1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinCodeViewLineTables.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/JumpInstrTableInfo.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfo.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/Format.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/Timer.h" 47 #include "llvm/Target/TargetFrameLowering.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Target/TargetRegisterInfo.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "asm-printer" 56 57 static const char *const DWARFGroupName = "DWARF Emission"; 58 static const char *const DbgTimerName = "Debug Info Emission"; 59 static const char *const EHTimerName = "DWARF Exception Writer"; 60 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 61 62 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 63 64 char AsmPrinter::ID = 0; 65 66 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 67 static gcp_map_type &getGCMap(void *&P) { 68 if (!P) 69 P = new gcp_map_type(); 70 return *(gcp_map_type*)P; 71 } 72 73 74 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 75 /// value in log2 form. This rounds up to the preferred alignment if possible 76 /// and legal. 77 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 78 unsigned InBits = 0) { 79 unsigned NumBits = 0; 80 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 81 NumBits = TD.getPreferredAlignmentLog(GVar); 82 83 // If InBits is specified, round it to it. 84 if (InBits > NumBits) 85 NumBits = InBits; 86 87 // If the GV has a specified alignment, take it into account. 88 if (GV->getAlignment() == 0) 89 return NumBits; 90 91 unsigned GVAlign = Log2_32(GV->getAlignment()); 92 93 // If the GVAlign is larger than NumBits, or if we are required to obey 94 // NumBits because the GV has an assigned section, obey it. 95 if (GVAlign > NumBits || GV->hasSection()) 96 NumBits = GVAlign; 97 return NumBits; 98 } 99 100 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 101 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 102 MII(tm.getSubtargetImpl()->getInstrInfo()), 103 OutContext(Streamer.getContext()), OutStreamer(Streamer), LastMI(nullptr), 104 LastFn(0), Counter(~0U), SetCounter(0) { 105 DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr; 106 CurrentFnSym = CurrentFnSymForSize = nullptr; 107 GCMetadataPrinters = nullptr; 108 VerboseAsm = Streamer.isVerboseAsm(); 109 } 110 111 AsmPrinter::~AsmPrinter() { 112 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 113 114 if (GCMetadataPrinters) { 115 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 116 117 delete &GCMap; 118 GCMetadataPrinters = nullptr; 119 } 120 121 delete &OutStreamer; 122 } 123 124 /// getFunctionNumber - Return a unique ID for the current function. 125 /// 126 unsigned AsmPrinter::getFunctionNumber() const { 127 return MF->getFunctionNumber(); 128 } 129 130 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 131 return TM.getSubtargetImpl()->getTargetLowering()->getObjFileLowering(); 132 } 133 134 /// getDataLayout - Return information about data layout. 135 const DataLayout &AsmPrinter::getDataLayout() const { 136 return *TM.getSubtargetImpl()->getDataLayout(); 137 } 138 139 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 140 return TM.getSubtarget<MCSubtargetInfo>(); 141 } 142 143 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 144 S.EmitInstruction(Inst, getSubtargetInfo()); 145 } 146 147 StringRef AsmPrinter::getTargetTriple() const { 148 return TM.getTargetTriple(); 149 } 150 151 /// getCurrentSection() - Return the current section we are emitting to. 152 const MCSection *AsmPrinter::getCurrentSection() const { 153 return OutStreamer.getCurrentSection().first; 154 } 155 156 157 158 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 159 AU.setPreservesAll(); 160 MachineFunctionPass::getAnalysisUsage(AU); 161 AU.addRequired<MachineModuleInfo>(); 162 AU.addRequired<GCModuleInfo>(); 163 if (isVerbose()) 164 AU.addRequired<MachineLoopInfo>(); 165 } 166 167 bool AsmPrinter::doInitialization(Module &M) { 168 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 169 MMI->AnalyzeModule(M); 170 171 // Initialize TargetLoweringObjectFile. 172 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 173 .Initialize(OutContext, TM); 174 175 OutStreamer.InitSections(); 176 177 Mang = new Mangler(TM.getSubtargetImpl()->getDataLayout()); 178 179 // Emit the version-min deplyment target directive if needed. 180 // 181 // FIXME: If we end up with a collection of these sorts of Darwin-specific 182 // or ELF-specific things, it may make sense to have a platform helper class 183 // that will work with the target helper class. For now keep it here, as the 184 // alternative is duplicated code in each of the target asm printers that 185 // use the directive, where it would need the same conditionalization 186 // anyway. 187 Triple TT(getTargetTriple()); 188 if (TT.isOSDarwin()) { 189 unsigned Major, Minor, Update; 190 TT.getOSVersion(Major, Minor, Update); 191 // If there is a version specified, Major will be non-zero. 192 if (Major) 193 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 194 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 195 Major, Minor, Update); 196 } 197 198 // Allow the target to emit any magic that it wants at the start of the file. 199 EmitStartOfAsmFile(M); 200 201 // Very minimal debug info. It is ignored if we emit actual debug info. If we 202 // don't, this at least helps the user find where a global came from. 203 if (MAI->hasSingleParameterDotFile()) { 204 // .file "foo.c" 205 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 206 } 207 208 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 209 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 210 for (auto &I : *MI) 211 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 212 MP->beginAssembly(*this); 213 214 // Emit module-level inline asm if it exists. 215 if (!M.getModuleInlineAsm().empty()) { 216 OutStreamer.AddComment("Start of file scope inline assembly"); 217 OutStreamer.AddBlankLine(); 218 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 219 OutStreamer.AddComment("End of file scope inline assembly"); 220 OutStreamer.AddBlankLine(); 221 } 222 223 if (MAI->doesSupportDebugInformation()) { 224 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 225 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 226 DbgTimerName, 227 CodeViewLineTablesGroupName)); 228 } else { 229 DD = new DwarfDebug(this, &M); 230 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 231 } 232 } 233 234 EHStreamer *ES = nullptr; 235 switch (MAI->getExceptionHandlingType()) { 236 case ExceptionHandling::None: 237 break; 238 case ExceptionHandling::SjLj: 239 case ExceptionHandling::DwarfCFI: 240 ES = new DwarfCFIException(this); 241 break; 242 case ExceptionHandling::ARM: 243 ES = new ARMException(this); 244 break; 245 case ExceptionHandling::WinEH: 246 ES = new Win64Exception(this); 247 break; 248 } 249 if (ES) 250 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 251 return false; 252 } 253 254 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 255 if (!MAI.hasWeakDefCanBeHiddenDirective()) 256 return false; 257 258 return canBeOmittedFromSymbolTable(GV); 259 } 260 261 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 262 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 263 switch (Linkage) { 264 case GlobalValue::CommonLinkage: 265 case GlobalValue::LinkOnceAnyLinkage: 266 case GlobalValue::LinkOnceODRLinkage: 267 case GlobalValue::WeakAnyLinkage: 268 case GlobalValue::WeakODRLinkage: 269 if (MAI->hasWeakDefDirective()) { 270 // .globl _foo 271 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 272 273 if (!canBeHidden(GV, *MAI)) 274 // .weak_definition _foo 275 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 276 else 277 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 278 } else if (MAI->hasLinkOnceDirective()) { 279 // .globl _foo 280 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 281 //NOTE: linkonce is handled by the section the symbol was assigned to. 282 } else { 283 // .weak _foo 284 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 285 } 286 return; 287 case GlobalValue::AppendingLinkage: 288 // FIXME: appending linkage variables should go into a section of 289 // their name or something. For now, just emit them as external. 290 case GlobalValue::ExternalLinkage: 291 // If external or appending, declare as a global symbol. 292 // .globl _foo 293 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 294 return; 295 case GlobalValue::PrivateLinkage: 296 case GlobalValue::InternalLinkage: 297 return; 298 case GlobalValue::AvailableExternallyLinkage: 299 llvm_unreachable("Should never emit this"); 300 case GlobalValue::ExternalWeakLinkage: 301 llvm_unreachable("Don't know how to emit these"); 302 } 303 llvm_unreachable("Unknown linkage type!"); 304 } 305 306 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 307 const GlobalValue *GV) const { 308 TM.getNameWithPrefix(Name, GV, *Mang); 309 } 310 311 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 312 return TM.getSymbol(GV, *Mang); 313 } 314 315 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 316 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 317 if (GV->hasInitializer()) { 318 // Check to see if this is a special global used by LLVM, if so, emit it. 319 if (EmitSpecialLLVMGlobal(GV)) 320 return; 321 322 if (isVerbose()) { 323 GV->printAsOperand(OutStreamer.GetCommentOS(), 324 /*PrintType=*/false, GV->getParent()); 325 OutStreamer.GetCommentOS() << '\n'; 326 } 327 } 328 329 MCSymbol *GVSym = getSymbol(GV); 330 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 331 332 if (!GV->hasInitializer()) // External globals require no extra code. 333 return; 334 335 if (MAI->hasDotTypeDotSizeDirective()) 336 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 337 338 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 339 340 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 341 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 342 343 // If the alignment is specified, we *must* obey it. Overaligning a global 344 // with a specified alignment is a prompt way to break globals emitted to 345 // sections and expected to be contiguous (e.g. ObjC metadata). 346 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 347 348 for (const HandlerInfo &HI : Handlers) { 349 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 350 HI.Handler->setSymbolSize(GVSym, Size); 351 } 352 353 // Handle common and BSS local symbols (.lcomm). 354 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 355 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 356 unsigned Align = 1 << AlignLog; 357 358 // Handle common symbols. 359 if (GVKind.isCommon()) { 360 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 361 Align = 0; 362 363 // .comm _foo, 42, 4 364 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 365 return; 366 } 367 368 // Handle local BSS symbols. 369 if (MAI->hasMachoZeroFillDirective()) { 370 const MCSection *TheSection = 371 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 372 // .zerofill __DATA, __bss, _foo, 400, 5 373 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 374 return; 375 } 376 377 // Use .lcomm only if it supports user-specified alignment. 378 // Otherwise, while it would still be correct to use .lcomm in some 379 // cases (e.g. when Align == 1), the external assembler might enfore 380 // some -unknown- default alignment behavior, which could cause 381 // spurious differences between external and integrated assembler. 382 // Prefer to simply fall back to .local / .comm in this case. 383 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 384 // .lcomm _foo, 42 385 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 386 return; 387 } 388 389 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 390 Align = 0; 391 392 // .local _foo 393 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 394 // .comm _foo, 42, 4 395 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 396 return; 397 } 398 399 const MCSection *TheSection = 400 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 401 402 // Handle the zerofill directive on darwin, which is a special form of BSS 403 // emission. 404 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 405 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 406 407 // .globl _foo 408 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 409 // .zerofill __DATA, __common, _foo, 400, 5 410 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 411 return; 412 } 413 414 // Handle thread local data for mach-o which requires us to output an 415 // additional structure of data and mangle the original symbol so that we 416 // can reference it later. 417 // 418 // TODO: This should become an "emit thread local global" method on TLOF. 419 // All of this macho specific stuff should be sunk down into TLOFMachO and 420 // stuff like "TLSExtraDataSection" should no longer be part of the parent 421 // TLOF class. This will also make it more obvious that stuff like 422 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 423 // specific code. 424 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 425 // Emit the .tbss symbol 426 MCSymbol *MangSym = 427 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 428 429 if (GVKind.isThreadBSS()) { 430 TheSection = getObjFileLowering().getTLSBSSSection(); 431 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 432 } else if (GVKind.isThreadData()) { 433 OutStreamer.SwitchSection(TheSection); 434 435 EmitAlignment(AlignLog, GV); 436 OutStreamer.EmitLabel(MangSym); 437 438 EmitGlobalConstant(GV->getInitializer()); 439 } 440 441 OutStreamer.AddBlankLine(); 442 443 // Emit the variable struct for the runtime. 444 const MCSection *TLVSect 445 = getObjFileLowering().getTLSExtraDataSection(); 446 447 OutStreamer.SwitchSection(TLVSect); 448 // Emit the linkage here. 449 EmitLinkage(GV, GVSym); 450 OutStreamer.EmitLabel(GVSym); 451 452 // Three pointers in size: 453 // - __tlv_bootstrap - used to make sure support exists 454 // - spare pointer, used when mapped by the runtime 455 // - pointer to mangled symbol above with initializer 456 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 457 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 458 PtrSize); 459 OutStreamer.EmitIntValue(0, PtrSize); 460 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 461 462 OutStreamer.AddBlankLine(); 463 return; 464 } 465 466 OutStreamer.SwitchSection(TheSection); 467 468 EmitLinkage(GV, GVSym); 469 EmitAlignment(AlignLog, GV); 470 471 OutStreamer.EmitLabel(GVSym); 472 473 EmitGlobalConstant(GV->getInitializer()); 474 475 if (MAI->hasDotTypeDotSizeDirective()) 476 // .size foo, 42 477 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 478 479 OutStreamer.AddBlankLine(); 480 } 481 482 /// EmitFunctionHeader - This method emits the header for the current 483 /// function. 484 void AsmPrinter::EmitFunctionHeader() { 485 // Print out constants referenced by the function 486 EmitConstantPool(); 487 488 // Print the 'header' of function. 489 const Function *F = MF->getFunction(); 490 491 OutStreamer.SwitchSection( 492 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 493 EmitVisibility(CurrentFnSym, F->getVisibility()); 494 495 EmitLinkage(F, CurrentFnSym); 496 EmitAlignment(MF->getAlignment(), F); 497 498 if (MAI->hasDotTypeDotSizeDirective()) 499 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 500 501 if (isVerbose()) { 502 F->printAsOperand(OutStreamer.GetCommentOS(), 503 /*PrintType=*/false, F->getParent()); 504 OutStreamer.GetCommentOS() << '\n'; 505 } 506 507 // Emit the CurrentFnSym. This is a virtual function to allow targets to 508 // do their wild and crazy things as required. 509 EmitFunctionEntryLabel(); 510 511 // If the function had address-taken blocks that got deleted, then we have 512 // references to the dangling symbols. Emit them at the start of the function 513 // so that we don't get references to undefined symbols. 514 std::vector<MCSymbol*> DeadBlockSyms; 515 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 516 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 517 OutStreamer.AddComment("Address taken block that was later removed"); 518 OutStreamer.EmitLabel(DeadBlockSyms[i]); 519 } 520 521 // Emit pre-function debug and/or EH information. 522 for (const HandlerInfo &HI : Handlers) { 523 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 524 HI.Handler->beginFunction(MF); 525 } 526 527 // Emit the prefix data. 528 if (F->hasPrefixData()) 529 EmitGlobalConstant(F->getPrefixData()); 530 } 531 532 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 533 /// function. This can be overridden by targets as required to do custom stuff. 534 void AsmPrinter::EmitFunctionEntryLabel() { 535 // The function label could have already been emitted if two symbols end up 536 // conflicting due to asm renaming. Detect this and emit an error. 537 if (CurrentFnSym->isUndefined()) 538 return OutStreamer.EmitLabel(CurrentFnSym); 539 540 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 541 "' label emitted multiple times to assembly file"); 542 } 543 544 /// emitComments - Pretty-print comments for instructions. 545 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 546 const MachineFunction *MF = MI.getParent()->getParent(); 547 const TargetMachine &TM = MF->getTarget(); 548 549 // Check for spills and reloads 550 int FI; 551 552 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 553 554 // We assume a single instruction only has a spill or reload, not 555 // both. 556 const MachineMemOperand *MMO; 557 if (TM.getSubtargetImpl()->getInstrInfo()->isLoadFromStackSlotPostFE(&MI, 558 FI)) { 559 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 560 MMO = *MI.memoperands_begin(); 561 CommentOS << MMO->getSize() << "-byte Reload\n"; 562 } 563 } else if (TM.getSubtargetImpl()->getInstrInfo()->hasLoadFromStackSlot( 564 &MI, MMO, FI)) { 565 if (FrameInfo->isSpillSlotObjectIndex(FI)) 566 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 567 } else if (TM.getSubtargetImpl()->getInstrInfo()->isStoreToStackSlotPostFE( 568 &MI, FI)) { 569 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 570 MMO = *MI.memoperands_begin(); 571 CommentOS << MMO->getSize() << "-byte Spill\n"; 572 } 573 } else if (TM.getSubtargetImpl()->getInstrInfo()->hasStoreToStackSlot( 574 &MI, MMO, FI)) { 575 if (FrameInfo->isSpillSlotObjectIndex(FI)) 576 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 577 } 578 579 // Check for spill-induced copies 580 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 581 CommentOS << " Reload Reuse\n"; 582 } 583 584 /// emitImplicitDef - This method emits the specified machine instruction 585 /// that is an implicit def. 586 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 587 unsigned RegNo = MI->getOperand(0).getReg(); 588 OutStreamer.AddComment( 589 Twine("implicit-def: ") + 590 TM.getSubtargetImpl()->getRegisterInfo()->getName(RegNo)); 591 OutStreamer.AddBlankLine(); 592 } 593 594 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 595 std::string Str = "kill:"; 596 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 597 const MachineOperand &Op = MI->getOperand(i); 598 assert(Op.isReg() && "KILL instruction must have only register operands"); 599 Str += ' '; 600 Str += AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Op.getReg()); 601 Str += (Op.isDef() ? "<def>" : "<kill>"); 602 } 603 AP.OutStreamer.AddComment(Str); 604 AP.OutStreamer.AddBlankLine(); 605 } 606 607 /// emitDebugValueComment - This method handles the target-independent form 608 /// of DBG_VALUE, returning true if it was able to do so. A false return 609 /// means the target will need to handle MI in EmitInstruction. 610 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 611 // This code handles only the 3-operand target-independent form. 612 if (MI->getNumOperands() != 3) 613 return false; 614 615 SmallString<128> Str; 616 raw_svector_ostream OS(Str); 617 OS << "DEBUG_VALUE: "; 618 619 DIVariable V(MI->getOperand(2).getMetadata()); 620 if (V.getContext().isSubprogram()) { 621 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 622 if (!Name.empty()) 623 OS << Name << ":"; 624 } 625 OS << V.getName(); 626 if (V.isVariablePiece()) 627 OS << " [piece offset=" << V.getPieceOffset() 628 << " size="<<V.getPieceSize()<<"]"; 629 OS << " <- "; 630 631 // The second operand is only an offset if it's an immediate. 632 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 633 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 634 635 // Register or immediate value. Register 0 means undef. 636 if (MI->getOperand(0).isFPImm()) { 637 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 638 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 639 OS << (double)APF.convertToFloat(); 640 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 641 OS << APF.convertToDouble(); 642 } else { 643 // There is no good way to print long double. Convert a copy to 644 // double. Ah well, it's only a comment. 645 bool ignored; 646 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 647 &ignored); 648 OS << "(long double) " << APF.convertToDouble(); 649 } 650 } else if (MI->getOperand(0).isImm()) { 651 OS << MI->getOperand(0).getImm(); 652 } else if (MI->getOperand(0).isCImm()) { 653 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 654 } else { 655 unsigned Reg; 656 if (MI->getOperand(0).isReg()) { 657 Reg = MI->getOperand(0).getReg(); 658 } else { 659 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 660 const TargetFrameLowering *TFI = 661 AP.TM.getSubtargetImpl()->getFrameLowering(); 662 Offset += TFI->getFrameIndexReference(*AP.MF, 663 MI->getOperand(0).getIndex(), Reg); 664 Deref = true; 665 } 666 if (Reg == 0) { 667 // Suppress offset, it is not meaningful here. 668 OS << "undef"; 669 // NOTE: Want this comment at start of line, don't emit with AddComment. 670 AP.OutStreamer.emitRawComment(OS.str()); 671 return true; 672 } 673 if (Deref) 674 OS << '['; 675 OS << AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Reg); 676 } 677 678 if (Deref) 679 OS << '+' << Offset << ']'; 680 681 // NOTE: Want this comment at start of line, don't emit with AddComment. 682 AP.OutStreamer.emitRawComment(OS.str()); 683 return true; 684 } 685 686 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 687 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 688 MF->getFunction()->needsUnwindTableEntry()) 689 return CFI_M_EH; 690 691 if (MMI->hasDebugInfo()) 692 return CFI_M_Debug; 693 694 return CFI_M_None; 695 } 696 697 bool AsmPrinter::needsSEHMoves() { 698 return MAI->getExceptionHandlingType() == ExceptionHandling::WinEH && 699 MF->getFunction()->needsUnwindTableEntry(); 700 } 701 702 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 703 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 704 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 705 ExceptionHandlingType != ExceptionHandling::ARM) 706 return; 707 708 if (needsCFIMoves() == CFI_M_None) 709 return; 710 711 if (MMI->getCompactUnwindEncoding() != 0) 712 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 713 714 const MachineModuleInfo &MMI = MF->getMMI(); 715 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 716 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 717 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 718 emitCFIInstruction(CFI); 719 } 720 721 /// EmitFunctionBody - This method emits the body and trailer for a 722 /// function. 723 void AsmPrinter::EmitFunctionBody() { 724 // Emit target-specific gunk before the function body. 725 EmitFunctionBodyStart(); 726 727 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 728 729 // Print out code for the function. 730 bool HasAnyRealCode = false; 731 const MachineInstr *LastMI = nullptr; 732 for (auto &MBB : *MF) { 733 // Print a label for the basic block. 734 EmitBasicBlockStart(MBB); 735 for (auto &MI : MBB) { 736 LastMI = &MI; 737 738 // Print the assembly for the instruction. 739 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 740 !MI.isDebugValue()) { 741 HasAnyRealCode = true; 742 ++EmittedInsts; 743 } 744 745 if (ShouldPrintDebugScopes) { 746 for (const HandlerInfo &HI : Handlers) { 747 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 748 TimePassesIsEnabled); 749 HI.Handler->beginInstruction(&MI); 750 } 751 } 752 753 if (isVerbose()) 754 emitComments(MI, OutStreamer.GetCommentOS()); 755 756 switch (MI.getOpcode()) { 757 case TargetOpcode::CFI_INSTRUCTION: 758 emitCFIInstruction(MI); 759 break; 760 761 case TargetOpcode::EH_LABEL: 762 case TargetOpcode::GC_LABEL: 763 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 764 break; 765 case TargetOpcode::INLINEASM: 766 EmitInlineAsm(&MI); 767 break; 768 case TargetOpcode::DBG_VALUE: 769 if (isVerbose()) { 770 if (!emitDebugValueComment(&MI, *this)) 771 EmitInstruction(&MI); 772 } 773 break; 774 case TargetOpcode::IMPLICIT_DEF: 775 if (isVerbose()) emitImplicitDef(&MI); 776 break; 777 case TargetOpcode::KILL: 778 if (isVerbose()) emitKill(&MI, *this); 779 break; 780 default: 781 EmitInstruction(&MI); 782 break; 783 } 784 785 if (ShouldPrintDebugScopes) { 786 for (const HandlerInfo &HI : Handlers) { 787 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 788 TimePassesIsEnabled); 789 HI.Handler->endInstruction(); 790 } 791 } 792 } 793 794 EmitBasicBlockEnd(MBB); 795 } 796 797 // If the last instruction was a prolog label, then we have a situation where 798 // we emitted a prolog but no function body. This results in the ending prolog 799 // label equaling the end of function label and an invalid "row" in the 800 // FDE. We need to emit a noop in this situation so that the FDE's rows are 801 // valid. 802 bool RequiresNoop = LastMI && LastMI->isCFIInstruction(); 803 804 // If the function is empty and the object file uses .subsections_via_symbols, 805 // then we need to emit *something* to the function body to prevent the 806 // labels from collapsing together. Just emit a noop. 807 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 808 MCInst Noop; 809 TM.getSubtargetImpl()->getInstrInfo()->getNoopForMachoTarget(Noop); 810 if (Noop.getOpcode()) { 811 OutStreamer.AddComment("avoids zero-length function"); 812 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 813 } else // Target not mc-ized yet. 814 OutStreamer.EmitRawText(StringRef("\tnop\n")); 815 } 816 817 const Function *F = MF->getFunction(); 818 for (const auto &BB : *F) { 819 if (!BB.hasAddressTaken()) 820 continue; 821 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 822 if (Sym->isDefined()) 823 continue; 824 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 825 OutStreamer.EmitLabel(Sym); 826 } 827 828 // Emit target-specific gunk after the function body. 829 EmitFunctionBodyEnd(); 830 831 // If the target wants a .size directive for the size of the function, emit 832 // it. 833 if (MAI->hasDotTypeDotSizeDirective()) { 834 // Create a symbol for the end of function, so we can get the size as 835 // difference between the function label and the temp label. 836 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 837 OutStreamer.EmitLabel(FnEndLabel); 838 839 const MCExpr *SizeExp = 840 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 841 MCSymbolRefExpr::Create(CurrentFnSymForSize, 842 OutContext), 843 OutContext); 844 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 845 } 846 847 // Emit post-function debug and/or EH information. 848 for (const HandlerInfo &HI : Handlers) { 849 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 850 HI.Handler->endFunction(MF); 851 } 852 MMI->EndFunction(); 853 854 // Print out jump tables referenced by the function. 855 EmitJumpTableInfo(); 856 857 OutStreamer.AddBlankLine(); 858 } 859 860 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP); 861 862 bool AsmPrinter::doFinalization(Module &M) { 863 // Emit global variables. 864 for (const auto &G : M.globals()) 865 EmitGlobalVariable(&G); 866 867 // Emit visibility info for declarations 868 for (const Function &F : M) { 869 if (!F.isDeclaration()) 870 continue; 871 GlobalValue::VisibilityTypes V = F.getVisibility(); 872 if (V == GlobalValue::DefaultVisibility) 873 continue; 874 875 MCSymbol *Name = getSymbol(&F); 876 EmitVisibility(Name, V, false); 877 } 878 879 // Get information about jump-instruction tables to print. 880 JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>(); 881 882 if (JITI && !JITI->getTables().empty()) { 883 unsigned Arch = Triple(getTargetTriple()).getArch(); 884 bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb); 885 MCInst TrapInst; 886 TM.getSubtargetImpl()->getInstrInfo()->getTrap(TrapInst); 887 for (const auto &KV : JITI->getTables()) { 888 uint64_t Count = 0; 889 for (const auto &FunPair : KV.second) { 890 // Emit the function labels to make this be a function entry point. 891 MCSymbol *FunSym = 892 OutContext.GetOrCreateSymbol(FunPair.second->getName()); 893 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global); 894 // FIXME: JumpTableInstrInfo should store information about the required 895 // alignment of table entries and the size of the padding instruction. 896 EmitAlignment(3); 897 if (IsThumb) 898 OutStreamer.EmitThumbFunc(FunSym); 899 if (MAI->hasDotTypeDotSizeDirective()) 900 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction); 901 OutStreamer.EmitLabel(FunSym); 902 903 // Emit the jump instruction to transfer control to the original 904 // function. 905 MCInst JumpToFun; 906 MCSymbol *TargetSymbol = 907 OutContext.GetOrCreateSymbol(FunPair.first->getName()); 908 const MCSymbolRefExpr *TargetSymRef = 909 MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT, 910 OutContext); 911 TM.getSubtargetImpl()->getInstrInfo()->getUnconditionalBranch( 912 JumpToFun, TargetSymRef); 913 OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo()); 914 ++Count; 915 } 916 917 // Emit enough padding instructions to fill up to the next power of two. 918 // This assumes that the trap instruction takes 8 bytes or fewer. 919 uint64_t Remaining = NextPowerOf2(Count) - Count; 920 for (uint64_t C = 0; C < Remaining; ++C) { 921 EmitAlignment(3); 922 OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo()); 923 } 924 925 } 926 } 927 928 // Emit module flags. 929 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 930 M.getModuleFlagsMetadata(ModuleFlags); 931 if (!ModuleFlags.empty()) 932 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 933 934 // Make sure we wrote out everything we need. 935 OutStreamer.Flush(); 936 937 // Finalize debug and EH information. 938 for (const HandlerInfo &HI : Handlers) { 939 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 940 TimePassesIsEnabled); 941 HI.Handler->endModule(); 942 delete HI.Handler; 943 } 944 Handlers.clear(); 945 DD = nullptr; 946 947 // If the target wants to know about weak references, print them all. 948 if (MAI->getWeakRefDirective()) { 949 // FIXME: This is not lazy, it would be nice to only print weak references 950 // to stuff that is actually used. Note that doing so would require targets 951 // to notice uses in operands (due to constant exprs etc). This should 952 // happen with the MC stuff eventually. 953 954 // Print out module-level global variables here. 955 for (const auto &G : M.globals()) { 956 if (!G.hasExternalWeakLinkage()) 957 continue; 958 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 959 } 960 961 for (const auto &F : M) { 962 if (!F.hasExternalWeakLinkage()) 963 continue; 964 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 965 } 966 } 967 968 if (MAI->hasSetDirective()) { 969 OutStreamer.AddBlankLine(); 970 for (const auto &Alias : M.aliases()) { 971 MCSymbol *Name = getSymbol(&Alias); 972 973 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 974 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 975 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 976 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 977 else 978 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 979 980 EmitVisibility(Name, Alias.getVisibility()); 981 982 // Emit the directives as assignments aka .set: 983 OutStreamer.EmitAssignment(Name, 984 lowerConstant(Alias.getAliasee(), *this)); 985 } 986 } 987 988 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 989 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 990 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 991 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 992 MP->finishAssembly(*this); 993 994 // Emit llvm.ident metadata in an '.ident' directive. 995 EmitModuleIdents(M); 996 997 // If we don't have any trampolines, then we don't require stack memory 998 // to be executable. Some targets have a directive to declare this. 999 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1000 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1001 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1002 OutStreamer.SwitchSection(S); 1003 1004 // Allow the target to emit any magic that it wants at the end of the file, 1005 // after everything else has gone out. 1006 EmitEndOfAsmFile(M); 1007 1008 delete Mang; Mang = nullptr; 1009 MMI = nullptr; 1010 1011 OutStreamer.Finish(); 1012 OutStreamer.reset(); 1013 1014 return false; 1015 } 1016 1017 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1018 this->MF = &MF; 1019 // Get the function symbol. 1020 CurrentFnSym = getSymbol(MF.getFunction()); 1021 CurrentFnSymForSize = CurrentFnSym; 1022 1023 if (isVerbose()) 1024 LI = &getAnalysis<MachineLoopInfo>(); 1025 } 1026 1027 namespace { 1028 // SectionCPs - Keep track the alignment, constpool entries per Section. 1029 struct SectionCPs { 1030 const MCSection *S; 1031 unsigned Alignment; 1032 SmallVector<unsigned, 4> CPEs; 1033 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1034 }; 1035 } 1036 1037 /// EmitConstantPool - Print to the current output stream assembly 1038 /// representations of the constants in the constant pool MCP. This is 1039 /// used to print out constants which have been "spilled to memory" by 1040 /// the code generator. 1041 /// 1042 void AsmPrinter::EmitConstantPool() { 1043 const MachineConstantPool *MCP = MF->getConstantPool(); 1044 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1045 if (CP.empty()) return; 1046 1047 // Calculate sections for constant pool entries. We collect entries to go into 1048 // the same section together to reduce amount of section switch statements. 1049 SmallVector<SectionCPs, 4> CPSections; 1050 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1051 const MachineConstantPoolEntry &CPE = CP[i]; 1052 unsigned Align = CPE.getAlignment(); 1053 1054 SectionKind Kind = 1055 CPE.getSectionKind(TM.getSubtargetImpl()->getDataLayout()); 1056 1057 const Constant *C = nullptr; 1058 if (!CPE.isMachineConstantPoolEntry()) 1059 C = CPE.Val.ConstVal; 1060 1061 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C); 1062 1063 // The number of sections are small, just do a linear search from the 1064 // last section to the first. 1065 bool Found = false; 1066 unsigned SecIdx = CPSections.size(); 1067 while (SecIdx != 0) { 1068 if (CPSections[--SecIdx].S == S) { 1069 Found = true; 1070 break; 1071 } 1072 } 1073 if (!Found) { 1074 SecIdx = CPSections.size(); 1075 CPSections.push_back(SectionCPs(S, Align)); 1076 } 1077 1078 if (Align > CPSections[SecIdx].Alignment) 1079 CPSections[SecIdx].Alignment = Align; 1080 CPSections[SecIdx].CPEs.push_back(i); 1081 } 1082 1083 // Now print stuff into the calculated sections. 1084 const MCSection *CurSection = nullptr; 1085 unsigned Offset = 0; 1086 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1087 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1088 unsigned CPI = CPSections[i].CPEs[j]; 1089 MCSymbol *Sym = GetCPISymbol(CPI); 1090 if (!Sym->isUndefined()) 1091 continue; 1092 1093 if (CurSection != CPSections[i].S) { 1094 OutStreamer.SwitchSection(CPSections[i].S); 1095 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1096 CurSection = CPSections[i].S; 1097 Offset = 0; 1098 } 1099 1100 MachineConstantPoolEntry CPE = CP[CPI]; 1101 1102 // Emit inter-object padding for alignment. 1103 unsigned AlignMask = CPE.getAlignment() - 1; 1104 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1105 OutStreamer.EmitZeros(NewOffset - Offset); 1106 1107 Type *Ty = CPE.getType(); 1108 Offset = NewOffset + 1109 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(Ty); 1110 1111 OutStreamer.EmitLabel(Sym); 1112 if (CPE.isMachineConstantPoolEntry()) 1113 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1114 else 1115 EmitGlobalConstant(CPE.Val.ConstVal); 1116 } 1117 } 1118 } 1119 1120 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1121 /// by the current function to the current output stream. 1122 /// 1123 void AsmPrinter::EmitJumpTableInfo() { 1124 const DataLayout *DL = MF->getSubtarget().getDataLayout(); 1125 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1126 if (!MJTI) return; 1127 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1128 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1129 if (JT.empty()) return; 1130 1131 // Pick the directive to use to print the jump table entries, and switch to 1132 // the appropriate section. 1133 const Function *F = MF->getFunction(); 1134 bool JTInDiffSection = false; 1135 if (// In PIC mode, we need to emit the jump table to the same section as the 1136 // function body itself, otherwise the label differences won't make sense. 1137 // FIXME: Need a better predicate for this: what about custom entries? 1138 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1139 // We should also do if the section name is NULL or function is declared 1140 // in discardable section 1141 // FIXME: this isn't the right predicate, should be based on the MCSection 1142 // for the function. 1143 F->isWeakForLinker()) { 1144 OutStreamer.SwitchSection( 1145 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 1146 } else { 1147 // Otherwise, drop it in the readonly section. 1148 const MCSection *ReadOnlySection = 1149 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1150 /*C=*/nullptr); 1151 OutStreamer.SwitchSection(ReadOnlySection); 1152 JTInDiffSection = true; 1153 } 1154 1155 EmitAlignment(Log2_32( 1156 MJTI->getEntryAlignment(*TM.getSubtargetImpl()->getDataLayout()))); 1157 1158 // Jump tables in code sections are marked with a data_region directive 1159 // where that's supported. 1160 if (!JTInDiffSection) 1161 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1162 1163 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1164 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1165 1166 // If this jump table was deleted, ignore it. 1167 if (JTBBs.empty()) continue; 1168 1169 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1170 // .set directive for each unique entry. This reduces the number of 1171 // relocations the assembler will generate for the jump table. 1172 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1173 MAI->hasSetDirective()) { 1174 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1175 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1176 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1177 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1178 const MachineBasicBlock *MBB = JTBBs[ii]; 1179 if (!EmittedSets.insert(MBB)) continue; 1180 1181 // .set LJTSet, LBB32-base 1182 const MCExpr *LHS = 1183 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1184 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1185 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1186 } 1187 } 1188 1189 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1190 // before each jump table. The first label is never referenced, but tells 1191 // the assembler and linker the extents of the jump table object. The 1192 // second label is actually referenced by the code. 1193 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1194 // FIXME: This doesn't have to have any specific name, just any randomly 1195 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1196 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1197 1198 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1199 1200 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1201 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1202 } 1203 if (!JTInDiffSection) 1204 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1205 } 1206 1207 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1208 /// current stream. 1209 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1210 const MachineBasicBlock *MBB, 1211 unsigned UID) const { 1212 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1213 const MCExpr *Value = nullptr; 1214 switch (MJTI->getEntryKind()) { 1215 case MachineJumpTableInfo::EK_Inline: 1216 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1217 case MachineJumpTableInfo::EK_Custom32: 1218 Value = 1219 TM.getSubtargetImpl()->getTargetLowering()->LowerCustomJumpTableEntry( 1220 MJTI, MBB, UID, OutContext); 1221 break; 1222 case MachineJumpTableInfo::EK_BlockAddress: 1223 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1224 // .word LBB123 1225 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1226 break; 1227 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1228 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1229 // with a relocation as gp-relative, e.g.: 1230 // .gprel32 LBB123 1231 MCSymbol *MBBSym = MBB->getSymbol(); 1232 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1233 return; 1234 } 1235 1236 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1237 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1238 // with a relocation as gp-relative, e.g.: 1239 // .gpdword LBB123 1240 MCSymbol *MBBSym = MBB->getSymbol(); 1241 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1242 return; 1243 } 1244 1245 case MachineJumpTableInfo::EK_LabelDifference32: { 1246 // EK_LabelDifference32 - Each entry is the address of the block minus 1247 // the address of the jump table. This is used for PIC jump tables where 1248 // gprel32 is not supported. e.g.: 1249 // .word LBB123 - LJTI1_2 1250 // If the .set directive is supported, this is emitted as: 1251 // .set L4_5_set_123, LBB123 - LJTI1_2 1252 // .word L4_5_set_123 1253 1254 // If we have emitted set directives for the jump table entries, print 1255 // them rather than the entries themselves. If we're emitting PIC, then 1256 // emit the table entries as differences between two text section labels. 1257 if (MAI->hasSetDirective()) { 1258 // If we used .set, reference the .set's symbol. 1259 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1260 OutContext); 1261 break; 1262 } 1263 // Otherwise, use the difference as the jump table entry. 1264 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1265 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1266 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1267 break; 1268 } 1269 } 1270 1271 assert(Value && "Unknown entry kind!"); 1272 1273 unsigned EntrySize = 1274 MJTI->getEntrySize(*TM.getSubtargetImpl()->getDataLayout()); 1275 OutStreamer.EmitValue(Value, EntrySize); 1276 } 1277 1278 1279 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1280 /// special global used by LLVM. If so, emit it and return true, otherwise 1281 /// do nothing and return false. 1282 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1283 if (GV->getName() == "llvm.used") { 1284 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1285 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1286 return true; 1287 } 1288 1289 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1290 if (StringRef(GV->getSection()) == "llvm.metadata" || 1291 GV->hasAvailableExternallyLinkage()) 1292 return true; 1293 1294 if (!GV->hasAppendingLinkage()) return false; 1295 1296 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1297 1298 if (GV->getName() == "llvm.global_ctors") { 1299 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1300 1301 if (TM.getRelocationModel() == Reloc::Static && 1302 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1303 StringRef Sym(".constructors_used"); 1304 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1305 MCSA_Reference); 1306 } 1307 return true; 1308 } 1309 1310 if (GV->getName() == "llvm.global_dtors") { 1311 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1312 1313 if (TM.getRelocationModel() == Reloc::Static && 1314 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1315 StringRef Sym(".destructors_used"); 1316 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1317 MCSA_Reference); 1318 } 1319 return true; 1320 } 1321 1322 return false; 1323 } 1324 1325 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1326 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1327 /// is true, as being used with this directive. 1328 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1329 // Should be an array of 'i8*'. 1330 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1331 const GlobalValue *GV = 1332 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1333 if (GV) 1334 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1335 } 1336 } 1337 1338 namespace { 1339 struct Structor { 1340 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1341 int Priority; 1342 llvm::Constant *Func; 1343 llvm::GlobalValue *ComdatKey; 1344 }; 1345 } // end namespace 1346 1347 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1348 /// priority. 1349 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1350 // Should be an array of '{ int, void ()* }' structs. The first value is the 1351 // init priority. 1352 if (!isa<ConstantArray>(List)) return; 1353 1354 // Sanity check the structors list. 1355 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1356 if (!InitList) return; // Not an array! 1357 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1358 // FIXME: Only allow the 3-field form in LLVM 4.0. 1359 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1360 return; // Not an array of two or three elements! 1361 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1362 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1363 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1364 return; // Not (int, ptr, ptr). 1365 1366 // Gather the structors in a form that's convenient for sorting by priority. 1367 SmallVector<Structor, 8> Structors; 1368 for (Value *O : InitList->operands()) { 1369 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1370 if (!CS) continue; // Malformed. 1371 if (CS->getOperand(1)->isNullValue()) 1372 break; // Found a null terminator, skip the rest. 1373 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1374 if (!Priority) continue; // Malformed. 1375 Structors.push_back(Structor()); 1376 Structor &S = Structors.back(); 1377 S.Priority = Priority->getLimitedValue(65535); 1378 S.Func = CS->getOperand(1); 1379 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1380 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1381 } 1382 1383 // Emit the function pointers in the target-specific order 1384 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 1385 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1386 std::stable_sort(Structors.begin(), Structors.end(), 1387 [](const Structor &L, 1388 const Structor &R) { return L.Priority < R.Priority; }); 1389 for (Structor &S : Structors) { 1390 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1391 const MCSymbol *KeySym = nullptr; 1392 if (GlobalValue *GV = S.ComdatKey) { 1393 if (GV->hasAvailableExternallyLinkage()) 1394 // If the associated variable is available_externally, some other TU 1395 // will provide its dynamic initializer. 1396 continue; 1397 1398 KeySym = getSymbol(GV); 1399 } 1400 const MCSection *OutputSection = 1401 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1402 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1403 OutStreamer.SwitchSection(OutputSection); 1404 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1405 EmitAlignment(Align); 1406 EmitXXStructor(S.Func); 1407 } 1408 } 1409 1410 void AsmPrinter::EmitModuleIdents(Module &M) { 1411 if (!MAI->hasIdentDirective()) 1412 return; 1413 1414 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1415 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1416 const MDNode *N = NMD->getOperand(i); 1417 assert(N->getNumOperands() == 1 && 1418 "llvm.ident metadata entry can have only one operand"); 1419 const MDString *S = cast<MDString>(N->getOperand(0)); 1420 OutStreamer.EmitIdent(S->getString()); 1421 } 1422 } 1423 } 1424 1425 //===--------------------------------------------------------------------===// 1426 // Emission and print routines 1427 // 1428 1429 /// EmitInt8 - Emit a byte directive and value. 1430 /// 1431 void AsmPrinter::EmitInt8(int Value) const { 1432 OutStreamer.EmitIntValue(Value, 1); 1433 } 1434 1435 /// EmitInt16 - Emit a short directive and value. 1436 /// 1437 void AsmPrinter::EmitInt16(int Value) const { 1438 OutStreamer.EmitIntValue(Value, 2); 1439 } 1440 1441 /// EmitInt32 - Emit a long directive and value. 1442 /// 1443 void AsmPrinter::EmitInt32(int Value) const { 1444 OutStreamer.EmitIntValue(Value, 4); 1445 } 1446 1447 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1448 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1449 /// labels. This implicitly uses .set if it is available. 1450 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1451 unsigned Size) const { 1452 // Get the Hi-Lo expression. 1453 const MCExpr *Diff = 1454 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1455 MCSymbolRefExpr::Create(Lo, OutContext), 1456 OutContext); 1457 1458 if (!MAI->hasSetDirective()) { 1459 OutStreamer.EmitValue(Diff, Size); 1460 return; 1461 } 1462 1463 // Otherwise, emit with .set (aka assignment). 1464 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1465 OutStreamer.EmitAssignment(SetLabel, Diff); 1466 OutStreamer.EmitSymbolValue(SetLabel, Size); 1467 } 1468 1469 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1470 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1471 /// specify the labels. This implicitly uses .set if it is available. 1472 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1473 const MCSymbol *Lo, 1474 unsigned Size) const { 1475 1476 // Emit Hi+Offset - Lo 1477 // Get the Hi+Offset expression. 1478 const MCExpr *Plus = 1479 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1480 MCConstantExpr::Create(Offset, OutContext), 1481 OutContext); 1482 1483 // Get the Hi+Offset-Lo expression. 1484 const MCExpr *Diff = 1485 MCBinaryExpr::CreateSub(Plus, 1486 MCSymbolRefExpr::Create(Lo, OutContext), 1487 OutContext); 1488 1489 if (!MAI->hasSetDirective()) 1490 OutStreamer.EmitValue(Diff, Size); 1491 else { 1492 // Otherwise, emit with .set (aka assignment). 1493 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1494 OutStreamer.EmitAssignment(SetLabel, Diff); 1495 OutStreamer.EmitSymbolValue(SetLabel, Size); 1496 } 1497 } 1498 1499 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1500 /// where the size in bytes of the directive is specified by Size and Label 1501 /// specifies the label. This implicitly uses .set if it is available. 1502 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1503 unsigned Size, 1504 bool IsSectionRelative) const { 1505 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1506 OutStreamer.EmitCOFFSecRel32(Label); 1507 return; 1508 } 1509 1510 // Emit Label+Offset (or just Label if Offset is zero) 1511 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1512 if (Offset) 1513 Expr = MCBinaryExpr::CreateAdd( 1514 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1515 1516 OutStreamer.EmitValue(Expr, Size); 1517 } 1518 1519 //===----------------------------------------------------------------------===// 1520 1521 // EmitAlignment - Emit an alignment directive to the specified power of 1522 // two boundary. For example, if you pass in 3 here, you will get an 8 1523 // byte alignment. If a global value is specified, and if that global has 1524 // an explicit alignment requested, it will override the alignment request 1525 // if required for correctness. 1526 // 1527 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1528 if (GV) 1529 NumBits = getGVAlignmentLog2(GV, *TM.getSubtargetImpl()->getDataLayout(), 1530 NumBits); 1531 1532 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1533 1534 if (getCurrentSection()->getKind().isText()) 1535 OutStreamer.EmitCodeAlignment(1 << NumBits); 1536 else 1537 OutStreamer.EmitValueToAlignment(1 << NumBits); 1538 } 1539 1540 //===----------------------------------------------------------------------===// 1541 // Constant emission. 1542 //===----------------------------------------------------------------------===// 1543 1544 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1545 /// 1546 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1547 MCContext &Ctx = AP.OutContext; 1548 1549 if (CV->isNullValue() || isa<UndefValue>(CV)) 1550 return MCConstantExpr::Create(0, Ctx); 1551 1552 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1553 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1554 1555 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1556 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx); 1557 1558 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1559 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1560 1561 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1562 if (!CE) { 1563 llvm_unreachable("Unknown constant value to lower!"); 1564 } 1565 1566 if (const MCExpr *RelocExpr = 1567 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang, 1568 AP.TM)) 1569 return RelocExpr; 1570 1571 switch (CE->getOpcode()) { 1572 default: 1573 // If the code isn't optimized, there may be outstanding folding 1574 // opportunities. Attempt to fold the expression using DataLayout as a 1575 // last resort before giving up. 1576 if (Constant *C = ConstantFoldConstantExpression( 1577 CE, AP.TM.getSubtargetImpl()->getDataLayout())) 1578 if (C != CE) 1579 return lowerConstant(C, AP); 1580 1581 // Otherwise report the problem to the user. 1582 { 1583 std::string S; 1584 raw_string_ostream OS(S); 1585 OS << "Unsupported expression in static initializer: "; 1586 CE->printAsOperand(OS, /*PrintType=*/false, 1587 !AP.MF ? nullptr : AP.MF->getFunction()->getParent()); 1588 report_fatal_error(OS.str()); 1589 } 1590 case Instruction::GetElementPtr: { 1591 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1592 // Generate a symbolic expression for the byte address 1593 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1594 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1595 1596 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1597 if (!OffsetAI) 1598 return Base; 1599 1600 int64_t Offset = OffsetAI.getSExtValue(); 1601 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1602 Ctx); 1603 } 1604 1605 case Instruction::Trunc: 1606 // We emit the value and depend on the assembler to truncate the generated 1607 // expression properly. This is important for differences between 1608 // blockaddress labels. Since the two labels are in the same function, it 1609 // is reasonable to treat their delta as a 32-bit value. 1610 // FALL THROUGH. 1611 case Instruction::BitCast: 1612 return lowerConstant(CE->getOperand(0), AP); 1613 1614 case Instruction::IntToPtr: { 1615 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1616 // Handle casts to pointers by changing them into casts to the appropriate 1617 // integer type. This promotes constant folding and simplifies this code. 1618 Constant *Op = CE->getOperand(0); 1619 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1620 false/*ZExt*/); 1621 return lowerConstant(Op, AP); 1622 } 1623 1624 case Instruction::PtrToInt: { 1625 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1626 // Support only foldable casts to/from pointers that can be eliminated by 1627 // changing the pointer to the appropriately sized integer type. 1628 Constant *Op = CE->getOperand(0); 1629 Type *Ty = CE->getType(); 1630 1631 const MCExpr *OpExpr = lowerConstant(Op, AP); 1632 1633 // We can emit the pointer value into this slot if the slot is an 1634 // integer slot equal to the size of the pointer. 1635 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1636 return OpExpr; 1637 1638 // Otherwise the pointer is smaller than the resultant integer, mask off 1639 // the high bits so we are sure to get a proper truncation if the input is 1640 // a constant expr. 1641 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1642 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1643 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1644 } 1645 1646 // The MC library also has a right-shift operator, but it isn't consistently 1647 // signed or unsigned between different targets. 1648 case Instruction::Add: 1649 case Instruction::Sub: 1650 case Instruction::Mul: 1651 case Instruction::SDiv: 1652 case Instruction::SRem: 1653 case Instruction::Shl: 1654 case Instruction::And: 1655 case Instruction::Or: 1656 case Instruction::Xor: { 1657 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1658 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1659 switch (CE->getOpcode()) { 1660 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1661 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1662 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1663 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1664 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1665 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1666 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1667 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1668 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1669 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1670 } 1671 } 1672 } 1673 } 1674 1675 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1676 1677 /// isRepeatedByteSequence - Determine whether the given value is 1678 /// composed of a repeated sequence of identical bytes and return the 1679 /// byte value. If it is not a repeated sequence, return -1. 1680 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1681 StringRef Data = V->getRawDataValues(); 1682 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1683 char C = Data[0]; 1684 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1685 if (Data[i] != C) return -1; 1686 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1687 } 1688 1689 1690 /// isRepeatedByteSequence - Determine whether the given value is 1691 /// composed of a repeated sequence of identical bytes and return the 1692 /// byte value. If it is not a repeated sequence, return -1. 1693 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1694 1695 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1696 if (CI->getBitWidth() > 64) return -1; 1697 1698 uint64_t Size = 1699 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(V->getType()); 1700 uint64_t Value = CI->getZExtValue(); 1701 1702 // Make sure the constant is at least 8 bits long and has a power 1703 // of 2 bit width. This guarantees the constant bit width is 1704 // always a multiple of 8 bits, avoiding issues with padding out 1705 // to Size and other such corner cases. 1706 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1707 1708 uint8_t Byte = static_cast<uint8_t>(Value); 1709 1710 for (unsigned i = 1; i < Size; ++i) { 1711 Value >>= 8; 1712 if (static_cast<uint8_t>(Value) != Byte) return -1; 1713 } 1714 return Byte; 1715 } 1716 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1717 // Make sure all array elements are sequences of the same repeated 1718 // byte. 1719 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1720 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1721 if (Byte == -1) return -1; 1722 1723 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1724 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1725 if (ThisByte == -1) return -1; 1726 if (Byte != ThisByte) return -1; 1727 } 1728 return Byte; 1729 } 1730 1731 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1732 return isRepeatedByteSequence(CDS); 1733 1734 return -1; 1735 } 1736 1737 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1738 AsmPrinter &AP){ 1739 1740 // See if we can aggregate this into a .fill, if so, emit it as such. 1741 int Value = isRepeatedByteSequence(CDS, AP.TM); 1742 if (Value != -1) { 1743 uint64_t Bytes = 1744 AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize( 1745 CDS->getType()); 1746 // Don't emit a 1-byte object as a .fill. 1747 if (Bytes > 1) 1748 return AP.OutStreamer.EmitFill(Bytes, Value); 1749 } 1750 1751 // If this can be emitted with .ascii/.asciz, emit it as such. 1752 if (CDS->isString()) 1753 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1754 1755 // Otherwise, emit the values in successive locations. 1756 unsigned ElementByteSize = CDS->getElementByteSize(); 1757 if (isa<IntegerType>(CDS->getElementType())) { 1758 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1759 if (AP.isVerbose()) 1760 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1761 CDS->getElementAsInteger(i)); 1762 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1763 ElementByteSize); 1764 } 1765 } else if (ElementByteSize == 4) { 1766 // FP Constants are printed as integer constants to avoid losing 1767 // precision. 1768 assert(CDS->getElementType()->isFloatTy()); 1769 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1770 union { 1771 float F; 1772 uint32_t I; 1773 }; 1774 1775 F = CDS->getElementAsFloat(i); 1776 if (AP.isVerbose()) 1777 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1778 AP.OutStreamer.EmitIntValue(I, 4); 1779 } 1780 } else { 1781 assert(CDS->getElementType()->isDoubleTy()); 1782 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1783 union { 1784 double F; 1785 uint64_t I; 1786 }; 1787 1788 F = CDS->getElementAsDouble(i); 1789 if (AP.isVerbose()) 1790 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1791 AP.OutStreamer.EmitIntValue(I, 8); 1792 } 1793 } 1794 1795 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1796 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1797 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1798 CDS->getNumElements(); 1799 if (unsigned Padding = Size - EmittedSize) 1800 AP.OutStreamer.EmitZeros(Padding); 1801 1802 } 1803 1804 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1805 // See if we can aggregate some values. Make sure it can be 1806 // represented as a series of bytes of the constant value. 1807 int Value = isRepeatedByteSequence(CA, AP.TM); 1808 1809 if (Value != -1) { 1810 uint64_t Bytes = 1811 AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize( 1812 CA->getType()); 1813 AP.OutStreamer.EmitFill(Bytes, Value); 1814 } 1815 else { 1816 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1817 emitGlobalConstantImpl(CA->getOperand(i), AP); 1818 } 1819 } 1820 1821 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1822 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1823 emitGlobalConstantImpl(CV->getOperand(i), AP); 1824 1825 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1826 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1827 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1828 CV->getType()->getNumElements(); 1829 if (unsigned Padding = Size - EmittedSize) 1830 AP.OutStreamer.EmitZeros(Padding); 1831 } 1832 1833 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1834 // Print the fields in successive locations. Pad to align if needed! 1835 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout(); 1836 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1837 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1838 uint64_t SizeSoFar = 0; 1839 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1840 const Constant *Field = CS->getOperand(i); 1841 1842 // Check if padding is needed and insert one or more 0s. 1843 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1844 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1845 - Layout->getElementOffset(i)) - FieldSize; 1846 SizeSoFar += FieldSize + PadSize; 1847 1848 // Now print the actual field value. 1849 emitGlobalConstantImpl(Field, AP); 1850 1851 // Insert padding - this may include padding to increase the size of the 1852 // current field up to the ABI size (if the struct is not packed) as well 1853 // as padding to ensure that the next field starts at the right offset. 1854 AP.OutStreamer.EmitZeros(PadSize); 1855 } 1856 assert(SizeSoFar == Layout->getSizeInBytes() && 1857 "Layout of constant struct may be incorrect!"); 1858 } 1859 1860 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1861 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1862 1863 // First print a comment with what we think the original floating-point value 1864 // should have been. 1865 if (AP.isVerbose()) { 1866 SmallString<8> StrVal; 1867 CFP->getValueAPF().toString(StrVal); 1868 1869 if (CFP->getType()) 1870 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1871 else 1872 AP.OutStreamer.GetCommentOS() << "Printing <null> Type"; 1873 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1874 } 1875 1876 // Now iterate through the APInt chunks, emitting them in endian-correct 1877 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1878 // floats). 1879 unsigned NumBytes = API.getBitWidth() / 8; 1880 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1881 const uint64_t *p = API.getRawData(); 1882 1883 // PPC's long double has odd notions of endianness compared to how LLVM 1884 // handles it: p[0] goes first for *big* endian on PPC. 1885 if (AP.TM.getSubtargetImpl()->getDataLayout()->isBigEndian() && 1886 !CFP->getType()->isPPC_FP128Ty()) { 1887 int Chunk = API.getNumWords() - 1; 1888 1889 if (TrailingBytes) 1890 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1891 1892 for (; Chunk >= 0; --Chunk) 1893 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1894 } else { 1895 unsigned Chunk; 1896 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1897 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1898 1899 if (TrailingBytes) 1900 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1901 } 1902 1903 // Emit the tail padding for the long double. 1904 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1905 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1906 DL.getTypeStoreSize(CFP->getType())); 1907 } 1908 1909 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1910 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout(); 1911 unsigned BitWidth = CI->getBitWidth(); 1912 1913 // Copy the value as we may massage the layout for constants whose bit width 1914 // is not a multiple of 64-bits. 1915 APInt Realigned(CI->getValue()); 1916 uint64_t ExtraBits = 0; 1917 unsigned ExtraBitsSize = BitWidth & 63; 1918 1919 if (ExtraBitsSize) { 1920 // The bit width of the data is not a multiple of 64-bits. 1921 // The extra bits are expected to be at the end of the chunk of the memory. 1922 // Little endian: 1923 // * Nothing to be done, just record the extra bits to emit. 1924 // Big endian: 1925 // * Record the extra bits to emit. 1926 // * Realign the raw data to emit the chunks of 64-bits. 1927 if (DL->isBigEndian()) { 1928 // Basically the structure of the raw data is a chunk of 64-bits cells: 1929 // 0 1 BitWidth / 64 1930 // [chunk1][chunk2] ... [chunkN]. 1931 // The most significant chunk is chunkN and it should be emitted first. 1932 // However, due to the alignment issue chunkN contains useless bits. 1933 // Realign the chunks so that they contain only useless information: 1934 // ExtraBits 0 1 (BitWidth / 64) - 1 1935 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1936 ExtraBits = Realigned.getRawData()[0] & 1937 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1938 Realigned = Realigned.lshr(ExtraBitsSize); 1939 } else 1940 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1941 } 1942 1943 // We don't expect assemblers to support integer data directives 1944 // for more than 64 bits, so we emit the data in at most 64-bit 1945 // quantities at a time. 1946 const uint64_t *RawData = Realigned.getRawData(); 1947 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1948 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1949 AP.OutStreamer.EmitIntValue(Val, 8); 1950 } 1951 1952 if (ExtraBitsSize) { 1953 // Emit the extra bits after the 64-bits chunks. 1954 1955 // Emit a directive that fills the expected size. 1956 uint64_t Size = AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize( 1957 CI->getType()); 1958 Size -= (BitWidth / 64) * 8; 1959 assert(Size && Size * 8 >= ExtraBitsSize && 1960 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1961 == ExtraBits && "Directive too small for extra bits."); 1962 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1963 } 1964 } 1965 1966 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1967 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout(); 1968 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1969 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1970 return AP.OutStreamer.EmitZeros(Size); 1971 1972 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1973 switch (Size) { 1974 case 1: 1975 case 2: 1976 case 4: 1977 case 8: 1978 if (AP.isVerbose()) 1979 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1980 CI->getZExtValue()); 1981 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1982 return; 1983 default: 1984 emitGlobalConstantLargeInt(CI, AP); 1985 return; 1986 } 1987 } 1988 1989 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1990 return emitGlobalConstantFP(CFP, AP); 1991 1992 if (isa<ConstantPointerNull>(CV)) { 1993 AP.OutStreamer.EmitIntValue(0, Size); 1994 return; 1995 } 1996 1997 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1998 return emitGlobalConstantDataSequential(CDS, AP); 1999 2000 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2001 return emitGlobalConstantArray(CVA, AP); 2002 2003 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2004 return emitGlobalConstantStruct(CVS, AP); 2005 2006 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2007 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2008 // vectors). 2009 if (CE->getOpcode() == Instruction::BitCast) 2010 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2011 2012 if (Size > 8) { 2013 // If the constant expression's size is greater than 64-bits, then we have 2014 // to emit the value in chunks. Try to constant fold the value and emit it 2015 // that way. 2016 Constant *New = ConstantFoldConstantExpression(CE, DL); 2017 if (New && New != CE) 2018 return emitGlobalConstantImpl(New, AP); 2019 } 2020 } 2021 2022 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2023 return emitGlobalConstantVector(V, AP); 2024 2025 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2026 // thread the streamer with EmitValue. 2027 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 2028 } 2029 2030 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2031 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2032 uint64_t Size = 2033 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(CV->getType()); 2034 if (Size) 2035 emitGlobalConstantImpl(CV, *this); 2036 else if (MAI->hasSubsectionsViaSymbols()) { 2037 // If the global has zero size, emit a single byte so that two labels don't 2038 // look like they are at the same location. 2039 OutStreamer.EmitIntValue(0, 1); 2040 } 2041 } 2042 2043 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2044 // Target doesn't support this yet! 2045 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2046 } 2047 2048 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2049 if (Offset > 0) 2050 OS << '+' << Offset; 2051 else if (Offset < 0) 2052 OS << Offset; 2053 } 2054 2055 //===----------------------------------------------------------------------===// 2056 // Symbol Lowering Routines. 2057 //===----------------------------------------------------------------------===// 2058 2059 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2060 /// temporary label with the specified stem and unique ID. 2061 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const { 2062 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 2063 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2064 Name + Twine(ID)); 2065 } 2066 2067 /// GetTempSymbol - Return an assembler temporary label with the specified 2068 /// stem. 2069 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const { 2070 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 2071 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2072 Name); 2073 } 2074 2075 2076 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2077 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2078 } 2079 2080 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2081 return MMI->getAddrLabelSymbol(BB); 2082 } 2083 2084 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2085 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2086 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 2087 return OutContext.GetOrCreateSymbol 2088 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2089 + "_" + Twine(CPID)); 2090 } 2091 2092 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2093 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2094 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2095 } 2096 2097 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2098 /// FIXME: privatize to AsmPrinter. 2099 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2100 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 2101 return OutContext.GetOrCreateSymbol 2102 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2103 Twine(UID) + "_set_" + Twine(MBBID)); 2104 } 2105 2106 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2107 StringRef Suffix) const { 2108 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2109 TM); 2110 } 2111 2112 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2113 /// ExternalSymbol. 2114 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2115 SmallString<60> NameStr; 2116 Mang->getNameWithPrefix(NameStr, Sym); 2117 return OutContext.GetOrCreateSymbol(NameStr.str()); 2118 } 2119 2120 2121 2122 /// PrintParentLoopComment - Print comments about parent loops of this one. 2123 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2124 unsigned FunctionNumber) { 2125 if (!Loop) return; 2126 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2127 OS.indent(Loop->getLoopDepth()*2) 2128 << "Parent Loop BB" << FunctionNumber << "_" 2129 << Loop->getHeader()->getNumber() 2130 << " Depth=" << Loop->getLoopDepth() << '\n'; 2131 } 2132 2133 2134 /// PrintChildLoopComment - Print comments about child loops within 2135 /// the loop for this basic block, with nesting. 2136 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2137 unsigned FunctionNumber) { 2138 // Add child loop information 2139 for (const MachineLoop *CL : *Loop) { 2140 OS.indent(CL->getLoopDepth()*2) 2141 << "Child Loop BB" << FunctionNumber << "_" 2142 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2143 << '\n'; 2144 PrintChildLoopComment(OS, CL, FunctionNumber); 2145 } 2146 } 2147 2148 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2149 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2150 const MachineLoopInfo *LI, 2151 const AsmPrinter &AP) { 2152 // Add loop depth information 2153 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2154 if (!Loop) return; 2155 2156 MachineBasicBlock *Header = Loop->getHeader(); 2157 assert(Header && "No header for loop"); 2158 2159 // If this block is not a loop header, just print out what is the loop header 2160 // and return. 2161 if (Header != &MBB) { 2162 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2163 Twine(AP.getFunctionNumber())+"_" + 2164 Twine(Loop->getHeader()->getNumber())+ 2165 " Depth="+Twine(Loop->getLoopDepth())); 2166 return; 2167 } 2168 2169 // Otherwise, it is a loop header. Print out information about child and 2170 // parent loops. 2171 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2172 2173 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2174 2175 OS << "=>"; 2176 OS.indent(Loop->getLoopDepth()*2-2); 2177 2178 OS << "This "; 2179 if (Loop->empty()) 2180 OS << "Inner "; 2181 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2182 2183 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2184 } 2185 2186 2187 /// EmitBasicBlockStart - This method prints the label for the specified 2188 /// MachineBasicBlock, an alignment (if present) and a comment describing 2189 /// it if appropriate. 2190 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2191 // Emit an alignment directive for this block, if needed. 2192 if (unsigned Align = MBB.getAlignment()) 2193 EmitAlignment(Align); 2194 2195 // If the block has its address taken, emit any labels that were used to 2196 // reference the block. It is possible that there is more than one label 2197 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2198 // the references were generated. 2199 if (MBB.hasAddressTaken()) { 2200 const BasicBlock *BB = MBB.getBasicBlock(); 2201 if (isVerbose()) 2202 OutStreamer.AddComment("Block address taken"); 2203 2204 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2205 for (auto *Sym : Symbols) 2206 OutStreamer.EmitLabel(Sym); 2207 } 2208 2209 // Print some verbose block comments. 2210 if (isVerbose()) { 2211 if (const BasicBlock *BB = MBB.getBasicBlock()) 2212 if (BB->hasName()) 2213 OutStreamer.AddComment("%" + BB->getName()); 2214 emitBasicBlockLoopComments(MBB, LI, *this); 2215 } 2216 2217 // Print the main label for the block. 2218 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2219 if (isVerbose()) { 2220 // NOTE: Want this comment at start of line, don't emit with AddComment. 2221 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2222 } 2223 } else { 2224 OutStreamer.EmitLabel(MBB.getSymbol()); 2225 } 2226 } 2227 2228 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2229 bool IsDefinition) const { 2230 MCSymbolAttr Attr = MCSA_Invalid; 2231 2232 switch (Visibility) { 2233 default: break; 2234 case GlobalValue::HiddenVisibility: 2235 if (IsDefinition) 2236 Attr = MAI->getHiddenVisibilityAttr(); 2237 else 2238 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2239 break; 2240 case GlobalValue::ProtectedVisibility: 2241 Attr = MAI->getProtectedVisibilityAttr(); 2242 break; 2243 } 2244 2245 if (Attr != MCSA_Invalid) 2246 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2247 } 2248 2249 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2250 /// exactly one predecessor and the control transfer mechanism between 2251 /// the predecessor and this block is a fall-through. 2252 bool AsmPrinter:: 2253 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2254 // If this is a landing pad, it isn't a fall through. If it has no preds, 2255 // then nothing falls through to it. 2256 if (MBB->isLandingPad() || MBB->pred_empty()) 2257 return false; 2258 2259 // If there isn't exactly one predecessor, it can't be a fall through. 2260 if (MBB->pred_size() > 1) 2261 return false; 2262 2263 // The predecessor has to be immediately before this block. 2264 MachineBasicBlock *Pred = *MBB->pred_begin(); 2265 if (!Pred->isLayoutSuccessor(MBB)) 2266 return false; 2267 2268 // If the block is completely empty, then it definitely does fall through. 2269 if (Pred->empty()) 2270 return true; 2271 2272 // Check the terminators in the previous blocks 2273 for (const auto &MI : Pred->terminators()) { 2274 // If it is not a simple branch, we are in a table somewhere. 2275 if (!MI.isBranch() || MI.isIndirectBranch()) 2276 return false; 2277 2278 // If we are the operands of one of the branches, this is not a fall 2279 // through. Note that targets with delay slots will usually bundle 2280 // terminators with the delay slot instruction. 2281 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2282 if (OP->isJTI()) 2283 return false; 2284 if (OP->isMBB() && OP->getMBB() == MBB) 2285 return false; 2286 } 2287 } 2288 2289 return true; 2290 } 2291 2292 2293 2294 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2295 if (!S.usesMetadata()) 2296 return nullptr; 2297 2298 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2299 gcp_map_type::iterator GCPI = GCMap.find(&S); 2300 if (GCPI != GCMap.end()) 2301 return GCPI->second.get(); 2302 2303 const char *Name = S.getName().c_str(); 2304 2305 for (GCMetadataPrinterRegistry::iterator 2306 I = GCMetadataPrinterRegistry::begin(), 2307 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2308 if (strcmp(Name, I->getName()) == 0) { 2309 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2310 GMP->S = &S; 2311 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2312 return IterBool.first->second.get(); 2313 } 2314 2315 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2316 } 2317 2318 /// Pin vtable to this file. 2319 AsmPrinterHandler::~AsmPrinterHandler() {} 2320