1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GCStrategy.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/FileSystem.h" 114 #include "llvm/Support/Format.h" 115 #include "llvm/Support/MathExtras.h" 116 #include "llvm/Support/Path.h" 117 #include "llvm/Support/TargetRegistry.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 139 static cl::opt<bool> 140 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 141 cl::desc("Disable debug info printing")); 142 143 const char DWARFGroupName[] = "dwarf"; 144 const char DWARFGroupDescription[] = "DWARF Emission"; 145 const char DbgTimerName[] = "emit"; 146 const char DbgTimerDescription[] = "Debug Info Emission"; 147 const char EHTimerName[] = "write_exception"; 148 const char EHTimerDescription[] = "DWARF Exception Writer"; 149 const char CFGuardName[] = "Control Flow Guard"; 150 const char CFGuardDescription[] = "Control Flow Guard"; 151 const char CodeViewLineTablesGroupName[] = "linetables"; 152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 153 const char PPTimerName[] = "emit"; 154 const char PPTimerDescription[] = "Pseudo Probe Emission"; 155 const char PPGroupName[] = "pseudo probe"; 156 const char PPGroupDescription[] = "Pseudo Probe Emission"; 157 158 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 159 160 char AsmPrinter::ID = 0; 161 162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 163 164 static gcp_map_type &getGCMap(void *&P) { 165 if (!P) 166 P = new gcp_map_type(); 167 return *(gcp_map_type*)P; 168 } 169 170 /// getGVAlignment - Return the alignment to use for the specified global 171 /// value. This rounds up to the preferred alignment if possible and legal. 172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 173 Align InAlign) { 174 Align Alignment; 175 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 176 Alignment = DL.getPreferredAlign(GVar); 177 178 // If InAlign is specified, round it to it. 179 if (InAlign > Alignment) 180 Alignment = InAlign; 181 182 // If the GV has a specified alignment, take it into account. 183 const MaybeAlign GVAlign(GV->getAlignment()); 184 if (!GVAlign) 185 return Alignment; 186 187 assert(GVAlign && "GVAlign must be set"); 188 189 // If the GVAlign is larger than NumBits, or if we are required to obey 190 // NumBits because the GV has an assigned section, obey it. 191 if (*GVAlign > Alignment || GV->hasSection()) 192 Alignment = *GVAlign; 193 return Alignment; 194 } 195 196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 197 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 198 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 199 VerboseAsm = OutStreamer->isVerboseAsm(); 200 } 201 202 AsmPrinter::~AsmPrinter() { 203 assert(!DD && Handlers.size() == NumUserHandlers && 204 "Debug/EH info didn't get finalized"); 205 206 if (GCMetadataPrinters) { 207 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 208 209 delete &GCMap; 210 GCMetadataPrinters = nullptr; 211 } 212 } 213 214 bool AsmPrinter::isPositionIndependent() const { 215 return TM.isPositionIndependent(); 216 } 217 218 /// getFunctionNumber - Return a unique ID for the current function. 219 unsigned AsmPrinter::getFunctionNumber() const { 220 return MF->getFunctionNumber(); 221 } 222 223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 224 return *TM.getObjFileLowering(); 225 } 226 227 const DataLayout &AsmPrinter::getDataLayout() const { 228 return MMI->getModule()->getDataLayout(); 229 } 230 231 // Do not use the cached DataLayout because some client use it without a Module 232 // (dsymutil, llvm-dwarfdump). 233 unsigned AsmPrinter::getPointerSize() const { 234 return TM.getPointerSize(0); // FIXME: Default address space 235 } 236 237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 238 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 239 return MF->getSubtarget<MCSubtargetInfo>(); 240 } 241 242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 243 S.emitInstruction(Inst, getSubtargetInfo()); 244 } 245 246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 247 if (DD) { 248 assert(OutStreamer->hasRawTextSupport() && 249 "Expected assembly output mode."); 250 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 251 } 252 } 253 254 /// getCurrentSection() - Return the current section we are emitting to. 255 const MCSection *AsmPrinter::getCurrentSection() const { 256 return OutStreamer->getCurrentSectionOnly(); 257 } 258 259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 260 AU.setPreservesAll(); 261 MachineFunctionPass::getAnalysisUsage(AU); 262 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 263 AU.addRequired<GCModuleInfo>(); 264 } 265 266 bool AsmPrinter::doInitialization(Module &M) { 267 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 268 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 269 270 // Initialize TargetLoweringObjectFile. 271 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 272 .Initialize(OutContext, TM); 273 274 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 275 .getModuleMetadata(M); 276 277 OutStreamer->InitSections(false); 278 279 if (DisableDebugInfoPrinting) 280 MMI->setDebugInfoAvailability(false); 281 282 // Emit the version-min deployment target directive if needed. 283 // 284 // FIXME: If we end up with a collection of these sorts of Darwin-specific 285 // or ELF-specific things, it may make sense to have a platform helper class 286 // that will work with the target helper class. For now keep it here, as the 287 // alternative is duplicated code in each of the target asm printers that 288 // use the directive, where it would need the same conditionalization 289 // anyway. 290 const Triple &Target = TM.getTargetTriple(); 291 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 292 293 // Allow the target to emit any magic that it wants at the start of the file. 294 emitStartOfAsmFile(M); 295 296 // Very minimal debug info. It is ignored if we emit actual debug info. If we 297 // don't, this at least helps the user find where a global came from. 298 if (MAI->hasSingleParameterDotFile()) { 299 // .file "foo.c" 300 if (MAI->hasBasenameOnlyForFileDirective()) 301 OutStreamer->emitFileDirective( 302 llvm::sys::path::filename(M.getSourceFileName())); 303 else 304 OutStreamer->emitFileDirective(M.getSourceFileName()); 305 } 306 307 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 308 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 309 for (auto &I : *MI) 310 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 311 MP->beginAssembly(M, *MI, *this); 312 313 // Emit module-level inline asm if it exists. 314 if (!M.getModuleInlineAsm().empty()) { 315 // We're at the module level. Construct MCSubtarget from the default CPU 316 // and target triple. 317 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 318 TM.getTargetTriple().str(), TM.getTargetCPU(), 319 TM.getTargetFeatureString())); 320 assert(STI && "Unable to create subtarget info"); 321 OutStreamer->AddComment("Start of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 emitInlineAsm(M.getModuleInlineAsm() + "\n", 324 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 325 OutStreamer->AddComment("End of file scope inline assembly"); 326 OutStreamer->AddBlankLine(); 327 } 328 329 if (MAI->doesSupportDebugInformation()) { 330 bool EmitCodeView = M.getCodeViewFlag(); 331 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 332 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 333 DbgTimerName, DbgTimerDescription, 334 CodeViewLineTablesGroupName, 335 CodeViewLineTablesGroupDescription); 336 } 337 if (!EmitCodeView || M.getDwarfVersion()) { 338 if (!DisableDebugInfoPrinting) { 339 DD = new DwarfDebug(this); 340 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 341 DbgTimerDescription, DWARFGroupName, 342 DWARFGroupDescription); 343 } 344 } 345 } 346 347 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 348 PP = new PseudoProbeHandler(this, &M); 349 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 350 PPTimerDescription, PPGroupName, PPGroupDescription); 351 } 352 353 switch (MAI->getExceptionHandlingType()) { 354 case ExceptionHandling::None: 355 // We may want to emit CFI for debug. 356 LLVM_FALLTHROUGH; 357 case ExceptionHandling::SjLj: 358 case ExceptionHandling::DwarfCFI: 359 case ExceptionHandling::ARM: 360 for (auto &F : M.getFunctionList()) { 361 if (getFunctionCFISectionType(F) != CFISection::None) 362 ModuleCFISection = getFunctionCFISectionType(F); 363 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 364 // the module needs .eh_frame. If we have found that case, we are done. 365 if (ModuleCFISection == CFISection::EH) 366 break; 367 } 368 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 369 ModuleCFISection != CFISection::EH); 370 break; 371 default: 372 break; 373 } 374 375 EHStreamer *ES = nullptr; 376 switch (MAI->getExceptionHandlingType()) { 377 case ExceptionHandling::None: 378 if (!needsCFIForDebug()) 379 break; 380 LLVM_FALLTHROUGH; 381 case ExceptionHandling::SjLj: 382 case ExceptionHandling::DwarfCFI: 383 ES = new DwarfCFIException(this); 384 break; 385 case ExceptionHandling::ARM: 386 ES = new ARMException(this); 387 break; 388 case ExceptionHandling::WinEH: 389 switch (MAI->getWinEHEncodingType()) { 390 default: llvm_unreachable("unsupported unwinding information encoding"); 391 case WinEH::EncodingType::Invalid: 392 break; 393 case WinEH::EncodingType::X86: 394 case WinEH::EncodingType::Itanium: 395 ES = new WinException(this); 396 break; 397 } 398 break; 399 case ExceptionHandling::Wasm: 400 ES = new WasmException(this); 401 break; 402 case ExceptionHandling::AIX: 403 ES = new AIXException(this); 404 break; 405 } 406 if (ES) 407 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 408 EHTimerDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 412 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 413 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 414 CFGuardDescription, DWARFGroupName, 415 DWARFGroupDescription); 416 417 for (const HandlerInfo &HI : Handlers) { 418 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 419 HI.TimerGroupDescription, TimePassesIsEnabled); 420 HI.Handler->beginModule(&M); 421 } 422 423 return false; 424 } 425 426 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 427 if (!MAI.hasWeakDefCanBeHiddenDirective()) 428 return false; 429 430 return GV->canBeOmittedFromSymbolTable(); 431 } 432 433 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 434 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 435 switch (Linkage) { 436 case GlobalValue::CommonLinkage: 437 case GlobalValue::LinkOnceAnyLinkage: 438 case GlobalValue::LinkOnceODRLinkage: 439 case GlobalValue::WeakAnyLinkage: 440 case GlobalValue::WeakODRLinkage: 441 if (MAI->hasWeakDefDirective()) { 442 // .globl _foo 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 444 445 if (!canBeHidden(GV, *MAI)) 446 // .weak_definition _foo 447 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 448 else 449 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 450 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 451 // .globl _foo 452 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 453 //NOTE: linkonce is handled by the section the symbol was assigned to. 454 } else { 455 // .weak _foo 456 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 457 } 458 return; 459 case GlobalValue::ExternalLinkage: 460 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 461 return; 462 case GlobalValue::PrivateLinkage: 463 case GlobalValue::InternalLinkage: 464 return; 465 case GlobalValue::ExternalWeakLinkage: 466 case GlobalValue::AvailableExternallyLinkage: 467 case GlobalValue::AppendingLinkage: 468 llvm_unreachable("Should never emit this"); 469 } 470 llvm_unreachable("Unknown linkage type!"); 471 } 472 473 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 474 const GlobalValue *GV) const { 475 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 476 } 477 478 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 479 return TM.getSymbol(GV); 480 } 481 482 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 483 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 484 // exact definion (intersection of GlobalValue::hasExactDefinition() and 485 // !isInterposable()). These linkages include: external, appending, internal, 486 // private. It may be profitable to use a local alias for external. The 487 // assembler would otherwise be conservative and assume a global default 488 // visibility symbol can be interposable, even if the code generator already 489 // assumed it. 490 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 491 const Module &M = *GV.getParent(); 492 if (TM.getRelocationModel() != Reloc::Static && 493 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 494 return getSymbolWithGlobalValueBase(&GV, "$local"); 495 } 496 return TM.getSymbol(&GV); 497 } 498 499 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 500 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 501 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 502 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 503 "No emulated TLS variables in the common section"); 504 505 // Never emit TLS variable xyz in emulated TLS model. 506 // The initialization value is in __emutls_t.xyz instead of xyz. 507 if (IsEmuTLSVar) 508 return; 509 510 if (GV->hasInitializer()) { 511 // Check to see if this is a special global used by LLVM, if so, emit it. 512 if (emitSpecialLLVMGlobal(GV)) 513 return; 514 515 // Skip the emission of global equivalents. The symbol can be emitted later 516 // on by emitGlobalGOTEquivs in case it turns out to be needed. 517 if (GlobalGOTEquivs.count(getSymbol(GV))) 518 return; 519 520 if (isVerbose()) { 521 // When printing the control variable __emutls_v.*, 522 // we don't need to print the original TLS variable name. 523 GV->printAsOperand(OutStreamer->GetCommentOS(), 524 /*PrintType=*/false, GV->getParent()); 525 OutStreamer->GetCommentOS() << '\n'; 526 } 527 } 528 529 MCSymbol *GVSym = getSymbol(GV); 530 MCSymbol *EmittedSym = GVSym; 531 532 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 533 // attributes. 534 // GV's or GVSym's attributes will be used for the EmittedSym. 535 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 536 537 if (!GV->hasInitializer()) // External globals require no extra code. 538 return; 539 540 GVSym->redefineIfPossible(); 541 if (GVSym->isDefined() || GVSym->isVariable()) 542 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 543 "' is already defined"); 544 545 if (MAI->hasDotTypeDotSizeDirective()) 546 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 547 548 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 549 550 const DataLayout &DL = GV->getParent()->getDataLayout(); 551 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 552 553 // If the alignment is specified, we *must* obey it. Overaligning a global 554 // with a specified alignment is a prompt way to break globals emitted to 555 // sections and expected to be contiguous (e.g. ObjC metadata). 556 const Align Alignment = getGVAlignment(GV, DL); 557 558 for (const HandlerInfo &HI : Handlers) { 559 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 560 HI.TimerGroupName, HI.TimerGroupDescription, 561 TimePassesIsEnabled); 562 HI.Handler->setSymbolSize(GVSym, Size); 563 } 564 565 // Handle common symbols 566 if (GVKind.isCommon()) { 567 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 568 // .comm _foo, 42, 4 569 const bool SupportsAlignment = 570 getObjFileLowering().getCommDirectiveSupportsAlignment(); 571 OutStreamer->emitCommonSymbol(GVSym, Size, 572 SupportsAlignment ? Alignment.value() : 0); 573 return; 574 } 575 576 // Determine to which section this global should be emitted. 577 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 578 579 // If we have a bss global going to a section that supports the 580 // zerofill directive, do so here. 581 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 582 TheSection->isVirtualSection()) { 583 if (Size == 0) 584 Size = 1; // zerofill of 0 bytes is undefined. 585 emitLinkage(GV, GVSym); 586 // .zerofill __DATA, __bss, _foo, 400, 5 587 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 588 return; 589 } 590 591 // If this is a BSS local symbol and we are emitting in the BSS 592 // section use .lcomm/.comm directive. 593 if (GVKind.isBSSLocal() && 594 getObjFileLowering().getBSSSection() == TheSection) { 595 if (Size == 0) 596 Size = 1; // .comm Foo, 0 is undefined, avoid it. 597 598 // Use .lcomm only if it supports user-specified alignment. 599 // Otherwise, while it would still be correct to use .lcomm in some 600 // cases (e.g. when Align == 1), the external assembler might enfore 601 // some -unknown- default alignment behavior, which could cause 602 // spurious differences between external and integrated assembler. 603 // Prefer to simply fall back to .local / .comm in this case. 604 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 605 // .lcomm _foo, 42 606 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 607 return; 608 } 609 610 // .local _foo 611 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 612 // .comm _foo, 42, 4 613 const bool SupportsAlignment = 614 getObjFileLowering().getCommDirectiveSupportsAlignment(); 615 OutStreamer->emitCommonSymbol(GVSym, Size, 616 SupportsAlignment ? Alignment.value() : 0); 617 return; 618 } 619 620 // Handle thread local data for mach-o which requires us to output an 621 // additional structure of data and mangle the original symbol so that we 622 // can reference it later. 623 // 624 // TODO: This should become an "emit thread local global" method on TLOF. 625 // All of this macho specific stuff should be sunk down into TLOFMachO and 626 // stuff like "TLSExtraDataSection" should no longer be part of the parent 627 // TLOF class. This will also make it more obvious that stuff like 628 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 629 // specific code. 630 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 631 // Emit the .tbss symbol 632 MCSymbol *MangSym = 633 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 634 635 if (GVKind.isThreadBSS()) { 636 TheSection = getObjFileLowering().getTLSBSSSection(); 637 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 638 } else if (GVKind.isThreadData()) { 639 OutStreamer->SwitchSection(TheSection); 640 641 emitAlignment(Alignment, GV); 642 OutStreamer->emitLabel(MangSym); 643 644 emitGlobalConstant(GV->getParent()->getDataLayout(), 645 GV->getInitializer()); 646 } 647 648 OutStreamer->AddBlankLine(); 649 650 // Emit the variable struct for the runtime. 651 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 652 653 OutStreamer->SwitchSection(TLVSect); 654 // Emit the linkage here. 655 emitLinkage(GV, GVSym); 656 OutStreamer->emitLabel(GVSym); 657 658 // Three pointers in size: 659 // - __tlv_bootstrap - used to make sure support exists 660 // - spare pointer, used when mapped by the runtime 661 // - pointer to mangled symbol above with initializer 662 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 663 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 664 PtrSize); 665 OutStreamer->emitIntValue(0, PtrSize); 666 OutStreamer->emitSymbolValue(MangSym, PtrSize); 667 668 OutStreamer->AddBlankLine(); 669 return; 670 } 671 672 MCSymbol *EmittedInitSym = GVSym; 673 674 OutStreamer->SwitchSection(TheSection); 675 676 emitLinkage(GV, EmittedInitSym); 677 emitAlignment(Alignment, GV); 678 679 OutStreamer->emitLabel(EmittedInitSym); 680 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 681 if (LocalAlias != EmittedInitSym) 682 OutStreamer->emitLabel(LocalAlias); 683 684 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 685 686 if (MAI->hasDotTypeDotSizeDirective()) 687 // .size foo, 42 688 OutStreamer->emitELFSize(EmittedInitSym, 689 MCConstantExpr::create(Size, OutContext)); 690 691 OutStreamer->AddBlankLine(); 692 } 693 694 /// Emit the directive and value for debug thread local expression 695 /// 696 /// \p Value - The value to emit. 697 /// \p Size - The size of the integer (in bytes) to emit. 698 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 699 OutStreamer->emitValue(Value, Size); 700 } 701 702 void AsmPrinter::emitFunctionHeaderComment() {} 703 704 /// EmitFunctionHeader - This method emits the header for the current 705 /// function. 706 void AsmPrinter::emitFunctionHeader() { 707 const Function &F = MF->getFunction(); 708 709 if (isVerbose()) 710 OutStreamer->GetCommentOS() 711 << "-- Begin function " 712 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 713 714 // Print out constants referenced by the function 715 emitConstantPool(); 716 717 // Print the 'header' of function. 718 // If basic block sections are desired, explicitly request a unique section 719 // for this function's entry block. 720 if (MF->front().isBeginSection()) 721 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 722 else 723 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 724 OutStreamer->SwitchSection(MF->getSection()); 725 726 if (!MAI->hasVisibilityOnlyWithLinkage()) 727 emitVisibility(CurrentFnSym, F.getVisibility()); 728 729 if (MAI->needsFunctionDescriptors()) 730 emitLinkage(&F, CurrentFnDescSym); 731 732 emitLinkage(&F, CurrentFnSym); 733 if (MAI->hasFunctionAlignment()) 734 emitAlignment(MF->getAlignment(), &F); 735 736 if (MAI->hasDotTypeDotSizeDirective()) 737 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 738 739 if (F.hasFnAttribute(Attribute::Cold)) 740 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 741 742 if (isVerbose()) { 743 F.printAsOperand(OutStreamer->GetCommentOS(), 744 /*PrintType=*/false, F.getParent()); 745 emitFunctionHeaderComment(); 746 OutStreamer->GetCommentOS() << '\n'; 747 } 748 749 // Emit the prefix data. 750 if (F.hasPrefixData()) { 751 if (MAI->hasSubsectionsViaSymbols()) { 752 // Preserving prefix data on platforms which use subsections-via-symbols 753 // is a bit tricky. Here we introduce a symbol for the prefix data 754 // and use the .alt_entry attribute to mark the function's real entry point 755 // as an alternative entry point to the prefix-data symbol. 756 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 757 OutStreamer->emitLabel(PrefixSym); 758 759 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 760 761 // Emit an .alt_entry directive for the actual function symbol. 762 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 763 } else { 764 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 765 } 766 } 767 768 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 769 // place prefix data before NOPs. 770 unsigned PatchableFunctionPrefix = 0; 771 unsigned PatchableFunctionEntry = 0; 772 (void)F.getFnAttribute("patchable-function-prefix") 773 .getValueAsString() 774 .getAsInteger(10, PatchableFunctionPrefix); 775 (void)F.getFnAttribute("patchable-function-entry") 776 .getValueAsString() 777 .getAsInteger(10, PatchableFunctionEntry); 778 if (PatchableFunctionPrefix) { 779 CurrentPatchableFunctionEntrySym = 780 OutContext.createLinkerPrivateTempSymbol(); 781 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 782 emitNops(PatchableFunctionPrefix); 783 } else if (PatchableFunctionEntry) { 784 // May be reassigned when emitting the body, to reference the label after 785 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 786 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 787 } 788 789 // Emit the function descriptor. This is a virtual function to allow targets 790 // to emit their specific function descriptor. Right now it is only used by 791 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 792 // descriptors and should be converted to use this hook as well. 793 if (MAI->needsFunctionDescriptors()) 794 emitFunctionDescriptor(); 795 796 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 797 // their wild and crazy things as required. 798 emitFunctionEntryLabel(); 799 800 // If the function had address-taken blocks that got deleted, then we have 801 // references to the dangling symbols. Emit them at the start of the function 802 // so that we don't get references to undefined symbols. 803 std::vector<MCSymbol*> DeadBlockSyms; 804 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 805 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 806 OutStreamer->AddComment("Address taken block that was later removed"); 807 OutStreamer->emitLabel(DeadBlockSyms[i]); 808 } 809 810 if (CurrentFnBegin) { 811 if (MAI->useAssignmentForEHBegin()) { 812 MCSymbol *CurPos = OutContext.createTempSymbol(); 813 OutStreamer->emitLabel(CurPos); 814 OutStreamer->emitAssignment(CurrentFnBegin, 815 MCSymbolRefExpr::create(CurPos, OutContext)); 816 } else { 817 OutStreamer->emitLabel(CurrentFnBegin); 818 } 819 } 820 821 // Emit pre-function debug and/or EH information. 822 for (const HandlerInfo &HI : Handlers) { 823 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 824 HI.TimerGroupDescription, TimePassesIsEnabled); 825 HI.Handler->beginFunction(MF); 826 } 827 828 // Emit the prologue data. 829 if (F.hasPrologueData()) 830 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 831 } 832 833 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 834 /// function. This can be overridden by targets as required to do custom stuff. 835 void AsmPrinter::emitFunctionEntryLabel() { 836 CurrentFnSym->redefineIfPossible(); 837 838 // The function label could have already been emitted if two symbols end up 839 // conflicting due to asm renaming. Detect this and emit an error. 840 if (CurrentFnSym->isVariable()) 841 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 842 "' is a protected alias"); 843 844 OutStreamer->emitLabel(CurrentFnSym); 845 846 if (TM.getTargetTriple().isOSBinFormatELF()) { 847 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 848 if (Sym != CurrentFnSym) 849 OutStreamer->emitLabel(Sym); 850 } 851 } 852 853 /// emitComments - Pretty-print comments for instructions. 854 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 855 const MachineFunction *MF = MI.getMF(); 856 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 857 858 // Check for spills and reloads 859 860 // We assume a single instruction only has a spill or reload, not 861 // both. 862 Optional<unsigned> Size; 863 if ((Size = MI.getRestoreSize(TII))) { 864 CommentOS << *Size << "-byte Reload\n"; 865 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 866 if (*Size) { 867 if (*Size == unsigned(MemoryLocation::UnknownSize)) 868 CommentOS << "Unknown-size Folded Reload\n"; 869 else 870 CommentOS << *Size << "-byte Folded Reload\n"; 871 } 872 } else if ((Size = MI.getSpillSize(TII))) { 873 CommentOS << *Size << "-byte Spill\n"; 874 } else if ((Size = MI.getFoldedSpillSize(TII))) { 875 if (*Size) { 876 if (*Size == unsigned(MemoryLocation::UnknownSize)) 877 CommentOS << "Unknown-size Folded Spill\n"; 878 else 879 CommentOS << *Size << "-byte Folded Spill\n"; 880 } 881 } 882 883 // Check for spill-induced copies 884 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 885 CommentOS << " Reload Reuse\n"; 886 } 887 888 /// emitImplicitDef - This method emits the specified machine instruction 889 /// that is an implicit def. 890 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 891 Register RegNo = MI->getOperand(0).getReg(); 892 893 SmallString<128> Str; 894 raw_svector_ostream OS(Str); 895 OS << "implicit-def: " 896 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 897 898 OutStreamer->AddComment(OS.str()); 899 OutStreamer->AddBlankLine(); 900 } 901 902 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 903 std::string Str; 904 raw_string_ostream OS(Str); 905 OS << "kill:"; 906 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 907 const MachineOperand &Op = MI->getOperand(i); 908 assert(Op.isReg() && "KILL instruction must have only register operands"); 909 OS << ' ' << (Op.isDef() ? "def " : "killed ") 910 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 911 } 912 AP.OutStreamer->AddComment(OS.str()); 913 AP.OutStreamer->AddBlankLine(); 914 } 915 916 /// emitDebugValueComment - This method handles the target-independent form 917 /// of DBG_VALUE, returning true if it was able to do so. A false return 918 /// means the target will need to handle MI in EmitInstruction. 919 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 920 // This code handles only the 4-operand target-independent form. 921 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 922 return false; 923 924 SmallString<128> Str; 925 raw_svector_ostream OS(Str); 926 OS << "DEBUG_VALUE: "; 927 928 const DILocalVariable *V = MI->getDebugVariable(); 929 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 930 StringRef Name = SP->getName(); 931 if (!Name.empty()) 932 OS << Name << ":"; 933 } 934 OS << V->getName(); 935 OS << " <- "; 936 937 const DIExpression *Expr = MI->getDebugExpression(); 938 if (Expr->getNumElements()) { 939 OS << '['; 940 ListSeparator LS; 941 for (auto Op : Expr->expr_ops()) { 942 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 943 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 944 OS << ' ' << Op.getArg(I); 945 } 946 OS << "] "; 947 } 948 949 // Register or immediate value. Register 0 means undef. 950 for (const MachineOperand &Op : MI->debug_operands()) { 951 if (&Op != MI->debug_operands().begin()) 952 OS << ", "; 953 switch (Op.getType()) { 954 case MachineOperand::MO_FPImmediate: { 955 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 956 Type *ImmTy = Op.getFPImm()->getType(); 957 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 958 ImmTy->isDoubleTy()) { 959 OS << APF.convertToDouble(); 960 } else { 961 // There is no good way to print long double. Convert a copy to 962 // double. Ah well, it's only a comment. 963 bool ignored; 964 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 965 &ignored); 966 OS << "(long double) " << APF.convertToDouble(); 967 } 968 break; 969 } 970 case MachineOperand::MO_Immediate: { 971 OS << Op.getImm(); 972 break; 973 } 974 case MachineOperand::MO_CImmediate: { 975 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 976 break; 977 } 978 case MachineOperand::MO_TargetIndex: { 979 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 980 // NOTE: Want this comment at start of line, don't emit with AddComment. 981 AP.OutStreamer->emitRawComment(OS.str()); 982 break; 983 } 984 case MachineOperand::MO_Register: 985 case MachineOperand::MO_FrameIndex: { 986 Register Reg; 987 Optional<StackOffset> Offset; 988 if (Op.isReg()) { 989 Reg = Op.getReg(); 990 } else { 991 const TargetFrameLowering *TFI = 992 AP.MF->getSubtarget().getFrameLowering(); 993 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 994 } 995 if (!Reg) { 996 // Suppress offset, it is not meaningful here. 997 OS << "undef"; 998 break; 999 } 1000 // The second operand is only an offset if it's an immediate. 1001 if (MI->isIndirectDebugValue()) 1002 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1003 if (Offset) 1004 OS << '['; 1005 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1006 if (Offset) 1007 OS << '+' << Offset->getFixed() << ']'; 1008 break; 1009 } 1010 default: 1011 llvm_unreachable("Unknown operand type"); 1012 } 1013 } 1014 1015 // NOTE: Want this comment at start of line, don't emit with AddComment. 1016 AP.OutStreamer->emitRawComment(OS.str()); 1017 return true; 1018 } 1019 1020 /// This method handles the target-independent form of DBG_LABEL, returning 1021 /// true if it was able to do so. A false return means the target will need 1022 /// to handle MI in EmitInstruction. 1023 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1024 if (MI->getNumOperands() != 1) 1025 return false; 1026 1027 SmallString<128> Str; 1028 raw_svector_ostream OS(Str); 1029 OS << "DEBUG_LABEL: "; 1030 1031 const DILabel *V = MI->getDebugLabel(); 1032 if (auto *SP = dyn_cast<DISubprogram>( 1033 V->getScope()->getNonLexicalBlockFileScope())) { 1034 StringRef Name = SP->getName(); 1035 if (!Name.empty()) 1036 OS << Name << ":"; 1037 } 1038 OS << V->getName(); 1039 1040 // NOTE: Want this comment at start of line, don't emit with AddComment. 1041 AP.OutStreamer->emitRawComment(OS.str()); 1042 return true; 1043 } 1044 1045 AsmPrinter::CFISection 1046 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1047 // Ignore functions that won't get emitted. 1048 if (F.isDeclarationForLinker()) 1049 return CFISection::None; 1050 1051 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1052 F.needsUnwindTableEntry()) 1053 return CFISection::EH; 1054 1055 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1056 return CFISection::Debug; 1057 1058 return CFISection::None; 1059 } 1060 1061 AsmPrinter::CFISection 1062 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1063 return getFunctionCFISectionType(MF.getFunction()); 1064 } 1065 1066 bool AsmPrinter::needsSEHMoves() { 1067 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1068 } 1069 1070 bool AsmPrinter::needsCFIForDebug() const { 1071 return MAI->getExceptionHandlingType() == ExceptionHandling::None && 1072 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; 1073 } 1074 1075 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1076 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1077 if (!needsCFIForDebug() && 1078 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1079 ExceptionHandlingType != ExceptionHandling::ARM) 1080 return; 1081 1082 if (getFunctionCFISectionType(*MF) == CFISection::None) 1083 return; 1084 1085 // If there is no "real" instruction following this CFI instruction, skip 1086 // emitting it; it would be beyond the end of the function's FDE range. 1087 auto *MBB = MI.getParent(); 1088 auto I = std::next(MI.getIterator()); 1089 while (I != MBB->end() && I->isTransient()) 1090 ++I; 1091 if (I == MBB->instr_end() && 1092 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1093 return; 1094 1095 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1096 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1097 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1098 emitCFIInstruction(CFI); 1099 } 1100 1101 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1102 // The operands are the MCSymbol and the frame offset of the allocation. 1103 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1104 int FrameOffset = MI.getOperand(1).getImm(); 1105 1106 // Emit a symbol assignment. 1107 OutStreamer->emitAssignment(FrameAllocSym, 1108 MCConstantExpr::create(FrameOffset, OutContext)); 1109 } 1110 1111 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1112 /// given basic block. This can be used to capture more precise profile 1113 /// information. We use the last 4 bits (LSBs) to encode the following 1114 /// information: 1115 /// * (1): set if return block (ret or tail call). 1116 /// * (2): set if ends with a tail call. 1117 /// * (3): set if exception handling (EH) landing pad. 1118 /// * (4): set if the block can fall through to its next. 1119 /// The remaining bits are zero. 1120 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1121 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1122 return ((unsigned)MBB.isReturnBlock()) | 1123 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1124 (MBB.isEHPad() << 2) | 1125 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1126 } 1127 1128 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1129 MCSection *BBAddrMapSection = 1130 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1131 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1132 1133 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1134 1135 OutStreamer->PushSection(); 1136 OutStreamer->SwitchSection(BBAddrMapSection); 1137 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1138 // Emit the total number of basic blocks in this function. 1139 OutStreamer->emitULEB128IntValue(MF.size()); 1140 // Emit BB Information for each basic block in the funciton. 1141 for (const MachineBasicBlock &MBB : MF) { 1142 const MCSymbol *MBBSymbol = 1143 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1144 // Emit the basic block offset. 1145 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1146 // Emit the basic block size. When BBs have alignments, their size cannot 1147 // always be computed from their offsets. 1148 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1149 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1150 } 1151 OutStreamer->PopSection(); 1152 } 1153 1154 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1155 auto GUID = MI.getOperand(0).getImm(); 1156 auto Index = MI.getOperand(1).getImm(); 1157 auto Type = MI.getOperand(2).getImm(); 1158 auto Attr = MI.getOperand(3).getImm(); 1159 DILocation *DebugLoc = MI.getDebugLoc(); 1160 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1161 } 1162 1163 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1164 if (!MF.getTarget().Options.EmitStackSizeSection) 1165 return; 1166 1167 MCSection *StackSizeSection = 1168 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1169 if (!StackSizeSection) 1170 return; 1171 1172 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1173 // Don't emit functions with dynamic stack allocations. 1174 if (FrameInfo.hasVarSizedObjects()) 1175 return; 1176 1177 OutStreamer->PushSection(); 1178 OutStreamer->SwitchSection(StackSizeSection); 1179 1180 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1181 uint64_t StackSize = FrameInfo.getStackSize(); 1182 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1183 OutStreamer->emitULEB128IntValue(StackSize); 1184 1185 OutStreamer->PopSection(); 1186 } 1187 1188 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1189 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1190 1191 // OutputFilename empty implies -fstack-usage is not passed. 1192 if (OutputFilename.empty()) 1193 return; 1194 1195 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1196 uint64_t StackSize = FrameInfo.getStackSize(); 1197 1198 if (StackUsageStream == nullptr) { 1199 std::error_code EC; 1200 StackUsageStream = 1201 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1202 if (EC) { 1203 errs() << "Could not open file: " << EC.message(); 1204 return; 1205 } 1206 } 1207 1208 *StackUsageStream << MF.getFunction().getParent()->getName(); 1209 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1210 *StackUsageStream << ':' << DSP->getLine(); 1211 1212 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1213 if (FrameInfo.hasVarSizedObjects()) 1214 *StackUsageStream << "dynamic\n"; 1215 else 1216 *StackUsageStream << "static\n"; 1217 } 1218 1219 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1220 MachineModuleInfo &MMI = MF.getMMI(); 1221 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1222 return true; 1223 1224 // We might emit an EH table that uses function begin and end labels even if 1225 // we don't have any landingpads. 1226 if (!MF.getFunction().hasPersonalityFn()) 1227 return false; 1228 return !isNoOpWithoutInvoke( 1229 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1230 } 1231 1232 /// EmitFunctionBody - This method emits the body and trailer for a 1233 /// function. 1234 void AsmPrinter::emitFunctionBody() { 1235 emitFunctionHeader(); 1236 1237 // Emit target-specific gunk before the function body. 1238 emitFunctionBodyStart(); 1239 1240 if (isVerbose()) { 1241 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1242 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1243 if (!MDT) { 1244 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1245 OwnedMDT->getBase().recalculate(*MF); 1246 MDT = OwnedMDT.get(); 1247 } 1248 1249 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1250 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1251 if (!MLI) { 1252 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1253 OwnedMLI->getBase().analyze(MDT->getBase()); 1254 MLI = OwnedMLI.get(); 1255 } 1256 } 1257 1258 // Print out code for the function. 1259 bool HasAnyRealCode = false; 1260 int NumInstsInFunction = 0; 1261 1262 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1263 for (auto &MBB : *MF) { 1264 // Print a label for the basic block. 1265 emitBasicBlockStart(MBB); 1266 DenseMap<StringRef, unsigned> MnemonicCounts; 1267 for (auto &MI : MBB) { 1268 // Print the assembly for the instruction. 1269 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1270 !MI.isDebugInstr()) { 1271 HasAnyRealCode = true; 1272 ++NumInstsInFunction; 1273 } 1274 1275 // If there is a pre-instruction symbol, emit a label for it here. 1276 if (MCSymbol *S = MI.getPreInstrSymbol()) 1277 OutStreamer->emitLabel(S); 1278 1279 for (const HandlerInfo &HI : Handlers) { 1280 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1281 HI.TimerGroupDescription, TimePassesIsEnabled); 1282 HI.Handler->beginInstruction(&MI); 1283 } 1284 1285 if (isVerbose()) 1286 emitComments(MI, OutStreamer->GetCommentOS()); 1287 1288 switch (MI.getOpcode()) { 1289 case TargetOpcode::CFI_INSTRUCTION: 1290 emitCFIInstruction(MI); 1291 break; 1292 case TargetOpcode::LOCAL_ESCAPE: 1293 emitFrameAlloc(MI); 1294 break; 1295 case TargetOpcode::ANNOTATION_LABEL: 1296 case TargetOpcode::EH_LABEL: 1297 case TargetOpcode::GC_LABEL: 1298 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1299 break; 1300 case TargetOpcode::INLINEASM: 1301 case TargetOpcode::INLINEASM_BR: 1302 emitInlineAsm(&MI); 1303 break; 1304 case TargetOpcode::DBG_VALUE: 1305 case TargetOpcode::DBG_VALUE_LIST: 1306 if (isVerbose()) { 1307 if (!emitDebugValueComment(&MI, *this)) 1308 emitInstruction(&MI); 1309 } 1310 break; 1311 case TargetOpcode::DBG_INSTR_REF: 1312 // This instruction reference will have been resolved to a machine 1313 // location, and a nearby DBG_VALUE created. We can safely ignore 1314 // the instruction reference. 1315 break; 1316 case TargetOpcode::DBG_PHI: 1317 // This instruction is only used to label a program point, it's purely 1318 // meta information. 1319 break; 1320 case TargetOpcode::DBG_LABEL: 1321 if (isVerbose()) { 1322 if (!emitDebugLabelComment(&MI, *this)) 1323 emitInstruction(&MI); 1324 } 1325 break; 1326 case TargetOpcode::IMPLICIT_DEF: 1327 if (isVerbose()) emitImplicitDef(&MI); 1328 break; 1329 case TargetOpcode::KILL: 1330 if (isVerbose()) emitKill(&MI, *this); 1331 break; 1332 case TargetOpcode::PSEUDO_PROBE: 1333 emitPseudoProbe(MI); 1334 break; 1335 default: 1336 emitInstruction(&MI); 1337 if (CanDoExtraAnalysis) { 1338 MCInst MCI; 1339 MCI.setOpcode(MI.getOpcode()); 1340 auto Name = OutStreamer->getMnemonic(MCI); 1341 auto I = MnemonicCounts.insert({Name, 0u}); 1342 I.first->second++; 1343 } 1344 break; 1345 } 1346 1347 // If there is a post-instruction symbol, emit a label for it here. 1348 if (MCSymbol *S = MI.getPostInstrSymbol()) 1349 OutStreamer->emitLabel(S); 1350 1351 for (const HandlerInfo &HI : Handlers) { 1352 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1353 HI.TimerGroupDescription, TimePassesIsEnabled); 1354 HI.Handler->endInstruction(); 1355 } 1356 } 1357 1358 // We must emit temporary symbol for the end of this basic block, if either 1359 // we have BBLabels enabled or if this basic blocks marks the end of a 1360 // section. 1361 if (MF->hasBBLabels() || 1362 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1363 OutStreamer->emitLabel(MBB.getEndSymbol()); 1364 1365 if (MBB.isEndSection()) { 1366 // The size directive for the section containing the entry block is 1367 // handled separately by the function section. 1368 if (!MBB.sameSection(&MF->front())) { 1369 if (MAI->hasDotTypeDotSizeDirective()) { 1370 // Emit the size directive for the basic block section. 1371 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1372 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1373 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1374 OutContext); 1375 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1376 } 1377 MBBSectionRanges[MBB.getSectionIDNum()] = 1378 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1379 } 1380 } 1381 emitBasicBlockEnd(MBB); 1382 1383 if (CanDoExtraAnalysis) { 1384 // Skip empty blocks. 1385 if (MBB.empty()) 1386 continue; 1387 1388 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1389 MBB.begin()->getDebugLoc(), &MBB); 1390 1391 // Generate instruction mix remark. First, sort counts in descending order 1392 // by count and name. 1393 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1394 for (auto &KV : MnemonicCounts) 1395 MnemonicVec.emplace_back(KV.first, KV.second); 1396 1397 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1398 const std::pair<StringRef, unsigned> &B) { 1399 if (A.second > B.second) 1400 return true; 1401 if (A.second == B.second) 1402 return StringRef(A.first) < StringRef(B.first); 1403 return false; 1404 }); 1405 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1406 for (auto &KV : MnemonicVec) { 1407 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1408 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1409 } 1410 ORE->emit(R); 1411 } 1412 } 1413 1414 EmittedInsts += NumInstsInFunction; 1415 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1416 MF->getFunction().getSubprogram(), 1417 &MF->front()); 1418 R << ore::NV("NumInstructions", NumInstsInFunction) 1419 << " instructions in function"; 1420 ORE->emit(R); 1421 1422 // If the function is empty and the object file uses .subsections_via_symbols, 1423 // then we need to emit *something* to the function body to prevent the 1424 // labels from collapsing together. Just emit a noop. 1425 // Similarly, don't emit empty functions on Windows either. It can lead to 1426 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1427 // after linking, causing the kernel not to load the binary: 1428 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1429 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1430 const Triple &TT = TM.getTargetTriple(); 1431 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1432 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1433 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1434 1435 // Targets can opt-out of emitting the noop here by leaving the opcode 1436 // unspecified. 1437 if (Noop.getOpcode()) { 1438 OutStreamer->AddComment("avoids zero-length function"); 1439 emitNops(1); 1440 } 1441 } 1442 1443 // Switch to the original section in case basic block sections was used. 1444 OutStreamer->SwitchSection(MF->getSection()); 1445 1446 const Function &F = MF->getFunction(); 1447 for (const auto &BB : F) { 1448 if (!BB.hasAddressTaken()) 1449 continue; 1450 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1451 if (Sym->isDefined()) 1452 continue; 1453 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1454 OutStreamer->emitLabel(Sym); 1455 } 1456 1457 // Emit target-specific gunk after the function body. 1458 emitFunctionBodyEnd(); 1459 1460 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1461 MAI->hasDotTypeDotSizeDirective()) { 1462 // Create a symbol for the end of function. 1463 CurrentFnEnd = createTempSymbol("func_end"); 1464 OutStreamer->emitLabel(CurrentFnEnd); 1465 } 1466 1467 // If the target wants a .size directive for the size of the function, emit 1468 // it. 1469 if (MAI->hasDotTypeDotSizeDirective()) { 1470 // We can get the size as difference between the function label and the 1471 // temp label. 1472 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1473 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1474 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1475 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1476 } 1477 1478 for (const HandlerInfo &HI : Handlers) { 1479 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1480 HI.TimerGroupDescription, TimePassesIsEnabled); 1481 HI.Handler->markFunctionEnd(); 1482 } 1483 1484 MBBSectionRanges[MF->front().getSectionIDNum()] = 1485 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1486 1487 // Print out jump tables referenced by the function. 1488 emitJumpTableInfo(); 1489 1490 // Emit post-function debug and/or EH information. 1491 for (const HandlerInfo &HI : Handlers) { 1492 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1493 HI.TimerGroupDescription, TimePassesIsEnabled); 1494 HI.Handler->endFunction(MF); 1495 } 1496 1497 // Emit section containing BB address offsets and their metadata, when 1498 // BB labels are requested for this function. Skip empty functions. 1499 if (MF->hasBBLabels() && HasAnyRealCode) 1500 emitBBAddrMapSection(*MF); 1501 1502 // Emit section containing stack size metadata. 1503 emitStackSizeSection(*MF); 1504 1505 // Emit .su file containing function stack size information. 1506 emitStackUsage(*MF); 1507 1508 emitPatchableFunctionEntries(); 1509 1510 if (isVerbose()) 1511 OutStreamer->GetCommentOS() << "-- End function\n"; 1512 1513 OutStreamer->AddBlankLine(); 1514 } 1515 1516 /// Compute the number of Global Variables that uses a Constant. 1517 static unsigned getNumGlobalVariableUses(const Constant *C) { 1518 if (!C) 1519 return 0; 1520 1521 if (isa<GlobalVariable>(C)) 1522 return 1; 1523 1524 unsigned NumUses = 0; 1525 for (auto *CU : C->users()) 1526 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1527 1528 return NumUses; 1529 } 1530 1531 /// Only consider global GOT equivalents if at least one user is a 1532 /// cstexpr inside an initializer of another global variables. Also, don't 1533 /// handle cstexpr inside instructions. During global variable emission, 1534 /// candidates are skipped and are emitted later in case at least one cstexpr 1535 /// isn't replaced by a PC relative GOT entry access. 1536 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1537 unsigned &NumGOTEquivUsers) { 1538 // Global GOT equivalents are unnamed private globals with a constant 1539 // pointer initializer to another global symbol. They must point to a 1540 // GlobalVariable or Function, i.e., as GlobalValue. 1541 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1542 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1543 !isa<GlobalValue>(GV->getOperand(0))) 1544 return false; 1545 1546 // To be a got equivalent, at least one of its users need to be a constant 1547 // expression used by another global variable. 1548 for (auto *U : GV->users()) 1549 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1550 1551 return NumGOTEquivUsers > 0; 1552 } 1553 1554 /// Unnamed constant global variables solely contaning a pointer to 1555 /// another globals variable is equivalent to a GOT table entry; it contains the 1556 /// the address of another symbol. Optimize it and replace accesses to these 1557 /// "GOT equivalents" by using the GOT entry for the final global instead. 1558 /// Compute GOT equivalent candidates among all global variables to avoid 1559 /// emitting them if possible later on, after it use is replaced by a GOT entry 1560 /// access. 1561 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1562 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1563 return; 1564 1565 for (const auto &G : M.globals()) { 1566 unsigned NumGOTEquivUsers = 0; 1567 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1568 continue; 1569 1570 const MCSymbol *GOTEquivSym = getSymbol(&G); 1571 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1572 } 1573 } 1574 1575 /// Constant expressions using GOT equivalent globals may not be eligible 1576 /// for PC relative GOT entry conversion, in such cases we need to emit such 1577 /// globals we previously omitted in EmitGlobalVariable. 1578 void AsmPrinter::emitGlobalGOTEquivs() { 1579 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1580 return; 1581 1582 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1583 for (auto &I : GlobalGOTEquivs) { 1584 const GlobalVariable *GV = I.second.first; 1585 unsigned Cnt = I.second.second; 1586 if (Cnt) 1587 FailedCandidates.push_back(GV); 1588 } 1589 GlobalGOTEquivs.clear(); 1590 1591 for (auto *GV : FailedCandidates) 1592 emitGlobalVariable(GV); 1593 } 1594 1595 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1596 const GlobalIndirectSymbol& GIS) { 1597 MCSymbol *Name = getSymbol(&GIS); 1598 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1599 // Treat bitcasts of functions as functions also. This is important at least 1600 // on WebAssembly where object and function addresses can't alias each other. 1601 if (!IsFunction) 1602 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1603 if (CE->getOpcode() == Instruction::BitCast) 1604 IsFunction = 1605 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1606 1607 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1608 // so AIX has to use the extra-label-at-definition strategy. At this 1609 // point, all the extra label is emitted, we just have to emit linkage for 1610 // those labels. 1611 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1612 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1613 assert(MAI->hasVisibilityOnlyWithLinkage() && 1614 "Visibility should be handled with emitLinkage() on AIX."); 1615 emitLinkage(&GIS, Name); 1616 // If it's a function, also emit linkage for aliases of function entry 1617 // point. 1618 if (IsFunction) 1619 emitLinkage(&GIS, 1620 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1621 return; 1622 } 1623 1624 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1625 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1626 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1627 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1628 else 1629 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1630 1631 // Set the symbol type to function if the alias has a function type. 1632 // This affects codegen when the aliasee is not a function. 1633 if (IsFunction) 1634 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1635 ? MCSA_ELF_TypeIndFunction 1636 : MCSA_ELF_TypeFunction); 1637 1638 emitVisibility(Name, GIS.getVisibility()); 1639 1640 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1641 1642 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1643 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1644 1645 // Emit the directives as assignments aka .set: 1646 OutStreamer->emitAssignment(Name, Expr); 1647 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1648 if (LocalAlias != Name) 1649 OutStreamer->emitAssignment(LocalAlias, Expr); 1650 1651 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1652 // If the aliasee does not correspond to a symbol in the output, i.e. the 1653 // alias is not of an object or the aliased object is private, then set the 1654 // size of the alias symbol from the type of the alias. We don't do this in 1655 // other situations as the alias and aliasee having differing types but same 1656 // size may be intentional. 1657 const GlobalObject *BaseObject = GA->getBaseObject(); 1658 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1659 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1660 const DataLayout &DL = M.getDataLayout(); 1661 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1662 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1663 } 1664 } 1665 } 1666 1667 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1668 if (!RS.needsSection()) 1669 return; 1670 1671 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1672 1673 Optional<SmallString<128>> Filename; 1674 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1675 Filename = *FilenameRef; 1676 sys::fs::make_absolute(*Filename); 1677 assert(!Filename->empty() && "The filename can't be empty."); 1678 } 1679 1680 std::string Buf; 1681 raw_string_ostream OS(Buf); 1682 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1683 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1684 : RemarkSerializer.metaSerializer(OS); 1685 MetaSerializer->emit(); 1686 1687 // Switch to the remarks section. 1688 MCSection *RemarksSection = 1689 OutContext.getObjectFileInfo()->getRemarksSection(); 1690 OutStreamer->SwitchSection(RemarksSection); 1691 1692 OutStreamer->emitBinaryData(OS.str()); 1693 } 1694 1695 bool AsmPrinter::doFinalization(Module &M) { 1696 // Set the MachineFunction to nullptr so that we can catch attempted 1697 // accesses to MF specific features at the module level and so that 1698 // we can conditionalize accesses based on whether or not it is nullptr. 1699 MF = nullptr; 1700 1701 // Gather all GOT equivalent globals in the module. We really need two 1702 // passes over the globals: one to compute and another to avoid its emission 1703 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1704 // where the got equivalent shows up before its use. 1705 computeGlobalGOTEquivs(M); 1706 1707 // Emit global variables. 1708 for (const auto &G : M.globals()) 1709 emitGlobalVariable(&G); 1710 1711 // Emit remaining GOT equivalent globals. 1712 emitGlobalGOTEquivs(); 1713 1714 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1715 1716 // Emit linkage(XCOFF) and visibility info for declarations 1717 for (const Function &F : M) { 1718 if (!F.isDeclarationForLinker()) 1719 continue; 1720 1721 MCSymbol *Name = getSymbol(&F); 1722 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1723 1724 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1725 GlobalValue::VisibilityTypes V = F.getVisibility(); 1726 if (V == GlobalValue::DefaultVisibility) 1727 continue; 1728 1729 emitVisibility(Name, V, false); 1730 continue; 1731 } 1732 1733 if (F.isIntrinsic()) 1734 continue; 1735 1736 // Handle the XCOFF case. 1737 // Variable `Name` is the function descriptor symbol (see above). Get the 1738 // function entry point symbol. 1739 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1740 // Emit linkage for the function entry point. 1741 emitLinkage(&F, FnEntryPointSym); 1742 1743 // Emit linkage for the function descriptor. 1744 emitLinkage(&F, Name); 1745 } 1746 1747 // Emit the remarks section contents. 1748 // FIXME: Figure out when is the safest time to emit this section. It should 1749 // not come after debug info. 1750 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1751 emitRemarksSection(*RS); 1752 1753 TLOF.emitModuleMetadata(*OutStreamer, M); 1754 1755 if (TM.getTargetTriple().isOSBinFormatELF()) { 1756 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1757 1758 // Output stubs for external and common global variables. 1759 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1760 if (!Stubs.empty()) { 1761 OutStreamer->SwitchSection(TLOF.getDataSection()); 1762 const DataLayout &DL = M.getDataLayout(); 1763 1764 emitAlignment(Align(DL.getPointerSize())); 1765 for (const auto &Stub : Stubs) { 1766 OutStreamer->emitLabel(Stub.first); 1767 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1768 DL.getPointerSize()); 1769 } 1770 } 1771 } 1772 1773 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1774 MachineModuleInfoCOFF &MMICOFF = 1775 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1776 1777 // Output stubs for external and common global variables. 1778 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1779 if (!Stubs.empty()) { 1780 const DataLayout &DL = M.getDataLayout(); 1781 1782 for (const auto &Stub : Stubs) { 1783 SmallString<256> SectionName = StringRef(".rdata$"); 1784 SectionName += Stub.first->getName(); 1785 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1786 SectionName, 1787 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1788 COFF::IMAGE_SCN_LNK_COMDAT, 1789 SectionKind::getReadOnly(), Stub.first->getName(), 1790 COFF::IMAGE_COMDAT_SELECT_ANY)); 1791 emitAlignment(Align(DL.getPointerSize())); 1792 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1793 OutStreamer->emitLabel(Stub.first); 1794 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1795 DL.getPointerSize()); 1796 } 1797 } 1798 } 1799 1800 // Finalize debug and EH information. 1801 for (const HandlerInfo &HI : Handlers) { 1802 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1803 HI.TimerGroupDescription, TimePassesIsEnabled); 1804 HI.Handler->endModule(); 1805 } 1806 1807 // This deletes all the ephemeral handlers that AsmPrinter added, while 1808 // keeping all the user-added handlers alive until the AsmPrinter is 1809 // destroyed. 1810 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1811 DD = nullptr; 1812 1813 // If the target wants to know about weak references, print them all. 1814 if (MAI->getWeakRefDirective()) { 1815 // FIXME: This is not lazy, it would be nice to only print weak references 1816 // to stuff that is actually used. Note that doing so would require targets 1817 // to notice uses in operands (due to constant exprs etc). This should 1818 // happen with the MC stuff eventually. 1819 1820 // Print out module-level global objects here. 1821 for (const auto &GO : M.global_objects()) { 1822 if (!GO.hasExternalWeakLinkage()) 1823 continue; 1824 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1825 } 1826 } 1827 1828 // Print aliases in topological order, that is, for each alias a = b, 1829 // b must be printed before a. 1830 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1831 // such an order to generate correct TOC information. 1832 SmallVector<const GlobalAlias *, 16> AliasStack; 1833 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1834 for (const auto &Alias : M.aliases()) { 1835 for (const GlobalAlias *Cur = &Alias; Cur; 1836 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1837 if (!AliasVisited.insert(Cur).second) 1838 break; 1839 AliasStack.push_back(Cur); 1840 } 1841 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1842 emitGlobalIndirectSymbol(M, *AncestorAlias); 1843 AliasStack.clear(); 1844 } 1845 for (const auto &IFunc : M.ifuncs()) 1846 emitGlobalIndirectSymbol(M, IFunc); 1847 1848 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1849 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1850 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1851 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1852 MP->finishAssembly(M, *MI, *this); 1853 1854 // Emit llvm.ident metadata in an '.ident' directive. 1855 emitModuleIdents(M); 1856 1857 // Emit bytes for llvm.commandline metadata. 1858 emitModuleCommandLines(M); 1859 1860 // Emit __morestack address if needed for indirect calls. 1861 if (MMI->usesMorestackAddr()) { 1862 Align Alignment(1); 1863 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1864 getDataLayout(), SectionKind::getReadOnly(), 1865 /*C=*/nullptr, Alignment); 1866 OutStreamer->SwitchSection(ReadOnlySection); 1867 1868 MCSymbol *AddrSymbol = 1869 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1870 OutStreamer->emitLabel(AddrSymbol); 1871 1872 unsigned PtrSize = MAI->getCodePointerSize(); 1873 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1874 PtrSize); 1875 } 1876 1877 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1878 // split-stack is used. 1879 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1880 OutStreamer->SwitchSection( 1881 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1882 if (MMI->hasNosplitStack()) 1883 OutStreamer->SwitchSection( 1884 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1885 } 1886 1887 // If we don't have any trampolines, then we don't require stack memory 1888 // to be executable. Some targets have a directive to declare this. 1889 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1890 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1891 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1892 OutStreamer->SwitchSection(S); 1893 1894 if (TM.Options.EmitAddrsig) { 1895 // Emit address-significance attributes for all globals. 1896 OutStreamer->emitAddrsig(); 1897 for (const GlobalValue &GV : M.global_values()) { 1898 if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() && 1899 !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() && 1900 !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr()) 1901 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1902 } 1903 } 1904 1905 // Emit symbol partition specifications (ELF only). 1906 if (TM.getTargetTriple().isOSBinFormatELF()) { 1907 unsigned UniqueID = 0; 1908 for (const GlobalValue &GV : M.global_values()) { 1909 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1910 GV.getVisibility() != GlobalValue::DefaultVisibility) 1911 continue; 1912 1913 OutStreamer->SwitchSection( 1914 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1915 "", false, ++UniqueID, nullptr)); 1916 OutStreamer->emitBytes(GV.getPartition()); 1917 OutStreamer->emitZeros(1); 1918 OutStreamer->emitValue( 1919 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1920 MAI->getCodePointerSize()); 1921 } 1922 } 1923 1924 // Allow the target to emit any magic that it wants at the end of the file, 1925 // after everything else has gone out. 1926 emitEndOfAsmFile(M); 1927 1928 MMI = nullptr; 1929 1930 OutStreamer->Finish(); 1931 OutStreamer->reset(); 1932 OwnedMLI.reset(); 1933 OwnedMDT.reset(); 1934 1935 return false; 1936 } 1937 1938 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1939 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1940 if (Res.second) 1941 Res.first->second = createTempSymbol("exception"); 1942 return Res.first->second; 1943 } 1944 1945 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1946 this->MF = &MF; 1947 const Function &F = MF.getFunction(); 1948 1949 // Get the function symbol. 1950 if (!MAI->needsFunctionDescriptors()) { 1951 CurrentFnSym = getSymbol(&MF.getFunction()); 1952 } else { 1953 assert(TM.getTargetTriple().isOSAIX() && 1954 "Only AIX uses the function descriptor hooks."); 1955 // AIX is unique here in that the name of the symbol emitted for the 1956 // function body does not have the same name as the source function's 1957 // C-linkage name. 1958 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1959 " initalized first."); 1960 1961 // Get the function entry point symbol. 1962 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1963 } 1964 1965 CurrentFnSymForSize = CurrentFnSym; 1966 CurrentFnBegin = nullptr; 1967 CurrentSectionBeginSym = nullptr; 1968 MBBSectionRanges.clear(); 1969 MBBSectionExceptionSyms.clear(); 1970 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1971 if (F.hasFnAttribute("patchable-function-entry") || 1972 F.hasFnAttribute("function-instrument") || 1973 F.hasFnAttribute("xray-instruction-threshold") || 1974 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1975 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1976 CurrentFnBegin = createTempSymbol("func_begin"); 1977 if (NeedsLocalForSize) 1978 CurrentFnSymForSize = CurrentFnBegin; 1979 } 1980 1981 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1982 } 1983 1984 namespace { 1985 1986 // Keep track the alignment, constpool entries per Section. 1987 struct SectionCPs { 1988 MCSection *S; 1989 Align Alignment; 1990 SmallVector<unsigned, 4> CPEs; 1991 1992 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1993 }; 1994 1995 } // end anonymous namespace 1996 1997 /// EmitConstantPool - Print to the current output stream assembly 1998 /// representations of the constants in the constant pool MCP. This is 1999 /// used to print out constants which have been "spilled to memory" by 2000 /// the code generator. 2001 void AsmPrinter::emitConstantPool() { 2002 const MachineConstantPool *MCP = MF->getConstantPool(); 2003 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2004 if (CP.empty()) return; 2005 2006 // Calculate sections for constant pool entries. We collect entries to go into 2007 // the same section together to reduce amount of section switch statements. 2008 SmallVector<SectionCPs, 4> CPSections; 2009 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2010 const MachineConstantPoolEntry &CPE = CP[i]; 2011 Align Alignment = CPE.getAlign(); 2012 2013 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2014 2015 const Constant *C = nullptr; 2016 if (!CPE.isMachineConstantPoolEntry()) 2017 C = CPE.Val.ConstVal; 2018 2019 MCSection *S = getObjFileLowering().getSectionForConstant( 2020 getDataLayout(), Kind, C, Alignment); 2021 2022 // The number of sections are small, just do a linear search from the 2023 // last section to the first. 2024 bool Found = false; 2025 unsigned SecIdx = CPSections.size(); 2026 while (SecIdx != 0) { 2027 if (CPSections[--SecIdx].S == S) { 2028 Found = true; 2029 break; 2030 } 2031 } 2032 if (!Found) { 2033 SecIdx = CPSections.size(); 2034 CPSections.push_back(SectionCPs(S, Alignment)); 2035 } 2036 2037 if (Alignment > CPSections[SecIdx].Alignment) 2038 CPSections[SecIdx].Alignment = Alignment; 2039 CPSections[SecIdx].CPEs.push_back(i); 2040 } 2041 2042 // Now print stuff into the calculated sections. 2043 const MCSection *CurSection = nullptr; 2044 unsigned Offset = 0; 2045 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2046 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2047 unsigned CPI = CPSections[i].CPEs[j]; 2048 MCSymbol *Sym = GetCPISymbol(CPI); 2049 if (!Sym->isUndefined()) 2050 continue; 2051 2052 if (CurSection != CPSections[i].S) { 2053 OutStreamer->SwitchSection(CPSections[i].S); 2054 emitAlignment(Align(CPSections[i].Alignment)); 2055 CurSection = CPSections[i].S; 2056 Offset = 0; 2057 } 2058 2059 MachineConstantPoolEntry CPE = CP[CPI]; 2060 2061 // Emit inter-object padding for alignment. 2062 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2063 OutStreamer->emitZeros(NewOffset - Offset); 2064 2065 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2066 2067 OutStreamer->emitLabel(Sym); 2068 if (CPE.isMachineConstantPoolEntry()) 2069 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2070 else 2071 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2072 } 2073 } 2074 } 2075 2076 // Print assembly representations of the jump tables used by the current 2077 // function. 2078 void AsmPrinter::emitJumpTableInfo() { 2079 const DataLayout &DL = MF->getDataLayout(); 2080 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2081 if (!MJTI) return; 2082 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2083 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2084 if (JT.empty()) return; 2085 2086 // Pick the directive to use to print the jump table entries, and switch to 2087 // the appropriate section. 2088 const Function &F = MF->getFunction(); 2089 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2090 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2091 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2092 F); 2093 if (JTInDiffSection) { 2094 // Drop it in the readonly section. 2095 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2096 OutStreamer->SwitchSection(ReadOnlySection); 2097 } 2098 2099 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2100 2101 // Jump tables in code sections are marked with a data_region directive 2102 // where that's supported. 2103 if (!JTInDiffSection) 2104 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2105 2106 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2107 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2108 2109 // If this jump table was deleted, ignore it. 2110 if (JTBBs.empty()) continue; 2111 2112 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2113 /// emit a .set directive for each unique entry. 2114 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2115 MAI->doesSetDirectiveSuppressReloc()) { 2116 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2117 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2118 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2119 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2120 const MachineBasicBlock *MBB = JTBBs[ii]; 2121 if (!EmittedSets.insert(MBB).second) 2122 continue; 2123 2124 // .set LJTSet, LBB32-base 2125 const MCExpr *LHS = 2126 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2127 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2128 MCBinaryExpr::createSub(LHS, Base, 2129 OutContext)); 2130 } 2131 } 2132 2133 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2134 // before each jump table. The first label is never referenced, but tells 2135 // the assembler and linker the extents of the jump table object. The 2136 // second label is actually referenced by the code. 2137 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2138 // FIXME: This doesn't have to have any specific name, just any randomly 2139 // named and numbered local label started with 'l' would work. Simplify 2140 // GetJTISymbol. 2141 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2142 2143 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2144 OutStreamer->emitLabel(JTISymbol); 2145 2146 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2147 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2148 } 2149 if (!JTInDiffSection) 2150 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2151 } 2152 2153 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2154 /// current stream. 2155 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2156 const MachineBasicBlock *MBB, 2157 unsigned UID) const { 2158 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2159 const MCExpr *Value = nullptr; 2160 switch (MJTI->getEntryKind()) { 2161 case MachineJumpTableInfo::EK_Inline: 2162 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2163 case MachineJumpTableInfo::EK_Custom32: 2164 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2165 MJTI, MBB, UID, OutContext); 2166 break; 2167 case MachineJumpTableInfo::EK_BlockAddress: 2168 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2169 // .word LBB123 2170 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2171 break; 2172 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2173 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2174 // with a relocation as gp-relative, e.g.: 2175 // .gprel32 LBB123 2176 MCSymbol *MBBSym = MBB->getSymbol(); 2177 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2178 return; 2179 } 2180 2181 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2182 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2183 // with a relocation as gp-relative, e.g.: 2184 // .gpdword LBB123 2185 MCSymbol *MBBSym = MBB->getSymbol(); 2186 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2187 return; 2188 } 2189 2190 case MachineJumpTableInfo::EK_LabelDifference32: { 2191 // Each entry is the address of the block minus the address of the jump 2192 // table. This is used for PIC jump tables where gprel32 is not supported. 2193 // e.g.: 2194 // .word LBB123 - LJTI1_2 2195 // If the .set directive avoids relocations, this is emitted as: 2196 // .set L4_5_set_123, LBB123 - LJTI1_2 2197 // .word L4_5_set_123 2198 if (MAI->doesSetDirectiveSuppressReloc()) { 2199 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2200 OutContext); 2201 break; 2202 } 2203 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2204 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2205 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2206 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2207 break; 2208 } 2209 } 2210 2211 assert(Value && "Unknown entry kind!"); 2212 2213 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2214 OutStreamer->emitValue(Value, EntrySize); 2215 } 2216 2217 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2218 /// special global used by LLVM. If so, emit it and return true, otherwise 2219 /// do nothing and return false. 2220 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2221 if (GV->getName() == "llvm.used") { 2222 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2223 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2224 return true; 2225 } 2226 2227 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2228 if (GV->getSection() == "llvm.metadata" || 2229 GV->hasAvailableExternallyLinkage()) 2230 return true; 2231 2232 if (!GV->hasAppendingLinkage()) return false; 2233 2234 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2235 2236 if (GV->getName() == "llvm.global_ctors") { 2237 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2238 /* isCtor */ true); 2239 2240 return true; 2241 } 2242 2243 if (GV->getName() == "llvm.global_dtors") { 2244 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2245 /* isCtor */ false); 2246 2247 return true; 2248 } 2249 2250 report_fatal_error("unknown special variable"); 2251 } 2252 2253 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2254 /// global in the specified llvm.used list. 2255 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2256 // Should be an array of 'i8*'. 2257 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2258 const GlobalValue *GV = 2259 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2260 if (GV) 2261 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2262 } 2263 } 2264 2265 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2266 const Constant *List, 2267 SmallVector<Structor, 8> &Structors) { 2268 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2269 // the init priority. 2270 if (!isa<ConstantArray>(List)) 2271 return; 2272 2273 // Gather the structors in a form that's convenient for sorting by priority. 2274 for (Value *O : cast<ConstantArray>(List)->operands()) { 2275 auto *CS = cast<ConstantStruct>(O); 2276 if (CS->getOperand(1)->isNullValue()) 2277 break; // Found a null terminator, skip the rest. 2278 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2279 if (!Priority) 2280 continue; // Malformed. 2281 Structors.push_back(Structor()); 2282 Structor &S = Structors.back(); 2283 S.Priority = Priority->getLimitedValue(65535); 2284 S.Func = CS->getOperand(1); 2285 if (!CS->getOperand(2)->isNullValue()) { 2286 if (TM.getTargetTriple().isOSAIX()) 2287 llvm::report_fatal_error( 2288 "associated data of XXStructor list is not yet supported on AIX"); 2289 S.ComdatKey = 2290 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2291 } 2292 } 2293 2294 // Emit the function pointers in the target-specific order 2295 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2296 return L.Priority < R.Priority; 2297 }); 2298 } 2299 2300 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2301 /// priority. 2302 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2303 bool IsCtor) { 2304 SmallVector<Structor, 8> Structors; 2305 preprocessXXStructorList(DL, List, Structors); 2306 if (Structors.empty()) 2307 return; 2308 2309 const Align Align = DL.getPointerPrefAlignment(); 2310 for (Structor &S : Structors) { 2311 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2312 const MCSymbol *KeySym = nullptr; 2313 if (GlobalValue *GV = S.ComdatKey) { 2314 if (GV->isDeclarationForLinker()) 2315 // If the associated variable is not defined in this module 2316 // (it might be available_externally, or have been an 2317 // available_externally definition that was dropped by the 2318 // EliminateAvailableExternally pass), some other TU 2319 // will provide its dynamic initializer. 2320 continue; 2321 2322 KeySym = getSymbol(GV); 2323 } 2324 2325 MCSection *OutputSection = 2326 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2327 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2328 OutStreamer->SwitchSection(OutputSection); 2329 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2330 emitAlignment(Align); 2331 emitXXStructor(DL, S.Func); 2332 } 2333 } 2334 2335 void AsmPrinter::emitModuleIdents(Module &M) { 2336 if (!MAI->hasIdentDirective()) 2337 return; 2338 2339 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2340 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2341 const MDNode *N = NMD->getOperand(i); 2342 assert(N->getNumOperands() == 1 && 2343 "llvm.ident metadata entry can have only one operand"); 2344 const MDString *S = cast<MDString>(N->getOperand(0)); 2345 OutStreamer->emitIdent(S->getString()); 2346 } 2347 } 2348 } 2349 2350 void AsmPrinter::emitModuleCommandLines(Module &M) { 2351 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2352 if (!CommandLine) 2353 return; 2354 2355 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2356 if (!NMD || !NMD->getNumOperands()) 2357 return; 2358 2359 OutStreamer->PushSection(); 2360 OutStreamer->SwitchSection(CommandLine); 2361 OutStreamer->emitZeros(1); 2362 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2363 const MDNode *N = NMD->getOperand(i); 2364 assert(N->getNumOperands() == 1 && 2365 "llvm.commandline metadata entry can have only one operand"); 2366 const MDString *S = cast<MDString>(N->getOperand(0)); 2367 OutStreamer->emitBytes(S->getString()); 2368 OutStreamer->emitZeros(1); 2369 } 2370 OutStreamer->PopSection(); 2371 } 2372 2373 //===--------------------------------------------------------------------===// 2374 // Emission and print routines 2375 // 2376 2377 /// Emit a byte directive and value. 2378 /// 2379 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2380 2381 /// Emit a short directive and value. 2382 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2383 2384 /// Emit a long directive and value. 2385 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2386 2387 /// Emit a long long directive and value. 2388 void AsmPrinter::emitInt64(uint64_t Value) const { 2389 OutStreamer->emitInt64(Value); 2390 } 2391 2392 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2393 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2394 /// .set if it avoids relocations. 2395 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2396 unsigned Size) const { 2397 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2398 } 2399 2400 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2401 /// where the size in bytes of the directive is specified by Size and Label 2402 /// specifies the label. This implicitly uses .set if it is available. 2403 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2404 unsigned Size, 2405 bool IsSectionRelative) const { 2406 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2407 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2408 if (Size > 4) 2409 OutStreamer->emitZeros(Size - 4); 2410 return; 2411 } 2412 2413 // Emit Label+Offset (or just Label if Offset is zero) 2414 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2415 if (Offset) 2416 Expr = MCBinaryExpr::createAdd( 2417 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2418 2419 OutStreamer->emitValue(Expr, Size); 2420 } 2421 2422 //===----------------------------------------------------------------------===// 2423 2424 // EmitAlignment - Emit an alignment directive to the specified power of 2425 // two boundary. If a global value is specified, and if that global has 2426 // an explicit alignment requested, it will override the alignment request 2427 // if required for correctness. 2428 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2429 if (GV) 2430 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2431 2432 if (Alignment == Align(1)) 2433 return; // 1-byte aligned: no need to emit alignment. 2434 2435 if (getCurrentSection()->getKind().isText()) 2436 OutStreamer->emitCodeAlignment(Alignment.value()); 2437 else 2438 OutStreamer->emitValueToAlignment(Alignment.value()); 2439 } 2440 2441 //===----------------------------------------------------------------------===// 2442 // Constant emission. 2443 //===----------------------------------------------------------------------===// 2444 2445 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2446 MCContext &Ctx = OutContext; 2447 2448 if (CV->isNullValue() || isa<UndefValue>(CV)) 2449 return MCConstantExpr::create(0, Ctx); 2450 2451 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2452 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2453 2454 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2455 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2456 2457 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2458 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2459 2460 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2461 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2462 2463 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2464 if (!CE) { 2465 llvm_unreachable("Unknown constant value to lower!"); 2466 } 2467 2468 switch (CE->getOpcode()) { 2469 case Instruction::AddrSpaceCast: { 2470 const Constant *Op = CE->getOperand(0); 2471 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2472 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2473 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2474 return lowerConstant(Op); 2475 2476 // Fallthrough to error. 2477 LLVM_FALLTHROUGH; 2478 } 2479 default: { 2480 // If the code isn't optimized, there may be outstanding folding 2481 // opportunities. Attempt to fold the expression using DataLayout as a 2482 // last resort before giving up. 2483 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2484 if (C != CE) 2485 return lowerConstant(C); 2486 2487 // Otherwise report the problem to the user. 2488 std::string S; 2489 raw_string_ostream OS(S); 2490 OS << "Unsupported expression in static initializer: "; 2491 CE->printAsOperand(OS, /*PrintType=*/false, 2492 !MF ? nullptr : MF->getFunction().getParent()); 2493 report_fatal_error(OS.str()); 2494 } 2495 case Instruction::GetElementPtr: { 2496 // Generate a symbolic expression for the byte address 2497 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2498 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2499 2500 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2501 if (!OffsetAI) 2502 return Base; 2503 2504 int64_t Offset = OffsetAI.getSExtValue(); 2505 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2506 Ctx); 2507 } 2508 2509 case Instruction::Trunc: 2510 // We emit the value and depend on the assembler to truncate the generated 2511 // expression properly. This is important for differences between 2512 // blockaddress labels. Since the two labels are in the same function, it 2513 // is reasonable to treat their delta as a 32-bit value. 2514 LLVM_FALLTHROUGH; 2515 case Instruction::BitCast: 2516 return lowerConstant(CE->getOperand(0)); 2517 2518 case Instruction::IntToPtr: { 2519 const DataLayout &DL = getDataLayout(); 2520 2521 // Handle casts to pointers by changing them into casts to the appropriate 2522 // integer type. This promotes constant folding and simplifies this code. 2523 Constant *Op = CE->getOperand(0); 2524 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2525 false/*ZExt*/); 2526 return lowerConstant(Op); 2527 } 2528 2529 case Instruction::PtrToInt: { 2530 const DataLayout &DL = getDataLayout(); 2531 2532 // Support only foldable casts to/from pointers that can be eliminated by 2533 // changing the pointer to the appropriately sized integer type. 2534 Constant *Op = CE->getOperand(0); 2535 Type *Ty = CE->getType(); 2536 2537 const MCExpr *OpExpr = lowerConstant(Op); 2538 2539 // We can emit the pointer value into this slot if the slot is an 2540 // integer slot equal to the size of the pointer. 2541 // 2542 // If the pointer is larger than the resultant integer, then 2543 // as with Trunc just depend on the assembler to truncate it. 2544 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2545 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2546 return OpExpr; 2547 2548 // Otherwise the pointer is smaller than the resultant integer, mask off 2549 // the high bits so we are sure to get a proper truncation if the input is 2550 // a constant expr. 2551 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2552 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2553 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2554 } 2555 2556 case Instruction::Sub: { 2557 GlobalValue *LHSGV; 2558 APInt LHSOffset; 2559 DSOLocalEquivalent *DSOEquiv; 2560 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2561 getDataLayout(), &DSOEquiv)) { 2562 GlobalValue *RHSGV; 2563 APInt RHSOffset; 2564 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2565 getDataLayout())) { 2566 const MCExpr *RelocExpr = 2567 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2568 if (!RelocExpr) { 2569 const MCExpr *LHSExpr = 2570 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2571 if (DSOEquiv && 2572 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2573 LHSExpr = 2574 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2575 RelocExpr = MCBinaryExpr::createSub( 2576 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2577 } 2578 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2579 if (Addend != 0) 2580 RelocExpr = MCBinaryExpr::createAdd( 2581 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2582 return RelocExpr; 2583 } 2584 } 2585 } 2586 // else fallthrough 2587 LLVM_FALLTHROUGH; 2588 2589 // The MC library also has a right-shift operator, but it isn't consistently 2590 // signed or unsigned between different targets. 2591 case Instruction::Add: 2592 case Instruction::Mul: 2593 case Instruction::SDiv: 2594 case Instruction::SRem: 2595 case Instruction::Shl: 2596 case Instruction::And: 2597 case Instruction::Or: 2598 case Instruction::Xor: { 2599 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2600 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2601 switch (CE->getOpcode()) { 2602 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2603 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2604 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2605 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2606 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2607 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2608 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2609 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2610 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2611 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2612 } 2613 } 2614 } 2615 } 2616 2617 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2618 AsmPrinter &AP, 2619 const Constant *BaseCV = nullptr, 2620 uint64_t Offset = 0); 2621 2622 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2623 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2624 2625 /// isRepeatedByteSequence - Determine whether the given value is 2626 /// composed of a repeated sequence of identical bytes and return the 2627 /// byte value. If it is not a repeated sequence, return -1. 2628 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2629 StringRef Data = V->getRawDataValues(); 2630 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2631 char C = Data[0]; 2632 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2633 if (Data[i] != C) return -1; 2634 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2635 } 2636 2637 /// isRepeatedByteSequence - Determine whether the given value is 2638 /// composed of a repeated sequence of identical bytes and return the 2639 /// byte value. If it is not a repeated sequence, return -1. 2640 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2641 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2642 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2643 assert(Size % 8 == 0); 2644 2645 // Extend the element to take zero padding into account. 2646 APInt Value = CI->getValue().zextOrSelf(Size); 2647 if (!Value.isSplat(8)) 2648 return -1; 2649 2650 return Value.zextOrTrunc(8).getZExtValue(); 2651 } 2652 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2653 // Make sure all array elements are sequences of the same repeated 2654 // byte. 2655 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2656 Constant *Op0 = CA->getOperand(0); 2657 int Byte = isRepeatedByteSequence(Op0, DL); 2658 if (Byte == -1) 2659 return -1; 2660 2661 // All array elements must be equal. 2662 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2663 if (CA->getOperand(i) != Op0) 2664 return -1; 2665 return Byte; 2666 } 2667 2668 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2669 return isRepeatedByteSequence(CDS); 2670 2671 return -1; 2672 } 2673 2674 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2675 const ConstantDataSequential *CDS, 2676 AsmPrinter &AP) { 2677 // See if we can aggregate this into a .fill, if so, emit it as such. 2678 int Value = isRepeatedByteSequence(CDS, DL); 2679 if (Value != -1) { 2680 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2681 // Don't emit a 1-byte object as a .fill. 2682 if (Bytes > 1) 2683 return AP.OutStreamer->emitFill(Bytes, Value); 2684 } 2685 2686 // If this can be emitted with .ascii/.asciz, emit it as such. 2687 if (CDS->isString()) 2688 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2689 2690 // Otherwise, emit the values in successive locations. 2691 unsigned ElementByteSize = CDS->getElementByteSize(); 2692 if (isa<IntegerType>(CDS->getElementType())) { 2693 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2694 if (AP.isVerbose()) 2695 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2696 CDS->getElementAsInteger(i)); 2697 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2698 ElementByteSize); 2699 } 2700 } else { 2701 Type *ET = CDS->getElementType(); 2702 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2703 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2704 } 2705 2706 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2707 unsigned EmittedSize = 2708 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2709 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2710 if (unsigned Padding = Size - EmittedSize) 2711 AP.OutStreamer->emitZeros(Padding); 2712 } 2713 2714 static void emitGlobalConstantArray(const DataLayout &DL, 2715 const ConstantArray *CA, AsmPrinter &AP, 2716 const Constant *BaseCV, uint64_t Offset) { 2717 // See if we can aggregate some values. Make sure it can be 2718 // represented as a series of bytes of the constant value. 2719 int Value = isRepeatedByteSequence(CA, DL); 2720 2721 if (Value != -1) { 2722 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2723 AP.OutStreamer->emitFill(Bytes, Value); 2724 } 2725 else { 2726 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2727 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2728 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2729 } 2730 } 2731 } 2732 2733 static void emitGlobalConstantVector(const DataLayout &DL, 2734 const ConstantVector *CV, AsmPrinter &AP) { 2735 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2736 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2737 2738 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2739 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2740 CV->getType()->getNumElements(); 2741 if (unsigned Padding = Size - EmittedSize) 2742 AP.OutStreamer->emitZeros(Padding); 2743 } 2744 2745 static void emitGlobalConstantStruct(const DataLayout &DL, 2746 const ConstantStruct *CS, AsmPrinter &AP, 2747 const Constant *BaseCV, uint64_t Offset) { 2748 // Print the fields in successive locations. Pad to align if needed! 2749 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2750 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2751 uint64_t SizeSoFar = 0; 2752 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2753 const Constant *Field = CS->getOperand(i); 2754 2755 // Print the actual field value. 2756 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2757 2758 // Check if padding is needed and insert one or more 0s. 2759 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2760 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2761 - Layout->getElementOffset(i)) - FieldSize; 2762 SizeSoFar += FieldSize + PadSize; 2763 2764 // Insert padding - this may include padding to increase the size of the 2765 // current field up to the ABI size (if the struct is not packed) as well 2766 // as padding to ensure that the next field starts at the right offset. 2767 AP.OutStreamer->emitZeros(PadSize); 2768 } 2769 assert(SizeSoFar == Layout->getSizeInBytes() && 2770 "Layout of constant struct may be incorrect!"); 2771 } 2772 2773 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2774 assert(ET && "Unknown float type"); 2775 APInt API = APF.bitcastToAPInt(); 2776 2777 // First print a comment with what we think the original floating-point value 2778 // should have been. 2779 if (AP.isVerbose()) { 2780 SmallString<8> StrVal; 2781 APF.toString(StrVal); 2782 ET->print(AP.OutStreamer->GetCommentOS()); 2783 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2784 } 2785 2786 // Now iterate through the APInt chunks, emitting them in endian-correct 2787 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2788 // floats). 2789 unsigned NumBytes = API.getBitWidth() / 8; 2790 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2791 const uint64_t *p = API.getRawData(); 2792 2793 // PPC's long double has odd notions of endianness compared to how LLVM 2794 // handles it: p[0] goes first for *big* endian on PPC. 2795 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2796 int Chunk = API.getNumWords() - 1; 2797 2798 if (TrailingBytes) 2799 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2800 2801 for (; Chunk >= 0; --Chunk) 2802 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2803 } else { 2804 unsigned Chunk; 2805 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2806 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2807 2808 if (TrailingBytes) 2809 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2810 } 2811 2812 // Emit the tail padding for the long double. 2813 const DataLayout &DL = AP.getDataLayout(); 2814 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2815 } 2816 2817 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2818 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2819 } 2820 2821 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2822 const DataLayout &DL = AP.getDataLayout(); 2823 unsigned BitWidth = CI->getBitWidth(); 2824 2825 // Copy the value as we may massage the layout for constants whose bit width 2826 // is not a multiple of 64-bits. 2827 APInt Realigned(CI->getValue()); 2828 uint64_t ExtraBits = 0; 2829 unsigned ExtraBitsSize = BitWidth & 63; 2830 2831 if (ExtraBitsSize) { 2832 // The bit width of the data is not a multiple of 64-bits. 2833 // The extra bits are expected to be at the end of the chunk of the memory. 2834 // Little endian: 2835 // * Nothing to be done, just record the extra bits to emit. 2836 // Big endian: 2837 // * Record the extra bits to emit. 2838 // * Realign the raw data to emit the chunks of 64-bits. 2839 if (DL.isBigEndian()) { 2840 // Basically the structure of the raw data is a chunk of 64-bits cells: 2841 // 0 1 BitWidth / 64 2842 // [chunk1][chunk2] ... [chunkN]. 2843 // The most significant chunk is chunkN and it should be emitted first. 2844 // However, due to the alignment issue chunkN contains useless bits. 2845 // Realign the chunks so that they contain only useful information: 2846 // ExtraBits 0 1 (BitWidth / 64) - 1 2847 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2848 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2849 ExtraBits = Realigned.getRawData()[0] & 2850 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2851 Realigned.lshrInPlace(ExtraBitsSize); 2852 } else 2853 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2854 } 2855 2856 // We don't expect assemblers to support integer data directives 2857 // for more than 64 bits, so we emit the data in at most 64-bit 2858 // quantities at a time. 2859 const uint64_t *RawData = Realigned.getRawData(); 2860 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2861 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2862 AP.OutStreamer->emitIntValue(Val, 8); 2863 } 2864 2865 if (ExtraBitsSize) { 2866 // Emit the extra bits after the 64-bits chunks. 2867 2868 // Emit a directive that fills the expected size. 2869 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2870 Size -= (BitWidth / 64) * 8; 2871 assert(Size && Size * 8 >= ExtraBitsSize && 2872 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2873 == ExtraBits && "Directive too small for extra bits."); 2874 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2875 } 2876 } 2877 2878 /// Transform a not absolute MCExpr containing a reference to a GOT 2879 /// equivalent global, by a target specific GOT pc relative access to the 2880 /// final symbol. 2881 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2882 const Constant *BaseCst, 2883 uint64_t Offset) { 2884 // The global @foo below illustrates a global that uses a got equivalent. 2885 // 2886 // @bar = global i32 42 2887 // @gotequiv = private unnamed_addr constant i32* @bar 2888 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2889 // i64 ptrtoint (i32* @foo to i64)) 2890 // to i32) 2891 // 2892 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2893 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2894 // form: 2895 // 2896 // foo = cstexpr, where 2897 // cstexpr := <gotequiv> - "." + <cst> 2898 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2899 // 2900 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2901 // 2902 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2903 // gotpcrelcst := <offset from @foo base> + <cst> 2904 MCValue MV; 2905 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2906 return; 2907 const MCSymbolRefExpr *SymA = MV.getSymA(); 2908 if (!SymA) 2909 return; 2910 2911 // Check that GOT equivalent symbol is cached. 2912 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2913 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2914 return; 2915 2916 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2917 if (!BaseGV) 2918 return; 2919 2920 // Check for a valid base symbol 2921 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2922 const MCSymbolRefExpr *SymB = MV.getSymB(); 2923 2924 if (!SymB || BaseSym != &SymB->getSymbol()) 2925 return; 2926 2927 // Make sure to match: 2928 // 2929 // gotpcrelcst := <offset from @foo base> + <cst> 2930 // 2931 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2932 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2933 // if the target knows how to encode it. 2934 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2935 if (GOTPCRelCst < 0) 2936 return; 2937 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2938 return; 2939 2940 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2941 // 2942 // bar: 2943 // .long 42 2944 // gotequiv: 2945 // .quad bar 2946 // foo: 2947 // .long gotequiv - "." + <cst> 2948 // 2949 // is replaced by the target specific equivalent to: 2950 // 2951 // bar: 2952 // .long 42 2953 // foo: 2954 // .long bar@GOTPCREL+<gotpcrelcst> 2955 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2956 const GlobalVariable *GV = Result.first; 2957 int NumUses = (int)Result.second; 2958 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2959 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2960 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2961 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2962 2963 // Update GOT equivalent usage information 2964 --NumUses; 2965 if (NumUses >= 0) 2966 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2967 } 2968 2969 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2970 AsmPrinter &AP, const Constant *BaseCV, 2971 uint64_t Offset) { 2972 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2973 2974 // Globals with sub-elements such as combinations of arrays and structs 2975 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2976 // constant symbol base and the current position with BaseCV and Offset. 2977 if (!BaseCV && CV->hasOneUse()) 2978 BaseCV = dyn_cast<Constant>(CV->user_back()); 2979 2980 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2981 return AP.OutStreamer->emitZeros(Size); 2982 2983 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2984 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2985 2986 if (StoreSize <= 8) { 2987 if (AP.isVerbose()) 2988 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2989 CI->getZExtValue()); 2990 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2991 } else { 2992 emitGlobalConstantLargeInt(CI, AP); 2993 } 2994 2995 // Emit tail padding if needed 2996 if (Size != StoreSize) 2997 AP.OutStreamer->emitZeros(Size - StoreSize); 2998 2999 return; 3000 } 3001 3002 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3003 return emitGlobalConstantFP(CFP, AP); 3004 3005 if (isa<ConstantPointerNull>(CV)) { 3006 AP.OutStreamer->emitIntValue(0, Size); 3007 return; 3008 } 3009 3010 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3011 return emitGlobalConstantDataSequential(DL, CDS, AP); 3012 3013 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3014 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 3015 3016 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3017 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 3018 3019 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3020 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3021 // vectors). 3022 if (CE->getOpcode() == Instruction::BitCast) 3023 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3024 3025 if (Size > 8) { 3026 // If the constant expression's size is greater than 64-bits, then we have 3027 // to emit the value in chunks. Try to constant fold the value and emit it 3028 // that way. 3029 Constant *New = ConstantFoldConstant(CE, DL); 3030 if (New != CE) 3031 return emitGlobalConstantImpl(DL, New, AP); 3032 } 3033 } 3034 3035 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3036 return emitGlobalConstantVector(DL, V, AP); 3037 3038 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3039 // thread the streamer with EmitValue. 3040 const MCExpr *ME = AP.lowerConstant(CV); 3041 3042 // Since lowerConstant already folded and got rid of all IR pointer and 3043 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3044 // directly. 3045 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3046 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3047 3048 AP.OutStreamer->emitValue(ME, Size); 3049 } 3050 3051 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3052 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 3053 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3054 if (Size) 3055 emitGlobalConstantImpl(DL, CV, *this); 3056 else if (MAI->hasSubsectionsViaSymbols()) { 3057 // If the global has zero size, emit a single byte so that two labels don't 3058 // look like they are at the same location. 3059 OutStreamer->emitIntValue(0, 1); 3060 } 3061 } 3062 3063 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3064 // Target doesn't support this yet! 3065 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3066 } 3067 3068 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3069 if (Offset > 0) 3070 OS << '+' << Offset; 3071 else if (Offset < 0) 3072 OS << Offset; 3073 } 3074 3075 void AsmPrinter::emitNops(unsigned N) { 3076 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3077 for (; N; --N) 3078 EmitToStreamer(*OutStreamer, Nop); 3079 } 3080 3081 //===----------------------------------------------------------------------===// 3082 // Symbol Lowering Routines. 3083 //===----------------------------------------------------------------------===// 3084 3085 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3086 return OutContext.createTempSymbol(Name, true); 3087 } 3088 3089 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3090 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3091 } 3092 3093 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3094 return MMI->getAddrLabelSymbol(BB); 3095 } 3096 3097 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3098 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3099 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3100 const MachineConstantPoolEntry &CPE = 3101 MF->getConstantPool()->getConstants()[CPID]; 3102 if (!CPE.isMachineConstantPoolEntry()) { 3103 const DataLayout &DL = MF->getDataLayout(); 3104 SectionKind Kind = CPE.getSectionKind(&DL); 3105 const Constant *C = CPE.Val.ConstVal; 3106 Align Alignment = CPE.Alignment; 3107 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3108 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3109 Alignment))) { 3110 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3111 if (Sym->isUndefined()) 3112 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3113 return Sym; 3114 } 3115 } 3116 } 3117 } 3118 3119 const DataLayout &DL = getDataLayout(); 3120 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3121 "CPI" + Twine(getFunctionNumber()) + "_" + 3122 Twine(CPID)); 3123 } 3124 3125 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3126 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3127 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3128 } 3129 3130 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3131 /// FIXME: privatize to AsmPrinter. 3132 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3133 const DataLayout &DL = getDataLayout(); 3134 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3135 Twine(getFunctionNumber()) + "_" + 3136 Twine(UID) + "_set_" + Twine(MBBID)); 3137 } 3138 3139 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3140 StringRef Suffix) const { 3141 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3142 } 3143 3144 /// Return the MCSymbol for the specified ExternalSymbol. 3145 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3146 SmallString<60> NameStr; 3147 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3148 return OutContext.getOrCreateSymbol(NameStr); 3149 } 3150 3151 /// PrintParentLoopComment - Print comments about parent loops of this one. 3152 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3153 unsigned FunctionNumber) { 3154 if (!Loop) return; 3155 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3156 OS.indent(Loop->getLoopDepth()*2) 3157 << "Parent Loop BB" << FunctionNumber << "_" 3158 << Loop->getHeader()->getNumber() 3159 << " Depth=" << Loop->getLoopDepth() << '\n'; 3160 } 3161 3162 /// PrintChildLoopComment - Print comments about child loops within 3163 /// the loop for this basic block, with nesting. 3164 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3165 unsigned FunctionNumber) { 3166 // Add child loop information 3167 for (const MachineLoop *CL : *Loop) { 3168 OS.indent(CL->getLoopDepth()*2) 3169 << "Child Loop BB" << FunctionNumber << "_" 3170 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3171 << '\n'; 3172 PrintChildLoopComment(OS, CL, FunctionNumber); 3173 } 3174 } 3175 3176 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3177 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3178 const MachineLoopInfo *LI, 3179 const AsmPrinter &AP) { 3180 // Add loop depth information 3181 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3182 if (!Loop) return; 3183 3184 MachineBasicBlock *Header = Loop->getHeader(); 3185 assert(Header && "No header for loop"); 3186 3187 // If this block is not a loop header, just print out what is the loop header 3188 // and return. 3189 if (Header != &MBB) { 3190 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3191 Twine(AP.getFunctionNumber())+"_" + 3192 Twine(Loop->getHeader()->getNumber())+ 3193 " Depth="+Twine(Loop->getLoopDepth())); 3194 return; 3195 } 3196 3197 // Otherwise, it is a loop header. Print out information about child and 3198 // parent loops. 3199 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3200 3201 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3202 3203 OS << "=>"; 3204 OS.indent(Loop->getLoopDepth()*2-2); 3205 3206 OS << "This "; 3207 if (Loop->isInnermost()) 3208 OS << "Inner "; 3209 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3210 3211 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3212 } 3213 3214 /// emitBasicBlockStart - This method prints the label for the specified 3215 /// MachineBasicBlock, an alignment (if present) and a comment describing 3216 /// it if appropriate. 3217 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3218 // End the previous funclet and start a new one. 3219 if (MBB.isEHFuncletEntry()) { 3220 for (const HandlerInfo &HI : Handlers) { 3221 HI.Handler->endFunclet(); 3222 HI.Handler->beginFunclet(MBB); 3223 } 3224 } 3225 3226 // Emit an alignment directive for this block, if needed. 3227 const Align Alignment = MBB.getAlignment(); 3228 if (Alignment != Align(1)) 3229 emitAlignment(Alignment); 3230 3231 // Switch to a new section if this basic block must begin a section. The 3232 // entry block is always placed in the function section and is handled 3233 // separately. 3234 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3235 OutStreamer->SwitchSection( 3236 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3237 MBB, TM)); 3238 CurrentSectionBeginSym = MBB.getSymbol(); 3239 } 3240 3241 // If the block has its address taken, emit any labels that were used to 3242 // reference the block. It is possible that there is more than one label 3243 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3244 // the references were generated. 3245 if (MBB.hasAddressTaken()) { 3246 const BasicBlock *BB = MBB.getBasicBlock(); 3247 if (isVerbose()) 3248 OutStreamer->AddComment("Block address taken"); 3249 3250 // MBBs can have their address taken as part of CodeGen without having 3251 // their corresponding BB's address taken in IR 3252 if (BB->hasAddressTaken()) 3253 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3254 OutStreamer->emitLabel(Sym); 3255 } 3256 3257 // Print some verbose block comments. 3258 if (isVerbose()) { 3259 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3260 if (BB->hasName()) { 3261 BB->printAsOperand(OutStreamer->GetCommentOS(), 3262 /*PrintType=*/false, BB->getModule()); 3263 OutStreamer->GetCommentOS() << '\n'; 3264 } 3265 } 3266 3267 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3268 emitBasicBlockLoopComments(MBB, MLI, *this); 3269 } 3270 3271 // Print the main label for the block. 3272 if (shouldEmitLabelForBasicBlock(MBB)) { 3273 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3274 OutStreamer->AddComment("Label of block must be emitted"); 3275 OutStreamer->emitLabel(MBB.getSymbol()); 3276 } else { 3277 if (isVerbose()) { 3278 // NOTE: Want this comment at start of line, don't emit with AddComment. 3279 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3280 false); 3281 } 3282 } 3283 3284 if (MBB.isEHCatchretTarget() && 3285 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3286 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3287 } 3288 3289 // With BB sections, each basic block must handle CFI information on its own 3290 // if it begins a section (Entry block is handled separately by 3291 // AsmPrinterHandler::beginFunction). 3292 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3293 for (const HandlerInfo &HI : Handlers) 3294 HI.Handler->beginBasicBlock(MBB); 3295 } 3296 3297 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3298 // Check if CFI information needs to be updated for this MBB with basic block 3299 // sections. 3300 if (MBB.isEndSection()) 3301 for (const HandlerInfo &HI : Handlers) 3302 HI.Handler->endBasicBlock(MBB); 3303 } 3304 3305 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3306 bool IsDefinition) const { 3307 MCSymbolAttr Attr = MCSA_Invalid; 3308 3309 switch (Visibility) { 3310 default: break; 3311 case GlobalValue::HiddenVisibility: 3312 if (IsDefinition) 3313 Attr = MAI->getHiddenVisibilityAttr(); 3314 else 3315 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3316 break; 3317 case GlobalValue::ProtectedVisibility: 3318 Attr = MAI->getProtectedVisibilityAttr(); 3319 break; 3320 } 3321 3322 if (Attr != MCSA_Invalid) 3323 OutStreamer->emitSymbolAttribute(Sym, Attr); 3324 } 3325 3326 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3327 const MachineBasicBlock &MBB) const { 3328 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3329 // in the labels mode (option `=labels`) and every section beginning in the 3330 // sections mode (`=all` and `=list=`). 3331 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3332 return true; 3333 // A label is needed for any block with at least one predecessor (when that 3334 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3335 // entry, or if a label is forced). 3336 return !MBB.pred_empty() && 3337 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3338 MBB.hasLabelMustBeEmitted()); 3339 } 3340 3341 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3342 /// exactly one predecessor and the control transfer mechanism between 3343 /// the predecessor and this block is a fall-through. 3344 bool AsmPrinter:: 3345 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3346 // If this is a landing pad, it isn't a fall through. If it has no preds, 3347 // then nothing falls through to it. 3348 if (MBB->isEHPad() || MBB->pred_empty()) 3349 return false; 3350 3351 // If there isn't exactly one predecessor, it can't be a fall through. 3352 if (MBB->pred_size() > 1) 3353 return false; 3354 3355 // The predecessor has to be immediately before this block. 3356 MachineBasicBlock *Pred = *MBB->pred_begin(); 3357 if (!Pred->isLayoutSuccessor(MBB)) 3358 return false; 3359 3360 // If the block is completely empty, then it definitely does fall through. 3361 if (Pred->empty()) 3362 return true; 3363 3364 // Check the terminators in the previous blocks 3365 for (const auto &MI : Pred->terminators()) { 3366 // If it is not a simple branch, we are in a table somewhere. 3367 if (!MI.isBranch() || MI.isIndirectBranch()) 3368 return false; 3369 3370 // If we are the operands of one of the branches, this is not a fall 3371 // through. Note that targets with delay slots will usually bundle 3372 // terminators with the delay slot instruction. 3373 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3374 if (OP->isJTI()) 3375 return false; 3376 if (OP->isMBB() && OP->getMBB() == MBB) 3377 return false; 3378 } 3379 } 3380 3381 return true; 3382 } 3383 3384 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3385 if (!S.usesMetadata()) 3386 return nullptr; 3387 3388 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3389 gcp_map_type::iterator GCPI = GCMap.find(&S); 3390 if (GCPI != GCMap.end()) 3391 return GCPI->second.get(); 3392 3393 auto Name = S.getName(); 3394 3395 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3396 GCMetadataPrinterRegistry::entries()) 3397 if (Name == GCMetaPrinter.getName()) { 3398 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3399 GMP->S = &S; 3400 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3401 return IterBool.first->second.get(); 3402 } 3403 3404 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3405 } 3406 3407 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3408 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3409 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3410 bool NeedsDefault = false; 3411 if (MI->begin() == MI->end()) 3412 // No GC strategy, use the default format. 3413 NeedsDefault = true; 3414 else 3415 for (auto &I : *MI) { 3416 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3417 if (MP->emitStackMaps(SM, *this)) 3418 continue; 3419 // The strategy doesn't have printer or doesn't emit custom stack maps. 3420 // Use the default format. 3421 NeedsDefault = true; 3422 } 3423 3424 if (NeedsDefault) 3425 SM.serializeToStackMapSection(); 3426 } 3427 3428 /// Pin vtable to this file. 3429 AsmPrinterHandler::~AsmPrinterHandler() = default; 3430 3431 void AsmPrinterHandler::markFunctionEnd() {} 3432 3433 // In the binary's "xray_instr_map" section, an array of these function entries 3434 // describes each instrumentation point. When XRay patches your code, the index 3435 // into this table will be given to your handler as a patch point identifier. 3436 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3437 auto Kind8 = static_cast<uint8_t>(Kind); 3438 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3439 Out->emitBinaryData( 3440 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3441 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3442 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3443 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3444 Out->emitZeros(Padding); 3445 } 3446 3447 void AsmPrinter::emitXRayTable() { 3448 if (Sleds.empty()) 3449 return; 3450 3451 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3452 const Function &F = MF->getFunction(); 3453 MCSection *InstMap = nullptr; 3454 MCSection *FnSledIndex = nullptr; 3455 const Triple &TT = TM.getTargetTriple(); 3456 // Use PC-relative addresses on all targets. 3457 if (TT.isOSBinFormatELF()) { 3458 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3459 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3460 StringRef GroupName; 3461 if (F.hasComdat()) { 3462 Flags |= ELF::SHF_GROUP; 3463 GroupName = F.getComdat()->getName(); 3464 } 3465 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3466 Flags, 0, GroupName, F.hasComdat(), 3467 MCSection::NonUniqueID, LinkedToSym); 3468 3469 if (!TM.Options.XRayOmitFunctionIndex) 3470 FnSledIndex = OutContext.getELFSection( 3471 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3472 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3473 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3474 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3475 SectionKind::getReadOnlyWithRel()); 3476 if (!TM.Options.XRayOmitFunctionIndex) 3477 FnSledIndex = OutContext.getMachOSection( 3478 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3479 } else { 3480 llvm_unreachable("Unsupported target"); 3481 } 3482 3483 auto WordSizeBytes = MAI->getCodePointerSize(); 3484 3485 // Now we switch to the instrumentation map section. Because this is done 3486 // per-function, we are able to create an index entry that will represent the 3487 // range of sleds associated with a function. 3488 auto &Ctx = OutContext; 3489 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3490 OutStreamer->SwitchSection(InstMap); 3491 OutStreamer->emitLabel(SledsStart); 3492 for (const auto &Sled : Sleds) { 3493 MCSymbol *Dot = Ctx.createTempSymbol(); 3494 OutStreamer->emitLabel(Dot); 3495 OutStreamer->emitValueImpl( 3496 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3497 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3498 WordSizeBytes); 3499 OutStreamer->emitValueImpl( 3500 MCBinaryExpr::createSub( 3501 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3502 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3503 MCConstantExpr::create(WordSizeBytes, Ctx), 3504 Ctx), 3505 Ctx), 3506 WordSizeBytes); 3507 Sled.emit(WordSizeBytes, OutStreamer.get()); 3508 } 3509 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3510 OutStreamer->emitLabel(SledsEnd); 3511 3512 // We then emit a single entry in the index per function. We use the symbols 3513 // that bound the instrumentation map as the range for a specific function. 3514 // Each entry here will be 2 * word size aligned, as we're writing down two 3515 // pointers. This should work for both 32-bit and 64-bit platforms. 3516 if (FnSledIndex) { 3517 OutStreamer->SwitchSection(FnSledIndex); 3518 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3519 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3520 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3521 OutStreamer->SwitchSection(PrevSection); 3522 } 3523 Sleds.clear(); 3524 } 3525 3526 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3527 SledKind Kind, uint8_t Version) { 3528 const Function &F = MI.getMF()->getFunction(); 3529 auto Attr = F.getFnAttribute("function-instrument"); 3530 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3531 bool AlwaysInstrument = 3532 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3533 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3534 Kind = SledKind::LOG_ARGS_ENTER; 3535 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3536 AlwaysInstrument, &F, Version}); 3537 } 3538 3539 void AsmPrinter::emitPatchableFunctionEntries() { 3540 const Function &F = MF->getFunction(); 3541 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3542 (void)F.getFnAttribute("patchable-function-prefix") 3543 .getValueAsString() 3544 .getAsInteger(10, PatchableFunctionPrefix); 3545 (void)F.getFnAttribute("patchable-function-entry") 3546 .getValueAsString() 3547 .getAsInteger(10, PatchableFunctionEntry); 3548 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3549 return; 3550 const unsigned PointerSize = getPointerSize(); 3551 if (TM.getTargetTriple().isOSBinFormatELF()) { 3552 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3553 const MCSymbolELF *LinkedToSym = nullptr; 3554 StringRef GroupName; 3555 3556 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3557 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3558 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3559 Flags |= ELF::SHF_LINK_ORDER; 3560 if (F.hasComdat()) { 3561 Flags |= ELF::SHF_GROUP; 3562 GroupName = F.getComdat()->getName(); 3563 } 3564 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3565 } 3566 OutStreamer->SwitchSection(OutContext.getELFSection( 3567 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3568 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3569 emitAlignment(Align(PointerSize)); 3570 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3571 } 3572 } 3573 3574 uint16_t AsmPrinter::getDwarfVersion() const { 3575 return OutStreamer->getContext().getDwarfVersion(); 3576 } 3577 3578 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3579 OutStreamer->getContext().setDwarfVersion(Version); 3580 } 3581 3582 bool AsmPrinter::isDwarf64() const { 3583 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3584 } 3585 3586 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3587 return dwarf::getDwarfOffsetByteSize( 3588 OutStreamer->getContext().getDwarfFormat()); 3589 } 3590 3591 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3592 return dwarf::getUnitLengthFieldByteSize( 3593 OutStreamer->getContext().getDwarfFormat()); 3594 } 3595