1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/BinaryFormat/COFF.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalIFunc.h"
72 #include "llvm/IR/GlobalIndirectSymbol.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PseudoProbe.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/MC/MCAsmInfo.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCSectionXCOFF.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCSymbolXCOFF.h"
100 #include "llvm/MC/MCTargetOptions.h"
101 #include "llvm/MC/MCValue.h"
102 #include "llvm/MC/SectionKind.h"
103 #include "llvm/Pass.h"
104 #include "llvm/Remarks/Remark.h"
105 #include "llvm/Remarks/RemarkFormat.h"
106 #include "llvm/Remarks/RemarkStreamer.h"
107 #include "llvm/Remarks/RemarkStringTable.h"
108 #include "llvm/Support/Casting.h"
109 #include "llvm/Support/CommandLine.h"
110 #include "llvm/Support/Compiler.h"
111 #include "llvm/Support/ErrorHandling.h"
112 #include "llvm/Support/Format.h"
113 #include "llvm/Support/MathExtras.h"
114 #include "llvm/Support/Path.h"
115 #include "llvm/Support/TargetRegistry.h"
116 #include "llvm/Support/Timer.h"
117 #include "llvm/Support/raw_ostream.h"
118 #include "llvm/Target/TargetLoweringObjectFile.h"
119 #include "llvm/Target/TargetMachine.h"
120 #include "llvm/Target/TargetOptions.h"
121 #include <algorithm>
122 #include <cassert>
123 #include <cinttypes>
124 #include <cstdint>
125 #include <iterator>
126 #include <limits>
127 #include <memory>
128 #include <string>
129 #include <utility>
130 #include <vector>
131 
132 using namespace llvm;
133 
134 #define DEBUG_TYPE "asm-printer"
135 
136 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
137 static cl::opt<bool>
138     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
139                              cl::desc("Disable debug info printing"));
140 
141 const char DWARFGroupName[] = "dwarf";
142 const char DWARFGroupDescription[] = "DWARF Emission";
143 const char DbgTimerName[] = "emit";
144 const char DbgTimerDescription[] = "Debug Info Emission";
145 const char EHTimerName[] = "write_exception";
146 const char EHTimerDescription[] = "DWARF Exception Writer";
147 const char CFGuardName[] = "Control Flow Guard";
148 const char CFGuardDescription[] = "Control Flow Guard";
149 const char CodeViewLineTablesGroupName[] = "linetables";
150 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
151 const char PPTimerName[] = "emit";
152 const char PPTimerDescription[] = "Pseudo Probe Emission";
153 const char PPGroupName[] = "pseudo probe";
154 const char PPGroupDescription[] = "Pseudo Probe Emission";
155 
156 STATISTIC(EmittedInsts, "Number of machine instrs printed");
157 
158 char AsmPrinter::ID = 0;
159 
160 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
161 
162 static gcp_map_type &getGCMap(void *&P) {
163   if (!P)
164     P = new gcp_map_type();
165   return *(gcp_map_type*)P;
166 }
167 
168 /// getGVAlignment - Return the alignment to use for the specified global
169 /// value.  This rounds up to the preferred alignment if possible and legal.
170 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
171                                  Align InAlign) {
172   Align Alignment;
173   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
174     Alignment = DL.getPreferredAlign(GVar);
175 
176   // If InAlign is specified, round it to it.
177   if (InAlign > Alignment)
178     Alignment = InAlign;
179 
180   // If the GV has a specified alignment, take it into account.
181   const MaybeAlign GVAlign(GV->getAlignment());
182   if (!GVAlign)
183     return Alignment;
184 
185   assert(GVAlign && "GVAlign must be set");
186 
187   // If the GVAlign is larger than NumBits, or if we are required to obey
188   // NumBits because the GV has an assigned section, obey it.
189   if (*GVAlign > Alignment || GV->hasSection())
190     Alignment = *GVAlign;
191   return Alignment;
192 }
193 
194 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
195     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
196       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
197   VerboseAsm = OutStreamer->isVerboseAsm();
198 }
199 
200 AsmPrinter::~AsmPrinter() {
201   assert(!DD && Handlers.size() == NumUserHandlers &&
202          "Debug/EH info didn't get finalized");
203 
204   if (GCMetadataPrinters) {
205     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
206 
207     delete &GCMap;
208     GCMetadataPrinters = nullptr;
209   }
210 }
211 
212 bool AsmPrinter::isPositionIndependent() const {
213   return TM.isPositionIndependent();
214 }
215 
216 /// getFunctionNumber - Return a unique ID for the current function.
217 unsigned AsmPrinter::getFunctionNumber() const {
218   return MF->getFunctionNumber();
219 }
220 
221 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
222   return *TM.getObjFileLowering();
223 }
224 
225 const DataLayout &AsmPrinter::getDataLayout() const {
226   return MMI->getModule()->getDataLayout();
227 }
228 
229 // Do not use the cached DataLayout because some client use it without a Module
230 // (dsymutil, llvm-dwarfdump).
231 unsigned AsmPrinter::getPointerSize() const {
232   return TM.getPointerSize(0); // FIXME: Default address space
233 }
234 
235 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
236   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
237   return MF->getSubtarget<MCSubtargetInfo>();
238 }
239 
240 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
241   S.emitInstruction(Inst, getSubtargetInfo());
242 }
243 
244 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
245   if (DD) {
246     assert(OutStreamer->hasRawTextSupport() &&
247            "Expected assembly output mode.");
248     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
249   }
250 }
251 
252 /// getCurrentSection() - Return the current section we are emitting to.
253 const MCSection *AsmPrinter::getCurrentSection() const {
254   return OutStreamer->getCurrentSectionOnly();
255 }
256 
257 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
258   AU.setPreservesAll();
259   MachineFunctionPass::getAnalysisUsage(AU);
260   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
261   AU.addRequired<GCModuleInfo>();
262 }
263 
264 bool AsmPrinter::doInitialization(Module &M) {
265   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
266   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
267 
268   // Initialize TargetLoweringObjectFile.
269   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
270     .Initialize(OutContext, TM);
271 
272   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
273       .getModuleMetadata(M);
274 
275   OutStreamer->InitSections(false);
276 
277   if (DisableDebugInfoPrinting)
278     MMI->setDebugInfoAvailability(false);
279 
280   // Emit the version-min deployment target directive if needed.
281   //
282   // FIXME: If we end up with a collection of these sorts of Darwin-specific
283   // or ELF-specific things, it may make sense to have a platform helper class
284   // that will work with the target helper class. For now keep it here, as the
285   // alternative is duplicated code in each of the target asm printers that
286   // use the directive, where it would need the same conditionalization
287   // anyway.
288   const Triple &Target = TM.getTargetTriple();
289   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
290 
291   // Allow the target to emit any magic that it wants at the start of the file.
292   emitStartOfAsmFile(M);
293 
294   // Very minimal debug info. It is ignored if we emit actual debug info. If we
295   // don't, this at least helps the user find where a global came from.
296   if (MAI->hasSingleParameterDotFile()) {
297     // .file "foo.c"
298     OutStreamer->emitFileDirective(
299         llvm::sys::path::filename(M.getSourceFileName()));
300   }
301 
302   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
303   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
304   for (auto &I : *MI)
305     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
306       MP->beginAssembly(M, *MI, *this);
307 
308   // Emit module-level inline asm if it exists.
309   if (!M.getModuleInlineAsm().empty()) {
310     // We're at the module level. Construct MCSubtarget from the default CPU
311     // and target triple.
312     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
313         TM.getTargetTriple().str(), TM.getTargetCPU(),
314         TM.getTargetFeatureString()));
315     assert(STI && "Unable to create subtarget info");
316     OutStreamer->AddComment("Start of file scope inline assembly");
317     OutStreamer->AddBlankLine();
318     emitInlineAsm(M.getModuleInlineAsm() + "\n",
319                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
320     OutStreamer->AddComment("End of file scope inline assembly");
321     OutStreamer->AddBlankLine();
322   }
323 
324   if (MAI->doesSupportDebugInformation()) {
325     bool EmitCodeView = M.getCodeViewFlag();
326     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
327       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
328                             DbgTimerName, DbgTimerDescription,
329                             CodeViewLineTablesGroupName,
330                             CodeViewLineTablesGroupDescription);
331     }
332     if (!EmitCodeView || M.getDwarfVersion()) {
333       if (!DisableDebugInfoPrinting) {
334         DD = new DwarfDebug(this);
335         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
336                               DbgTimerDescription, DWARFGroupName,
337                               DWARFGroupDescription);
338       }
339     }
340   }
341 
342   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
343     PP = new PseudoProbeHandler(this, &M);
344     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
345                           PPTimerDescription, PPGroupName, PPGroupDescription);
346   }
347 
348   switch (MAI->getExceptionHandlingType()) {
349   case ExceptionHandling::SjLj:
350   case ExceptionHandling::DwarfCFI:
351   case ExceptionHandling::ARM:
352     isCFIMoveForDebugging = true;
353     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
354       break;
355     for (auto &F: M.getFunctionList()) {
356       // If the module contains any function with unwind data,
357       // .eh_frame has to be emitted.
358       // Ignore functions that won't get emitted.
359       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
360         isCFIMoveForDebugging = false;
361         break;
362       }
363     }
364     break;
365   default:
366     isCFIMoveForDebugging = false;
367     break;
368   }
369 
370   EHStreamer *ES = nullptr;
371   switch (MAI->getExceptionHandlingType()) {
372   case ExceptionHandling::None:
373     break;
374   case ExceptionHandling::SjLj:
375   case ExceptionHandling::DwarfCFI:
376     ES = new DwarfCFIException(this);
377     break;
378   case ExceptionHandling::ARM:
379     ES = new ARMException(this);
380     break;
381   case ExceptionHandling::WinEH:
382     switch (MAI->getWinEHEncodingType()) {
383     default: llvm_unreachable("unsupported unwinding information encoding");
384     case WinEH::EncodingType::Invalid:
385       break;
386     case WinEH::EncodingType::X86:
387     case WinEH::EncodingType::Itanium:
388       ES = new WinException(this);
389       break;
390     }
391     break;
392   case ExceptionHandling::Wasm:
393     ES = new WasmException(this);
394     break;
395   case ExceptionHandling::AIX:
396     ES = new AIXException(this);
397     break;
398   }
399   if (ES)
400     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
401                           EHTimerDescription, DWARFGroupName,
402                           DWARFGroupDescription);
403 
404   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
405   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
406     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
407                           CFGuardDescription, DWARFGroupName,
408                           DWARFGroupDescription);
409 
410   for (const HandlerInfo &HI : Handlers) {
411     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
412                        HI.TimerGroupDescription, TimePassesIsEnabled);
413     HI.Handler->beginModule(&M);
414   }
415 
416   return false;
417 }
418 
419 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
420   if (!MAI.hasWeakDefCanBeHiddenDirective())
421     return false;
422 
423   return GV->canBeOmittedFromSymbolTable();
424 }
425 
426 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
427   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
428   switch (Linkage) {
429   case GlobalValue::CommonLinkage:
430   case GlobalValue::LinkOnceAnyLinkage:
431   case GlobalValue::LinkOnceODRLinkage:
432   case GlobalValue::WeakAnyLinkage:
433   case GlobalValue::WeakODRLinkage:
434     if (MAI->hasWeakDefDirective()) {
435       // .globl _foo
436       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
437 
438       if (!canBeHidden(GV, *MAI))
439         // .weak_definition _foo
440         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
441       else
442         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
443     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
444       // .globl _foo
445       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
446       //NOTE: linkonce is handled by the section the symbol was assigned to.
447     } else {
448       // .weak _foo
449       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
450     }
451     return;
452   case GlobalValue::ExternalLinkage:
453     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
454     return;
455   case GlobalValue::PrivateLinkage:
456   case GlobalValue::InternalLinkage:
457     return;
458   case GlobalValue::ExternalWeakLinkage:
459   case GlobalValue::AvailableExternallyLinkage:
460   case GlobalValue::AppendingLinkage:
461     llvm_unreachable("Should never emit this");
462   }
463   llvm_unreachable("Unknown linkage type!");
464 }
465 
466 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
467                                    const GlobalValue *GV) const {
468   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
469 }
470 
471 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
472   return TM.getSymbol(GV);
473 }
474 
475 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
476   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
477   // exact definion (intersection of GlobalValue::hasExactDefinition() and
478   // !isInterposable()). These linkages include: external, appending, internal,
479   // private. It may be profitable to use a local alias for external. The
480   // assembler would otherwise be conservative and assume a global default
481   // visibility symbol can be interposable, even if the code generator already
482   // assumed it.
483   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
484     const Module &M = *GV.getParent();
485     if (TM.getRelocationModel() != Reloc::Static &&
486         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
487       return getSymbolWithGlobalValueBase(&GV, "$local");
488   }
489   return TM.getSymbol(&GV);
490 }
491 
492 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
493 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
494   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
495   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
496          "No emulated TLS variables in the common section");
497 
498   // Never emit TLS variable xyz in emulated TLS model.
499   // The initialization value is in __emutls_t.xyz instead of xyz.
500   if (IsEmuTLSVar)
501     return;
502 
503   if (GV->hasInitializer()) {
504     // Check to see if this is a special global used by LLVM, if so, emit it.
505     if (emitSpecialLLVMGlobal(GV))
506       return;
507 
508     // Skip the emission of global equivalents. The symbol can be emitted later
509     // on by emitGlobalGOTEquivs in case it turns out to be needed.
510     if (GlobalGOTEquivs.count(getSymbol(GV)))
511       return;
512 
513     if (isVerbose()) {
514       // When printing the control variable __emutls_v.*,
515       // we don't need to print the original TLS variable name.
516       GV->printAsOperand(OutStreamer->GetCommentOS(),
517                      /*PrintType=*/false, GV->getParent());
518       OutStreamer->GetCommentOS() << '\n';
519     }
520   }
521 
522   MCSymbol *GVSym = getSymbol(GV);
523   MCSymbol *EmittedSym = GVSym;
524 
525   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
526   // attributes.
527   // GV's or GVSym's attributes will be used for the EmittedSym.
528   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
529 
530   if (!GV->hasInitializer())   // External globals require no extra code.
531     return;
532 
533   GVSym->redefineIfPossible();
534   if (GVSym->isDefined() || GVSym->isVariable())
535     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
536                                         "' is already defined");
537 
538   if (MAI->hasDotTypeDotSizeDirective())
539     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
540 
541   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
542 
543   const DataLayout &DL = GV->getParent()->getDataLayout();
544   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
545 
546   // If the alignment is specified, we *must* obey it.  Overaligning a global
547   // with a specified alignment is a prompt way to break globals emitted to
548   // sections and expected to be contiguous (e.g. ObjC metadata).
549   const Align Alignment = getGVAlignment(GV, DL);
550 
551   for (const HandlerInfo &HI : Handlers) {
552     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
553                        HI.TimerGroupName, HI.TimerGroupDescription,
554                        TimePassesIsEnabled);
555     HI.Handler->setSymbolSize(GVSym, Size);
556   }
557 
558   // Handle common symbols
559   if (GVKind.isCommon()) {
560     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
561     // .comm _foo, 42, 4
562     const bool SupportsAlignment =
563         getObjFileLowering().getCommDirectiveSupportsAlignment();
564     OutStreamer->emitCommonSymbol(GVSym, Size,
565                                   SupportsAlignment ? Alignment.value() : 0);
566     return;
567   }
568 
569   // Determine to which section this global should be emitted.
570   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
571 
572   // If we have a bss global going to a section that supports the
573   // zerofill directive, do so here.
574   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
575       TheSection->isVirtualSection()) {
576     if (Size == 0)
577       Size = 1; // zerofill of 0 bytes is undefined.
578     emitLinkage(GV, GVSym);
579     // .zerofill __DATA, __bss, _foo, 400, 5
580     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
581     return;
582   }
583 
584   // If this is a BSS local symbol and we are emitting in the BSS
585   // section use .lcomm/.comm directive.
586   if (GVKind.isBSSLocal() &&
587       getObjFileLowering().getBSSSection() == TheSection) {
588     if (Size == 0)
589       Size = 1; // .comm Foo, 0 is undefined, avoid it.
590 
591     // Use .lcomm only if it supports user-specified alignment.
592     // Otherwise, while it would still be correct to use .lcomm in some
593     // cases (e.g. when Align == 1), the external assembler might enfore
594     // some -unknown- default alignment behavior, which could cause
595     // spurious differences between external and integrated assembler.
596     // Prefer to simply fall back to .local / .comm in this case.
597     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
598       // .lcomm _foo, 42
599       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
600       return;
601     }
602 
603     // .local _foo
604     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
605     // .comm _foo, 42, 4
606     const bool SupportsAlignment =
607         getObjFileLowering().getCommDirectiveSupportsAlignment();
608     OutStreamer->emitCommonSymbol(GVSym, Size,
609                                   SupportsAlignment ? Alignment.value() : 0);
610     return;
611   }
612 
613   // Handle thread local data for mach-o which requires us to output an
614   // additional structure of data and mangle the original symbol so that we
615   // can reference it later.
616   //
617   // TODO: This should become an "emit thread local global" method on TLOF.
618   // All of this macho specific stuff should be sunk down into TLOFMachO and
619   // stuff like "TLSExtraDataSection" should no longer be part of the parent
620   // TLOF class.  This will also make it more obvious that stuff like
621   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
622   // specific code.
623   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
624     // Emit the .tbss symbol
625     MCSymbol *MangSym =
626         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
627 
628     if (GVKind.isThreadBSS()) {
629       TheSection = getObjFileLowering().getTLSBSSSection();
630       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
631     } else if (GVKind.isThreadData()) {
632       OutStreamer->SwitchSection(TheSection);
633 
634       emitAlignment(Alignment, GV);
635       OutStreamer->emitLabel(MangSym);
636 
637       emitGlobalConstant(GV->getParent()->getDataLayout(),
638                          GV->getInitializer());
639     }
640 
641     OutStreamer->AddBlankLine();
642 
643     // Emit the variable struct for the runtime.
644     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
645 
646     OutStreamer->SwitchSection(TLVSect);
647     // Emit the linkage here.
648     emitLinkage(GV, GVSym);
649     OutStreamer->emitLabel(GVSym);
650 
651     // Three pointers in size:
652     //   - __tlv_bootstrap - used to make sure support exists
653     //   - spare pointer, used when mapped by the runtime
654     //   - pointer to mangled symbol above with initializer
655     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
656     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
657                                 PtrSize);
658     OutStreamer->emitIntValue(0, PtrSize);
659     OutStreamer->emitSymbolValue(MangSym, PtrSize);
660 
661     OutStreamer->AddBlankLine();
662     return;
663   }
664 
665   MCSymbol *EmittedInitSym = GVSym;
666 
667   OutStreamer->SwitchSection(TheSection);
668 
669   emitLinkage(GV, EmittedInitSym);
670   emitAlignment(Alignment, GV);
671 
672   OutStreamer->emitLabel(EmittedInitSym);
673   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
674   if (LocalAlias != EmittedInitSym)
675     OutStreamer->emitLabel(LocalAlias);
676 
677   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
678 
679   if (MAI->hasDotTypeDotSizeDirective())
680     // .size foo, 42
681     OutStreamer->emitELFSize(EmittedInitSym,
682                              MCConstantExpr::create(Size, OutContext));
683 
684   OutStreamer->AddBlankLine();
685 }
686 
687 /// Emit the directive and value for debug thread local expression
688 ///
689 /// \p Value - The value to emit.
690 /// \p Size - The size of the integer (in bytes) to emit.
691 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
692   OutStreamer->emitValue(Value, Size);
693 }
694 
695 void AsmPrinter::emitFunctionHeaderComment() {}
696 
697 /// EmitFunctionHeader - This method emits the header for the current
698 /// function.
699 void AsmPrinter::emitFunctionHeader() {
700   const Function &F = MF->getFunction();
701 
702   if (isVerbose())
703     OutStreamer->GetCommentOS()
704         << "-- Begin function "
705         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
706 
707   // Print out constants referenced by the function
708   emitConstantPool();
709 
710   // Print the 'header' of function.
711   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
712   OutStreamer->SwitchSection(MF->getSection());
713 
714   if (!MAI->hasVisibilityOnlyWithLinkage())
715     emitVisibility(CurrentFnSym, F.getVisibility());
716 
717   if (MAI->needsFunctionDescriptors())
718     emitLinkage(&F, CurrentFnDescSym);
719 
720   emitLinkage(&F, CurrentFnSym);
721   if (MAI->hasFunctionAlignment())
722     emitAlignment(MF->getAlignment(), &F);
723 
724   if (MAI->hasDotTypeDotSizeDirective())
725     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
726 
727   if (F.hasFnAttribute(Attribute::Cold))
728     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
729 
730   if (isVerbose()) {
731     F.printAsOperand(OutStreamer->GetCommentOS(),
732                    /*PrintType=*/false, F.getParent());
733     emitFunctionHeaderComment();
734     OutStreamer->GetCommentOS() << '\n';
735   }
736 
737   // Emit the prefix data.
738   if (F.hasPrefixData()) {
739     if (MAI->hasSubsectionsViaSymbols()) {
740       // Preserving prefix data on platforms which use subsections-via-symbols
741       // is a bit tricky. Here we introduce a symbol for the prefix data
742       // and use the .alt_entry attribute to mark the function's real entry point
743       // as an alternative entry point to the prefix-data symbol.
744       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
745       OutStreamer->emitLabel(PrefixSym);
746 
747       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
748 
749       // Emit an .alt_entry directive for the actual function symbol.
750       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
751     } else {
752       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
753     }
754   }
755 
756   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
757   // place prefix data before NOPs.
758   unsigned PatchableFunctionPrefix = 0;
759   unsigned PatchableFunctionEntry = 0;
760   (void)F.getFnAttribute("patchable-function-prefix")
761       .getValueAsString()
762       .getAsInteger(10, PatchableFunctionPrefix);
763   (void)F.getFnAttribute("patchable-function-entry")
764       .getValueAsString()
765       .getAsInteger(10, PatchableFunctionEntry);
766   if (PatchableFunctionPrefix) {
767     CurrentPatchableFunctionEntrySym =
768         OutContext.createLinkerPrivateTempSymbol();
769     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
770     emitNops(PatchableFunctionPrefix);
771   } else if (PatchableFunctionEntry) {
772     // May be reassigned when emitting the body, to reference the label after
773     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
774     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
775   }
776 
777   // Emit the function descriptor. This is a virtual function to allow targets
778   // to emit their specific function descriptor. Right now it is only used by
779   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
780   // descriptors and should be converted to use this hook as well.
781   if (MAI->needsFunctionDescriptors())
782     emitFunctionDescriptor();
783 
784   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
785   // their wild and crazy things as required.
786   emitFunctionEntryLabel();
787 
788   if (CurrentFnBegin) {
789     if (MAI->useAssignmentForEHBegin()) {
790       MCSymbol *CurPos = OutContext.createTempSymbol();
791       OutStreamer->emitLabel(CurPos);
792       OutStreamer->emitAssignment(CurrentFnBegin,
793                                  MCSymbolRefExpr::create(CurPos, OutContext));
794     } else {
795       OutStreamer->emitLabel(CurrentFnBegin);
796     }
797   }
798 
799   // Emit pre-function debug and/or EH information.
800   for (const HandlerInfo &HI : Handlers) {
801     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
802                        HI.TimerGroupDescription, TimePassesIsEnabled);
803     HI.Handler->beginFunction(MF);
804   }
805 
806   // Emit the prologue data.
807   if (F.hasPrologueData())
808     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
809 }
810 
811 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
812 /// function.  This can be overridden by targets as required to do custom stuff.
813 void AsmPrinter::emitFunctionEntryLabel() {
814   CurrentFnSym->redefineIfPossible();
815 
816   // The function label could have already been emitted if two symbols end up
817   // conflicting due to asm renaming.  Detect this and emit an error.
818   if (CurrentFnSym->isVariable())
819     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
820                        "' is a protected alias");
821   if (CurrentFnSym->isDefined())
822     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
823                        "' label emitted multiple times to assembly file");
824 
825   OutStreamer->emitLabel(CurrentFnSym);
826 
827   if (TM.getTargetTriple().isOSBinFormatELF()) {
828     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
829     if (Sym != CurrentFnSym)
830       OutStreamer->emitLabel(Sym);
831   }
832 }
833 
834 /// emitComments - Pretty-print comments for instructions.
835 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
836   const MachineFunction *MF = MI.getMF();
837   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
838 
839   // Check for spills and reloads
840 
841   // We assume a single instruction only has a spill or reload, not
842   // both.
843   Optional<unsigned> Size;
844   if ((Size = MI.getRestoreSize(TII))) {
845     CommentOS << *Size << "-byte Reload\n";
846   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
847     if (*Size)
848       CommentOS << *Size << "-byte Folded Reload\n";
849   } else if ((Size = MI.getSpillSize(TII))) {
850     CommentOS << *Size << "-byte Spill\n";
851   } else if ((Size = MI.getFoldedSpillSize(TII))) {
852     if (*Size)
853       CommentOS << *Size << "-byte Folded Spill\n";
854   }
855 
856   // Check for spill-induced copies
857   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
858     CommentOS << " Reload Reuse\n";
859 }
860 
861 /// emitImplicitDef - This method emits the specified machine instruction
862 /// that is an implicit def.
863 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
864   Register RegNo = MI->getOperand(0).getReg();
865 
866   SmallString<128> Str;
867   raw_svector_ostream OS(Str);
868   OS << "implicit-def: "
869      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
870 
871   OutStreamer->AddComment(OS.str());
872   OutStreamer->AddBlankLine();
873 }
874 
875 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
876   std::string Str;
877   raw_string_ostream OS(Str);
878   OS << "kill:";
879   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
880     const MachineOperand &Op = MI->getOperand(i);
881     assert(Op.isReg() && "KILL instruction must have only register operands");
882     OS << ' ' << (Op.isDef() ? "def " : "killed ")
883        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
884   }
885   AP.OutStreamer->AddComment(OS.str());
886   AP.OutStreamer->AddBlankLine();
887 }
888 
889 /// emitDebugValueComment - This method handles the target-independent form
890 /// of DBG_VALUE, returning true if it was able to do so.  A false return
891 /// means the target will need to handle MI in EmitInstruction.
892 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
893   // This code handles only the 4-operand target-independent form.
894   if (MI->getNumOperands() != 4)
895     return false;
896 
897   SmallString<128> Str;
898   raw_svector_ostream OS(Str);
899   OS << "DEBUG_VALUE: ";
900 
901   const DILocalVariable *V = MI->getDebugVariable();
902   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
903     StringRef Name = SP->getName();
904     if (!Name.empty())
905       OS << Name << ":";
906   }
907   OS << V->getName();
908   OS << " <- ";
909 
910   // The second operand is only an offset if it's an immediate.
911   bool MemLoc = MI->isIndirectDebugValue();
912   auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0);
913   const DIExpression *Expr = MI->getDebugExpression();
914   if (Expr->getNumElements()) {
915     OS << '[';
916     bool NeedSep = false;
917     for (auto Op : Expr->expr_ops()) {
918       if (NeedSep)
919         OS << ", ";
920       else
921         NeedSep = true;
922       OS << dwarf::OperationEncodingString(Op.getOp());
923       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
924         OS << ' ' << Op.getArg(I);
925     }
926     OS << "] ";
927   }
928 
929   // Register or immediate value. Register 0 means undef.
930   if (MI->getDebugOperand(0).isFPImm()) {
931     APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
932     if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
933       OS << (double)APF.convertToFloat();
934     } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
935       OS << APF.convertToDouble();
936     } else {
937       // There is no good way to print long double.  Convert a copy to
938       // double.  Ah well, it's only a comment.
939       bool ignored;
940       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
941                   &ignored);
942       OS << "(long double) " << APF.convertToDouble();
943     }
944   } else if (MI->getDebugOperand(0).isImm()) {
945     OS << MI->getDebugOperand(0).getImm();
946   } else if (MI->getDebugOperand(0).isCImm()) {
947     MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
948   } else if (MI->getDebugOperand(0).isTargetIndex()) {
949     auto Op = MI->getDebugOperand(0);
950     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
951     return true;
952   } else {
953     Register Reg;
954     if (MI->getDebugOperand(0).isReg()) {
955       Reg = MI->getDebugOperand(0).getReg();
956     } else {
957       assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
958       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
959       Offset += TFI->getFrameIndexReference(
960           *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
961       MemLoc = true;
962     }
963     if (Reg == 0) {
964       // Suppress offset, it is not meaningful here.
965       OS << "undef";
966       // NOTE: Want this comment at start of line, don't emit with AddComment.
967       AP.OutStreamer->emitRawComment(OS.str());
968       return true;
969     }
970     if (MemLoc)
971       OS << '[';
972     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
973   }
974 
975   if (MemLoc)
976     OS << '+' << Offset.getFixed() << ']';
977 
978   // NOTE: Want this comment at start of line, don't emit with AddComment.
979   AP.OutStreamer->emitRawComment(OS.str());
980   return true;
981 }
982 
983 /// This method handles the target-independent form of DBG_LABEL, returning
984 /// true if it was able to do so.  A false return means the target will need
985 /// to handle MI in EmitInstruction.
986 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
987   if (MI->getNumOperands() != 1)
988     return false;
989 
990   SmallString<128> Str;
991   raw_svector_ostream OS(Str);
992   OS << "DEBUG_LABEL: ";
993 
994   const DILabel *V = MI->getDebugLabel();
995   if (auto *SP = dyn_cast<DISubprogram>(
996           V->getScope()->getNonLexicalBlockFileScope())) {
997     StringRef Name = SP->getName();
998     if (!Name.empty())
999       OS << Name << ":";
1000   }
1001   OS << V->getName();
1002 
1003   // NOTE: Want this comment at start of line, don't emit with AddComment.
1004   AP.OutStreamer->emitRawComment(OS.str());
1005   return true;
1006 }
1007 
1008 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
1009   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1010       MF->getFunction().needsUnwindTableEntry())
1011     return CFI_M_EH;
1012 
1013   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
1014     return CFI_M_Debug;
1015 
1016   return CFI_M_None;
1017 }
1018 
1019 bool AsmPrinter::needsSEHMoves() {
1020   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1021 }
1022 
1023 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1024   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1025   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1026       ExceptionHandlingType != ExceptionHandling::ARM)
1027     return;
1028 
1029   if (needsCFIMoves() == CFI_M_None)
1030     return;
1031 
1032   // If there is no "real" instruction following this CFI instruction, skip
1033   // emitting it; it would be beyond the end of the function's FDE range.
1034   auto *MBB = MI.getParent();
1035   auto I = std::next(MI.getIterator());
1036   while (I != MBB->end() && I->isTransient())
1037     ++I;
1038   if (I == MBB->instr_end() &&
1039       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1040     return;
1041 
1042   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1043   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1044   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1045   emitCFIInstruction(CFI);
1046 }
1047 
1048 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1049   // The operands are the MCSymbol and the frame offset of the allocation.
1050   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1051   int FrameOffset = MI.getOperand(1).getImm();
1052 
1053   // Emit a symbol assignment.
1054   OutStreamer->emitAssignment(FrameAllocSym,
1055                              MCConstantExpr::create(FrameOffset, OutContext));
1056 }
1057 
1058 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1059 /// given basic block. This can be used to capture more precise profile
1060 /// information. We use the last 3 bits (LSBs) to ecnode the following
1061 /// information:
1062 ///  * (1): set if return block (ret or tail call).
1063 ///  * (2): set if ends with a tail call.
1064 ///  * (3): set if exception handling (EH) landing pad.
1065 /// The remaining bits are zero.
1066 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1067   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1068   return ((unsigned)MBB.isReturnBlock()) |
1069          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1070          (MBB.isEHPad() << 2);
1071 }
1072 
1073 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1074   MCSection *BBAddrMapSection =
1075       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1076   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1077 
1078   const MCSymbol *FunctionSymbol = getFunctionBegin();
1079 
1080   OutStreamer->PushSection();
1081   OutStreamer->SwitchSection(BBAddrMapSection);
1082   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1083   // Emit the total number of basic blocks in this function.
1084   OutStreamer->emitULEB128IntValue(MF.size());
1085   // Emit BB Information for each basic block in the funciton.
1086   for (const MachineBasicBlock &MBB : MF) {
1087     const MCSymbol *MBBSymbol =
1088         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1089     // Emit the basic block offset.
1090     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1091     // Emit the basic block size. When BBs have alignments, their size cannot
1092     // always be computed from their offsets.
1093     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1094     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1095   }
1096   OutStreamer->PopSection();
1097 }
1098 
1099 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1100   auto GUID = MI.getOperand(0).getImm();
1101   auto Index = MI.getOperand(1).getImm();
1102   auto Type = MI.getOperand(2).getImm();
1103   auto Attr = MI.getOperand(3).getImm();
1104   DILocation *DebugLoc = MI.getDebugLoc();
1105   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1106 }
1107 
1108 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1109   if (!MF.getTarget().Options.EmitStackSizeSection)
1110     return;
1111 
1112   MCSection *StackSizeSection =
1113       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1114   if (!StackSizeSection)
1115     return;
1116 
1117   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1118   // Don't emit functions with dynamic stack allocations.
1119   if (FrameInfo.hasVarSizedObjects())
1120     return;
1121 
1122   OutStreamer->PushSection();
1123   OutStreamer->SwitchSection(StackSizeSection);
1124 
1125   const MCSymbol *FunctionSymbol = getFunctionBegin();
1126   uint64_t StackSize = FrameInfo.getStackSize();
1127   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1128   OutStreamer->emitULEB128IntValue(StackSize);
1129 
1130   OutStreamer->PopSection();
1131 }
1132 
1133 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1134   MachineModuleInfo &MMI = MF.getMMI();
1135   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1136     return true;
1137 
1138   // We might emit an EH table that uses function begin and end labels even if
1139   // we don't have any landingpads.
1140   if (!MF.getFunction().hasPersonalityFn())
1141     return false;
1142   return !isNoOpWithoutInvoke(
1143       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1144 }
1145 
1146 /// EmitFunctionBody - This method emits the body and trailer for a
1147 /// function.
1148 void AsmPrinter::emitFunctionBody() {
1149   emitFunctionHeader();
1150 
1151   // Emit target-specific gunk before the function body.
1152   emitFunctionBodyStart();
1153 
1154   if (isVerbose()) {
1155     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1156     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1157     if (!MDT) {
1158       OwnedMDT = std::make_unique<MachineDominatorTree>();
1159       OwnedMDT->getBase().recalculate(*MF);
1160       MDT = OwnedMDT.get();
1161     }
1162 
1163     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1164     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1165     if (!MLI) {
1166       OwnedMLI = std::make_unique<MachineLoopInfo>();
1167       OwnedMLI->getBase().analyze(MDT->getBase());
1168       MLI = OwnedMLI.get();
1169     }
1170   }
1171 
1172   // Print out code for the function.
1173   bool HasAnyRealCode = false;
1174   int NumInstsInFunction = 0;
1175 
1176   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1177   for (auto &MBB : *MF) {
1178     // Print a label for the basic block.
1179     emitBasicBlockStart(MBB);
1180     DenseMap<StringRef, unsigned> MnemonicCounts;
1181     for (auto &MI : MBB) {
1182       // Print the assembly for the instruction.
1183       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1184           !MI.isDebugInstr()) {
1185         HasAnyRealCode = true;
1186         ++NumInstsInFunction;
1187       }
1188 
1189       // If there is a pre-instruction symbol, emit a label for it here.
1190       if (MCSymbol *S = MI.getPreInstrSymbol())
1191         OutStreamer->emitLabel(S);
1192 
1193       for (const HandlerInfo &HI : Handlers) {
1194         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1195                            HI.TimerGroupDescription, TimePassesIsEnabled);
1196         HI.Handler->beginInstruction(&MI);
1197       }
1198 
1199       if (isVerbose())
1200         emitComments(MI, OutStreamer->GetCommentOS());
1201 
1202       switch (MI.getOpcode()) {
1203       case TargetOpcode::CFI_INSTRUCTION:
1204         emitCFIInstruction(MI);
1205         break;
1206       case TargetOpcode::LOCAL_ESCAPE:
1207         emitFrameAlloc(MI);
1208         break;
1209       case TargetOpcode::ANNOTATION_LABEL:
1210       case TargetOpcode::EH_LABEL:
1211       case TargetOpcode::GC_LABEL:
1212         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1213         break;
1214       case TargetOpcode::INLINEASM:
1215       case TargetOpcode::INLINEASM_BR:
1216         emitInlineAsm(&MI);
1217         break;
1218       case TargetOpcode::DBG_VALUE:
1219         if (isVerbose()) {
1220           if (!emitDebugValueComment(&MI, *this))
1221             emitInstruction(&MI);
1222         }
1223         break;
1224       case TargetOpcode::DBG_INSTR_REF:
1225         // This instruction reference will have been resolved to a machine
1226         // location, and a nearby DBG_VALUE created. We can safely ignore
1227         // the instruction reference.
1228         break;
1229       case TargetOpcode::DBG_LABEL:
1230         if (isVerbose()) {
1231           if (!emitDebugLabelComment(&MI, *this))
1232             emitInstruction(&MI);
1233         }
1234         break;
1235       case TargetOpcode::IMPLICIT_DEF:
1236         if (isVerbose()) emitImplicitDef(&MI);
1237         break;
1238       case TargetOpcode::KILL:
1239         if (isVerbose()) emitKill(&MI, *this);
1240         break;
1241       case TargetOpcode::PSEUDO_PROBE:
1242         emitPseudoProbe(MI);
1243         break;
1244       default:
1245         emitInstruction(&MI);
1246         if (CanDoExtraAnalysis) {
1247           MCInst MCI;
1248           MCI.setOpcode(MI.getOpcode());
1249           auto Name = OutStreamer->getMnemonic(MCI);
1250           auto I = MnemonicCounts.insert({Name, 0u});
1251           I.first->second++;
1252         }
1253         break;
1254       }
1255 
1256       // If there is a post-instruction symbol, emit a label for it here.
1257       if (MCSymbol *S = MI.getPostInstrSymbol())
1258         OutStreamer->emitLabel(S);
1259 
1260       for (const HandlerInfo &HI : Handlers) {
1261         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1262                            HI.TimerGroupDescription, TimePassesIsEnabled);
1263         HI.Handler->endInstruction();
1264       }
1265     }
1266 
1267     // We must emit temporary symbol for the end of this basic block, if either
1268     // we have BBLabels enabled or if this basic blocks marks the end of a
1269     // section (except the section containing the entry basic block as the end
1270     // symbol for that section is CurrentFnEnd).
1271     if (MF->hasBBLabels() ||
1272         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1273          !MBB.sameSection(&MF->front())))
1274       OutStreamer->emitLabel(MBB.getEndSymbol());
1275 
1276     if (MBB.isEndSection()) {
1277       // The size directive for the section containing the entry block is
1278       // handled separately by the function section.
1279       if (!MBB.sameSection(&MF->front())) {
1280         if (MAI->hasDotTypeDotSizeDirective()) {
1281           // Emit the size directive for the basic block section.
1282           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1283               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1284               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1285               OutContext);
1286           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1287         }
1288         MBBSectionRanges[MBB.getSectionIDNum()] =
1289             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1290       }
1291     }
1292     emitBasicBlockEnd(MBB);
1293 
1294     if (CanDoExtraAnalysis) {
1295       // Skip empty blocks.
1296       if (MBB.empty())
1297         continue;
1298 
1299       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1300                                           MBB.begin()->getDebugLoc(), &MBB);
1301 
1302       // Generate instruction mix remark. First, sort counts in descending order
1303       // by count and name.
1304       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1305       for (auto &KV : MnemonicCounts)
1306         MnemonicVec.emplace_back(KV.first, KV.second);
1307 
1308       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1309                            const std::pair<StringRef, unsigned> &B) {
1310         if (A.second > B.second)
1311           return true;
1312         if (A.second == B.second)
1313           return StringRef(A.first) < StringRef(B.first);
1314         return false;
1315       });
1316       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1317       for (auto &KV : MnemonicVec) {
1318         auto Name = (Twine("INST_") + KV.first.trim()).str();
1319         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1320       }
1321       ORE->emit(R);
1322     }
1323   }
1324 
1325   EmittedInsts += NumInstsInFunction;
1326   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1327                                       MF->getFunction().getSubprogram(),
1328                                       &MF->front());
1329   R << ore::NV("NumInstructions", NumInstsInFunction)
1330     << " instructions in function";
1331   ORE->emit(R);
1332 
1333   // If the function is empty and the object file uses .subsections_via_symbols,
1334   // then we need to emit *something* to the function body to prevent the
1335   // labels from collapsing together.  Just emit a noop.
1336   // Similarly, don't emit empty functions on Windows either. It can lead to
1337   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1338   // after linking, causing the kernel not to load the binary:
1339   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1340   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1341   const Triple &TT = TM.getTargetTriple();
1342   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1343                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1344     MCInst Noop;
1345     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1346 
1347     // Targets can opt-out of emitting the noop here by leaving the opcode
1348     // unspecified.
1349     if (Noop.getOpcode()) {
1350       OutStreamer->AddComment("avoids zero-length function");
1351       emitNops(1);
1352     }
1353   }
1354 
1355   // Switch to the original section in case basic block sections was used.
1356   OutStreamer->SwitchSection(MF->getSection());
1357 
1358   const Function &F = MF->getFunction();
1359   for (const auto &BB : F) {
1360     if (!BB.hasAddressTaken())
1361       continue;
1362     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1363     if (Sym->isDefined())
1364       continue;
1365     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1366     OutStreamer->emitLabel(Sym);
1367   }
1368 
1369   // Emit target-specific gunk after the function body.
1370   emitFunctionBodyEnd();
1371 
1372   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1373       MAI->hasDotTypeDotSizeDirective()) {
1374     // Create a symbol for the end of function.
1375     CurrentFnEnd = createTempSymbol("func_end");
1376     OutStreamer->emitLabel(CurrentFnEnd);
1377   }
1378 
1379   // If the target wants a .size directive for the size of the function, emit
1380   // it.
1381   if (MAI->hasDotTypeDotSizeDirective()) {
1382     // We can get the size as difference between the function label and the
1383     // temp label.
1384     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1385         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1386         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1387     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1388   }
1389 
1390   for (const HandlerInfo &HI : Handlers) {
1391     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1392                        HI.TimerGroupDescription, TimePassesIsEnabled);
1393     HI.Handler->markFunctionEnd();
1394   }
1395 
1396   MBBSectionRanges[MF->front().getSectionIDNum()] =
1397       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1398 
1399   // Print out jump tables referenced by the function.
1400   emitJumpTableInfo();
1401 
1402   // Emit post-function debug and/or EH information.
1403   for (const HandlerInfo &HI : Handlers) {
1404     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1405                        HI.TimerGroupDescription, TimePassesIsEnabled);
1406     HI.Handler->endFunction(MF);
1407   }
1408 
1409   // Emit section containing BB address offsets and their metadata, when
1410   // BB labels are requested for this function.
1411   if (MF->hasBBLabels())
1412     emitBBAddrMapSection(*MF);
1413 
1414   // Emit section containing stack size metadata.
1415   emitStackSizeSection(*MF);
1416 
1417   emitPatchableFunctionEntries();
1418 
1419   if (isVerbose())
1420     OutStreamer->GetCommentOS() << "-- End function\n";
1421 
1422   OutStreamer->AddBlankLine();
1423 }
1424 
1425 /// Compute the number of Global Variables that uses a Constant.
1426 static unsigned getNumGlobalVariableUses(const Constant *C) {
1427   if (!C)
1428     return 0;
1429 
1430   if (isa<GlobalVariable>(C))
1431     return 1;
1432 
1433   unsigned NumUses = 0;
1434   for (auto *CU : C->users())
1435     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1436 
1437   return NumUses;
1438 }
1439 
1440 /// Only consider global GOT equivalents if at least one user is a
1441 /// cstexpr inside an initializer of another global variables. Also, don't
1442 /// handle cstexpr inside instructions. During global variable emission,
1443 /// candidates are skipped and are emitted later in case at least one cstexpr
1444 /// isn't replaced by a PC relative GOT entry access.
1445 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1446                                      unsigned &NumGOTEquivUsers) {
1447   // Global GOT equivalents are unnamed private globals with a constant
1448   // pointer initializer to another global symbol. They must point to a
1449   // GlobalVariable or Function, i.e., as GlobalValue.
1450   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1451       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1452       !isa<GlobalValue>(GV->getOperand(0)))
1453     return false;
1454 
1455   // To be a got equivalent, at least one of its users need to be a constant
1456   // expression used by another global variable.
1457   for (auto *U : GV->users())
1458     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1459 
1460   return NumGOTEquivUsers > 0;
1461 }
1462 
1463 /// Unnamed constant global variables solely contaning a pointer to
1464 /// another globals variable is equivalent to a GOT table entry; it contains the
1465 /// the address of another symbol. Optimize it and replace accesses to these
1466 /// "GOT equivalents" by using the GOT entry for the final global instead.
1467 /// Compute GOT equivalent candidates among all global variables to avoid
1468 /// emitting them if possible later on, after it use is replaced by a GOT entry
1469 /// access.
1470 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1471   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1472     return;
1473 
1474   for (const auto &G : M.globals()) {
1475     unsigned NumGOTEquivUsers = 0;
1476     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1477       continue;
1478 
1479     const MCSymbol *GOTEquivSym = getSymbol(&G);
1480     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1481   }
1482 }
1483 
1484 /// Constant expressions using GOT equivalent globals may not be eligible
1485 /// for PC relative GOT entry conversion, in such cases we need to emit such
1486 /// globals we previously omitted in EmitGlobalVariable.
1487 void AsmPrinter::emitGlobalGOTEquivs() {
1488   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1489     return;
1490 
1491   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1492   for (auto &I : GlobalGOTEquivs) {
1493     const GlobalVariable *GV = I.second.first;
1494     unsigned Cnt = I.second.second;
1495     if (Cnt)
1496       FailedCandidates.push_back(GV);
1497   }
1498   GlobalGOTEquivs.clear();
1499 
1500   for (auto *GV : FailedCandidates)
1501     emitGlobalVariable(GV);
1502 }
1503 
1504 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1505                                           const GlobalIndirectSymbol& GIS) {
1506   MCSymbol *Name = getSymbol(&GIS);
1507   bool IsFunction = GIS.getValueType()->isFunctionTy();
1508   // Treat bitcasts of functions as functions also. This is important at least
1509   // on WebAssembly where object and function addresses can't alias each other.
1510   if (!IsFunction)
1511     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1512       if (CE->getOpcode() == Instruction::BitCast)
1513         IsFunction =
1514           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1515 
1516   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1517   // so AIX has to use the extra-label-at-definition strategy. At this
1518   // point, all the extra label is emitted, we just have to emit linkage for
1519   // those labels.
1520   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1521     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1522     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1523            "Visibility should be handled with emitLinkage() on AIX.");
1524     emitLinkage(&GIS, Name);
1525     // If it's a function, also emit linkage for aliases of function entry
1526     // point.
1527     if (IsFunction)
1528       emitLinkage(&GIS,
1529                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1530     return;
1531   }
1532 
1533   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1534     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1535   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1536     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1537   else
1538     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1539 
1540   // Set the symbol type to function if the alias has a function type.
1541   // This affects codegen when the aliasee is not a function.
1542   if (IsFunction)
1543     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1544                                                ? MCSA_ELF_TypeIndFunction
1545                                                : MCSA_ELF_TypeFunction);
1546 
1547   emitVisibility(Name, GIS.getVisibility());
1548 
1549   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1550 
1551   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1552     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1553 
1554   // Emit the directives as assignments aka .set:
1555   OutStreamer->emitAssignment(Name, Expr);
1556   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1557   if (LocalAlias != Name)
1558     OutStreamer->emitAssignment(LocalAlias, Expr);
1559 
1560   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1561     // If the aliasee does not correspond to a symbol in the output, i.e. the
1562     // alias is not of an object or the aliased object is private, then set the
1563     // size of the alias symbol from the type of the alias. We don't do this in
1564     // other situations as the alias and aliasee having differing types but same
1565     // size may be intentional.
1566     const GlobalObject *BaseObject = GA->getBaseObject();
1567     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1568         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1569       const DataLayout &DL = M.getDataLayout();
1570       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1571       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1572     }
1573   }
1574 }
1575 
1576 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1577   if (!RS.needsSection())
1578     return;
1579 
1580   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1581 
1582   Optional<SmallString<128>> Filename;
1583   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1584     Filename = *FilenameRef;
1585     sys::fs::make_absolute(*Filename);
1586     assert(!Filename->empty() && "The filename can't be empty.");
1587   }
1588 
1589   std::string Buf;
1590   raw_string_ostream OS(Buf);
1591   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1592       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1593                : RemarkSerializer.metaSerializer(OS);
1594   MetaSerializer->emit();
1595 
1596   // Switch to the remarks section.
1597   MCSection *RemarksSection =
1598       OutContext.getObjectFileInfo()->getRemarksSection();
1599   OutStreamer->SwitchSection(RemarksSection);
1600 
1601   OutStreamer->emitBinaryData(OS.str());
1602 }
1603 
1604 bool AsmPrinter::doFinalization(Module &M) {
1605   // Set the MachineFunction to nullptr so that we can catch attempted
1606   // accesses to MF specific features at the module level and so that
1607   // we can conditionalize accesses based on whether or not it is nullptr.
1608   MF = nullptr;
1609 
1610   // Gather all GOT equivalent globals in the module. We really need two
1611   // passes over the globals: one to compute and another to avoid its emission
1612   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1613   // where the got equivalent shows up before its use.
1614   computeGlobalGOTEquivs(M);
1615 
1616   // Emit global variables.
1617   for (const auto &G : M.globals())
1618     emitGlobalVariable(&G);
1619 
1620   // Emit remaining GOT equivalent globals.
1621   emitGlobalGOTEquivs();
1622 
1623   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1624 
1625   // Emit linkage(XCOFF) and visibility info for declarations
1626   for (const Function &F : M) {
1627     if (!F.isDeclarationForLinker())
1628       continue;
1629 
1630     MCSymbol *Name = getSymbol(&F);
1631     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1632 
1633     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1634       GlobalValue::VisibilityTypes V = F.getVisibility();
1635       if (V == GlobalValue::DefaultVisibility)
1636         continue;
1637 
1638       emitVisibility(Name, V, false);
1639       continue;
1640     }
1641 
1642     if (F.isIntrinsic())
1643       continue;
1644 
1645     // Handle the XCOFF case.
1646     // Variable `Name` is the function descriptor symbol (see above). Get the
1647     // function entry point symbol.
1648     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1649     // Emit linkage for the function entry point.
1650     emitLinkage(&F, FnEntryPointSym);
1651 
1652     // Emit linkage for the function descriptor.
1653     emitLinkage(&F, Name);
1654   }
1655 
1656   // Emit the remarks section contents.
1657   // FIXME: Figure out when is the safest time to emit this section. It should
1658   // not come after debug info.
1659   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1660     emitRemarksSection(*RS);
1661 
1662   TLOF.emitModuleMetadata(*OutStreamer, M);
1663 
1664   if (TM.getTargetTriple().isOSBinFormatELF()) {
1665     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1666 
1667     // Output stubs for external and common global variables.
1668     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1669     if (!Stubs.empty()) {
1670       OutStreamer->SwitchSection(TLOF.getDataSection());
1671       const DataLayout &DL = M.getDataLayout();
1672 
1673       emitAlignment(Align(DL.getPointerSize()));
1674       for (const auto &Stub : Stubs) {
1675         OutStreamer->emitLabel(Stub.first);
1676         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1677                                      DL.getPointerSize());
1678       }
1679     }
1680   }
1681 
1682   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1683     MachineModuleInfoCOFF &MMICOFF =
1684         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1685 
1686     // Output stubs for external and common global variables.
1687     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1688     if (!Stubs.empty()) {
1689       const DataLayout &DL = M.getDataLayout();
1690 
1691       for (const auto &Stub : Stubs) {
1692         SmallString<256> SectionName = StringRef(".rdata$");
1693         SectionName += Stub.first->getName();
1694         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1695             SectionName,
1696             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1697                 COFF::IMAGE_SCN_LNK_COMDAT,
1698             SectionKind::getReadOnly(), Stub.first->getName(),
1699             COFF::IMAGE_COMDAT_SELECT_ANY));
1700         emitAlignment(Align(DL.getPointerSize()));
1701         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1702         OutStreamer->emitLabel(Stub.first);
1703         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1704                                      DL.getPointerSize());
1705       }
1706     }
1707   }
1708 
1709   // Finalize debug and EH information.
1710   for (const HandlerInfo &HI : Handlers) {
1711     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1712                        HI.TimerGroupDescription, TimePassesIsEnabled);
1713     HI.Handler->endModule();
1714   }
1715 
1716   // This deletes all the ephemeral handlers that AsmPrinter added, while
1717   // keeping all the user-added handlers alive until the AsmPrinter is
1718   // destroyed.
1719   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1720   DD = nullptr;
1721 
1722   // If the target wants to know about weak references, print them all.
1723   if (MAI->getWeakRefDirective()) {
1724     // FIXME: This is not lazy, it would be nice to only print weak references
1725     // to stuff that is actually used.  Note that doing so would require targets
1726     // to notice uses in operands (due to constant exprs etc).  This should
1727     // happen with the MC stuff eventually.
1728 
1729     // Print out module-level global objects here.
1730     for (const auto &GO : M.global_objects()) {
1731       if (!GO.hasExternalWeakLinkage())
1732         continue;
1733       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1734     }
1735   }
1736 
1737   // Print aliases in topological order, that is, for each alias a = b,
1738   // b must be printed before a.
1739   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1740   // such an order to generate correct TOC information.
1741   SmallVector<const GlobalAlias *, 16> AliasStack;
1742   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1743   for (const auto &Alias : M.aliases()) {
1744     for (const GlobalAlias *Cur = &Alias; Cur;
1745          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1746       if (!AliasVisited.insert(Cur).second)
1747         break;
1748       AliasStack.push_back(Cur);
1749     }
1750     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1751       emitGlobalIndirectSymbol(M, *AncestorAlias);
1752     AliasStack.clear();
1753   }
1754   for (const auto &IFunc : M.ifuncs())
1755     emitGlobalIndirectSymbol(M, IFunc);
1756 
1757   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1758   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1759   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1760     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1761       MP->finishAssembly(M, *MI, *this);
1762 
1763   // Emit llvm.ident metadata in an '.ident' directive.
1764   emitModuleIdents(M);
1765 
1766   // Emit bytes for llvm.commandline metadata.
1767   emitModuleCommandLines(M);
1768 
1769   // Emit __morestack address if needed for indirect calls.
1770   if (MMI->usesMorestackAddr()) {
1771     Align Alignment(1);
1772     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1773         getDataLayout(), SectionKind::getReadOnly(),
1774         /*C=*/nullptr, Alignment);
1775     OutStreamer->SwitchSection(ReadOnlySection);
1776 
1777     MCSymbol *AddrSymbol =
1778         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1779     OutStreamer->emitLabel(AddrSymbol);
1780 
1781     unsigned PtrSize = MAI->getCodePointerSize();
1782     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1783                                  PtrSize);
1784   }
1785 
1786   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1787   // split-stack is used.
1788   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1789     OutStreamer->SwitchSection(
1790         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1791     if (MMI->hasNosplitStack())
1792       OutStreamer->SwitchSection(
1793           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1794   }
1795 
1796   // If we don't have any trampolines, then we don't require stack memory
1797   // to be executable. Some targets have a directive to declare this.
1798   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1799   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1800     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1801       OutStreamer->SwitchSection(S);
1802 
1803   if (TM.Options.EmitAddrsig) {
1804     // Emit address-significance attributes for all globals.
1805     OutStreamer->emitAddrsig();
1806     for (const GlobalValue &GV : M.global_values())
1807       if (!GV.use_empty() && !GV.isThreadLocal() &&
1808           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1809           !GV.hasAtLeastLocalUnnamedAddr())
1810         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1811   }
1812 
1813   // Emit symbol partition specifications (ELF only).
1814   if (TM.getTargetTriple().isOSBinFormatELF()) {
1815     unsigned UniqueID = 0;
1816     for (const GlobalValue &GV : M.global_values()) {
1817       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1818           GV.getVisibility() != GlobalValue::DefaultVisibility)
1819         continue;
1820 
1821       OutStreamer->SwitchSection(
1822           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1823                                    "", ++UniqueID, nullptr));
1824       OutStreamer->emitBytes(GV.getPartition());
1825       OutStreamer->emitZeros(1);
1826       OutStreamer->emitValue(
1827           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1828           MAI->getCodePointerSize());
1829     }
1830   }
1831 
1832   // Allow the target to emit any magic that it wants at the end of the file,
1833   // after everything else has gone out.
1834   emitEndOfAsmFile(M);
1835 
1836   MMI = nullptr;
1837 
1838   OutStreamer->Finish();
1839   OutStreamer->reset();
1840   OwnedMLI.reset();
1841   OwnedMDT.reset();
1842 
1843   return false;
1844 }
1845 
1846 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1847   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1848   if (Res.second)
1849     Res.first->second = createTempSymbol("exception");
1850   return Res.first->second;
1851 }
1852 
1853 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1854   this->MF = &MF;
1855   const Function &F = MF.getFunction();
1856 
1857   // Get the function symbol.
1858   if (!MAI->needsFunctionDescriptors()) {
1859     CurrentFnSym = getSymbol(&MF.getFunction());
1860   } else {
1861     assert(TM.getTargetTriple().isOSAIX() &&
1862            "Only AIX uses the function descriptor hooks.");
1863     // AIX is unique here in that the name of the symbol emitted for the
1864     // function body does not have the same name as the source function's
1865     // C-linkage name.
1866     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1867                                " initalized first.");
1868 
1869     // Get the function entry point symbol.
1870     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1871   }
1872 
1873   CurrentFnSymForSize = CurrentFnSym;
1874   CurrentFnBegin = nullptr;
1875   CurrentSectionBeginSym = nullptr;
1876   MBBSectionRanges.clear();
1877   MBBSectionExceptionSyms.clear();
1878   bool NeedsLocalForSize = MAI->needsLocalForSize();
1879   if (F.hasFnAttribute("patchable-function-entry") ||
1880       F.hasFnAttribute("function-instrument") ||
1881       F.hasFnAttribute("xray-instruction-threshold") ||
1882       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1883       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1884     CurrentFnBegin = createTempSymbol("func_begin");
1885     if (NeedsLocalForSize)
1886       CurrentFnSymForSize = CurrentFnBegin;
1887   }
1888 
1889   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1890 }
1891 
1892 namespace {
1893 
1894 // Keep track the alignment, constpool entries per Section.
1895   struct SectionCPs {
1896     MCSection *S;
1897     Align Alignment;
1898     SmallVector<unsigned, 4> CPEs;
1899 
1900     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1901   };
1902 
1903 } // end anonymous namespace
1904 
1905 /// EmitConstantPool - Print to the current output stream assembly
1906 /// representations of the constants in the constant pool MCP. This is
1907 /// used to print out constants which have been "spilled to memory" by
1908 /// the code generator.
1909 void AsmPrinter::emitConstantPool() {
1910   const MachineConstantPool *MCP = MF->getConstantPool();
1911   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1912   if (CP.empty()) return;
1913 
1914   // Calculate sections for constant pool entries. We collect entries to go into
1915   // the same section together to reduce amount of section switch statements.
1916   SmallVector<SectionCPs, 4> CPSections;
1917   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1918     const MachineConstantPoolEntry &CPE = CP[i];
1919     Align Alignment = CPE.getAlign();
1920 
1921     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1922 
1923     const Constant *C = nullptr;
1924     if (!CPE.isMachineConstantPoolEntry())
1925       C = CPE.Val.ConstVal;
1926 
1927     MCSection *S = getObjFileLowering().getSectionForConstant(
1928         getDataLayout(), Kind, C, Alignment);
1929 
1930     // The number of sections are small, just do a linear search from the
1931     // last section to the first.
1932     bool Found = false;
1933     unsigned SecIdx = CPSections.size();
1934     while (SecIdx != 0) {
1935       if (CPSections[--SecIdx].S == S) {
1936         Found = true;
1937         break;
1938       }
1939     }
1940     if (!Found) {
1941       SecIdx = CPSections.size();
1942       CPSections.push_back(SectionCPs(S, Alignment));
1943     }
1944 
1945     if (Alignment > CPSections[SecIdx].Alignment)
1946       CPSections[SecIdx].Alignment = Alignment;
1947     CPSections[SecIdx].CPEs.push_back(i);
1948   }
1949 
1950   // Now print stuff into the calculated sections.
1951   const MCSection *CurSection = nullptr;
1952   unsigned Offset = 0;
1953   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1954     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1955       unsigned CPI = CPSections[i].CPEs[j];
1956       MCSymbol *Sym = GetCPISymbol(CPI);
1957       if (!Sym->isUndefined())
1958         continue;
1959 
1960       if (CurSection != CPSections[i].S) {
1961         OutStreamer->SwitchSection(CPSections[i].S);
1962         emitAlignment(Align(CPSections[i].Alignment));
1963         CurSection = CPSections[i].S;
1964         Offset = 0;
1965       }
1966 
1967       MachineConstantPoolEntry CPE = CP[CPI];
1968 
1969       // Emit inter-object padding for alignment.
1970       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1971       OutStreamer->emitZeros(NewOffset - Offset);
1972 
1973       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
1974 
1975       OutStreamer->emitLabel(Sym);
1976       if (CPE.isMachineConstantPoolEntry())
1977         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1978       else
1979         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1980     }
1981   }
1982 }
1983 
1984 // Print assembly representations of the jump tables used by the current
1985 // function.
1986 void AsmPrinter::emitJumpTableInfo() {
1987   const DataLayout &DL = MF->getDataLayout();
1988   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1989   if (!MJTI) return;
1990   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1991   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1992   if (JT.empty()) return;
1993 
1994   // Pick the directive to use to print the jump table entries, and switch to
1995   // the appropriate section.
1996   const Function &F = MF->getFunction();
1997   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1998   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1999       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2000       F);
2001   if (JTInDiffSection) {
2002     // Drop it in the readonly section.
2003     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2004     OutStreamer->SwitchSection(ReadOnlySection);
2005   }
2006 
2007   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2008 
2009   // Jump tables in code sections are marked with a data_region directive
2010   // where that's supported.
2011   if (!JTInDiffSection)
2012     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2013 
2014   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2015     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2016 
2017     // If this jump table was deleted, ignore it.
2018     if (JTBBs.empty()) continue;
2019 
2020     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2021     /// emit a .set directive for each unique entry.
2022     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2023         MAI->doesSetDirectiveSuppressReloc()) {
2024       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2025       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2026       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2027       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2028         const MachineBasicBlock *MBB = JTBBs[ii];
2029         if (!EmittedSets.insert(MBB).second)
2030           continue;
2031 
2032         // .set LJTSet, LBB32-base
2033         const MCExpr *LHS =
2034           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2035         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2036                                     MCBinaryExpr::createSub(LHS, Base,
2037                                                             OutContext));
2038       }
2039     }
2040 
2041     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2042     // before each jump table.  The first label is never referenced, but tells
2043     // the assembler and linker the extents of the jump table object.  The
2044     // second label is actually referenced by the code.
2045     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2046       // FIXME: This doesn't have to have any specific name, just any randomly
2047       // named and numbered local label started with 'l' would work.  Simplify
2048       // GetJTISymbol.
2049       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2050 
2051     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2052     OutStreamer->emitLabel(JTISymbol);
2053 
2054     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2055       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2056   }
2057   if (!JTInDiffSection)
2058     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2059 }
2060 
2061 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2062 /// current stream.
2063 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2064                                     const MachineBasicBlock *MBB,
2065                                     unsigned UID) const {
2066   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2067   const MCExpr *Value = nullptr;
2068   switch (MJTI->getEntryKind()) {
2069   case MachineJumpTableInfo::EK_Inline:
2070     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2071   case MachineJumpTableInfo::EK_Custom32:
2072     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2073         MJTI, MBB, UID, OutContext);
2074     break;
2075   case MachineJumpTableInfo::EK_BlockAddress:
2076     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2077     //     .word LBB123
2078     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2079     break;
2080   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2081     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2082     // with a relocation as gp-relative, e.g.:
2083     //     .gprel32 LBB123
2084     MCSymbol *MBBSym = MBB->getSymbol();
2085     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2086     return;
2087   }
2088 
2089   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2090     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2091     // with a relocation as gp-relative, e.g.:
2092     //     .gpdword LBB123
2093     MCSymbol *MBBSym = MBB->getSymbol();
2094     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2095     return;
2096   }
2097 
2098   case MachineJumpTableInfo::EK_LabelDifference32: {
2099     // Each entry is the address of the block minus the address of the jump
2100     // table. This is used for PIC jump tables where gprel32 is not supported.
2101     // e.g.:
2102     //      .word LBB123 - LJTI1_2
2103     // If the .set directive avoids relocations, this is emitted as:
2104     //      .set L4_5_set_123, LBB123 - LJTI1_2
2105     //      .word L4_5_set_123
2106     if (MAI->doesSetDirectiveSuppressReloc()) {
2107       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2108                                       OutContext);
2109       break;
2110     }
2111     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2112     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2113     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2114     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2115     break;
2116   }
2117   }
2118 
2119   assert(Value && "Unknown entry kind!");
2120 
2121   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2122   OutStreamer->emitValue(Value, EntrySize);
2123 }
2124 
2125 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2126 /// special global used by LLVM.  If so, emit it and return true, otherwise
2127 /// do nothing and return false.
2128 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2129   if (GV->getName() == "llvm.used") {
2130     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2131       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2132     return true;
2133   }
2134 
2135   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2136   if (GV->getSection() == "llvm.metadata" ||
2137       GV->hasAvailableExternallyLinkage())
2138     return true;
2139 
2140   if (!GV->hasAppendingLinkage()) return false;
2141 
2142   assert(GV->hasInitializer() && "Not a special LLVM global!");
2143 
2144   if (GV->getName() == "llvm.global_ctors") {
2145     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2146                        /* isCtor */ true);
2147 
2148     return true;
2149   }
2150 
2151   if (GV->getName() == "llvm.global_dtors") {
2152     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2153                        /* isCtor */ false);
2154 
2155     return true;
2156   }
2157 
2158   report_fatal_error("unknown special variable");
2159 }
2160 
2161 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2162 /// global in the specified llvm.used list.
2163 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2164   // Should be an array of 'i8*'.
2165   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2166     const GlobalValue *GV =
2167       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2168     if (GV)
2169       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2170   }
2171 }
2172 
2173 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2174                                           const Constant *List,
2175                                           SmallVector<Structor, 8> &Structors) {
2176   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2177   // the init priority.
2178   if (!isa<ConstantArray>(List))
2179     return;
2180 
2181   // Gather the structors in a form that's convenient for sorting by priority.
2182   for (Value *O : cast<ConstantArray>(List)->operands()) {
2183     auto *CS = cast<ConstantStruct>(O);
2184     if (CS->getOperand(1)->isNullValue())
2185       break; // Found a null terminator, skip the rest.
2186     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2187     if (!Priority)
2188       continue; // Malformed.
2189     Structors.push_back(Structor());
2190     Structor &S = Structors.back();
2191     S.Priority = Priority->getLimitedValue(65535);
2192     S.Func = CS->getOperand(1);
2193     if (!CS->getOperand(2)->isNullValue()) {
2194       if (TM.getTargetTriple().isOSAIX())
2195         llvm::report_fatal_error(
2196             "associated data of XXStructor list is not yet supported on AIX");
2197       S.ComdatKey =
2198           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2199     }
2200   }
2201 
2202   // Emit the function pointers in the target-specific order
2203   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2204     return L.Priority < R.Priority;
2205   });
2206 }
2207 
2208 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2209 /// priority.
2210 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2211                                     bool IsCtor) {
2212   SmallVector<Structor, 8> Structors;
2213   preprocessXXStructorList(DL, List, Structors);
2214   if (Structors.empty())
2215     return;
2216 
2217   const Align Align = DL.getPointerPrefAlignment();
2218   for (Structor &S : Structors) {
2219     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2220     const MCSymbol *KeySym = nullptr;
2221     if (GlobalValue *GV = S.ComdatKey) {
2222       if (GV->isDeclarationForLinker())
2223         // If the associated variable is not defined in this module
2224         // (it might be available_externally, or have been an
2225         // available_externally definition that was dropped by the
2226         // EliminateAvailableExternally pass), some other TU
2227         // will provide its dynamic initializer.
2228         continue;
2229 
2230       KeySym = getSymbol(GV);
2231     }
2232 
2233     MCSection *OutputSection =
2234         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2235                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2236     OutStreamer->SwitchSection(OutputSection);
2237     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2238       emitAlignment(Align);
2239     emitXXStructor(DL, S.Func);
2240   }
2241 }
2242 
2243 void AsmPrinter::emitModuleIdents(Module &M) {
2244   if (!MAI->hasIdentDirective())
2245     return;
2246 
2247   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2248     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2249       const MDNode *N = NMD->getOperand(i);
2250       assert(N->getNumOperands() == 1 &&
2251              "llvm.ident metadata entry can have only one operand");
2252       const MDString *S = cast<MDString>(N->getOperand(0));
2253       OutStreamer->emitIdent(S->getString());
2254     }
2255   }
2256 }
2257 
2258 void AsmPrinter::emitModuleCommandLines(Module &M) {
2259   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2260   if (!CommandLine)
2261     return;
2262 
2263   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2264   if (!NMD || !NMD->getNumOperands())
2265     return;
2266 
2267   OutStreamer->PushSection();
2268   OutStreamer->SwitchSection(CommandLine);
2269   OutStreamer->emitZeros(1);
2270   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2271     const MDNode *N = NMD->getOperand(i);
2272     assert(N->getNumOperands() == 1 &&
2273            "llvm.commandline metadata entry can have only one operand");
2274     const MDString *S = cast<MDString>(N->getOperand(0));
2275     OutStreamer->emitBytes(S->getString());
2276     OutStreamer->emitZeros(1);
2277   }
2278   OutStreamer->PopSection();
2279 }
2280 
2281 //===--------------------------------------------------------------------===//
2282 // Emission and print routines
2283 //
2284 
2285 /// Emit a byte directive and value.
2286 ///
2287 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2288 
2289 /// Emit a short directive and value.
2290 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2291 
2292 /// Emit a long directive and value.
2293 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2294 
2295 /// Emit a long long directive and value.
2296 void AsmPrinter::emitInt64(uint64_t Value) const {
2297   OutStreamer->emitInt64(Value);
2298 }
2299 
2300 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2301 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2302 /// .set if it avoids relocations.
2303 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2304                                      unsigned Size) const {
2305   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2306 }
2307 
2308 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2309 /// where the size in bytes of the directive is specified by Size and Label
2310 /// specifies the label.  This implicitly uses .set if it is available.
2311 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2312                                      unsigned Size,
2313                                      bool IsSectionRelative) const {
2314   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2315     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2316     if (Size > 4)
2317       OutStreamer->emitZeros(Size - 4);
2318     return;
2319   }
2320 
2321   // Emit Label+Offset (or just Label if Offset is zero)
2322   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2323   if (Offset)
2324     Expr = MCBinaryExpr::createAdd(
2325         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2326 
2327   OutStreamer->emitValue(Expr, Size);
2328 }
2329 
2330 //===----------------------------------------------------------------------===//
2331 
2332 // EmitAlignment - Emit an alignment directive to the specified power of
2333 // two boundary.  If a global value is specified, and if that global has
2334 // an explicit alignment requested, it will override the alignment request
2335 // if required for correctness.
2336 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2337   if (GV)
2338     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2339 
2340   if (Alignment == Align(1))
2341     return; // 1-byte aligned: no need to emit alignment.
2342 
2343   if (getCurrentSection()->getKind().isText())
2344     OutStreamer->emitCodeAlignment(Alignment.value());
2345   else
2346     OutStreamer->emitValueToAlignment(Alignment.value());
2347 }
2348 
2349 //===----------------------------------------------------------------------===//
2350 // Constant emission.
2351 //===----------------------------------------------------------------------===//
2352 
2353 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2354   MCContext &Ctx = OutContext;
2355 
2356   if (CV->isNullValue() || isa<UndefValue>(CV))
2357     return MCConstantExpr::create(0, Ctx);
2358 
2359   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2360     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2361 
2362   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2363     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2364 
2365   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2366     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2367 
2368   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2369     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2370 
2371   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2372   if (!CE) {
2373     llvm_unreachable("Unknown constant value to lower!");
2374   }
2375 
2376   switch (CE->getOpcode()) {
2377   case Instruction::AddrSpaceCast: {
2378     const Constant *Op = CE->getOperand(0);
2379     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2380     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2381     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2382       return lowerConstant(Op);
2383 
2384     // Fallthrough to error.
2385     LLVM_FALLTHROUGH;
2386   }
2387   default: {
2388     // If the code isn't optimized, there may be outstanding folding
2389     // opportunities. Attempt to fold the expression using DataLayout as a
2390     // last resort before giving up.
2391     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2392     if (C != CE)
2393       return lowerConstant(C);
2394 
2395     // Otherwise report the problem to the user.
2396     std::string S;
2397     raw_string_ostream OS(S);
2398     OS << "Unsupported expression in static initializer: ";
2399     CE->printAsOperand(OS, /*PrintType=*/false,
2400                    !MF ? nullptr : MF->getFunction().getParent());
2401     report_fatal_error(OS.str());
2402   }
2403   case Instruction::GetElementPtr: {
2404     // Generate a symbolic expression for the byte address
2405     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2406     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2407 
2408     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2409     if (!OffsetAI)
2410       return Base;
2411 
2412     int64_t Offset = OffsetAI.getSExtValue();
2413     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2414                                    Ctx);
2415   }
2416 
2417   case Instruction::Trunc:
2418     // We emit the value and depend on the assembler to truncate the generated
2419     // expression properly.  This is important for differences between
2420     // blockaddress labels.  Since the two labels are in the same function, it
2421     // is reasonable to treat their delta as a 32-bit value.
2422     LLVM_FALLTHROUGH;
2423   case Instruction::BitCast:
2424     return lowerConstant(CE->getOperand(0));
2425 
2426   case Instruction::IntToPtr: {
2427     const DataLayout &DL = getDataLayout();
2428 
2429     // Handle casts to pointers by changing them into casts to the appropriate
2430     // integer type.  This promotes constant folding and simplifies this code.
2431     Constant *Op = CE->getOperand(0);
2432     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2433                                       false/*ZExt*/);
2434     return lowerConstant(Op);
2435   }
2436 
2437   case Instruction::PtrToInt: {
2438     const DataLayout &DL = getDataLayout();
2439 
2440     // Support only foldable casts to/from pointers that can be eliminated by
2441     // changing the pointer to the appropriately sized integer type.
2442     Constant *Op = CE->getOperand(0);
2443     Type *Ty = CE->getType();
2444 
2445     const MCExpr *OpExpr = lowerConstant(Op);
2446 
2447     // We can emit the pointer value into this slot if the slot is an
2448     // integer slot equal to the size of the pointer.
2449     //
2450     // If the pointer is larger than the resultant integer, then
2451     // as with Trunc just depend on the assembler to truncate it.
2452     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2453         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2454       return OpExpr;
2455 
2456     // Otherwise the pointer is smaller than the resultant integer, mask off
2457     // the high bits so we are sure to get a proper truncation if the input is
2458     // a constant expr.
2459     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2460     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2461     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2462   }
2463 
2464   case Instruction::Sub: {
2465     GlobalValue *LHSGV;
2466     APInt LHSOffset;
2467     DSOLocalEquivalent *DSOEquiv;
2468     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2469                                    getDataLayout(), &DSOEquiv)) {
2470       GlobalValue *RHSGV;
2471       APInt RHSOffset;
2472       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2473                                      getDataLayout())) {
2474         const MCExpr *RelocExpr =
2475             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2476         if (!RelocExpr) {
2477           const MCExpr *LHSExpr =
2478               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2479           if (DSOEquiv &&
2480               getObjFileLowering().supportDSOLocalEquivalentLowering())
2481             LHSExpr =
2482                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2483           RelocExpr = MCBinaryExpr::createSub(
2484               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2485         }
2486         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2487         if (Addend != 0)
2488           RelocExpr = MCBinaryExpr::createAdd(
2489               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2490         return RelocExpr;
2491       }
2492     }
2493   }
2494   // else fallthrough
2495   LLVM_FALLTHROUGH;
2496 
2497   // The MC library also has a right-shift operator, but it isn't consistently
2498   // signed or unsigned between different targets.
2499   case Instruction::Add:
2500   case Instruction::Mul:
2501   case Instruction::SDiv:
2502   case Instruction::SRem:
2503   case Instruction::Shl:
2504   case Instruction::And:
2505   case Instruction::Or:
2506   case Instruction::Xor: {
2507     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2508     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2509     switch (CE->getOpcode()) {
2510     default: llvm_unreachable("Unknown binary operator constant cast expr");
2511     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2512     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2513     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2514     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2515     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2516     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2517     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2518     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2519     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2520     }
2521   }
2522   }
2523 }
2524 
2525 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2526                                    AsmPrinter &AP,
2527                                    const Constant *BaseCV = nullptr,
2528                                    uint64_t Offset = 0);
2529 
2530 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2531 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2532 
2533 /// isRepeatedByteSequence - Determine whether the given value is
2534 /// composed of a repeated sequence of identical bytes and return the
2535 /// byte value.  If it is not a repeated sequence, return -1.
2536 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2537   StringRef Data = V->getRawDataValues();
2538   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2539   char C = Data[0];
2540   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2541     if (Data[i] != C) return -1;
2542   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2543 }
2544 
2545 /// isRepeatedByteSequence - Determine whether the given value is
2546 /// composed of a repeated sequence of identical bytes and return the
2547 /// byte value.  If it is not a repeated sequence, return -1.
2548 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2549   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2550     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2551     assert(Size % 8 == 0);
2552 
2553     // Extend the element to take zero padding into account.
2554     APInt Value = CI->getValue().zextOrSelf(Size);
2555     if (!Value.isSplat(8))
2556       return -1;
2557 
2558     return Value.zextOrTrunc(8).getZExtValue();
2559   }
2560   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2561     // Make sure all array elements are sequences of the same repeated
2562     // byte.
2563     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2564     Constant *Op0 = CA->getOperand(0);
2565     int Byte = isRepeatedByteSequence(Op0, DL);
2566     if (Byte == -1)
2567       return -1;
2568 
2569     // All array elements must be equal.
2570     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2571       if (CA->getOperand(i) != Op0)
2572         return -1;
2573     return Byte;
2574   }
2575 
2576   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2577     return isRepeatedByteSequence(CDS);
2578 
2579   return -1;
2580 }
2581 
2582 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2583                                              const ConstantDataSequential *CDS,
2584                                              AsmPrinter &AP) {
2585   // See if we can aggregate this into a .fill, if so, emit it as such.
2586   int Value = isRepeatedByteSequence(CDS, DL);
2587   if (Value != -1) {
2588     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2589     // Don't emit a 1-byte object as a .fill.
2590     if (Bytes > 1)
2591       return AP.OutStreamer->emitFill(Bytes, Value);
2592   }
2593 
2594   // If this can be emitted with .ascii/.asciz, emit it as such.
2595   if (CDS->isString())
2596     return AP.OutStreamer->emitBytes(CDS->getAsString());
2597 
2598   // Otherwise, emit the values in successive locations.
2599   unsigned ElementByteSize = CDS->getElementByteSize();
2600   if (isa<IntegerType>(CDS->getElementType())) {
2601     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2602       if (AP.isVerbose())
2603         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2604                                                  CDS->getElementAsInteger(i));
2605       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2606                                    ElementByteSize);
2607     }
2608   } else {
2609     Type *ET = CDS->getElementType();
2610     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2611       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2612   }
2613 
2614   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2615   unsigned EmittedSize =
2616       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2617   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2618   if (unsigned Padding = Size - EmittedSize)
2619     AP.OutStreamer->emitZeros(Padding);
2620 }
2621 
2622 static void emitGlobalConstantArray(const DataLayout &DL,
2623                                     const ConstantArray *CA, AsmPrinter &AP,
2624                                     const Constant *BaseCV, uint64_t Offset) {
2625   // See if we can aggregate some values.  Make sure it can be
2626   // represented as a series of bytes of the constant value.
2627   int Value = isRepeatedByteSequence(CA, DL);
2628 
2629   if (Value != -1) {
2630     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2631     AP.OutStreamer->emitFill(Bytes, Value);
2632   }
2633   else {
2634     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2635       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2636       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2637     }
2638   }
2639 }
2640 
2641 static void emitGlobalConstantVector(const DataLayout &DL,
2642                                      const ConstantVector *CV, AsmPrinter &AP) {
2643   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2644     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2645 
2646   unsigned Size = DL.getTypeAllocSize(CV->getType());
2647   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2648                          CV->getType()->getNumElements();
2649   if (unsigned Padding = Size - EmittedSize)
2650     AP.OutStreamer->emitZeros(Padding);
2651 }
2652 
2653 static void emitGlobalConstantStruct(const DataLayout &DL,
2654                                      const ConstantStruct *CS, AsmPrinter &AP,
2655                                      const Constant *BaseCV, uint64_t Offset) {
2656   // Print the fields in successive locations. Pad to align if needed!
2657   unsigned Size = DL.getTypeAllocSize(CS->getType());
2658   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2659   uint64_t SizeSoFar = 0;
2660   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2661     const Constant *Field = CS->getOperand(i);
2662 
2663     // Print the actual field value.
2664     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2665 
2666     // Check if padding is needed and insert one or more 0s.
2667     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2668     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2669                         - Layout->getElementOffset(i)) - FieldSize;
2670     SizeSoFar += FieldSize + PadSize;
2671 
2672     // Insert padding - this may include padding to increase the size of the
2673     // current field up to the ABI size (if the struct is not packed) as well
2674     // as padding to ensure that the next field starts at the right offset.
2675     AP.OutStreamer->emitZeros(PadSize);
2676   }
2677   assert(SizeSoFar == Layout->getSizeInBytes() &&
2678          "Layout of constant struct may be incorrect!");
2679 }
2680 
2681 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2682   assert(ET && "Unknown float type");
2683   APInt API = APF.bitcastToAPInt();
2684 
2685   // First print a comment with what we think the original floating-point value
2686   // should have been.
2687   if (AP.isVerbose()) {
2688     SmallString<8> StrVal;
2689     APF.toString(StrVal);
2690     ET->print(AP.OutStreamer->GetCommentOS());
2691     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2692   }
2693 
2694   // Now iterate through the APInt chunks, emitting them in endian-correct
2695   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2696   // floats).
2697   unsigned NumBytes = API.getBitWidth() / 8;
2698   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2699   const uint64_t *p = API.getRawData();
2700 
2701   // PPC's long double has odd notions of endianness compared to how LLVM
2702   // handles it: p[0] goes first for *big* endian on PPC.
2703   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2704     int Chunk = API.getNumWords() - 1;
2705 
2706     if (TrailingBytes)
2707       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2708 
2709     for (; Chunk >= 0; --Chunk)
2710       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2711   } else {
2712     unsigned Chunk;
2713     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2714       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2715 
2716     if (TrailingBytes)
2717       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2718   }
2719 
2720   // Emit the tail padding for the long double.
2721   const DataLayout &DL = AP.getDataLayout();
2722   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2723 }
2724 
2725 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2726   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2727 }
2728 
2729 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2730   const DataLayout &DL = AP.getDataLayout();
2731   unsigned BitWidth = CI->getBitWidth();
2732 
2733   // Copy the value as we may massage the layout for constants whose bit width
2734   // is not a multiple of 64-bits.
2735   APInt Realigned(CI->getValue());
2736   uint64_t ExtraBits = 0;
2737   unsigned ExtraBitsSize = BitWidth & 63;
2738 
2739   if (ExtraBitsSize) {
2740     // The bit width of the data is not a multiple of 64-bits.
2741     // The extra bits are expected to be at the end of the chunk of the memory.
2742     // Little endian:
2743     // * Nothing to be done, just record the extra bits to emit.
2744     // Big endian:
2745     // * Record the extra bits to emit.
2746     // * Realign the raw data to emit the chunks of 64-bits.
2747     if (DL.isBigEndian()) {
2748       // Basically the structure of the raw data is a chunk of 64-bits cells:
2749       //    0        1         BitWidth / 64
2750       // [chunk1][chunk2] ... [chunkN].
2751       // The most significant chunk is chunkN and it should be emitted first.
2752       // However, due to the alignment issue chunkN contains useless bits.
2753       // Realign the chunks so that they contain only useful information:
2754       // ExtraBits     0       1       (BitWidth / 64) - 1
2755       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2756       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2757       ExtraBits = Realigned.getRawData()[0] &
2758         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2759       Realigned.lshrInPlace(ExtraBitsSize);
2760     } else
2761       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2762   }
2763 
2764   // We don't expect assemblers to support integer data directives
2765   // for more than 64 bits, so we emit the data in at most 64-bit
2766   // quantities at a time.
2767   const uint64_t *RawData = Realigned.getRawData();
2768   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2769     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2770     AP.OutStreamer->emitIntValue(Val, 8);
2771   }
2772 
2773   if (ExtraBitsSize) {
2774     // Emit the extra bits after the 64-bits chunks.
2775 
2776     // Emit a directive that fills the expected size.
2777     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2778     Size -= (BitWidth / 64) * 8;
2779     assert(Size && Size * 8 >= ExtraBitsSize &&
2780            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2781            == ExtraBits && "Directive too small for extra bits.");
2782     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2783   }
2784 }
2785 
2786 /// Transform a not absolute MCExpr containing a reference to a GOT
2787 /// equivalent global, by a target specific GOT pc relative access to the
2788 /// final symbol.
2789 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2790                                          const Constant *BaseCst,
2791                                          uint64_t Offset) {
2792   // The global @foo below illustrates a global that uses a got equivalent.
2793   //
2794   //  @bar = global i32 42
2795   //  @gotequiv = private unnamed_addr constant i32* @bar
2796   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2797   //                             i64 ptrtoint (i32* @foo to i64))
2798   //                        to i32)
2799   //
2800   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2801   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2802   // form:
2803   //
2804   //  foo = cstexpr, where
2805   //    cstexpr := <gotequiv> - "." + <cst>
2806   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2807   //
2808   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2809   //
2810   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2811   //    gotpcrelcst := <offset from @foo base> + <cst>
2812   MCValue MV;
2813   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2814     return;
2815   const MCSymbolRefExpr *SymA = MV.getSymA();
2816   if (!SymA)
2817     return;
2818 
2819   // Check that GOT equivalent symbol is cached.
2820   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2821   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2822     return;
2823 
2824   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2825   if (!BaseGV)
2826     return;
2827 
2828   // Check for a valid base symbol
2829   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2830   const MCSymbolRefExpr *SymB = MV.getSymB();
2831 
2832   if (!SymB || BaseSym != &SymB->getSymbol())
2833     return;
2834 
2835   // Make sure to match:
2836   //
2837   //    gotpcrelcst := <offset from @foo base> + <cst>
2838   //
2839   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2840   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2841   // if the target knows how to encode it.
2842   int64_t GOTPCRelCst = Offset + MV.getConstant();
2843   if (GOTPCRelCst < 0)
2844     return;
2845   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2846     return;
2847 
2848   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2849   //
2850   //  bar:
2851   //    .long 42
2852   //  gotequiv:
2853   //    .quad bar
2854   //  foo:
2855   //    .long gotequiv - "." + <cst>
2856   //
2857   // is replaced by the target specific equivalent to:
2858   //
2859   //  bar:
2860   //    .long 42
2861   //  foo:
2862   //    .long bar@GOTPCREL+<gotpcrelcst>
2863   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2864   const GlobalVariable *GV = Result.first;
2865   int NumUses = (int)Result.second;
2866   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2867   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2868   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2869       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2870 
2871   // Update GOT equivalent usage information
2872   --NumUses;
2873   if (NumUses >= 0)
2874     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2875 }
2876 
2877 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2878                                    AsmPrinter &AP, const Constant *BaseCV,
2879                                    uint64_t Offset) {
2880   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2881 
2882   // Globals with sub-elements such as combinations of arrays and structs
2883   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2884   // constant symbol base and the current position with BaseCV and Offset.
2885   if (!BaseCV && CV->hasOneUse())
2886     BaseCV = dyn_cast<Constant>(CV->user_back());
2887 
2888   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2889     return AP.OutStreamer->emitZeros(Size);
2890 
2891   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2892     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2893 
2894     if (StoreSize <= 8) {
2895       if (AP.isVerbose())
2896         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2897                                                  CI->getZExtValue());
2898       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2899     } else {
2900       emitGlobalConstantLargeInt(CI, AP);
2901     }
2902 
2903     // Emit tail padding if needed
2904     if (Size != StoreSize)
2905       AP.OutStreamer->emitZeros(Size - StoreSize);
2906 
2907     return;
2908   }
2909 
2910   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2911     return emitGlobalConstantFP(CFP, AP);
2912 
2913   if (isa<ConstantPointerNull>(CV)) {
2914     AP.OutStreamer->emitIntValue(0, Size);
2915     return;
2916   }
2917 
2918   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2919     return emitGlobalConstantDataSequential(DL, CDS, AP);
2920 
2921   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2922     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2923 
2924   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2925     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2926 
2927   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2928     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2929     // vectors).
2930     if (CE->getOpcode() == Instruction::BitCast)
2931       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2932 
2933     if (Size > 8) {
2934       // If the constant expression's size is greater than 64-bits, then we have
2935       // to emit the value in chunks. Try to constant fold the value and emit it
2936       // that way.
2937       Constant *New = ConstantFoldConstant(CE, DL);
2938       if (New != CE)
2939         return emitGlobalConstantImpl(DL, New, AP);
2940     }
2941   }
2942 
2943   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2944     return emitGlobalConstantVector(DL, V, AP);
2945 
2946   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2947   // thread the streamer with EmitValue.
2948   const MCExpr *ME = AP.lowerConstant(CV);
2949 
2950   // Since lowerConstant already folded and got rid of all IR pointer and
2951   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2952   // directly.
2953   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2954     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2955 
2956   AP.OutStreamer->emitValue(ME, Size);
2957 }
2958 
2959 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2960 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2961   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2962   if (Size)
2963     emitGlobalConstantImpl(DL, CV, *this);
2964   else if (MAI->hasSubsectionsViaSymbols()) {
2965     // If the global has zero size, emit a single byte so that two labels don't
2966     // look like they are at the same location.
2967     OutStreamer->emitIntValue(0, 1);
2968   }
2969 }
2970 
2971 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2972   // Target doesn't support this yet!
2973   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2974 }
2975 
2976 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2977   if (Offset > 0)
2978     OS << '+' << Offset;
2979   else if (Offset < 0)
2980     OS << Offset;
2981 }
2982 
2983 void AsmPrinter::emitNops(unsigned N) {
2984   MCInst Nop;
2985   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2986   for (; N; --N)
2987     EmitToStreamer(*OutStreamer, Nop);
2988 }
2989 
2990 //===----------------------------------------------------------------------===//
2991 // Symbol Lowering Routines.
2992 //===----------------------------------------------------------------------===//
2993 
2994 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2995   return OutContext.createTempSymbol(Name, true);
2996 }
2997 
2998 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2999   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3000 }
3001 
3002 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3003   return MMI->getAddrLabelSymbol(BB);
3004 }
3005 
3006 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3007 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3008   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3009     const MachineConstantPoolEntry &CPE =
3010         MF->getConstantPool()->getConstants()[CPID];
3011     if (!CPE.isMachineConstantPoolEntry()) {
3012       const DataLayout &DL = MF->getDataLayout();
3013       SectionKind Kind = CPE.getSectionKind(&DL);
3014       const Constant *C = CPE.Val.ConstVal;
3015       Align Alignment = CPE.Alignment;
3016       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3017               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3018                                                          Alignment))) {
3019         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3020           if (Sym->isUndefined())
3021             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3022           return Sym;
3023         }
3024       }
3025     }
3026   }
3027 
3028   const DataLayout &DL = getDataLayout();
3029   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3030                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3031                                       Twine(CPID));
3032 }
3033 
3034 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3035 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3036   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3037 }
3038 
3039 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3040 /// FIXME: privatize to AsmPrinter.
3041 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3042   const DataLayout &DL = getDataLayout();
3043   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3044                                       Twine(getFunctionNumber()) + "_" +
3045                                       Twine(UID) + "_set_" + Twine(MBBID));
3046 }
3047 
3048 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3049                                                    StringRef Suffix) const {
3050   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3051 }
3052 
3053 /// Return the MCSymbol for the specified ExternalSymbol.
3054 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3055   SmallString<60> NameStr;
3056   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3057   return OutContext.getOrCreateSymbol(NameStr);
3058 }
3059 
3060 /// PrintParentLoopComment - Print comments about parent loops of this one.
3061 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3062                                    unsigned FunctionNumber) {
3063   if (!Loop) return;
3064   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3065   OS.indent(Loop->getLoopDepth()*2)
3066     << "Parent Loop BB" << FunctionNumber << "_"
3067     << Loop->getHeader()->getNumber()
3068     << " Depth=" << Loop->getLoopDepth() << '\n';
3069 }
3070 
3071 /// PrintChildLoopComment - Print comments about child loops within
3072 /// the loop for this basic block, with nesting.
3073 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3074                                   unsigned FunctionNumber) {
3075   // Add child loop information
3076   for (const MachineLoop *CL : *Loop) {
3077     OS.indent(CL->getLoopDepth()*2)
3078       << "Child Loop BB" << FunctionNumber << "_"
3079       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3080       << '\n';
3081     PrintChildLoopComment(OS, CL, FunctionNumber);
3082   }
3083 }
3084 
3085 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3086 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3087                                        const MachineLoopInfo *LI,
3088                                        const AsmPrinter &AP) {
3089   // Add loop depth information
3090   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3091   if (!Loop) return;
3092 
3093   MachineBasicBlock *Header = Loop->getHeader();
3094   assert(Header && "No header for loop");
3095 
3096   // If this block is not a loop header, just print out what is the loop header
3097   // and return.
3098   if (Header != &MBB) {
3099     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3100                                Twine(AP.getFunctionNumber())+"_" +
3101                                Twine(Loop->getHeader()->getNumber())+
3102                                " Depth="+Twine(Loop->getLoopDepth()));
3103     return;
3104   }
3105 
3106   // Otherwise, it is a loop header.  Print out information about child and
3107   // parent loops.
3108   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3109 
3110   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3111 
3112   OS << "=>";
3113   OS.indent(Loop->getLoopDepth()*2-2);
3114 
3115   OS << "This ";
3116   if (Loop->isInnermost())
3117     OS << "Inner ";
3118   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3119 
3120   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3121 }
3122 
3123 /// emitBasicBlockStart - This method prints the label for the specified
3124 /// MachineBasicBlock, an alignment (if present) and a comment describing
3125 /// it if appropriate.
3126 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3127   // End the previous funclet and start a new one.
3128   if (MBB.isEHFuncletEntry()) {
3129     for (const HandlerInfo &HI : Handlers) {
3130       HI.Handler->endFunclet();
3131       HI.Handler->beginFunclet(MBB);
3132     }
3133   }
3134 
3135   // Emit an alignment directive for this block, if needed.
3136   const Align Alignment = MBB.getAlignment();
3137   if (Alignment != Align(1))
3138     emitAlignment(Alignment);
3139 
3140   // Switch to a new section if this basic block must begin a section. The
3141   // entry block is always placed in the function section and is handled
3142   // separately.
3143   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3144     OutStreamer->SwitchSection(
3145         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3146                                                             MBB, TM));
3147     CurrentSectionBeginSym = MBB.getSymbol();
3148   }
3149 
3150   // If the block has its address taken, emit any labels that were used to
3151   // reference the block.  It is possible that there is more than one label
3152   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3153   // the references were generated.
3154   if (MBB.hasAddressTaken()) {
3155     const BasicBlock *BB = MBB.getBasicBlock();
3156     if (isVerbose())
3157       OutStreamer->AddComment("Block address taken");
3158 
3159     // MBBs can have their address taken as part of CodeGen without having
3160     // their corresponding BB's address taken in IR
3161     if (BB->hasAddressTaken())
3162       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3163         OutStreamer->emitLabel(Sym);
3164   }
3165 
3166   // Print some verbose block comments.
3167   if (isVerbose()) {
3168     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3169       if (BB->hasName()) {
3170         BB->printAsOperand(OutStreamer->GetCommentOS(),
3171                            /*PrintType=*/false, BB->getModule());
3172         OutStreamer->GetCommentOS() << '\n';
3173       }
3174     }
3175 
3176     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3177     emitBasicBlockLoopComments(MBB, MLI, *this);
3178   }
3179 
3180   // Print the main label for the block.
3181   if (shouldEmitLabelForBasicBlock(MBB)) {
3182     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3183       OutStreamer->AddComment("Label of block must be emitted");
3184     OutStreamer->emitLabel(MBB.getSymbol());
3185   } else {
3186     if (isVerbose()) {
3187       // NOTE: Want this comment at start of line, don't emit with AddComment.
3188       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3189                                   false);
3190     }
3191   }
3192 
3193   // With BB sections, each basic block must handle CFI information on its own
3194   // if it begins a section (Entry block is handled separately by
3195   // AsmPrinterHandler::beginFunction).
3196   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3197     for (const HandlerInfo &HI : Handlers)
3198       HI.Handler->beginBasicBlock(MBB);
3199 }
3200 
3201 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3202   // Check if CFI information needs to be updated for this MBB with basic block
3203   // sections.
3204   if (MBB.isEndSection())
3205     for (const HandlerInfo &HI : Handlers)
3206       HI.Handler->endBasicBlock(MBB);
3207 }
3208 
3209 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3210                                 bool IsDefinition) const {
3211   MCSymbolAttr Attr = MCSA_Invalid;
3212 
3213   switch (Visibility) {
3214   default: break;
3215   case GlobalValue::HiddenVisibility:
3216     if (IsDefinition)
3217       Attr = MAI->getHiddenVisibilityAttr();
3218     else
3219       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3220     break;
3221   case GlobalValue::ProtectedVisibility:
3222     Attr = MAI->getProtectedVisibilityAttr();
3223     break;
3224   }
3225 
3226   if (Attr != MCSA_Invalid)
3227     OutStreamer->emitSymbolAttribute(Sym, Attr);
3228 }
3229 
3230 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3231     const MachineBasicBlock &MBB) const {
3232   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3233   // in the labels mode (option `=labels`) and every section beginning in the
3234   // sections mode (`=all` and `=list=`).
3235   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3236     return true;
3237   // A label is needed for any block with at least one predecessor (when that
3238   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3239   // entry, or if a label is forced).
3240   return !MBB.pred_empty() &&
3241          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3242           MBB.hasLabelMustBeEmitted());
3243 }
3244 
3245 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3246 /// exactly one predecessor and the control transfer mechanism between
3247 /// the predecessor and this block is a fall-through.
3248 bool AsmPrinter::
3249 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3250   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3251   // then nothing falls through to it.
3252   if (MBB->isEHPad() || MBB->pred_empty())
3253     return false;
3254 
3255   // If there isn't exactly one predecessor, it can't be a fall through.
3256   if (MBB->pred_size() > 1)
3257     return false;
3258 
3259   // The predecessor has to be immediately before this block.
3260   MachineBasicBlock *Pred = *MBB->pred_begin();
3261   if (!Pred->isLayoutSuccessor(MBB))
3262     return false;
3263 
3264   // If the block is completely empty, then it definitely does fall through.
3265   if (Pred->empty())
3266     return true;
3267 
3268   // Check the terminators in the previous blocks
3269   for (const auto &MI : Pred->terminators()) {
3270     // If it is not a simple branch, we are in a table somewhere.
3271     if (!MI.isBranch() || MI.isIndirectBranch())
3272       return false;
3273 
3274     // If we are the operands of one of the branches, this is not a fall
3275     // through. Note that targets with delay slots will usually bundle
3276     // terminators with the delay slot instruction.
3277     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3278       if (OP->isJTI())
3279         return false;
3280       if (OP->isMBB() && OP->getMBB() == MBB)
3281         return false;
3282     }
3283   }
3284 
3285   return true;
3286 }
3287 
3288 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3289   if (!S.usesMetadata())
3290     return nullptr;
3291 
3292   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3293   gcp_map_type::iterator GCPI = GCMap.find(&S);
3294   if (GCPI != GCMap.end())
3295     return GCPI->second.get();
3296 
3297   auto Name = S.getName();
3298 
3299   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3300        GCMetadataPrinterRegistry::entries())
3301     if (Name == GCMetaPrinter.getName()) {
3302       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3303       GMP->S = &S;
3304       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3305       return IterBool.first->second.get();
3306     }
3307 
3308   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3309 }
3310 
3311 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3312   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3313   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3314   bool NeedsDefault = false;
3315   if (MI->begin() == MI->end())
3316     // No GC strategy, use the default format.
3317     NeedsDefault = true;
3318   else
3319     for (auto &I : *MI) {
3320       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3321         if (MP->emitStackMaps(SM, *this))
3322           continue;
3323       // The strategy doesn't have printer or doesn't emit custom stack maps.
3324       // Use the default format.
3325       NeedsDefault = true;
3326     }
3327 
3328   if (NeedsDefault)
3329     SM.serializeToStackMapSection();
3330 }
3331 
3332 /// Pin vtable to this file.
3333 AsmPrinterHandler::~AsmPrinterHandler() = default;
3334 
3335 void AsmPrinterHandler::markFunctionEnd() {}
3336 
3337 // In the binary's "xray_instr_map" section, an array of these function entries
3338 // describes each instrumentation point.  When XRay patches your code, the index
3339 // into this table will be given to your handler as a patch point identifier.
3340 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3341   auto Kind8 = static_cast<uint8_t>(Kind);
3342   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3343   Out->emitBinaryData(
3344       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3345   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3346   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3347   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3348   Out->emitZeros(Padding);
3349 }
3350 
3351 void AsmPrinter::emitXRayTable() {
3352   if (Sleds.empty())
3353     return;
3354 
3355   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3356   const Function &F = MF->getFunction();
3357   MCSection *InstMap = nullptr;
3358   MCSection *FnSledIndex = nullptr;
3359   const Triple &TT = TM.getTargetTriple();
3360   // Use PC-relative addresses on all targets.
3361   if (TT.isOSBinFormatELF()) {
3362     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3363     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3364     StringRef GroupName;
3365     if (F.hasComdat()) {
3366       Flags |= ELF::SHF_GROUP;
3367       GroupName = F.getComdat()->getName();
3368     }
3369     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3370                                        Flags, 0, GroupName,
3371                                        MCSection::NonUniqueID, LinkedToSym);
3372 
3373     if (!TM.Options.XRayOmitFunctionIndex)
3374       FnSledIndex = OutContext.getELFSection(
3375           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3376           GroupName, MCSection::NonUniqueID, LinkedToSym);
3377   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3378     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3379                                          SectionKind::getReadOnlyWithRel());
3380     if (!TM.Options.XRayOmitFunctionIndex)
3381       FnSledIndex = OutContext.getMachOSection(
3382           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3383   } else {
3384     llvm_unreachable("Unsupported target");
3385   }
3386 
3387   auto WordSizeBytes = MAI->getCodePointerSize();
3388 
3389   // Now we switch to the instrumentation map section. Because this is done
3390   // per-function, we are able to create an index entry that will represent the
3391   // range of sleds associated with a function.
3392   auto &Ctx = OutContext;
3393   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3394   OutStreamer->SwitchSection(InstMap);
3395   OutStreamer->emitLabel(SledsStart);
3396   for (const auto &Sled : Sleds) {
3397     MCSymbol *Dot = Ctx.createTempSymbol();
3398     OutStreamer->emitLabel(Dot);
3399     OutStreamer->emitValueImpl(
3400         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3401                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3402         WordSizeBytes);
3403     OutStreamer->emitValueImpl(
3404         MCBinaryExpr::createSub(
3405             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3406             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3407                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3408                                     Ctx),
3409             Ctx),
3410         WordSizeBytes);
3411     Sled.emit(WordSizeBytes, OutStreamer.get());
3412   }
3413   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3414   OutStreamer->emitLabel(SledsEnd);
3415 
3416   // We then emit a single entry in the index per function. We use the symbols
3417   // that bound the instrumentation map as the range for a specific function.
3418   // Each entry here will be 2 * word size aligned, as we're writing down two
3419   // pointers. This should work for both 32-bit and 64-bit platforms.
3420   if (FnSledIndex) {
3421     OutStreamer->SwitchSection(FnSledIndex);
3422     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3423     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3424     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3425     OutStreamer->SwitchSection(PrevSection);
3426   }
3427   Sleds.clear();
3428 }
3429 
3430 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3431                             SledKind Kind, uint8_t Version) {
3432   const Function &F = MI.getMF()->getFunction();
3433   auto Attr = F.getFnAttribute("function-instrument");
3434   bool LogArgs = F.hasFnAttribute("xray-log-args");
3435   bool AlwaysInstrument =
3436     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3437   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3438     Kind = SledKind::LOG_ARGS_ENTER;
3439   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3440                                        AlwaysInstrument, &F, Version});
3441 }
3442 
3443 void AsmPrinter::emitPatchableFunctionEntries() {
3444   const Function &F = MF->getFunction();
3445   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3446   (void)F.getFnAttribute("patchable-function-prefix")
3447       .getValueAsString()
3448       .getAsInteger(10, PatchableFunctionPrefix);
3449   (void)F.getFnAttribute("patchable-function-entry")
3450       .getValueAsString()
3451       .getAsInteger(10, PatchableFunctionEntry);
3452   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3453     return;
3454   const unsigned PointerSize = getPointerSize();
3455   if (TM.getTargetTriple().isOSBinFormatELF()) {
3456     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3457     const MCSymbolELF *LinkedToSym = nullptr;
3458     StringRef GroupName;
3459 
3460     // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3461     // if we are using the integrated assembler.
3462     if (MAI->useIntegratedAssembler()) {
3463       Flags |= ELF::SHF_LINK_ORDER;
3464       if (F.hasComdat()) {
3465         Flags |= ELF::SHF_GROUP;
3466         GroupName = F.getComdat()->getName();
3467       }
3468       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3469     }
3470     OutStreamer->SwitchSection(OutContext.getELFSection(
3471         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3472         MCSection::NonUniqueID, LinkedToSym));
3473     emitAlignment(Align(PointerSize));
3474     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3475   }
3476 }
3477 
3478 uint16_t AsmPrinter::getDwarfVersion() const {
3479   return OutStreamer->getContext().getDwarfVersion();
3480 }
3481 
3482 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3483   OutStreamer->getContext().setDwarfVersion(Version);
3484 }
3485 
3486 bool AsmPrinter::isDwarf64() const {
3487   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3488 }
3489 
3490 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3491   return dwarf::getDwarfOffsetByteSize(
3492       OutStreamer->getContext().getDwarfFormat());
3493 }
3494 
3495 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3496   return dwarf::getUnitLengthFieldByteSize(
3497       OutStreamer->getContext().getDwarfFormat());
3498 }
3499