1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "CodeViewDebug.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "WinException.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/GCMetadataPrinter.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCContext.h"
37 #include "llvm/MC/MCExpr.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCSection.h"
40 #include "llvm/MC/MCStreamer.h"
41 #include "llvm/MC/MCSymbolELF.h"
42 #include "llvm/MC/MCValue.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/Format.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetRegisterInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "asm-printer"
57 
58 static const char *const DWARFGroupName = "DWARF Emission";
59 static const char *const DbgTimerName = "Debug Info Emission";
60 static const char *const EHTimerName = "DWARF Exception Writer";
61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
62 
63 STATISTIC(EmittedInsts, "Number of machine instrs printed");
64 
65 char AsmPrinter::ID = 0;
66 
67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
68 static gcp_map_type &getGCMap(void *&P) {
69   if (!P)
70     P = new gcp_map_type();
71   return *(gcp_map_type*)P;
72 }
73 
74 
75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
76 /// value in log2 form.  This rounds up to the preferred alignment if possible
77 /// and legal.
78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
79                                    unsigned InBits = 0) {
80   unsigned NumBits = 0;
81   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
82     NumBits = DL.getPreferredAlignmentLog(GVar);
83 
84   // If InBits is specified, round it to it.
85   if (InBits > NumBits)
86     NumBits = InBits;
87 
88   // If the GV has a specified alignment, take it into account.
89   if (GV->getAlignment() == 0)
90     return NumBits;
91 
92   unsigned GVAlign = Log2_32(GV->getAlignment());
93 
94   // If the GVAlign is larger than NumBits, or if we are required to obey
95   // NumBits because the GV has an assigned section, obey it.
96   if (GVAlign > NumBits || GV->hasSection())
97     NumBits = GVAlign;
98   return NumBits;
99 }
100 
101 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
102     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
103       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
104       LastMI(nullptr), LastFn(0), Counter(~0U) {
105   DD = nullptr;
106   MMI = nullptr;
107   LI = nullptr;
108   MF = nullptr;
109   CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr;
110   CurrentFnBegin = nullptr;
111   CurrentFnEnd = nullptr;
112   GCMetadataPrinters = nullptr;
113   VerboseAsm = OutStreamer->isVerboseAsm();
114 }
115 
116 AsmPrinter::~AsmPrinter() {
117   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
118 
119   if (GCMetadataPrinters) {
120     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
121 
122     delete &GCMap;
123     GCMetadataPrinters = nullptr;
124   }
125 }
126 
127 bool AsmPrinter::isPositionIndependent() const {
128   return TM.isPositionIndependent();
129 }
130 
131 /// getFunctionNumber - Return a unique ID for the current function.
132 ///
133 unsigned AsmPrinter::getFunctionNumber() const {
134   return MF->getFunctionNumber();
135 }
136 
137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
138   return *TM.getObjFileLowering();
139 }
140 
141 const DataLayout &AsmPrinter::getDataLayout() const {
142   return MMI->getModule()->getDataLayout();
143 }
144 
145 // Do not use the cached DataLayout because some client use it without a Module
146 // (llvm-dsymutil, llvm-dwarfdump).
147 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
148 
149 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
150   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
151   return MF->getSubtarget<MCSubtargetInfo>();
152 }
153 
154 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
155   S.EmitInstruction(Inst, getSubtargetInfo());
156 }
157 
158 /// getCurrentSection() - Return the current section we are emitting to.
159 const MCSection *AsmPrinter::getCurrentSection() const {
160   return OutStreamer->getCurrentSectionOnly();
161 }
162 
163 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
164   AU.setPreservesAll();
165   MachineFunctionPass::getAnalysisUsage(AU);
166   AU.addRequired<MachineModuleInfo>();
167   AU.addRequired<GCModuleInfo>();
168   if (isVerbose())
169     AU.addRequired<MachineLoopInfo>();
170 }
171 
172 bool AsmPrinter::doInitialization(Module &M) {
173   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
174 
175   // Initialize TargetLoweringObjectFile.
176   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
177     .Initialize(OutContext, TM);
178 
179   OutStreamer->InitSections(false);
180 
181   // Emit the version-min deplyment target directive if needed.
182   //
183   // FIXME: If we end up with a collection of these sorts of Darwin-specific
184   // or ELF-specific things, it may make sense to have a platform helper class
185   // that will work with the target helper class. For now keep it here, as the
186   // alternative is duplicated code in each of the target asm printers that
187   // use the directive, where it would need the same conditionalization
188   // anyway.
189   const Triple &TT = TM.getTargetTriple();
190   // If there is a version specified, Major will be non-zero.
191   if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
192     unsigned Major, Minor, Update;
193     MCVersionMinType VersionType;
194     if (TT.isWatchOS()) {
195       VersionType = MCVM_WatchOSVersionMin;
196       TT.getWatchOSVersion(Major, Minor, Update);
197     } else if (TT.isTvOS()) {
198       VersionType = MCVM_TvOSVersionMin;
199       TT.getiOSVersion(Major, Minor, Update);
200     } else if (TT.isMacOSX()) {
201       VersionType = MCVM_OSXVersionMin;
202       if (!TT.getMacOSXVersion(Major, Minor, Update))
203         Major = 0;
204     } else {
205       VersionType = MCVM_IOSVersionMin;
206       TT.getiOSVersion(Major, Minor, Update);
207     }
208     if (Major != 0)
209       OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
210   }
211 
212   // Allow the target to emit any magic that it wants at the start of the file.
213   EmitStartOfAsmFile(M);
214 
215   // Very minimal debug info. It is ignored if we emit actual debug info. If we
216   // don't, this at least helps the user find where a global came from.
217   if (MAI->hasSingleParameterDotFile()) {
218     // .file "foo.c"
219     OutStreamer->EmitFileDirective(M.getModuleIdentifier());
220   }
221 
222   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
223   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
224   for (auto &I : *MI)
225     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
226       MP->beginAssembly(M, *MI, *this);
227 
228   // Emit module-level inline asm if it exists.
229   if (!M.getModuleInlineAsm().empty()) {
230     // We're at the module level. Construct MCSubtarget from the default CPU
231     // and target triple.
232     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
233         TM.getTargetTriple().str(), TM.getTargetCPU(),
234         TM.getTargetFeatureString()));
235     OutStreamer->AddComment("Start of file scope inline assembly");
236     OutStreamer->AddBlankLine();
237     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
238                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
239     OutStreamer->AddComment("End of file scope inline assembly");
240     OutStreamer->AddBlankLine();
241   }
242 
243   if (MAI->doesSupportDebugInformation()) {
244     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
245     if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) {
246       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
247                                      DbgTimerName,
248                                      CodeViewLineTablesGroupName));
249     }
250     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
251       DD = new DwarfDebug(this, &M);
252       DD->beginModule();
253       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
254     }
255   }
256 
257   EHStreamer *ES = nullptr;
258   switch (MAI->getExceptionHandlingType()) {
259   case ExceptionHandling::None:
260     break;
261   case ExceptionHandling::SjLj:
262   case ExceptionHandling::DwarfCFI:
263     ES = new DwarfCFIException(this);
264     break;
265   case ExceptionHandling::ARM:
266     ES = new ARMException(this);
267     break;
268   case ExceptionHandling::WinEH:
269     switch (MAI->getWinEHEncodingType()) {
270     default: llvm_unreachable("unsupported unwinding information encoding");
271     case WinEH::EncodingType::Invalid:
272       break;
273     case WinEH::EncodingType::X86:
274     case WinEH::EncodingType::Itanium:
275       ES = new WinException(this);
276       break;
277     }
278     break;
279   }
280   if (ES)
281     Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
282   return false;
283 }
284 
285 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
286   if (!MAI.hasWeakDefCanBeHiddenDirective())
287     return false;
288 
289   return canBeOmittedFromSymbolTable(GV);
290 }
291 
292 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
293   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
294   switch (Linkage) {
295   case GlobalValue::CommonLinkage:
296   case GlobalValue::LinkOnceAnyLinkage:
297   case GlobalValue::LinkOnceODRLinkage:
298   case GlobalValue::WeakAnyLinkage:
299   case GlobalValue::WeakODRLinkage:
300     if (MAI->hasWeakDefDirective()) {
301       // .globl _foo
302       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
303 
304       if (!canBeHidden(GV, *MAI))
305         // .weak_definition _foo
306         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
307       else
308         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
309     } else if (MAI->hasLinkOnceDirective()) {
310       // .globl _foo
311       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
312       //NOTE: linkonce is handled by the section the symbol was assigned to.
313     } else {
314       // .weak _foo
315       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
316     }
317     return;
318   case GlobalValue::ExternalLinkage:
319     // If external, declare as a global symbol: .globl _foo
320     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
321     return;
322   case GlobalValue::PrivateLinkage:
323   case GlobalValue::InternalLinkage:
324     return;
325   case GlobalValue::AppendingLinkage:
326   case GlobalValue::AvailableExternallyLinkage:
327   case GlobalValue::ExternalWeakLinkage:
328     llvm_unreachable("Should never emit this");
329   }
330   llvm_unreachable("Unknown linkage type!");
331 }
332 
333 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
334                                    const GlobalValue *GV) const {
335   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
336 }
337 
338 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
339   return TM.getSymbol(GV, getObjFileLowering().getMangler());
340 }
341 
342 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
343 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
344   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
345   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
346          "No emulated TLS variables in the common section");
347 
348   // Never emit TLS variable xyz in emulated TLS model.
349   // The initialization value is in __emutls_t.xyz instead of xyz.
350   if (IsEmuTLSVar)
351     return;
352 
353   if (GV->hasInitializer()) {
354     // Check to see if this is a special global used by LLVM, if so, emit it.
355     if (EmitSpecialLLVMGlobal(GV))
356       return;
357 
358     // Skip the emission of global equivalents. The symbol can be emitted later
359     // on by emitGlobalGOTEquivs in case it turns out to be needed.
360     if (GlobalGOTEquivs.count(getSymbol(GV)))
361       return;
362 
363     if (isVerbose()) {
364       // When printing the control variable __emutls_v.*,
365       // we don't need to print the original TLS variable name.
366       GV->printAsOperand(OutStreamer->GetCommentOS(),
367                      /*PrintType=*/false, GV->getParent());
368       OutStreamer->GetCommentOS() << '\n';
369     }
370   }
371 
372   MCSymbol *GVSym = getSymbol(GV);
373   MCSymbol *EmittedSym = GVSym;
374 
375   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
376   // attributes.
377   // GV's or GVSym's attributes will be used for the EmittedSym.
378   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
379 
380   if (!GV->hasInitializer())   // External globals require no extra code.
381     return;
382 
383   GVSym->redefineIfPossible();
384   if (GVSym->isDefined() || GVSym->isVariable())
385     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
386                        "' is already defined");
387 
388   if (MAI->hasDotTypeDotSizeDirective())
389     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
390 
391   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
392 
393   const DataLayout &DL = GV->getParent()->getDataLayout();
394   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
395 
396   // If the alignment is specified, we *must* obey it.  Overaligning a global
397   // with a specified alignment is a prompt way to break globals emitted to
398   // sections and expected to be contiguous (e.g. ObjC metadata).
399   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
400 
401   for (const HandlerInfo &HI : Handlers) {
402     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
403     HI.Handler->setSymbolSize(GVSym, Size);
404   }
405 
406   // Handle common symbols
407   if (GVKind.isCommon()) {
408     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
409     unsigned Align = 1 << AlignLog;
410     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
411       Align = 0;
412 
413     // .comm _foo, 42, 4
414     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
415     return;
416   }
417 
418   // Determine to which section this global should be emitted.
419   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
420 
421   // If we have a bss global going to a section that supports the
422   // zerofill directive, do so here.
423   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
424       TheSection->isVirtualSection()) {
425     if (Size == 0)
426       Size = 1; // zerofill of 0 bytes is undefined.
427     unsigned Align = 1 << AlignLog;
428     EmitLinkage(GV, GVSym);
429     // .zerofill __DATA, __bss, _foo, 400, 5
430     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
431     return;
432   }
433 
434   // If this is a BSS local symbol and we are emitting in the BSS
435   // section use .lcomm/.comm directive.
436   if (GVKind.isBSSLocal() &&
437       getObjFileLowering().getBSSSection() == TheSection) {
438     if (Size == 0)
439       Size = 1; // .comm Foo, 0 is undefined, avoid it.
440     unsigned Align = 1 << AlignLog;
441 
442     // Use .lcomm only if it supports user-specified alignment.
443     // Otherwise, while it would still be correct to use .lcomm in some
444     // cases (e.g. when Align == 1), the external assembler might enfore
445     // some -unknown- default alignment behavior, which could cause
446     // spurious differences between external and integrated assembler.
447     // Prefer to simply fall back to .local / .comm in this case.
448     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
449       // .lcomm _foo, 42
450       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
451       return;
452     }
453 
454     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
455       Align = 0;
456 
457     // .local _foo
458     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
459     // .comm _foo, 42, 4
460     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
461     return;
462   }
463 
464   // Handle thread local data for mach-o which requires us to output an
465   // additional structure of data and mangle the original symbol so that we
466   // can reference it later.
467   //
468   // TODO: This should become an "emit thread local global" method on TLOF.
469   // All of this macho specific stuff should be sunk down into TLOFMachO and
470   // stuff like "TLSExtraDataSection" should no longer be part of the parent
471   // TLOF class.  This will also make it more obvious that stuff like
472   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
473   // specific code.
474   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
475     // Emit the .tbss symbol
476     MCSymbol *MangSym =
477         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
478 
479     if (GVKind.isThreadBSS()) {
480       TheSection = getObjFileLowering().getTLSBSSSection();
481       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
482     } else if (GVKind.isThreadData()) {
483       OutStreamer->SwitchSection(TheSection);
484 
485       EmitAlignment(AlignLog, GV);
486       OutStreamer->EmitLabel(MangSym);
487 
488       EmitGlobalConstant(GV->getParent()->getDataLayout(),
489                          GV->getInitializer());
490     }
491 
492     OutStreamer->AddBlankLine();
493 
494     // Emit the variable struct for the runtime.
495     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
496 
497     OutStreamer->SwitchSection(TLVSect);
498     // Emit the linkage here.
499     EmitLinkage(GV, GVSym);
500     OutStreamer->EmitLabel(GVSym);
501 
502     // Three pointers in size:
503     //   - __tlv_bootstrap - used to make sure support exists
504     //   - spare pointer, used when mapped by the runtime
505     //   - pointer to mangled symbol above with initializer
506     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
507     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
508                                 PtrSize);
509     OutStreamer->EmitIntValue(0, PtrSize);
510     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
511 
512     OutStreamer->AddBlankLine();
513     return;
514   }
515 
516   MCSymbol *EmittedInitSym = GVSym;
517 
518   OutStreamer->SwitchSection(TheSection);
519 
520   EmitLinkage(GV, EmittedInitSym);
521   EmitAlignment(AlignLog, GV);
522 
523   OutStreamer->EmitLabel(EmittedInitSym);
524 
525   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
526 
527   if (MAI->hasDotTypeDotSizeDirective())
528     // .size foo, 42
529     OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym),
530                              MCConstantExpr::create(Size, OutContext));
531 
532   OutStreamer->AddBlankLine();
533 }
534 
535 /// EmitFunctionHeader - This method emits the header for the current
536 /// function.
537 void AsmPrinter::EmitFunctionHeader() {
538   // Print out constants referenced by the function
539   EmitConstantPool();
540 
541   // Print the 'header' of function.
542   const Function *F = MF->getFunction();
543 
544   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
545   EmitVisibility(CurrentFnSym, F->getVisibility());
546 
547   EmitLinkage(F, CurrentFnSym);
548   if (MAI->hasFunctionAlignment())
549     EmitAlignment(MF->getAlignment(), F);
550 
551   if (MAI->hasDotTypeDotSizeDirective())
552     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
553 
554   if (isVerbose()) {
555     F->printAsOperand(OutStreamer->GetCommentOS(),
556                    /*PrintType=*/false, F->getParent());
557     OutStreamer->GetCommentOS() << '\n';
558   }
559 
560   // Emit the prefix data.
561   if (F->hasPrefixData())
562     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
563 
564   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
565   // do their wild and crazy things as required.
566   EmitFunctionEntryLabel();
567 
568   // If the function had address-taken blocks that got deleted, then we have
569   // references to the dangling symbols.  Emit them at the start of the function
570   // so that we don't get references to undefined symbols.
571   std::vector<MCSymbol*> DeadBlockSyms;
572   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
573   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
574     OutStreamer->AddComment("Address taken block that was later removed");
575     OutStreamer->EmitLabel(DeadBlockSyms[i]);
576   }
577 
578   if (CurrentFnBegin) {
579     if (MAI->useAssignmentForEHBegin()) {
580       MCSymbol *CurPos = OutContext.createTempSymbol();
581       OutStreamer->EmitLabel(CurPos);
582       OutStreamer->EmitAssignment(CurrentFnBegin,
583                                  MCSymbolRefExpr::create(CurPos, OutContext));
584     } else {
585       OutStreamer->EmitLabel(CurrentFnBegin);
586     }
587   }
588 
589   // Emit pre-function debug and/or EH information.
590   for (const HandlerInfo &HI : Handlers) {
591     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
592     HI.Handler->beginFunction(MF);
593   }
594 
595   // Emit the prologue data.
596   if (F->hasPrologueData())
597     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
598 }
599 
600 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
601 /// function.  This can be overridden by targets as required to do custom stuff.
602 void AsmPrinter::EmitFunctionEntryLabel() {
603   CurrentFnSym->redefineIfPossible();
604 
605   // The function label could have already been emitted if two symbols end up
606   // conflicting due to asm renaming.  Detect this and emit an error.
607   if (CurrentFnSym->isVariable())
608     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
609                        "' is a protected alias");
610   if (CurrentFnSym->isDefined())
611     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
612                        "' label emitted multiple times to assembly file");
613 
614   return OutStreamer->EmitLabel(CurrentFnSym);
615 }
616 
617 /// emitComments - Pretty-print comments for instructions.
618 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
619   const MachineFunction *MF = MI.getParent()->getParent();
620   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
621 
622   // Check for spills and reloads
623   int FI;
624 
625   const MachineFrameInfo &MFI = MF->getFrameInfo();
626 
627   // We assume a single instruction only has a spill or reload, not
628   // both.
629   const MachineMemOperand *MMO;
630   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
631     if (MFI.isSpillSlotObjectIndex(FI)) {
632       MMO = *MI.memoperands_begin();
633       CommentOS << MMO->getSize() << "-byte Reload\n";
634     }
635   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
636     if (MFI.isSpillSlotObjectIndex(FI))
637       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
638   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
639     if (MFI.isSpillSlotObjectIndex(FI)) {
640       MMO = *MI.memoperands_begin();
641       CommentOS << MMO->getSize() << "-byte Spill\n";
642     }
643   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
644     if (MFI.isSpillSlotObjectIndex(FI))
645       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
646   }
647 
648   // Check for spill-induced copies
649   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
650     CommentOS << " Reload Reuse\n";
651 }
652 
653 /// emitImplicitDef - This method emits the specified machine instruction
654 /// that is an implicit def.
655 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
656   unsigned RegNo = MI->getOperand(0).getReg();
657 
658   SmallString<128> Str;
659   raw_svector_ostream OS(Str);
660   OS << "implicit-def: "
661      << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
662 
663   OutStreamer->AddComment(OS.str());
664   OutStreamer->AddBlankLine();
665 }
666 
667 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
668   std::string Str;
669   raw_string_ostream OS(Str);
670   OS << "kill:";
671   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
672     const MachineOperand &Op = MI->getOperand(i);
673     assert(Op.isReg() && "KILL instruction must have only register operands");
674     OS << ' '
675        << PrintReg(Op.getReg(),
676                    AP.MF->getSubtarget().getRegisterInfo())
677        << (Op.isDef() ? "<def>" : "<kill>");
678   }
679   AP.OutStreamer->AddComment(OS.str());
680   AP.OutStreamer->AddBlankLine();
681 }
682 
683 /// emitDebugValueComment - This method handles the target-independent form
684 /// of DBG_VALUE, returning true if it was able to do so.  A false return
685 /// means the target will need to handle MI in EmitInstruction.
686 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
687   // This code handles only the 4-operand target-independent form.
688   if (MI->getNumOperands() != 4)
689     return false;
690 
691   SmallString<128> Str;
692   raw_svector_ostream OS(Str);
693   OS << "DEBUG_VALUE: ";
694 
695   const DILocalVariable *V = MI->getDebugVariable();
696   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
697     StringRef Name = SP->getDisplayName();
698     if (!Name.empty())
699       OS << Name << ":";
700   }
701   OS << V->getName();
702 
703   const DIExpression *Expr = MI->getDebugExpression();
704   if (Expr->isBitPiece())
705     OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
706        << " size=" << Expr->getBitPieceSize() << "]";
707   OS << " <- ";
708 
709   // The second operand is only an offset if it's an immediate.
710   bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
711   int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
712 
713   for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
714     uint64_t Op = Expr->getElement(i);
715     if (Op == dwarf::DW_OP_bit_piece) {
716       // There can't be any operands after this in a valid expression
717       break;
718     } else if (Deref) {
719       // We currently don't support extra Offsets or derefs after the first
720       // one. Bail out early instead of emitting an incorrect comment
721       OS << " [complex expression]";
722       AP.OutStreamer->emitRawComment(OS.str());
723       return true;
724     } else if (Op == dwarf::DW_OP_deref) {
725       Deref = true;
726       continue;
727     }
728 
729     uint64_t ExtraOffset = Expr->getElement(i++);
730     if (Op == dwarf::DW_OP_plus)
731       Offset += ExtraOffset;
732     else {
733       assert(Op == dwarf::DW_OP_minus);
734       Offset -= ExtraOffset;
735     }
736   }
737 
738   // Register or immediate value. Register 0 means undef.
739   if (MI->getOperand(0).isFPImm()) {
740     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
741     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
742       OS << (double)APF.convertToFloat();
743     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
744       OS << APF.convertToDouble();
745     } else {
746       // There is no good way to print long double.  Convert a copy to
747       // double.  Ah well, it's only a comment.
748       bool ignored;
749       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
750                   &ignored);
751       OS << "(long double) " << APF.convertToDouble();
752     }
753   } else if (MI->getOperand(0).isImm()) {
754     OS << MI->getOperand(0).getImm();
755   } else if (MI->getOperand(0).isCImm()) {
756     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
757   } else {
758     unsigned Reg;
759     if (MI->getOperand(0).isReg()) {
760       Reg = MI->getOperand(0).getReg();
761     } else {
762       assert(MI->getOperand(0).isFI() && "Unknown operand type");
763       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
764       Offset += TFI->getFrameIndexReference(*AP.MF,
765                                             MI->getOperand(0).getIndex(), Reg);
766       Deref = true;
767     }
768     if (Reg == 0) {
769       // Suppress offset, it is not meaningful here.
770       OS << "undef";
771       // NOTE: Want this comment at start of line, don't emit with AddComment.
772       AP.OutStreamer->emitRawComment(OS.str());
773       return true;
774     }
775     if (Deref)
776       OS << '[';
777     OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
778   }
779 
780   if (Deref)
781     OS << '+' << Offset << ']';
782 
783   // NOTE: Want this comment at start of line, don't emit with AddComment.
784   AP.OutStreamer->emitRawComment(OS.str());
785   return true;
786 }
787 
788 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
789   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
790       MF->getFunction()->needsUnwindTableEntry())
791     return CFI_M_EH;
792 
793   if (MMI->hasDebugInfo())
794     return CFI_M_Debug;
795 
796   return CFI_M_None;
797 }
798 
799 bool AsmPrinter::needsSEHMoves() {
800   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
801 }
802 
803 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
804   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
805   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
806       ExceptionHandlingType != ExceptionHandling::ARM)
807     return;
808 
809   if (needsCFIMoves() == CFI_M_None)
810     return;
811 
812   const MachineModuleInfo &MMI = MF->getMMI();
813   const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
814   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
815   const MCCFIInstruction &CFI = Instrs[CFIIndex];
816   emitCFIInstruction(CFI);
817 }
818 
819 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
820   // The operands are the MCSymbol and the frame offset of the allocation.
821   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
822   int FrameOffset = MI.getOperand(1).getImm();
823 
824   // Emit a symbol assignment.
825   OutStreamer->EmitAssignment(FrameAllocSym,
826                              MCConstantExpr::create(FrameOffset, OutContext));
827 }
828 
829 /// EmitFunctionBody - This method emits the body and trailer for a
830 /// function.
831 void AsmPrinter::EmitFunctionBody() {
832   EmitFunctionHeader();
833 
834   // Emit target-specific gunk before the function body.
835   EmitFunctionBodyStart();
836 
837   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
838 
839   // Print out code for the function.
840   bool HasAnyRealCode = false;
841   for (auto &MBB : *MF) {
842     // Print a label for the basic block.
843     EmitBasicBlockStart(MBB);
844     for (auto &MI : MBB) {
845 
846       // Print the assembly for the instruction.
847       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
848           !MI.isDebugValue()) {
849         HasAnyRealCode = true;
850         ++EmittedInsts;
851       }
852 
853       if (ShouldPrintDebugScopes) {
854         for (const HandlerInfo &HI : Handlers) {
855           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
856                              TimePassesIsEnabled);
857           HI.Handler->beginInstruction(&MI);
858         }
859       }
860 
861       if (isVerbose())
862         emitComments(MI, OutStreamer->GetCommentOS());
863 
864       switch (MI.getOpcode()) {
865       case TargetOpcode::CFI_INSTRUCTION:
866         emitCFIInstruction(MI);
867         break;
868 
869       case TargetOpcode::LOCAL_ESCAPE:
870         emitFrameAlloc(MI);
871         break;
872 
873       case TargetOpcode::EH_LABEL:
874       case TargetOpcode::GC_LABEL:
875         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
876         break;
877       case TargetOpcode::INLINEASM:
878         EmitInlineAsm(&MI);
879         break;
880       case TargetOpcode::DBG_VALUE:
881         if (isVerbose()) {
882           if (!emitDebugValueComment(&MI, *this))
883             EmitInstruction(&MI);
884         }
885         break;
886       case TargetOpcode::IMPLICIT_DEF:
887         if (isVerbose()) emitImplicitDef(&MI);
888         break;
889       case TargetOpcode::KILL:
890         if (isVerbose()) emitKill(&MI, *this);
891         break;
892       default:
893         EmitInstruction(&MI);
894         break;
895       }
896 
897       if (ShouldPrintDebugScopes) {
898         for (const HandlerInfo &HI : Handlers) {
899           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
900                              TimePassesIsEnabled);
901           HI.Handler->endInstruction();
902         }
903       }
904     }
905 
906     EmitBasicBlockEnd(MBB);
907   }
908 
909   // If the function is empty and the object file uses .subsections_via_symbols,
910   // then we need to emit *something* to the function body to prevent the
911   // labels from collapsing together.  Just emit a noop.
912   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
913     MCInst Noop;
914     MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
915     OutStreamer->AddComment("avoids zero-length function");
916 
917     // Targets can opt-out of emitting the noop here by leaving the opcode
918     // unspecified.
919     if (Noop.getOpcode())
920       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
921   }
922 
923   const Function *F = MF->getFunction();
924   for (const auto &BB : *F) {
925     if (!BB.hasAddressTaken())
926       continue;
927     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
928     if (Sym->isDefined())
929       continue;
930     OutStreamer->AddComment("Address of block that was removed by CodeGen");
931     OutStreamer->EmitLabel(Sym);
932   }
933 
934   // Emit target-specific gunk after the function body.
935   EmitFunctionBodyEnd();
936 
937   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
938       MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
939     // Create a symbol for the end of function.
940     CurrentFnEnd = createTempSymbol("func_end");
941     OutStreamer->EmitLabel(CurrentFnEnd);
942   }
943 
944   // If the target wants a .size directive for the size of the function, emit
945   // it.
946   if (MAI->hasDotTypeDotSizeDirective()) {
947     // We can get the size as difference between the function label and the
948     // temp label.
949     const MCExpr *SizeExp = MCBinaryExpr::createSub(
950         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
951         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
952     if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym))
953       OutStreamer->emitELFSize(Sym, SizeExp);
954   }
955 
956   for (const HandlerInfo &HI : Handlers) {
957     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
958     HI.Handler->markFunctionEnd();
959   }
960 
961   // Print out jump tables referenced by the function.
962   EmitJumpTableInfo();
963 
964   // Emit post-function debug and/or EH information.
965   for (const HandlerInfo &HI : Handlers) {
966     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
967     HI.Handler->endFunction(MF);
968   }
969   MMI->EndFunction();
970 
971   OutStreamer->AddBlankLine();
972 }
973 
974 /// \brief Compute the number of Global Variables that uses a Constant.
975 static unsigned getNumGlobalVariableUses(const Constant *C) {
976   if (!C)
977     return 0;
978 
979   if (isa<GlobalVariable>(C))
980     return 1;
981 
982   unsigned NumUses = 0;
983   for (auto *CU : C->users())
984     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
985 
986   return NumUses;
987 }
988 
989 /// \brief Only consider global GOT equivalents if at least one user is a
990 /// cstexpr inside an initializer of another global variables. Also, don't
991 /// handle cstexpr inside instructions. During global variable emission,
992 /// candidates are skipped and are emitted later in case at least one cstexpr
993 /// isn't replaced by a PC relative GOT entry access.
994 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
995                                      unsigned &NumGOTEquivUsers) {
996   // Global GOT equivalents are unnamed private globals with a constant
997   // pointer initializer to another global symbol. They must point to a
998   // GlobalVariable or Function, i.e., as GlobalValue.
999   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1000       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1001       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1002     return false;
1003 
1004   // To be a got equivalent, at least one of its users need to be a constant
1005   // expression used by another global variable.
1006   for (auto *U : GV->users())
1007     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1008 
1009   return NumGOTEquivUsers > 0;
1010 }
1011 
1012 /// \brief Unnamed constant global variables solely contaning a pointer to
1013 /// another globals variable is equivalent to a GOT table entry; it contains the
1014 /// the address of another symbol. Optimize it and replace accesses to these
1015 /// "GOT equivalents" by using the GOT entry for the final global instead.
1016 /// Compute GOT equivalent candidates among all global variables to avoid
1017 /// emitting them if possible later on, after it use is replaced by a GOT entry
1018 /// access.
1019 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1020   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1021     return;
1022 
1023   for (const auto &G : M.globals()) {
1024     unsigned NumGOTEquivUsers = 0;
1025     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1026       continue;
1027 
1028     const MCSymbol *GOTEquivSym = getSymbol(&G);
1029     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1030   }
1031 }
1032 
1033 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1034 /// for PC relative GOT entry conversion, in such cases we need to emit such
1035 /// globals we previously omitted in EmitGlobalVariable.
1036 void AsmPrinter::emitGlobalGOTEquivs() {
1037   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1038     return;
1039 
1040   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1041   for (auto &I : GlobalGOTEquivs) {
1042     const GlobalVariable *GV = I.second.first;
1043     unsigned Cnt = I.second.second;
1044     if (Cnt)
1045       FailedCandidates.push_back(GV);
1046   }
1047   GlobalGOTEquivs.clear();
1048 
1049   for (auto *GV : FailedCandidates)
1050     EmitGlobalVariable(GV);
1051 }
1052 
1053 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1054                                           const GlobalIndirectSymbol& GIS) {
1055   MCSymbol *Name = getSymbol(&GIS);
1056 
1057   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1058     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1059   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1060     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1061   else
1062     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1063 
1064   // Set the symbol type to function if the alias has a function type.
1065   // This affects codegen when the aliasee is not a function.
1066   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1067     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1068     if (isa<GlobalIFunc>(GIS))
1069       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1070   }
1071 
1072   EmitVisibility(Name, GIS.getVisibility());
1073 
1074   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1075 
1076   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1077     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1078 
1079   // Emit the directives as assignments aka .set:
1080   OutStreamer->EmitAssignment(Name, Expr);
1081 
1082   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1083     // If the aliasee does not correspond to a symbol in the output, i.e. the
1084     // alias is not of an object or the aliased object is private, then set the
1085     // size of the alias symbol from the type of the alias. We don't do this in
1086     // other situations as the alias and aliasee having differing types but same
1087     // size may be intentional.
1088     const GlobalObject *BaseObject = GA->getBaseObject();
1089     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1090         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1091       const DataLayout &DL = M.getDataLayout();
1092       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1093       OutStreamer->emitELFSize(cast<MCSymbolELF>(Name),
1094                                MCConstantExpr::create(Size, OutContext));
1095     }
1096   }
1097 }
1098 
1099 bool AsmPrinter::doFinalization(Module &M) {
1100   // Set the MachineFunction to nullptr so that we can catch attempted
1101   // accesses to MF specific features at the module level and so that
1102   // we can conditionalize accesses based on whether or not it is nullptr.
1103   MF = nullptr;
1104 
1105   // Gather all GOT equivalent globals in the module. We really need two
1106   // passes over the globals: one to compute and another to avoid its emission
1107   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1108   // where the got equivalent shows up before its use.
1109   computeGlobalGOTEquivs(M);
1110 
1111   // Emit global variables.
1112   for (const auto &G : M.globals())
1113     EmitGlobalVariable(&G);
1114 
1115   // Emit remaining GOT equivalent globals.
1116   emitGlobalGOTEquivs();
1117 
1118   // Emit visibility info for declarations
1119   for (const Function &F : M) {
1120     if (!F.isDeclarationForLinker())
1121       continue;
1122     GlobalValue::VisibilityTypes V = F.getVisibility();
1123     if (V == GlobalValue::DefaultVisibility)
1124       continue;
1125 
1126     MCSymbol *Name = getSymbol(&F);
1127     EmitVisibility(Name, V, false);
1128   }
1129 
1130   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1131 
1132   // Emit module flags.
1133   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1134   M.getModuleFlagsMetadata(ModuleFlags);
1135   if (!ModuleFlags.empty())
1136     TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM);
1137 
1138   if (TM.getTargetTriple().isOSBinFormatELF()) {
1139     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1140 
1141     // Output stubs for external and common global variables.
1142     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1143     if (!Stubs.empty()) {
1144       OutStreamer->SwitchSection(TLOF.getDataSection());
1145       const DataLayout &DL = M.getDataLayout();
1146 
1147       for (const auto &Stub : Stubs) {
1148         OutStreamer->EmitLabel(Stub.first);
1149         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1150                                      DL.getPointerSize());
1151       }
1152     }
1153   }
1154 
1155   // Finalize debug and EH information.
1156   for (const HandlerInfo &HI : Handlers) {
1157     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
1158                        TimePassesIsEnabled);
1159     HI.Handler->endModule();
1160     delete HI.Handler;
1161   }
1162   Handlers.clear();
1163   DD = nullptr;
1164 
1165   // If the target wants to know about weak references, print them all.
1166   if (MAI->getWeakRefDirective()) {
1167     // FIXME: This is not lazy, it would be nice to only print weak references
1168     // to stuff that is actually used.  Note that doing so would require targets
1169     // to notice uses in operands (due to constant exprs etc).  This should
1170     // happen with the MC stuff eventually.
1171 
1172     // Print out module-level global objects here.
1173     for (const auto &GO : M.global_objects()) {
1174       if (!GO.hasExternalWeakLinkage())
1175         continue;
1176       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1177     }
1178   }
1179 
1180   OutStreamer->AddBlankLine();
1181 
1182   // Print aliases in topological order, that is, for each alias a = b,
1183   // b must be printed before a.
1184   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1185   // such an order to generate correct TOC information.
1186   SmallVector<const GlobalAlias *, 16> AliasStack;
1187   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1188   for (const auto &Alias : M.aliases()) {
1189     for (const GlobalAlias *Cur = &Alias; Cur;
1190          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1191       if (!AliasVisited.insert(Cur).second)
1192         break;
1193       AliasStack.push_back(Cur);
1194     }
1195     for (const GlobalAlias *AncestorAlias : reverse(AliasStack))
1196       emitGlobalIndirectSymbol(M, *AncestorAlias);
1197     AliasStack.clear();
1198   }
1199   for (const auto &IFunc : M.ifuncs())
1200     emitGlobalIndirectSymbol(M, IFunc);
1201 
1202   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1203   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1204   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1205     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1206       MP->finishAssembly(M, *MI, *this);
1207 
1208   // Emit llvm.ident metadata in an '.ident' directive.
1209   EmitModuleIdents(M);
1210 
1211   // Emit __morestack address if needed for indirect calls.
1212   if (MMI->usesMorestackAddr()) {
1213     unsigned Align = 1;
1214     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1215         getDataLayout(), SectionKind::getReadOnly(),
1216         /*C=*/nullptr, Align);
1217     OutStreamer->SwitchSection(ReadOnlySection);
1218 
1219     MCSymbol *AddrSymbol =
1220         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1221     OutStreamer->EmitLabel(AddrSymbol);
1222 
1223     unsigned PtrSize = M.getDataLayout().getPointerSize(0);
1224     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1225                                  PtrSize);
1226   }
1227 
1228   // If we don't have any trampolines, then we don't require stack memory
1229   // to be executable. Some targets have a directive to declare this.
1230   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1231   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1232     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1233       OutStreamer->SwitchSection(S);
1234 
1235   // Allow the target to emit any magic that it wants at the end of the file,
1236   // after everything else has gone out.
1237   EmitEndOfAsmFile(M);
1238 
1239   MMI = nullptr;
1240 
1241   OutStreamer->Finish();
1242   OutStreamer->reset();
1243 
1244   return false;
1245 }
1246 
1247 MCSymbol *AsmPrinter::getCurExceptionSym() {
1248   if (!CurExceptionSym)
1249     CurExceptionSym = createTempSymbol("exception");
1250   return CurExceptionSym;
1251 }
1252 
1253 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1254   this->MF = &MF;
1255   // Get the function symbol.
1256   CurrentFnSym = getSymbol(MF.getFunction());
1257   CurrentFnSymForSize = CurrentFnSym;
1258   CurrentFnBegin = nullptr;
1259   CurExceptionSym = nullptr;
1260   bool NeedsLocalForSize = MAI->needsLocalForSize();
1261   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
1262       MMI->hasEHFunclets() || NeedsLocalForSize) {
1263     CurrentFnBegin = createTempSymbol("func_begin");
1264     if (NeedsLocalForSize)
1265       CurrentFnSymForSize = CurrentFnBegin;
1266   }
1267 
1268   if (isVerbose())
1269     LI = &getAnalysis<MachineLoopInfo>();
1270 }
1271 
1272 namespace {
1273 // Keep track the alignment, constpool entries per Section.
1274   struct SectionCPs {
1275     MCSection *S;
1276     unsigned Alignment;
1277     SmallVector<unsigned, 4> CPEs;
1278     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1279   };
1280 }
1281 
1282 /// EmitConstantPool - Print to the current output stream assembly
1283 /// representations of the constants in the constant pool MCP. This is
1284 /// used to print out constants which have been "spilled to memory" by
1285 /// the code generator.
1286 ///
1287 void AsmPrinter::EmitConstantPool() {
1288   const MachineConstantPool *MCP = MF->getConstantPool();
1289   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1290   if (CP.empty()) return;
1291 
1292   // Calculate sections for constant pool entries. We collect entries to go into
1293   // the same section together to reduce amount of section switch statements.
1294   SmallVector<SectionCPs, 4> CPSections;
1295   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1296     const MachineConstantPoolEntry &CPE = CP[i];
1297     unsigned Align = CPE.getAlignment();
1298 
1299     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1300 
1301     const Constant *C = nullptr;
1302     if (!CPE.isMachineConstantPoolEntry())
1303       C = CPE.Val.ConstVal;
1304 
1305     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1306                                                               Kind, C, Align);
1307 
1308     // The number of sections are small, just do a linear search from the
1309     // last section to the first.
1310     bool Found = false;
1311     unsigned SecIdx = CPSections.size();
1312     while (SecIdx != 0) {
1313       if (CPSections[--SecIdx].S == S) {
1314         Found = true;
1315         break;
1316       }
1317     }
1318     if (!Found) {
1319       SecIdx = CPSections.size();
1320       CPSections.push_back(SectionCPs(S, Align));
1321     }
1322 
1323     if (Align > CPSections[SecIdx].Alignment)
1324       CPSections[SecIdx].Alignment = Align;
1325     CPSections[SecIdx].CPEs.push_back(i);
1326   }
1327 
1328   // Now print stuff into the calculated sections.
1329   const MCSection *CurSection = nullptr;
1330   unsigned Offset = 0;
1331   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1332     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1333       unsigned CPI = CPSections[i].CPEs[j];
1334       MCSymbol *Sym = GetCPISymbol(CPI);
1335       if (!Sym->isUndefined())
1336         continue;
1337 
1338       if (CurSection != CPSections[i].S) {
1339         OutStreamer->SwitchSection(CPSections[i].S);
1340         EmitAlignment(Log2_32(CPSections[i].Alignment));
1341         CurSection = CPSections[i].S;
1342         Offset = 0;
1343       }
1344 
1345       MachineConstantPoolEntry CPE = CP[CPI];
1346 
1347       // Emit inter-object padding for alignment.
1348       unsigned AlignMask = CPE.getAlignment() - 1;
1349       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1350       OutStreamer->EmitZeros(NewOffset - Offset);
1351 
1352       Type *Ty = CPE.getType();
1353       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1354 
1355       OutStreamer->EmitLabel(Sym);
1356       if (CPE.isMachineConstantPoolEntry())
1357         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1358       else
1359         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1360     }
1361   }
1362 }
1363 
1364 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1365 /// by the current function to the current output stream.
1366 ///
1367 void AsmPrinter::EmitJumpTableInfo() {
1368   const DataLayout &DL = MF->getDataLayout();
1369   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1370   if (!MJTI) return;
1371   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1372   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1373   if (JT.empty()) return;
1374 
1375   // Pick the directive to use to print the jump table entries, and switch to
1376   // the appropriate section.
1377   const Function *F = MF->getFunction();
1378   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1379   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1380       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1381       *F);
1382   if (JTInDiffSection) {
1383     // Drop it in the readonly section.
1384     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
1385     OutStreamer->SwitchSection(ReadOnlySection);
1386   }
1387 
1388   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1389 
1390   // Jump tables in code sections are marked with a data_region directive
1391   // where that's supported.
1392   if (!JTInDiffSection)
1393     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1394 
1395   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1396     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1397 
1398     // If this jump table was deleted, ignore it.
1399     if (JTBBs.empty()) continue;
1400 
1401     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1402     /// emit a .set directive for each unique entry.
1403     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1404         MAI->doesSetDirectiveSuppressReloc()) {
1405       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1406       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1407       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1408       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1409         const MachineBasicBlock *MBB = JTBBs[ii];
1410         if (!EmittedSets.insert(MBB).second)
1411           continue;
1412 
1413         // .set LJTSet, LBB32-base
1414         const MCExpr *LHS =
1415           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1416         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1417                                     MCBinaryExpr::createSub(LHS, Base,
1418                                                             OutContext));
1419       }
1420     }
1421 
1422     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1423     // before each jump table.  The first label is never referenced, but tells
1424     // the assembler and linker the extents of the jump table object.  The
1425     // second label is actually referenced by the code.
1426     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1427       // FIXME: This doesn't have to have any specific name, just any randomly
1428       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1429       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1430 
1431     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1432 
1433     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1434       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1435   }
1436   if (!JTInDiffSection)
1437     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1438 }
1439 
1440 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1441 /// current stream.
1442 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1443                                     const MachineBasicBlock *MBB,
1444                                     unsigned UID) const {
1445   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1446   const MCExpr *Value = nullptr;
1447   switch (MJTI->getEntryKind()) {
1448   case MachineJumpTableInfo::EK_Inline:
1449     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1450   case MachineJumpTableInfo::EK_Custom32:
1451     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1452         MJTI, MBB, UID, OutContext);
1453     break;
1454   case MachineJumpTableInfo::EK_BlockAddress:
1455     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1456     //     .word LBB123
1457     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1458     break;
1459   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1460     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1461     // with a relocation as gp-relative, e.g.:
1462     //     .gprel32 LBB123
1463     MCSymbol *MBBSym = MBB->getSymbol();
1464     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1465     return;
1466   }
1467 
1468   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1469     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1470     // with a relocation as gp-relative, e.g.:
1471     //     .gpdword LBB123
1472     MCSymbol *MBBSym = MBB->getSymbol();
1473     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1474     return;
1475   }
1476 
1477   case MachineJumpTableInfo::EK_LabelDifference32: {
1478     // Each entry is the address of the block minus the address of the jump
1479     // table. This is used for PIC jump tables where gprel32 is not supported.
1480     // e.g.:
1481     //      .word LBB123 - LJTI1_2
1482     // If the .set directive avoids relocations, this is emitted as:
1483     //      .set L4_5_set_123, LBB123 - LJTI1_2
1484     //      .word L4_5_set_123
1485     if (MAI->doesSetDirectiveSuppressReloc()) {
1486       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1487                                       OutContext);
1488       break;
1489     }
1490     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1491     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1492     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1493     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1494     break;
1495   }
1496   }
1497 
1498   assert(Value && "Unknown entry kind!");
1499 
1500   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1501   OutStreamer->EmitValue(Value, EntrySize);
1502 }
1503 
1504 
1505 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1506 /// special global used by LLVM.  If so, emit it and return true, otherwise
1507 /// do nothing and return false.
1508 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1509   if (GV->getName() == "llvm.used") {
1510     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1511       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1512     return true;
1513   }
1514 
1515   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1516   if (GV->getSection() == "llvm.metadata" ||
1517       GV->hasAvailableExternallyLinkage())
1518     return true;
1519 
1520   if (!GV->hasAppendingLinkage()) return false;
1521 
1522   assert(GV->hasInitializer() && "Not a special LLVM global!");
1523 
1524   if (GV->getName() == "llvm.global_ctors") {
1525     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1526                        /* isCtor */ true);
1527 
1528     return true;
1529   }
1530 
1531   if (GV->getName() == "llvm.global_dtors") {
1532     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1533                        /* isCtor */ false);
1534 
1535     return true;
1536   }
1537 
1538   report_fatal_error("unknown special variable");
1539 }
1540 
1541 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1542 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1543 /// is true, as being used with this directive.
1544 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1545   // Should be an array of 'i8*'.
1546   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1547     const GlobalValue *GV =
1548       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1549     if (GV)
1550       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1551   }
1552 }
1553 
1554 namespace {
1555 struct Structor {
1556   Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
1557   int Priority;
1558   llvm::Constant *Func;
1559   llvm::GlobalValue *ComdatKey;
1560 };
1561 } // end namespace
1562 
1563 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1564 /// priority.
1565 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1566                                     bool isCtor) {
1567   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1568   // init priority.
1569   if (!isa<ConstantArray>(List)) return;
1570 
1571   // Sanity check the structors list.
1572   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1573   if (!InitList) return; // Not an array!
1574   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1575   // FIXME: Only allow the 3-field form in LLVM 4.0.
1576   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1577     return; // Not an array of two or three elements!
1578   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1579       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1580   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1581     return; // Not (int, ptr, ptr).
1582 
1583   // Gather the structors in a form that's convenient for sorting by priority.
1584   SmallVector<Structor, 8> Structors;
1585   for (Value *O : InitList->operands()) {
1586     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1587     if (!CS) continue; // Malformed.
1588     if (CS->getOperand(1)->isNullValue())
1589       break;  // Found a null terminator, skip the rest.
1590     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1591     if (!Priority) continue; // Malformed.
1592     Structors.push_back(Structor());
1593     Structor &S = Structors.back();
1594     S.Priority = Priority->getLimitedValue(65535);
1595     S.Func = CS->getOperand(1);
1596     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1597       S.ComdatKey =
1598           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1599   }
1600 
1601   // Emit the function pointers in the target-specific order
1602   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1603   std::stable_sort(Structors.begin(), Structors.end(),
1604                    [](const Structor &L,
1605                       const Structor &R) { return L.Priority < R.Priority; });
1606   for (Structor &S : Structors) {
1607     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1608     const MCSymbol *KeySym = nullptr;
1609     if (GlobalValue *GV = S.ComdatKey) {
1610       if (GV->hasAvailableExternallyLinkage())
1611         // If the associated variable is available_externally, some other TU
1612         // will provide its dynamic initializer.
1613         continue;
1614 
1615       KeySym = getSymbol(GV);
1616     }
1617     MCSection *OutputSection =
1618         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1619                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1620     OutStreamer->SwitchSection(OutputSection);
1621     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1622       EmitAlignment(Align);
1623     EmitXXStructor(DL, S.Func);
1624   }
1625 }
1626 
1627 void AsmPrinter::EmitModuleIdents(Module &M) {
1628   if (!MAI->hasIdentDirective())
1629     return;
1630 
1631   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1632     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1633       const MDNode *N = NMD->getOperand(i);
1634       assert(N->getNumOperands() == 1 &&
1635              "llvm.ident metadata entry can have only one operand");
1636       const MDString *S = cast<MDString>(N->getOperand(0));
1637       OutStreamer->EmitIdent(S->getString());
1638     }
1639   }
1640 }
1641 
1642 //===--------------------------------------------------------------------===//
1643 // Emission and print routines
1644 //
1645 
1646 /// EmitInt8 - Emit a byte directive and value.
1647 ///
1648 void AsmPrinter::EmitInt8(int Value) const {
1649   OutStreamer->EmitIntValue(Value, 1);
1650 }
1651 
1652 /// EmitInt16 - Emit a short directive and value.
1653 ///
1654 void AsmPrinter::EmitInt16(int Value) const {
1655   OutStreamer->EmitIntValue(Value, 2);
1656 }
1657 
1658 /// EmitInt32 - Emit a long directive and value.
1659 ///
1660 void AsmPrinter::EmitInt32(int Value) const {
1661   OutStreamer->EmitIntValue(Value, 4);
1662 }
1663 
1664 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1665 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1666 /// .set if it avoids relocations.
1667 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1668                                      unsigned Size) const {
1669   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1670 }
1671 
1672 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1673 /// where the size in bytes of the directive is specified by Size and Label
1674 /// specifies the label.  This implicitly uses .set if it is available.
1675 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1676                                      unsigned Size,
1677                                      bool IsSectionRelative) const {
1678   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1679     OutStreamer->EmitCOFFSecRel32(Label);
1680     return;
1681   }
1682 
1683   // Emit Label+Offset (or just Label if Offset is zero)
1684   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1685   if (Offset)
1686     Expr = MCBinaryExpr::createAdd(
1687         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1688 
1689   OutStreamer->EmitValue(Expr, Size);
1690 }
1691 
1692 //===----------------------------------------------------------------------===//
1693 
1694 // EmitAlignment - Emit an alignment directive to the specified power of
1695 // two boundary.  For example, if you pass in 3 here, you will get an 8
1696 // byte alignment.  If a global value is specified, and if that global has
1697 // an explicit alignment requested, it will override the alignment request
1698 // if required for correctness.
1699 //
1700 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1701   if (GV)
1702     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1703 
1704   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1705 
1706   assert(NumBits <
1707              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1708          "undefined behavior");
1709   if (getCurrentSection()->getKind().isText())
1710     OutStreamer->EmitCodeAlignment(1u << NumBits);
1711   else
1712     OutStreamer->EmitValueToAlignment(1u << NumBits);
1713 }
1714 
1715 //===----------------------------------------------------------------------===//
1716 // Constant emission.
1717 //===----------------------------------------------------------------------===//
1718 
1719 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1720   MCContext &Ctx = OutContext;
1721 
1722   if (CV->isNullValue() || isa<UndefValue>(CV))
1723     return MCConstantExpr::create(0, Ctx);
1724 
1725   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1726     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1727 
1728   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1729     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1730 
1731   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1732     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1733 
1734   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1735   if (!CE) {
1736     llvm_unreachable("Unknown constant value to lower!");
1737   }
1738 
1739   switch (CE->getOpcode()) {
1740   default:
1741     // If the code isn't optimized, there may be outstanding folding
1742     // opportunities. Attempt to fold the expression using DataLayout as a
1743     // last resort before giving up.
1744     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1745       if (C != CE)
1746         return lowerConstant(C);
1747 
1748     // Otherwise report the problem to the user.
1749     {
1750       std::string S;
1751       raw_string_ostream OS(S);
1752       OS << "Unsupported expression in static initializer: ";
1753       CE->printAsOperand(OS, /*PrintType=*/false,
1754                      !MF ? nullptr : MF->getFunction()->getParent());
1755       report_fatal_error(OS.str());
1756     }
1757   case Instruction::GetElementPtr: {
1758     // Generate a symbolic expression for the byte address
1759     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1760     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1761 
1762     const MCExpr *Base = lowerConstant(CE->getOperand(0));
1763     if (!OffsetAI)
1764       return Base;
1765 
1766     int64_t Offset = OffsetAI.getSExtValue();
1767     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1768                                    Ctx);
1769   }
1770 
1771   case Instruction::Trunc:
1772     // We emit the value and depend on the assembler to truncate the generated
1773     // expression properly.  This is important for differences between
1774     // blockaddress labels.  Since the two labels are in the same function, it
1775     // is reasonable to treat their delta as a 32-bit value.
1776     LLVM_FALLTHROUGH;
1777   case Instruction::BitCast:
1778     return lowerConstant(CE->getOperand(0));
1779 
1780   case Instruction::IntToPtr: {
1781     const DataLayout &DL = getDataLayout();
1782 
1783     // Handle casts to pointers by changing them into casts to the appropriate
1784     // integer type.  This promotes constant folding and simplifies this code.
1785     Constant *Op = CE->getOperand(0);
1786     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1787                                       false/*ZExt*/);
1788     return lowerConstant(Op);
1789   }
1790 
1791   case Instruction::PtrToInt: {
1792     const DataLayout &DL = getDataLayout();
1793 
1794     // Support only foldable casts to/from pointers that can be eliminated by
1795     // changing the pointer to the appropriately sized integer type.
1796     Constant *Op = CE->getOperand(0);
1797     Type *Ty = CE->getType();
1798 
1799     const MCExpr *OpExpr = lowerConstant(Op);
1800 
1801     // We can emit the pointer value into this slot if the slot is an
1802     // integer slot equal to the size of the pointer.
1803     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1804       return OpExpr;
1805 
1806     // Otherwise the pointer is smaller than the resultant integer, mask off
1807     // the high bits so we are sure to get a proper truncation if the input is
1808     // a constant expr.
1809     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1810     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1811     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1812   }
1813 
1814   case Instruction::Sub: {
1815     GlobalValue *LHSGV;
1816     APInt LHSOffset;
1817     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
1818                                    getDataLayout())) {
1819       GlobalValue *RHSGV;
1820       APInt RHSOffset;
1821       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
1822                                      getDataLayout())) {
1823         const MCExpr *RelocExpr =
1824             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
1825         if (!RelocExpr)
1826           RelocExpr = MCBinaryExpr::createSub(
1827               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
1828               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
1829         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
1830         if (Addend != 0)
1831           RelocExpr = MCBinaryExpr::createAdd(
1832               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
1833         return RelocExpr;
1834       }
1835     }
1836   }
1837   // else fallthrough
1838 
1839   // The MC library also has a right-shift operator, but it isn't consistently
1840   // signed or unsigned between different targets.
1841   case Instruction::Add:
1842   case Instruction::Mul:
1843   case Instruction::SDiv:
1844   case Instruction::SRem:
1845   case Instruction::Shl:
1846   case Instruction::And:
1847   case Instruction::Or:
1848   case Instruction::Xor: {
1849     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
1850     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
1851     switch (CE->getOpcode()) {
1852     default: llvm_unreachable("Unknown binary operator constant cast expr");
1853     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
1854     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1855     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
1856     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
1857     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
1858     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
1859     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
1860     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
1861     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
1862     }
1863   }
1864   }
1865 }
1866 
1867 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
1868                                    AsmPrinter &AP,
1869                                    const Constant *BaseCV = nullptr,
1870                                    uint64_t Offset = 0);
1871 
1872 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
1873 
1874 /// isRepeatedByteSequence - Determine whether the given value is
1875 /// composed of a repeated sequence of identical bytes and return the
1876 /// byte value.  If it is not a repeated sequence, return -1.
1877 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1878   StringRef Data = V->getRawDataValues();
1879   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1880   char C = Data[0];
1881   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1882     if (Data[i] != C) return -1;
1883   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1884 }
1885 
1886 
1887 /// isRepeatedByteSequence - Determine whether the given value is
1888 /// composed of a repeated sequence of identical bytes and return the
1889 /// byte value.  If it is not a repeated sequence, return -1.
1890 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
1891   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1892     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
1893     assert(Size % 8 == 0);
1894 
1895     // Extend the element to take zero padding into account.
1896     APInt Value = CI->getValue().zextOrSelf(Size);
1897     if (!Value.isSplat(8))
1898       return -1;
1899 
1900     return Value.zextOrTrunc(8).getZExtValue();
1901   }
1902   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1903     // Make sure all array elements are sequences of the same repeated
1904     // byte.
1905     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1906     Constant *Op0 = CA->getOperand(0);
1907     int Byte = isRepeatedByteSequence(Op0, DL);
1908     if (Byte == -1)
1909       return -1;
1910 
1911     // All array elements must be equal.
1912     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
1913       if (CA->getOperand(i) != Op0)
1914         return -1;
1915     return Byte;
1916   }
1917 
1918   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1919     return isRepeatedByteSequence(CDS);
1920 
1921   return -1;
1922 }
1923 
1924 static void emitGlobalConstantDataSequential(const DataLayout &DL,
1925                                              const ConstantDataSequential *CDS,
1926                                              AsmPrinter &AP) {
1927 
1928   // See if we can aggregate this into a .fill, if so, emit it as such.
1929   int Value = isRepeatedByteSequence(CDS, DL);
1930   if (Value != -1) {
1931     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
1932     // Don't emit a 1-byte object as a .fill.
1933     if (Bytes > 1)
1934       return AP.OutStreamer->emitFill(Bytes, Value);
1935   }
1936 
1937   // If this can be emitted with .ascii/.asciz, emit it as such.
1938   if (CDS->isString())
1939     return AP.OutStreamer->EmitBytes(CDS->getAsString());
1940 
1941   // Otherwise, emit the values in successive locations.
1942   unsigned ElementByteSize = CDS->getElementByteSize();
1943   if (isa<IntegerType>(CDS->getElementType())) {
1944     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1945       if (AP.isVerbose())
1946         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
1947                                                  CDS->getElementAsInteger(i));
1948       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
1949                                    ElementByteSize);
1950     }
1951   } else {
1952     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
1953       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
1954   }
1955 
1956   unsigned Size = DL.getTypeAllocSize(CDS->getType());
1957   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1958                         CDS->getNumElements();
1959   if (unsigned Padding = Size - EmittedSize)
1960     AP.OutStreamer->EmitZeros(Padding);
1961 
1962 }
1963 
1964 static void emitGlobalConstantArray(const DataLayout &DL,
1965                                     const ConstantArray *CA, AsmPrinter &AP,
1966                                     const Constant *BaseCV, uint64_t Offset) {
1967   // See if we can aggregate some values.  Make sure it can be
1968   // represented as a series of bytes of the constant value.
1969   int Value = isRepeatedByteSequence(CA, DL);
1970 
1971   if (Value != -1) {
1972     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
1973     AP.OutStreamer->emitFill(Bytes, Value);
1974   }
1975   else {
1976     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1977       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
1978       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
1979     }
1980   }
1981 }
1982 
1983 static void emitGlobalConstantVector(const DataLayout &DL,
1984                                      const ConstantVector *CV, AsmPrinter &AP) {
1985   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1986     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
1987 
1988   unsigned Size = DL.getTypeAllocSize(CV->getType());
1989   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1990                          CV->getType()->getNumElements();
1991   if (unsigned Padding = Size - EmittedSize)
1992     AP.OutStreamer->EmitZeros(Padding);
1993 }
1994 
1995 static void emitGlobalConstantStruct(const DataLayout &DL,
1996                                      const ConstantStruct *CS, AsmPrinter &AP,
1997                                      const Constant *BaseCV, uint64_t Offset) {
1998   // Print the fields in successive locations. Pad to align if needed!
1999   unsigned Size = DL.getTypeAllocSize(CS->getType());
2000   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2001   uint64_t SizeSoFar = 0;
2002   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2003     const Constant *Field = CS->getOperand(i);
2004 
2005     // Print the actual field value.
2006     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2007 
2008     // Check if padding is needed and insert one or more 0s.
2009     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2010     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2011                         - Layout->getElementOffset(i)) - FieldSize;
2012     SizeSoFar += FieldSize + PadSize;
2013 
2014     // Insert padding - this may include padding to increase the size of the
2015     // current field up to the ABI size (if the struct is not packed) as well
2016     // as padding to ensure that the next field starts at the right offset.
2017     AP.OutStreamer->EmitZeros(PadSize);
2018   }
2019   assert(SizeSoFar == Layout->getSizeInBytes() &&
2020          "Layout of constant struct may be incorrect!");
2021 }
2022 
2023 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2024   APInt API = CFP->getValueAPF().bitcastToAPInt();
2025 
2026   // First print a comment with what we think the original floating-point value
2027   // should have been.
2028   if (AP.isVerbose()) {
2029     SmallString<8> StrVal;
2030     CFP->getValueAPF().toString(StrVal);
2031 
2032     if (CFP->getType())
2033       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2034     else
2035       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2036     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2037   }
2038 
2039   // Now iterate through the APInt chunks, emitting them in endian-correct
2040   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2041   // floats).
2042   unsigned NumBytes = API.getBitWidth() / 8;
2043   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2044   const uint64_t *p = API.getRawData();
2045 
2046   // PPC's long double has odd notions of endianness compared to how LLVM
2047   // handles it: p[0] goes first for *big* endian on PPC.
2048   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2049     int Chunk = API.getNumWords() - 1;
2050 
2051     if (TrailingBytes)
2052       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2053 
2054     for (; Chunk >= 0; --Chunk)
2055       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2056   } else {
2057     unsigned Chunk;
2058     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2059       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2060 
2061     if (TrailingBytes)
2062       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2063   }
2064 
2065   // Emit the tail padding for the long double.
2066   const DataLayout &DL = AP.getDataLayout();
2067   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2068                             DL.getTypeStoreSize(CFP->getType()));
2069 }
2070 
2071 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2072   const DataLayout &DL = AP.getDataLayout();
2073   unsigned BitWidth = CI->getBitWidth();
2074 
2075   // Copy the value as we may massage the layout for constants whose bit width
2076   // is not a multiple of 64-bits.
2077   APInt Realigned(CI->getValue());
2078   uint64_t ExtraBits = 0;
2079   unsigned ExtraBitsSize = BitWidth & 63;
2080 
2081   if (ExtraBitsSize) {
2082     // The bit width of the data is not a multiple of 64-bits.
2083     // The extra bits are expected to be at the end of the chunk of the memory.
2084     // Little endian:
2085     // * Nothing to be done, just record the extra bits to emit.
2086     // Big endian:
2087     // * Record the extra bits to emit.
2088     // * Realign the raw data to emit the chunks of 64-bits.
2089     if (DL.isBigEndian()) {
2090       // Basically the structure of the raw data is a chunk of 64-bits cells:
2091       //    0        1         BitWidth / 64
2092       // [chunk1][chunk2] ... [chunkN].
2093       // The most significant chunk is chunkN and it should be emitted first.
2094       // However, due to the alignment issue chunkN contains useless bits.
2095       // Realign the chunks so that they contain only useless information:
2096       // ExtraBits     0       1       (BitWidth / 64) - 1
2097       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2098       ExtraBits = Realigned.getRawData()[0] &
2099         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2100       Realigned = Realigned.lshr(ExtraBitsSize);
2101     } else
2102       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2103   }
2104 
2105   // We don't expect assemblers to support integer data directives
2106   // for more than 64 bits, so we emit the data in at most 64-bit
2107   // quantities at a time.
2108   const uint64_t *RawData = Realigned.getRawData();
2109   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2110     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2111     AP.OutStreamer->EmitIntValue(Val, 8);
2112   }
2113 
2114   if (ExtraBitsSize) {
2115     // Emit the extra bits after the 64-bits chunks.
2116 
2117     // Emit a directive that fills the expected size.
2118     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2119     Size -= (BitWidth / 64) * 8;
2120     assert(Size && Size * 8 >= ExtraBitsSize &&
2121            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2122            == ExtraBits && "Directive too small for extra bits.");
2123     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2124   }
2125 }
2126 
2127 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2128 /// equivalent global, by a target specific GOT pc relative access to the
2129 /// final symbol.
2130 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2131                                          const Constant *BaseCst,
2132                                          uint64_t Offset) {
2133   // The global @foo below illustrates a global that uses a got equivalent.
2134   //
2135   //  @bar = global i32 42
2136   //  @gotequiv = private unnamed_addr constant i32* @bar
2137   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2138   //                             i64 ptrtoint (i32* @foo to i64))
2139   //                        to i32)
2140   //
2141   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2142   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2143   // form:
2144   //
2145   //  foo = cstexpr, where
2146   //    cstexpr := <gotequiv> - "." + <cst>
2147   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2148   //
2149   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2150   //
2151   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2152   //    gotpcrelcst := <offset from @foo base> + <cst>
2153   //
2154   MCValue MV;
2155   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2156     return;
2157   const MCSymbolRefExpr *SymA = MV.getSymA();
2158   if (!SymA)
2159     return;
2160 
2161   // Check that GOT equivalent symbol is cached.
2162   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2163   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2164     return;
2165 
2166   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2167   if (!BaseGV)
2168     return;
2169 
2170   // Check for a valid base symbol
2171   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2172   const MCSymbolRefExpr *SymB = MV.getSymB();
2173 
2174   if (!SymB || BaseSym != &SymB->getSymbol())
2175     return;
2176 
2177   // Make sure to match:
2178   //
2179   //    gotpcrelcst := <offset from @foo base> + <cst>
2180   //
2181   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2182   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2183   // if the target knows how to encode it.
2184   //
2185   int64_t GOTPCRelCst = Offset + MV.getConstant();
2186   if (GOTPCRelCst < 0)
2187     return;
2188   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2189     return;
2190 
2191   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2192   //
2193   //  bar:
2194   //    .long 42
2195   //  gotequiv:
2196   //    .quad bar
2197   //  foo:
2198   //    .long gotequiv - "." + <cst>
2199   //
2200   // is replaced by the target specific equivalent to:
2201   //
2202   //  bar:
2203   //    .long 42
2204   //  foo:
2205   //    .long bar@GOTPCREL+<gotpcrelcst>
2206   //
2207   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2208   const GlobalVariable *GV = Result.first;
2209   int NumUses = (int)Result.second;
2210   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2211   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2212   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2213       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2214 
2215   // Update GOT equivalent usage information
2216   --NumUses;
2217   if (NumUses >= 0)
2218     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2219 }
2220 
2221 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2222                                    AsmPrinter &AP, const Constant *BaseCV,
2223                                    uint64_t Offset) {
2224   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2225 
2226   // Globals with sub-elements such as combinations of arrays and structs
2227   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2228   // constant symbol base and the current position with BaseCV and Offset.
2229   if (!BaseCV && CV->hasOneUse())
2230     BaseCV = dyn_cast<Constant>(CV->user_back());
2231 
2232   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2233     return AP.OutStreamer->EmitZeros(Size);
2234 
2235   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2236     switch (Size) {
2237     case 1:
2238     case 2:
2239     case 4:
2240     case 8:
2241       if (AP.isVerbose())
2242         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2243                                                  CI->getZExtValue());
2244       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2245       return;
2246     default:
2247       emitGlobalConstantLargeInt(CI, AP);
2248       return;
2249     }
2250   }
2251 
2252   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2253     return emitGlobalConstantFP(CFP, AP);
2254 
2255   if (isa<ConstantPointerNull>(CV)) {
2256     AP.OutStreamer->EmitIntValue(0, Size);
2257     return;
2258   }
2259 
2260   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2261     return emitGlobalConstantDataSequential(DL, CDS, AP);
2262 
2263   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2264     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2265 
2266   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2267     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2268 
2269   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2270     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2271     // vectors).
2272     if (CE->getOpcode() == Instruction::BitCast)
2273       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2274 
2275     if (Size > 8) {
2276       // If the constant expression's size is greater than 64-bits, then we have
2277       // to emit the value in chunks. Try to constant fold the value and emit it
2278       // that way.
2279       Constant *New = ConstantFoldConstant(CE, DL);
2280       if (New && New != CE)
2281         return emitGlobalConstantImpl(DL, New, AP);
2282     }
2283   }
2284 
2285   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2286     return emitGlobalConstantVector(DL, V, AP);
2287 
2288   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2289   // thread the streamer with EmitValue.
2290   const MCExpr *ME = AP.lowerConstant(CV);
2291 
2292   // Since lowerConstant already folded and got rid of all IR pointer and
2293   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2294   // directly.
2295   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2296     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2297 
2298   AP.OutStreamer->EmitValue(ME, Size);
2299 }
2300 
2301 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2302 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2303   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2304   if (Size)
2305     emitGlobalConstantImpl(DL, CV, *this);
2306   else if (MAI->hasSubsectionsViaSymbols()) {
2307     // If the global has zero size, emit a single byte so that two labels don't
2308     // look like they are at the same location.
2309     OutStreamer->EmitIntValue(0, 1);
2310   }
2311 }
2312 
2313 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2314   // Target doesn't support this yet!
2315   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2316 }
2317 
2318 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2319   if (Offset > 0)
2320     OS << '+' << Offset;
2321   else if (Offset < 0)
2322     OS << Offset;
2323 }
2324 
2325 //===----------------------------------------------------------------------===//
2326 // Symbol Lowering Routines.
2327 //===----------------------------------------------------------------------===//
2328 
2329 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2330   return OutContext.createTempSymbol(Name, true);
2331 }
2332 
2333 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2334   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2335 }
2336 
2337 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2338   return MMI->getAddrLabelSymbol(BB);
2339 }
2340 
2341 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2342 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2343   const DataLayout &DL = getDataLayout();
2344   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2345                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2346                                       Twine(CPID));
2347 }
2348 
2349 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2350 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2351   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2352 }
2353 
2354 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2355 /// FIXME: privatize to AsmPrinter.
2356 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2357   const DataLayout &DL = getDataLayout();
2358   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2359                                       Twine(getFunctionNumber()) + "_" +
2360                                       Twine(UID) + "_set_" + Twine(MBBID));
2361 }
2362 
2363 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2364                                                    StringRef Suffix) const {
2365   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2366 }
2367 
2368 /// Return the MCSymbol for the specified ExternalSymbol.
2369 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2370   SmallString<60> NameStr;
2371   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2372   return OutContext.getOrCreateSymbol(NameStr);
2373 }
2374 
2375 
2376 
2377 /// PrintParentLoopComment - Print comments about parent loops of this one.
2378 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2379                                    unsigned FunctionNumber) {
2380   if (!Loop) return;
2381   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2382   OS.indent(Loop->getLoopDepth()*2)
2383     << "Parent Loop BB" << FunctionNumber << "_"
2384     << Loop->getHeader()->getNumber()
2385     << " Depth=" << Loop->getLoopDepth() << '\n';
2386 }
2387 
2388 
2389 /// PrintChildLoopComment - Print comments about child loops within
2390 /// the loop for this basic block, with nesting.
2391 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2392                                   unsigned FunctionNumber) {
2393   // Add child loop information
2394   for (const MachineLoop *CL : *Loop) {
2395     OS.indent(CL->getLoopDepth()*2)
2396       << "Child Loop BB" << FunctionNumber << "_"
2397       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2398       << '\n';
2399     PrintChildLoopComment(OS, CL, FunctionNumber);
2400   }
2401 }
2402 
2403 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2404 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2405                                        const MachineLoopInfo *LI,
2406                                        const AsmPrinter &AP) {
2407   // Add loop depth information
2408   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2409   if (!Loop) return;
2410 
2411   MachineBasicBlock *Header = Loop->getHeader();
2412   assert(Header && "No header for loop");
2413 
2414   // If this block is not a loop header, just print out what is the loop header
2415   // and return.
2416   if (Header != &MBB) {
2417     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2418                                Twine(AP.getFunctionNumber())+"_" +
2419                                Twine(Loop->getHeader()->getNumber())+
2420                                " Depth="+Twine(Loop->getLoopDepth()));
2421     return;
2422   }
2423 
2424   // Otherwise, it is a loop header.  Print out information about child and
2425   // parent loops.
2426   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2427 
2428   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2429 
2430   OS << "=>";
2431   OS.indent(Loop->getLoopDepth()*2-2);
2432 
2433   OS << "This ";
2434   if (Loop->empty())
2435     OS << "Inner ";
2436   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2437 
2438   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2439 }
2440 
2441 
2442 /// EmitBasicBlockStart - This method prints the label for the specified
2443 /// MachineBasicBlock, an alignment (if present) and a comment describing
2444 /// it if appropriate.
2445 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2446   // End the previous funclet and start a new one.
2447   if (MBB.isEHFuncletEntry()) {
2448     for (const HandlerInfo &HI : Handlers) {
2449       HI.Handler->endFunclet();
2450       HI.Handler->beginFunclet(MBB);
2451     }
2452   }
2453 
2454   // Emit an alignment directive for this block, if needed.
2455   if (unsigned Align = MBB.getAlignment())
2456     EmitAlignment(Align);
2457 
2458   // If the block has its address taken, emit any labels that were used to
2459   // reference the block.  It is possible that there is more than one label
2460   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2461   // the references were generated.
2462   if (MBB.hasAddressTaken()) {
2463     const BasicBlock *BB = MBB.getBasicBlock();
2464     if (isVerbose())
2465       OutStreamer->AddComment("Block address taken");
2466 
2467     // MBBs can have their address taken as part of CodeGen without having
2468     // their corresponding BB's address taken in IR
2469     if (BB->hasAddressTaken())
2470       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2471         OutStreamer->EmitLabel(Sym);
2472   }
2473 
2474   // Print some verbose block comments.
2475   if (isVerbose()) {
2476     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2477       if (BB->hasName()) {
2478         BB->printAsOperand(OutStreamer->GetCommentOS(),
2479                            /*PrintType=*/false, BB->getModule());
2480         OutStreamer->GetCommentOS() << '\n';
2481       }
2482     }
2483     emitBasicBlockLoopComments(MBB, LI, *this);
2484   }
2485 
2486   // Print the main label for the block.
2487   if (MBB.pred_empty() ||
2488       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2489     if (isVerbose()) {
2490       // NOTE: Want this comment at start of line, don't emit with AddComment.
2491       OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2492     }
2493   } else {
2494     OutStreamer->EmitLabel(MBB.getSymbol());
2495   }
2496 }
2497 
2498 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2499                                 bool IsDefinition) const {
2500   MCSymbolAttr Attr = MCSA_Invalid;
2501 
2502   switch (Visibility) {
2503   default: break;
2504   case GlobalValue::HiddenVisibility:
2505     if (IsDefinition)
2506       Attr = MAI->getHiddenVisibilityAttr();
2507     else
2508       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2509     break;
2510   case GlobalValue::ProtectedVisibility:
2511     Attr = MAI->getProtectedVisibilityAttr();
2512     break;
2513   }
2514 
2515   if (Attr != MCSA_Invalid)
2516     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2517 }
2518 
2519 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2520 /// exactly one predecessor and the control transfer mechanism between
2521 /// the predecessor and this block is a fall-through.
2522 bool AsmPrinter::
2523 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2524   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2525   // then nothing falls through to it.
2526   if (MBB->isEHPad() || MBB->pred_empty())
2527     return false;
2528 
2529   // If there isn't exactly one predecessor, it can't be a fall through.
2530   if (MBB->pred_size() > 1)
2531     return false;
2532 
2533   // The predecessor has to be immediately before this block.
2534   MachineBasicBlock *Pred = *MBB->pred_begin();
2535   if (!Pred->isLayoutSuccessor(MBB))
2536     return false;
2537 
2538   // If the block is completely empty, then it definitely does fall through.
2539   if (Pred->empty())
2540     return true;
2541 
2542   // Check the terminators in the previous blocks
2543   for (const auto &MI : Pred->terminators()) {
2544     // If it is not a simple branch, we are in a table somewhere.
2545     if (!MI.isBranch() || MI.isIndirectBranch())
2546       return false;
2547 
2548     // If we are the operands of one of the branches, this is not a fall
2549     // through. Note that targets with delay slots will usually bundle
2550     // terminators with the delay slot instruction.
2551     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2552       if (OP->isJTI())
2553         return false;
2554       if (OP->isMBB() && OP->getMBB() == MBB)
2555         return false;
2556     }
2557   }
2558 
2559   return true;
2560 }
2561 
2562 
2563 
2564 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2565   if (!S.usesMetadata())
2566     return nullptr;
2567 
2568   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2569          " stackmap formats, please see the documentation for a description of"
2570          " the default format.  If you really need a custom serialized format,"
2571          " please file a bug");
2572 
2573   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2574   gcp_map_type::iterator GCPI = GCMap.find(&S);
2575   if (GCPI != GCMap.end())
2576     return GCPI->second.get();
2577 
2578   auto Name = S.getName();
2579 
2580   for (GCMetadataPrinterRegistry::iterator
2581          I = GCMetadataPrinterRegistry::begin(),
2582          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2583     if (Name == I->getName()) {
2584       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2585       GMP->S = &S;
2586       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2587       return IterBool.first->second.get();
2588     }
2589 
2590   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2591 }
2592 
2593 /// Pin vtable to this file.
2594 AsmPrinterHandler::~AsmPrinterHandler() {}
2595 
2596 void AsmPrinterHandler::markFunctionEnd() {}
2597 
2598 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2599   SledKind Kind) {
2600   auto Fn = MI.getParent()->getParent()->getFunction();
2601   auto Attr = Fn->getFnAttribute("function-instrument");
2602   bool AlwaysInstrument =
2603     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2604   Sleds.emplace_back(
2605     XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn });
2606 }
2607