1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineConstantPool.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineInstrBundle.h" 51 #include "llvm/CodeGen/MachineJumpTableInfo.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineMemOperand.h" 54 #include "llvm/CodeGen/MachineModuleInfo.h" 55 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 58 #include "llvm/CodeGen/MachineSizeOpts.h" 59 #include "llvm/CodeGen/StackMaps.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Comdat.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GlobalAlias.h" 74 #include "llvm/IR/GlobalIFunc.h" 75 #include "llvm/IR/GlobalIndirectSymbol.h" 76 #include "llvm/IR/GlobalObject.h" 77 #include "llvm/IR/GlobalValue.h" 78 #include "llvm/IR/GlobalVariable.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Mangler.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/RemarkStreamer.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCAsmInfo.h" 88 #include "llvm/MC/MCCodePadder.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/MC/MCDirectives.h" 91 #include "llvm/MC/MCDwarf.h" 92 #include "llvm/MC/MCExpr.h" 93 #include "llvm/MC/MCInst.h" 94 #include "llvm/MC/MCSection.h" 95 #include "llvm/MC/MCSectionCOFF.h" 96 #include "llvm/MC/MCSectionELF.h" 97 #include "llvm/MC/MCSectionMachO.h" 98 #include "llvm/MC/MCSectionXCOFF.h" 99 #include "llvm/MC/MCStreamer.h" 100 #include "llvm/MC/MCSubtargetInfo.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/MC/MCSymbolELF.h" 103 #include "llvm/MC/MCSymbolXCOFF.h" 104 #include "llvm/MC/MCTargetOptions.h" 105 #include "llvm/MC/MCValue.h" 106 #include "llvm/MC/SectionKind.h" 107 #include "llvm/Pass.h" 108 #include "llvm/Remarks/Remark.h" 109 #include "llvm/Remarks/RemarkFormat.h" 110 #include "llvm/Remarks/RemarkStringTable.h" 111 #include "llvm/Support/Casting.h" 112 #include "llvm/Support/CommandLine.h" 113 #include "llvm/Support/Compiler.h" 114 #include "llvm/Support/ErrorHandling.h" 115 #include "llvm/Support/Format.h" 116 #include "llvm/Support/MathExtras.h" 117 #include "llvm/Support/Path.h" 118 #include "llvm/Support/TargetRegistry.h" 119 #include "llvm/Support/Timer.h" 120 #include "llvm/Support/raw_ostream.h" 121 #include "llvm/Target/TargetLoweringObjectFile.h" 122 #include "llvm/Target/TargetMachine.h" 123 #include "llvm/Target/TargetOptions.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cinttypes> 127 #include <cstdint> 128 #include <iterator> 129 #include <limits> 130 #include <memory> 131 #include <string> 132 #include <utility> 133 #include <vector> 134 135 using namespace llvm; 136 137 #define DEBUG_TYPE "asm-printer" 138 139 static const char *const DWARFGroupName = "dwarf"; 140 static const char *const DWARFGroupDescription = "DWARF Emission"; 141 static const char *const DbgTimerName = "emit"; 142 static const char *const DbgTimerDescription = "Debug Info Emission"; 143 static const char *const EHTimerName = "write_exception"; 144 static const char *const EHTimerDescription = "DWARF Exception Writer"; 145 static const char *const CFGuardName = "Control Flow Guard"; 146 static const char *const CFGuardDescription = "Control Flow Guard"; 147 static const char *const CodeViewLineTablesGroupName = "linetables"; 148 static const char *const CodeViewLineTablesGroupDescription = 149 "CodeView Line Tables"; 150 151 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 152 153 char AsmPrinter::ID = 0; 154 155 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 156 157 static gcp_map_type &getGCMap(void *&P) { 158 if (!P) 159 P = new gcp_map_type(); 160 return *(gcp_map_type*)P; 161 } 162 163 /// getGVAlignment - Return the alignment to use for the specified global 164 /// value. This rounds up to the preferred alignment if possible and legal. 165 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 166 Align InAlign) { 167 Align Alignment; 168 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 169 Alignment = Align(DL.getPreferredAlignment(GVar)); 170 171 // If InAlign is specified, round it to it. 172 if (InAlign > Alignment) 173 Alignment = InAlign; 174 175 // If the GV has a specified alignment, take it into account. 176 const MaybeAlign GVAlign(GV->getAlignment()); 177 if (!GVAlign) 178 return Alignment; 179 180 assert(GVAlign && "GVAlign must be set"); 181 182 // If the GVAlign is larger than NumBits, or if we are required to obey 183 // NumBits because the GV has an assigned section, obey it. 184 if (*GVAlign > Alignment || GV->hasSection()) 185 Alignment = *GVAlign; 186 return Alignment; 187 } 188 189 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 190 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 191 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 192 VerboseAsm = OutStreamer->isVerboseAsm(); 193 } 194 195 AsmPrinter::~AsmPrinter() { 196 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 197 198 if (GCMetadataPrinters) { 199 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 200 201 delete &GCMap; 202 GCMetadataPrinters = nullptr; 203 } 204 } 205 206 bool AsmPrinter::isPositionIndependent() const { 207 return TM.isPositionIndependent(); 208 } 209 210 /// getFunctionNumber - Return a unique ID for the current function. 211 unsigned AsmPrinter::getFunctionNumber() const { 212 return MF->getFunctionNumber(); 213 } 214 215 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 216 return *TM.getObjFileLowering(); 217 } 218 219 const DataLayout &AsmPrinter::getDataLayout() const { 220 return MMI->getModule()->getDataLayout(); 221 } 222 223 // Do not use the cached DataLayout because some client use it without a Module 224 // (dsymutil, llvm-dwarfdump). 225 unsigned AsmPrinter::getPointerSize() const { 226 return TM.getPointerSize(0); // FIXME: Default address space 227 } 228 229 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 230 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 231 return MF->getSubtarget<MCSubtargetInfo>(); 232 } 233 234 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 235 S.EmitInstruction(Inst, getSubtargetInfo()); 236 } 237 238 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 239 assert(DD && "Dwarf debug file is not defined."); 240 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 241 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 242 } 243 244 /// getCurrentSection() - Return the current section we are emitting to. 245 const MCSection *AsmPrinter::getCurrentSection() const { 246 return OutStreamer->getCurrentSectionOnly(); 247 } 248 249 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 250 AU.setPreservesAll(); 251 MachineFunctionPass::getAnalysisUsage(AU); 252 AU.addRequired<MachineModuleInfoWrapperPass>(); 253 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 254 AU.addRequired<GCModuleInfo>(); 255 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 256 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 257 } 258 259 bool AsmPrinter::doInitialization(Module &M) { 260 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 261 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 262 263 // Initialize TargetLoweringObjectFile. 264 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 265 .Initialize(OutContext, TM); 266 267 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 268 .getModuleMetadata(M); 269 270 OutStreamer->InitSections(false); 271 272 // Emit the version-min deployment target directive if needed. 273 // 274 // FIXME: If we end up with a collection of these sorts of Darwin-specific 275 // or ELF-specific things, it may make sense to have a platform helper class 276 // that will work with the target helper class. For now keep it here, as the 277 // alternative is duplicated code in each of the target asm printers that 278 // use the directive, where it would need the same conditionalization 279 // anyway. 280 const Triple &Target = TM.getTargetTriple(); 281 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 282 283 // Allow the target to emit any magic that it wants at the start of the file. 284 EmitStartOfAsmFile(M); 285 286 // Very minimal debug info. It is ignored if we emit actual debug info. If we 287 // don't, this at least helps the user find where a global came from. 288 if (MAI->hasSingleParameterDotFile()) { 289 // .file "foo.c" 290 OutStreamer->EmitFileDirective( 291 llvm::sys::path::filename(M.getSourceFileName())); 292 } 293 294 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 295 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 296 for (auto &I : *MI) 297 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 298 MP->beginAssembly(M, *MI, *this); 299 300 // Emit module-level inline asm if it exists. 301 if (!M.getModuleInlineAsm().empty()) { 302 // We're at the module level. Construct MCSubtarget from the default CPU 303 // and target triple. 304 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 305 TM.getTargetTriple().str(), TM.getTargetCPU(), 306 TM.getTargetFeatureString())); 307 OutStreamer->AddComment("Start of file scope inline assembly"); 308 OutStreamer->AddBlankLine(); 309 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 310 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 311 OutStreamer->AddComment("End of file scope inline assembly"); 312 OutStreamer->AddBlankLine(); 313 } 314 315 if (MAI->doesSupportDebugInformation()) { 316 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 317 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 318 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 319 DbgTimerName, DbgTimerDescription, 320 CodeViewLineTablesGroupName, 321 CodeViewLineTablesGroupDescription); 322 } 323 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 324 DD = new DwarfDebug(this, &M); 325 DD->beginModule(); 326 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 327 DbgTimerDescription, DWARFGroupName, 328 DWARFGroupDescription); 329 } 330 } 331 332 switch (MAI->getExceptionHandlingType()) { 333 case ExceptionHandling::SjLj: 334 case ExceptionHandling::DwarfCFI: 335 case ExceptionHandling::ARM: 336 isCFIMoveForDebugging = true; 337 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 338 break; 339 for (auto &F: M.getFunctionList()) { 340 // If the module contains any function with unwind data, 341 // .eh_frame has to be emitted. 342 // Ignore functions that won't get emitted. 343 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 344 isCFIMoveForDebugging = false; 345 break; 346 } 347 } 348 break; 349 default: 350 isCFIMoveForDebugging = false; 351 break; 352 } 353 354 EHStreamer *ES = nullptr; 355 switch (MAI->getExceptionHandlingType()) { 356 case ExceptionHandling::None: 357 break; 358 case ExceptionHandling::SjLj: 359 case ExceptionHandling::DwarfCFI: 360 ES = new DwarfCFIException(this); 361 break; 362 case ExceptionHandling::ARM: 363 ES = new ARMException(this); 364 break; 365 case ExceptionHandling::WinEH: 366 switch (MAI->getWinEHEncodingType()) { 367 default: llvm_unreachable("unsupported unwinding information encoding"); 368 case WinEH::EncodingType::Invalid: 369 break; 370 case WinEH::EncodingType::X86: 371 case WinEH::EncodingType::Itanium: 372 ES = new WinException(this); 373 break; 374 } 375 break; 376 case ExceptionHandling::Wasm: 377 ES = new WasmException(this); 378 break; 379 } 380 if (ES) 381 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 382 EHTimerDescription, DWARFGroupName, 383 DWARFGroupDescription); 384 385 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 386 if (mdconst::extract_or_null<ConstantInt>( 387 MMI->getModule()->getModuleFlag("cfguard"))) 388 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 389 CFGuardDescription, DWARFGroupName, 390 DWARFGroupDescription); 391 return false; 392 } 393 394 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 395 if (!MAI.hasWeakDefCanBeHiddenDirective()) 396 return false; 397 398 return GV->canBeOmittedFromSymbolTable(); 399 } 400 401 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 402 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 403 switch (Linkage) { 404 case GlobalValue::CommonLinkage: 405 case GlobalValue::LinkOnceAnyLinkage: 406 case GlobalValue::LinkOnceODRLinkage: 407 case GlobalValue::WeakAnyLinkage: 408 case GlobalValue::WeakODRLinkage: 409 if (MAI->hasWeakDefDirective()) { 410 // .globl _foo 411 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 412 413 if (!canBeHidden(GV, *MAI)) 414 // .weak_definition _foo 415 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 416 else 417 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 418 } else if (MAI->hasLinkOnceDirective()) { 419 // .globl _foo 420 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 421 //NOTE: linkonce is handled by the section the symbol was assigned to. 422 } else { 423 // .weak _foo 424 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 425 } 426 return; 427 case GlobalValue::ExternalLinkage: 428 // If external, declare as a global symbol: .globl _foo 429 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 430 return; 431 case GlobalValue::PrivateLinkage: 432 return; 433 case GlobalValue::InternalLinkage: 434 if (MAI->hasDotLGloblDirective()) 435 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal); 436 return; 437 case GlobalValue::AppendingLinkage: 438 case GlobalValue::AvailableExternallyLinkage: 439 case GlobalValue::ExternalWeakLinkage: 440 llvm_unreachable("Should never emit this"); 441 } 442 llvm_unreachable("Unknown linkage type!"); 443 } 444 445 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 446 const GlobalValue *GV) const { 447 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 448 } 449 450 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 451 return TM.getSymbol(GV); 452 } 453 454 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 455 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 456 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 457 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 458 "No emulated TLS variables in the common section"); 459 460 // Never emit TLS variable xyz in emulated TLS model. 461 // The initialization value is in __emutls_t.xyz instead of xyz. 462 if (IsEmuTLSVar) 463 return; 464 465 if (GV->hasInitializer()) { 466 // Check to see if this is a special global used by LLVM, if so, emit it. 467 if (EmitSpecialLLVMGlobal(GV)) 468 return; 469 470 // Skip the emission of global equivalents. The symbol can be emitted later 471 // on by emitGlobalGOTEquivs in case it turns out to be needed. 472 if (GlobalGOTEquivs.count(getSymbol(GV))) 473 return; 474 475 if (isVerbose()) { 476 // When printing the control variable __emutls_v.*, 477 // we don't need to print the original TLS variable name. 478 GV->printAsOperand(OutStreamer->GetCommentOS(), 479 /*PrintType=*/false, GV->getParent()); 480 OutStreamer->GetCommentOS() << '\n'; 481 } 482 } 483 484 MCSymbol *GVSym = getSymbol(GV); 485 MCSymbol *EmittedSym = GVSym; 486 487 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 488 // attributes. 489 // GV's or GVSym's attributes will be used for the EmittedSym. 490 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 491 492 if (!GV->hasInitializer()) // External globals require no extra code. 493 return; 494 495 GVSym->redefineIfPossible(); 496 if (GVSym->isDefined() || GVSym->isVariable()) 497 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 498 "' is already defined"); 499 500 if (MAI->hasDotTypeDotSizeDirective()) 501 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 502 503 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 504 505 const DataLayout &DL = GV->getParent()->getDataLayout(); 506 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 507 508 // If the alignment is specified, we *must* obey it. Overaligning a global 509 // with a specified alignment is a prompt way to break globals emitted to 510 // sections and expected to be contiguous (e.g. ObjC metadata). 511 const Align Alignment = getGVAlignment(GV, DL); 512 513 for (const HandlerInfo &HI : Handlers) { 514 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 515 HI.TimerGroupName, HI.TimerGroupDescription, 516 TimePassesIsEnabled); 517 HI.Handler->setSymbolSize(GVSym, Size); 518 } 519 520 // Handle common symbols 521 if (GVKind.isCommon()) { 522 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 523 // .comm _foo, 42, 4 524 const bool SupportsAlignment = 525 getObjFileLowering().getCommDirectiveSupportsAlignment(); 526 OutStreamer->EmitCommonSymbol(GVSym, Size, 527 SupportsAlignment ? Alignment.value() : 0); 528 return; 529 } 530 531 // Determine to which section this global should be emitted. 532 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 533 534 // If we have a bss global going to a section that supports the 535 // zerofill directive, do so here. 536 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 537 TheSection->isVirtualSection()) { 538 if (Size == 0) 539 Size = 1; // zerofill of 0 bytes is undefined. 540 EmitLinkage(GV, GVSym); 541 // .zerofill __DATA, __bss, _foo, 400, 5 542 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value()); 543 return; 544 } 545 546 // If this is a BSS local symbol and we are emitting in the BSS 547 // section use .lcomm/.comm directive. 548 if (GVKind.isBSSLocal() && 549 getObjFileLowering().getBSSSection() == TheSection) { 550 if (Size == 0) 551 Size = 1; // .comm Foo, 0 is undefined, avoid it. 552 553 // Use .lcomm only if it supports user-specified alignment. 554 // Otherwise, while it would still be correct to use .lcomm in some 555 // cases (e.g. when Align == 1), the external assembler might enfore 556 // some -unknown- default alignment behavior, which could cause 557 // spurious differences between external and integrated assembler. 558 // Prefer to simply fall back to .local / .comm in this case. 559 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 560 // .lcomm _foo, 42 561 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value()); 562 return; 563 } 564 565 // .local _foo 566 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 567 // .comm _foo, 42, 4 568 const bool SupportsAlignment = 569 getObjFileLowering().getCommDirectiveSupportsAlignment(); 570 OutStreamer->EmitCommonSymbol(GVSym, Size, 571 SupportsAlignment ? Alignment.value() : 0); 572 return; 573 } 574 575 // Handle thread local data for mach-o which requires us to output an 576 // additional structure of data and mangle the original symbol so that we 577 // can reference it later. 578 // 579 // TODO: This should become an "emit thread local global" method on TLOF. 580 // All of this macho specific stuff should be sunk down into TLOFMachO and 581 // stuff like "TLSExtraDataSection" should no longer be part of the parent 582 // TLOF class. This will also make it more obvious that stuff like 583 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 584 // specific code. 585 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 586 // Emit the .tbss symbol 587 MCSymbol *MangSym = 588 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 589 590 if (GVKind.isThreadBSS()) { 591 TheSection = getObjFileLowering().getTLSBSSSection(); 592 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 593 } else if (GVKind.isThreadData()) { 594 OutStreamer->SwitchSection(TheSection); 595 596 EmitAlignment(Alignment, GV); 597 OutStreamer->EmitLabel(MangSym); 598 599 EmitGlobalConstant(GV->getParent()->getDataLayout(), 600 GV->getInitializer()); 601 } 602 603 OutStreamer->AddBlankLine(); 604 605 // Emit the variable struct for the runtime. 606 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 607 608 OutStreamer->SwitchSection(TLVSect); 609 // Emit the linkage here. 610 EmitLinkage(GV, GVSym); 611 OutStreamer->EmitLabel(GVSym); 612 613 // Three pointers in size: 614 // - __tlv_bootstrap - used to make sure support exists 615 // - spare pointer, used when mapped by the runtime 616 // - pointer to mangled symbol above with initializer 617 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 618 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 619 PtrSize); 620 OutStreamer->EmitIntValue(0, PtrSize); 621 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 622 623 OutStreamer->AddBlankLine(); 624 return; 625 } 626 627 MCSymbol *EmittedInitSym = GVSym; 628 629 OutStreamer->SwitchSection(TheSection); 630 631 EmitLinkage(GV, EmittedInitSym); 632 EmitAlignment(Alignment, GV); 633 634 OutStreamer->EmitLabel(EmittedInitSym); 635 636 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 637 638 if (MAI->hasDotTypeDotSizeDirective()) 639 // .size foo, 42 640 OutStreamer->emitELFSize(EmittedInitSym, 641 MCConstantExpr::create(Size, OutContext)); 642 643 OutStreamer->AddBlankLine(); 644 } 645 646 /// Emit the directive and value for debug thread local expression 647 /// 648 /// \p Value - The value to emit. 649 /// \p Size - The size of the integer (in bytes) to emit. 650 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 651 OutStreamer->EmitValue(Value, Size); 652 } 653 654 /// EmitFunctionHeader - This method emits the header for the current 655 /// function. 656 void AsmPrinter::EmitFunctionHeader() { 657 const Function &F = MF->getFunction(); 658 659 if (isVerbose()) 660 OutStreamer->GetCommentOS() 661 << "-- Begin function " 662 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 663 664 // Print out constants referenced by the function 665 EmitConstantPool(); 666 667 // Print the 'header' of function. 668 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 669 EmitVisibility(CurrentFnSym, F.getVisibility()); 670 671 if (MAI->needsFunctionDescriptors() && 672 F.getLinkage() != GlobalValue::InternalLinkage) 673 EmitLinkage(&F, CurrentFnDescSym); 674 675 EmitLinkage(&F, CurrentFnSym); 676 if (MAI->hasFunctionAlignment()) 677 EmitAlignment(MF->getAlignment(), &F); 678 679 if (MAI->hasDotTypeDotSizeDirective()) 680 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 681 682 if (F.hasFnAttribute(Attribute::Cold)) 683 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 684 685 if (isVerbose()) { 686 F.printAsOperand(OutStreamer->GetCommentOS(), 687 /*PrintType=*/false, F.getParent()); 688 OutStreamer->GetCommentOS() << '\n'; 689 } 690 691 // Emit the prefix data. 692 if (F.hasPrefixData()) { 693 if (MAI->hasSubsectionsViaSymbols()) { 694 // Preserving prefix data on platforms which use subsections-via-symbols 695 // is a bit tricky. Here we introduce a symbol for the prefix data 696 // and use the .alt_entry attribute to mark the function's real entry point 697 // as an alternative entry point to the prefix-data symbol. 698 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 699 OutStreamer->EmitLabel(PrefixSym); 700 701 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 702 703 // Emit an .alt_entry directive for the actual function symbol. 704 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 705 } else { 706 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 707 } 708 } 709 710 // Emit the function descriptor. This is a virtual function to allow targets 711 // to emit their specific function descriptor. 712 if (MAI->needsFunctionDescriptors()) 713 EmitFunctionDescriptor(); 714 715 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 716 // their wild and crazy things as required. 717 EmitFunctionEntryLabel(); 718 719 // If the function had address-taken blocks that got deleted, then we have 720 // references to the dangling symbols. Emit them at the start of the function 721 // so that we don't get references to undefined symbols. 722 std::vector<MCSymbol*> DeadBlockSyms; 723 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 724 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 725 OutStreamer->AddComment("Address taken block that was later removed"); 726 OutStreamer->EmitLabel(DeadBlockSyms[i]); 727 } 728 729 if (CurrentFnBegin) { 730 if (MAI->useAssignmentForEHBegin()) { 731 MCSymbol *CurPos = OutContext.createTempSymbol(); 732 OutStreamer->EmitLabel(CurPos); 733 OutStreamer->EmitAssignment(CurrentFnBegin, 734 MCSymbolRefExpr::create(CurPos, OutContext)); 735 } else { 736 OutStreamer->EmitLabel(CurrentFnBegin); 737 } 738 } 739 740 // Emit pre-function debug and/or EH information. 741 for (const HandlerInfo &HI : Handlers) { 742 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 743 HI.TimerGroupDescription, TimePassesIsEnabled); 744 HI.Handler->beginFunction(MF); 745 } 746 747 // Emit the prologue data. 748 if (F.hasPrologueData()) 749 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 750 } 751 752 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 753 /// function. This can be overridden by targets as required to do custom stuff. 754 void AsmPrinter::EmitFunctionEntryLabel() { 755 CurrentFnSym->redefineIfPossible(); 756 757 // The function label could have already been emitted if two symbols end up 758 // conflicting due to asm renaming. Detect this and emit an error. 759 if (CurrentFnSym->isVariable()) 760 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 761 "' is a protected alias"); 762 if (CurrentFnSym->isDefined()) 763 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 764 "' label emitted multiple times to assembly file"); 765 766 return OutStreamer->EmitLabel(CurrentFnSym); 767 } 768 769 /// emitComments - Pretty-print comments for instructions. 770 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 771 const MachineFunction *MF = MI.getMF(); 772 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 773 774 // Check for spills and reloads 775 776 // We assume a single instruction only has a spill or reload, not 777 // both. 778 Optional<unsigned> Size; 779 if ((Size = MI.getRestoreSize(TII))) { 780 CommentOS << *Size << "-byte Reload\n"; 781 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 782 if (*Size) 783 CommentOS << *Size << "-byte Folded Reload\n"; 784 } else if ((Size = MI.getSpillSize(TII))) { 785 CommentOS << *Size << "-byte Spill\n"; 786 } else if ((Size = MI.getFoldedSpillSize(TII))) { 787 if (*Size) 788 CommentOS << *Size << "-byte Folded Spill\n"; 789 } 790 791 // Check for spill-induced copies 792 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 793 CommentOS << " Reload Reuse\n"; 794 } 795 796 /// emitImplicitDef - This method emits the specified machine instruction 797 /// that is an implicit def. 798 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 799 Register RegNo = MI->getOperand(0).getReg(); 800 801 SmallString<128> Str; 802 raw_svector_ostream OS(Str); 803 OS << "implicit-def: " 804 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 805 806 OutStreamer->AddComment(OS.str()); 807 OutStreamer->AddBlankLine(); 808 } 809 810 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 811 std::string Str; 812 raw_string_ostream OS(Str); 813 OS << "kill:"; 814 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 815 const MachineOperand &Op = MI->getOperand(i); 816 assert(Op.isReg() && "KILL instruction must have only register operands"); 817 OS << ' ' << (Op.isDef() ? "def " : "killed ") 818 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 819 } 820 AP.OutStreamer->AddComment(OS.str()); 821 AP.OutStreamer->AddBlankLine(); 822 } 823 824 /// emitDebugValueComment - This method handles the target-independent form 825 /// of DBG_VALUE, returning true if it was able to do so. A false return 826 /// means the target will need to handle MI in EmitInstruction. 827 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 828 // This code handles only the 4-operand target-independent form. 829 if (MI->getNumOperands() != 4) 830 return false; 831 832 SmallString<128> Str; 833 raw_svector_ostream OS(Str); 834 OS << "DEBUG_VALUE: "; 835 836 const DILocalVariable *V = MI->getDebugVariable(); 837 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 838 StringRef Name = SP->getName(); 839 if (!Name.empty()) 840 OS << Name << ":"; 841 } 842 OS << V->getName(); 843 OS << " <- "; 844 845 // The second operand is only an offset if it's an immediate. 846 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 847 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 848 const DIExpression *Expr = MI->getDebugExpression(); 849 if (Expr->getNumElements()) { 850 OS << '['; 851 bool NeedSep = false; 852 for (auto Op : Expr->expr_ops()) { 853 if (NeedSep) 854 OS << ", "; 855 else 856 NeedSep = true; 857 OS << dwarf::OperationEncodingString(Op.getOp()); 858 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 859 OS << ' ' << Op.getArg(I); 860 } 861 OS << "] "; 862 } 863 864 // Register or immediate value. Register 0 means undef. 865 if (MI->getOperand(0).isFPImm()) { 866 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 867 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 868 OS << (double)APF.convertToFloat(); 869 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 870 OS << APF.convertToDouble(); 871 } else { 872 // There is no good way to print long double. Convert a copy to 873 // double. Ah well, it's only a comment. 874 bool ignored; 875 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 876 &ignored); 877 OS << "(long double) " << APF.convertToDouble(); 878 } 879 } else if (MI->getOperand(0).isImm()) { 880 OS << MI->getOperand(0).getImm(); 881 } else if (MI->getOperand(0).isCImm()) { 882 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 883 } else { 884 unsigned Reg; 885 if (MI->getOperand(0).isReg()) { 886 Reg = MI->getOperand(0).getReg(); 887 } else { 888 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 889 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 890 Offset += TFI->getFrameIndexReference(*AP.MF, 891 MI->getOperand(0).getIndex(), Reg); 892 MemLoc = true; 893 } 894 if (Reg == 0) { 895 // Suppress offset, it is not meaningful here. 896 OS << "undef"; 897 // NOTE: Want this comment at start of line, don't emit with AddComment. 898 AP.OutStreamer->emitRawComment(OS.str()); 899 return true; 900 } 901 if (MemLoc) 902 OS << '['; 903 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 904 } 905 906 if (MemLoc) 907 OS << '+' << Offset << ']'; 908 909 // NOTE: Want this comment at start of line, don't emit with AddComment. 910 AP.OutStreamer->emitRawComment(OS.str()); 911 return true; 912 } 913 914 /// This method handles the target-independent form of DBG_LABEL, returning 915 /// true if it was able to do so. A false return means the target will need 916 /// to handle MI in EmitInstruction. 917 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 918 if (MI->getNumOperands() != 1) 919 return false; 920 921 SmallString<128> Str; 922 raw_svector_ostream OS(Str); 923 OS << "DEBUG_LABEL: "; 924 925 const DILabel *V = MI->getDebugLabel(); 926 if (auto *SP = dyn_cast<DISubprogram>( 927 V->getScope()->getNonLexicalBlockFileScope())) { 928 StringRef Name = SP->getName(); 929 if (!Name.empty()) 930 OS << Name << ":"; 931 } 932 OS << V->getName(); 933 934 // NOTE: Want this comment at start of line, don't emit with AddComment. 935 AP.OutStreamer->emitRawComment(OS.str()); 936 return true; 937 } 938 939 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 940 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 941 MF->getFunction().needsUnwindTableEntry()) 942 return CFI_M_EH; 943 944 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 945 return CFI_M_Debug; 946 947 return CFI_M_None; 948 } 949 950 bool AsmPrinter::needsSEHMoves() { 951 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 952 } 953 954 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 955 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 956 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 957 ExceptionHandlingType != ExceptionHandling::ARM) 958 return; 959 960 if (needsCFIMoves() == CFI_M_None) 961 return; 962 963 // If there is no "real" instruction following this CFI instruction, skip 964 // emitting it; it would be beyond the end of the function's FDE range. 965 auto *MBB = MI.getParent(); 966 auto I = std::next(MI.getIterator()); 967 while (I != MBB->end() && I->isTransient()) 968 ++I; 969 if (I == MBB->instr_end() && 970 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 971 return; 972 973 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 974 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 975 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 976 emitCFIInstruction(CFI); 977 } 978 979 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 980 // The operands are the MCSymbol and the frame offset of the allocation. 981 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 982 int FrameOffset = MI.getOperand(1).getImm(); 983 984 // Emit a symbol assignment. 985 OutStreamer->EmitAssignment(FrameAllocSym, 986 MCConstantExpr::create(FrameOffset, OutContext)); 987 } 988 989 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 990 if (!MF.getTarget().Options.EmitStackSizeSection) 991 return; 992 993 MCSection *StackSizeSection = 994 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 995 if (!StackSizeSection) 996 return; 997 998 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 999 // Don't emit functions with dynamic stack allocations. 1000 if (FrameInfo.hasVarSizedObjects()) 1001 return; 1002 1003 OutStreamer->PushSection(); 1004 OutStreamer->SwitchSection(StackSizeSection); 1005 1006 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1007 uint64_t StackSize = FrameInfo.getStackSize(); 1008 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1009 OutStreamer->EmitULEB128IntValue(StackSize); 1010 1011 OutStreamer->PopSection(); 1012 } 1013 1014 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1015 MachineModuleInfo *MMI) { 1016 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1017 return true; 1018 1019 // We might emit an EH table that uses function begin and end labels even if 1020 // we don't have any landingpads. 1021 if (!MF.getFunction().hasPersonalityFn()) 1022 return false; 1023 return !isNoOpWithoutInvoke( 1024 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1025 } 1026 1027 /// EmitFunctionBody - This method emits the body and trailer for a 1028 /// function. 1029 void AsmPrinter::EmitFunctionBody() { 1030 EmitFunctionHeader(); 1031 1032 // Emit target-specific gunk before the function body. 1033 EmitFunctionBodyStart(); 1034 1035 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1036 1037 if (isVerbose()) { 1038 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1039 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1040 if (!MDT) { 1041 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1042 OwnedMDT->getBase().recalculate(*MF); 1043 MDT = OwnedMDT.get(); 1044 } 1045 1046 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1047 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1048 if (!MLI) { 1049 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1050 OwnedMLI->getBase().analyze(MDT->getBase()); 1051 MLI = OwnedMLI.get(); 1052 } 1053 } 1054 1055 // Print out code for the function. 1056 bool HasAnyRealCode = false; 1057 int NumInstsInFunction = 0; 1058 for (auto &MBB : *MF) { 1059 // Print a label for the basic block. 1060 EmitBasicBlockStart(MBB); 1061 for (auto &MI : MBB) { 1062 // Print the assembly for the instruction. 1063 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1064 !MI.isDebugInstr()) { 1065 HasAnyRealCode = true; 1066 ++NumInstsInFunction; 1067 } 1068 1069 // If there is a pre-instruction symbol, emit a label for it here. 1070 if (MCSymbol *S = MI.getPreInstrSymbol()) 1071 OutStreamer->EmitLabel(S); 1072 1073 if (ShouldPrintDebugScopes) { 1074 for (const HandlerInfo &HI : Handlers) { 1075 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1076 HI.TimerGroupName, HI.TimerGroupDescription, 1077 TimePassesIsEnabled); 1078 HI.Handler->beginInstruction(&MI); 1079 } 1080 } 1081 1082 if (isVerbose()) 1083 emitComments(MI, OutStreamer->GetCommentOS()); 1084 1085 switch (MI.getOpcode()) { 1086 case TargetOpcode::CFI_INSTRUCTION: 1087 emitCFIInstruction(MI); 1088 break; 1089 case TargetOpcode::LOCAL_ESCAPE: 1090 emitFrameAlloc(MI); 1091 break; 1092 case TargetOpcode::ANNOTATION_LABEL: 1093 case TargetOpcode::EH_LABEL: 1094 case TargetOpcode::GC_LABEL: 1095 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1096 break; 1097 case TargetOpcode::INLINEASM: 1098 case TargetOpcode::INLINEASM_BR: 1099 EmitInlineAsm(&MI); 1100 break; 1101 case TargetOpcode::DBG_VALUE: 1102 if (isVerbose()) { 1103 if (!emitDebugValueComment(&MI, *this)) 1104 EmitInstruction(&MI); 1105 } 1106 break; 1107 case TargetOpcode::DBG_LABEL: 1108 if (isVerbose()) { 1109 if (!emitDebugLabelComment(&MI, *this)) 1110 EmitInstruction(&MI); 1111 } 1112 break; 1113 case TargetOpcode::IMPLICIT_DEF: 1114 if (isVerbose()) emitImplicitDef(&MI); 1115 break; 1116 case TargetOpcode::KILL: 1117 if (isVerbose()) emitKill(&MI, *this); 1118 break; 1119 default: 1120 EmitInstruction(&MI); 1121 break; 1122 } 1123 1124 // If there is a post-instruction symbol, emit a label for it here. 1125 if (MCSymbol *S = MI.getPostInstrSymbol()) 1126 OutStreamer->EmitLabel(S); 1127 1128 if (ShouldPrintDebugScopes) { 1129 for (const HandlerInfo &HI : Handlers) { 1130 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1131 HI.TimerGroupName, HI.TimerGroupDescription, 1132 TimePassesIsEnabled); 1133 HI.Handler->endInstruction(); 1134 } 1135 } 1136 } 1137 1138 EmitBasicBlockEnd(MBB); 1139 } 1140 1141 EmittedInsts += NumInstsInFunction; 1142 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1143 MF->getFunction().getSubprogram(), 1144 &MF->front()); 1145 R << ore::NV("NumInstructions", NumInstsInFunction) 1146 << " instructions in function"; 1147 ORE->emit(R); 1148 1149 // If the function is empty and the object file uses .subsections_via_symbols, 1150 // then we need to emit *something* to the function body to prevent the 1151 // labels from collapsing together. Just emit a noop. 1152 // Similarly, don't emit empty functions on Windows either. It can lead to 1153 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1154 // after linking, causing the kernel not to load the binary: 1155 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1156 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1157 const Triple &TT = TM.getTargetTriple(); 1158 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1159 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1160 MCInst Noop; 1161 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1162 1163 // Targets can opt-out of emitting the noop here by leaving the opcode 1164 // unspecified. 1165 if (Noop.getOpcode()) { 1166 OutStreamer->AddComment("avoids zero-length function"); 1167 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1168 } 1169 } 1170 1171 const Function &F = MF->getFunction(); 1172 for (const auto &BB : F) { 1173 if (!BB.hasAddressTaken()) 1174 continue; 1175 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1176 if (Sym->isDefined()) 1177 continue; 1178 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1179 OutStreamer->EmitLabel(Sym); 1180 } 1181 1182 // Emit target-specific gunk after the function body. 1183 EmitFunctionBodyEnd(); 1184 1185 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1186 MAI->hasDotTypeDotSizeDirective()) { 1187 // Create a symbol for the end of function. 1188 CurrentFnEnd = createTempSymbol("func_end"); 1189 OutStreamer->EmitLabel(CurrentFnEnd); 1190 } 1191 1192 // If the target wants a .size directive for the size of the function, emit 1193 // it. 1194 if (MAI->hasDotTypeDotSizeDirective()) { 1195 // We can get the size as difference between the function label and the 1196 // temp label. 1197 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1198 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1199 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1200 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1201 } 1202 1203 for (const HandlerInfo &HI : Handlers) { 1204 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1205 HI.TimerGroupDescription, TimePassesIsEnabled); 1206 HI.Handler->markFunctionEnd(); 1207 } 1208 1209 // Print out jump tables referenced by the function. 1210 EmitJumpTableInfo(); 1211 1212 // Emit post-function debug and/or EH information. 1213 for (const HandlerInfo &HI : Handlers) { 1214 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1215 HI.TimerGroupDescription, TimePassesIsEnabled); 1216 HI.Handler->endFunction(MF); 1217 } 1218 1219 // Emit section containing stack size metadata. 1220 emitStackSizeSection(*MF); 1221 1222 if (isVerbose()) 1223 OutStreamer->GetCommentOS() << "-- End function\n"; 1224 1225 OutStreamer->AddBlankLine(); 1226 } 1227 1228 /// Compute the number of Global Variables that uses a Constant. 1229 static unsigned getNumGlobalVariableUses(const Constant *C) { 1230 if (!C) 1231 return 0; 1232 1233 if (isa<GlobalVariable>(C)) 1234 return 1; 1235 1236 unsigned NumUses = 0; 1237 for (auto *CU : C->users()) 1238 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1239 1240 return NumUses; 1241 } 1242 1243 /// Only consider global GOT equivalents if at least one user is a 1244 /// cstexpr inside an initializer of another global variables. Also, don't 1245 /// handle cstexpr inside instructions. During global variable emission, 1246 /// candidates are skipped and are emitted later in case at least one cstexpr 1247 /// isn't replaced by a PC relative GOT entry access. 1248 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1249 unsigned &NumGOTEquivUsers) { 1250 // Global GOT equivalents are unnamed private globals with a constant 1251 // pointer initializer to another global symbol. They must point to a 1252 // GlobalVariable or Function, i.e., as GlobalValue. 1253 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1254 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1255 !isa<GlobalValue>(GV->getOperand(0))) 1256 return false; 1257 1258 // To be a got equivalent, at least one of its users need to be a constant 1259 // expression used by another global variable. 1260 for (auto *U : GV->users()) 1261 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1262 1263 return NumGOTEquivUsers > 0; 1264 } 1265 1266 /// Unnamed constant global variables solely contaning a pointer to 1267 /// another globals variable is equivalent to a GOT table entry; it contains the 1268 /// the address of another symbol. Optimize it and replace accesses to these 1269 /// "GOT equivalents" by using the GOT entry for the final global instead. 1270 /// Compute GOT equivalent candidates among all global variables to avoid 1271 /// emitting them if possible later on, after it use is replaced by a GOT entry 1272 /// access. 1273 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1274 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1275 return; 1276 1277 for (const auto &G : M.globals()) { 1278 unsigned NumGOTEquivUsers = 0; 1279 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1280 continue; 1281 1282 const MCSymbol *GOTEquivSym = getSymbol(&G); 1283 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1284 } 1285 } 1286 1287 /// Constant expressions using GOT equivalent globals may not be eligible 1288 /// for PC relative GOT entry conversion, in such cases we need to emit such 1289 /// globals we previously omitted in EmitGlobalVariable. 1290 void AsmPrinter::emitGlobalGOTEquivs() { 1291 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1292 return; 1293 1294 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1295 for (auto &I : GlobalGOTEquivs) { 1296 const GlobalVariable *GV = I.second.first; 1297 unsigned Cnt = I.second.second; 1298 if (Cnt) 1299 FailedCandidates.push_back(GV); 1300 } 1301 GlobalGOTEquivs.clear(); 1302 1303 for (auto *GV : FailedCandidates) 1304 EmitGlobalVariable(GV); 1305 } 1306 1307 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1308 const GlobalIndirectSymbol& GIS) { 1309 MCSymbol *Name = getSymbol(&GIS); 1310 1311 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1312 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1313 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1314 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1315 else 1316 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1317 1318 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1319 1320 // Treat bitcasts of functions as functions also. This is important at least 1321 // on WebAssembly where object and function addresses can't alias each other. 1322 if (!IsFunction) 1323 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1324 if (CE->getOpcode() == Instruction::BitCast) 1325 IsFunction = 1326 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1327 1328 // Set the symbol type to function if the alias has a function type. 1329 // This affects codegen when the aliasee is not a function. 1330 if (IsFunction) 1331 OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1332 ? MCSA_ELF_TypeIndFunction 1333 : MCSA_ELF_TypeFunction); 1334 1335 EmitVisibility(Name, GIS.getVisibility()); 1336 1337 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1338 1339 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1340 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1341 1342 // Emit the directives as assignments aka .set: 1343 OutStreamer->EmitAssignment(Name, Expr); 1344 1345 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1346 // If the aliasee does not correspond to a symbol in the output, i.e. the 1347 // alias is not of an object or the aliased object is private, then set the 1348 // size of the alias symbol from the type of the alias. We don't do this in 1349 // other situations as the alias and aliasee having differing types but same 1350 // size may be intentional. 1351 const GlobalObject *BaseObject = GA->getBaseObject(); 1352 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1353 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1354 const DataLayout &DL = M.getDataLayout(); 1355 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1356 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1357 } 1358 } 1359 } 1360 1361 void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) { 1362 if (!RS.needsSection()) 1363 return; 1364 1365 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1366 1367 Optional<SmallString<128>> Filename; 1368 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1369 Filename = *FilenameRef; 1370 sys::fs::make_absolute(*Filename); 1371 assert(!Filename->empty() && "The filename can't be empty."); 1372 } 1373 1374 std::string Buf; 1375 raw_string_ostream OS(Buf); 1376 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1377 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1378 : RemarkSerializer.metaSerializer(OS); 1379 MetaSerializer->emit(); 1380 1381 // Switch to the remarks section. 1382 MCSection *RemarksSection = 1383 OutContext.getObjectFileInfo()->getRemarksSection(); 1384 OutStreamer->SwitchSection(RemarksSection); 1385 1386 OutStreamer->EmitBinaryData(OS.str()); 1387 } 1388 1389 bool AsmPrinter::doFinalization(Module &M) { 1390 // Set the MachineFunction to nullptr so that we can catch attempted 1391 // accesses to MF specific features at the module level and so that 1392 // we can conditionalize accesses based on whether or not it is nullptr. 1393 MF = nullptr; 1394 1395 // Gather all GOT equivalent globals in the module. We really need two 1396 // passes over the globals: one to compute and another to avoid its emission 1397 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1398 // where the got equivalent shows up before its use. 1399 computeGlobalGOTEquivs(M); 1400 1401 // Emit global variables. 1402 for (const auto &G : M.globals()) 1403 EmitGlobalVariable(&G); 1404 1405 // Emit remaining GOT equivalent globals. 1406 emitGlobalGOTEquivs(); 1407 1408 // Emit visibility info for declarations 1409 for (const Function &F : M) { 1410 if (!F.isDeclarationForLinker()) 1411 continue; 1412 GlobalValue::VisibilityTypes V = F.getVisibility(); 1413 if (V == GlobalValue::DefaultVisibility) 1414 continue; 1415 1416 MCSymbol *Name = getSymbol(&F); 1417 EmitVisibility(Name, V, false); 1418 } 1419 1420 // Emit the remarks section contents. 1421 // FIXME: Figure out when is the safest time to emit this section. It should 1422 // not come after debug info. 1423 if (RemarkStreamer *RS = M.getContext().getRemarkStreamer()) 1424 emitRemarksSection(*RS); 1425 1426 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1427 1428 TLOF.emitModuleMetadata(*OutStreamer, M); 1429 1430 if (TM.getTargetTriple().isOSBinFormatELF()) { 1431 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1432 1433 // Output stubs for external and common global variables. 1434 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1435 if (!Stubs.empty()) { 1436 OutStreamer->SwitchSection(TLOF.getDataSection()); 1437 const DataLayout &DL = M.getDataLayout(); 1438 1439 EmitAlignment(Align(DL.getPointerSize())); 1440 for (const auto &Stub : Stubs) { 1441 OutStreamer->EmitLabel(Stub.first); 1442 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1443 DL.getPointerSize()); 1444 } 1445 } 1446 } 1447 1448 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1449 MachineModuleInfoCOFF &MMICOFF = 1450 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1451 1452 // Output stubs for external and common global variables. 1453 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1454 if (!Stubs.empty()) { 1455 const DataLayout &DL = M.getDataLayout(); 1456 1457 for (const auto &Stub : Stubs) { 1458 SmallString<256> SectionName = StringRef(".rdata$"); 1459 SectionName += Stub.first->getName(); 1460 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1461 SectionName, 1462 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1463 COFF::IMAGE_SCN_LNK_COMDAT, 1464 SectionKind::getReadOnly(), Stub.first->getName(), 1465 COFF::IMAGE_COMDAT_SELECT_ANY)); 1466 EmitAlignment(Align(DL.getPointerSize())); 1467 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1468 OutStreamer->EmitLabel(Stub.first); 1469 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1470 DL.getPointerSize()); 1471 } 1472 } 1473 } 1474 1475 // Finalize debug and EH information. 1476 for (const HandlerInfo &HI : Handlers) { 1477 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1478 HI.TimerGroupDescription, TimePassesIsEnabled); 1479 HI.Handler->endModule(); 1480 } 1481 Handlers.clear(); 1482 DD = nullptr; 1483 1484 // If the target wants to know about weak references, print them all. 1485 if (MAI->getWeakRefDirective()) { 1486 // FIXME: This is not lazy, it would be nice to only print weak references 1487 // to stuff that is actually used. Note that doing so would require targets 1488 // to notice uses in operands (due to constant exprs etc). This should 1489 // happen with the MC stuff eventually. 1490 1491 // Print out module-level global objects here. 1492 for (const auto &GO : M.global_objects()) { 1493 if (!GO.hasExternalWeakLinkage()) 1494 continue; 1495 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1496 } 1497 } 1498 1499 // Print aliases in topological order, that is, for each alias a = b, 1500 // b must be printed before a. 1501 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1502 // such an order to generate correct TOC information. 1503 SmallVector<const GlobalAlias *, 16> AliasStack; 1504 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1505 for (const auto &Alias : M.aliases()) { 1506 for (const GlobalAlias *Cur = &Alias; Cur; 1507 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1508 if (!AliasVisited.insert(Cur).second) 1509 break; 1510 AliasStack.push_back(Cur); 1511 } 1512 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1513 emitGlobalIndirectSymbol(M, *AncestorAlias); 1514 AliasStack.clear(); 1515 } 1516 for (const auto &IFunc : M.ifuncs()) 1517 emitGlobalIndirectSymbol(M, IFunc); 1518 1519 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1520 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1521 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1522 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1523 MP->finishAssembly(M, *MI, *this); 1524 1525 // Emit llvm.ident metadata in an '.ident' directive. 1526 EmitModuleIdents(M); 1527 1528 // Emit bytes for llvm.commandline metadata. 1529 EmitModuleCommandLines(M); 1530 1531 // Emit __morestack address if needed for indirect calls. 1532 if (MMI->usesMorestackAddr()) { 1533 unsigned Align = 1; 1534 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1535 getDataLayout(), SectionKind::getReadOnly(), 1536 /*C=*/nullptr, Align); 1537 OutStreamer->SwitchSection(ReadOnlySection); 1538 1539 MCSymbol *AddrSymbol = 1540 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1541 OutStreamer->EmitLabel(AddrSymbol); 1542 1543 unsigned PtrSize = MAI->getCodePointerSize(); 1544 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1545 PtrSize); 1546 } 1547 1548 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1549 // split-stack is used. 1550 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1551 OutStreamer->SwitchSection( 1552 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1553 if (MMI->hasNosplitStack()) 1554 OutStreamer->SwitchSection( 1555 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1556 } 1557 1558 // If we don't have any trampolines, then we don't require stack memory 1559 // to be executable. Some targets have a directive to declare this. 1560 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1561 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1562 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1563 OutStreamer->SwitchSection(S); 1564 1565 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1566 // Emit /EXPORT: flags for each exported global as necessary. 1567 const auto &TLOF = getObjFileLowering(); 1568 std::string Flags; 1569 1570 for (const GlobalValue &GV : M.global_values()) { 1571 raw_string_ostream OS(Flags); 1572 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1573 OS.flush(); 1574 if (!Flags.empty()) { 1575 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1576 OutStreamer->EmitBytes(Flags); 1577 } 1578 Flags.clear(); 1579 } 1580 1581 // Emit /INCLUDE: flags for each used global as necessary. 1582 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1583 assert(LU->hasInitializer() && 1584 "expected llvm.used to have an initializer"); 1585 assert(isa<ArrayType>(LU->getValueType()) && 1586 "expected llvm.used to be an array type"); 1587 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1588 for (const Value *Op : A->operands()) { 1589 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1590 // Global symbols with internal or private linkage are not visible to 1591 // the linker, and thus would cause an error when the linker tried to 1592 // preserve the symbol due to the `/include:` directive. 1593 if (GV->hasLocalLinkage()) 1594 continue; 1595 1596 raw_string_ostream OS(Flags); 1597 TLOF.emitLinkerFlagsForUsed(OS, GV); 1598 OS.flush(); 1599 1600 if (!Flags.empty()) { 1601 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1602 OutStreamer->EmitBytes(Flags); 1603 } 1604 Flags.clear(); 1605 } 1606 } 1607 } 1608 } 1609 1610 if (TM.Options.EmitAddrsig) { 1611 // Emit address-significance attributes for all globals. 1612 OutStreamer->EmitAddrsig(); 1613 for (const GlobalValue &GV : M.global_values()) 1614 if (!GV.use_empty() && !GV.isThreadLocal() && 1615 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1616 !GV.hasAtLeastLocalUnnamedAddr()) 1617 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1618 } 1619 1620 // Emit symbol partition specifications (ELF only). 1621 if (TM.getTargetTriple().isOSBinFormatELF()) { 1622 unsigned UniqueID = 0; 1623 for (const GlobalValue &GV : M.global_values()) { 1624 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1625 GV.getVisibility() != GlobalValue::DefaultVisibility) 1626 continue; 1627 1628 OutStreamer->SwitchSection(OutContext.getELFSection( 1629 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1630 OutStreamer->EmitBytes(GV.getPartition()); 1631 OutStreamer->EmitZeros(1); 1632 OutStreamer->EmitValue( 1633 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1634 MAI->getCodePointerSize()); 1635 } 1636 } 1637 1638 // Allow the target to emit any magic that it wants at the end of the file, 1639 // after everything else has gone out. 1640 EmitEndOfAsmFile(M); 1641 1642 MMI = nullptr; 1643 1644 OutStreamer->Finish(); 1645 OutStreamer->reset(); 1646 OwnedMLI.reset(); 1647 OwnedMDT.reset(); 1648 1649 return false; 1650 } 1651 1652 MCSymbol *AsmPrinter::getCurExceptionSym() { 1653 if (!CurExceptionSym) 1654 CurExceptionSym = createTempSymbol("exception"); 1655 return CurExceptionSym; 1656 } 1657 1658 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1659 this->MF = &MF; 1660 1661 // Get the function symbol. 1662 if (MAI->needsFunctionDescriptors()) { 1663 assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only" 1664 " supported on AIX."); 1665 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1666 " initalized first."); 1667 1668 // Get the function entry point symbol. 1669 CurrentFnSym = 1670 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); 1671 1672 const Function &F = MF.getFunction(); 1673 MCSectionXCOFF *FnEntryPointSec = 1674 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); 1675 // Set the containing csect. 1676 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); 1677 } else { 1678 CurrentFnSym = getSymbol(&MF.getFunction()); 1679 } 1680 1681 CurrentFnSymForSize = CurrentFnSym; 1682 CurrentFnBegin = nullptr; 1683 CurExceptionSym = nullptr; 1684 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1685 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1686 MF.getTarget().Options.EmitStackSizeSection) { 1687 CurrentFnBegin = createTempSymbol("func_begin"); 1688 if (NeedsLocalForSize) 1689 CurrentFnSymForSize = CurrentFnBegin; 1690 } 1691 1692 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1693 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1694 MBFI = (PSI && PSI->hasProfileSummary()) ? 1695 // ORE conditionally computes MBFI. If available, use it, otherwise 1696 // request it. 1697 (ORE->getBFI() ? ORE->getBFI() : 1698 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) : 1699 nullptr; 1700 } 1701 1702 namespace { 1703 1704 // Keep track the alignment, constpool entries per Section. 1705 struct SectionCPs { 1706 MCSection *S; 1707 unsigned Alignment; 1708 SmallVector<unsigned, 4> CPEs; 1709 1710 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1711 }; 1712 1713 } // end anonymous namespace 1714 1715 /// EmitConstantPool - Print to the current output stream assembly 1716 /// representations of the constants in the constant pool MCP. This is 1717 /// used to print out constants which have been "spilled to memory" by 1718 /// the code generator. 1719 void AsmPrinter::EmitConstantPool() { 1720 const MachineConstantPool *MCP = MF->getConstantPool(); 1721 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1722 if (CP.empty()) return; 1723 1724 // Calculate sections for constant pool entries. We collect entries to go into 1725 // the same section together to reduce amount of section switch statements. 1726 SmallVector<SectionCPs, 4> CPSections; 1727 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1728 const MachineConstantPoolEntry &CPE = CP[i]; 1729 unsigned Align = CPE.getAlignment(); 1730 1731 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1732 1733 const Constant *C = nullptr; 1734 if (!CPE.isMachineConstantPoolEntry()) 1735 C = CPE.Val.ConstVal; 1736 1737 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1738 Kind, C, Align); 1739 1740 // The number of sections are small, just do a linear search from the 1741 // last section to the first. 1742 bool Found = false; 1743 unsigned SecIdx = CPSections.size(); 1744 while (SecIdx != 0) { 1745 if (CPSections[--SecIdx].S == S) { 1746 Found = true; 1747 break; 1748 } 1749 } 1750 if (!Found) { 1751 SecIdx = CPSections.size(); 1752 CPSections.push_back(SectionCPs(S, Align)); 1753 } 1754 1755 if (Align > CPSections[SecIdx].Alignment) 1756 CPSections[SecIdx].Alignment = Align; 1757 CPSections[SecIdx].CPEs.push_back(i); 1758 } 1759 1760 // Now print stuff into the calculated sections. 1761 const MCSection *CurSection = nullptr; 1762 unsigned Offset = 0; 1763 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1764 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1765 unsigned CPI = CPSections[i].CPEs[j]; 1766 MCSymbol *Sym = GetCPISymbol(CPI); 1767 if (!Sym->isUndefined()) 1768 continue; 1769 1770 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1771 cast<MCSymbolXCOFF>(Sym)->setContainingCsect( 1772 cast<MCSectionXCOFF>(CPSections[i].S)); 1773 } 1774 1775 if (CurSection != CPSections[i].S) { 1776 OutStreamer->SwitchSection(CPSections[i].S); 1777 EmitAlignment(Align(CPSections[i].Alignment)); 1778 CurSection = CPSections[i].S; 1779 Offset = 0; 1780 } 1781 1782 MachineConstantPoolEntry CPE = CP[CPI]; 1783 1784 // Emit inter-object padding for alignment. 1785 unsigned AlignMask = CPE.getAlignment() - 1; 1786 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1787 OutStreamer->EmitZeros(NewOffset - Offset); 1788 1789 Type *Ty = CPE.getType(); 1790 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1791 1792 OutStreamer->EmitLabel(Sym); 1793 if (CPE.isMachineConstantPoolEntry()) 1794 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1795 else 1796 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1797 } 1798 } 1799 } 1800 1801 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1802 /// by the current function to the current output stream. 1803 void AsmPrinter::EmitJumpTableInfo() { 1804 const DataLayout &DL = MF->getDataLayout(); 1805 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1806 if (!MJTI) return; 1807 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1808 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1809 if (JT.empty()) return; 1810 1811 // Pick the directive to use to print the jump table entries, and switch to 1812 // the appropriate section. 1813 const Function &F = MF->getFunction(); 1814 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1815 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1816 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1817 F); 1818 if (JTInDiffSection) { 1819 // Drop it in the readonly section. 1820 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1821 OutStreamer->SwitchSection(ReadOnlySection); 1822 } 1823 1824 EmitAlignment(Align(MJTI->getEntryAlignment(DL))); 1825 1826 // Jump tables in code sections are marked with a data_region directive 1827 // where that's supported. 1828 if (!JTInDiffSection) 1829 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1830 1831 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1832 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1833 1834 // If this jump table was deleted, ignore it. 1835 if (JTBBs.empty()) continue; 1836 1837 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1838 /// emit a .set directive for each unique entry. 1839 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1840 MAI->doesSetDirectiveSuppressReloc()) { 1841 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1842 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1843 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1844 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1845 const MachineBasicBlock *MBB = JTBBs[ii]; 1846 if (!EmittedSets.insert(MBB).second) 1847 continue; 1848 1849 // .set LJTSet, LBB32-base 1850 const MCExpr *LHS = 1851 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1852 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1853 MCBinaryExpr::createSub(LHS, Base, 1854 OutContext)); 1855 } 1856 } 1857 1858 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1859 // before each jump table. The first label is never referenced, but tells 1860 // the assembler and linker the extents of the jump table object. The 1861 // second label is actually referenced by the code. 1862 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1863 // FIXME: This doesn't have to have any specific name, just any randomly 1864 // named and numbered local label started with 'l' would work. Simplify 1865 // GetJTISymbol. 1866 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1867 1868 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1869 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1870 cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect( 1871 cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM))); 1872 } 1873 OutStreamer->EmitLabel(JTISymbol); 1874 1875 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1876 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1877 } 1878 if (!JTInDiffSection) 1879 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1880 } 1881 1882 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1883 /// current stream. 1884 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1885 const MachineBasicBlock *MBB, 1886 unsigned UID) const { 1887 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1888 const MCExpr *Value = nullptr; 1889 switch (MJTI->getEntryKind()) { 1890 case MachineJumpTableInfo::EK_Inline: 1891 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1892 case MachineJumpTableInfo::EK_Custom32: 1893 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1894 MJTI, MBB, UID, OutContext); 1895 break; 1896 case MachineJumpTableInfo::EK_BlockAddress: 1897 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1898 // .word LBB123 1899 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1900 break; 1901 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1902 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1903 // with a relocation as gp-relative, e.g.: 1904 // .gprel32 LBB123 1905 MCSymbol *MBBSym = MBB->getSymbol(); 1906 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1907 return; 1908 } 1909 1910 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1911 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1912 // with a relocation as gp-relative, e.g.: 1913 // .gpdword LBB123 1914 MCSymbol *MBBSym = MBB->getSymbol(); 1915 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1916 return; 1917 } 1918 1919 case MachineJumpTableInfo::EK_LabelDifference32: { 1920 // Each entry is the address of the block minus the address of the jump 1921 // table. This is used for PIC jump tables where gprel32 is not supported. 1922 // e.g.: 1923 // .word LBB123 - LJTI1_2 1924 // If the .set directive avoids relocations, this is emitted as: 1925 // .set L4_5_set_123, LBB123 - LJTI1_2 1926 // .word L4_5_set_123 1927 if (MAI->doesSetDirectiveSuppressReloc()) { 1928 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1929 OutContext); 1930 break; 1931 } 1932 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1933 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1934 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1935 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1936 break; 1937 } 1938 } 1939 1940 assert(Value && "Unknown entry kind!"); 1941 1942 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1943 OutStreamer->EmitValue(Value, EntrySize); 1944 } 1945 1946 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1947 /// special global used by LLVM. If so, emit it and return true, otherwise 1948 /// do nothing and return false. 1949 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1950 if (GV->getName() == "llvm.used") { 1951 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1952 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1953 return true; 1954 } 1955 1956 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1957 if (GV->getSection() == "llvm.metadata" || 1958 GV->hasAvailableExternallyLinkage()) 1959 return true; 1960 1961 if (!GV->hasAppendingLinkage()) return false; 1962 1963 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1964 1965 if (GV->getName() == "llvm.global_ctors") { 1966 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1967 /* isCtor */ true); 1968 1969 return true; 1970 } 1971 1972 if (GV->getName() == "llvm.global_dtors") { 1973 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1974 /* isCtor */ false); 1975 1976 return true; 1977 } 1978 1979 report_fatal_error("unknown special variable"); 1980 } 1981 1982 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1983 /// global in the specified llvm.used list. 1984 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1985 // Should be an array of 'i8*'. 1986 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1987 const GlobalValue *GV = 1988 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1989 if (GV) 1990 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1991 } 1992 } 1993 1994 namespace { 1995 1996 struct Structor { 1997 int Priority = 0; 1998 Constant *Func = nullptr; 1999 GlobalValue *ComdatKey = nullptr; 2000 2001 Structor() = default; 2002 }; 2003 2004 } // end anonymous namespace 2005 2006 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2007 /// priority. 2008 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 2009 bool isCtor) { 2010 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2011 // init priority. 2012 if (!isa<ConstantArray>(List)) return; 2013 2014 // Sanity check the structors list. 2015 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 2016 if (!InitList) return; // Not an array! 2017 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2018 if (!ETy || ETy->getNumElements() != 3 || 2019 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2020 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2021 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2022 return; // Not (int, ptr, ptr). 2023 2024 // Gather the structors in a form that's convenient for sorting by priority. 2025 SmallVector<Structor, 8> Structors; 2026 for (Value *O : InitList->operands()) { 2027 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2028 if (!CS) continue; // Malformed. 2029 if (CS->getOperand(1)->isNullValue()) 2030 break; // Found a null terminator, skip the rest. 2031 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2032 if (!Priority) continue; // Malformed. 2033 Structors.push_back(Structor()); 2034 Structor &S = Structors.back(); 2035 S.Priority = Priority->getLimitedValue(65535); 2036 S.Func = CS->getOperand(1); 2037 if (!CS->getOperand(2)->isNullValue()) 2038 S.ComdatKey = 2039 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2040 } 2041 2042 // Emit the function pointers in the target-specific order 2043 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2044 return L.Priority < R.Priority; 2045 }); 2046 const Align Align = DL.getPointerPrefAlignment(); 2047 for (Structor &S : Structors) { 2048 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2049 const MCSymbol *KeySym = nullptr; 2050 if (GlobalValue *GV = S.ComdatKey) { 2051 if (GV->isDeclarationForLinker()) 2052 // If the associated variable is not defined in this module 2053 // (it might be available_externally, or have been an 2054 // available_externally definition that was dropped by the 2055 // EliminateAvailableExternally pass), some other TU 2056 // will provide its dynamic initializer. 2057 continue; 2058 2059 KeySym = getSymbol(GV); 2060 } 2061 MCSection *OutputSection = 2062 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2063 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2064 OutStreamer->SwitchSection(OutputSection); 2065 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2066 EmitAlignment(Align); 2067 EmitXXStructor(DL, S.Func); 2068 } 2069 } 2070 2071 void AsmPrinter::EmitModuleIdents(Module &M) { 2072 if (!MAI->hasIdentDirective()) 2073 return; 2074 2075 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2076 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2077 const MDNode *N = NMD->getOperand(i); 2078 assert(N->getNumOperands() == 1 && 2079 "llvm.ident metadata entry can have only one operand"); 2080 const MDString *S = cast<MDString>(N->getOperand(0)); 2081 OutStreamer->EmitIdent(S->getString()); 2082 } 2083 } 2084 } 2085 2086 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2087 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2088 if (!CommandLine) 2089 return; 2090 2091 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2092 if (!NMD || !NMD->getNumOperands()) 2093 return; 2094 2095 OutStreamer->PushSection(); 2096 OutStreamer->SwitchSection(CommandLine); 2097 OutStreamer->EmitZeros(1); 2098 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2099 const MDNode *N = NMD->getOperand(i); 2100 assert(N->getNumOperands() == 1 && 2101 "llvm.commandline metadata entry can have only one operand"); 2102 const MDString *S = cast<MDString>(N->getOperand(0)); 2103 OutStreamer->EmitBytes(S->getString()); 2104 OutStreamer->EmitZeros(1); 2105 } 2106 OutStreamer->PopSection(); 2107 } 2108 2109 //===--------------------------------------------------------------------===// 2110 // Emission and print routines 2111 // 2112 2113 /// Emit a byte directive and value. 2114 /// 2115 void AsmPrinter::emitInt8(int Value) const { 2116 OutStreamer->EmitIntValue(Value, 1); 2117 } 2118 2119 /// Emit a short directive and value. 2120 void AsmPrinter::emitInt16(int Value) const { 2121 OutStreamer->EmitIntValue(Value, 2); 2122 } 2123 2124 /// Emit a long directive and value. 2125 void AsmPrinter::emitInt32(int Value) const { 2126 OutStreamer->EmitIntValue(Value, 4); 2127 } 2128 2129 /// Emit a long long directive and value. 2130 void AsmPrinter::emitInt64(uint64_t Value) const { 2131 OutStreamer->EmitIntValue(Value, 8); 2132 } 2133 2134 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2135 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2136 /// .set if it avoids relocations. 2137 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2138 unsigned Size) const { 2139 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2140 } 2141 2142 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2143 /// where the size in bytes of the directive is specified by Size and Label 2144 /// specifies the label. This implicitly uses .set if it is available. 2145 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2146 unsigned Size, 2147 bool IsSectionRelative) const { 2148 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2149 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2150 if (Size > 4) 2151 OutStreamer->EmitZeros(Size - 4); 2152 return; 2153 } 2154 2155 // Emit Label+Offset (or just Label if Offset is zero) 2156 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2157 if (Offset) 2158 Expr = MCBinaryExpr::createAdd( 2159 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2160 2161 OutStreamer->EmitValue(Expr, Size); 2162 } 2163 2164 //===----------------------------------------------------------------------===// 2165 2166 // EmitAlignment - Emit an alignment directive to the specified power of 2167 // two boundary. If a global value is specified, and if that global has 2168 // an explicit alignment requested, it will override the alignment request 2169 // if required for correctness. 2170 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const { 2171 if (GV) 2172 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2173 2174 if (Alignment == Align::None()) 2175 return; // 1-byte aligned: no need to emit alignment. 2176 2177 if (getCurrentSection()->getKind().isText()) 2178 OutStreamer->EmitCodeAlignment(Alignment.value()); 2179 else 2180 OutStreamer->EmitValueToAlignment(Alignment.value()); 2181 } 2182 2183 //===----------------------------------------------------------------------===// 2184 // Constant emission. 2185 //===----------------------------------------------------------------------===// 2186 2187 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2188 MCContext &Ctx = OutContext; 2189 2190 if (CV->isNullValue() || isa<UndefValue>(CV)) 2191 return MCConstantExpr::create(0, Ctx); 2192 2193 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2194 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2195 2196 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2197 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2198 2199 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2200 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2201 2202 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2203 if (!CE) { 2204 llvm_unreachable("Unknown constant value to lower!"); 2205 } 2206 2207 switch (CE->getOpcode()) { 2208 default: 2209 // If the code isn't optimized, there may be outstanding folding 2210 // opportunities. Attempt to fold the expression using DataLayout as a 2211 // last resort before giving up. 2212 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2213 if (C != CE) 2214 return lowerConstant(C); 2215 2216 // Otherwise report the problem to the user. 2217 { 2218 std::string S; 2219 raw_string_ostream OS(S); 2220 OS << "Unsupported expression in static initializer: "; 2221 CE->printAsOperand(OS, /*PrintType=*/false, 2222 !MF ? nullptr : MF->getFunction().getParent()); 2223 report_fatal_error(OS.str()); 2224 } 2225 case Instruction::GetElementPtr: { 2226 // Generate a symbolic expression for the byte address 2227 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2228 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2229 2230 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2231 if (!OffsetAI) 2232 return Base; 2233 2234 int64_t Offset = OffsetAI.getSExtValue(); 2235 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2236 Ctx); 2237 } 2238 2239 case Instruction::Trunc: 2240 // We emit the value and depend on the assembler to truncate the generated 2241 // expression properly. This is important for differences between 2242 // blockaddress labels. Since the two labels are in the same function, it 2243 // is reasonable to treat their delta as a 32-bit value. 2244 LLVM_FALLTHROUGH; 2245 case Instruction::BitCast: 2246 return lowerConstant(CE->getOperand(0)); 2247 2248 case Instruction::IntToPtr: { 2249 const DataLayout &DL = getDataLayout(); 2250 2251 // Handle casts to pointers by changing them into casts to the appropriate 2252 // integer type. This promotes constant folding and simplifies this code. 2253 Constant *Op = CE->getOperand(0); 2254 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2255 false/*ZExt*/); 2256 return lowerConstant(Op); 2257 } 2258 2259 case Instruction::PtrToInt: { 2260 const DataLayout &DL = getDataLayout(); 2261 2262 // Support only foldable casts to/from pointers that can be eliminated by 2263 // changing the pointer to the appropriately sized integer type. 2264 Constant *Op = CE->getOperand(0); 2265 Type *Ty = CE->getType(); 2266 2267 const MCExpr *OpExpr = lowerConstant(Op); 2268 2269 // We can emit the pointer value into this slot if the slot is an 2270 // integer slot equal to the size of the pointer. 2271 // 2272 // If the pointer is larger than the resultant integer, then 2273 // as with Trunc just depend on the assembler to truncate it. 2274 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2275 return OpExpr; 2276 2277 // Otherwise the pointer is smaller than the resultant integer, mask off 2278 // the high bits so we are sure to get a proper truncation if the input is 2279 // a constant expr. 2280 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2281 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2282 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2283 } 2284 2285 case Instruction::Sub: { 2286 GlobalValue *LHSGV; 2287 APInt LHSOffset; 2288 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2289 getDataLayout())) { 2290 GlobalValue *RHSGV; 2291 APInt RHSOffset; 2292 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2293 getDataLayout())) { 2294 const MCExpr *RelocExpr = 2295 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2296 if (!RelocExpr) 2297 RelocExpr = MCBinaryExpr::createSub( 2298 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2299 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2300 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2301 if (Addend != 0) 2302 RelocExpr = MCBinaryExpr::createAdd( 2303 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2304 return RelocExpr; 2305 } 2306 } 2307 } 2308 // else fallthrough 2309 LLVM_FALLTHROUGH; 2310 2311 // The MC library also has a right-shift operator, but it isn't consistently 2312 // signed or unsigned between different targets. 2313 case Instruction::Add: 2314 case Instruction::Mul: 2315 case Instruction::SDiv: 2316 case Instruction::SRem: 2317 case Instruction::Shl: 2318 case Instruction::And: 2319 case Instruction::Or: 2320 case Instruction::Xor: { 2321 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2322 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2323 switch (CE->getOpcode()) { 2324 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2325 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2326 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2327 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2328 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2329 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2330 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2331 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2332 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2333 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2334 } 2335 } 2336 } 2337 } 2338 2339 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2340 AsmPrinter &AP, 2341 const Constant *BaseCV = nullptr, 2342 uint64_t Offset = 0); 2343 2344 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2345 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2346 2347 /// isRepeatedByteSequence - Determine whether the given value is 2348 /// composed of a repeated sequence of identical bytes and return the 2349 /// byte value. If it is not a repeated sequence, return -1. 2350 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2351 StringRef Data = V->getRawDataValues(); 2352 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2353 char C = Data[0]; 2354 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2355 if (Data[i] != C) return -1; 2356 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2357 } 2358 2359 /// isRepeatedByteSequence - Determine whether the given value is 2360 /// composed of a repeated sequence of identical bytes and return the 2361 /// byte value. If it is not a repeated sequence, return -1. 2362 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2363 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2364 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2365 assert(Size % 8 == 0); 2366 2367 // Extend the element to take zero padding into account. 2368 APInt Value = CI->getValue().zextOrSelf(Size); 2369 if (!Value.isSplat(8)) 2370 return -1; 2371 2372 return Value.zextOrTrunc(8).getZExtValue(); 2373 } 2374 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2375 // Make sure all array elements are sequences of the same repeated 2376 // byte. 2377 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2378 Constant *Op0 = CA->getOperand(0); 2379 int Byte = isRepeatedByteSequence(Op0, DL); 2380 if (Byte == -1) 2381 return -1; 2382 2383 // All array elements must be equal. 2384 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2385 if (CA->getOperand(i) != Op0) 2386 return -1; 2387 return Byte; 2388 } 2389 2390 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2391 return isRepeatedByteSequence(CDS); 2392 2393 return -1; 2394 } 2395 2396 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2397 const ConstantDataSequential *CDS, 2398 AsmPrinter &AP) { 2399 // See if we can aggregate this into a .fill, if so, emit it as such. 2400 int Value = isRepeatedByteSequence(CDS, DL); 2401 if (Value != -1) { 2402 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2403 // Don't emit a 1-byte object as a .fill. 2404 if (Bytes > 1) 2405 return AP.OutStreamer->emitFill(Bytes, Value); 2406 } 2407 2408 // If this can be emitted with .ascii/.asciz, emit it as such. 2409 if (CDS->isString()) 2410 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2411 2412 // Otherwise, emit the values in successive locations. 2413 unsigned ElementByteSize = CDS->getElementByteSize(); 2414 if (isa<IntegerType>(CDS->getElementType())) { 2415 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2416 if (AP.isVerbose()) 2417 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2418 CDS->getElementAsInteger(i)); 2419 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2420 ElementByteSize); 2421 } 2422 } else { 2423 Type *ET = CDS->getElementType(); 2424 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2425 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2426 } 2427 2428 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2429 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2430 CDS->getNumElements(); 2431 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2432 if (unsigned Padding = Size - EmittedSize) 2433 AP.OutStreamer->EmitZeros(Padding); 2434 } 2435 2436 static void emitGlobalConstantArray(const DataLayout &DL, 2437 const ConstantArray *CA, AsmPrinter &AP, 2438 const Constant *BaseCV, uint64_t Offset) { 2439 // See if we can aggregate some values. Make sure it can be 2440 // represented as a series of bytes of the constant value. 2441 int Value = isRepeatedByteSequence(CA, DL); 2442 2443 if (Value != -1) { 2444 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2445 AP.OutStreamer->emitFill(Bytes, Value); 2446 } 2447 else { 2448 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2449 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2450 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2451 } 2452 } 2453 } 2454 2455 static void emitGlobalConstantVector(const DataLayout &DL, 2456 const ConstantVector *CV, AsmPrinter &AP) { 2457 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2458 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2459 2460 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2461 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2462 CV->getType()->getNumElements(); 2463 if (unsigned Padding = Size - EmittedSize) 2464 AP.OutStreamer->EmitZeros(Padding); 2465 } 2466 2467 static void emitGlobalConstantStruct(const DataLayout &DL, 2468 const ConstantStruct *CS, AsmPrinter &AP, 2469 const Constant *BaseCV, uint64_t Offset) { 2470 // Print the fields in successive locations. Pad to align if needed! 2471 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2472 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2473 uint64_t SizeSoFar = 0; 2474 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2475 const Constant *Field = CS->getOperand(i); 2476 2477 // Print the actual field value. 2478 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2479 2480 // Check if padding is needed and insert one or more 0s. 2481 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2482 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2483 - Layout->getElementOffset(i)) - FieldSize; 2484 SizeSoFar += FieldSize + PadSize; 2485 2486 // Insert padding - this may include padding to increase the size of the 2487 // current field up to the ABI size (if the struct is not packed) as well 2488 // as padding to ensure that the next field starts at the right offset. 2489 AP.OutStreamer->EmitZeros(PadSize); 2490 } 2491 assert(SizeSoFar == Layout->getSizeInBytes() && 2492 "Layout of constant struct may be incorrect!"); 2493 } 2494 2495 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2496 assert(ET && "Unknown float type"); 2497 APInt API = APF.bitcastToAPInt(); 2498 2499 // First print a comment with what we think the original floating-point value 2500 // should have been. 2501 if (AP.isVerbose()) { 2502 SmallString<8> StrVal; 2503 APF.toString(StrVal); 2504 ET->print(AP.OutStreamer->GetCommentOS()); 2505 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2506 } 2507 2508 // Now iterate through the APInt chunks, emitting them in endian-correct 2509 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2510 // floats). 2511 unsigned NumBytes = API.getBitWidth() / 8; 2512 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2513 const uint64_t *p = API.getRawData(); 2514 2515 // PPC's long double has odd notions of endianness compared to how LLVM 2516 // handles it: p[0] goes first for *big* endian on PPC. 2517 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2518 int Chunk = API.getNumWords() - 1; 2519 2520 if (TrailingBytes) 2521 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2522 2523 for (; Chunk >= 0; --Chunk) 2524 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2525 } else { 2526 unsigned Chunk; 2527 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2528 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2529 2530 if (TrailingBytes) 2531 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2532 } 2533 2534 // Emit the tail padding for the long double. 2535 const DataLayout &DL = AP.getDataLayout(); 2536 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2537 } 2538 2539 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2540 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2541 } 2542 2543 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2544 const DataLayout &DL = AP.getDataLayout(); 2545 unsigned BitWidth = CI->getBitWidth(); 2546 2547 // Copy the value as we may massage the layout for constants whose bit width 2548 // is not a multiple of 64-bits. 2549 APInt Realigned(CI->getValue()); 2550 uint64_t ExtraBits = 0; 2551 unsigned ExtraBitsSize = BitWidth & 63; 2552 2553 if (ExtraBitsSize) { 2554 // The bit width of the data is not a multiple of 64-bits. 2555 // The extra bits are expected to be at the end of the chunk of the memory. 2556 // Little endian: 2557 // * Nothing to be done, just record the extra bits to emit. 2558 // Big endian: 2559 // * Record the extra bits to emit. 2560 // * Realign the raw data to emit the chunks of 64-bits. 2561 if (DL.isBigEndian()) { 2562 // Basically the structure of the raw data is a chunk of 64-bits cells: 2563 // 0 1 BitWidth / 64 2564 // [chunk1][chunk2] ... [chunkN]. 2565 // The most significant chunk is chunkN and it should be emitted first. 2566 // However, due to the alignment issue chunkN contains useless bits. 2567 // Realign the chunks so that they contain only useless information: 2568 // ExtraBits 0 1 (BitWidth / 64) - 1 2569 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2570 ExtraBits = Realigned.getRawData()[0] & 2571 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2572 Realigned.lshrInPlace(ExtraBitsSize); 2573 } else 2574 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2575 } 2576 2577 // We don't expect assemblers to support integer data directives 2578 // for more than 64 bits, so we emit the data in at most 64-bit 2579 // quantities at a time. 2580 const uint64_t *RawData = Realigned.getRawData(); 2581 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2582 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2583 AP.OutStreamer->EmitIntValue(Val, 8); 2584 } 2585 2586 if (ExtraBitsSize) { 2587 // Emit the extra bits after the 64-bits chunks. 2588 2589 // Emit a directive that fills the expected size. 2590 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2591 Size -= (BitWidth / 64) * 8; 2592 assert(Size && Size * 8 >= ExtraBitsSize && 2593 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2594 == ExtraBits && "Directive too small for extra bits."); 2595 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2596 } 2597 } 2598 2599 /// Transform a not absolute MCExpr containing a reference to a GOT 2600 /// equivalent global, by a target specific GOT pc relative access to the 2601 /// final symbol. 2602 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2603 const Constant *BaseCst, 2604 uint64_t Offset) { 2605 // The global @foo below illustrates a global that uses a got equivalent. 2606 // 2607 // @bar = global i32 42 2608 // @gotequiv = private unnamed_addr constant i32* @bar 2609 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2610 // i64 ptrtoint (i32* @foo to i64)) 2611 // to i32) 2612 // 2613 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2614 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2615 // form: 2616 // 2617 // foo = cstexpr, where 2618 // cstexpr := <gotequiv> - "." + <cst> 2619 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2620 // 2621 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2622 // 2623 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2624 // gotpcrelcst := <offset from @foo base> + <cst> 2625 MCValue MV; 2626 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2627 return; 2628 const MCSymbolRefExpr *SymA = MV.getSymA(); 2629 if (!SymA) 2630 return; 2631 2632 // Check that GOT equivalent symbol is cached. 2633 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2634 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2635 return; 2636 2637 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2638 if (!BaseGV) 2639 return; 2640 2641 // Check for a valid base symbol 2642 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2643 const MCSymbolRefExpr *SymB = MV.getSymB(); 2644 2645 if (!SymB || BaseSym != &SymB->getSymbol()) 2646 return; 2647 2648 // Make sure to match: 2649 // 2650 // gotpcrelcst := <offset from @foo base> + <cst> 2651 // 2652 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2653 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2654 // if the target knows how to encode it. 2655 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2656 if (GOTPCRelCst < 0) 2657 return; 2658 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2659 return; 2660 2661 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2662 // 2663 // bar: 2664 // .long 42 2665 // gotequiv: 2666 // .quad bar 2667 // foo: 2668 // .long gotequiv - "." + <cst> 2669 // 2670 // is replaced by the target specific equivalent to: 2671 // 2672 // bar: 2673 // .long 42 2674 // foo: 2675 // .long bar@GOTPCREL+<gotpcrelcst> 2676 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2677 const GlobalVariable *GV = Result.first; 2678 int NumUses = (int)Result.second; 2679 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2680 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2681 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2682 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2683 2684 // Update GOT equivalent usage information 2685 --NumUses; 2686 if (NumUses >= 0) 2687 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2688 } 2689 2690 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2691 AsmPrinter &AP, const Constant *BaseCV, 2692 uint64_t Offset) { 2693 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2694 2695 // Globals with sub-elements such as combinations of arrays and structs 2696 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2697 // constant symbol base and the current position with BaseCV and Offset. 2698 if (!BaseCV && CV->hasOneUse()) 2699 BaseCV = dyn_cast<Constant>(CV->user_back()); 2700 2701 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2702 return AP.OutStreamer->EmitZeros(Size); 2703 2704 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2705 switch (Size) { 2706 case 1: 2707 case 2: 2708 case 4: 2709 case 8: 2710 if (AP.isVerbose()) 2711 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2712 CI->getZExtValue()); 2713 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2714 return; 2715 default: 2716 emitGlobalConstantLargeInt(CI, AP); 2717 return; 2718 } 2719 } 2720 2721 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2722 return emitGlobalConstantFP(CFP, AP); 2723 2724 if (isa<ConstantPointerNull>(CV)) { 2725 AP.OutStreamer->EmitIntValue(0, Size); 2726 return; 2727 } 2728 2729 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2730 return emitGlobalConstantDataSequential(DL, CDS, AP); 2731 2732 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2733 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2734 2735 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2736 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2737 2738 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2739 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2740 // vectors). 2741 if (CE->getOpcode() == Instruction::BitCast) 2742 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2743 2744 if (Size > 8) { 2745 // If the constant expression's size is greater than 64-bits, then we have 2746 // to emit the value in chunks. Try to constant fold the value and emit it 2747 // that way. 2748 Constant *New = ConstantFoldConstant(CE, DL); 2749 if (New && New != CE) 2750 return emitGlobalConstantImpl(DL, New, AP); 2751 } 2752 } 2753 2754 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2755 return emitGlobalConstantVector(DL, V, AP); 2756 2757 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2758 // thread the streamer with EmitValue. 2759 const MCExpr *ME = AP.lowerConstant(CV); 2760 2761 // Since lowerConstant already folded and got rid of all IR pointer and 2762 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2763 // directly. 2764 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2765 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2766 2767 AP.OutStreamer->EmitValue(ME, Size); 2768 } 2769 2770 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2771 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2772 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2773 if (Size) 2774 emitGlobalConstantImpl(DL, CV, *this); 2775 else if (MAI->hasSubsectionsViaSymbols()) { 2776 // If the global has zero size, emit a single byte so that two labels don't 2777 // look like they are at the same location. 2778 OutStreamer->EmitIntValue(0, 1); 2779 } 2780 } 2781 2782 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2783 // Target doesn't support this yet! 2784 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2785 } 2786 2787 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2788 if (Offset > 0) 2789 OS << '+' << Offset; 2790 else if (Offset < 0) 2791 OS << Offset; 2792 } 2793 2794 //===----------------------------------------------------------------------===// 2795 // Symbol Lowering Routines. 2796 //===----------------------------------------------------------------------===// 2797 2798 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2799 return OutContext.createTempSymbol(Name, true); 2800 } 2801 2802 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2803 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2804 } 2805 2806 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2807 return MMI->getAddrLabelSymbol(BB); 2808 } 2809 2810 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2811 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2812 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2813 const MachineConstantPoolEntry &CPE = 2814 MF->getConstantPool()->getConstants()[CPID]; 2815 if (!CPE.isMachineConstantPoolEntry()) { 2816 const DataLayout &DL = MF->getDataLayout(); 2817 SectionKind Kind = CPE.getSectionKind(&DL); 2818 const Constant *C = CPE.Val.ConstVal; 2819 unsigned Align = CPE.Alignment; 2820 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2821 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2822 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2823 if (Sym->isUndefined()) 2824 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2825 return Sym; 2826 } 2827 } 2828 } 2829 } 2830 2831 const DataLayout &DL = getDataLayout(); 2832 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2833 "CPI" + Twine(getFunctionNumber()) + "_" + 2834 Twine(CPID)); 2835 } 2836 2837 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2838 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2839 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2840 } 2841 2842 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2843 /// FIXME: privatize to AsmPrinter. 2844 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2845 const DataLayout &DL = getDataLayout(); 2846 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2847 Twine(getFunctionNumber()) + "_" + 2848 Twine(UID) + "_set_" + Twine(MBBID)); 2849 } 2850 2851 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2852 StringRef Suffix) const { 2853 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2854 } 2855 2856 /// Return the MCSymbol for the specified ExternalSymbol. 2857 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2858 SmallString<60> NameStr; 2859 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2860 return OutContext.getOrCreateSymbol(NameStr); 2861 } 2862 2863 /// PrintParentLoopComment - Print comments about parent loops of this one. 2864 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2865 unsigned FunctionNumber) { 2866 if (!Loop) return; 2867 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2868 OS.indent(Loop->getLoopDepth()*2) 2869 << "Parent Loop BB" << FunctionNumber << "_" 2870 << Loop->getHeader()->getNumber() 2871 << " Depth=" << Loop->getLoopDepth() << '\n'; 2872 } 2873 2874 /// PrintChildLoopComment - Print comments about child loops within 2875 /// the loop for this basic block, with nesting. 2876 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2877 unsigned FunctionNumber) { 2878 // Add child loop information 2879 for (const MachineLoop *CL : *Loop) { 2880 OS.indent(CL->getLoopDepth()*2) 2881 << "Child Loop BB" << FunctionNumber << "_" 2882 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2883 << '\n'; 2884 PrintChildLoopComment(OS, CL, FunctionNumber); 2885 } 2886 } 2887 2888 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2889 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2890 const MachineLoopInfo *LI, 2891 const AsmPrinter &AP) { 2892 // Add loop depth information 2893 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2894 if (!Loop) return; 2895 2896 MachineBasicBlock *Header = Loop->getHeader(); 2897 assert(Header && "No header for loop"); 2898 2899 // If this block is not a loop header, just print out what is the loop header 2900 // and return. 2901 if (Header != &MBB) { 2902 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2903 Twine(AP.getFunctionNumber())+"_" + 2904 Twine(Loop->getHeader()->getNumber())+ 2905 " Depth="+Twine(Loop->getLoopDepth())); 2906 return; 2907 } 2908 2909 // Otherwise, it is a loop header. Print out information about child and 2910 // parent loops. 2911 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2912 2913 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2914 2915 OS << "=>"; 2916 OS.indent(Loop->getLoopDepth()*2-2); 2917 2918 OS << "This "; 2919 if (Loop->empty()) 2920 OS << "Inner "; 2921 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2922 2923 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2924 } 2925 2926 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2927 MCCodePaddingContext &Context) const { 2928 assert(MF != nullptr && "Machine function must be valid"); 2929 bool OptForSize = MF->getFunction().hasOptSize() || 2930 llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); 2931 Context.IsPaddingActive = !MF->hasInlineAsm() && 2932 !OptForSize && 2933 TM.getOptLevel() != CodeGenOpt::None; 2934 Context.IsBasicBlockReachableViaFallthrough = 2935 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2936 MBB.pred_end(); 2937 Context.IsBasicBlockReachableViaBranch = 2938 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2939 } 2940 2941 /// EmitBasicBlockStart - This method prints the label for the specified 2942 /// MachineBasicBlock, an alignment (if present) and a comment describing 2943 /// it if appropriate. 2944 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) { 2945 // End the previous funclet and start a new one. 2946 if (MBB.isEHFuncletEntry()) { 2947 for (const HandlerInfo &HI : Handlers) { 2948 HI.Handler->endFunclet(); 2949 HI.Handler->beginFunclet(MBB); 2950 } 2951 } 2952 2953 // Emit an alignment directive for this block, if needed. 2954 const Align Alignment = MBB.getAlignment(); 2955 if (Alignment != Align::None()) 2956 EmitAlignment(Alignment); 2957 MCCodePaddingContext Context; 2958 setupCodePaddingContext(MBB, Context); 2959 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2960 2961 // If the block has its address taken, emit any labels that were used to 2962 // reference the block. It is possible that there is more than one label 2963 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2964 // the references were generated. 2965 if (MBB.hasAddressTaken()) { 2966 const BasicBlock *BB = MBB.getBasicBlock(); 2967 if (isVerbose()) 2968 OutStreamer->AddComment("Block address taken"); 2969 2970 // MBBs can have their address taken as part of CodeGen without having 2971 // their corresponding BB's address taken in IR 2972 if (BB->hasAddressTaken()) 2973 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2974 OutStreamer->EmitLabel(Sym); 2975 } 2976 2977 // Print some verbose block comments. 2978 if (isVerbose()) { 2979 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2980 if (BB->hasName()) { 2981 BB->printAsOperand(OutStreamer->GetCommentOS(), 2982 /*PrintType=*/false, BB->getModule()); 2983 OutStreamer->GetCommentOS() << '\n'; 2984 } 2985 } 2986 2987 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2988 emitBasicBlockLoopComments(MBB, MLI, *this); 2989 } 2990 2991 // Print the main label for the block. 2992 if (MBB.pred_empty() || 2993 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2994 !MBB.hasLabelMustBeEmitted())) { 2995 if (isVerbose()) { 2996 // NOTE: Want this comment at start of line, don't emit with AddComment. 2997 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2998 false); 2999 } 3000 } else { 3001 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3002 OutStreamer->AddComment("Label of block must be emitted"); 3003 OutStreamer->EmitLabel(MBB.getSymbol()); 3004 } 3005 } 3006 3007 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 3008 MCCodePaddingContext Context; 3009 setupCodePaddingContext(MBB, Context); 3010 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 3011 } 3012 3013 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 3014 bool IsDefinition) const { 3015 MCSymbolAttr Attr = MCSA_Invalid; 3016 3017 switch (Visibility) { 3018 default: break; 3019 case GlobalValue::HiddenVisibility: 3020 if (IsDefinition) 3021 Attr = MAI->getHiddenVisibilityAttr(); 3022 else 3023 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3024 break; 3025 case GlobalValue::ProtectedVisibility: 3026 Attr = MAI->getProtectedVisibilityAttr(); 3027 break; 3028 } 3029 3030 if (Attr != MCSA_Invalid) 3031 OutStreamer->EmitSymbolAttribute(Sym, Attr); 3032 } 3033 3034 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3035 /// exactly one predecessor and the control transfer mechanism between 3036 /// the predecessor and this block is a fall-through. 3037 bool AsmPrinter:: 3038 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3039 // If this is a landing pad, it isn't a fall through. If it has no preds, 3040 // then nothing falls through to it. 3041 if (MBB->isEHPad() || MBB->pred_empty()) 3042 return false; 3043 3044 // If there isn't exactly one predecessor, it can't be a fall through. 3045 if (MBB->pred_size() > 1) 3046 return false; 3047 3048 // The predecessor has to be immediately before this block. 3049 MachineBasicBlock *Pred = *MBB->pred_begin(); 3050 if (!Pred->isLayoutSuccessor(MBB)) 3051 return false; 3052 3053 // If the block is completely empty, then it definitely does fall through. 3054 if (Pred->empty()) 3055 return true; 3056 3057 // Check the terminators in the previous blocks 3058 for (const auto &MI : Pred->terminators()) { 3059 // If it is not a simple branch, we are in a table somewhere. 3060 if (!MI.isBranch() || MI.isIndirectBranch()) 3061 return false; 3062 3063 // If we are the operands of one of the branches, this is not a fall 3064 // through. Note that targets with delay slots will usually bundle 3065 // terminators with the delay slot instruction. 3066 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3067 if (OP->isJTI()) 3068 return false; 3069 if (OP->isMBB() && OP->getMBB() == MBB) 3070 return false; 3071 } 3072 } 3073 3074 return true; 3075 } 3076 3077 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3078 if (!S.usesMetadata()) 3079 return nullptr; 3080 3081 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3082 gcp_map_type::iterator GCPI = GCMap.find(&S); 3083 if (GCPI != GCMap.end()) 3084 return GCPI->second.get(); 3085 3086 auto Name = S.getName(); 3087 3088 for (GCMetadataPrinterRegistry::iterator 3089 I = GCMetadataPrinterRegistry::begin(), 3090 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3091 if (Name == I->getName()) { 3092 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3093 GMP->S = &S; 3094 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3095 return IterBool.first->second.get(); 3096 } 3097 3098 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3099 } 3100 3101 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3102 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3103 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3104 bool NeedsDefault = false; 3105 if (MI->begin() == MI->end()) 3106 // No GC strategy, use the default format. 3107 NeedsDefault = true; 3108 else 3109 for (auto &I : *MI) { 3110 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3111 if (MP->emitStackMaps(SM, *this)) 3112 continue; 3113 // The strategy doesn't have printer or doesn't emit custom stack maps. 3114 // Use the default format. 3115 NeedsDefault = true; 3116 } 3117 3118 if (NeedsDefault) 3119 SM.serializeToStackMapSection(); 3120 } 3121 3122 /// Pin vtable to this file. 3123 AsmPrinterHandler::~AsmPrinterHandler() = default; 3124 3125 void AsmPrinterHandler::markFunctionEnd() {} 3126 3127 // In the binary's "xray_instr_map" section, an array of these function entries 3128 // describes each instrumentation point. When XRay patches your code, the index 3129 // into this table will be given to your handler as a patch point identifier. 3130 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3131 const MCSymbol *CurrentFnSym) const { 3132 Out->EmitSymbolValue(Sled, Bytes); 3133 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3134 auto Kind8 = static_cast<uint8_t>(Kind); 3135 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3136 Out->EmitBinaryData( 3137 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3138 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3139 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3140 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3141 Out->EmitZeros(Padding); 3142 } 3143 3144 void AsmPrinter::emitXRayTable() { 3145 if (Sleds.empty()) 3146 return; 3147 3148 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3149 const Function &F = MF->getFunction(); 3150 MCSection *InstMap = nullptr; 3151 MCSection *FnSledIndex = nullptr; 3152 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3153 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3154 assert(Associated != nullptr); 3155 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3156 std::string GroupName; 3157 if (F.hasComdat()) { 3158 Flags |= ELF::SHF_GROUP; 3159 GroupName = F.getComdat()->getName(); 3160 } 3161 3162 auto UniqueID = ++XRayFnUniqueID; 3163 InstMap = 3164 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3165 GroupName, UniqueID, Associated); 3166 FnSledIndex = 3167 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3168 GroupName, UniqueID, Associated); 3169 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3170 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3171 SectionKind::getReadOnlyWithRel()); 3172 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3173 SectionKind::getReadOnlyWithRel()); 3174 } else { 3175 llvm_unreachable("Unsupported target"); 3176 } 3177 3178 auto WordSizeBytes = MAI->getCodePointerSize(); 3179 3180 // Now we switch to the instrumentation map section. Because this is done 3181 // per-function, we are able to create an index entry that will represent the 3182 // range of sleds associated with a function. 3183 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3184 OutStreamer->SwitchSection(InstMap); 3185 OutStreamer->EmitLabel(SledsStart); 3186 for (const auto &Sled : Sleds) 3187 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3188 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3189 OutStreamer->EmitLabel(SledsEnd); 3190 3191 // We then emit a single entry in the index per function. We use the symbols 3192 // that bound the instrumentation map as the range for a specific function. 3193 // Each entry here will be 2 * word size aligned, as we're writing down two 3194 // pointers. This should work for both 32-bit and 64-bit platforms. 3195 OutStreamer->SwitchSection(FnSledIndex); 3196 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3197 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3198 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3199 OutStreamer->SwitchSection(PrevSection); 3200 Sleds.clear(); 3201 } 3202 3203 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3204 SledKind Kind, uint8_t Version) { 3205 const Function &F = MI.getMF()->getFunction(); 3206 auto Attr = F.getFnAttribute("function-instrument"); 3207 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3208 bool AlwaysInstrument = 3209 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3210 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3211 Kind = SledKind::LOG_ARGS_ENTER; 3212 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3213 AlwaysInstrument, &F, Version}); 3214 } 3215 3216 uint16_t AsmPrinter::getDwarfVersion() const { 3217 return OutStreamer->getContext().getDwarfVersion(); 3218 } 3219 3220 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3221 OutStreamer->getContext().setDwarfVersion(Version); 3222 } 3223