1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/TargetRegistry.h" 117 #include "llvm/Support/Timer.h" 118 #include "llvm/Support/raw_ostream.h" 119 #include "llvm/Target/TargetLoweringObjectFile.h" 120 #include "llvm/Target/TargetMachine.h" 121 #include "llvm/Target/TargetOptions.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <limits> 128 #include <memory> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 138 static cl::opt<bool> 139 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 140 cl::desc("Disable debug info printing")); 141 142 const char DWARFGroupName[] = "dwarf"; 143 const char DWARFGroupDescription[] = "DWARF Emission"; 144 const char DbgTimerName[] = "emit"; 145 const char DbgTimerDescription[] = "Debug Info Emission"; 146 const char EHTimerName[] = "write_exception"; 147 const char EHTimerDescription[] = "DWARF Exception Writer"; 148 const char CFGuardName[] = "Control Flow Guard"; 149 const char CFGuardDescription[] = "Control Flow Guard"; 150 const char CodeViewLineTablesGroupName[] = "linetables"; 151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 152 const char PPTimerName[] = "emit"; 153 const char PPTimerDescription[] = "Pseudo Probe Emission"; 154 const char PPGroupName[] = "pseudo probe"; 155 const char PPGroupDescription[] = "Pseudo Probe Emission"; 156 157 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 158 159 char AsmPrinter::ID = 0; 160 161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 162 163 static gcp_map_type &getGCMap(void *&P) { 164 if (!P) 165 P = new gcp_map_type(); 166 return *(gcp_map_type*)P; 167 } 168 169 /// getGVAlignment - Return the alignment to use for the specified global 170 /// value. This rounds up to the preferred alignment if possible and legal. 171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 172 Align InAlign) { 173 Align Alignment; 174 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 175 Alignment = DL.getPreferredAlign(GVar); 176 177 // If InAlign is specified, round it to it. 178 if (InAlign > Alignment) 179 Alignment = InAlign; 180 181 // If the GV has a specified alignment, take it into account. 182 const MaybeAlign GVAlign(GV->getAlignment()); 183 if (!GVAlign) 184 return Alignment; 185 186 assert(GVAlign && "GVAlign must be set"); 187 188 // If the GVAlign is larger than NumBits, or if we are required to obey 189 // NumBits because the GV has an assigned section, obey it. 190 if (*GVAlign > Alignment || GV->hasSection()) 191 Alignment = *GVAlign; 192 return Alignment; 193 } 194 195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 196 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 197 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 198 VerboseAsm = OutStreamer->isVerboseAsm(); 199 } 200 201 AsmPrinter::~AsmPrinter() { 202 assert(!DD && Handlers.size() == NumUserHandlers && 203 "Debug/EH info didn't get finalized"); 204 205 if (GCMetadataPrinters) { 206 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 207 208 delete &GCMap; 209 GCMetadataPrinters = nullptr; 210 } 211 } 212 213 bool AsmPrinter::isPositionIndependent() const { 214 return TM.isPositionIndependent(); 215 } 216 217 /// getFunctionNumber - Return a unique ID for the current function. 218 unsigned AsmPrinter::getFunctionNumber() const { 219 return MF->getFunctionNumber(); 220 } 221 222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 223 return *TM.getObjFileLowering(); 224 } 225 226 const DataLayout &AsmPrinter::getDataLayout() const { 227 return MMI->getModule()->getDataLayout(); 228 } 229 230 // Do not use the cached DataLayout because some client use it without a Module 231 // (dsymutil, llvm-dwarfdump). 232 unsigned AsmPrinter::getPointerSize() const { 233 return TM.getPointerSize(0); // FIXME: Default address space 234 } 235 236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 237 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 238 return MF->getSubtarget<MCSubtargetInfo>(); 239 } 240 241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 242 S.emitInstruction(Inst, getSubtargetInfo()); 243 } 244 245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 246 if (DD) { 247 assert(OutStreamer->hasRawTextSupport() && 248 "Expected assembly output mode."); 249 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 250 } 251 } 252 253 /// getCurrentSection() - Return the current section we are emitting to. 254 const MCSection *AsmPrinter::getCurrentSection() const { 255 return OutStreamer->getCurrentSectionOnly(); 256 } 257 258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 259 AU.setPreservesAll(); 260 MachineFunctionPass::getAnalysisUsage(AU); 261 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 262 AU.addRequired<GCModuleInfo>(); 263 } 264 265 bool AsmPrinter::doInitialization(Module &M) { 266 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 267 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 268 269 // Initialize TargetLoweringObjectFile. 270 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 271 .Initialize(OutContext, TM); 272 273 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 274 .getModuleMetadata(M); 275 276 OutStreamer->InitSections(false); 277 278 if (DisableDebugInfoPrinting) 279 MMI->setDebugInfoAvailability(false); 280 281 // Emit the version-min deployment target directive if needed. 282 // 283 // FIXME: If we end up with a collection of these sorts of Darwin-specific 284 // or ELF-specific things, it may make sense to have a platform helper class 285 // that will work with the target helper class. For now keep it here, as the 286 // alternative is duplicated code in each of the target asm printers that 287 // use the directive, where it would need the same conditionalization 288 // anyway. 289 const Triple &Target = TM.getTargetTriple(); 290 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 291 292 // Allow the target to emit any magic that it wants at the start of the file. 293 emitStartOfAsmFile(M); 294 295 // Very minimal debug info. It is ignored if we emit actual debug info. If we 296 // don't, this at least helps the user find where a global came from. 297 if (MAI->hasSingleParameterDotFile()) { 298 // .file "foo.c" 299 OutStreamer->emitFileDirective( 300 llvm::sys::path::filename(M.getSourceFileName())); 301 } 302 303 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 304 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 305 for (auto &I : *MI) 306 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 307 MP->beginAssembly(M, *MI, *this); 308 309 // Emit module-level inline asm if it exists. 310 if (!M.getModuleInlineAsm().empty()) { 311 // We're at the module level. Construct MCSubtarget from the default CPU 312 // and target triple. 313 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 314 TM.getTargetTriple().str(), TM.getTargetCPU(), 315 TM.getTargetFeatureString())); 316 assert(STI && "Unable to create subtarget info"); 317 OutStreamer->AddComment("Start of file scope inline assembly"); 318 OutStreamer->AddBlankLine(); 319 emitInlineAsm(M.getModuleInlineAsm() + "\n", 320 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 321 OutStreamer->AddComment("End of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 } 324 325 if (MAI->doesSupportDebugInformation()) { 326 bool EmitCodeView = M.getCodeViewFlag(); 327 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 328 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 329 DbgTimerName, DbgTimerDescription, 330 CodeViewLineTablesGroupName, 331 CodeViewLineTablesGroupDescription); 332 } 333 if (!EmitCodeView || M.getDwarfVersion()) { 334 if (!DisableDebugInfoPrinting) { 335 DD = new DwarfDebug(this); 336 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 337 DbgTimerDescription, DWARFGroupName, 338 DWARFGroupDescription); 339 } 340 } 341 } 342 343 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 344 PP = new PseudoProbeHandler(this, &M); 345 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 346 PPTimerDescription, PPGroupName, PPGroupDescription); 347 } 348 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 case ExceptionHandling::ARM: 353 isCFIMoveForDebugging = true; 354 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 355 break; 356 for (auto &F: M.getFunctionList()) { 357 // If the module contains any function with unwind data, 358 // .eh_frame has to be emitted. 359 // Ignore functions that won't get emitted. 360 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 361 isCFIMoveForDebugging = false; 362 break; 363 } 364 } 365 break; 366 default: 367 isCFIMoveForDebugging = false; 368 break; 369 } 370 371 EHStreamer *ES = nullptr; 372 switch (MAI->getExceptionHandlingType()) { 373 case ExceptionHandling::None: 374 break; 375 case ExceptionHandling::SjLj: 376 case ExceptionHandling::DwarfCFI: 377 ES = new DwarfCFIException(this); 378 break; 379 case ExceptionHandling::ARM: 380 ES = new ARMException(this); 381 break; 382 case ExceptionHandling::WinEH: 383 switch (MAI->getWinEHEncodingType()) { 384 default: llvm_unreachable("unsupported unwinding information encoding"); 385 case WinEH::EncodingType::Invalid: 386 break; 387 case WinEH::EncodingType::X86: 388 case WinEH::EncodingType::Itanium: 389 ES = new WinException(this); 390 break; 391 } 392 break; 393 case ExceptionHandling::Wasm: 394 ES = new WasmException(this); 395 break; 396 case ExceptionHandling::AIX: 397 ES = new AIXException(this); 398 break; 399 } 400 if (ES) 401 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 402 EHTimerDescription, DWARFGroupName, 403 DWARFGroupDescription); 404 405 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 406 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 407 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 408 CFGuardDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 for (const HandlerInfo &HI : Handlers) { 412 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 413 HI.TimerGroupDescription, TimePassesIsEnabled); 414 HI.Handler->beginModule(&M); 415 } 416 417 return false; 418 } 419 420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 421 if (!MAI.hasWeakDefCanBeHiddenDirective()) 422 return false; 423 424 return GV->canBeOmittedFromSymbolTable(); 425 } 426 427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 428 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 429 switch (Linkage) { 430 case GlobalValue::CommonLinkage: 431 case GlobalValue::LinkOnceAnyLinkage: 432 case GlobalValue::LinkOnceODRLinkage: 433 case GlobalValue::WeakAnyLinkage: 434 case GlobalValue::WeakODRLinkage: 435 if (MAI->hasWeakDefDirective()) { 436 // .globl _foo 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 438 439 if (!canBeHidden(GV, *MAI)) 440 // .weak_definition _foo 441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 442 else 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 444 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 445 // .globl _foo 446 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 447 //NOTE: linkonce is handled by the section the symbol was assigned to. 448 } else { 449 // .weak _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 451 } 452 return; 453 case GlobalValue::ExternalLinkage: 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 455 return; 456 case GlobalValue::PrivateLinkage: 457 case GlobalValue::InternalLinkage: 458 return; 459 case GlobalValue::ExternalWeakLinkage: 460 case GlobalValue::AvailableExternallyLinkage: 461 case GlobalValue::AppendingLinkage: 462 llvm_unreachable("Should never emit this"); 463 } 464 llvm_unreachable("Unknown linkage type!"); 465 } 466 467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 468 const GlobalValue *GV) const { 469 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 470 } 471 472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 473 return TM.getSymbol(GV); 474 } 475 476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 477 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 478 // exact definion (intersection of GlobalValue::hasExactDefinition() and 479 // !isInterposable()). These linkages include: external, appending, internal, 480 // private. It may be profitable to use a local alias for external. The 481 // assembler would otherwise be conservative and assume a global default 482 // visibility symbol can be interposable, even if the code generator already 483 // assumed it. 484 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 485 const Module &M = *GV.getParent(); 486 if (TM.getRelocationModel() != Reloc::Static && 487 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 488 return getSymbolWithGlobalValueBase(&GV, "$local"); 489 } 490 return TM.getSymbol(&GV); 491 } 492 493 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 495 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 496 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 497 "No emulated TLS variables in the common section"); 498 499 // Never emit TLS variable xyz in emulated TLS model. 500 // The initialization value is in __emutls_t.xyz instead of xyz. 501 if (IsEmuTLSVar) 502 return; 503 504 if (GV->hasInitializer()) { 505 // Check to see if this is a special global used by LLVM, if so, emit it. 506 if (emitSpecialLLVMGlobal(GV)) 507 return; 508 509 // Skip the emission of global equivalents. The symbol can be emitted later 510 // on by emitGlobalGOTEquivs in case it turns out to be needed. 511 if (GlobalGOTEquivs.count(getSymbol(GV))) 512 return; 513 514 if (isVerbose()) { 515 // When printing the control variable __emutls_v.*, 516 // we don't need to print the original TLS variable name. 517 GV->printAsOperand(OutStreamer->GetCommentOS(), 518 /*PrintType=*/false, GV->getParent()); 519 OutStreamer->GetCommentOS() << '\n'; 520 } 521 } 522 523 MCSymbol *GVSym = getSymbol(GV); 524 MCSymbol *EmittedSym = GVSym; 525 526 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 527 // attributes. 528 // GV's or GVSym's attributes will be used for the EmittedSym. 529 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 530 531 if (!GV->hasInitializer()) // External globals require no extra code. 532 return; 533 534 GVSym->redefineIfPossible(); 535 if (GVSym->isDefined() || GVSym->isVariable()) 536 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 537 "' is already defined"); 538 539 if (MAI->hasDotTypeDotSizeDirective()) 540 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 541 542 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 543 544 const DataLayout &DL = GV->getParent()->getDataLayout(); 545 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 546 547 // If the alignment is specified, we *must* obey it. Overaligning a global 548 // with a specified alignment is a prompt way to break globals emitted to 549 // sections and expected to be contiguous (e.g. ObjC metadata). 550 const Align Alignment = getGVAlignment(GV, DL); 551 552 for (const HandlerInfo &HI : Handlers) { 553 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 554 HI.TimerGroupName, HI.TimerGroupDescription, 555 TimePassesIsEnabled); 556 HI.Handler->setSymbolSize(GVSym, Size); 557 } 558 559 // Handle common symbols 560 if (GVKind.isCommon()) { 561 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 562 // .comm _foo, 42, 4 563 const bool SupportsAlignment = 564 getObjFileLowering().getCommDirectiveSupportsAlignment(); 565 OutStreamer->emitCommonSymbol(GVSym, Size, 566 SupportsAlignment ? Alignment.value() : 0); 567 return; 568 } 569 570 // Determine to which section this global should be emitted. 571 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 572 573 // If we have a bss global going to a section that supports the 574 // zerofill directive, do so here. 575 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 576 TheSection->isVirtualSection()) { 577 if (Size == 0) 578 Size = 1; // zerofill of 0 bytes is undefined. 579 emitLinkage(GV, GVSym); 580 // .zerofill __DATA, __bss, _foo, 400, 5 581 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 582 return; 583 } 584 585 // If this is a BSS local symbol and we are emitting in the BSS 586 // section use .lcomm/.comm directive. 587 if (GVKind.isBSSLocal() && 588 getObjFileLowering().getBSSSection() == TheSection) { 589 if (Size == 0) 590 Size = 1; // .comm Foo, 0 is undefined, avoid it. 591 592 // Use .lcomm only if it supports user-specified alignment. 593 // Otherwise, while it would still be correct to use .lcomm in some 594 // cases (e.g. when Align == 1), the external assembler might enfore 595 // some -unknown- default alignment behavior, which could cause 596 // spurious differences between external and integrated assembler. 597 // Prefer to simply fall back to .local / .comm in this case. 598 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 599 // .lcomm _foo, 42 600 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 601 return; 602 } 603 604 // .local _foo 605 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 606 // .comm _foo, 42, 4 607 const bool SupportsAlignment = 608 getObjFileLowering().getCommDirectiveSupportsAlignment(); 609 OutStreamer->emitCommonSymbol(GVSym, Size, 610 SupportsAlignment ? Alignment.value() : 0); 611 return; 612 } 613 614 // Handle thread local data for mach-o which requires us to output an 615 // additional structure of data and mangle the original symbol so that we 616 // can reference it later. 617 // 618 // TODO: This should become an "emit thread local global" method on TLOF. 619 // All of this macho specific stuff should be sunk down into TLOFMachO and 620 // stuff like "TLSExtraDataSection" should no longer be part of the parent 621 // TLOF class. This will also make it more obvious that stuff like 622 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 623 // specific code. 624 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 625 // Emit the .tbss symbol 626 MCSymbol *MangSym = 627 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 628 629 if (GVKind.isThreadBSS()) { 630 TheSection = getObjFileLowering().getTLSBSSSection(); 631 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 632 } else if (GVKind.isThreadData()) { 633 OutStreamer->SwitchSection(TheSection); 634 635 emitAlignment(Alignment, GV); 636 OutStreamer->emitLabel(MangSym); 637 638 emitGlobalConstant(GV->getParent()->getDataLayout(), 639 GV->getInitializer()); 640 } 641 642 OutStreamer->AddBlankLine(); 643 644 // Emit the variable struct for the runtime. 645 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 646 647 OutStreamer->SwitchSection(TLVSect); 648 // Emit the linkage here. 649 emitLinkage(GV, GVSym); 650 OutStreamer->emitLabel(GVSym); 651 652 // Three pointers in size: 653 // - __tlv_bootstrap - used to make sure support exists 654 // - spare pointer, used when mapped by the runtime 655 // - pointer to mangled symbol above with initializer 656 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 657 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 658 PtrSize); 659 OutStreamer->emitIntValue(0, PtrSize); 660 OutStreamer->emitSymbolValue(MangSym, PtrSize); 661 662 OutStreamer->AddBlankLine(); 663 return; 664 } 665 666 MCSymbol *EmittedInitSym = GVSym; 667 668 OutStreamer->SwitchSection(TheSection); 669 670 emitLinkage(GV, EmittedInitSym); 671 emitAlignment(Alignment, GV); 672 673 OutStreamer->emitLabel(EmittedInitSym); 674 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 675 if (LocalAlias != EmittedInitSym) 676 OutStreamer->emitLabel(LocalAlias); 677 678 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 679 680 if (MAI->hasDotTypeDotSizeDirective()) 681 // .size foo, 42 682 OutStreamer->emitELFSize(EmittedInitSym, 683 MCConstantExpr::create(Size, OutContext)); 684 685 OutStreamer->AddBlankLine(); 686 } 687 688 /// Emit the directive and value for debug thread local expression 689 /// 690 /// \p Value - The value to emit. 691 /// \p Size - The size of the integer (in bytes) to emit. 692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 693 OutStreamer->emitValue(Value, Size); 694 } 695 696 void AsmPrinter::emitFunctionHeaderComment() {} 697 698 /// EmitFunctionHeader - This method emits the header for the current 699 /// function. 700 void AsmPrinter::emitFunctionHeader() { 701 const Function &F = MF->getFunction(); 702 703 if (isVerbose()) 704 OutStreamer->GetCommentOS() 705 << "-- Begin function " 706 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 707 708 // Print out constants referenced by the function 709 emitConstantPool(); 710 711 // Print the 'header' of function. 712 // If basic block sections is desired and function sections is off, 713 // explicitly request a unique section for this function. 714 if (MF->front().isBeginSection() && !TM.getFunctionSections()) 715 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 716 else 717 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 718 OutStreamer->SwitchSection(MF->getSection()); 719 720 if (!MAI->hasVisibilityOnlyWithLinkage()) 721 emitVisibility(CurrentFnSym, F.getVisibility()); 722 723 if (MAI->needsFunctionDescriptors()) 724 emitLinkage(&F, CurrentFnDescSym); 725 726 emitLinkage(&F, CurrentFnSym); 727 if (MAI->hasFunctionAlignment()) 728 emitAlignment(MF->getAlignment(), &F); 729 730 if (MAI->hasDotTypeDotSizeDirective()) 731 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 732 733 if (F.hasFnAttribute(Attribute::Cold)) 734 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 735 736 if (isVerbose()) { 737 F.printAsOperand(OutStreamer->GetCommentOS(), 738 /*PrintType=*/false, F.getParent()); 739 emitFunctionHeaderComment(); 740 OutStreamer->GetCommentOS() << '\n'; 741 } 742 743 // Emit the prefix data. 744 if (F.hasPrefixData()) { 745 if (MAI->hasSubsectionsViaSymbols()) { 746 // Preserving prefix data on platforms which use subsections-via-symbols 747 // is a bit tricky. Here we introduce a symbol for the prefix data 748 // and use the .alt_entry attribute to mark the function's real entry point 749 // as an alternative entry point to the prefix-data symbol. 750 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 751 OutStreamer->emitLabel(PrefixSym); 752 753 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 754 755 // Emit an .alt_entry directive for the actual function symbol. 756 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 757 } else { 758 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 759 } 760 } 761 762 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 763 // place prefix data before NOPs. 764 unsigned PatchableFunctionPrefix = 0; 765 unsigned PatchableFunctionEntry = 0; 766 (void)F.getFnAttribute("patchable-function-prefix") 767 .getValueAsString() 768 .getAsInteger(10, PatchableFunctionPrefix); 769 (void)F.getFnAttribute("patchable-function-entry") 770 .getValueAsString() 771 .getAsInteger(10, PatchableFunctionEntry); 772 if (PatchableFunctionPrefix) { 773 CurrentPatchableFunctionEntrySym = 774 OutContext.createLinkerPrivateTempSymbol(); 775 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 776 emitNops(PatchableFunctionPrefix); 777 } else if (PatchableFunctionEntry) { 778 // May be reassigned when emitting the body, to reference the label after 779 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 780 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 781 } 782 783 // Emit the function descriptor. This is a virtual function to allow targets 784 // to emit their specific function descriptor. Right now it is only used by 785 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 786 // descriptors and should be converted to use this hook as well. 787 if (MAI->needsFunctionDescriptors()) 788 emitFunctionDescriptor(); 789 790 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 791 // their wild and crazy things as required. 792 emitFunctionEntryLabel(); 793 794 if (CurrentFnBegin) { 795 if (MAI->useAssignmentForEHBegin()) { 796 MCSymbol *CurPos = OutContext.createTempSymbol(); 797 OutStreamer->emitLabel(CurPos); 798 OutStreamer->emitAssignment(CurrentFnBegin, 799 MCSymbolRefExpr::create(CurPos, OutContext)); 800 } else { 801 OutStreamer->emitLabel(CurrentFnBegin); 802 } 803 } 804 805 // Emit pre-function debug and/or EH information. 806 for (const HandlerInfo &HI : Handlers) { 807 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 808 HI.TimerGroupDescription, TimePassesIsEnabled); 809 HI.Handler->beginFunction(MF); 810 } 811 812 // Emit the prologue data. 813 if (F.hasPrologueData()) 814 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 815 } 816 817 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 818 /// function. This can be overridden by targets as required to do custom stuff. 819 void AsmPrinter::emitFunctionEntryLabel() { 820 CurrentFnSym->redefineIfPossible(); 821 822 // The function label could have already been emitted if two symbols end up 823 // conflicting due to asm renaming. Detect this and emit an error. 824 if (CurrentFnSym->isVariable()) 825 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 826 "' is a protected alias"); 827 828 OutStreamer->emitLabel(CurrentFnSym); 829 830 if (TM.getTargetTriple().isOSBinFormatELF()) { 831 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 832 if (Sym != CurrentFnSym) 833 OutStreamer->emitLabel(Sym); 834 } 835 } 836 837 /// emitComments - Pretty-print comments for instructions. 838 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 839 const MachineFunction *MF = MI.getMF(); 840 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 841 842 // Check for spills and reloads 843 844 // We assume a single instruction only has a spill or reload, not 845 // both. 846 Optional<unsigned> Size; 847 if ((Size = MI.getRestoreSize(TII))) { 848 CommentOS << *Size << "-byte Reload\n"; 849 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 850 if (*Size) { 851 if (*Size == unsigned(MemoryLocation::UnknownSize)) 852 CommentOS << "Unknown-size Folded Reload\n"; 853 else 854 CommentOS << *Size << "-byte Folded Reload\n"; 855 } 856 } else if ((Size = MI.getSpillSize(TII))) { 857 CommentOS << *Size << "-byte Spill\n"; 858 } else if ((Size = MI.getFoldedSpillSize(TII))) { 859 if (*Size) { 860 if (*Size == unsigned(MemoryLocation::UnknownSize)) 861 CommentOS << "Unknown-size Folded Spill\n"; 862 else 863 CommentOS << *Size << "-byte Folded Spill\n"; 864 } 865 } 866 867 // Check for spill-induced copies 868 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 869 CommentOS << " Reload Reuse\n"; 870 } 871 872 /// emitImplicitDef - This method emits the specified machine instruction 873 /// that is an implicit def. 874 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 875 Register RegNo = MI->getOperand(0).getReg(); 876 877 SmallString<128> Str; 878 raw_svector_ostream OS(Str); 879 OS << "implicit-def: " 880 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 881 882 OutStreamer->AddComment(OS.str()); 883 OutStreamer->AddBlankLine(); 884 } 885 886 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 887 std::string Str; 888 raw_string_ostream OS(Str); 889 OS << "kill:"; 890 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 891 const MachineOperand &Op = MI->getOperand(i); 892 assert(Op.isReg() && "KILL instruction must have only register operands"); 893 OS << ' ' << (Op.isDef() ? "def " : "killed ") 894 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 895 } 896 AP.OutStreamer->AddComment(OS.str()); 897 AP.OutStreamer->AddBlankLine(); 898 } 899 900 /// emitDebugValueComment - This method handles the target-independent form 901 /// of DBG_VALUE, returning true if it was able to do so. A false return 902 /// means the target will need to handle MI in EmitInstruction. 903 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 904 // This code handles only the 4-operand target-independent form. 905 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 906 return false; 907 908 SmallString<128> Str; 909 raw_svector_ostream OS(Str); 910 OS << "DEBUG_VALUE: "; 911 912 const DILocalVariable *V = MI->getDebugVariable(); 913 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 914 StringRef Name = SP->getName(); 915 if (!Name.empty()) 916 OS << Name << ":"; 917 } 918 OS << V->getName(); 919 OS << " <- "; 920 921 const DIExpression *Expr = MI->getDebugExpression(); 922 if (Expr->getNumElements()) { 923 OS << '['; 924 ListSeparator LS; 925 for (auto Op : Expr->expr_ops()) { 926 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 927 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 928 OS << ' ' << Op.getArg(I); 929 } 930 OS << "] "; 931 } 932 933 // Register or immediate value. Register 0 means undef. 934 for (const MachineOperand &Op : MI->debug_operands()) { 935 if (&Op != MI->debug_operands().begin()) 936 OS << ", "; 937 switch (Op.getType()) { 938 case MachineOperand::MO_FPImmediate: { 939 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 940 if (Op.getFPImm()->getType()->isFloatTy()) { 941 OS << (double)APF.convertToFloat(); 942 } else if (Op.getFPImm()->getType()->isDoubleTy()) { 943 OS << APF.convertToDouble(); 944 } else { 945 // There is no good way to print long double. Convert a copy to 946 // double. Ah well, it's only a comment. 947 bool ignored; 948 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 949 &ignored); 950 OS << "(long double) " << APF.convertToDouble(); 951 } 952 break; 953 } 954 case MachineOperand::MO_Immediate: { 955 OS << Op.getImm(); 956 break; 957 } 958 case MachineOperand::MO_CImmediate: { 959 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 960 break; 961 } 962 case MachineOperand::MO_TargetIndex: { 963 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 964 // NOTE: Want this comment at start of line, don't emit with AddComment. 965 AP.OutStreamer->emitRawComment(OS.str()); 966 break; 967 } 968 case MachineOperand::MO_Register: 969 case MachineOperand::MO_FrameIndex: { 970 Register Reg; 971 Optional<StackOffset> Offset; 972 if (Op.isReg()) { 973 Reg = Op.getReg(); 974 } else { 975 const TargetFrameLowering *TFI = 976 AP.MF->getSubtarget().getFrameLowering(); 977 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 978 } 979 if (!Reg) { 980 // Suppress offset, it is not meaningful here. 981 OS << "undef"; 982 break; 983 } 984 // The second operand is only an offset if it's an immediate. 985 if (MI->isIndirectDebugValue()) 986 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 987 if (Offset) 988 OS << '['; 989 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 990 if (Offset) 991 OS << '+' << Offset->getFixed() << ']'; 992 break; 993 } 994 default: 995 llvm_unreachable("Unknown operand type"); 996 } 997 } 998 999 // NOTE: Want this comment at start of line, don't emit with AddComment. 1000 AP.OutStreamer->emitRawComment(OS.str()); 1001 return true; 1002 } 1003 1004 /// This method handles the target-independent form of DBG_LABEL, returning 1005 /// true if it was able to do so. A false return means the target will need 1006 /// to handle MI in EmitInstruction. 1007 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1008 if (MI->getNumOperands() != 1) 1009 return false; 1010 1011 SmallString<128> Str; 1012 raw_svector_ostream OS(Str); 1013 OS << "DEBUG_LABEL: "; 1014 1015 const DILabel *V = MI->getDebugLabel(); 1016 if (auto *SP = dyn_cast<DISubprogram>( 1017 V->getScope()->getNonLexicalBlockFileScope())) { 1018 StringRef Name = SP->getName(); 1019 if (!Name.empty()) 1020 OS << Name << ":"; 1021 } 1022 OS << V->getName(); 1023 1024 // NOTE: Want this comment at start of line, don't emit with AddComment. 1025 AP.OutStreamer->emitRawComment(OS.str()); 1026 return true; 1027 } 1028 1029 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1030 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1031 MF->getFunction().needsUnwindTableEntry()) 1032 return CFI_M_EH; 1033 1034 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1035 return CFI_M_Debug; 1036 1037 return CFI_M_None; 1038 } 1039 1040 bool AsmPrinter::needsSEHMoves() { 1041 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1042 } 1043 1044 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1045 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1046 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1047 ExceptionHandlingType != ExceptionHandling::ARM) 1048 return; 1049 1050 if (needsCFIMoves() == CFI_M_None) 1051 return; 1052 1053 // If there is no "real" instruction following this CFI instruction, skip 1054 // emitting it; it would be beyond the end of the function's FDE range. 1055 auto *MBB = MI.getParent(); 1056 auto I = std::next(MI.getIterator()); 1057 while (I != MBB->end() && I->isTransient()) 1058 ++I; 1059 if (I == MBB->instr_end() && 1060 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1061 return; 1062 1063 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1064 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1065 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1066 emitCFIInstruction(CFI); 1067 } 1068 1069 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1070 // The operands are the MCSymbol and the frame offset of the allocation. 1071 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1072 int FrameOffset = MI.getOperand(1).getImm(); 1073 1074 // Emit a symbol assignment. 1075 OutStreamer->emitAssignment(FrameAllocSym, 1076 MCConstantExpr::create(FrameOffset, OutContext)); 1077 } 1078 1079 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1080 /// given basic block. This can be used to capture more precise profile 1081 /// information. We use the last 3 bits (LSBs) to ecnode the following 1082 /// information: 1083 /// * (1): set if return block (ret or tail call). 1084 /// * (2): set if ends with a tail call. 1085 /// * (3): set if exception handling (EH) landing pad. 1086 /// The remaining bits are zero. 1087 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1088 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1089 return ((unsigned)MBB.isReturnBlock()) | 1090 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1091 (MBB.isEHPad() << 2); 1092 } 1093 1094 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1095 MCSection *BBAddrMapSection = 1096 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1097 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1098 1099 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1100 1101 OutStreamer->PushSection(); 1102 OutStreamer->SwitchSection(BBAddrMapSection); 1103 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1104 // Emit the total number of basic blocks in this function. 1105 OutStreamer->emitULEB128IntValue(MF.size()); 1106 // Emit BB Information for each basic block in the funciton. 1107 for (const MachineBasicBlock &MBB : MF) { 1108 const MCSymbol *MBBSymbol = 1109 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1110 // Emit the basic block offset. 1111 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1112 // Emit the basic block size. When BBs have alignments, their size cannot 1113 // always be computed from their offsets. 1114 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1115 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1116 } 1117 OutStreamer->PopSection(); 1118 } 1119 1120 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1121 auto GUID = MI.getOperand(0).getImm(); 1122 auto Index = MI.getOperand(1).getImm(); 1123 auto Type = MI.getOperand(2).getImm(); 1124 auto Attr = MI.getOperand(3).getImm(); 1125 DILocation *DebugLoc = MI.getDebugLoc(); 1126 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1127 } 1128 1129 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1130 if (!MF.getTarget().Options.EmitStackSizeSection) 1131 return; 1132 1133 MCSection *StackSizeSection = 1134 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1135 if (!StackSizeSection) 1136 return; 1137 1138 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1139 // Don't emit functions with dynamic stack allocations. 1140 if (FrameInfo.hasVarSizedObjects()) 1141 return; 1142 1143 OutStreamer->PushSection(); 1144 OutStreamer->SwitchSection(StackSizeSection); 1145 1146 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1147 uint64_t StackSize = FrameInfo.getStackSize(); 1148 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1149 OutStreamer->emitULEB128IntValue(StackSize); 1150 1151 OutStreamer->PopSection(); 1152 } 1153 1154 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1155 MachineModuleInfo &MMI = MF.getMMI(); 1156 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1157 return true; 1158 1159 // We might emit an EH table that uses function begin and end labels even if 1160 // we don't have any landingpads. 1161 if (!MF.getFunction().hasPersonalityFn()) 1162 return false; 1163 return !isNoOpWithoutInvoke( 1164 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1165 } 1166 1167 /// EmitFunctionBody - This method emits the body and trailer for a 1168 /// function. 1169 void AsmPrinter::emitFunctionBody() { 1170 emitFunctionHeader(); 1171 1172 // Emit target-specific gunk before the function body. 1173 emitFunctionBodyStart(); 1174 1175 if (isVerbose()) { 1176 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1177 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1178 if (!MDT) { 1179 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1180 OwnedMDT->getBase().recalculate(*MF); 1181 MDT = OwnedMDT.get(); 1182 } 1183 1184 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1185 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1186 if (!MLI) { 1187 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1188 OwnedMLI->getBase().analyze(MDT->getBase()); 1189 MLI = OwnedMLI.get(); 1190 } 1191 } 1192 1193 // Print out code for the function. 1194 bool HasAnyRealCode = false; 1195 int NumInstsInFunction = 0; 1196 1197 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1198 for (auto &MBB : *MF) { 1199 // Print a label for the basic block. 1200 emitBasicBlockStart(MBB); 1201 DenseMap<StringRef, unsigned> MnemonicCounts; 1202 for (auto &MI : MBB) { 1203 // Print the assembly for the instruction. 1204 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1205 !MI.isDebugInstr()) { 1206 HasAnyRealCode = true; 1207 ++NumInstsInFunction; 1208 } 1209 1210 // If there is a pre-instruction symbol, emit a label for it here. 1211 if (MCSymbol *S = MI.getPreInstrSymbol()) 1212 OutStreamer->emitLabel(S); 1213 1214 for (const HandlerInfo &HI : Handlers) { 1215 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1216 HI.TimerGroupDescription, TimePassesIsEnabled); 1217 HI.Handler->beginInstruction(&MI); 1218 } 1219 1220 if (isVerbose()) 1221 emitComments(MI, OutStreamer->GetCommentOS()); 1222 1223 switch (MI.getOpcode()) { 1224 case TargetOpcode::CFI_INSTRUCTION: 1225 emitCFIInstruction(MI); 1226 break; 1227 case TargetOpcode::LOCAL_ESCAPE: 1228 emitFrameAlloc(MI); 1229 break; 1230 case TargetOpcode::ANNOTATION_LABEL: 1231 case TargetOpcode::EH_LABEL: 1232 case TargetOpcode::GC_LABEL: 1233 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1234 break; 1235 case TargetOpcode::INLINEASM: 1236 case TargetOpcode::INLINEASM_BR: 1237 emitInlineAsm(&MI); 1238 break; 1239 case TargetOpcode::DBG_VALUE: 1240 case TargetOpcode::DBG_VALUE_LIST: 1241 if (isVerbose()) { 1242 if (!emitDebugValueComment(&MI, *this)) 1243 emitInstruction(&MI); 1244 } 1245 break; 1246 case TargetOpcode::DBG_INSTR_REF: 1247 // This instruction reference will have been resolved to a machine 1248 // location, and a nearby DBG_VALUE created. We can safely ignore 1249 // the instruction reference. 1250 break; 1251 case TargetOpcode::DBG_LABEL: 1252 if (isVerbose()) { 1253 if (!emitDebugLabelComment(&MI, *this)) 1254 emitInstruction(&MI); 1255 } 1256 break; 1257 case TargetOpcode::IMPLICIT_DEF: 1258 if (isVerbose()) emitImplicitDef(&MI); 1259 break; 1260 case TargetOpcode::KILL: 1261 if (isVerbose()) emitKill(&MI, *this); 1262 break; 1263 case TargetOpcode::PSEUDO_PROBE: 1264 emitPseudoProbe(MI); 1265 break; 1266 default: 1267 emitInstruction(&MI); 1268 if (CanDoExtraAnalysis) { 1269 MCInst MCI; 1270 MCI.setOpcode(MI.getOpcode()); 1271 auto Name = OutStreamer->getMnemonic(MCI); 1272 auto I = MnemonicCounts.insert({Name, 0u}); 1273 I.first->second++; 1274 } 1275 break; 1276 } 1277 1278 // If there is a post-instruction symbol, emit a label for it here. 1279 if (MCSymbol *S = MI.getPostInstrSymbol()) 1280 OutStreamer->emitLabel(S); 1281 1282 for (const HandlerInfo &HI : Handlers) { 1283 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1284 HI.TimerGroupDescription, TimePassesIsEnabled); 1285 HI.Handler->endInstruction(); 1286 } 1287 } 1288 1289 // We must emit temporary symbol for the end of this basic block, if either 1290 // we have BBLabels enabled or if this basic blocks marks the end of a 1291 // section (except the section containing the entry basic block as the end 1292 // symbol for that section is CurrentFnEnd). 1293 if (MF->hasBBLabels() || 1294 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1295 !MBB.sameSection(&MF->front()))) 1296 OutStreamer->emitLabel(MBB.getEndSymbol()); 1297 1298 if (MBB.isEndSection()) { 1299 // The size directive for the section containing the entry block is 1300 // handled separately by the function section. 1301 if (!MBB.sameSection(&MF->front())) { 1302 if (MAI->hasDotTypeDotSizeDirective()) { 1303 // Emit the size directive for the basic block section. 1304 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1305 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1306 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1307 OutContext); 1308 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1309 } 1310 MBBSectionRanges[MBB.getSectionIDNum()] = 1311 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1312 } 1313 } 1314 emitBasicBlockEnd(MBB); 1315 1316 if (CanDoExtraAnalysis) { 1317 // Skip empty blocks. 1318 if (MBB.empty()) 1319 continue; 1320 1321 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1322 MBB.begin()->getDebugLoc(), &MBB); 1323 1324 // Generate instruction mix remark. First, sort counts in descending order 1325 // by count and name. 1326 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1327 for (auto &KV : MnemonicCounts) 1328 MnemonicVec.emplace_back(KV.first, KV.second); 1329 1330 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1331 const std::pair<StringRef, unsigned> &B) { 1332 if (A.second > B.second) 1333 return true; 1334 if (A.second == B.second) 1335 return StringRef(A.first) < StringRef(B.first); 1336 return false; 1337 }); 1338 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1339 for (auto &KV : MnemonicVec) { 1340 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1341 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1342 } 1343 ORE->emit(R); 1344 } 1345 } 1346 1347 EmittedInsts += NumInstsInFunction; 1348 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1349 MF->getFunction().getSubprogram(), 1350 &MF->front()); 1351 R << ore::NV("NumInstructions", NumInstsInFunction) 1352 << " instructions in function"; 1353 ORE->emit(R); 1354 1355 // If the function is empty and the object file uses .subsections_via_symbols, 1356 // then we need to emit *something* to the function body to prevent the 1357 // labels from collapsing together. Just emit a noop. 1358 // Similarly, don't emit empty functions on Windows either. It can lead to 1359 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1360 // after linking, causing the kernel not to load the binary: 1361 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1362 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1363 const Triple &TT = TM.getTargetTriple(); 1364 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1365 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1366 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1367 1368 // Targets can opt-out of emitting the noop here by leaving the opcode 1369 // unspecified. 1370 if (Noop.getOpcode()) { 1371 OutStreamer->AddComment("avoids zero-length function"); 1372 emitNops(1); 1373 } 1374 } 1375 1376 // Switch to the original section in case basic block sections was used. 1377 OutStreamer->SwitchSection(MF->getSection()); 1378 1379 const Function &F = MF->getFunction(); 1380 for (const auto &BB : F) { 1381 if (!BB.hasAddressTaken()) 1382 continue; 1383 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1384 if (Sym->isDefined()) 1385 continue; 1386 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1387 OutStreamer->emitLabel(Sym); 1388 } 1389 1390 // Emit target-specific gunk after the function body. 1391 emitFunctionBodyEnd(); 1392 1393 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1394 MAI->hasDotTypeDotSizeDirective()) { 1395 // Create a symbol for the end of function. 1396 CurrentFnEnd = createTempSymbol("func_end"); 1397 OutStreamer->emitLabel(CurrentFnEnd); 1398 } 1399 1400 // If the target wants a .size directive for the size of the function, emit 1401 // it. 1402 if (MAI->hasDotTypeDotSizeDirective()) { 1403 // We can get the size as difference between the function label and the 1404 // temp label. 1405 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1406 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1407 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1408 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1409 } 1410 1411 for (const HandlerInfo &HI : Handlers) { 1412 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1413 HI.TimerGroupDescription, TimePassesIsEnabled); 1414 HI.Handler->markFunctionEnd(); 1415 } 1416 1417 MBBSectionRanges[MF->front().getSectionIDNum()] = 1418 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1419 1420 // Print out jump tables referenced by the function. 1421 emitJumpTableInfo(); 1422 1423 // Emit post-function debug and/or EH information. 1424 for (const HandlerInfo &HI : Handlers) { 1425 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1426 HI.TimerGroupDescription, TimePassesIsEnabled); 1427 HI.Handler->endFunction(MF); 1428 } 1429 1430 // Emit section containing BB address offsets and their metadata, when 1431 // BB labels are requested for this function. 1432 if (MF->hasBBLabels()) 1433 emitBBAddrMapSection(*MF); 1434 1435 // Emit section containing stack size metadata. 1436 emitStackSizeSection(*MF); 1437 1438 emitPatchableFunctionEntries(); 1439 1440 if (isVerbose()) 1441 OutStreamer->GetCommentOS() << "-- End function\n"; 1442 1443 OutStreamer->AddBlankLine(); 1444 } 1445 1446 /// Compute the number of Global Variables that uses a Constant. 1447 static unsigned getNumGlobalVariableUses(const Constant *C) { 1448 if (!C) 1449 return 0; 1450 1451 if (isa<GlobalVariable>(C)) 1452 return 1; 1453 1454 unsigned NumUses = 0; 1455 for (auto *CU : C->users()) 1456 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1457 1458 return NumUses; 1459 } 1460 1461 /// Only consider global GOT equivalents if at least one user is a 1462 /// cstexpr inside an initializer of another global variables. Also, don't 1463 /// handle cstexpr inside instructions. During global variable emission, 1464 /// candidates are skipped and are emitted later in case at least one cstexpr 1465 /// isn't replaced by a PC relative GOT entry access. 1466 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1467 unsigned &NumGOTEquivUsers) { 1468 // Global GOT equivalents are unnamed private globals with a constant 1469 // pointer initializer to another global symbol. They must point to a 1470 // GlobalVariable or Function, i.e., as GlobalValue. 1471 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1472 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1473 !isa<GlobalValue>(GV->getOperand(0))) 1474 return false; 1475 1476 // To be a got equivalent, at least one of its users need to be a constant 1477 // expression used by another global variable. 1478 for (auto *U : GV->users()) 1479 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1480 1481 return NumGOTEquivUsers > 0; 1482 } 1483 1484 /// Unnamed constant global variables solely contaning a pointer to 1485 /// another globals variable is equivalent to a GOT table entry; it contains the 1486 /// the address of another symbol. Optimize it and replace accesses to these 1487 /// "GOT equivalents" by using the GOT entry for the final global instead. 1488 /// Compute GOT equivalent candidates among all global variables to avoid 1489 /// emitting them if possible later on, after it use is replaced by a GOT entry 1490 /// access. 1491 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1492 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1493 return; 1494 1495 for (const auto &G : M.globals()) { 1496 unsigned NumGOTEquivUsers = 0; 1497 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1498 continue; 1499 1500 const MCSymbol *GOTEquivSym = getSymbol(&G); 1501 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1502 } 1503 } 1504 1505 /// Constant expressions using GOT equivalent globals may not be eligible 1506 /// for PC relative GOT entry conversion, in such cases we need to emit such 1507 /// globals we previously omitted in EmitGlobalVariable. 1508 void AsmPrinter::emitGlobalGOTEquivs() { 1509 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1510 return; 1511 1512 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1513 for (auto &I : GlobalGOTEquivs) { 1514 const GlobalVariable *GV = I.second.first; 1515 unsigned Cnt = I.second.second; 1516 if (Cnt) 1517 FailedCandidates.push_back(GV); 1518 } 1519 GlobalGOTEquivs.clear(); 1520 1521 for (auto *GV : FailedCandidates) 1522 emitGlobalVariable(GV); 1523 } 1524 1525 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1526 const GlobalIndirectSymbol& GIS) { 1527 MCSymbol *Name = getSymbol(&GIS); 1528 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1529 // Treat bitcasts of functions as functions also. This is important at least 1530 // on WebAssembly where object and function addresses can't alias each other. 1531 if (!IsFunction) 1532 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1533 if (CE->getOpcode() == Instruction::BitCast) 1534 IsFunction = 1535 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1536 1537 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1538 // so AIX has to use the extra-label-at-definition strategy. At this 1539 // point, all the extra label is emitted, we just have to emit linkage for 1540 // those labels. 1541 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1542 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1543 assert(MAI->hasVisibilityOnlyWithLinkage() && 1544 "Visibility should be handled with emitLinkage() on AIX."); 1545 emitLinkage(&GIS, Name); 1546 // If it's a function, also emit linkage for aliases of function entry 1547 // point. 1548 if (IsFunction) 1549 emitLinkage(&GIS, 1550 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1551 return; 1552 } 1553 1554 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1555 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1556 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1557 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1558 else 1559 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1560 1561 // Set the symbol type to function if the alias has a function type. 1562 // This affects codegen when the aliasee is not a function. 1563 if (IsFunction) 1564 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1565 ? MCSA_ELF_TypeIndFunction 1566 : MCSA_ELF_TypeFunction); 1567 1568 emitVisibility(Name, GIS.getVisibility()); 1569 1570 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1571 1572 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1573 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1574 1575 // Emit the directives as assignments aka .set: 1576 OutStreamer->emitAssignment(Name, Expr); 1577 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1578 if (LocalAlias != Name) 1579 OutStreamer->emitAssignment(LocalAlias, Expr); 1580 1581 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1582 // If the aliasee does not correspond to a symbol in the output, i.e. the 1583 // alias is not of an object or the aliased object is private, then set the 1584 // size of the alias symbol from the type of the alias. We don't do this in 1585 // other situations as the alias and aliasee having differing types but same 1586 // size may be intentional. 1587 const GlobalObject *BaseObject = GA->getBaseObject(); 1588 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1589 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1590 const DataLayout &DL = M.getDataLayout(); 1591 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1592 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1593 } 1594 } 1595 } 1596 1597 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1598 if (!RS.needsSection()) 1599 return; 1600 1601 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1602 1603 Optional<SmallString<128>> Filename; 1604 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1605 Filename = *FilenameRef; 1606 sys::fs::make_absolute(*Filename); 1607 assert(!Filename->empty() && "The filename can't be empty."); 1608 } 1609 1610 std::string Buf; 1611 raw_string_ostream OS(Buf); 1612 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1613 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1614 : RemarkSerializer.metaSerializer(OS); 1615 MetaSerializer->emit(); 1616 1617 // Switch to the remarks section. 1618 MCSection *RemarksSection = 1619 OutContext.getObjectFileInfo()->getRemarksSection(); 1620 OutStreamer->SwitchSection(RemarksSection); 1621 1622 OutStreamer->emitBinaryData(OS.str()); 1623 } 1624 1625 bool AsmPrinter::doFinalization(Module &M) { 1626 // Set the MachineFunction to nullptr so that we can catch attempted 1627 // accesses to MF specific features at the module level and so that 1628 // we can conditionalize accesses based on whether or not it is nullptr. 1629 MF = nullptr; 1630 1631 // Gather all GOT equivalent globals in the module. We really need two 1632 // passes over the globals: one to compute and another to avoid its emission 1633 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1634 // where the got equivalent shows up before its use. 1635 computeGlobalGOTEquivs(M); 1636 1637 // Emit global variables. 1638 for (const auto &G : M.globals()) 1639 emitGlobalVariable(&G); 1640 1641 // Emit remaining GOT equivalent globals. 1642 emitGlobalGOTEquivs(); 1643 1644 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1645 1646 // Emit linkage(XCOFF) and visibility info for declarations 1647 for (const Function &F : M) { 1648 if (!F.isDeclarationForLinker()) 1649 continue; 1650 1651 MCSymbol *Name = getSymbol(&F); 1652 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1653 1654 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1655 GlobalValue::VisibilityTypes V = F.getVisibility(); 1656 if (V == GlobalValue::DefaultVisibility) 1657 continue; 1658 1659 emitVisibility(Name, V, false); 1660 continue; 1661 } 1662 1663 if (F.isIntrinsic()) 1664 continue; 1665 1666 // Handle the XCOFF case. 1667 // Variable `Name` is the function descriptor symbol (see above). Get the 1668 // function entry point symbol. 1669 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1670 // Emit linkage for the function entry point. 1671 emitLinkage(&F, FnEntryPointSym); 1672 1673 // Emit linkage for the function descriptor. 1674 emitLinkage(&F, Name); 1675 } 1676 1677 // Emit the remarks section contents. 1678 // FIXME: Figure out when is the safest time to emit this section. It should 1679 // not come after debug info. 1680 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1681 emitRemarksSection(*RS); 1682 1683 TLOF.emitModuleMetadata(*OutStreamer, M); 1684 1685 if (TM.getTargetTriple().isOSBinFormatELF()) { 1686 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1687 1688 // Output stubs for external and common global variables. 1689 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1690 if (!Stubs.empty()) { 1691 OutStreamer->SwitchSection(TLOF.getDataSection()); 1692 const DataLayout &DL = M.getDataLayout(); 1693 1694 emitAlignment(Align(DL.getPointerSize())); 1695 for (const auto &Stub : Stubs) { 1696 OutStreamer->emitLabel(Stub.first); 1697 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1698 DL.getPointerSize()); 1699 } 1700 } 1701 } 1702 1703 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1704 MachineModuleInfoCOFF &MMICOFF = 1705 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1706 1707 // Output stubs for external and common global variables. 1708 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1709 if (!Stubs.empty()) { 1710 const DataLayout &DL = M.getDataLayout(); 1711 1712 for (const auto &Stub : Stubs) { 1713 SmallString<256> SectionName = StringRef(".rdata$"); 1714 SectionName += Stub.first->getName(); 1715 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1716 SectionName, 1717 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1718 COFF::IMAGE_SCN_LNK_COMDAT, 1719 SectionKind::getReadOnly(), Stub.first->getName(), 1720 COFF::IMAGE_COMDAT_SELECT_ANY)); 1721 emitAlignment(Align(DL.getPointerSize())); 1722 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1723 OutStreamer->emitLabel(Stub.first); 1724 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1725 DL.getPointerSize()); 1726 } 1727 } 1728 } 1729 1730 // Finalize debug and EH information. 1731 for (const HandlerInfo &HI : Handlers) { 1732 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1733 HI.TimerGroupDescription, TimePassesIsEnabled); 1734 HI.Handler->endModule(); 1735 } 1736 1737 // This deletes all the ephemeral handlers that AsmPrinter added, while 1738 // keeping all the user-added handlers alive until the AsmPrinter is 1739 // destroyed. 1740 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1741 DD = nullptr; 1742 1743 // If the target wants to know about weak references, print them all. 1744 if (MAI->getWeakRefDirective()) { 1745 // FIXME: This is not lazy, it would be nice to only print weak references 1746 // to stuff that is actually used. Note that doing so would require targets 1747 // to notice uses in operands (due to constant exprs etc). This should 1748 // happen with the MC stuff eventually. 1749 1750 // Print out module-level global objects here. 1751 for (const auto &GO : M.global_objects()) { 1752 if (!GO.hasExternalWeakLinkage()) 1753 continue; 1754 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1755 } 1756 } 1757 1758 // Print aliases in topological order, that is, for each alias a = b, 1759 // b must be printed before a. 1760 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1761 // such an order to generate correct TOC information. 1762 SmallVector<const GlobalAlias *, 16> AliasStack; 1763 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1764 for (const auto &Alias : M.aliases()) { 1765 for (const GlobalAlias *Cur = &Alias; Cur; 1766 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1767 if (!AliasVisited.insert(Cur).second) 1768 break; 1769 AliasStack.push_back(Cur); 1770 } 1771 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1772 emitGlobalIndirectSymbol(M, *AncestorAlias); 1773 AliasStack.clear(); 1774 } 1775 for (const auto &IFunc : M.ifuncs()) 1776 emitGlobalIndirectSymbol(M, IFunc); 1777 1778 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1779 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1780 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1781 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1782 MP->finishAssembly(M, *MI, *this); 1783 1784 // Emit llvm.ident metadata in an '.ident' directive. 1785 emitModuleIdents(M); 1786 1787 // Emit bytes for llvm.commandline metadata. 1788 emitModuleCommandLines(M); 1789 1790 // Emit __morestack address if needed for indirect calls. 1791 if (MMI->usesMorestackAddr()) { 1792 Align Alignment(1); 1793 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1794 getDataLayout(), SectionKind::getReadOnly(), 1795 /*C=*/nullptr, Alignment); 1796 OutStreamer->SwitchSection(ReadOnlySection); 1797 1798 MCSymbol *AddrSymbol = 1799 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1800 OutStreamer->emitLabel(AddrSymbol); 1801 1802 unsigned PtrSize = MAI->getCodePointerSize(); 1803 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1804 PtrSize); 1805 } 1806 1807 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1808 // split-stack is used. 1809 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1810 OutStreamer->SwitchSection( 1811 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1812 if (MMI->hasNosplitStack()) 1813 OutStreamer->SwitchSection( 1814 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1815 } 1816 1817 // If we don't have any trampolines, then we don't require stack memory 1818 // to be executable. Some targets have a directive to declare this. 1819 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1820 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1821 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1822 OutStreamer->SwitchSection(S); 1823 1824 if (TM.Options.EmitAddrsig) { 1825 // Emit address-significance attributes for all globals. 1826 OutStreamer->emitAddrsig(); 1827 for (const GlobalValue &GV : M.global_values()) 1828 if (!GV.use_empty() && !GV.isThreadLocal() && 1829 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1830 !GV.hasAtLeastLocalUnnamedAddr()) 1831 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1832 } 1833 1834 // Emit symbol partition specifications (ELF only). 1835 if (TM.getTargetTriple().isOSBinFormatELF()) { 1836 unsigned UniqueID = 0; 1837 for (const GlobalValue &GV : M.global_values()) { 1838 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1839 GV.getVisibility() != GlobalValue::DefaultVisibility) 1840 continue; 1841 1842 OutStreamer->SwitchSection( 1843 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1844 "", false, ++UniqueID, nullptr)); 1845 OutStreamer->emitBytes(GV.getPartition()); 1846 OutStreamer->emitZeros(1); 1847 OutStreamer->emitValue( 1848 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1849 MAI->getCodePointerSize()); 1850 } 1851 } 1852 1853 // Allow the target to emit any magic that it wants at the end of the file, 1854 // after everything else has gone out. 1855 emitEndOfAsmFile(M); 1856 1857 MMI = nullptr; 1858 1859 OutStreamer->Finish(); 1860 OutStreamer->reset(); 1861 OwnedMLI.reset(); 1862 OwnedMDT.reset(); 1863 1864 return false; 1865 } 1866 1867 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1868 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1869 if (Res.second) 1870 Res.first->second = createTempSymbol("exception"); 1871 return Res.first->second; 1872 } 1873 1874 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1875 this->MF = &MF; 1876 const Function &F = MF.getFunction(); 1877 1878 // Get the function symbol. 1879 if (!MAI->needsFunctionDescriptors()) { 1880 CurrentFnSym = getSymbol(&MF.getFunction()); 1881 } else { 1882 assert(TM.getTargetTriple().isOSAIX() && 1883 "Only AIX uses the function descriptor hooks."); 1884 // AIX is unique here in that the name of the symbol emitted for the 1885 // function body does not have the same name as the source function's 1886 // C-linkage name. 1887 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1888 " initalized first."); 1889 1890 // Get the function entry point symbol. 1891 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1892 } 1893 1894 CurrentFnSymForSize = CurrentFnSym; 1895 CurrentFnBegin = nullptr; 1896 CurrentSectionBeginSym = nullptr; 1897 MBBSectionRanges.clear(); 1898 MBBSectionExceptionSyms.clear(); 1899 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1900 if (F.hasFnAttribute("patchable-function-entry") || 1901 F.hasFnAttribute("function-instrument") || 1902 F.hasFnAttribute("xray-instruction-threshold") || 1903 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1904 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1905 CurrentFnBegin = createTempSymbol("func_begin"); 1906 if (NeedsLocalForSize) 1907 CurrentFnSymForSize = CurrentFnBegin; 1908 } 1909 1910 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1911 } 1912 1913 namespace { 1914 1915 // Keep track the alignment, constpool entries per Section. 1916 struct SectionCPs { 1917 MCSection *S; 1918 Align Alignment; 1919 SmallVector<unsigned, 4> CPEs; 1920 1921 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1922 }; 1923 1924 } // end anonymous namespace 1925 1926 /// EmitConstantPool - Print to the current output stream assembly 1927 /// representations of the constants in the constant pool MCP. This is 1928 /// used to print out constants which have been "spilled to memory" by 1929 /// the code generator. 1930 void AsmPrinter::emitConstantPool() { 1931 const MachineConstantPool *MCP = MF->getConstantPool(); 1932 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1933 if (CP.empty()) return; 1934 1935 // Calculate sections for constant pool entries. We collect entries to go into 1936 // the same section together to reduce amount of section switch statements. 1937 SmallVector<SectionCPs, 4> CPSections; 1938 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1939 const MachineConstantPoolEntry &CPE = CP[i]; 1940 Align Alignment = CPE.getAlign(); 1941 1942 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1943 1944 const Constant *C = nullptr; 1945 if (!CPE.isMachineConstantPoolEntry()) 1946 C = CPE.Val.ConstVal; 1947 1948 MCSection *S = getObjFileLowering().getSectionForConstant( 1949 getDataLayout(), Kind, C, Alignment); 1950 1951 // The number of sections are small, just do a linear search from the 1952 // last section to the first. 1953 bool Found = false; 1954 unsigned SecIdx = CPSections.size(); 1955 while (SecIdx != 0) { 1956 if (CPSections[--SecIdx].S == S) { 1957 Found = true; 1958 break; 1959 } 1960 } 1961 if (!Found) { 1962 SecIdx = CPSections.size(); 1963 CPSections.push_back(SectionCPs(S, Alignment)); 1964 } 1965 1966 if (Alignment > CPSections[SecIdx].Alignment) 1967 CPSections[SecIdx].Alignment = Alignment; 1968 CPSections[SecIdx].CPEs.push_back(i); 1969 } 1970 1971 // Now print stuff into the calculated sections. 1972 const MCSection *CurSection = nullptr; 1973 unsigned Offset = 0; 1974 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1975 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1976 unsigned CPI = CPSections[i].CPEs[j]; 1977 MCSymbol *Sym = GetCPISymbol(CPI); 1978 if (!Sym->isUndefined()) 1979 continue; 1980 1981 if (CurSection != CPSections[i].S) { 1982 OutStreamer->SwitchSection(CPSections[i].S); 1983 emitAlignment(Align(CPSections[i].Alignment)); 1984 CurSection = CPSections[i].S; 1985 Offset = 0; 1986 } 1987 1988 MachineConstantPoolEntry CPE = CP[CPI]; 1989 1990 // Emit inter-object padding for alignment. 1991 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1992 OutStreamer->emitZeros(NewOffset - Offset); 1993 1994 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 1995 1996 OutStreamer->emitLabel(Sym); 1997 if (CPE.isMachineConstantPoolEntry()) 1998 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1999 else 2000 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2001 } 2002 } 2003 } 2004 2005 // Print assembly representations of the jump tables used by the current 2006 // function. 2007 void AsmPrinter::emitJumpTableInfo() { 2008 const DataLayout &DL = MF->getDataLayout(); 2009 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2010 if (!MJTI) return; 2011 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2012 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2013 if (JT.empty()) return; 2014 2015 // Pick the directive to use to print the jump table entries, and switch to 2016 // the appropriate section. 2017 const Function &F = MF->getFunction(); 2018 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2019 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2020 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2021 F); 2022 if (JTInDiffSection) { 2023 // Drop it in the readonly section. 2024 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2025 OutStreamer->SwitchSection(ReadOnlySection); 2026 } 2027 2028 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2029 2030 // Jump tables in code sections are marked with a data_region directive 2031 // where that's supported. 2032 if (!JTInDiffSection) 2033 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2034 2035 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2036 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2037 2038 // If this jump table was deleted, ignore it. 2039 if (JTBBs.empty()) continue; 2040 2041 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2042 /// emit a .set directive for each unique entry. 2043 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2044 MAI->doesSetDirectiveSuppressReloc()) { 2045 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2046 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2047 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2048 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2049 const MachineBasicBlock *MBB = JTBBs[ii]; 2050 if (!EmittedSets.insert(MBB).second) 2051 continue; 2052 2053 // .set LJTSet, LBB32-base 2054 const MCExpr *LHS = 2055 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2056 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2057 MCBinaryExpr::createSub(LHS, Base, 2058 OutContext)); 2059 } 2060 } 2061 2062 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2063 // before each jump table. The first label is never referenced, but tells 2064 // the assembler and linker the extents of the jump table object. The 2065 // second label is actually referenced by the code. 2066 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2067 // FIXME: This doesn't have to have any specific name, just any randomly 2068 // named and numbered local label started with 'l' would work. Simplify 2069 // GetJTISymbol. 2070 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2071 2072 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2073 OutStreamer->emitLabel(JTISymbol); 2074 2075 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2076 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2077 } 2078 if (!JTInDiffSection) 2079 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2080 } 2081 2082 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2083 /// current stream. 2084 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2085 const MachineBasicBlock *MBB, 2086 unsigned UID) const { 2087 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2088 const MCExpr *Value = nullptr; 2089 switch (MJTI->getEntryKind()) { 2090 case MachineJumpTableInfo::EK_Inline: 2091 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2092 case MachineJumpTableInfo::EK_Custom32: 2093 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2094 MJTI, MBB, UID, OutContext); 2095 break; 2096 case MachineJumpTableInfo::EK_BlockAddress: 2097 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2098 // .word LBB123 2099 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2100 break; 2101 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2102 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2103 // with a relocation as gp-relative, e.g.: 2104 // .gprel32 LBB123 2105 MCSymbol *MBBSym = MBB->getSymbol(); 2106 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2107 return; 2108 } 2109 2110 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2111 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2112 // with a relocation as gp-relative, e.g.: 2113 // .gpdword LBB123 2114 MCSymbol *MBBSym = MBB->getSymbol(); 2115 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2116 return; 2117 } 2118 2119 case MachineJumpTableInfo::EK_LabelDifference32: { 2120 // Each entry is the address of the block minus the address of the jump 2121 // table. This is used for PIC jump tables where gprel32 is not supported. 2122 // e.g.: 2123 // .word LBB123 - LJTI1_2 2124 // If the .set directive avoids relocations, this is emitted as: 2125 // .set L4_5_set_123, LBB123 - LJTI1_2 2126 // .word L4_5_set_123 2127 if (MAI->doesSetDirectiveSuppressReloc()) { 2128 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2129 OutContext); 2130 break; 2131 } 2132 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2133 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2134 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2135 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2136 break; 2137 } 2138 } 2139 2140 assert(Value && "Unknown entry kind!"); 2141 2142 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2143 OutStreamer->emitValue(Value, EntrySize); 2144 } 2145 2146 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2147 /// special global used by LLVM. If so, emit it and return true, otherwise 2148 /// do nothing and return false. 2149 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2150 if (GV->getName() == "llvm.used") { 2151 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2152 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2153 return true; 2154 } 2155 2156 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2157 if (GV->getSection() == "llvm.metadata" || 2158 GV->hasAvailableExternallyLinkage()) 2159 return true; 2160 2161 if (!GV->hasAppendingLinkage()) return false; 2162 2163 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2164 2165 if (GV->getName() == "llvm.global_ctors") { 2166 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2167 /* isCtor */ true); 2168 2169 return true; 2170 } 2171 2172 if (GV->getName() == "llvm.global_dtors") { 2173 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2174 /* isCtor */ false); 2175 2176 return true; 2177 } 2178 2179 report_fatal_error("unknown special variable"); 2180 } 2181 2182 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2183 /// global in the specified llvm.used list. 2184 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2185 // Should be an array of 'i8*'. 2186 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2187 const GlobalValue *GV = 2188 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2189 if (GV) 2190 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2191 } 2192 } 2193 2194 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2195 const Constant *List, 2196 SmallVector<Structor, 8> &Structors) { 2197 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2198 // the init priority. 2199 if (!isa<ConstantArray>(List)) 2200 return; 2201 2202 // Gather the structors in a form that's convenient for sorting by priority. 2203 for (Value *O : cast<ConstantArray>(List)->operands()) { 2204 auto *CS = cast<ConstantStruct>(O); 2205 if (CS->getOperand(1)->isNullValue()) 2206 break; // Found a null terminator, skip the rest. 2207 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2208 if (!Priority) 2209 continue; // Malformed. 2210 Structors.push_back(Structor()); 2211 Structor &S = Structors.back(); 2212 S.Priority = Priority->getLimitedValue(65535); 2213 S.Func = CS->getOperand(1); 2214 if (!CS->getOperand(2)->isNullValue()) { 2215 if (TM.getTargetTriple().isOSAIX()) 2216 llvm::report_fatal_error( 2217 "associated data of XXStructor list is not yet supported on AIX"); 2218 S.ComdatKey = 2219 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2220 } 2221 } 2222 2223 // Emit the function pointers in the target-specific order 2224 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2225 return L.Priority < R.Priority; 2226 }); 2227 } 2228 2229 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2230 /// priority. 2231 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2232 bool IsCtor) { 2233 SmallVector<Structor, 8> Structors; 2234 preprocessXXStructorList(DL, List, Structors); 2235 if (Structors.empty()) 2236 return; 2237 2238 const Align Align = DL.getPointerPrefAlignment(); 2239 for (Structor &S : Structors) { 2240 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2241 const MCSymbol *KeySym = nullptr; 2242 if (GlobalValue *GV = S.ComdatKey) { 2243 if (GV->isDeclarationForLinker()) 2244 // If the associated variable is not defined in this module 2245 // (it might be available_externally, or have been an 2246 // available_externally definition that was dropped by the 2247 // EliminateAvailableExternally pass), some other TU 2248 // will provide its dynamic initializer. 2249 continue; 2250 2251 KeySym = getSymbol(GV); 2252 } 2253 2254 MCSection *OutputSection = 2255 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2256 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2257 OutStreamer->SwitchSection(OutputSection); 2258 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2259 emitAlignment(Align); 2260 emitXXStructor(DL, S.Func); 2261 } 2262 } 2263 2264 void AsmPrinter::emitModuleIdents(Module &M) { 2265 if (!MAI->hasIdentDirective()) 2266 return; 2267 2268 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2269 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2270 const MDNode *N = NMD->getOperand(i); 2271 assert(N->getNumOperands() == 1 && 2272 "llvm.ident metadata entry can have only one operand"); 2273 const MDString *S = cast<MDString>(N->getOperand(0)); 2274 OutStreamer->emitIdent(S->getString()); 2275 } 2276 } 2277 } 2278 2279 void AsmPrinter::emitModuleCommandLines(Module &M) { 2280 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2281 if (!CommandLine) 2282 return; 2283 2284 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2285 if (!NMD || !NMD->getNumOperands()) 2286 return; 2287 2288 OutStreamer->PushSection(); 2289 OutStreamer->SwitchSection(CommandLine); 2290 OutStreamer->emitZeros(1); 2291 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2292 const MDNode *N = NMD->getOperand(i); 2293 assert(N->getNumOperands() == 1 && 2294 "llvm.commandline metadata entry can have only one operand"); 2295 const MDString *S = cast<MDString>(N->getOperand(0)); 2296 OutStreamer->emitBytes(S->getString()); 2297 OutStreamer->emitZeros(1); 2298 } 2299 OutStreamer->PopSection(); 2300 } 2301 2302 //===--------------------------------------------------------------------===// 2303 // Emission and print routines 2304 // 2305 2306 /// Emit a byte directive and value. 2307 /// 2308 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2309 2310 /// Emit a short directive and value. 2311 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2312 2313 /// Emit a long directive and value. 2314 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2315 2316 /// Emit a long long directive and value. 2317 void AsmPrinter::emitInt64(uint64_t Value) const { 2318 OutStreamer->emitInt64(Value); 2319 } 2320 2321 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2322 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2323 /// .set if it avoids relocations. 2324 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2325 unsigned Size) const { 2326 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2327 } 2328 2329 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2330 /// where the size in bytes of the directive is specified by Size and Label 2331 /// specifies the label. This implicitly uses .set if it is available. 2332 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2333 unsigned Size, 2334 bool IsSectionRelative) const { 2335 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2336 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2337 if (Size > 4) 2338 OutStreamer->emitZeros(Size - 4); 2339 return; 2340 } 2341 2342 // Emit Label+Offset (or just Label if Offset is zero) 2343 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2344 if (Offset) 2345 Expr = MCBinaryExpr::createAdd( 2346 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2347 2348 OutStreamer->emitValue(Expr, Size); 2349 } 2350 2351 //===----------------------------------------------------------------------===// 2352 2353 // EmitAlignment - Emit an alignment directive to the specified power of 2354 // two boundary. If a global value is specified, and if that global has 2355 // an explicit alignment requested, it will override the alignment request 2356 // if required for correctness. 2357 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2358 if (GV) 2359 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2360 2361 if (Alignment == Align(1)) 2362 return; // 1-byte aligned: no need to emit alignment. 2363 2364 if (getCurrentSection()->getKind().isText()) 2365 OutStreamer->emitCodeAlignment(Alignment.value()); 2366 else 2367 OutStreamer->emitValueToAlignment(Alignment.value()); 2368 } 2369 2370 //===----------------------------------------------------------------------===// 2371 // Constant emission. 2372 //===----------------------------------------------------------------------===// 2373 2374 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2375 MCContext &Ctx = OutContext; 2376 2377 if (CV->isNullValue() || isa<UndefValue>(CV)) 2378 return MCConstantExpr::create(0, Ctx); 2379 2380 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2381 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2382 2383 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2384 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2385 2386 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2387 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2388 2389 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2390 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2391 2392 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2393 if (!CE) { 2394 llvm_unreachable("Unknown constant value to lower!"); 2395 } 2396 2397 switch (CE->getOpcode()) { 2398 case Instruction::AddrSpaceCast: { 2399 const Constant *Op = CE->getOperand(0); 2400 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2401 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2402 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2403 return lowerConstant(Op); 2404 2405 // Fallthrough to error. 2406 LLVM_FALLTHROUGH; 2407 } 2408 default: { 2409 // If the code isn't optimized, there may be outstanding folding 2410 // opportunities. Attempt to fold the expression using DataLayout as a 2411 // last resort before giving up. 2412 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2413 if (C != CE) 2414 return lowerConstant(C); 2415 2416 // Otherwise report the problem to the user. 2417 std::string S; 2418 raw_string_ostream OS(S); 2419 OS << "Unsupported expression in static initializer: "; 2420 CE->printAsOperand(OS, /*PrintType=*/false, 2421 !MF ? nullptr : MF->getFunction().getParent()); 2422 report_fatal_error(OS.str()); 2423 } 2424 case Instruction::GetElementPtr: { 2425 // Generate a symbolic expression for the byte address 2426 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2427 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2428 2429 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2430 if (!OffsetAI) 2431 return Base; 2432 2433 int64_t Offset = OffsetAI.getSExtValue(); 2434 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2435 Ctx); 2436 } 2437 2438 case Instruction::Trunc: 2439 // We emit the value and depend on the assembler to truncate the generated 2440 // expression properly. This is important for differences between 2441 // blockaddress labels. Since the two labels are in the same function, it 2442 // is reasonable to treat their delta as a 32-bit value. 2443 LLVM_FALLTHROUGH; 2444 case Instruction::BitCast: 2445 return lowerConstant(CE->getOperand(0)); 2446 2447 case Instruction::IntToPtr: { 2448 const DataLayout &DL = getDataLayout(); 2449 2450 // Handle casts to pointers by changing them into casts to the appropriate 2451 // integer type. This promotes constant folding and simplifies this code. 2452 Constant *Op = CE->getOperand(0); 2453 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2454 false/*ZExt*/); 2455 return lowerConstant(Op); 2456 } 2457 2458 case Instruction::PtrToInt: { 2459 const DataLayout &DL = getDataLayout(); 2460 2461 // Support only foldable casts to/from pointers that can be eliminated by 2462 // changing the pointer to the appropriately sized integer type. 2463 Constant *Op = CE->getOperand(0); 2464 Type *Ty = CE->getType(); 2465 2466 const MCExpr *OpExpr = lowerConstant(Op); 2467 2468 // We can emit the pointer value into this slot if the slot is an 2469 // integer slot equal to the size of the pointer. 2470 // 2471 // If the pointer is larger than the resultant integer, then 2472 // as with Trunc just depend on the assembler to truncate it. 2473 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2474 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2475 return OpExpr; 2476 2477 // Otherwise the pointer is smaller than the resultant integer, mask off 2478 // the high bits so we are sure to get a proper truncation if the input is 2479 // a constant expr. 2480 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2481 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2482 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2483 } 2484 2485 case Instruction::Sub: { 2486 GlobalValue *LHSGV; 2487 APInt LHSOffset; 2488 DSOLocalEquivalent *DSOEquiv; 2489 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2490 getDataLayout(), &DSOEquiv)) { 2491 GlobalValue *RHSGV; 2492 APInt RHSOffset; 2493 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2494 getDataLayout())) { 2495 const MCExpr *RelocExpr = 2496 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2497 if (!RelocExpr) { 2498 const MCExpr *LHSExpr = 2499 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2500 if (DSOEquiv && 2501 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2502 LHSExpr = 2503 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2504 RelocExpr = MCBinaryExpr::createSub( 2505 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2506 } 2507 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2508 if (Addend != 0) 2509 RelocExpr = MCBinaryExpr::createAdd( 2510 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2511 return RelocExpr; 2512 } 2513 } 2514 } 2515 // else fallthrough 2516 LLVM_FALLTHROUGH; 2517 2518 // The MC library also has a right-shift operator, but it isn't consistently 2519 // signed or unsigned between different targets. 2520 case Instruction::Add: 2521 case Instruction::Mul: 2522 case Instruction::SDiv: 2523 case Instruction::SRem: 2524 case Instruction::Shl: 2525 case Instruction::And: 2526 case Instruction::Or: 2527 case Instruction::Xor: { 2528 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2529 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2530 switch (CE->getOpcode()) { 2531 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2532 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2533 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2534 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2535 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2536 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2537 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2538 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2539 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2540 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2541 } 2542 } 2543 } 2544 } 2545 2546 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2547 AsmPrinter &AP, 2548 const Constant *BaseCV = nullptr, 2549 uint64_t Offset = 0); 2550 2551 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2552 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2553 2554 /// isRepeatedByteSequence - Determine whether the given value is 2555 /// composed of a repeated sequence of identical bytes and return the 2556 /// byte value. If it is not a repeated sequence, return -1. 2557 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2558 StringRef Data = V->getRawDataValues(); 2559 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2560 char C = Data[0]; 2561 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2562 if (Data[i] != C) return -1; 2563 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2564 } 2565 2566 /// isRepeatedByteSequence - Determine whether the given value is 2567 /// composed of a repeated sequence of identical bytes and return the 2568 /// byte value. If it is not a repeated sequence, return -1. 2569 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2570 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2571 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2572 assert(Size % 8 == 0); 2573 2574 // Extend the element to take zero padding into account. 2575 APInt Value = CI->getValue().zextOrSelf(Size); 2576 if (!Value.isSplat(8)) 2577 return -1; 2578 2579 return Value.zextOrTrunc(8).getZExtValue(); 2580 } 2581 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2582 // Make sure all array elements are sequences of the same repeated 2583 // byte. 2584 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2585 Constant *Op0 = CA->getOperand(0); 2586 int Byte = isRepeatedByteSequence(Op0, DL); 2587 if (Byte == -1) 2588 return -1; 2589 2590 // All array elements must be equal. 2591 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2592 if (CA->getOperand(i) != Op0) 2593 return -1; 2594 return Byte; 2595 } 2596 2597 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2598 return isRepeatedByteSequence(CDS); 2599 2600 return -1; 2601 } 2602 2603 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2604 const ConstantDataSequential *CDS, 2605 AsmPrinter &AP) { 2606 // See if we can aggregate this into a .fill, if so, emit it as such. 2607 int Value = isRepeatedByteSequence(CDS, DL); 2608 if (Value != -1) { 2609 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2610 // Don't emit a 1-byte object as a .fill. 2611 if (Bytes > 1) 2612 return AP.OutStreamer->emitFill(Bytes, Value); 2613 } 2614 2615 // If this can be emitted with .ascii/.asciz, emit it as such. 2616 if (CDS->isString()) 2617 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2618 2619 // Otherwise, emit the values in successive locations. 2620 unsigned ElementByteSize = CDS->getElementByteSize(); 2621 if (isa<IntegerType>(CDS->getElementType())) { 2622 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2623 if (AP.isVerbose()) 2624 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2625 CDS->getElementAsInteger(i)); 2626 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2627 ElementByteSize); 2628 } 2629 } else { 2630 Type *ET = CDS->getElementType(); 2631 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2632 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2633 } 2634 2635 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2636 unsigned EmittedSize = 2637 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2638 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2639 if (unsigned Padding = Size - EmittedSize) 2640 AP.OutStreamer->emitZeros(Padding); 2641 } 2642 2643 static void emitGlobalConstantArray(const DataLayout &DL, 2644 const ConstantArray *CA, AsmPrinter &AP, 2645 const Constant *BaseCV, uint64_t Offset) { 2646 // See if we can aggregate some values. Make sure it can be 2647 // represented as a series of bytes of the constant value. 2648 int Value = isRepeatedByteSequence(CA, DL); 2649 2650 if (Value != -1) { 2651 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2652 AP.OutStreamer->emitFill(Bytes, Value); 2653 } 2654 else { 2655 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2656 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2657 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2658 } 2659 } 2660 } 2661 2662 static void emitGlobalConstantVector(const DataLayout &DL, 2663 const ConstantVector *CV, AsmPrinter &AP) { 2664 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2665 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2666 2667 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2668 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2669 CV->getType()->getNumElements(); 2670 if (unsigned Padding = Size - EmittedSize) 2671 AP.OutStreamer->emitZeros(Padding); 2672 } 2673 2674 static void emitGlobalConstantStruct(const DataLayout &DL, 2675 const ConstantStruct *CS, AsmPrinter &AP, 2676 const Constant *BaseCV, uint64_t Offset) { 2677 // Print the fields in successive locations. Pad to align if needed! 2678 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2679 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2680 uint64_t SizeSoFar = 0; 2681 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2682 const Constant *Field = CS->getOperand(i); 2683 2684 // Print the actual field value. 2685 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2686 2687 // Check if padding is needed and insert one or more 0s. 2688 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2689 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2690 - Layout->getElementOffset(i)) - FieldSize; 2691 SizeSoFar += FieldSize + PadSize; 2692 2693 // Insert padding - this may include padding to increase the size of the 2694 // current field up to the ABI size (if the struct is not packed) as well 2695 // as padding to ensure that the next field starts at the right offset. 2696 AP.OutStreamer->emitZeros(PadSize); 2697 } 2698 assert(SizeSoFar == Layout->getSizeInBytes() && 2699 "Layout of constant struct may be incorrect!"); 2700 } 2701 2702 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2703 assert(ET && "Unknown float type"); 2704 APInt API = APF.bitcastToAPInt(); 2705 2706 // First print a comment with what we think the original floating-point value 2707 // should have been. 2708 if (AP.isVerbose()) { 2709 SmallString<8> StrVal; 2710 APF.toString(StrVal); 2711 ET->print(AP.OutStreamer->GetCommentOS()); 2712 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2713 } 2714 2715 // Now iterate through the APInt chunks, emitting them in endian-correct 2716 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2717 // floats). 2718 unsigned NumBytes = API.getBitWidth() / 8; 2719 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2720 const uint64_t *p = API.getRawData(); 2721 2722 // PPC's long double has odd notions of endianness compared to how LLVM 2723 // handles it: p[0] goes first for *big* endian on PPC. 2724 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2725 int Chunk = API.getNumWords() - 1; 2726 2727 if (TrailingBytes) 2728 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2729 2730 for (; Chunk >= 0; --Chunk) 2731 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2732 } else { 2733 unsigned Chunk; 2734 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2735 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2736 2737 if (TrailingBytes) 2738 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2739 } 2740 2741 // Emit the tail padding for the long double. 2742 const DataLayout &DL = AP.getDataLayout(); 2743 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2744 } 2745 2746 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2747 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2748 } 2749 2750 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2751 const DataLayout &DL = AP.getDataLayout(); 2752 unsigned BitWidth = CI->getBitWidth(); 2753 2754 // Copy the value as we may massage the layout for constants whose bit width 2755 // is not a multiple of 64-bits. 2756 APInt Realigned(CI->getValue()); 2757 uint64_t ExtraBits = 0; 2758 unsigned ExtraBitsSize = BitWidth & 63; 2759 2760 if (ExtraBitsSize) { 2761 // The bit width of the data is not a multiple of 64-bits. 2762 // The extra bits are expected to be at the end of the chunk of the memory. 2763 // Little endian: 2764 // * Nothing to be done, just record the extra bits to emit. 2765 // Big endian: 2766 // * Record the extra bits to emit. 2767 // * Realign the raw data to emit the chunks of 64-bits. 2768 if (DL.isBigEndian()) { 2769 // Basically the structure of the raw data is a chunk of 64-bits cells: 2770 // 0 1 BitWidth / 64 2771 // [chunk1][chunk2] ... [chunkN]. 2772 // The most significant chunk is chunkN and it should be emitted first. 2773 // However, due to the alignment issue chunkN contains useless bits. 2774 // Realign the chunks so that they contain only useful information: 2775 // ExtraBits 0 1 (BitWidth / 64) - 1 2776 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2777 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2778 ExtraBits = Realigned.getRawData()[0] & 2779 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2780 Realigned.lshrInPlace(ExtraBitsSize); 2781 } else 2782 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2783 } 2784 2785 // We don't expect assemblers to support integer data directives 2786 // for more than 64 bits, so we emit the data in at most 64-bit 2787 // quantities at a time. 2788 const uint64_t *RawData = Realigned.getRawData(); 2789 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2790 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2791 AP.OutStreamer->emitIntValue(Val, 8); 2792 } 2793 2794 if (ExtraBitsSize) { 2795 // Emit the extra bits after the 64-bits chunks. 2796 2797 // Emit a directive that fills the expected size. 2798 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2799 Size -= (BitWidth / 64) * 8; 2800 assert(Size && Size * 8 >= ExtraBitsSize && 2801 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2802 == ExtraBits && "Directive too small for extra bits."); 2803 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2804 } 2805 } 2806 2807 /// Transform a not absolute MCExpr containing a reference to a GOT 2808 /// equivalent global, by a target specific GOT pc relative access to the 2809 /// final symbol. 2810 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2811 const Constant *BaseCst, 2812 uint64_t Offset) { 2813 // The global @foo below illustrates a global that uses a got equivalent. 2814 // 2815 // @bar = global i32 42 2816 // @gotequiv = private unnamed_addr constant i32* @bar 2817 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2818 // i64 ptrtoint (i32* @foo to i64)) 2819 // to i32) 2820 // 2821 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2822 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2823 // form: 2824 // 2825 // foo = cstexpr, where 2826 // cstexpr := <gotequiv> - "." + <cst> 2827 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2828 // 2829 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2830 // 2831 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2832 // gotpcrelcst := <offset from @foo base> + <cst> 2833 MCValue MV; 2834 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2835 return; 2836 const MCSymbolRefExpr *SymA = MV.getSymA(); 2837 if (!SymA) 2838 return; 2839 2840 // Check that GOT equivalent symbol is cached. 2841 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2842 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2843 return; 2844 2845 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2846 if (!BaseGV) 2847 return; 2848 2849 // Check for a valid base symbol 2850 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2851 const MCSymbolRefExpr *SymB = MV.getSymB(); 2852 2853 if (!SymB || BaseSym != &SymB->getSymbol()) 2854 return; 2855 2856 // Make sure to match: 2857 // 2858 // gotpcrelcst := <offset from @foo base> + <cst> 2859 // 2860 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2861 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2862 // if the target knows how to encode it. 2863 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2864 if (GOTPCRelCst < 0) 2865 return; 2866 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2867 return; 2868 2869 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2870 // 2871 // bar: 2872 // .long 42 2873 // gotequiv: 2874 // .quad bar 2875 // foo: 2876 // .long gotequiv - "." + <cst> 2877 // 2878 // is replaced by the target specific equivalent to: 2879 // 2880 // bar: 2881 // .long 42 2882 // foo: 2883 // .long bar@GOTPCREL+<gotpcrelcst> 2884 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2885 const GlobalVariable *GV = Result.first; 2886 int NumUses = (int)Result.second; 2887 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2888 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2889 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2890 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2891 2892 // Update GOT equivalent usage information 2893 --NumUses; 2894 if (NumUses >= 0) 2895 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2896 } 2897 2898 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2899 AsmPrinter &AP, const Constant *BaseCV, 2900 uint64_t Offset) { 2901 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2902 2903 // Globals with sub-elements such as combinations of arrays and structs 2904 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2905 // constant symbol base and the current position with BaseCV and Offset. 2906 if (!BaseCV && CV->hasOneUse()) 2907 BaseCV = dyn_cast<Constant>(CV->user_back()); 2908 2909 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2910 return AP.OutStreamer->emitZeros(Size); 2911 2912 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2913 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2914 2915 if (StoreSize <= 8) { 2916 if (AP.isVerbose()) 2917 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2918 CI->getZExtValue()); 2919 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2920 } else { 2921 emitGlobalConstantLargeInt(CI, AP); 2922 } 2923 2924 // Emit tail padding if needed 2925 if (Size != StoreSize) 2926 AP.OutStreamer->emitZeros(Size - StoreSize); 2927 2928 return; 2929 } 2930 2931 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2932 return emitGlobalConstantFP(CFP, AP); 2933 2934 if (isa<ConstantPointerNull>(CV)) { 2935 AP.OutStreamer->emitIntValue(0, Size); 2936 return; 2937 } 2938 2939 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2940 return emitGlobalConstantDataSequential(DL, CDS, AP); 2941 2942 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2943 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2944 2945 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2946 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2947 2948 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2949 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2950 // vectors). 2951 if (CE->getOpcode() == Instruction::BitCast) 2952 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2953 2954 if (Size > 8) { 2955 // If the constant expression's size is greater than 64-bits, then we have 2956 // to emit the value in chunks. Try to constant fold the value and emit it 2957 // that way. 2958 Constant *New = ConstantFoldConstant(CE, DL); 2959 if (New != CE) 2960 return emitGlobalConstantImpl(DL, New, AP); 2961 } 2962 } 2963 2964 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2965 return emitGlobalConstantVector(DL, V, AP); 2966 2967 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2968 // thread the streamer with EmitValue. 2969 const MCExpr *ME = AP.lowerConstant(CV); 2970 2971 // Since lowerConstant already folded and got rid of all IR pointer and 2972 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2973 // directly. 2974 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2975 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2976 2977 AP.OutStreamer->emitValue(ME, Size); 2978 } 2979 2980 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2981 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2982 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2983 if (Size) 2984 emitGlobalConstantImpl(DL, CV, *this); 2985 else if (MAI->hasSubsectionsViaSymbols()) { 2986 // If the global has zero size, emit a single byte so that two labels don't 2987 // look like they are at the same location. 2988 OutStreamer->emitIntValue(0, 1); 2989 } 2990 } 2991 2992 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2993 // Target doesn't support this yet! 2994 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2995 } 2996 2997 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2998 if (Offset > 0) 2999 OS << '+' << Offset; 3000 else if (Offset < 0) 3001 OS << Offset; 3002 } 3003 3004 void AsmPrinter::emitNops(unsigned N) { 3005 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3006 for (; N; --N) 3007 EmitToStreamer(*OutStreamer, Nop); 3008 } 3009 3010 //===----------------------------------------------------------------------===// 3011 // Symbol Lowering Routines. 3012 //===----------------------------------------------------------------------===// 3013 3014 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3015 return OutContext.createTempSymbol(Name, true); 3016 } 3017 3018 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3019 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3020 } 3021 3022 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3023 return MMI->getAddrLabelSymbol(BB); 3024 } 3025 3026 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3027 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3028 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3029 const MachineConstantPoolEntry &CPE = 3030 MF->getConstantPool()->getConstants()[CPID]; 3031 if (!CPE.isMachineConstantPoolEntry()) { 3032 const DataLayout &DL = MF->getDataLayout(); 3033 SectionKind Kind = CPE.getSectionKind(&DL); 3034 const Constant *C = CPE.Val.ConstVal; 3035 Align Alignment = CPE.Alignment; 3036 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3037 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3038 Alignment))) { 3039 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3040 if (Sym->isUndefined()) 3041 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3042 return Sym; 3043 } 3044 } 3045 } 3046 } 3047 3048 const DataLayout &DL = getDataLayout(); 3049 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3050 "CPI" + Twine(getFunctionNumber()) + "_" + 3051 Twine(CPID)); 3052 } 3053 3054 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3055 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3056 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3057 } 3058 3059 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3060 /// FIXME: privatize to AsmPrinter. 3061 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3062 const DataLayout &DL = getDataLayout(); 3063 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3064 Twine(getFunctionNumber()) + "_" + 3065 Twine(UID) + "_set_" + Twine(MBBID)); 3066 } 3067 3068 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3069 StringRef Suffix) const { 3070 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3071 } 3072 3073 /// Return the MCSymbol for the specified ExternalSymbol. 3074 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3075 SmallString<60> NameStr; 3076 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3077 return OutContext.getOrCreateSymbol(NameStr); 3078 } 3079 3080 /// PrintParentLoopComment - Print comments about parent loops of this one. 3081 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3082 unsigned FunctionNumber) { 3083 if (!Loop) return; 3084 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3085 OS.indent(Loop->getLoopDepth()*2) 3086 << "Parent Loop BB" << FunctionNumber << "_" 3087 << Loop->getHeader()->getNumber() 3088 << " Depth=" << Loop->getLoopDepth() << '\n'; 3089 } 3090 3091 /// PrintChildLoopComment - Print comments about child loops within 3092 /// the loop for this basic block, with nesting. 3093 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3094 unsigned FunctionNumber) { 3095 // Add child loop information 3096 for (const MachineLoop *CL : *Loop) { 3097 OS.indent(CL->getLoopDepth()*2) 3098 << "Child Loop BB" << FunctionNumber << "_" 3099 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3100 << '\n'; 3101 PrintChildLoopComment(OS, CL, FunctionNumber); 3102 } 3103 } 3104 3105 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3106 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3107 const MachineLoopInfo *LI, 3108 const AsmPrinter &AP) { 3109 // Add loop depth information 3110 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3111 if (!Loop) return; 3112 3113 MachineBasicBlock *Header = Loop->getHeader(); 3114 assert(Header && "No header for loop"); 3115 3116 // If this block is not a loop header, just print out what is the loop header 3117 // and return. 3118 if (Header != &MBB) { 3119 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3120 Twine(AP.getFunctionNumber())+"_" + 3121 Twine(Loop->getHeader()->getNumber())+ 3122 " Depth="+Twine(Loop->getLoopDepth())); 3123 return; 3124 } 3125 3126 // Otherwise, it is a loop header. Print out information about child and 3127 // parent loops. 3128 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3129 3130 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3131 3132 OS << "=>"; 3133 OS.indent(Loop->getLoopDepth()*2-2); 3134 3135 OS << "This "; 3136 if (Loop->isInnermost()) 3137 OS << "Inner "; 3138 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3139 3140 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3141 } 3142 3143 /// emitBasicBlockStart - This method prints the label for the specified 3144 /// MachineBasicBlock, an alignment (if present) and a comment describing 3145 /// it if appropriate. 3146 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3147 // End the previous funclet and start a new one. 3148 if (MBB.isEHFuncletEntry()) { 3149 for (const HandlerInfo &HI : Handlers) { 3150 HI.Handler->endFunclet(); 3151 HI.Handler->beginFunclet(MBB); 3152 } 3153 } 3154 3155 // Emit an alignment directive for this block, if needed. 3156 const Align Alignment = MBB.getAlignment(); 3157 if (Alignment != Align(1)) 3158 emitAlignment(Alignment); 3159 3160 // Switch to a new section if this basic block must begin a section. The 3161 // entry block is always placed in the function section and is handled 3162 // separately. 3163 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3164 OutStreamer->SwitchSection( 3165 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3166 MBB, TM)); 3167 CurrentSectionBeginSym = MBB.getSymbol(); 3168 } 3169 3170 // If the block has its address taken, emit any labels that were used to 3171 // reference the block. It is possible that there is more than one label 3172 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3173 // the references were generated. 3174 if (MBB.hasAddressTaken()) { 3175 const BasicBlock *BB = MBB.getBasicBlock(); 3176 if (isVerbose()) 3177 OutStreamer->AddComment("Block address taken"); 3178 3179 // MBBs can have their address taken as part of CodeGen without having 3180 // their corresponding BB's address taken in IR 3181 if (BB->hasAddressTaken()) 3182 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3183 OutStreamer->emitLabel(Sym); 3184 } 3185 3186 // Print some verbose block comments. 3187 if (isVerbose()) { 3188 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3189 if (BB->hasName()) { 3190 BB->printAsOperand(OutStreamer->GetCommentOS(), 3191 /*PrintType=*/false, BB->getModule()); 3192 OutStreamer->GetCommentOS() << '\n'; 3193 } 3194 } 3195 3196 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3197 emitBasicBlockLoopComments(MBB, MLI, *this); 3198 } 3199 3200 // Print the main label for the block. 3201 if (shouldEmitLabelForBasicBlock(MBB)) { 3202 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3203 OutStreamer->AddComment("Label of block must be emitted"); 3204 OutStreamer->emitLabel(MBB.getSymbol()); 3205 } else { 3206 if (isVerbose()) { 3207 // NOTE: Want this comment at start of line, don't emit with AddComment. 3208 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3209 false); 3210 } 3211 } 3212 3213 if (MBB.isEHCatchretTarget() && 3214 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3215 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3216 } 3217 3218 // With BB sections, each basic block must handle CFI information on its own 3219 // if it begins a section (Entry block is handled separately by 3220 // AsmPrinterHandler::beginFunction). 3221 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3222 for (const HandlerInfo &HI : Handlers) 3223 HI.Handler->beginBasicBlock(MBB); 3224 } 3225 3226 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3227 // Check if CFI information needs to be updated for this MBB with basic block 3228 // sections. 3229 if (MBB.isEndSection()) 3230 for (const HandlerInfo &HI : Handlers) 3231 HI.Handler->endBasicBlock(MBB); 3232 } 3233 3234 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3235 bool IsDefinition) const { 3236 MCSymbolAttr Attr = MCSA_Invalid; 3237 3238 switch (Visibility) { 3239 default: break; 3240 case GlobalValue::HiddenVisibility: 3241 if (IsDefinition) 3242 Attr = MAI->getHiddenVisibilityAttr(); 3243 else 3244 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3245 break; 3246 case GlobalValue::ProtectedVisibility: 3247 Attr = MAI->getProtectedVisibilityAttr(); 3248 break; 3249 } 3250 3251 if (Attr != MCSA_Invalid) 3252 OutStreamer->emitSymbolAttribute(Sym, Attr); 3253 } 3254 3255 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3256 const MachineBasicBlock &MBB) const { 3257 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3258 // in the labels mode (option `=labels`) and every section beginning in the 3259 // sections mode (`=all` and `=list=`). 3260 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3261 return true; 3262 // A label is needed for any block with at least one predecessor (when that 3263 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3264 // entry, or if a label is forced). 3265 return !MBB.pred_empty() && 3266 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3267 MBB.hasLabelMustBeEmitted()); 3268 } 3269 3270 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3271 /// exactly one predecessor and the control transfer mechanism between 3272 /// the predecessor and this block is a fall-through. 3273 bool AsmPrinter:: 3274 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3275 // If this is a landing pad, it isn't a fall through. If it has no preds, 3276 // then nothing falls through to it. 3277 if (MBB->isEHPad() || MBB->pred_empty()) 3278 return false; 3279 3280 // If there isn't exactly one predecessor, it can't be a fall through. 3281 if (MBB->pred_size() > 1) 3282 return false; 3283 3284 // The predecessor has to be immediately before this block. 3285 MachineBasicBlock *Pred = *MBB->pred_begin(); 3286 if (!Pred->isLayoutSuccessor(MBB)) 3287 return false; 3288 3289 // If the block is completely empty, then it definitely does fall through. 3290 if (Pred->empty()) 3291 return true; 3292 3293 // Check the terminators in the previous blocks 3294 for (const auto &MI : Pred->terminators()) { 3295 // If it is not a simple branch, we are in a table somewhere. 3296 if (!MI.isBranch() || MI.isIndirectBranch()) 3297 return false; 3298 3299 // If we are the operands of one of the branches, this is not a fall 3300 // through. Note that targets with delay slots will usually bundle 3301 // terminators with the delay slot instruction. 3302 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3303 if (OP->isJTI()) 3304 return false; 3305 if (OP->isMBB() && OP->getMBB() == MBB) 3306 return false; 3307 } 3308 } 3309 3310 return true; 3311 } 3312 3313 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3314 if (!S.usesMetadata()) 3315 return nullptr; 3316 3317 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3318 gcp_map_type::iterator GCPI = GCMap.find(&S); 3319 if (GCPI != GCMap.end()) 3320 return GCPI->second.get(); 3321 3322 auto Name = S.getName(); 3323 3324 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3325 GCMetadataPrinterRegistry::entries()) 3326 if (Name == GCMetaPrinter.getName()) { 3327 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3328 GMP->S = &S; 3329 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3330 return IterBool.first->second.get(); 3331 } 3332 3333 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3334 } 3335 3336 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3337 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3338 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3339 bool NeedsDefault = false; 3340 if (MI->begin() == MI->end()) 3341 // No GC strategy, use the default format. 3342 NeedsDefault = true; 3343 else 3344 for (auto &I : *MI) { 3345 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3346 if (MP->emitStackMaps(SM, *this)) 3347 continue; 3348 // The strategy doesn't have printer or doesn't emit custom stack maps. 3349 // Use the default format. 3350 NeedsDefault = true; 3351 } 3352 3353 if (NeedsDefault) 3354 SM.serializeToStackMapSection(); 3355 } 3356 3357 /// Pin vtable to this file. 3358 AsmPrinterHandler::~AsmPrinterHandler() = default; 3359 3360 void AsmPrinterHandler::markFunctionEnd() {} 3361 3362 // In the binary's "xray_instr_map" section, an array of these function entries 3363 // describes each instrumentation point. When XRay patches your code, the index 3364 // into this table will be given to your handler as a patch point identifier. 3365 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3366 auto Kind8 = static_cast<uint8_t>(Kind); 3367 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3368 Out->emitBinaryData( 3369 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3370 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3371 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3372 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3373 Out->emitZeros(Padding); 3374 } 3375 3376 void AsmPrinter::emitXRayTable() { 3377 if (Sleds.empty()) 3378 return; 3379 3380 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3381 const Function &F = MF->getFunction(); 3382 MCSection *InstMap = nullptr; 3383 MCSection *FnSledIndex = nullptr; 3384 const Triple &TT = TM.getTargetTriple(); 3385 // Use PC-relative addresses on all targets. 3386 if (TT.isOSBinFormatELF()) { 3387 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3388 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3389 StringRef GroupName; 3390 if (F.hasComdat()) { 3391 Flags |= ELF::SHF_GROUP; 3392 GroupName = F.getComdat()->getName(); 3393 } 3394 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3395 Flags, 0, GroupName, F.hasComdat(), 3396 MCSection::NonUniqueID, LinkedToSym); 3397 3398 if (!TM.Options.XRayOmitFunctionIndex) 3399 FnSledIndex = OutContext.getELFSection( 3400 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3401 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3402 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3403 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3404 SectionKind::getReadOnlyWithRel()); 3405 if (!TM.Options.XRayOmitFunctionIndex) 3406 FnSledIndex = OutContext.getMachOSection( 3407 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3408 } else { 3409 llvm_unreachable("Unsupported target"); 3410 } 3411 3412 auto WordSizeBytes = MAI->getCodePointerSize(); 3413 3414 // Now we switch to the instrumentation map section. Because this is done 3415 // per-function, we are able to create an index entry that will represent the 3416 // range of sleds associated with a function. 3417 auto &Ctx = OutContext; 3418 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3419 OutStreamer->SwitchSection(InstMap); 3420 OutStreamer->emitLabel(SledsStart); 3421 for (const auto &Sled : Sleds) { 3422 MCSymbol *Dot = Ctx.createTempSymbol(); 3423 OutStreamer->emitLabel(Dot); 3424 OutStreamer->emitValueImpl( 3425 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3426 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3427 WordSizeBytes); 3428 OutStreamer->emitValueImpl( 3429 MCBinaryExpr::createSub( 3430 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3431 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3432 MCConstantExpr::create(WordSizeBytes, Ctx), 3433 Ctx), 3434 Ctx), 3435 WordSizeBytes); 3436 Sled.emit(WordSizeBytes, OutStreamer.get()); 3437 } 3438 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3439 OutStreamer->emitLabel(SledsEnd); 3440 3441 // We then emit a single entry in the index per function. We use the symbols 3442 // that bound the instrumentation map as the range for a specific function. 3443 // Each entry here will be 2 * word size aligned, as we're writing down two 3444 // pointers. This should work for both 32-bit and 64-bit platforms. 3445 if (FnSledIndex) { 3446 OutStreamer->SwitchSection(FnSledIndex); 3447 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3448 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3449 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3450 OutStreamer->SwitchSection(PrevSection); 3451 } 3452 Sleds.clear(); 3453 } 3454 3455 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3456 SledKind Kind, uint8_t Version) { 3457 const Function &F = MI.getMF()->getFunction(); 3458 auto Attr = F.getFnAttribute("function-instrument"); 3459 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3460 bool AlwaysInstrument = 3461 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3462 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3463 Kind = SledKind::LOG_ARGS_ENTER; 3464 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3465 AlwaysInstrument, &F, Version}); 3466 } 3467 3468 void AsmPrinter::emitPatchableFunctionEntries() { 3469 const Function &F = MF->getFunction(); 3470 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3471 (void)F.getFnAttribute("patchable-function-prefix") 3472 .getValueAsString() 3473 .getAsInteger(10, PatchableFunctionPrefix); 3474 (void)F.getFnAttribute("patchable-function-entry") 3475 .getValueAsString() 3476 .getAsInteger(10, PatchableFunctionEntry); 3477 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3478 return; 3479 const unsigned PointerSize = getPointerSize(); 3480 if (TM.getTargetTriple().isOSBinFormatELF()) { 3481 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3482 const MCSymbolELF *LinkedToSym = nullptr; 3483 StringRef GroupName; 3484 3485 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3486 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3487 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3488 Flags |= ELF::SHF_LINK_ORDER; 3489 if (F.hasComdat()) { 3490 Flags |= ELF::SHF_GROUP; 3491 GroupName = F.getComdat()->getName(); 3492 } 3493 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3494 } 3495 OutStreamer->SwitchSection(OutContext.getELFSection( 3496 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3497 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3498 emitAlignment(Align(PointerSize)); 3499 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3500 } 3501 } 3502 3503 uint16_t AsmPrinter::getDwarfVersion() const { 3504 return OutStreamer->getContext().getDwarfVersion(); 3505 } 3506 3507 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3508 OutStreamer->getContext().setDwarfVersion(Version); 3509 } 3510 3511 bool AsmPrinter::isDwarf64() const { 3512 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3513 } 3514 3515 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3516 return dwarf::getDwarfOffsetByteSize( 3517 OutStreamer->getContext().getDwarfFormat()); 3518 } 3519 3520 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3521 return dwarf::getUnitLengthFieldByteSize( 3522 OutStreamer->getContext().getDwarfFormat()); 3523 } 3524