bytes = 1825 AP.TM.getDataLayout()->getTypeAllocSize( 1826 CA->getType()); 1827 AP.OutStreamer.EmitFill(Bytes, Value); 1828 } 1829 else { 1830 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1831 emitGlobalConstantImpl(CA->getOperand(i), AP); 1832 } 1833 } 1834 1835 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1836 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1837 emitGlobalConstantImpl(CV->getOperand(i), AP); 1838 1839 const DataLayout &DL = *AP.TM.getDataLayout(); 1840 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1841 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1842 CV->getType()->getNumElements(); 1843 if (unsigned Padding = Size - EmittedSize) 1844 AP.OutStreamer.EmitZeros(Padding); 1845 } 1846 1847 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1848 // Print the fields in successive locations. Pad to align if needed! 1849 const DataLayout *DL = AP.TM.getDataLayout(); 1850 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1851 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1852 uint64_t SizeSoFar = 0; 1853 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1854 const Constant *Field = CS->getOperand(i); 1855 1856 // Check if padding is needed and insert one or more 0s. 1857 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1858 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1859 - Layout->getElementOffset(i)) - FieldSize; 1860 SizeSoFar += FieldSize + PadSize; 1861 1862 // Now print the actual field value. 1863 emitGlobalConstantImpl(Field, AP); 1864 1865 // Insert padding - this may include padding to increase the size of the 1866 // current field up to the ABI size (if the struct is not packed) as well 1867 // as padding to ensure that the next field starts at the right offset. 1868 AP.OutStreamer.EmitZeros(PadSize); 1869 } 1870 assert(SizeSoFar == Layout->getSizeInBytes() && 1871 "Layout of constant struct may be incorrect!"); 1872 } 1873 1874 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1875 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1876 1877 // First print a comment with what we think the original floating-point value 1878 // should have been. 1879 if (AP.isVerbose()) { 1880 SmallString<8> StrVal; 1881 CFP->getValueAPF().toString(StrVal); 1882 1883 if (CFP->getType()) 1884 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1885 else 1886 AP.OutStreamer.GetCommentOS() << "Printing <null> Type"; 1887 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1888 } 1889 1890 // Now iterate through the APInt chunks, emitting them in endian-correct 1891 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1892 // floats). 1893 unsigned NumBytes = API.getBitWidth() / 8; 1894 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1895 const uint64_t *p = API.getRawData(); 1896 1897 // PPC's long double has odd notions of endianness compared to how LLVM 1898 // handles it: p[0] goes first for *big* endian on PPC. 1899 if (AP.TM.getDataLayout()->isBigEndian() && 1900 !CFP->getType()->isPPC_FP128Ty()) { 1901 int Chunk = API.getNumWords() - 1; 1902 1903 if (TrailingBytes) 1904 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1905 1906 for (; Chunk >= 0; --Chunk) 1907 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1908 } else { 1909 unsigned Chunk; 1910 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1911 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1912 1913 if (TrailingBytes) 1914 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1915 } 1916 1917 // Emit the tail padding for the long double. 1918 const DataLayout &DL = *AP.TM.getDataLayout(); 1919 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1920 DL.getTypeStoreSize(CFP->getType())); 1921 } 1922 1923 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1924 const DataLayout *DL = AP.TM.getDataLayout(); 1925 unsigned BitWidth = CI->getBitWidth(); 1926 1927 // Copy the value as we may massage the layout for constants whose bit width 1928 // is not a multiple of 64-bits. 1929 APInt Realigned(CI->getValue()); 1930 uint64_t ExtraBits = 0; 1931 unsigned ExtraBitsSize = BitWidth & 63; 1932 1933 if (ExtraBitsSize) { 1934 // The bit width of the data is not a multiple of 64-bits. 1935 // The extra bits are expected to be at the end of the chunk of the memory. 1936 // Little endian: 1937 // * Nothing to be done, just record the extra bits to emit. 1938 // Big endian: 1939 // * Record the extra bits to emit. 1940 // * Realign the raw data to emit the chunks of 64-bits. 1941 if (DL->isBigEndian()) { 1942 // Basically the structure of the raw data is a chunk of 64-bits cells: 1943 // 0 1 BitWidth / 64 1944 // [chunk1][chunk2] ... [chunkN]. 1945 // The most significant chunk is chunkN and it should be emitted first. 1946 // However, due to the alignment issue chunkN contains useless bits. 1947 // Realign the chunks so that they contain only useless information: 1948 // ExtraBits 0 1 (BitWidth / 64) - 1 1949 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1950 ExtraBits = Realigned.getRawData()[0] & 1951 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1952 Realigned = Realigned.lshr(ExtraBitsSize); 1953 } else 1954 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1955 } 1956 1957 // We don't expect assemblers to support integer data directives 1958 // for more than 64 bits, so we emit the data in at most 64-bit 1959 // quantities at a time. 1960 const uint64_t *RawData = Realigned.getRawData(); 1961 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1962 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1963 AP.OutStreamer.EmitIntValue(Val, 8); 1964 } 1965 1966 if (ExtraBitsSize) { 1967 // Emit the extra bits after the 64-bits chunks. 1968 1969 // Emit a directive that fills the expected size. 1970 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize( 1971 CI->getType()); 1972 Size -= (BitWidth / 64) * 8; 1973 assert(Size && Size * 8 >= ExtraBitsSize && 1974 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1975 == ExtraBits && "Directive too small for extra bits."); 1976 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1977 } 1978 } 1979 1980 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1981 const DataLayout *DL = AP.TM.getDataLayout(); 1982 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1983 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1984 return AP.OutStreamer.EmitZeros(Size); 1985 1986 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1987 switch (Size) { 1988 case 1: 1989 case 2: 1990 case 4: 1991 case 8: 1992 if (AP.isVerbose()) 1993 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1994 CI->getZExtValue()); 1995 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1996 return; 1997 default: 1998 emitGlobalConstantLargeInt(CI, AP); 1999 return; 2000 } 2001 } 2002 2003 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2004 return emitGlobalConstantFP(CFP, AP); 2005 2006 if (isa<ConstantPointerNull>(CV)) { 2007 AP.OutStreamer.EmitIntValue(0, Size); 2008 return; 2009 } 2010 2011 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2012 return emitGlobalConstantDataSequential(CDS, AP); 2013 2014 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2015 return emitGlobalConstantArray(CVA, AP); 2016 2017 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2018 return emitGlobalConstantStruct(CVS, AP); 2019 2020 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2021 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2022 // vectors). 2023 if (CE->getOpcode() == Instruction::BitCast) 2024 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2025 2026 if (Size > 8) { 2027 // If the constant expression's size is greater than 64-bits, then we have 2028 // to emit the value in chunks. Try to constant fold the value and emit it 2029 // that way. 2030 Constant *New = ConstantFoldConstantExpression(CE, DL); 2031 if (New && New != CE) 2032 return emitGlobalConstantImpl(New, AP); 2033 } 2034 } 2035 2036 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2037 return emitGlobalConstantVector(V, AP); 2038 2039 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2040 // thread the streamer with EmitValue. 2041 AP.OutStreamer.EmitValue(AP.lowerConstant(CV), Size); 2042 } 2043 2044 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2045 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2046 uint64_t Size = 2047 TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2048 if (Size) 2049 emitGlobalConstantImpl(CV, *this); 2050 else if (MAI->hasSubsectionsViaSymbols()) { 2051 // If the global has zero size, emit a single byte so that two labels don't 2052 // look like they are at the same location. 2053 OutStreamer.EmitIntValue(0, 1); 2054 } 2055 } 2056 2057 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2058 // Target doesn't support this yet! 2059 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2060 } 2061 2062 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2063 if (Offset > 0) 2064 OS << '+' << Offset; 2065 else if (Offset < 0) 2066 OS << Offset; 2067 } 2068 2069 //===----------------------------------------------------------------------===// 2070 // Symbol Lowering Routines. 2071 //===----------------------------------------------------------------------===// 2072 2073 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2074 /// temporary label with the specified stem and unique ID. 2075 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const { 2076 const DataLayout *DL = TM.getDataLayout(); 2077 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2078 Name + Twine(ID)); 2079 } 2080 2081 /// GetTempSymbol - Return an assembler temporary label with the specified 2082 /// stem. 2083 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const { 2084 const DataLayout *DL = TM.getDataLayout(); 2085 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2086 Name); 2087 } 2088 2089 2090 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2091 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2092 } 2093 2094 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2095 return MMI->getAddrLabelSymbol(BB); 2096 } 2097 2098 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2099 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2100 const DataLayout *DL = TM.getDataLayout(); 2101 return OutContext.GetOrCreateSymbol 2102 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2103 + "_" + Twine(CPID)); 2104 } 2105 2106 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2107 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2108 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2109 } 2110 2111 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2112 /// FIXME: privatize to AsmPrinter. 2113 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2114 const DataLayout *DL = TM.getDataLayout(); 2115 return OutContext.GetOrCreateSymbol 2116 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2117 Twine(UID) + "_set_" + Twine(MBBID)); 2118 } 2119 2120 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2121 StringRef Suffix) const { 2122 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2123 TM); 2124 } 2125 2126 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2127 /// ExternalSymbol. 2128 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2129 SmallString<60> NameStr; 2130 Mang->getNameWithPrefix(NameStr, Sym); 2131 return OutContext.GetOrCreateSymbol(NameStr.str()); 2132 } 2133 2134 2135 2136 /// PrintParentLoopComment - Print comments about parent loops of this one. 2137 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2138 unsigned FunctionNumber) { 2139 if (!Loop) return; 2140 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2141 OS.indent(Loop->getLoopDepth()*2) 2142 << "Parent Loop BB" << FunctionNumber << "_" 2143 << Loop->getHeader()->getNumber() 2144 << " Depth=" << Loop->getLoopDepth() << '\n'; 2145 } 2146 2147 2148 /// PrintChildLoopComment - Print comments about child loops within 2149 /// the loop for this basic block, with nesting. 2150 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2151 unsigned FunctionNumber) { 2152 // Add child loop information 2153 for (const MachineLoop *CL : *Loop) { 2154 OS.indent(CL->getLoopDepth()*2) 2155 << "Child Loop BB" << FunctionNumber << "_" 2156 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2157 << '\n'; 2158 PrintChildLoopComment(OS, CL, FunctionNumber); 2159 } 2160 } 2161 2162 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2163 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2164 const MachineLoopInfo *LI, 2165 const AsmPrinter &AP) { 2166 // Add loop depth information 2167 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2168 if (!Loop) return; 2169 2170 MachineBasicBlock *Header = Loop->getHeader(); 2171 assert(Header && "No header for loop"); 2172 2173 // If this block is not a loop header, just print out what is the loop header 2174 // and return. 2175 if (Header != &MBB) { 2176 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2177 Twine(AP.getFunctionNumber())+"_" + 2178 Twine(Loop->getHeader()->getNumber())+ 2179 " Depth="+Twine(Loop->getLoopDepth())); 2180 return; 2181 } 2182 2183 // Otherwise, it is a loop header. Print out information about child and 2184 // parent loops. 2185 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2186 2187 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2188 2189 OS << "=>"; 2190 OS.indent(Loop->getLoopDepth()*2-2); 2191 2192 OS << "This "; 2193 if (Loop->empty()) 2194 OS << "Inner "; 2195 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2196 2197 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2198 } 2199 2200 2201 /// EmitBasicBlockStart - This method prints the label for the specified 2202 /// MachineBasicBlock, an alignment (if present) and a comment describing 2203 /// it if appropriate. 2204 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2205 // Emit an alignment directive for this block, if needed. 2206 if (unsigned Align = MBB.getAlignment()) 2207 EmitAlignment(Align); 2208 2209 // If the block has its address taken, emit any labels that were used to 2210 // reference the block. It is possible that there is more than one label 2211 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2212 // the references were generated. 2213 if (MBB.hasAddressTaken()) { 2214 const BasicBlock *BB = MBB.getBasicBlock(); 2215 if (isVerbose()) 2216 OutStreamer.AddComment("Block address taken"); 2217 2218 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2219 for (auto *Sym : Symbols) 2220 OutStreamer.EmitLabel(Sym); 2221 } 2222 2223 // Print some verbose block comments. 2224 if (isVerbose()) { 2225 if (const BasicBlock *BB = MBB.getBasicBlock()) 2226 if (BB->hasName()) 2227 OutStreamer.AddComment("%" + BB->getName()); 2228 emitBasicBlockLoopComments(MBB, LI, *this); 2229 } 2230 2231 // Print the main label for the block. 2232 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2233 if (isVerbose()) { 2234 // NOTE: Want this comment at start of line, don't emit with AddComment. 2235 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2236 } 2237 } else { 2238 OutStreamer.EmitLabel(MBB.getSymbol()); 2239 } 2240 } 2241 2242 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2243 bool IsDefinition) const { 2244 MCSymbolAttr Attr = MCSA_Invalid; 2245 2246 switch (Visibility) { 2247 default: break; 2248 case GlobalValue::HiddenVisibility: 2249 if (IsDefinition) 2250 Attr = MAI->getHiddenVisibilityAttr(); 2251 else 2252 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2253 break; 2254 case GlobalValue::ProtectedVisibility: 2255 Attr = MAI->getProtectedVisibilityAttr(); 2256 break; 2257 } 2258 2259 if (Attr != MCSA_Invalid) 2260 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2261 } 2262 2263 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2264 /// exactly one predecessor and the control transfer mechanism between 2265 /// the predecessor and this block is a fall-through. 2266 bool AsmPrinter:: 2267 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2268 // If this is a landing pad, it isn't a fall through. If it has no preds, 2269 // then nothing falls through to it. 2270 if (MBB->isLandingPad() || MBB->pred_empty()) 2271 return false; 2272 2273 // If there isn't exactly one predecessor, it can't be a fall through. 2274 if (MBB->pred_size() > 1) 2275 return false; 2276 2277 // The predecessor has to be immediately before this block. 2278 MachineBasicBlock *Pred = *MBB->pred_begin(); 2279 if (!Pred->isLayoutSuccessor(MBB)) 2280 return false; 2281 2282 // If the block is completely empty, then it definitely does fall through. 2283 if (Pred->empty()) 2284 return true; 2285 2286 // Check the terminators in the previous blocks 2287 for (const auto &MI : Pred->terminators()) { 2288 // If it is not a simple branch, we are in a table somewhere. 2289 if (!MI.isBranch() || MI.isIndirectBranch()) 2290 return false; 2291 2292 // If we are the operands of one of the branches, this is not a fall 2293 // through. Note that targets with delay slots will usually bundle 2294 // terminators with the delay slot instruction. 2295 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2296 if (OP->isJTI()) 2297 return false; 2298 if (OP->isMBB() && OP->getMBB() == MBB) 2299 return false; 2300 } 2301 } 2302 2303 return true; 2304 } 2305 2306 2307 2308 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2309 if (!S.usesMetadata()) 2310 return nullptr; 2311 2312 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2313 " stackmap formats, please see the documentation for a description of" 2314 " the default format. If you really need a custom serialized format," 2315 " please file a bug"); 2316 2317 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2318 gcp_map_type::iterator GCPI = GCMap.find(&S); 2319 if (GCPI != GCMap.end()) 2320 return GCPI->second.get(); 2321 2322 const char *Name = S.getName().c_str(); 2323 2324 for (GCMetadataPrinterRegistry::iterator 2325 I = GCMetadataPrinterRegistry::begin(), 2326 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2327 if (strcmp(Name, I->getName()) == 0) { 2328 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2329 GMP->S = &S; 2330 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2331 return IterBool.first->second.get(); 2332 } 2333 2334 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2335 } 2336 2337 /// Pin vtable to this file. 2338 AsmPrinterHandler::~AsmPrinterHandler() {} 2339