1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "asm-printer" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/GCMetadataPrinter.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/DebugInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/MC/MCExpr.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/MC/MCSection.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/Format.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Target/TargetFrameLowering.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Transforms/Utils/GlobalStatus.h" 52 using namespace llvm; 53 54 static const char *const DWARFGroupName = "DWARF Emission"; 55 static const char *const DbgTimerName = "DWARF Debug Writer"; 56 static const char *const EHTimerName = "DWARF Exception Writer"; 57 58 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 59 60 char AsmPrinter::ID = 0; 61 62 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 63 static gcp_map_type &getGCMap(void *&P) { 64 if (P == 0) 65 P = new gcp_map_type(); 66 return *(gcp_map_type*)P; 67 } 68 69 70 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 71 /// value in log2 form. This rounds up to the preferred alignment if possible 72 /// and legal. 73 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 74 unsigned InBits = 0) { 75 unsigned NumBits = 0; 76 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 77 NumBits = TD.getPreferredAlignmentLog(GVar); 78 79 // If InBits is specified, round it to it. 80 if (InBits > NumBits) 81 NumBits = InBits; 82 83 // If the GV has a specified alignment, take it into account. 84 if (GV->getAlignment() == 0) 85 return NumBits; 86 87 unsigned GVAlign = Log2_32(GV->getAlignment()); 88 89 // If the GVAlign is larger than NumBits, or if we are required to obey 90 // NumBits because the GV has an assigned section, obey it. 91 if (GVAlign > NumBits || GV->hasSection()) 92 NumBits = GVAlign; 93 return NumBits; 94 } 95 96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 97 : MachineFunctionPass(ID), 98 TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()), 99 OutContext(Streamer.getContext()), 100 OutStreamer(Streamer), 101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 102 DD = 0; MMI = 0; LI = 0; MF = 0; 103 CurrentFnSym = CurrentFnSymForSize = 0; 104 GCMetadataPrinters = 0; 105 VerboseAsm = Streamer.isVerboseAsm(); 106 } 107 108 AsmPrinter::~AsmPrinter() { 109 assert(DD == 0 && Handlers.empty() && "Debug/EH info didn't get finalized"); 110 111 if (GCMetadataPrinters != 0) { 112 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 113 114 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 115 delete I->second; 116 delete &GCMap; 117 GCMetadataPrinters = 0; 118 } 119 120 delete &OutStreamer; 121 } 122 123 /// getFunctionNumber - Return a unique ID for the current function. 124 /// 125 unsigned AsmPrinter::getFunctionNumber() const { 126 return MF->getFunctionNumber(); 127 } 128 129 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 130 return TM.getTargetLowering()->getObjFileLowering(); 131 } 132 133 /// getDataLayout - Return information about data layout. 134 const DataLayout &AsmPrinter::getDataLayout() const { 135 return *TM.getDataLayout(); 136 } 137 138 StringRef AsmPrinter::getTargetTriple() const { 139 return TM.getTargetTriple(); 140 } 141 142 /// getCurrentSection() - Return the current section we are emitting to. 143 const MCSection *AsmPrinter::getCurrentSection() const { 144 return OutStreamer.getCurrentSection().first; 145 } 146 147 148 149 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 150 AU.setPreservesAll(); 151 MachineFunctionPass::getAnalysisUsage(AU); 152 AU.addRequired<MachineModuleInfo>(); 153 AU.addRequired<GCModuleInfo>(); 154 if (isVerbose()) 155 AU.addRequired<MachineLoopInfo>(); 156 } 157 158 bool AsmPrinter::doInitialization(Module &M) { 159 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 160 MMI->AnalyzeModule(M); 161 162 // Initialize TargetLoweringObjectFile. 163 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 164 .Initialize(OutContext, TM); 165 166 OutStreamer.InitStreamer(); 167 168 Mang = new Mangler(TM.getDataLayout()); 169 170 // Allow the target to emit any magic that it wants at the start of the file. 171 EmitStartOfAsmFile(M); 172 173 // Very minimal debug info. It is ignored if we emit actual debug info. If we 174 // don't, this at least helps the user find where a global came from. 175 if (MAI->hasSingleParameterDotFile()) { 176 // .file "foo.c" 177 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 178 } 179 180 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 181 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 182 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 183 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 184 MP->beginAssembly(*this); 185 186 // Emit module-level inline asm if it exists. 187 if (!M.getModuleInlineAsm().empty()) { 188 OutStreamer.AddComment("Start of file scope inline assembly"); 189 OutStreamer.AddBlankLine(); 190 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 191 OutStreamer.AddComment("End of file scope inline assembly"); 192 OutStreamer.AddBlankLine(); 193 } 194 195 if (MAI->doesSupportDebugInformation()) { 196 DD = new DwarfDebug(this, &M); 197 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 198 } 199 200 DwarfException *DE = 0; 201 switch (MAI->getExceptionHandlingType()) { 202 case ExceptionHandling::None: 203 break; 204 case ExceptionHandling::SjLj: 205 case ExceptionHandling::DwarfCFI: 206 DE = new DwarfCFIException(this); 207 break; 208 case ExceptionHandling::ARM: 209 DE = new ARMException(this); 210 break; 211 case ExceptionHandling::Win64: 212 DE = new Win64Exception(this); 213 break; 214 } 215 if (DE) 216 Handlers.push_back(HandlerInfo(DE, EHTimerName, DWARFGroupName)); 217 return false; 218 } 219 220 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 221 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 222 switch (Linkage) { 223 case GlobalValue::CommonLinkage: 224 case GlobalValue::LinkOnceAnyLinkage: 225 case GlobalValue::LinkOnceODRLinkage: 226 case GlobalValue::WeakAnyLinkage: 227 case GlobalValue::WeakODRLinkage: 228 case GlobalValue::LinkerPrivateWeakLinkage: 229 if (MAI->hasWeakDefDirective()) { 230 // .globl _foo 231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 232 233 bool CanBeHidden = false; 234 235 if (Linkage == GlobalValue::LinkOnceODRLinkage && 236 MAI->hasWeakDefCanBeHiddenDirective()) { 237 if (GV->hasUnnamedAddr()) { 238 CanBeHidden = true; 239 } else { 240 GlobalStatus GS; 241 if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared) 242 CanBeHidden = true; 243 } 244 } 245 246 if (!CanBeHidden) 247 // .weak_definition _foo 248 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 249 else 250 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 251 } else if (MAI->hasLinkOnceDirective()) { 252 // .globl _foo 253 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 254 //NOTE: linkonce is handled by the section the symbol was assigned to. 255 } else { 256 // .weak _foo 257 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 258 } 259 return; 260 case GlobalValue::AppendingLinkage: 261 // FIXME: appending linkage variables should go into a section of 262 // their name or something. For now, just emit them as external. 263 case GlobalValue::ExternalLinkage: 264 // If external or appending, declare as a global symbol. 265 // .globl _foo 266 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 267 return; 268 case GlobalValue::PrivateLinkage: 269 case GlobalValue::InternalLinkage: 270 case GlobalValue::LinkerPrivateLinkage: 271 return; 272 case GlobalValue::AvailableExternallyLinkage: 273 llvm_unreachable("Should never emit this"); 274 case GlobalValue::ExternalWeakLinkage: 275 llvm_unreachable("Don't know how to emit these"); 276 } 277 llvm_unreachable("Unknown linkage type!"); 278 } 279 280 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 281 return getObjFileLowering().getSymbol(*Mang, GV); 282 } 283 284 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 285 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 286 if (GV->hasInitializer()) { 287 // Check to see if this is a special global used by LLVM, if so, emit it. 288 if (EmitSpecialLLVMGlobal(GV)) 289 return; 290 291 if (isVerbose()) { 292 GV->printAsOperand(OutStreamer.GetCommentOS(), 293 /*PrintType=*/false, GV->getParent()); 294 OutStreamer.GetCommentOS() << '\n'; 295 } 296 } 297 298 MCSymbol *GVSym = getSymbol(GV); 299 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 300 301 if (!GV->hasInitializer()) // External globals require no extra code. 302 return; 303 304 if (MAI->hasDotTypeDotSizeDirective()) 305 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 306 307 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 308 309 const DataLayout *DL = TM.getDataLayout(); 310 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 311 312 // If the alignment is specified, we *must* obey it. Overaligning a global 313 // with a specified alignment is a prompt way to break globals emitted to 314 // sections and expected to be contiguous (e.g. ObjC metadata). 315 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 316 317 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { 318 const HandlerInfo &OI = Handlers[I]; 319 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled); 320 OI.Handler->setSymbolSize(GVSym, Size); 321 } 322 323 // Handle common and BSS local symbols (.lcomm). 324 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 325 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 326 unsigned Align = 1 << AlignLog; 327 328 // Handle common symbols. 329 if (GVKind.isCommon()) { 330 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 331 Align = 0; 332 333 // .comm _foo, 42, 4 334 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 335 return; 336 } 337 338 // Handle local BSS symbols. 339 if (MAI->hasMachoZeroFillDirective()) { 340 const MCSection *TheSection = 341 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 342 // .zerofill __DATA, __bss, _foo, 400, 5 343 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 344 return; 345 } 346 347 // Use .lcomm only if it supports user-specified alignment. 348 // Otherwise, while it would still be correct to use .lcomm in some 349 // cases (e.g. when Align == 1), the external assembler might enfore 350 // some -unknown- default alignment behavior, which could cause 351 // spurious differences between external and integrated assembler. 352 // Prefer to simply fall back to .local / .comm in this case. 353 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 354 // .lcomm _foo, 42 355 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 356 return; 357 } 358 359 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 360 Align = 0; 361 362 // .local _foo 363 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 364 // .comm _foo, 42, 4 365 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 366 return; 367 } 368 369 const MCSection *TheSection = 370 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 371 372 // Handle the zerofill directive on darwin, which is a special form of BSS 373 // emission. 374 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 375 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 376 377 // .globl _foo 378 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 379 // .zerofill __DATA, __common, _foo, 400, 5 380 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 381 return; 382 } 383 384 // Handle thread local data for mach-o which requires us to output an 385 // additional structure of data and mangle the original symbol so that we 386 // can reference it later. 387 // 388 // TODO: This should become an "emit thread local global" method on TLOF. 389 // All of this macho specific stuff should be sunk down into TLOFMachO and 390 // stuff like "TLSExtraDataSection" should no longer be part of the parent 391 // TLOF class. This will also make it more obvious that stuff like 392 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 393 // specific code. 394 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 395 // Emit the .tbss symbol 396 MCSymbol *MangSym = 397 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 398 399 if (GVKind.isThreadBSS()) { 400 TheSection = getObjFileLowering().getTLSBSSSection(); 401 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 402 } else if (GVKind.isThreadData()) { 403 OutStreamer.SwitchSection(TheSection); 404 405 EmitAlignment(AlignLog, GV); 406 OutStreamer.EmitLabel(MangSym); 407 408 EmitGlobalConstant(GV->getInitializer()); 409 } 410 411 OutStreamer.AddBlankLine(); 412 413 // Emit the variable struct for the runtime. 414 const MCSection *TLVSect 415 = getObjFileLowering().getTLSExtraDataSection(); 416 417 OutStreamer.SwitchSection(TLVSect); 418 // Emit the linkage here. 419 EmitLinkage(GV, GVSym); 420 OutStreamer.EmitLabel(GVSym); 421 422 // Three pointers in size: 423 // - __tlv_bootstrap - used to make sure support exists 424 // - spare pointer, used when mapped by the runtime 425 // - pointer to mangled symbol above with initializer 426 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 427 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 428 PtrSize); 429 OutStreamer.EmitIntValue(0, PtrSize); 430 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 431 432 OutStreamer.AddBlankLine(); 433 return; 434 } 435 436 OutStreamer.SwitchSection(TheSection); 437 438 EmitLinkage(GV, GVSym); 439 EmitAlignment(AlignLog, GV); 440 441 OutStreamer.EmitLabel(GVSym); 442 443 EmitGlobalConstant(GV->getInitializer()); 444 445 if (MAI->hasDotTypeDotSizeDirective()) 446 // .size foo, 42 447 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 448 449 OutStreamer.AddBlankLine(); 450 } 451 452 /// EmitFunctionHeader - This method emits the header for the current 453 /// function. 454 void AsmPrinter::EmitFunctionHeader() { 455 // Print out constants referenced by the function 456 EmitConstantPool(); 457 458 // Print the 'header' of function. 459 const Function *F = MF->getFunction(); 460 461 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 462 EmitVisibility(CurrentFnSym, F->getVisibility()); 463 464 EmitLinkage(F, CurrentFnSym); 465 EmitAlignment(MF->getAlignment(), F); 466 467 if (MAI->hasDotTypeDotSizeDirective()) 468 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 469 470 if (isVerbose()) { 471 F->printAsOperand(OutStreamer.GetCommentOS(), 472 /*PrintType=*/false, F->getParent()); 473 OutStreamer.GetCommentOS() << '\n'; 474 } 475 476 // Emit the CurrentFnSym. This is a virtual function to allow targets to 477 // do their wild and crazy things as required. 478 EmitFunctionEntryLabel(); 479 480 // If the function had address-taken blocks that got deleted, then we have 481 // references to the dangling symbols. Emit them at the start of the function 482 // so that we don't get references to undefined symbols. 483 std::vector<MCSymbol*> DeadBlockSyms; 484 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 485 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 486 OutStreamer.AddComment("Address taken block that was later removed"); 487 OutStreamer.EmitLabel(DeadBlockSyms[i]); 488 } 489 490 // Emit pre-function debug and/or EH information. 491 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { 492 const HandlerInfo &OI = Handlers[I]; 493 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled); 494 OI.Handler->beginFunction(MF); 495 } 496 497 // Emit the prefix data. 498 if (F->hasPrefixData()) 499 EmitGlobalConstant(F->getPrefixData()); 500 } 501 502 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 503 /// function. This can be overridden by targets as required to do custom stuff. 504 void AsmPrinter::EmitFunctionEntryLabel() { 505 // The function label could have already been emitted if two symbols end up 506 // conflicting due to asm renaming. Detect this and emit an error. 507 if (CurrentFnSym->isUndefined()) 508 return OutStreamer.EmitLabel(CurrentFnSym); 509 510 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 511 "' label emitted multiple times to assembly file"); 512 } 513 514 /// emitComments - Pretty-print comments for instructions. 515 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 516 const MachineFunction *MF = MI.getParent()->getParent(); 517 const TargetMachine &TM = MF->getTarget(); 518 519 // Check for spills and reloads 520 int FI; 521 522 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 523 524 // We assume a single instruction only has a spill or reload, not 525 // both. 526 const MachineMemOperand *MMO; 527 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 528 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 529 MMO = *MI.memoperands_begin(); 530 CommentOS << MMO->getSize() << "-byte Reload\n"; 531 } 532 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 533 if (FrameInfo->isSpillSlotObjectIndex(FI)) 534 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 535 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 536 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 537 MMO = *MI.memoperands_begin(); 538 CommentOS << MMO->getSize() << "-byte Spill\n"; 539 } 540 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 541 if (FrameInfo->isSpillSlotObjectIndex(FI)) 542 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 543 } 544 545 // Check for spill-induced copies 546 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 547 CommentOS << " Reload Reuse\n"; 548 } 549 550 /// emitImplicitDef - This method emits the specified machine instruction 551 /// that is an implicit def. 552 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 553 unsigned RegNo = MI->getOperand(0).getReg(); 554 OutStreamer.AddComment(Twine("implicit-def: ") + 555 TM.getRegisterInfo()->getName(RegNo)); 556 OutStreamer.AddBlankLine(); 557 } 558 559 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 560 std::string Str = "kill:"; 561 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 562 const MachineOperand &Op = MI->getOperand(i); 563 assert(Op.isReg() && "KILL instruction must have only register operands"); 564 Str += ' '; 565 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 566 Str += (Op.isDef() ? "<def>" : "<kill>"); 567 } 568 AP.OutStreamer.AddComment(Str); 569 AP.OutStreamer.AddBlankLine(); 570 } 571 572 /// emitDebugValueComment - This method handles the target-independent form 573 /// of DBG_VALUE, returning true if it was able to do so. A false return 574 /// means the target will need to handle MI in EmitInstruction. 575 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 576 // This code handles only the 3-operand target-independent form. 577 if (MI->getNumOperands() != 3) 578 return false; 579 580 SmallString<128> Str; 581 raw_svector_ostream OS(Str); 582 OS << "DEBUG_VALUE: "; 583 584 DIVariable V(MI->getOperand(2).getMetadata()); 585 if (V.getContext().isSubprogram()) { 586 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 587 if (!Name.empty()) 588 OS << Name << ":"; 589 } 590 OS << V.getName() << " <- "; 591 592 // The second operand is only an offset if it's an immediate. 593 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 594 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 595 596 // Register or immediate value. Register 0 means undef. 597 if (MI->getOperand(0).isFPImm()) { 598 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 599 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 600 OS << (double)APF.convertToFloat(); 601 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 602 OS << APF.convertToDouble(); 603 } else { 604 // There is no good way to print long double. Convert a copy to 605 // double. Ah well, it's only a comment. 606 bool ignored; 607 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 608 &ignored); 609 OS << "(long double) " << APF.convertToDouble(); 610 } 611 } else if (MI->getOperand(0).isImm()) { 612 OS << MI->getOperand(0).getImm(); 613 } else if (MI->getOperand(0).isCImm()) { 614 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 615 } else { 616 unsigned Reg; 617 if (MI->getOperand(0).isReg()) { 618 Reg = MI->getOperand(0).getReg(); 619 } else { 620 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 621 const TargetFrameLowering *TFI = AP.TM.getFrameLowering(); 622 Offset += TFI->getFrameIndexReference(*AP.MF, 623 MI->getOperand(0).getIndex(), Reg); 624 Deref = true; 625 } 626 if (Reg == 0) { 627 // Suppress offset, it is not meaningful here. 628 OS << "undef"; 629 // NOTE: Want this comment at start of line, don't emit with AddComment. 630 AP.OutStreamer.emitRawComment(OS.str()); 631 return true; 632 } 633 if (Deref) 634 OS << '['; 635 OS << AP.TM.getRegisterInfo()->getName(Reg); 636 } 637 638 if (Deref) 639 OS << '+' << Offset << ']'; 640 641 // NOTE: Want this comment at start of line, don't emit with AddComment. 642 AP.OutStreamer.emitRawComment(OS.str()); 643 return true; 644 } 645 646 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 647 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 648 MF->getFunction()->needsUnwindTableEntry()) 649 return CFI_M_EH; 650 651 if (MMI->hasDebugInfo()) 652 return CFI_M_Debug; 653 654 return CFI_M_None; 655 } 656 657 bool AsmPrinter::needsSEHMoves() { 658 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 659 MF->getFunction()->needsUnwindTableEntry(); 660 } 661 662 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 663 const MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 664 665 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 666 return; 667 668 if (needsCFIMoves() == CFI_M_None) 669 return; 670 671 if (MMI->getCompactUnwindEncoding() != 0) 672 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 673 674 const MachineModuleInfo &MMI = MF->getMMI(); 675 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 676 bool FoundOne = false; 677 (void)FoundOne; 678 for (std::vector<MCCFIInstruction>::const_iterator I = Instrs.begin(), 679 E = Instrs.end(); I != E; ++I) { 680 if (I->getLabel() == Label) { 681 emitCFIInstruction(*I); 682 FoundOne = true; 683 } 684 } 685 assert(FoundOne); 686 } 687 688 /// EmitFunctionBody - This method emits the body and trailer for a 689 /// function. 690 void AsmPrinter::EmitFunctionBody() { 691 // Emit target-specific gunk before the function body. 692 EmitFunctionBodyStart(); 693 694 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 695 696 // Print out code for the function. 697 bool HasAnyRealCode = false; 698 const MachineInstr *LastMI = 0; 699 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 700 I != E; ++I) { 701 // Print a label for the basic block. 702 EmitBasicBlockStart(I); 703 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 704 II != IE; ++II) { 705 LastMI = II; 706 707 // Print the assembly for the instruction. 708 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 709 !II->isDebugValue()) { 710 HasAnyRealCode = true; 711 ++EmittedInsts; 712 } 713 714 if (ShouldPrintDebugScopes) { 715 for (unsigned III = 0, EEE = Handlers.size(); III != EEE; ++III) { 716 const HandlerInfo &OI = Handlers[III]; 717 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, 718 TimePassesIsEnabled); 719 OI.Handler->beginInstruction(II); 720 } 721 } 722 723 if (isVerbose()) 724 emitComments(*II, OutStreamer.GetCommentOS()); 725 726 switch (II->getOpcode()) { 727 case TargetOpcode::PROLOG_LABEL: 728 emitPrologLabel(*II); 729 break; 730 731 case TargetOpcode::EH_LABEL: 732 case TargetOpcode::GC_LABEL: 733 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 734 break; 735 case TargetOpcode::INLINEASM: 736 EmitInlineAsm(II); 737 break; 738 case TargetOpcode::DBG_VALUE: 739 if (isVerbose()) { 740 if (!emitDebugValueComment(II, *this)) 741 EmitInstruction(II); 742 } 743 break; 744 case TargetOpcode::IMPLICIT_DEF: 745 if (isVerbose()) emitImplicitDef(II); 746 break; 747 case TargetOpcode::KILL: 748 if (isVerbose()) emitKill(II, *this); 749 break; 750 default: 751 if (!TM.hasMCUseLoc()) 752 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 753 754 EmitInstruction(II); 755 break; 756 } 757 758 if (ShouldPrintDebugScopes) { 759 for (unsigned III = 0, EEE = Handlers.size(); III != EEE; ++III) { 760 const HandlerInfo &OI = Handlers[III]; 761 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, 762 TimePassesIsEnabled); 763 OI.Handler->endInstruction(); 764 } 765 } 766 } 767 } 768 769 // If the last instruction was a prolog label, then we have a situation where 770 // we emitted a prolog but no function body. This results in the ending prolog 771 // label equaling the end of function label and an invalid "row" in the 772 // FDE. We need to emit a noop in this situation so that the FDE's rows are 773 // valid. 774 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 775 776 // If the function is empty and the object file uses .subsections_via_symbols, 777 // then we need to emit *something* to the function body to prevent the 778 // labels from collapsing together. Just emit a noop. 779 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 780 MCInst Noop; 781 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 782 if (Noop.getOpcode()) { 783 OutStreamer.AddComment("avoids zero-length function"); 784 OutStreamer.EmitInstruction(Noop); 785 } else // Target not mc-ized yet. 786 OutStreamer.EmitRawText(StringRef("\tnop\n")); 787 } 788 789 const Function *F = MF->getFunction(); 790 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 791 const BasicBlock *BB = i; 792 if (!BB->hasAddressTaken()) 793 continue; 794 MCSymbol *Sym = GetBlockAddressSymbol(BB); 795 if (Sym->isDefined()) 796 continue; 797 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 798 OutStreamer.EmitLabel(Sym); 799 } 800 801 // Emit target-specific gunk after the function body. 802 EmitFunctionBodyEnd(); 803 804 // If the target wants a .size directive for the size of the function, emit 805 // it. 806 if (MAI->hasDotTypeDotSizeDirective()) { 807 // Create a symbol for the end of function, so we can get the size as 808 // difference between the function label and the temp label. 809 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 810 OutStreamer.EmitLabel(FnEndLabel); 811 812 const MCExpr *SizeExp = 813 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 814 MCSymbolRefExpr::Create(CurrentFnSymForSize, 815 OutContext), 816 OutContext); 817 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 818 } 819 820 // Emit post-function debug and/or EH information. 821 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { 822 const HandlerInfo &OI = Handlers[I]; 823 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled); 824 OI.Handler->endFunction(MF); 825 } 826 MMI->EndFunction(); 827 828 // Print out jump tables referenced by the function. 829 EmitJumpTableInfo(); 830 831 OutStreamer.AddBlankLine(); 832 } 833 834 /// EmitDwarfRegOp - Emit dwarf register operation. 835 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc, 836 bool Indirect) const { 837 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 838 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 839 840 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; 841 ++SR) { 842 Reg = TRI->getDwarfRegNum(*SR, false); 843 // FIXME: Get the bit range this register uses of the superregister 844 // so that we can produce a DW_OP_bit_piece 845 } 846 847 // FIXME: Handle cases like a super register being encoded as 848 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 849 850 // FIXME: We have no reasonable way of handling errors in here. The 851 // caller might be in the middle of an dwarf expression. We should 852 // probably assert that Reg >= 0 once debug info generation is more mature. 853 854 if (MLoc.isIndirect() || Indirect) { 855 if (Reg < 32) { 856 OutStreamer.AddComment( 857 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 858 EmitInt8(dwarf::DW_OP_breg0 + Reg); 859 } else { 860 OutStreamer.AddComment("DW_OP_bregx"); 861 EmitInt8(dwarf::DW_OP_bregx); 862 OutStreamer.AddComment(Twine(Reg)); 863 EmitULEB128(Reg); 864 } 865 EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset()); 866 if (MLoc.isIndirect() && Indirect) 867 EmitInt8(dwarf::DW_OP_deref); 868 } else { 869 if (Reg < 32) { 870 OutStreamer.AddComment( 871 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 872 EmitInt8(dwarf::DW_OP_reg0 + Reg); 873 } else { 874 OutStreamer.AddComment("DW_OP_regx"); 875 EmitInt8(dwarf::DW_OP_regx); 876 OutStreamer.AddComment(Twine(Reg)); 877 EmitULEB128(Reg); 878 } 879 } 880 881 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 882 } 883 884 bool AsmPrinter::doFinalization(Module &M) { 885 // Emit global variables. 886 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 887 I != E; ++I) 888 EmitGlobalVariable(I); 889 890 // Emit visibility info for declarations 891 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 892 const Function &F = *I; 893 if (!F.isDeclaration()) 894 continue; 895 GlobalValue::VisibilityTypes V = F.getVisibility(); 896 if (V == GlobalValue::DefaultVisibility) 897 continue; 898 899 MCSymbol *Name = getSymbol(&F); 900 EmitVisibility(Name, V, false); 901 } 902 903 // Emit module flags. 904 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 905 M.getModuleFlagsMetadata(ModuleFlags); 906 if (!ModuleFlags.empty()) 907 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); 908 909 // Make sure we wrote out everything we need. 910 OutStreamer.Flush(); 911 912 // Finalize debug and EH information. 913 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { 914 const HandlerInfo &OI = Handlers[I]; 915 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, 916 TimePassesIsEnabled); 917 OI.Handler->endModule(); 918 delete OI.Handler; 919 } 920 Handlers.clear(); 921 DD = 0; 922 923 // If the target wants to know about weak references, print them all. 924 if (MAI->getWeakRefDirective()) { 925 // FIXME: This is not lazy, it would be nice to only print weak references 926 // to stuff that is actually used. Note that doing so would require targets 927 // to notice uses in operands (due to constant exprs etc). This should 928 // happen with the MC stuff eventually. 929 930 // Print out module-level global variables here. 931 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 932 I != E; ++I) { 933 if (!I->hasExternalWeakLinkage()) continue; 934 OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference); 935 } 936 937 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 938 if (!I->hasExternalWeakLinkage()) continue; 939 OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference); 940 } 941 } 942 943 if (MAI->hasSetDirective()) { 944 OutStreamer.AddBlankLine(); 945 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 946 I != E; ++I) { 947 MCSymbol *Name = getSymbol(I); 948 949 const GlobalValue *GV = I->getAliasedGlobal(); 950 if (GV->isDeclaration()) { 951 report_fatal_error(Name->getName() + 952 ": Target doesn't support aliases to declarations"); 953 } 954 955 MCSymbol *Target = getSymbol(GV); 956 957 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 958 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 959 else if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) 960 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 961 else 962 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 963 964 EmitVisibility(Name, I->getVisibility()); 965 966 // Emit the directives as assignments aka .set: 967 OutStreamer.EmitAssignment(Name, 968 MCSymbolRefExpr::Create(Target, OutContext)); 969 } 970 } 971 972 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 973 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 974 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 975 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 976 MP->finishAssembly(*this); 977 978 // Emit llvm.ident metadata in an '.ident' directive. 979 EmitModuleIdents(M); 980 981 // If we don't have any trampolines, then we don't require stack memory 982 // to be executable. Some targets have a directive to declare this. 983 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 984 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 985 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 986 OutStreamer.SwitchSection(S); 987 988 // Allow the target to emit any magic that it wants at the end of the file, 989 // after everything else has gone out. 990 EmitEndOfAsmFile(M); 991 992 delete Mang; Mang = 0; 993 MMI = 0; 994 995 OutStreamer.Finish(); 996 OutStreamer.reset(); 997 998 return false; 999 } 1000 1001 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1002 this->MF = &MF; 1003 // Get the function symbol. 1004 CurrentFnSym = getSymbol(MF.getFunction()); 1005 CurrentFnSymForSize = CurrentFnSym; 1006 1007 if (isVerbose()) 1008 LI = &getAnalysis<MachineLoopInfo>(); 1009 } 1010 1011 namespace { 1012 // SectionCPs - Keep track the alignment, constpool entries per Section. 1013 struct SectionCPs { 1014 const MCSection *S; 1015 unsigned Alignment; 1016 SmallVector<unsigned, 4> CPEs; 1017 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1018 }; 1019 } 1020 1021 /// EmitConstantPool - Print to the current output stream assembly 1022 /// representations of the constants in the constant pool MCP. This is 1023 /// used to print out constants which have been "spilled to memory" by 1024 /// the code generator. 1025 /// 1026 void AsmPrinter::EmitConstantPool() { 1027 const MachineConstantPool *MCP = MF->getConstantPool(); 1028 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1029 if (CP.empty()) return; 1030 1031 // Calculate sections for constant pool entries. We collect entries to go into 1032 // the same section together to reduce amount of section switch statements. 1033 SmallVector<SectionCPs, 4> CPSections; 1034 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1035 const MachineConstantPoolEntry &CPE = CP[i]; 1036 unsigned Align = CPE.getAlignment(); 1037 1038 SectionKind Kind; 1039 switch (CPE.getRelocationInfo()) { 1040 default: llvm_unreachable("Unknown section kind"); 1041 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1042 case 1: 1043 Kind = SectionKind::getReadOnlyWithRelLocal(); 1044 break; 1045 case 0: 1046 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1047 case 4: Kind = SectionKind::getMergeableConst4(); break; 1048 case 8: Kind = SectionKind::getMergeableConst8(); break; 1049 case 16: Kind = SectionKind::getMergeableConst16();break; 1050 default: Kind = SectionKind::getMergeableConst(); break; 1051 } 1052 } 1053 1054 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1055 1056 // The number of sections are small, just do a linear search from the 1057 // last section to the first. 1058 bool Found = false; 1059 unsigned SecIdx = CPSections.size(); 1060 while (SecIdx != 0) { 1061 if (CPSections[--SecIdx].S == S) { 1062 Found = true; 1063 break; 1064 } 1065 } 1066 if (!Found) { 1067 SecIdx = CPSections.size(); 1068 CPSections.push_back(SectionCPs(S, Align)); 1069 } 1070 1071 if (Align > CPSections[SecIdx].Alignment) 1072 CPSections[SecIdx].Alignment = Align; 1073 CPSections[SecIdx].CPEs.push_back(i); 1074 } 1075 1076 // Now print stuff into the calculated sections. 1077 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1078 OutStreamer.SwitchSection(CPSections[i].S); 1079 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1080 1081 unsigned Offset = 0; 1082 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1083 unsigned CPI = CPSections[i].CPEs[j]; 1084 MachineConstantPoolEntry CPE = CP[CPI]; 1085 1086 // Emit inter-object padding for alignment. 1087 unsigned AlignMask = CPE.getAlignment() - 1; 1088 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1089 OutStreamer.EmitZeros(NewOffset - Offset); 1090 1091 Type *Ty = CPE.getType(); 1092 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1093 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1094 1095 if (CPE.isMachineConstantPoolEntry()) 1096 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1097 else 1098 EmitGlobalConstant(CPE.Val.ConstVal); 1099 } 1100 } 1101 } 1102 1103 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1104 /// by the current function to the current output stream. 1105 /// 1106 void AsmPrinter::EmitJumpTableInfo() { 1107 const DataLayout *DL = MF->getTarget().getDataLayout(); 1108 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1109 if (MJTI == 0) return; 1110 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1111 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1112 if (JT.empty()) return; 1113 1114 // Pick the directive to use to print the jump table entries, and switch to 1115 // the appropriate section. 1116 const Function *F = MF->getFunction(); 1117 bool JTInDiffSection = false; 1118 if (// In PIC mode, we need to emit the jump table to the same section as the 1119 // function body itself, otherwise the label differences won't make sense. 1120 // FIXME: Need a better predicate for this: what about custom entries? 1121 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1122 // We should also do if the section name is NULL or function is declared 1123 // in discardable section 1124 // FIXME: this isn't the right predicate, should be based on the MCSection 1125 // for the function. 1126 F->isWeakForLinker()) { 1127 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1128 } else { 1129 // Otherwise, drop it in the readonly section. 1130 const MCSection *ReadOnlySection = 1131 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1132 OutStreamer.SwitchSection(ReadOnlySection); 1133 JTInDiffSection = true; 1134 } 1135 1136 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1137 1138 // Jump tables in code sections are marked with a data_region directive 1139 // where that's supported. 1140 if (!JTInDiffSection) 1141 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1142 1143 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1144 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1145 1146 // If this jump table was deleted, ignore it. 1147 if (JTBBs.empty()) continue; 1148 1149 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1150 // .set directive for each unique entry. This reduces the number of 1151 // relocations the assembler will generate for the jump table. 1152 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1153 MAI->hasSetDirective()) { 1154 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1155 const TargetLowering *TLI = TM.getTargetLowering(); 1156 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1157 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1158 const MachineBasicBlock *MBB = JTBBs[ii]; 1159 if (!EmittedSets.insert(MBB)) continue; 1160 1161 // .set LJTSet, LBB32-base 1162 const MCExpr *LHS = 1163 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1164 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1165 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1166 } 1167 } 1168 1169 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1170 // before each jump table. The first label is never referenced, but tells 1171 // the assembler and linker the extents of the jump table object. The 1172 // second label is actually referenced by the code. 1173 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1174 // FIXME: This doesn't have to have any specific name, just any randomly 1175 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1176 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1177 1178 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1179 1180 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1181 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1182 } 1183 if (!JTInDiffSection) 1184 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1185 } 1186 1187 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1188 /// current stream. 1189 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1190 const MachineBasicBlock *MBB, 1191 unsigned UID) const { 1192 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1193 const MCExpr *Value = 0; 1194 switch (MJTI->getEntryKind()) { 1195 case MachineJumpTableInfo::EK_Inline: 1196 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1197 case MachineJumpTableInfo::EK_Custom32: 1198 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1199 OutContext); 1200 break; 1201 case MachineJumpTableInfo::EK_BlockAddress: 1202 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1203 // .word LBB123 1204 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1205 break; 1206 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1207 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1208 // with a relocation as gp-relative, e.g.: 1209 // .gprel32 LBB123 1210 MCSymbol *MBBSym = MBB->getSymbol(); 1211 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1212 return; 1213 } 1214 1215 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1216 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1217 // with a relocation as gp-relative, e.g.: 1218 // .gpdword LBB123 1219 MCSymbol *MBBSym = MBB->getSymbol(); 1220 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1221 return; 1222 } 1223 1224 case MachineJumpTableInfo::EK_LabelDifference32: { 1225 // EK_LabelDifference32 - Each entry is the address of the block minus 1226 // the address of the jump table. This is used for PIC jump tables where 1227 // gprel32 is not supported. e.g.: 1228 // .word LBB123 - LJTI1_2 1229 // If the .set directive is supported, this is emitted as: 1230 // .set L4_5_set_123, LBB123 - LJTI1_2 1231 // .word L4_5_set_123 1232 1233 // If we have emitted set directives for the jump table entries, print 1234 // them rather than the entries themselves. If we're emitting PIC, then 1235 // emit the table entries as differences between two text section labels. 1236 if (MAI->hasSetDirective()) { 1237 // If we used .set, reference the .set's symbol. 1238 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1239 OutContext); 1240 break; 1241 } 1242 // Otherwise, use the difference as the jump table entry. 1243 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1244 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1245 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1246 break; 1247 } 1248 } 1249 1250 assert(Value && "Unknown entry kind!"); 1251 1252 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1253 OutStreamer.EmitValue(Value, EntrySize); 1254 } 1255 1256 1257 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1258 /// special global used by LLVM. If so, emit it and return true, otherwise 1259 /// do nothing and return false. 1260 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1261 if (GV->getName() == "llvm.used") { 1262 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1263 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1264 return true; 1265 } 1266 1267 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1268 if (GV->getSection() == "llvm.metadata" || 1269 GV->hasAvailableExternallyLinkage()) 1270 return true; 1271 1272 if (!GV->hasAppendingLinkage()) return false; 1273 1274 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1275 1276 if (GV->getName() == "llvm.global_ctors") { 1277 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1278 1279 if (TM.getRelocationModel() == Reloc::Static && 1280 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1281 StringRef Sym(".constructors_used"); 1282 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1283 MCSA_Reference); 1284 } 1285 return true; 1286 } 1287 1288 if (GV->getName() == "llvm.global_dtors") { 1289 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1290 1291 if (TM.getRelocationModel() == Reloc::Static && 1292 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1293 StringRef Sym(".destructors_used"); 1294 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1295 MCSA_Reference); 1296 } 1297 return true; 1298 } 1299 1300 return false; 1301 } 1302 1303 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1304 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1305 /// is true, as being used with this directive. 1306 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1307 // Should be an array of 'i8*'. 1308 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1309 const GlobalValue *GV = 1310 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1311 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1312 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1313 } 1314 } 1315 1316 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1317 /// priority. 1318 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1319 // Should be an array of '{ int, void ()* }' structs. The first value is the 1320 // init priority. 1321 if (!isa<ConstantArray>(List)) return; 1322 1323 // Sanity check the structors list. 1324 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1325 if (!InitList) return; // Not an array! 1326 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1327 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1328 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1329 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1330 1331 // Gather the structors in a form that's convenient for sorting by priority. 1332 typedef std::pair<unsigned, Constant *> Structor; 1333 SmallVector<Structor, 8> Structors; 1334 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1335 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1336 if (!CS) continue; // Malformed. 1337 if (CS->getOperand(1)->isNullValue()) 1338 break; // Found a null terminator, skip the rest. 1339 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1340 if (!Priority) continue; // Malformed. 1341 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1342 CS->getOperand(1))); 1343 } 1344 1345 // Emit the function pointers in the target-specific order 1346 const DataLayout *DL = TM.getDataLayout(); 1347 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1348 std::stable_sort(Structors.begin(), Structors.end(), less_first()); 1349 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1350 const MCSection *OutputSection = 1351 (isCtor ? 1352 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1353 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1354 OutStreamer.SwitchSection(OutputSection); 1355 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1356 EmitAlignment(Align); 1357 EmitXXStructor(Structors[i].second); 1358 } 1359 } 1360 1361 void AsmPrinter::EmitModuleIdents(Module &M) { 1362 if (!MAI->hasIdentDirective()) 1363 return; 1364 1365 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1366 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1367 const MDNode *N = NMD->getOperand(i); 1368 assert(N->getNumOperands() == 1 && 1369 "llvm.ident metadata entry can have only one operand"); 1370 const MDString *S = cast<MDString>(N->getOperand(0)); 1371 OutStreamer.EmitIdent(S->getString()); 1372 } 1373 } 1374 } 1375 1376 //===--------------------------------------------------------------------===// 1377 // Emission and print routines 1378 // 1379 1380 /// EmitInt8 - Emit a byte directive and value. 1381 /// 1382 void AsmPrinter::EmitInt8(int Value) const { 1383 OutStreamer.EmitIntValue(Value, 1); 1384 } 1385 1386 /// EmitInt16 - Emit a short directive and value. 1387 /// 1388 void AsmPrinter::EmitInt16(int Value) const { 1389 OutStreamer.EmitIntValue(Value, 2); 1390 } 1391 1392 /// EmitInt32 - Emit a long directive and value. 1393 /// 1394 void AsmPrinter::EmitInt32(int Value) const { 1395 OutStreamer.EmitIntValue(Value, 4); 1396 } 1397 1398 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1399 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1400 /// labels. This implicitly uses .set if it is available. 1401 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1402 unsigned Size) const { 1403 // Get the Hi-Lo expression. 1404 const MCExpr *Diff = 1405 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1406 MCSymbolRefExpr::Create(Lo, OutContext), 1407 OutContext); 1408 1409 if (!MAI->hasSetDirective()) { 1410 OutStreamer.EmitValue(Diff, Size); 1411 return; 1412 } 1413 1414 // Otherwise, emit with .set (aka assignment). 1415 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1416 OutStreamer.EmitAssignment(SetLabel, Diff); 1417 OutStreamer.EmitSymbolValue(SetLabel, Size); 1418 } 1419 1420 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1421 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1422 /// specify the labels. This implicitly uses .set if it is available. 1423 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1424 const MCSymbol *Lo, 1425 unsigned Size) const { 1426 1427 // Emit Hi+Offset - Lo 1428 // Get the Hi+Offset expression. 1429 const MCExpr *Plus = 1430 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1431 MCConstantExpr::Create(Offset, OutContext), 1432 OutContext); 1433 1434 // Get the Hi+Offset-Lo expression. 1435 const MCExpr *Diff = 1436 MCBinaryExpr::CreateSub(Plus, 1437 MCSymbolRefExpr::Create(Lo, OutContext), 1438 OutContext); 1439 1440 if (!MAI->hasSetDirective()) 1441 OutStreamer.EmitValue(Diff, Size); 1442 else { 1443 // Otherwise, emit with .set (aka assignment). 1444 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1445 OutStreamer.EmitAssignment(SetLabel, Diff); 1446 OutStreamer.EmitSymbolValue(SetLabel, Size); 1447 } 1448 } 1449 1450 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1451 /// where the size in bytes of the directive is specified by Size and Label 1452 /// specifies the label. This implicitly uses .set if it is available. 1453 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1454 unsigned Size, 1455 bool IsSectionRelative) const { 1456 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1457 OutStreamer.EmitCOFFSecRel32(Label); 1458 return; 1459 } 1460 1461 // Emit Label+Offset (or just Label if Offset is zero) 1462 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1463 if (Offset) 1464 Expr = MCBinaryExpr::CreateAdd( 1465 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1466 1467 OutStreamer.EmitValue(Expr, Size); 1468 } 1469 1470 //===----------------------------------------------------------------------===// 1471 1472 // EmitAlignment - Emit an alignment directive to the specified power of 1473 // two boundary. For example, if you pass in 3 here, you will get an 8 1474 // byte alignment. If a global value is specified, and if that global has 1475 // an explicit alignment requested, it will override the alignment request 1476 // if required for correctness. 1477 // 1478 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1479 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1480 1481 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1482 1483 if (getCurrentSection()->getKind().isText()) 1484 OutStreamer.EmitCodeAlignment(1 << NumBits); 1485 else 1486 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1487 } 1488 1489 //===----------------------------------------------------------------------===// 1490 // Constant emission. 1491 //===----------------------------------------------------------------------===// 1492 1493 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1494 /// 1495 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1496 MCContext &Ctx = AP.OutContext; 1497 1498 if (CV->isNullValue() || isa<UndefValue>(CV)) 1499 return MCConstantExpr::Create(0, Ctx); 1500 1501 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1502 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1503 1504 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1505 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx); 1506 1507 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1508 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1509 1510 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1511 if (CE == 0) { 1512 llvm_unreachable("Unknown constant value to lower!"); 1513 } 1514 1515 if (const MCExpr *RelocExpr = 1516 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, AP.Mang)) 1517 return RelocExpr; 1518 1519 switch (CE->getOpcode()) { 1520 default: 1521 // If the code isn't optimized, there may be outstanding folding 1522 // opportunities. Attempt to fold the expression using DataLayout as a 1523 // last resort before giving up. 1524 if (Constant *C = 1525 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1526 if (C != CE) 1527 return lowerConstant(C, AP); 1528 1529 // Otherwise report the problem to the user. 1530 { 1531 std::string S; 1532 raw_string_ostream OS(S); 1533 OS << "Unsupported expression in static initializer: "; 1534 CE->printAsOperand(OS, /*PrintType=*/false, 1535 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1536 report_fatal_error(OS.str()); 1537 } 1538 case Instruction::GetElementPtr: { 1539 const DataLayout &DL = *AP.TM.getDataLayout(); 1540 // Generate a symbolic expression for the byte address 1541 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1542 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1543 1544 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1545 if (!OffsetAI) 1546 return Base; 1547 1548 int64_t Offset = OffsetAI.getSExtValue(); 1549 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1550 Ctx); 1551 } 1552 1553 case Instruction::Trunc: 1554 // We emit the value and depend on the assembler to truncate the generated 1555 // expression properly. This is important for differences between 1556 // blockaddress labels. Since the two labels are in the same function, it 1557 // is reasonable to treat their delta as a 32-bit value. 1558 // FALL THROUGH. 1559 case Instruction::BitCast: 1560 return lowerConstant(CE->getOperand(0), AP); 1561 1562 case Instruction::IntToPtr: { 1563 const DataLayout &DL = *AP.TM.getDataLayout(); 1564 // Handle casts to pointers by changing them into casts to the appropriate 1565 // integer type. This promotes constant folding and simplifies this code. 1566 Constant *Op = CE->getOperand(0); 1567 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1568 false/*ZExt*/); 1569 return lowerConstant(Op, AP); 1570 } 1571 1572 case Instruction::PtrToInt: { 1573 const DataLayout &DL = *AP.TM.getDataLayout(); 1574 // Support only foldable casts to/from pointers that can be eliminated by 1575 // changing the pointer to the appropriately sized integer type. 1576 Constant *Op = CE->getOperand(0); 1577 Type *Ty = CE->getType(); 1578 1579 const MCExpr *OpExpr = lowerConstant(Op, AP); 1580 1581 // We can emit the pointer value into this slot if the slot is an 1582 // integer slot equal to the size of the pointer. 1583 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1584 return OpExpr; 1585 1586 // Otherwise the pointer is smaller than the resultant integer, mask off 1587 // the high bits so we are sure to get a proper truncation if the input is 1588 // a constant expr. 1589 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1590 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1591 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1592 } 1593 1594 // The MC library also has a right-shift operator, but it isn't consistently 1595 // signed or unsigned between different targets. 1596 case Instruction::Add: 1597 case Instruction::Sub: 1598 case Instruction::Mul: 1599 case Instruction::SDiv: 1600 case Instruction::SRem: 1601 case Instruction::Shl: 1602 case Instruction::And: 1603 case Instruction::Or: 1604 case Instruction::Xor: { 1605 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1606 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1607 switch (CE->getOpcode()) { 1608 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1609 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1610 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1611 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1612 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1613 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1614 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1615 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1616 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1617 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1618 } 1619 } 1620 } 1621 } 1622 1623 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1624 1625 /// isRepeatedByteSequence - Determine whether the given value is 1626 /// composed of a repeated sequence of identical bytes and return the 1627 /// byte value. If it is not a repeated sequence, return -1. 1628 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1629 StringRef Data = V->getRawDataValues(); 1630 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1631 char C = Data[0]; 1632 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1633 if (Data[i] != C) return -1; 1634 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1635 } 1636 1637 1638 /// isRepeatedByteSequence - Determine whether the given value is 1639 /// composed of a repeated sequence of identical bytes and return the 1640 /// byte value. If it is not a repeated sequence, return -1. 1641 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1642 1643 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1644 if (CI->getBitWidth() > 64) return -1; 1645 1646 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1647 uint64_t Value = CI->getZExtValue(); 1648 1649 // Make sure the constant is at least 8 bits long and has a power 1650 // of 2 bit width. This guarantees the constant bit width is 1651 // always a multiple of 8 bits, avoiding issues with padding out 1652 // to Size and other such corner cases. 1653 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1654 1655 uint8_t Byte = static_cast<uint8_t>(Value); 1656 1657 for (unsigned i = 1; i < Size; ++i) { 1658 Value >>= 8; 1659 if (static_cast<uint8_t>(Value) != Byte) return -1; 1660 } 1661 return Byte; 1662 } 1663 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1664 // Make sure all array elements are sequences of the same repeated 1665 // byte. 1666 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1667 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1668 if (Byte == -1) return -1; 1669 1670 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1671 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1672 if (ThisByte == -1) return -1; 1673 if (Byte != ThisByte) return -1; 1674 } 1675 return Byte; 1676 } 1677 1678 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1679 return isRepeatedByteSequence(CDS); 1680 1681 return -1; 1682 } 1683 1684 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1685 AsmPrinter &AP){ 1686 1687 // See if we can aggregate this into a .fill, if so, emit it as such. 1688 int Value = isRepeatedByteSequence(CDS, AP.TM); 1689 if (Value != -1) { 1690 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1691 // Don't emit a 1-byte object as a .fill. 1692 if (Bytes > 1) 1693 return AP.OutStreamer.EmitFill(Bytes, Value); 1694 } 1695 1696 // If this can be emitted with .ascii/.asciz, emit it as such. 1697 if (CDS->isString()) 1698 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1699 1700 // Otherwise, emit the values in successive locations. 1701 unsigned ElementByteSize = CDS->getElementByteSize(); 1702 if (isa<IntegerType>(CDS->getElementType())) { 1703 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1704 if (AP.isVerbose()) 1705 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1706 CDS->getElementAsInteger(i)); 1707 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1708 ElementByteSize); 1709 } 1710 } else if (ElementByteSize == 4) { 1711 // FP Constants are printed as integer constants to avoid losing 1712 // precision. 1713 assert(CDS->getElementType()->isFloatTy()); 1714 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1715 union { 1716 float F; 1717 uint32_t I; 1718 }; 1719 1720 F = CDS->getElementAsFloat(i); 1721 if (AP.isVerbose()) 1722 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1723 AP.OutStreamer.EmitIntValue(I, 4); 1724 } 1725 } else { 1726 assert(CDS->getElementType()->isDoubleTy()); 1727 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1728 union { 1729 double F; 1730 uint64_t I; 1731 }; 1732 1733 F = CDS->getElementAsDouble(i); 1734 if (AP.isVerbose()) 1735 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1736 AP.OutStreamer.EmitIntValue(I, 8); 1737 } 1738 } 1739 1740 const DataLayout &DL = *AP.TM.getDataLayout(); 1741 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1742 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1743 CDS->getNumElements(); 1744 if (unsigned Padding = Size - EmittedSize) 1745 AP.OutStreamer.EmitZeros(Padding); 1746 1747 } 1748 1749 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1750 // See if we can aggregate some values. Make sure it can be 1751 // represented as a series of bytes of the constant value. 1752 int Value = isRepeatedByteSequence(CA, AP.TM); 1753 1754 if (Value != -1) { 1755 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1756 AP.OutStreamer.EmitFill(Bytes, Value); 1757 } 1758 else { 1759 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1760 emitGlobalConstantImpl(CA->getOperand(i), AP); 1761 } 1762 } 1763 1764 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1765 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1766 emitGlobalConstantImpl(CV->getOperand(i), AP); 1767 1768 const DataLayout &DL = *AP.TM.getDataLayout(); 1769 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1770 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1771 CV->getType()->getNumElements(); 1772 if (unsigned Padding = Size - EmittedSize) 1773 AP.OutStreamer.EmitZeros(Padding); 1774 } 1775 1776 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1777 // Print the fields in successive locations. Pad to align if needed! 1778 const DataLayout *DL = AP.TM.getDataLayout(); 1779 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1780 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1781 uint64_t SizeSoFar = 0; 1782 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1783 const Constant *Field = CS->getOperand(i); 1784 1785 // Check if padding is needed and insert one or more 0s. 1786 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1787 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1788 - Layout->getElementOffset(i)) - FieldSize; 1789 SizeSoFar += FieldSize + PadSize; 1790 1791 // Now print the actual field value. 1792 emitGlobalConstantImpl(Field, AP); 1793 1794 // Insert padding - this may include padding to increase the size of the 1795 // current field up to the ABI size (if the struct is not packed) as well 1796 // as padding to ensure that the next field starts at the right offset. 1797 AP.OutStreamer.EmitZeros(PadSize); 1798 } 1799 assert(SizeSoFar == Layout->getSizeInBytes() && 1800 "Layout of constant struct may be incorrect!"); 1801 } 1802 1803 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1804 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1805 1806 // First print a comment with what we think the original floating-point value 1807 // should have been. 1808 if (AP.isVerbose()) { 1809 SmallString<8> StrVal; 1810 CFP->getValueAPF().toString(StrVal); 1811 1812 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1813 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1814 } 1815 1816 // Now iterate through the APInt chunks, emitting them in endian-correct 1817 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1818 // floats). 1819 unsigned NumBytes = API.getBitWidth() / 8; 1820 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1821 const uint64_t *p = API.getRawData(); 1822 1823 // PPC's long double has odd notions of endianness compared to how LLVM 1824 // handles it: p[0] goes first for *big* endian on PPC. 1825 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { 1826 int Chunk = API.getNumWords() - 1; 1827 1828 if (TrailingBytes) 1829 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1830 1831 for (; Chunk >= 0; --Chunk) 1832 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1833 } else { 1834 unsigned Chunk; 1835 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1836 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1837 1838 if (TrailingBytes) 1839 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1840 } 1841 1842 // Emit the tail padding for the long double. 1843 const DataLayout &DL = *AP.TM.getDataLayout(); 1844 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1845 DL.getTypeStoreSize(CFP->getType())); 1846 } 1847 1848 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1849 const DataLayout *DL = AP.TM.getDataLayout(); 1850 unsigned BitWidth = CI->getBitWidth(); 1851 1852 // Copy the value as we may massage the layout for constants whose bit width 1853 // is not a multiple of 64-bits. 1854 APInt Realigned(CI->getValue()); 1855 uint64_t ExtraBits = 0; 1856 unsigned ExtraBitsSize = BitWidth & 63; 1857 1858 if (ExtraBitsSize) { 1859 // The bit width of the data is not a multiple of 64-bits. 1860 // The extra bits are expected to be at the end of the chunk of the memory. 1861 // Little endian: 1862 // * Nothing to be done, just record the extra bits to emit. 1863 // Big endian: 1864 // * Record the extra bits to emit. 1865 // * Realign the raw data to emit the chunks of 64-bits. 1866 if (DL->isBigEndian()) { 1867 // Basically the structure of the raw data is a chunk of 64-bits cells: 1868 // 0 1 BitWidth / 64 1869 // [chunk1][chunk2] ... [chunkN]. 1870 // The most significant chunk is chunkN and it should be emitted first. 1871 // However, due to the alignment issue chunkN contains useless bits. 1872 // Realign the chunks so that they contain only useless information: 1873 // ExtraBits 0 1 (BitWidth / 64) - 1 1874 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1875 ExtraBits = Realigned.getRawData()[0] & 1876 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1877 Realigned = Realigned.lshr(ExtraBitsSize); 1878 } else 1879 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1880 } 1881 1882 // We don't expect assemblers to support integer data directives 1883 // for more than 64 bits, so we emit the data in at most 64-bit 1884 // quantities at a time. 1885 const uint64_t *RawData = Realigned.getRawData(); 1886 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1887 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1888 AP.OutStreamer.EmitIntValue(Val, 8); 1889 } 1890 1891 if (ExtraBitsSize) { 1892 // Emit the extra bits after the 64-bits chunks. 1893 1894 // Emit a directive that fills the expected size. 1895 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType()); 1896 Size -= (BitWidth / 64) * 8; 1897 assert(Size && Size * 8 >= ExtraBitsSize && 1898 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1899 == ExtraBits && "Directive too small for extra bits."); 1900 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1901 } 1902 } 1903 1904 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1905 const DataLayout *DL = AP.TM.getDataLayout(); 1906 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1907 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1908 return AP.OutStreamer.EmitZeros(Size); 1909 1910 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1911 switch (Size) { 1912 case 1: 1913 case 2: 1914 case 4: 1915 case 8: 1916 if (AP.isVerbose()) 1917 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1918 CI->getZExtValue()); 1919 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1920 return; 1921 default: 1922 emitGlobalConstantLargeInt(CI, AP); 1923 return; 1924 } 1925 } 1926 1927 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1928 return emitGlobalConstantFP(CFP, AP); 1929 1930 if (isa<ConstantPointerNull>(CV)) { 1931 AP.OutStreamer.EmitIntValue(0, Size); 1932 return; 1933 } 1934 1935 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1936 return emitGlobalConstantDataSequential(CDS, AP); 1937 1938 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1939 return emitGlobalConstantArray(CVA, AP); 1940 1941 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1942 return emitGlobalConstantStruct(CVS, AP); 1943 1944 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1945 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1946 // vectors). 1947 if (CE->getOpcode() == Instruction::BitCast) 1948 return emitGlobalConstantImpl(CE->getOperand(0), AP); 1949 1950 if (Size > 8) { 1951 // If the constant expression's size is greater than 64-bits, then we have 1952 // to emit the value in chunks. Try to constant fold the value and emit it 1953 // that way. 1954 Constant *New = ConstantFoldConstantExpression(CE, DL); 1955 if (New && New != CE) 1956 return emitGlobalConstantImpl(New, AP); 1957 } 1958 } 1959 1960 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1961 return emitGlobalConstantVector(V, AP); 1962 1963 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1964 // thread the streamer with EmitValue. 1965 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 1966 } 1967 1968 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1969 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 1970 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 1971 if (Size) 1972 emitGlobalConstantImpl(CV, *this); 1973 else if (MAI->hasSubsectionsViaSymbols()) { 1974 // If the global has zero size, emit a single byte so that two labels don't 1975 // look like they are at the same location. 1976 OutStreamer.EmitIntValue(0, 1); 1977 } 1978 } 1979 1980 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1981 // Target doesn't support this yet! 1982 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1983 } 1984 1985 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1986 if (Offset > 0) 1987 OS << '+' << Offset; 1988 else if (Offset < 0) 1989 OS << Offset; 1990 } 1991 1992 //===----------------------------------------------------------------------===// 1993 // Symbol Lowering Routines. 1994 //===----------------------------------------------------------------------===// 1995 1996 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1997 /// temporary label with the specified stem and unique ID. 1998 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1999 const DataLayout *DL = TM.getDataLayout(); 2000 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2001 Name + Twine(ID)); 2002 } 2003 2004 /// GetTempSymbol - Return an assembler temporary label with the specified 2005 /// stem. 2006 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 2007 const DataLayout *DL = TM.getDataLayout(); 2008 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2009 Name); 2010 } 2011 2012 2013 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2014 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2015 } 2016 2017 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2018 return MMI->getAddrLabelSymbol(BB); 2019 } 2020 2021 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2022 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2023 const DataLayout *DL = TM.getDataLayout(); 2024 return OutContext.GetOrCreateSymbol 2025 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2026 + "_" + Twine(CPID)); 2027 } 2028 2029 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2030 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2031 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2032 } 2033 2034 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2035 /// FIXME: privatize to AsmPrinter. 2036 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2037 const DataLayout *DL = TM.getDataLayout(); 2038 return OutContext.GetOrCreateSymbol 2039 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2040 Twine(UID) + "_set_" + Twine(MBBID)); 2041 } 2042 2043 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2044 StringRef Suffix) const { 2045 return getObjFileLowering().getSymbolWithGlobalValueBase(*Mang, GV, Suffix); 2046 } 2047 2048 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2049 /// ExternalSymbol. 2050 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2051 SmallString<60> NameStr; 2052 Mang->getNameWithPrefix(NameStr, Sym); 2053 return OutContext.GetOrCreateSymbol(NameStr.str()); 2054 } 2055 2056 2057 2058 /// PrintParentLoopComment - Print comments about parent loops of this one. 2059 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2060 unsigned FunctionNumber) { 2061 if (Loop == 0) return; 2062 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2063 OS.indent(Loop->getLoopDepth()*2) 2064 << "Parent Loop BB" << FunctionNumber << "_" 2065 << Loop->getHeader()->getNumber() 2066 << " Depth=" << Loop->getLoopDepth() << '\n'; 2067 } 2068 2069 2070 /// PrintChildLoopComment - Print comments about child loops within 2071 /// the loop for this basic block, with nesting. 2072 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2073 unsigned FunctionNumber) { 2074 // Add child loop information 2075 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2076 OS.indent((*CL)->getLoopDepth()*2) 2077 << "Child Loop BB" << FunctionNumber << "_" 2078 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2079 << '\n'; 2080 PrintChildLoopComment(OS, *CL, FunctionNumber); 2081 } 2082 } 2083 2084 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2085 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2086 const MachineLoopInfo *LI, 2087 const AsmPrinter &AP) { 2088 // Add loop depth information 2089 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2090 if (Loop == 0) return; 2091 2092 MachineBasicBlock *Header = Loop->getHeader(); 2093 assert(Header && "No header for loop"); 2094 2095 // If this block is not a loop header, just print out what is the loop header 2096 // and return. 2097 if (Header != &MBB) { 2098 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2099 Twine(AP.getFunctionNumber())+"_" + 2100 Twine(Loop->getHeader()->getNumber())+ 2101 " Depth="+Twine(Loop->getLoopDepth())); 2102 return; 2103 } 2104 2105 // Otherwise, it is a loop header. Print out information about child and 2106 // parent loops. 2107 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2108 2109 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2110 2111 OS << "=>"; 2112 OS.indent(Loop->getLoopDepth()*2-2); 2113 2114 OS << "This "; 2115 if (Loop->empty()) 2116 OS << "Inner "; 2117 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2118 2119 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2120 } 2121 2122 2123 /// EmitBasicBlockStart - This method prints the label for the specified 2124 /// MachineBasicBlock, an alignment (if present) and a comment describing 2125 /// it if appropriate. 2126 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2127 // Emit an alignment directive for this block, if needed. 2128 if (unsigned Align = MBB->getAlignment()) 2129 EmitAlignment(Align); 2130 2131 // If the block has its address taken, emit any labels that were used to 2132 // reference the block. It is possible that there is more than one label 2133 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2134 // the references were generated. 2135 if (MBB->hasAddressTaken()) { 2136 const BasicBlock *BB = MBB->getBasicBlock(); 2137 if (isVerbose()) 2138 OutStreamer.AddComment("Block address taken"); 2139 2140 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2141 2142 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2143 OutStreamer.EmitLabel(Syms[i]); 2144 } 2145 2146 // Print some verbose block comments. 2147 if (isVerbose()) { 2148 if (const BasicBlock *BB = MBB->getBasicBlock()) 2149 if (BB->hasName()) 2150 OutStreamer.AddComment("%" + BB->getName()); 2151 emitBasicBlockLoopComments(*MBB, LI, *this); 2152 } 2153 2154 // Print the main label for the block. 2155 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2156 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2157 // NOTE: Want this comment at start of line, don't emit with AddComment. 2158 OutStreamer.emitRawComment(" BB#" + Twine(MBB->getNumber()) + ":", false); 2159 } 2160 } else { 2161 OutStreamer.EmitLabel(MBB->getSymbol()); 2162 } 2163 } 2164 2165 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2166 bool IsDefinition) const { 2167 MCSymbolAttr Attr = MCSA_Invalid; 2168 2169 switch (Visibility) { 2170 default: break; 2171 case GlobalValue::HiddenVisibility: 2172 if (IsDefinition) 2173 Attr = MAI->getHiddenVisibilityAttr(); 2174 else 2175 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2176 break; 2177 case GlobalValue::ProtectedVisibility: 2178 Attr = MAI->getProtectedVisibilityAttr(); 2179 break; 2180 } 2181 2182 if (Attr != MCSA_Invalid) 2183 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2184 } 2185 2186 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2187 /// exactly one predecessor and the control transfer mechanism between 2188 /// the predecessor and this block is a fall-through. 2189 bool AsmPrinter:: 2190 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2191 // If this is a landing pad, it isn't a fall through. If it has no preds, 2192 // then nothing falls through to it. 2193 if (MBB->isLandingPad() || MBB->pred_empty()) 2194 return false; 2195 2196 // If there isn't exactly one predecessor, it can't be a fall through. 2197 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2198 ++PI2; 2199 if (PI2 != MBB->pred_end()) 2200 return false; 2201 2202 // The predecessor has to be immediately before this block. 2203 MachineBasicBlock *Pred = *PI; 2204 2205 if (!Pred->isLayoutSuccessor(MBB)) 2206 return false; 2207 2208 // If the block is completely empty, then it definitely does fall through. 2209 if (Pred->empty()) 2210 return true; 2211 2212 // Check the terminators in the previous blocks 2213 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2214 IE = Pred->end(); II != IE; ++II) { 2215 MachineInstr &MI = *II; 2216 2217 // If it is not a simple branch, we are in a table somewhere. 2218 if (!MI.isBranch() || MI.isIndirectBranch()) 2219 return false; 2220 2221 // If we are the operands of one of the branches, this is not a fall 2222 // through. Note that targets with delay slots will usually bundle 2223 // terminators with the delay slot instruction. 2224 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2225 if (OP->isJTI()) 2226 return false; 2227 if (OP->isMBB() && OP->getMBB() == MBB) 2228 return false; 2229 } 2230 } 2231 2232 return true; 2233 } 2234 2235 2236 2237 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2238 if (!S->usesMetadata()) 2239 return 0; 2240 2241 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2242 gcp_map_type::iterator GCPI = GCMap.find(S); 2243 if (GCPI != GCMap.end()) 2244 return GCPI->second; 2245 2246 const char *Name = S->getName().c_str(); 2247 2248 for (GCMetadataPrinterRegistry::iterator 2249 I = GCMetadataPrinterRegistry::begin(), 2250 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2251 if (strcmp(Name, I->getName()) == 0) { 2252 GCMetadataPrinter *GMP = I->instantiate(); 2253 GMP->S = S; 2254 GCMap.insert(std::make_pair(S, GMP)); 2255 return GMP; 2256 } 2257 2258 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2259 } 2260 2261 /// Pin vtable to this file. 2262 AsmPrinterHandler::~AsmPrinterHandler() {} 2263