1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/ObjectUtils.h" 33 #include "llvm/BinaryFormat/Dwarf.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/GCMetadataPrinter.h" 38 #include "llvm/CodeGen/GCStrategy.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineConstantPool.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBundle.h" 46 #include "llvm/CodeGen/MachineJumpTableInfo.h" 47 #include "llvm/CodeGen/MachineLoopInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfoMetadata.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalAlias.h" 60 #include "llvm/IR/GlobalIFunc.h" 61 #include "llvm/IR/GlobalIndirectSymbol.h" 62 #include "llvm/IR/GlobalObject.h" 63 #include "llvm/IR/GlobalValue.h" 64 #include "llvm/IR/GlobalVariable.h" 65 #include "llvm/IR/Mangler.h" 66 #include "llvm/IR/Metadata.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/MC/MCAsmInfo.h" 71 #include "llvm/MC/MCContext.h" 72 #include "llvm/MC/MCDirectives.h" 73 #include "llvm/MC/MCExpr.h" 74 #include "llvm/MC/MCInst.h" 75 #include "llvm/MC/MCSection.h" 76 #include "llvm/MC/MCSectionELF.h" 77 #include "llvm/MC/MCSectionMachO.h" 78 #include "llvm/MC/MCStreamer.h" 79 #include "llvm/MC/MCSubtargetInfo.h" 80 #include "llvm/MC/MCSymbol.h" 81 #include "llvm/MC/MCTargetOptions.h" 82 #include "llvm/MC/MCValue.h" 83 #include "llvm/MC/SectionKind.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/Casting.h" 86 #include "llvm/Support/Compiler.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/TargetRegistry.h" 91 #include "llvm/Support/Timer.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Target/TargetFrameLowering.h" 94 #include "llvm/Target/TargetInstrInfo.h" 95 #include "llvm/Target/TargetLowering.h" 96 #include "llvm/Target/TargetLoweringObjectFile.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetRegisterInfo.h" 99 #include "llvm/Target/TargetSubtargetInfo.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cinttypes> 103 #include <cstdint> 104 #include <limits> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 #include <vector> 109 110 using namespace llvm; 111 112 #define DEBUG_TYPE "asm-printer" 113 114 static const char *const DWARFGroupName = "dwarf"; 115 static const char *const DWARFGroupDescription = "DWARF Emission"; 116 static const char *const DbgTimerName = "emit"; 117 static const char *const DbgTimerDescription = "Debug Info Emission"; 118 static const char *const EHTimerName = "write_exception"; 119 static const char *const EHTimerDescription = "DWARF Exception Writer"; 120 static const char *const CodeViewLineTablesGroupName = "linetables"; 121 static const char *const CodeViewLineTablesGroupDescription = 122 "CodeView Line Tables"; 123 124 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 125 126 static cl::opt<bool> 127 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 128 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 129 130 char AsmPrinter::ID = 0; 131 132 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 133 static gcp_map_type &getGCMap(void *&P) { 134 if (!P) 135 P = new gcp_map_type(); 136 return *(gcp_map_type*)P; 137 } 138 139 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 140 /// value in log2 form. This rounds up to the preferred alignment if possible 141 /// and legal. 142 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 143 unsigned InBits = 0) { 144 unsigned NumBits = 0; 145 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 146 NumBits = DL.getPreferredAlignmentLog(GVar); 147 148 // If InBits is specified, round it to it. 149 if (InBits > NumBits) 150 NumBits = InBits; 151 152 // If the GV has a specified alignment, take it into account. 153 if (GV->getAlignment() == 0) 154 return NumBits; 155 156 unsigned GVAlign = Log2_32(GV->getAlignment()); 157 158 // If the GVAlign is larger than NumBits, or if we are required to obey 159 // NumBits because the GV has an assigned section, obey it. 160 if (GVAlign > NumBits || GV->hasSection()) 161 NumBits = GVAlign; 162 return NumBits; 163 } 164 165 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 166 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 167 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 168 VerboseAsm = OutStreamer->isVerboseAsm(); 169 } 170 171 AsmPrinter::~AsmPrinter() { 172 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 173 174 if (GCMetadataPrinters) { 175 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 176 177 delete &GCMap; 178 GCMetadataPrinters = nullptr; 179 } 180 } 181 182 bool AsmPrinter::isPositionIndependent() const { 183 return TM.isPositionIndependent(); 184 } 185 186 /// getFunctionNumber - Return a unique ID for the current function. 187 /// 188 unsigned AsmPrinter::getFunctionNumber() const { 189 return MF->getFunctionNumber(); 190 } 191 192 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 193 return *TM.getObjFileLowering(); 194 } 195 196 const DataLayout &AsmPrinter::getDataLayout() const { 197 return MMI->getModule()->getDataLayout(); 198 } 199 200 // Do not use the cached DataLayout because some client use it without a Module 201 // (llvm-dsymutil, llvm-dwarfdump). 202 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 203 204 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 205 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 206 return MF->getSubtarget<MCSubtargetInfo>(); 207 } 208 209 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 210 S.EmitInstruction(Inst, getSubtargetInfo()); 211 } 212 213 /// getCurrentSection() - Return the current section we are emitting to. 214 const MCSection *AsmPrinter::getCurrentSection() const { 215 return OutStreamer->getCurrentSectionOnly(); 216 } 217 218 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 219 AU.setPreservesAll(); 220 MachineFunctionPass::getAnalysisUsage(AU); 221 AU.addRequired<MachineModuleInfo>(); 222 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 223 AU.addRequired<GCModuleInfo>(); 224 if (isVerbose()) 225 AU.addRequired<MachineLoopInfo>(); 226 } 227 228 bool AsmPrinter::doInitialization(Module &M) { 229 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 230 231 // Initialize TargetLoweringObjectFile. 232 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 233 .Initialize(OutContext, TM); 234 235 OutStreamer->InitSections(false); 236 237 // Emit the version-min deplyment target directive if needed. 238 // 239 // FIXME: If we end up with a collection of these sorts of Darwin-specific 240 // or ELF-specific things, it may make sense to have a platform helper class 241 // that will work with the target helper class. For now keep it here, as the 242 // alternative is duplicated code in each of the target asm printers that 243 // use the directive, where it would need the same conditionalization 244 // anyway. 245 const Triple &TT = TM.getTargetTriple(); 246 // If there is a version specified, Major will be non-zero. 247 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 248 unsigned Major, Minor, Update; 249 MCVersionMinType VersionType; 250 if (TT.isWatchOS()) { 251 VersionType = MCVM_WatchOSVersionMin; 252 TT.getWatchOSVersion(Major, Minor, Update); 253 } else if (TT.isTvOS()) { 254 VersionType = MCVM_TvOSVersionMin; 255 TT.getiOSVersion(Major, Minor, Update); 256 } else if (TT.isMacOSX()) { 257 VersionType = MCVM_OSXVersionMin; 258 if (!TT.getMacOSXVersion(Major, Minor, Update)) 259 Major = 0; 260 } else { 261 VersionType = MCVM_IOSVersionMin; 262 TT.getiOSVersion(Major, Minor, Update); 263 } 264 if (Major != 0) 265 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 266 } 267 268 // Allow the target to emit any magic that it wants at the start of the file. 269 EmitStartOfAsmFile(M); 270 271 // Very minimal debug info. It is ignored if we emit actual debug info. If we 272 // don't, this at least helps the user find where a global came from. 273 if (MAI->hasSingleParameterDotFile()) { 274 // .file "foo.c" 275 OutStreamer->EmitFileDirective(M.getSourceFileName()); 276 } 277 278 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 279 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 280 for (auto &I : *MI) 281 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 282 MP->beginAssembly(M, *MI, *this); 283 284 // Emit module-level inline asm if it exists. 285 if (!M.getModuleInlineAsm().empty()) { 286 // We're at the module level. Construct MCSubtarget from the default CPU 287 // and target triple. 288 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 289 TM.getTargetTriple().str(), TM.getTargetCPU(), 290 TM.getTargetFeatureString())); 291 OutStreamer->AddComment("Start of file scope inline assembly"); 292 OutStreamer->AddBlankLine(); 293 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 294 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 295 OutStreamer->AddComment("End of file scope inline assembly"); 296 OutStreamer->AddBlankLine(); 297 } 298 299 if (MAI->doesSupportDebugInformation()) { 300 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 301 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 302 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 303 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 304 DbgTimerName, DbgTimerDescription, 305 CodeViewLineTablesGroupName, 306 CodeViewLineTablesGroupDescription)); 307 } 308 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 309 DD = new DwarfDebug(this, &M); 310 DD->beginModule(); 311 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 312 DWARFGroupName, DWARFGroupDescription)); 313 } 314 } 315 316 switch (MAI->getExceptionHandlingType()) { 317 case ExceptionHandling::SjLj: 318 case ExceptionHandling::DwarfCFI: 319 case ExceptionHandling::ARM: 320 isCFIMoveForDebugging = true; 321 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 322 break; 323 for (auto &F: M.getFunctionList()) { 324 // If the module contains any function with unwind data, 325 // .eh_frame has to be emitted. 326 // Ignore functions that won't get emitted. 327 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 328 isCFIMoveForDebugging = false; 329 break; 330 } 331 } 332 break; 333 default: 334 isCFIMoveForDebugging = false; 335 break; 336 } 337 338 EHStreamer *ES = nullptr; 339 switch (MAI->getExceptionHandlingType()) { 340 case ExceptionHandling::None: 341 break; 342 case ExceptionHandling::SjLj: 343 case ExceptionHandling::DwarfCFI: 344 ES = new DwarfCFIException(this); 345 break; 346 case ExceptionHandling::ARM: 347 ES = new ARMException(this); 348 break; 349 case ExceptionHandling::WinEH: 350 switch (MAI->getWinEHEncodingType()) { 351 default: llvm_unreachable("unsupported unwinding information encoding"); 352 case WinEH::EncodingType::Invalid: 353 break; 354 case WinEH::EncodingType::X86: 355 case WinEH::EncodingType::Itanium: 356 ES = new WinException(this); 357 break; 358 } 359 break; 360 } 361 if (ES) 362 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 363 DWARFGroupName, DWARFGroupDescription)); 364 return false; 365 } 366 367 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 368 if (!MAI.hasWeakDefCanBeHiddenDirective()) 369 return false; 370 371 return canBeOmittedFromSymbolTable(GV); 372 } 373 374 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 375 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 376 switch (Linkage) { 377 case GlobalValue::CommonLinkage: 378 case GlobalValue::LinkOnceAnyLinkage: 379 case GlobalValue::LinkOnceODRLinkage: 380 case GlobalValue::WeakAnyLinkage: 381 case GlobalValue::WeakODRLinkage: 382 if (MAI->hasWeakDefDirective()) { 383 // .globl _foo 384 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 385 386 if (!canBeHidden(GV, *MAI)) 387 // .weak_definition _foo 388 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 389 else 390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 391 } else if (MAI->hasLinkOnceDirective()) { 392 // .globl _foo 393 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 394 //NOTE: linkonce is handled by the section the symbol was assigned to. 395 } else { 396 // .weak _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 398 } 399 return; 400 case GlobalValue::ExternalLinkage: 401 // If external, declare as a global symbol: .globl _foo 402 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 403 return; 404 case GlobalValue::PrivateLinkage: 405 case GlobalValue::InternalLinkage: 406 return; 407 case GlobalValue::AppendingLinkage: 408 case GlobalValue::AvailableExternallyLinkage: 409 case GlobalValue::ExternalWeakLinkage: 410 llvm_unreachable("Should never emit this"); 411 } 412 llvm_unreachable("Unknown linkage type!"); 413 } 414 415 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 416 const GlobalValue *GV) const { 417 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 418 } 419 420 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 421 return TM.getSymbol(GV); 422 } 423 424 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 425 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 426 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 427 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 428 "No emulated TLS variables in the common section"); 429 430 // Never emit TLS variable xyz in emulated TLS model. 431 // The initialization value is in __emutls_t.xyz instead of xyz. 432 if (IsEmuTLSVar) 433 return; 434 435 if (GV->hasInitializer()) { 436 // Check to see if this is a special global used by LLVM, if so, emit it. 437 if (EmitSpecialLLVMGlobal(GV)) 438 return; 439 440 // Skip the emission of global equivalents. The symbol can be emitted later 441 // on by emitGlobalGOTEquivs in case it turns out to be needed. 442 if (GlobalGOTEquivs.count(getSymbol(GV))) 443 return; 444 445 if (isVerbose()) { 446 // When printing the control variable __emutls_v.*, 447 // we don't need to print the original TLS variable name. 448 GV->printAsOperand(OutStreamer->GetCommentOS(), 449 /*PrintType=*/false, GV->getParent()); 450 OutStreamer->GetCommentOS() << '\n'; 451 } 452 } 453 454 MCSymbol *GVSym = getSymbol(GV); 455 MCSymbol *EmittedSym = GVSym; 456 457 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 458 // attributes. 459 // GV's or GVSym's attributes will be used for the EmittedSym. 460 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 461 462 if (!GV->hasInitializer()) // External globals require no extra code. 463 return; 464 465 GVSym->redefineIfPossible(); 466 if (GVSym->isDefined() || GVSym->isVariable()) 467 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 468 "' is already defined"); 469 470 if (MAI->hasDotTypeDotSizeDirective()) 471 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 472 473 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 474 475 const DataLayout &DL = GV->getParent()->getDataLayout(); 476 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 477 478 // If the alignment is specified, we *must* obey it. Overaligning a global 479 // with a specified alignment is a prompt way to break globals emitted to 480 // sections and expected to be contiguous (e.g. ObjC metadata). 481 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 482 483 for (const HandlerInfo &HI : Handlers) { 484 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 485 HI.TimerGroupName, HI.TimerGroupDescription, 486 TimePassesIsEnabled); 487 HI.Handler->setSymbolSize(GVSym, Size); 488 } 489 490 // Handle common symbols 491 if (GVKind.isCommon()) { 492 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 493 unsigned Align = 1 << AlignLog; 494 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 495 Align = 0; 496 497 // .comm _foo, 42, 4 498 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 499 return; 500 } 501 502 // Determine to which section this global should be emitted. 503 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 504 505 // If we have a bss global going to a section that supports the 506 // zerofill directive, do so here. 507 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 508 TheSection->isVirtualSection()) { 509 if (Size == 0) 510 Size = 1; // zerofill of 0 bytes is undefined. 511 unsigned Align = 1 << AlignLog; 512 EmitLinkage(GV, GVSym); 513 // .zerofill __DATA, __bss, _foo, 400, 5 514 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 515 return; 516 } 517 518 // If this is a BSS local symbol and we are emitting in the BSS 519 // section use .lcomm/.comm directive. 520 if (GVKind.isBSSLocal() && 521 getObjFileLowering().getBSSSection() == TheSection) { 522 if (Size == 0) 523 Size = 1; // .comm Foo, 0 is undefined, avoid it. 524 unsigned Align = 1 << AlignLog; 525 526 // Use .lcomm only if it supports user-specified alignment. 527 // Otherwise, while it would still be correct to use .lcomm in some 528 // cases (e.g. when Align == 1), the external assembler might enfore 529 // some -unknown- default alignment behavior, which could cause 530 // spurious differences between external and integrated assembler. 531 // Prefer to simply fall back to .local / .comm in this case. 532 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 533 // .lcomm _foo, 42 534 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 535 return; 536 } 537 538 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 539 Align = 0; 540 541 // .local _foo 542 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 543 // .comm _foo, 42, 4 544 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 545 return; 546 } 547 548 // Handle thread local data for mach-o which requires us to output an 549 // additional structure of data and mangle the original symbol so that we 550 // can reference it later. 551 // 552 // TODO: This should become an "emit thread local global" method on TLOF. 553 // All of this macho specific stuff should be sunk down into TLOFMachO and 554 // stuff like "TLSExtraDataSection" should no longer be part of the parent 555 // TLOF class. This will also make it more obvious that stuff like 556 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 557 // specific code. 558 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 559 // Emit the .tbss symbol 560 MCSymbol *MangSym = 561 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 562 563 if (GVKind.isThreadBSS()) { 564 TheSection = getObjFileLowering().getTLSBSSSection(); 565 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 566 } else if (GVKind.isThreadData()) { 567 OutStreamer->SwitchSection(TheSection); 568 569 EmitAlignment(AlignLog, GV); 570 OutStreamer->EmitLabel(MangSym); 571 572 EmitGlobalConstant(GV->getParent()->getDataLayout(), 573 GV->getInitializer()); 574 } 575 576 OutStreamer->AddBlankLine(); 577 578 // Emit the variable struct for the runtime. 579 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 580 581 OutStreamer->SwitchSection(TLVSect); 582 // Emit the linkage here. 583 EmitLinkage(GV, GVSym); 584 OutStreamer->EmitLabel(GVSym); 585 586 // Three pointers in size: 587 // - __tlv_bootstrap - used to make sure support exists 588 // - spare pointer, used when mapped by the runtime 589 // - pointer to mangled symbol above with initializer 590 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 591 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 592 PtrSize); 593 OutStreamer->EmitIntValue(0, PtrSize); 594 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 595 596 OutStreamer->AddBlankLine(); 597 return; 598 } 599 600 MCSymbol *EmittedInitSym = GVSym; 601 602 OutStreamer->SwitchSection(TheSection); 603 604 EmitLinkage(GV, EmittedInitSym); 605 EmitAlignment(AlignLog, GV); 606 607 OutStreamer->EmitLabel(EmittedInitSym); 608 609 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 610 611 if (MAI->hasDotTypeDotSizeDirective()) 612 // .size foo, 42 613 OutStreamer->emitELFSize(EmittedInitSym, 614 MCConstantExpr::create(Size, OutContext)); 615 616 OutStreamer->AddBlankLine(); 617 } 618 619 /// Emit the directive and value for debug thread local expression 620 /// 621 /// \p Value - The value to emit. 622 /// \p Size - The size of the integer (in bytes) to emit. 623 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 624 unsigned Size) const { 625 OutStreamer->EmitValue(Value, Size); 626 } 627 628 /// EmitFunctionHeader - This method emits the header for the current 629 /// function. 630 void AsmPrinter::EmitFunctionHeader() { 631 const Function *F = MF->getFunction(); 632 633 if (isVerbose()) 634 OutStreamer->GetCommentOS() 635 << "-- Begin function " 636 << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n'; 637 638 // Print out constants referenced by the function 639 EmitConstantPool(); 640 641 // Print the 'header' of function. 642 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 643 EmitVisibility(CurrentFnSym, F->getVisibility()); 644 645 EmitLinkage(F, CurrentFnSym); 646 if (MAI->hasFunctionAlignment()) 647 EmitAlignment(MF->getAlignment(), F); 648 649 if (MAI->hasDotTypeDotSizeDirective()) 650 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 651 652 if (isVerbose()) { 653 F->printAsOperand(OutStreamer->GetCommentOS(), 654 /*PrintType=*/false, F->getParent()); 655 OutStreamer->GetCommentOS() << '\n'; 656 } 657 658 // Emit the prefix data. 659 if (F->hasPrefixData()) { 660 if (MAI->hasSubsectionsViaSymbols()) { 661 // Preserving prefix data on platforms which use subsections-via-symbols 662 // is a bit tricky. Here we introduce a symbol for the prefix data 663 // and use the .alt_entry attribute to mark the function's real entry point 664 // as an alternative entry point to the prefix-data symbol. 665 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 666 OutStreamer->EmitLabel(PrefixSym); 667 668 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 669 670 // Emit an .alt_entry directive for the actual function symbol. 671 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 672 } else { 673 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 674 } 675 } 676 677 // Emit the CurrentFnSym. This is a virtual function to allow targets to 678 // do their wild and crazy things as required. 679 EmitFunctionEntryLabel(); 680 681 // If the function had address-taken blocks that got deleted, then we have 682 // references to the dangling symbols. Emit them at the start of the function 683 // so that we don't get references to undefined symbols. 684 std::vector<MCSymbol*> DeadBlockSyms; 685 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 686 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 687 OutStreamer->AddComment("Address taken block that was later removed"); 688 OutStreamer->EmitLabel(DeadBlockSyms[i]); 689 } 690 691 if (CurrentFnBegin) { 692 if (MAI->useAssignmentForEHBegin()) { 693 MCSymbol *CurPos = OutContext.createTempSymbol(); 694 OutStreamer->EmitLabel(CurPos); 695 OutStreamer->EmitAssignment(CurrentFnBegin, 696 MCSymbolRefExpr::create(CurPos, OutContext)); 697 } else { 698 OutStreamer->EmitLabel(CurrentFnBegin); 699 } 700 } 701 702 // Emit pre-function debug and/or EH information. 703 for (const HandlerInfo &HI : Handlers) { 704 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 705 HI.TimerGroupDescription, TimePassesIsEnabled); 706 HI.Handler->beginFunction(MF); 707 } 708 709 // Emit the prologue data. 710 if (F->hasPrologueData()) 711 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 712 } 713 714 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 715 /// function. This can be overridden by targets as required to do custom stuff. 716 void AsmPrinter::EmitFunctionEntryLabel() { 717 CurrentFnSym->redefineIfPossible(); 718 719 // The function label could have already been emitted if two symbols end up 720 // conflicting due to asm renaming. Detect this and emit an error. 721 if (CurrentFnSym->isVariable()) 722 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 723 "' is a protected alias"); 724 if (CurrentFnSym->isDefined()) 725 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 726 "' label emitted multiple times to assembly file"); 727 728 return OutStreamer->EmitLabel(CurrentFnSym); 729 } 730 731 /// emitComments - Pretty-print comments for instructions. 732 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 733 AsmPrinter *AP) { 734 const MachineFunction *MF = MI.getParent()->getParent(); 735 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 736 737 // Check for spills and reloads 738 int FI; 739 740 const MachineFrameInfo &MFI = MF->getFrameInfo(); 741 bool Commented = false; 742 743 // We assume a single instruction only has a spill or reload, not 744 // both. 745 const MachineMemOperand *MMO; 746 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 747 if (MFI.isSpillSlotObjectIndex(FI)) { 748 MMO = *MI.memoperands_begin(); 749 CommentOS << MMO->getSize() << "-byte Reload"; 750 Commented = true; 751 } 752 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 753 if (MFI.isSpillSlotObjectIndex(FI)) { 754 CommentOS << MMO->getSize() << "-byte Folded Reload"; 755 Commented = true; 756 } 757 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 758 if (MFI.isSpillSlotObjectIndex(FI)) { 759 MMO = *MI.memoperands_begin(); 760 CommentOS << MMO->getSize() << "-byte Spill"; 761 Commented = true; 762 } 763 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 764 if (MFI.isSpillSlotObjectIndex(FI)) { 765 CommentOS << MMO->getSize() << "-byte Folded Spill"; 766 Commented = true; 767 } 768 } 769 770 // Check for spill-induced copies 771 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 772 Commented = true; 773 CommentOS << " Reload Reuse"; 774 } 775 776 if (Commented && AP->EnablePrintSchedInfo) 777 // If any comment was added above and we need sched info comment then 778 // add this new comment just after the above comment w/o "\n" between them. 779 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 780 else if (Commented) 781 CommentOS << "\n"; 782 } 783 784 /// emitImplicitDef - This method emits the specified machine instruction 785 /// that is an implicit def. 786 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 787 unsigned RegNo = MI->getOperand(0).getReg(); 788 789 SmallString<128> Str; 790 raw_svector_ostream OS(Str); 791 OS << "implicit-def: " 792 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 793 794 OutStreamer->AddComment(OS.str()); 795 OutStreamer->AddBlankLine(); 796 } 797 798 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 799 std::string Str; 800 raw_string_ostream OS(Str); 801 OS << "kill:"; 802 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 803 const MachineOperand &Op = MI->getOperand(i); 804 assert(Op.isReg() && "KILL instruction must have only register operands"); 805 OS << ' ' 806 << PrintReg(Op.getReg(), 807 AP.MF->getSubtarget().getRegisterInfo()) 808 << (Op.isDef() ? "<def>" : "<kill>"); 809 } 810 AP.OutStreamer->AddComment(OS.str()); 811 AP.OutStreamer->AddBlankLine(); 812 } 813 814 /// emitDebugValueComment - This method handles the target-independent form 815 /// of DBG_VALUE, returning true if it was able to do so. A false return 816 /// means the target will need to handle MI in EmitInstruction. 817 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 818 // This code handles only the 4-operand target-independent form. 819 if (MI->getNumOperands() != 4) 820 return false; 821 822 SmallString<128> Str; 823 raw_svector_ostream OS(Str); 824 OS << "DEBUG_VALUE: "; 825 826 const DILocalVariable *V = MI->getDebugVariable(); 827 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 828 StringRef Name = SP->getName(); 829 if (!Name.empty()) 830 OS << Name << ":"; 831 } 832 OS << V->getName(); 833 OS << " <- "; 834 835 // The second operand is only an offset if it's an immediate. 836 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 837 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 838 const DIExpression *Expr = MI->getDebugExpression(); 839 if (Expr->getNumElements()) { 840 OS << '['; 841 bool NeedSep = false; 842 for (auto Op : Expr->expr_ops()) { 843 if (NeedSep) 844 OS << ", "; 845 else 846 NeedSep = true; 847 OS << dwarf::OperationEncodingString(Op.getOp()); 848 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 849 OS << ' ' << Op.getArg(I); 850 } 851 OS << "] "; 852 } 853 854 // Register or immediate value. Register 0 means undef. 855 if (MI->getOperand(0).isFPImm()) { 856 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 857 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 858 OS << (double)APF.convertToFloat(); 859 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 860 OS << APF.convertToDouble(); 861 } else { 862 // There is no good way to print long double. Convert a copy to 863 // double. Ah well, it's only a comment. 864 bool ignored; 865 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 866 &ignored); 867 OS << "(long double) " << APF.convertToDouble(); 868 } 869 } else if (MI->getOperand(0).isImm()) { 870 OS << MI->getOperand(0).getImm(); 871 } else if (MI->getOperand(0).isCImm()) { 872 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 873 } else { 874 unsigned Reg; 875 if (MI->getOperand(0).isReg()) { 876 Reg = MI->getOperand(0).getReg(); 877 } else { 878 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 879 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 880 Offset += TFI->getFrameIndexReference(*AP.MF, 881 MI->getOperand(0).getIndex(), Reg); 882 MemLoc = true; 883 } 884 if (Reg == 0) { 885 // Suppress offset, it is not meaningful here. 886 OS << "undef"; 887 // NOTE: Want this comment at start of line, don't emit with AddComment. 888 AP.OutStreamer->emitRawComment(OS.str()); 889 return true; 890 } 891 if (MemLoc) 892 OS << '['; 893 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 894 } 895 896 if (MemLoc) 897 OS << '+' << Offset << ']'; 898 899 // NOTE: Want this comment at start of line, don't emit with AddComment. 900 AP.OutStreamer->emitRawComment(OS.str()); 901 return true; 902 } 903 904 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 905 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 906 MF->getFunction()->needsUnwindTableEntry()) 907 return CFI_M_EH; 908 909 if (MMI->hasDebugInfo()) 910 return CFI_M_Debug; 911 912 return CFI_M_None; 913 } 914 915 bool AsmPrinter::needsSEHMoves() { 916 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 917 } 918 919 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 920 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 921 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 922 ExceptionHandlingType != ExceptionHandling::ARM) 923 return; 924 925 if (needsCFIMoves() == CFI_M_None) 926 return; 927 928 // If there is no "real" instruction following this CFI instruction, skip 929 // emitting it; it would be beyond the end of the function's FDE range. 930 auto *MBB = MI.getParent(); 931 auto I = std::next(MI.getIterator()); 932 while (I != MBB->end() && I->isTransient()) 933 ++I; 934 if (I == MBB->instr_end() && 935 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 936 return; 937 938 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 939 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 940 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 941 emitCFIInstruction(CFI); 942 } 943 944 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 945 // The operands are the MCSymbol and the frame offset of the allocation. 946 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 947 int FrameOffset = MI.getOperand(1).getImm(); 948 949 // Emit a symbol assignment. 950 OutStreamer->EmitAssignment(FrameAllocSym, 951 MCConstantExpr::create(FrameOffset, OutContext)); 952 } 953 954 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 955 MachineModuleInfo *MMI) { 956 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 957 return true; 958 959 // We might emit an EH table that uses function begin and end labels even if 960 // we don't have any landingpads. 961 if (!MF.getFunction()->hasPersonalityFn()) 962 return false; 963 return !isNoOpWithoutInvoke( 964 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 965 } 966 967 /// EmitFunctionBody - This method emits the body and trailer for a 968 /// function. 969 void AsmPrinter::EmitFunctionBody() { 970 EmitFunctionHeader(); 971 972 // Emit target-specific gunk before the function body. 973 EmitFunctionBodyStart(); 974 975 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 976 977 // Print out code for the function. 978 bool HasAnyRealCode = false; 979 int NumInstsInFunction = 0; 980 for (auto &MBB : *MF) { 981 // Print a label for the basic block. 982 EmitBasicBlockStart(MBB); 983 for (auto &MI : MBB) { 984 985 // Print the assembly for the instruction. 986 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 987 !MI.isDebugValue()) { 988 HasAnyRealCode = true; 989 ++NumInstsInFunction; 990 } 991 992 if (ShouldPrintDebugScopes) { 993 for (const HandlerInfo &HI : Handlers) { 994 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 995 HI.TimerGroupName, HI.TimerGroupDescription, 996 TimePassesIsEnabled); 997 HI.Handler->beginInstruction(&MI); 998 } 999 } 1000 1001 if (isVerbose()) 1002 emitComments(MI, OutStreamer->GetCommentOS(), this); 1003 1004 switch (MI.getOpcode()) { 1005 case TargetOpcode::CFI_INSTRUCTION: 1006 emitCFIInstruction(MI); 1007 break; 1008 1009 case TargetOpcode::LOCAL_ESCAPE: 1010 emitFrameAlloc(MI); 1011 break; 1012 1013 case TargetOpcode::EH_LABEL: 1014 case TargetOpcode::GC_LABEL: 1015 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1016 break; 1017 case TargetOpcode::INLINEASM: 1018 EmitInlineAsm(&MI); 1019 break; 1020 case TargetOpcode::DBG_VALUE: 1021 if (isVerbose()) { 1022 if (!emitDebugValueComment(&MI, *this)) 1023 EmitInstruction(&MI); 1024 } 1025 break; 1026 case TargetOpcode::IMPLICIT_DEF: 1027 if (isVerbose()) emitImplicitDef(&MI); 1028 break; 1029 case TargetOpcode::KILL: 1030 if (isVerbose()) emitKill(&MI, *this); 1031 break; 1032 default: 1033 EmitInstruction(&MI); 1034 break; 1035 } 1036 1037 if (ShouldPrintDebugScopes) { 1038 for (const HandlerInfo &HI : Handlers) { 1039 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1040 HI.TimerGroupName, HI.TimerGroupDescription, 1041 TimePassesIsEnabled); 1042 HI.Handler->endInstruction(); 1043 } 1044 } 1045 } 1046 1047 EmitBasicBlockEnd(MBB); 1048 } 1049 1050 EmittedInsts += NumInstsInFunction; 1051 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1052 MF->getFunction()->getSubprogram(), 1053 &MF->front()); 1054 R << ore::NV("NumInstructions", NumInstsInFunction) 1055 << " instructions in function"; 1056 ORE->emit(R); 1057 1058 // If the function is empty and the object file uses .subsections_via_symbols, 1059 // then we need to emit *something* to the function body to prevent the 1060 // labels from collapsing together. Just emit a noop. 1061 // Similarly, don't emit empty functions on Windows either. It can lead to 1062 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1063 // after linking, causing the kernel not to load the binary: 1064 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1065 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1066 const Triple &TT = TM.getTargetTriple(); 1067 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1068 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1069 MCInst Noop; 1070 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1071 1072 // Targets can opt-out of emitting the noop here by leaving the opcode 1073 // unspecified. 1074 if (Noop.getOpcode()) { 1075 OutStreamer->AddComment("avoids zero-length function"); 1076 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1077 } 1078 } 1079 1080 const Function *F = MF->getFunction(); 1081 for (const auto &BB : *F) { 1082 if (!BB.hasAddressTaken()) 1083 continue; 1084 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1085 if (Sym->isDefined()) 1086 continue; 1087 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1088 OutStreamer->EmitLabel(Sym); 1089 } 1090 1091 // Emit target-specific gunk after the function body. 1092 EmitFunctionBodyEnd(); 1093 1094 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1095 MAI->hasDotTypeDotSizeDirective()) { 1096 // Create a symbol for the end of function. 1097 CurrentFnEnd = createTempSymbol("func_end"); 1098 OutStreamer->EmitLabel(CurrentFnEnd); 1099 } 1100 1101 // If the target wants a .size directive for the size of the function, emit 1102 // it. 1103 if (MAI->hasDotTypeDotSizeDirective()) { 1104 // We can get the size as difference between the function label and the 1105 // temp label. 1106 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1107 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1108 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1109 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1110 } 1111 1112 for (const HandlerInfo &HI : Handlers) { 1113 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1114 HI.TimerGroupDescription, TimePassesIsEnabled); 1115 HI.Handler->markFunctionEnd(); 1116 } 1117 1118 // Print out jump tables referenced by the function. 1119 EmitJumpTableInfo(); 1120 1121 // Emit post-function debug and/or EH information. 1122 for (const HandlerInfo &HI : Handlers) { 1123 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1124 HI.TimerGroupDescription, TimePassesIsEnabled); 1125 HI.Handler->endFunction(MF); 1126 } 1127 1128 if (isVerbose()) 1129 OutStreamer->GetCommentOS() << "-- End function\n"; 1130 1131 OutStreamer->AddBlankLine(); 1132 } 1133 1134 /// \brief Compute the number of Global Variables that uses a Constant. 1135 static unsigned getNumGlobalVariableUses(const Constant *C) { 1136 if (!C) 1137 return 0; 1138 1139 if (isa<GlobalVariable>(C)) 1140 return 1; 1141 1142 unsigned NumUses = 0; 1143 for (auto *CU : C->users()) 1144 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1145 1146 return NumUses; 1147 } 1148 1149 /// \brief Only consider global GOT equivalents if at least one user is a 1150 /// cstexpr inside an initializer of another global variables. Also, don't 1151 /// handle cstexpr inside instructions. During global variable emission, 1152 /// candidates are skipped and are emitted later in case at least one cstexpr 1153 /// isn't replaced by a PC relative GOT entry access. 1154 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1155 unsigned &NumGOTEquivUsers) { 1156 // Global GOT equivalents are unnamed private globals with a constant 1157 // pointer initializer to another global symbol. They must point to a 1158 // GlobalVariable or Function, i.e., as GlobalValue. 1159 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1160 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1161 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1162 return false; 1163 1164 // To be a got equivalent, at least one of its users need to be a constant 1165 // expression used by another global variable. 1166 for (auto *U : GV->users()) 1167 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1168 1169 return NumGOTEquivUsers > 0; 1170 } 1171 1172 /// \brief Unnamed constant global variables solely contaning a pointer to 1173 /// another globals variable is equivalent to a GOT table entry; it contains the 1174 /// the address of another symbol. Optimize it and replace accesses to these 1175 /// "GOT equivalents" by using the GOT entry for the final global instead. 1176 /// Compute GOT equivalent candidates among all global variables to avoid 1177 /// emitting them if possible later on, after it use is replaced by a GOT entry 1178 /// access. 1179 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1180 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1181 return; 1182 1183 for (const auto &G : M.globals()) { 1184 unsigned NumGOTEquivUsers = 0; 1185 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1186 continue; 1187 1188 const MCSymbol *GOTEquivSym = getSymbol(&G); 1189 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1190 } 1191 } 1192 1193 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1194 /// for PC relative GOT entry conversion, in such cases we need to emit such 1195 /// globals we previously omitted in EmitGlobalVariable. 1196 void AsmPrinter::emitGlobalGOTEquivs() { 1197 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1198 return; 1199 1200 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1201 for (auto &I : GlobalGOTEquivs) { 1202 const GlobalVariable *GV = I.second.first; 1203 unsigned Cnt = I.second.second; 1204 if (Cnt) 1205 FailedCandidates.push_back(GV); 1206 } 1207 GlobalGOTEquivs.clear(); 1208 1209 for (auto *GV : FailedCandidates) 1210 EmitGlobalVariable(GV); 1211 } 1212 1213 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1214 const GlobalIndirectSymbol& GIS) { 1215 MCSymbol *Name = getSymbol(&GIS); 1216 1217 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1218 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1219 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1220 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1221 else 1222 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1223 1224 // Set the symbol type to function if the alias has a function type. 1225 // This affects codegen when the aliasee is not a function. 1226 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1227 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1228 if (isa<GlobalIFunc>(GIS)) 1229 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1230 } 1231 1232 EmitVisibility(Name, GIS.getVisibility()); 1233 1234 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1235 1236 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1237 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1238 1239 // Emit the directives as assignments aka .set: 1240 OutStreamer->EmitAssignment(Name, Expr); 1241 1242 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1243 // If the aliasee does not correspond to a symbol in the output, i.e. the 1244 // alias is not of an object or the aliased object is private, then set the 1245 // size of the alias symbol from the type of the alias. We don't do this in 1246 // other situations as the alias and aliasee having differing types but same 1247 // size may be intentional. 1248 const GlobalObject *BaseObject = GA->getBaseObject(); 1249 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1250 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1251 const DataLayout &DL = M.getDataLayout(); 1252 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1253 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1254 } 1255 } 1256 } 1257 1258 bool AsmPrinter::doFinalization(Module &M) { 1259 // Set the MachineFunction to nullptr so that we can catch attempted 1260 // accesses to MF specific features at the module level and so that 1261 // we can conditionalize accesses based on whether or not it is nullptr. 1262 MF = nullptr; 1263 1264 // Gather all GOT equivalent globals in the module. We really need two 1265 // passes over the globals: one to compute and another to avoid its emission 1266 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1267 // where the got equivalent shows up before its use. 1268 computeGlobalGOTEquivs(M); 1269 1270 // Emit global variables. 1271 for (const auto &G : M.globals()) 1272 EmitGlobalVariable(&G); 1273 1274 // Emit remaining GOT equivalent globals. 1275 emitGlobalGOTEquivs(); 1276 1277 // Emit visibility info for declarations 1278 for (const Function &F : M) { 1279 if (!F.isDeclarationForLinker()) 1280 continue; 1281 GlobalValue::VisibilityTypes V = F.getVisibility(); 1282 if (V == GlobalValue::DefaultVisibility) 1283 continue; 1284 1285 MCSymbol *Name = getSymbol(&F); 1286 EmitVisibility(Name, V, false); 1287 } 1288 1289 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1290 1291 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1292 1293 if (TM.getTargetTriple().isOSBinFormatELF()) { 1294 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1295 1296 // Output stubs for external and common global variables. 1297 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1298 if (!Stubs.empty()) { 1299 OutStreamer->SwitchSection(TLOF.getDataSection()); 1300 const DataLayout &DL = M.getDataLayout(); 1301 1302 for (const auto &Stub : Stubs) { 1303 OutStreamer->EmitLabel(Stub.first); 1304 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1305 DL.getPointerSize()); 1306 } 1307 } 1308 } 1309 1310 // Finalize debug and EH information. 1311 for (const HandlerInfo &HI : Handlers) { 1312 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1313 HI.TimerGroupDescription, TimePassesIsEnabled); 1314 HI.Handler->endModule(); 1315 delete HI.Handler; 1316 } 1317 Handlers.clear(); 1318 DD = nullptr; 1319 1320 // If the target wants to know about weak references, print them all. 1321 if (MAI->getWeakRefDirective()) { 1322 // FIXME: This is not lazy, it would be nice to only print weak references 1323 // to stuff that is actually used. Note that doing so would require targets 1324 // to notice uses in operands (due to constant exprs etc). This should 1325 // happen with the MC stuff eventually. 1326 1327 // Print out module-level global objects here. 1328 for (const auto &GO : M.global_objects()) { 1329 if (!GO.hasExternalWeakLinkage()) 1330 continue; 1331 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1332 } 1333 } 1334 1335 OutStreamer->AddBlankLine(); 1336 1337 // Print aliases in topological order, that is, for each alias a = b, 1338 // b must be printed before a. 1339 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1340 // such an order to generate correct TOC information. 1341 SmallVector<const GlobalAlias *, 16> AliasStack; 1342 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1343 for (const auto &Alias : M.aliases()) { 1344 for (const GlobalAlias *Cur = &Alias; Cur; 1345 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1346 if (!AliasVisited.insert(Cur).second) 1347 break; 1348 AliasStack.push_back(Cur); 1349 } 1350 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1351 emitGlobalIndirectSymbol(M, *AncestorAlias); 1352 AliasStack.clear(); 1353 } 1354 for (const auto &IFunc : M.ifuncs()) 1355 emitGlobalIndirectSymbol(M, IFunc); 1356 1357 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1358 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1359 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1360 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1361 MP->finishAssembly(M, *MI, *this); 1362 1363 // Emit llvm.ident metadata in an '.ident' directive. 1364 EmitModuleIdents(M); 1365 1366 // Emit __morestack address if needed for indirect calls. 1367 if (MMI->usesMorestackAddr()) { 1368 unsigned Align = 1; 1369 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1370 getDataLayout(), SectionKind::getReadOnly(), 1371 /*C=*/nullptr, Align); 1372 OutStreamer->SwitchSection(ReadOnlySection); 1373 1374 MCSymbol *AddrSymbol = 1375 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1376 OutStreamer->EmitLabel(AddrSymbol); 1377 1378 unsigned PtrSize = MAI->getCodePointerSize(); 1379 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1380 PtrSize); 1381 } 1382 1383 // If we don't have any trampolines, then we don't require stack memory 1384 // to be executable. Some targets have a directive to declare this. 1385 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1386 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1387 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1388 OutStreamer->SwitchSection(S); 1389 1390 // Allow the target to emit any magic that it wants at the end of the file, 1391 // after everything else has gone out. 1392 EmitEndOfAsmFile(M); 1393 1394 MMI = nullptr; 1395 1396 OutStreamer->Finish(); 1397 OutStreamer->reset(); 1398 1399 return false; 1400 } 1401 1402 MCSymbol *AsmPrinter::getCurExceptionSym() { 1403 if (!CurExceptionSym) 1404 CurExceptionSym = createTempSymbol("exception"); 1405 return CurExceptionSym; 1406 } 1407 1408 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1409 this->MF = &MF; 1410 // Get the function symbol. 1411 CurrentFnSym = getSymbol(MF.getFunction()); 1412 CurrentFnSymForSize = CurrentFnSym; 1413 CurrentFnBegin = nullptr; 1414 CurExceptionSym = nullptr; 1415 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1416 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1417 CurrentFnBegin = createTempSymbol("func_begin"); 1418 if (NeedsLocalForSize) 1419 CurrentFnSymForSize = CurrentFnBegin; 1420 } 1421 1422 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1423 if (isVerbose()) 1424 LI = &getAnalysis<MachineLoopInfo>(); 1425 1426 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1427 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1428 ? PrintSchedule 1429 : STI.supportPrintSchedInfo(); 1430 } 1431 1432 namespace { 1433 1434 // Keep track the alignment, constpool entries per Section. 1435 struct SectionCPs { 1436 MCSection *S; 1437 unsigned Alignment; 1438 SmallVector<unsigned, 4> CPEs; 1439 1440 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1441 }; 1442 1443 } // end anonymous namespace 1444 1445 /// EmitConstantPool - Print to the current output stream assembly 1446 /// representations of the constants in the constant pool MCP. This is 1447 /// used to print out constants which have been "spilled to memory" by 1448 /// the code generator. 1449 /// 1450 void AsmPrinter::EmitConstantPool() { 1451 const MachineConstantPool *MCP = MF->getConstantPool(); 1452 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1453 if (CP.empty()) return; 1454 1455 // Calculate sections for constant pool entries. We collect entries to go into 1456 // the same section together to reduce amount of section switch statements. 1457 SmallVector<SectionCPs, 4> CPSections; 1458 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1459 const MachineConstantPoolEntry &CPE = CP[i]; 1460 unsigned Align = CPE.getAlignment(); 1461 1462 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1463 1464 const Constant *C = nullptr; 1465 if (!CPE.isMachineConstantPoolEntry()) 1466 C = CPE.Val.ConstVal; 1467 1468 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1469 Kind, C, Align); 1470 1471 // The number of sections are small, just do a linear search from the 1472 // last section to the first. 1473 bool Found = false; 1474 unsigned SecIdx = CPSections.size(); 1475 while (SecIdx != 0) { 1476 if (CPSections[--SecIdx].S == S) { 1477 Found = true; 1478 break; 1479 } 1480 } 1481 if (!Found) { 1482 SecIdx = CPSections.size(); 1483 CPSections.push_back(SectionCPs(S, Align)); 1484 } 1485 1486 if (Align > CPSections[SecIdx].Alignment) 1487 CPSections[SecIdx].Alignment = Align; 1488 CPSections[SecIdx].CPEs.push_back(i); 1489 } 1490 1491 // Now print stuff into the calculated sections. 1492 const MCSection *CurSection = nullptr; 1493 unsigned Offset = 0; 1494 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1495 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1496 unsigned CPI = CPSections[i].CPEs[j]; 1497 MCSymbol *Sym = GetCPISymbol(CPI); 1498 if (!Sym->isUndefined()) 1499 continue; 1500 1501 if (CurSection != CPSections[i].S) { 1502 OutStreamer->SwitchSection(CPSections[i].S); 1503 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1504 CurSection = CPSections[i].S; 1505 Offset = 0; 1506 } 1507 1508 MachineConstantPoolEntry CPE = CP[CPI]; 1509 1510 // Emit inter-object padding for alignment. 1511 unsigned AlignMask = CPE.getAlignment() - 1; 1512 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1513 OutStreamer->EmitZeros(NewOffset - Offset); 1514 1515 Type *Ty = CPE.getType(); 1516 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1517 1518 OutStreamer->EmitLabel(Sym); 1519 if (CPE.isMachineConstantPoolEntry()) 1520 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1521 else 1522 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1523 } 1524 } 1525 } 1526 1527 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1528 /// by the current function to the current output stream. 1529 /// 1530 void AsmPrinter::EmitJumpTableInfo() { 1531 const DataLayout &DL = MF->getDataLayout(); 1532 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1533 if (!MJTI) return; 1534 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1535 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1536 if (JT.empty()) return; 1537 1538 // Pick the directive to use to print the jump table entries, and switch to 1539 // the appropriate section. 1540 const Function *F = MF->getFunction(); 1541 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1542 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1543 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1544 *F); 1545 if (JTInDiffSection) { 1546 // Drop it in the readonly section. 1547 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1548 OutStreamer->SwitchSection(ReadOnlySection); 1549 } 1550 1551 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1552 1553 // Jump tables in code sections are marked with a data_region directive 1554 // where that's supported. 1555 if (!JTInDiffSection) 1556 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1557 1558 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1559 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1560 1561 // If this jump table was deleted, ignore it. 1562 if (JTBBs.empty()) continue; 1563 1564 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1565 /// emit a .set directive for each unique entry. 1566 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1567 MAI->doesSetDirectiveSuppressReloc()) { 1568 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1569 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1570 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1571 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1572 const MachineBasicBlock *MBB = JTBBs[ii]; 1573 if (!EmittedSets.insert(MBB).second) 1574 continue; 1575 1576 // .set LJTSet, LBB32-base 1577 const MCExpr *LHS = 1578 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1579 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1580 MCBinaryExpr::createSub(LHS, Base, 1581 OutContext)); 1582 } 1583 } 1584 1585 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1586 // before each jump table. The first label is never referenced, but tells 1587 // the assembler and linker the extents of the jump table object. The 1588 // second label is actually referenced by the code. 1589 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1590 // FIXME: This doesn't have to have any specific name, just any randomly 1591 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1592 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1593 1594 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1595 1596 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1597 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1598 } 1599 if (!JTInDiffSection) 1600 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1601 } 1602 1603 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1604 /// current stream. 1605 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1606 const MachineBasicBlock *MBB, 1607 unsigned UID) const { 1608 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1609 const MCExpr *Value = nullptr; 1610 switch (MJTI->getEntryKind()) { 1611 case MachineJumpTableInfo::EK_Inline: 1612 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1613 case MachineJumpTableInfo::EK_Custom32: 1614 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1615 MJTI, MBB, UID, OutContext); 1616 break; 1617 case MachineJumpTableInfo::EK_BlockAddress: 1618 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1619 // .word LBB123 1620 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1621 break; 1622 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1623 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1624 // with a relocation as gp-relative, e.g.: 1625 // .gprel32 LBB123 1626 MCSymbol *MBBSym = MBB->getSymbol(); 1627 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1628 return; 1629 } 1630 1631 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1632 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1633 // with a relocation as gp-relative, e.g.: 1634 // .gpdword LBB123 1635 MCSymbol *MBBSym = MBB->getSymbol(); 1636 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1637 return; 1638 } 1639 1640 case MachineJumpTableInfo::EK_LabelDifference32: { 1641 // Each entry is the address of the block minus the address of the jump 1642 // table. This is used for PIC jump tables where gprel32 is not supported. 1643 // e.g.: 1644 // .word LBB123 - LJTI1_2 1645 // If the .set directive avoids relocations, this is emitted as: 1646 // .set L4_5_set_123, LBB123 - LJTI1_2 1647 // .word L4_5_set_123 1648 if (MAI->doesSetDirectiveSuppressReloc()) { 1649 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1650 OutContext); 1651 break; 1652 } 1653 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1654 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1655 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1656 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1657 break; 1658 } 1659 } 1660 1661 assert(Value && "Unknown entry kind!"); 1662 1663 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1664 OutStreamer->EmitValue(Value, EntrySize); 1665 } 1666 1667 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1668 /// special global used by LLVM. If so, emit it and return true, otherwise 1669 /// do nothing and return false. 1670 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1671 if (GV->getName() == "llvm.used") { 1672 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1673 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1674 return true; 1675 } 1676 1677 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1678 if (GV->getSection() == "llvm.metadata" || 1679 GV->hasAvailableExternallyLinkage()) 1680 return true; 1681 1682 if (!GV->hasAppendingLinkage()) return false; 1683 1684 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1685 1686 if (GV->getName() == "llvm.global_ctors") { 1687 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1688 /* isCtor */ true); 1689 1690 return true; 1691 } 1692 1693 if (GV->getName() == "llvm.global_dtors") { 1694 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1695 /* isCtor */ false); 1696 1697 return true; 1698 } 1699 1700 report_fatal_error("unknown special variable"); 1701 } 1702 1703 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1704 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1705 /// is true, as being used with this directive. 1706 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1707 // Should be an array of 'i8*'. 1708 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1709 const GlobalValue *GV = 1710 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1711 if (GV) 1712 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1713 } 1714 } 1715 1716 namespace { 1717 1718 struct Structor { 1719 int Priority = 0; 1720 Constant *Func = nullptr; 1721 GlobalValue *ComdatKey = nullptr; 1722 1723 Structor() = default; 1724 }; 1725 1726 } // end anonymous namespace 1727 1728 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1729 /// priority. 1730 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1731 bool isCtor) { 1732 // Should be an array of '{ int, void ()* }' structs. The first value is the 1733 // init priority. 1734 if (!isa<ConstantArray>(List)) return; 1735 1736 // Sanity check the structors list. 1737 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1738 if (!InitList) return; // Not an array! 1739 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1740 // FIXME: Only allow the 3-field form in LLVM 4.0. 1741 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1742 return; // Not an array of two or three elements! 1743 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1744 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1745 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1746 return; // Not (int, ptr, ptr). 1747 1748 // Gather the structors in a form that's convenient for sorting by priority. 1749 SmallVector<Structor, 8> Structors; 1750 for (Value *O : InitList->operands()) { 1751 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1752 if (!CS) continue; // Malformed. 1753 if (CS->getOperand(1)->isNullValue()) 1754 break; // Found a null terminator, skip the rest. 1755 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1756 if (!Priority) continue; // Malformed. 1757 Structors.push_back(Structor()); 1758 Structor &S = Structors.back(); 1759 S.Priority = Priority->getLimitedValue(65535); 1760 S.Func = CS->getOperand(1); 1761 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1762 S.ComdatKey = 1763 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1764 } 1765 1766 // Emit the function pointers in the target-specific order 1767 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1768 std::stable_sort(Structors.begin(), Structors.end(), 1769 [](const Structor &L, 1770 const Structor &R) { return L.Priority < R.Priority; }); 1771 for (Structor &S : Structors) { 1772 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1773 const MCSymbol *KeySym = nullptr; 1774 if (GlobalValue *GV = S.ComdatKey) { 1775 if (GV->isDeclarationForLinker()) 1776 // If the associated variable is not defined in this module 1777 // (it might be available_externally, or have been an 1778 // available_externally definition that was dropped by the 1779 // EliminateAvailableExternally pass), some other TU 1780 // will provide its dynamic initializer. 1781 continue; 1782 1783 KeySym = getSymbol(GV); 1784 } 1785 MCSection *OutputSection = 1786 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1787 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1788 OutStreamer->SwitchSection(OutputSection); 1789 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1790 EmitAlignment(Align); 1791 EmitXXStructor(DL, S.Func); 1792 } 1793 } 1794 1795 void AsmPrinter::EmitModuleIdents(Module &M) { 1796 if (!MAI->hasIdentDirective()) 1797 return; 1798 1799 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1800 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1801 const MDNode *N = NMD->getOperand(i); 1802 assert(N->getNumOperands() == 1 && 1803 "llvm.ident metadata entry can have only one operand"); 1804 const MDString *S = cast<MDString>(N->getOperand(0)); 1805 OutStreamer->EmitIdent(S->getString()); 1806 } 1807 } 1808 } 1809 1810 //===--------------------------------------------------------------------===// 1811 // Emission and print routines 1812 // 1813 1814 /// EmitInt8 - Emit a byte directive and value. 1815 /// 1816 void AsmPrinter::EmitInt8(int Value) const { 1817 OutStreamer->EmitIntValue(Value, 1); 1818 } 1819 1820 /// EmitInt16 - Emit a short directive and value. 1821 /// 1822 void AsmPrinter::EmitInt16(int Value) const { 1823 OutStreamer->EmitIntValue(Value, 2); 1824 } 1825 1826 /// EmitInt32 - Emit a long directive and value. 1827 /// 1828 void AsmPrinter::EmitInt32(int Value) const { 1829 OutStreamer->EmitIntValue(Value, 4); 1830 } 1831 1832 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1833 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1834 /// .set if it avoids relocations. 1835 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1836 unsigned Size) const { 1837 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1838 } 1839 1840 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1841 /// where the size in bytes of the directive is specified by Size and Label 1842 /// specifies the label. This implicitly uses .set if it is available. 1843 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1844 unsigned Size, 1845 bool IsSectionRelative) const { 1846 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1847 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1848 if (Size > 4) 1849 OutStreamer->EmitZeros(Size - 4); 1850 return; 1851 } 1852 1853 // Emit Label+Offset (or just Label if Offset is zero) 1854 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1855 if (Offset) 1856 Expr = MCBinaryExpr::createAdd( 1857 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1858 1859 OutStreamer->EmitValue(Expr, Size); 1860 } 1861 1862 //===----------------------------------------------------------------------===// 1863 1864 // EmitAlignment - Emit an alignment directive to the specified power of 1865 // two boundary. For example, if you pass in 3 here, you will get an 8 1866 // byte alignment. If a global value is specified, and if that global has 1867 // an explicit alignment requested, it will override the alignment request 1868 // if required for correctness. 1869 // 1870 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1871 if (GV) 1872 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1873 1874 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1875 1876 assert(NumBits < 1877 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1878 "undefined behavior"); 1879 if (getCurrentSection()->getKind().isText()) 1880 OutStreamer->EmitCodeAlignment(1u << NumBits); 1881 else 1882 OutStreamer->EmitValueToAlignment(1u << NumBits); 1883 } 1884 1885 //===----------------------------------------------------------------------===// 1886 // Constant emission. 1887 //===----------------------------------------------------------------------===// 1888 1889 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1890 MCContext &Ctx = OutContext; 1891 1892 if (CV->isNullValue() || isa<UndefValue>(CV)) 1893 return MCConstantExpr::create(0, Ctx); 1894 1895 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1896 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1897 1898 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1899 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1900 1901 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1902 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1903 1904 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1905 if (!CE) { 1906 llvm_unreachable("Unknown constant value to lower!"); 1907 } 1908 1909 switch (CE->getOpcode()) { 1910 default: 1911 // If the code isn't optimized, there may be outstanding folding 1912 // opportunities. Attempt to fold the expression using DataLayout as a 1913 // last resort before giving up. 1914 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1915 if (C != CE) 1916 return lowerConstant(C); 1917 1918 // Otherwise report the problem to the user. 1919 { 1920 std::string S; 1921 raw_string_ostream OS(S); 1922 OS << "Unsupported expression in static initializer: "; 1923 CE->printAsOperand(OS, /*PrintType=*/false, 1924 !MF ? nullptr : MF->getFunction()->getParent()); 1925 report_fatal_error(OS.str()); 1926 } 1927 case Instruction::GetElementPtr: { 1928 // Generate a symbolic expression for the byte address 1929 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1930 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1931 1932 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1933 if (!OffsetAI) 1934 return Base; 1935 1936 int64_t Offset = OffsetAI.getSExtValue(); 1937 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1938 Ctx); 1939 } 1940 1941 case Instruction::Trunc: 1942 // We emit the value and depend on the assembler to truncate the generated 1943 // expression properly. This is important for differences between 1944 // blockaddress labels. Since the two labels are in the same function, it 1945 // is reasonable to treat their delta as a 32-bit value. 1946 LLVM_FALLTHROUGH; 1947 case Instruction::BitCast: 1948 return lowerConstant(CE->getOperand(0)); 1949 1950 case Instruction::IntToPtr: { 1951 const DataLayout &DL = getDataLayout(); 1952 1953 // Handle casts to pointers by changing them into casts to the appropriate 1954 // integer type. This promotes constant folding and simplifies this code. 1955 Constant *Op = CE->getOperand(0); 1956 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1957 false/*ZExt*/); 1958 return lowerConstant(Op); 1959 } 1960 1961 case Instruction::PtrToInt: { 1962 const DataLayout &DL = getDataLayout(); 1963 1964 // Support only foldable casts to/from pointers that can be eliminated by 1965 // changing the pointer to the appropriately sized integer type. 1966 Constant *Op = CE->getOperand(0); 1967 Type *Ty = CE->getType(); 1968 1969 const MCExpr *OpExpr = lowerConstant(Op); 1970 1971 // We can emit the pointer value into this slot if the slot is an 1972 // integer slot equal to the size of the pointer. 1973 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1974 return OpExpr; 1975 1976 // Otherwise the pointer is smaller than the resultant integer, mask off 1977 // the high bits so we are sure to get a proper truncation if the input is 1978 // a constant expr. 1979 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1980 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1981 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1982 } 1983 1984 case Instruction::Sub: { 1985 GlobalValue *LHSGV; 1986 APInt LHSOffset; 1987 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1988 getDataLayout())) { 1989 GlobalValue *RHSGV; 1990 APInt RHSOffset; 1991 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1992 getDataLayout())) { 1993 const MCExpr *RelocExpr = 1994 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1995 if (!RelocExpr) 1996 RelocExpr = MCBinaryExpr::createSub( 1997 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1998 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1999 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2000 if (Addend != 0) 2001 RelocExpr = MCBinaryExpr::createAdd( 2002 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2003 return RelocExpr; 2004 } 2005 } 2006 } 2007 // else fallthrough 2008 2009 // The MC library also has a right-shift operator, but it isn't consistently 2010 // signed or unsigned between different targets. 2011 case Instruction::Add: 2012 case Instruction::Mul: 2013 case Instruction::SDiv: 2014 case Instruction::SRem: 2015 case Instruction::Shl: 2016 case Instruction::And: 2017 case Instruction::Or: 2018 case Instruction::Xor: { 2019 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2020 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2021 switch (CE->getOpcode()) { 2022 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2023 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2024 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2025 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2026 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2027 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2028 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2029 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2030 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2031 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2032 } 2033 } 2034 } 2035 } 2036 2037 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2038 AsmPrinter &AP, 2039 const Constant *BaseCV = nullptr, 2040 uint64_t Offset = 0); 2041 2042 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2043 2044 /// isRepeatedByteSequence - Determine whether the given value is 2045 /// composed of a repeated sequence of identical bytes and return the 2046 /// byte value. If it is not a repeated sequence, return -1. 2047 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2048 StringRef Data = V->getRawDataValues(); 2049 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2050 char C = Data[0]; 2051 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2052 if (Data[i] != C) return -1; 2053 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2054 } 2055 2056 /// isRepeatedByteSequence - Determine whether the given value is 2057 /// composed of a repeated sequence of identical bytes and return the 2058 /// byte value. If it is not a repeated sequence, return -1. 2059 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2061 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2062 assert(Size % 8 == 0); 2063 2064 // Extend the element to take zero padding into account. 2065 APInt Value = CI->getValue().zextOrSelf(Size); 2066 if (!Value.isSplat(8)) 2067 return -1; 2068 2069 return Value.zextOrTrunc(8).getZExtValue(); 2070 } 2071 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2072 // Make sure all array elements are sequences of the same repeated 2073 // byte. 2074 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2075 Constant *Op0 = CA->getOperand(0); 2076 int Byte = isRepeatedByteSequence(Op0, DL); 2077 if (Byte == -1) 2078 return -1; 2079 2080 // All array elements must be equal. 2081 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2082 if (CA->getOperand(i) != Op0) 2083 return -1; 2084 return Byte; 2085 } 2086 2087 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2088 return isRepeatedByteSequence(CDS); 2089 2090 return -1; 2091 } 2092 2093 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2094 const ConstantDataSequential *CDS, 2095 AsmPrinter &AP) { 2096 // See if we can aggregate this into a .fill, if so, emit it as such. 2097 int Value = isRepeatedByteSequence(CDS, DL); 2098 if (Value != -1) { 2099 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2100 // Don't emit a 1-byte object as a .fill. 2101 if (Bytes > 1) 2102 return AP.OutStreamer->emitFill(Bytes, Value); 2103 } 2104 2105 // If this can be emitted with .ascii/.asciz, emit it as such. 2106 if (CDS->isString()) 2107 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2108 2109 // Otherwise, emit the values in successive locations. 2110 unsigned ElementByteSize = CDS->getElementByteSize(); 2111 if (isa<IntegerType>(CDS->getElementType())) { 2112 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2113 if (AP.isVerbose()) 2114 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2115 CDS->getElementAsInteger(i)); 2116 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2117 ElementByteSize); 2118 } 2119 } else { 2120 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2121 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2122 } 2123 2124 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2125 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2126 CDS->getNumElements(); 2127 if (unsigned Padding = Size - EmittedSize) 2128 AP.OutStreamer->EmitZeros(Padding); 2129 } 2130 2131 static void emitGlobalConstantArray(const DataLayout &DL, 2132 const ConstantArray *CA, AsmPrinter &AP, 2133 const Constant *BaseCV, uint64_t Offset) { 2134 // See if we can aggregate some values. Make sure it can be 2135 // represented as a series of bytes of the constant value. 2136 int Value = isRepeatedByteSequence(CA, DL); 2137 2138 if (Value != -1) { 2139 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2140 AP.OutStreamer->emitFill(Bytes, Value); 2141 } 2142 else { 2143 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2144 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2145 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2146 } 2147 } 2148 } 2149 2150 static void emitGlobalConstantVector(const DataLayout &DL, 2151 const ConstantVector *CV, AsmPrinter &AP) { 2152 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2153 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2154 2155 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2156 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2157 CV->getType()->getNumElements(); 2158 if (unsigned Padding = Size - EmittedSize) 2159 AP.OutStreamer->EmitZeros(Padding); 2160 } 2161 2162 static void emitGlobalConstantStruct(const DataLayout &DL, 2163 const ConstantStruct *CS, AsmPrinter &AP, 2164 const Constant *BaseCV, uint64_t Offset) { 2165 // Print the fields in successive locations. Pad to align if needed! 2166 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2167 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2168 uint64_t SizeSoFar = 0; 2169 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2170 const Constant *Field = CS->getOperand(i); 2171 2172 // Print the actual field value. 2173 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2174 2175 // Check if padding is needed and insert one or more 0s. 2176 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2177 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2178 - Layout->getElementOffset(i)) - FieldSize; 2179 SizeSoFar += FieldSize + PadSize; 2180 2181 // Insert padding - this may include padding to increase the size of the 2182 // current field up to the ABI size (if the struct is not packed) as well 2183 // as padding to ensure that the next field starts at the right offset. 2184 AP.OutStreamer->EmitZeros(PadSize); 2185 } 2186 assert(SizeSoFar == Layout->getSizeInBytes() && 2187 "Layout of constant struct may be incorrect!"); 2188 } 2189 2190 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2191 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2192 2193 // First print a comment with what we think the original floating-point value 2194 // should have been. 2195 if (AP.isVerbose()) { 2196 SmallString<8> StrVal; 2197 CFP->getValueAPF().toString(StrVal); 2198 2199 if (CFP->getType()) 2200 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2201 else 2202 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2203 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2204 } 2205 2206 // Now iterate through the APInt chunks, emitting them in endian-correct 2207 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2208 // floats). 2209 unsigned NumBytes = API.getBitWidth() / 8; 2210 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2211 const uint64_t *p = API.getRawData(); 2212 2213 // PPC's long double has odd notions of endianness compared to how LLVM 2214 // handles it: p[0] goes first for *big* endian on PPC. 2215 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2216 int Chunk = API.getNumWords() - 1; 2217 2218 if (TrailingBytes) 2219 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2220 2221 for (; Chunk >= 0; --Chunk) 2222 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2223 } else { 2224 unsigned Chunk; 2225 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2226 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2227 2228 if (TrailingBytes) 2229 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2230 } 2231 2232 // Emit the tail padding for the long double. 2233 const DataLayout &DL = AP.getDataLayout(); 2234 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2235 DL.getTypeStoreSize(CFP->getType())); 2236 } 2237 2238 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2239 const DataLayout &DL = AP.getDataLayout(); 2240 unsigned BitWidth = CI->getBitWidth(); 2241 2242 // Copy the value as we may massage the layout for constants whose bit width 2243 // is not a multiple of 64-bits. 2244 APInt Realigned(CI->getValue()); 2245 uint64_t ExtraBits = 0; 2246 unsigned ExtraBitsSize = BitWidth & 63; 2247 2248 if (ExtraBitsSize) { 2249 // The bit width of the data is not a multiple of 64-bits. 2250 // The extra bits are expected to be at the end of the chunk of the memory. 2251 // Little endian: 2252 // * Nothing to be done, just record the extra bits to emit. 2253 // Big endian: 2254 // * Record the extra bits to emit. 2255 // * Realign the raw data to emit the chunks of 64-bits. 2256 if (DL.isBigEndian()) { 2257 // Basically the structure of the raw data is a chunk of 64-bits cells: 2258 // 0 1 BitWidth / 64 2259 // [chunk1][chunk2] ... [chunkN]. 2260 // The most significant chunk is chunkN and it should be emitted first. 2261 // However, due to the alignment issue chunkN contains useless bits. 2262 // Realign the chunks so that they contain only useless information: 2263 // ExtraBits 0 1 (BitWidth / 64) - 1 2264 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2265 ExtraBits = Realigned.getRawData()[0] & 2266 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2267 Realigned.lshrInPlace(ExtraBitsSize); 2268 } else 2269 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2270 } 2271 2272 // We don't expect assemblers to support integer data directives 2273 // for more than 64 bits, so we emit the data in at most 64-bit 2274 // quantities at a time. 2275 const uint64_t *RawData = Realigned.getRawData(); 2276 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2277 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2278 AP.OutStreamer->EmitIntValue(Val, 8); 2279 } 2280 2281 if (ExtraBitsSize) { 2282 // Emit the extra bits after the 64-bits chunks. 2283 2284 // Emit a directive that fills the expected size. 2285 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2286 Size -= (BitWidth / 64) * 8; 2287 assert(Size && Size * 8 >= ExtraBitsSize && 2288 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2289 == ExtraBits && "Directive too small for extra bits."); 2290 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2291 } 2292 } 2293 2294 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2295 /// equivalent global, by a target specific GOT pc relative access to the 2296 /// final symbol. 2297 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2298 const Constant *BaseCst, 2299 uint64_t Offset) { 2300 // The global @foo below illustrates a global that uses a got equivalent. 2301 // 2302 // @bar = global i32 42 2303 // @gotequiv = private unnamed_addr constant i32* @bar 2304 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2305 // i64 ptrtoint (i32* @foo to i64)) 2306 // to i32) 2307 // 2308 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2309 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2310 // form: 2311 // 2312 // foo = cstexpr, where 2313 // cstexpr := <gotequiv> - "." + <cst> 2314 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2315 // 2316 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2317 // 2318 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2319 // gotpcrelcst := <offset from @foo base> + <cst> 2320 // 2321 MCValue MV; 2322 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2323 return; 2324 const MCSymbolRefExpr *SymA = MV.getSymA(); 2325 if (!SymA) 2326 return; 2327 2328 // Check that GOT equivalent symbol is cached. 2329 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2330 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2331 return; 2332 2333 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2334 if (!BaseGV) 2335 return; 2336 2337 // Check for a valid base symbol 2338 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2339 const MCSymbolRefExpr *SymB = MV.getSymB(); 2340 2341 if (!SymB || BaseSym != &SymB->getSymbol()) 2342 return; 2343 2344 // Make sure to match: 2345 // 2346 // gotpcrelcst := <offset from @foo base> + <cst> 2347 // 2348 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2349 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2350 // if the target knows how to encode it. 2351 // 2352 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2353 if (GOTPCRelCst < 0) 2354 return; 2355 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2356 return; 2357 2358 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2359 // 2360 // bar: 2361 // .long 42 2362 // gotequiv: 2363 // .quad bar 2364 // foo: 2365 // .long gotequiv - "." + <cst> 2366 // 2367 // is replaced by the target specific equivalent to: 2368 // 2369 // bar: 2370 // .long 42 2371 // foo: 2372 // .long bar@GOTPCREL+<gotpcrelcst> 2373 // 2374 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2375 const GlobalVariable *GV = Result.first; 2376 int NumUses = (int)Result.second; 2377 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2378 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2379 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2380 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2381 2382 // Update GOT equivalent usage information 2383 --NumUses; 2384 if (NumUses >= 0) 2385 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2386 } 2387 2388 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2389 AsmPrinter &AP, const Constant *BaseCV, 2390 uint64_t Offset) { 2391 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2392 2393 // Globals with sub-elements such as combinations of arrays and structs 2394 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2395 // constant symbol base and the current position with BaseCV and Offset. 2396 if (!BaseCV && CV->hasOneUse()) 2397 BaseCV = dyn_cast<Constant>(CV->user_back()); 2398 2399 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2400 return AP.OutStreamer->EmitZeros(Size); 2401 2402 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2403 switch (Size) { 2404 case 1: 2405 case 2: 2406 case 4: 2407 case 8: 2408 if (AP.isVerbose()) 2409 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2410 CI->getZExtValue()); 2411 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2412 return; 2413 default: 2414 emitGlobalConstantLargeInt(CI, AP); 2415 return; 2416 } 2417 } 2418 2419 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2420 return emitGlobalConstantFP(CFP, AP); 2421 2422 if (isa<ConstantPointerNull>(CV)) { 2423 AP.OutStreamer->EmitIntValue(0, Size); 2424 return; 2425 } 2426 2427 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2428 return emitGlobalConstantDataSequential(DL, CDS, AP); 2429 2430 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2431 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2432 2433 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2434 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2435 2436 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2437 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2438 // vectors). 2439 if (CE->getOpcode() == Instruction::BitCast) 2440 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2441 2442 if (Size > 8) { 2443 // If the constant expression's size is greater than 64-bits, then we have 2444 // to emit the value in chunks. Try to constant fold the value and emit it 2445 // that way. 2446 Constant *New = ConstantFoldConstant(CE, DL); 2447 if (New && New != CE) 2448 return emitGlobalConstantImpl(DL, New, AP); 2449 } 2450 } 2451 2452 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2453 return emitGlobalConstantVector(DL, V, AP); 2454 2455 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2456 // thread the streamer with EmitValue. 2457 const MCExpr *ME = AP.lowerConstant(CV); 2458 2459 // Since lowerConstant already folded and got rid of all IR pointer and 2460 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2461 // directly. 2462 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2463 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2464 2465 AP.OutStreamer->EmitValue(ME, Size); 2466 } 2467 2468 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2469 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2470 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2471 if (Size) 2472 emitGlobalConstantImpl(DL, CV, *this); 2473 else if (MAI->hasSubsectionsViaSymbols()) { 2474 // If the global has zero size, emit a single byte so that two labels don't 2475 // look like they are at the same location. 2476 OutStreamer->EmitIntValue(0, 1); 2477 } 2478 } 2479 2480 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2481 // Target doesn't support this yet! 2482 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2483 } 2484 2485 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2486 if (Offset > 0) 2487 OS << '+' << Offset; 2488 else if (Offset < 0) 2489 OS << Offset; 2490 } 2491 2492 //===----------------------------------------------------------------------===// 2493 // Symbol Lowering Routines. 2494 //===----------------------------------------------------------------------===// 2495 2496 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2497 return OutContext.createTempSymbol(Name, true); 2498 } 2499 2500 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2501 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2502 } 2503 2504 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2505 return MMI->getAddrLabelSymbol(BB); 2506 } 2507 2508 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2509 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2510 const DataLayout &DL = getDataLayout(); 2511 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2512 "CPI" + Twine(getFunctionNumber()) + "_" + 2513 Twine(CPID)); 2514 } 2515 2516 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2517 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2518 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2519 } 2520 2521 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2522 /// FIXME: privatize to AsmPrinter. 2523 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2524 const DataLayout &DL = getDataLayout(); 2525 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2526 Twine(getFunctionNumber()) + "_" + 2527 Twine(UID) + "_set_" + Twine(MBBID)); 2528 } 2529 2530 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2531 StringRef Suffix) const { 2532 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2533 } 2534 2535 /// Return the MCSymbol for the specified ExternalSymbol. 2536 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2537 SmallString<60> NameStr; 2538 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2539 return OutContext.getOrCreateSymbol(NameStr); 2540 } 2541 2542 /// PrintParentLoopComment - Print comments about parent loops of this one. 2543 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2544 unsigned FunctionNumber) { 2545 if (!Loop) return; 2546 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2547 OS.indent(Loop->getLoopDepth()*2) 2548 << "Parent Loop BB" << FunctionNumber << "_" 2549 << Loop->getHeader()->getNumber() 2550 << " Depth=" << Loop->getLoopDepth() << '\n'; 2551 } 2552 2553 2554 /// PrintChildLoopComment - Print comments about child loops within 2555 /// the loop for this basic block, with nesting. 2556 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2557 unsigned FunctionNumber) { 2558 // Add child loop information 2559 for (const MachineLoop *CL : *Loop) { 2560 OS.indent(CL->getLoopDepth()*2) 2561 << "Child Loop BB" << FunctionNumber << "_" 2562 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2563 << '\n'; 2564 PrintChildLoopComment(OS, CL, FunctionNumber); 2565 } 2566 } 2567 2568 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2569 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2570 const MachineLoopInfo *LI, 2571 const AsmPrinter &AP) { 2572 // Add loop depth information 2573 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2574 if (!Loop) return; 2575 2576 MachineBasicBlock *Header = Loop->getHeader(); 2577 assert(Header && "No header for loop"); 2578 2579 // If this block is not a loop header, just print out what is the loop header 2580 // and return. 2581 if (Header != &MBB) { 2582 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2583 Twine(AP.getFunctionNumber())+"_" + 2584 Twine(Loop->getHeader()->getNumber())+ 2585 " Depth="+Twine(Loop->getLoopDepth())); 2586 return; 2587 } 2588 2589 // Otherwise, it is a loop header. Print out information about child and 2590 // parent loops. 2591 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2592 2593 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2594 2595 OS << "=>"; 2596 OS.indent(Loop->getLoopDepth()*2-2); 2597 2598 OS << "This "; 2599 if (Loop->empty()) 2600 OS << "Inner "; 2601 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2602 2603 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2604 } 2605 2606 /// EmitBasicBlockStart - This method prints the label for the specified 2607 /// MachineBasicBlock, an alignment (if present) and a comment describing 2608 /// it if appropriate. 2609 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2610 // End the previous funclet and start a new one. 2611 if (MBB.isEHFuncletEntry()) { 2612 for (const HandlerInfo &HI : Handlers) { 2613 HI.Handler->endFunclet(); 2614 HI.Handler->beginFunclet(MBB); 2615 } 2616 } 2617 2618 // Emit an alignment directive for this block, if needed. 2619 if (unsigned Align = MBB.getAlignment()) 2620 EmitAlignment(Align); 2621 2622 // If the block has its address taken, emit any labels that were used to 2623 // reference the block. It is possible that there is more than one label 2624 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2625 // the references were generated. 2626 if (MBB.hasAddressTaken()) { 2627 const BasicBlock *BB = MBB.getBasicBlock(); 2628 if (isVerbose()) 2629 OutStreamer->AddComment("Block address taken"); 2630 2631 // MBBs can have their address taken as part of CodeGen without having 2632 // their corresponding BB's address taken in IR 2633 if (BB->hasAddressTaken()) 2634 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2635 OutStreamer->EmitLabel(Sym); 2636 } 2637 2638 // Print some verbose block comments. 2639 if (isVerbose()) { 2640 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2641 if (BB->hasName()) { 2642 BB->printAsOperand(OutStreamer->GetCommentOS(), 2643 /*PrintType=*/false, BB->getModule()); 2644 OutStreamer->GetCommentOS() << '\n'; 2645 } 2646 } 2647 emitBasicBlockLoopComments(MBB, LI, *this); 2648 } 2649 2650 // Print the main label for the block. 2651 if (MBB.pred_empty() || 2652 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2653 if (isVerbose()) { 2654 // NOTE: Want this comment at start of line, don't emit with AddComment. 2655 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2656 } 2657 } else { 2658 OutStreamer->EmitLabel(MBB.getSymbol()); 2659 } 2660 } 2661 2662 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2663 bool IsDefinition) const { 2664 MCSymbolAttr Attr = MCSA_Invalid; 2665 2666 switch (Visibility) { 2667 default: break; 2668 case GlobalValue::HiddenVisibility: 2669 if (IsDefinition) 2670 Attr = MAI->getHiddenVisibilityAttr(); 2671 else 2672 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2673 break; 2674 case GlobalValue::ProtectedVisibility: 2675 Attr = MAI->getProtectedVisibilityAttr(); 2676 break; 2677 } 2678 2679 if (Attr != MCSA_Invalid) 2680 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2681 } 2682 2683 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2684 /// exactly one predecessor and the control transfer mechanism between 2685 /// the predecessor and this block is a fall-through. 2686 bool AsmPrinter:: 2687 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2688 // If this is a landing pad, it isn't a fall through. If it has no preds, 2689 // then nothing falls through to it. 2690 if (MBB->isEHPad() || MBB->pred_empty()) 2691 return false; 2692 2693 // If there isn't exactly one predecessor, it can't be a fall through. 2694 if (MBB->pred_size() > 1) 2695 return false; 2696 2697 // The predecessor has to be immediately before this block. 2698 MachineBasicBlock *Pred = *MBB->pred_begin(); 2699 if (!Pred->isLayoutSuccessor(MBB)) 2700 return false; 2701 2702 // If the block is completely empty, then it definitely does fall through. 2703 if (Pred->empty()) 2704 return true; 2705 2706 // Check the terminators in the previous blocks 2707 for (const auto &MI : Pred->terminators()) { 2708 // If it is not a simple branch, we are in a table somewhere. 2709 if (!MI.isBranch() || MI.isIndirectBranch()) 2710 return false; 2711 2712 // If we are the operands of one of the branches, this is not a fall 2713 // through. Note that targets with delay slots will usually bundle 2714 // terminators with the delay slot instruction. 2715 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2716 if (OP->isJTI()) 2717 return false; 2718 if (OP->isMBB() && OP->getMBB() == MBB) 2719 return false; 2720 } 2721 } 2722 2723 return true; 2724 } 2725 2726 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2727 if (!S.usesMetadata()) 2728 return nullptr; 2729 2730 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2731 " stackmap formats, please see the documentation for a description of" 2732 " the default format. If you really need a custom serialized format," 2733 " please file a bug"); 2734 2735 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2736 gcp_map_type::iterator GCPI = GCMap.find(&S); 2737 if (GCPI != GCMap.end()) 2738 return GCPI->second.get(); 2739 2740 auto Name = S.getName(); 2741 2742 for (GCMetadataPrinterRegistry::iterator 2743 I = GCMetadataPrinterRegistry::begin(), 2744 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2745 if (Name == I->getName()) { 2746 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2747 GMP->S = &S; 2748 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2749 return IterBool.first->second.get(); 2750 } 2751 2752 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2753 } 2754 2755 /// Pin vtable to this file. 2756 AsmPrinterHandler::~AsmPrinterHandler() = default; 2757 2758 void AsmPrinterHandler::markFunctionEnd() {} 2759 2760 // In the binary's "xray_instr_map" section, an array of these function entries 2761 // describes each instrumentation point. When XRay patches your code, the index 2762 // into this table will be given to your handler as a patch point identifier. 2763 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2764 const MCSymbol *CurrentFnSym) const { 2765 Out->EmitSymbolValue(Sled, Bytes); 2766 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2767 auto Kind8 = static_cast<uint8_t>(Kind); 2768 Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2769 Out->EmitBytes( 2770 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2771 Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries 2772 } 2773 2774 void AsmPrinter::emitXRayTable() { 2775 if (Sleds.empty()) 2776 return; 2777 2778 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2779 auto Fn = MF->getFunction(); 2780 MCSection *InstMap = nullptr; 2781 MCSection *FnSledIndex = nullptr; 2782 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2783 if (Fn->hasComdat()) { 2784 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2785 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2786 Fn->getComdat()->getName()); 2787 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 2788 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2789 Fn->getComdat()->getName()); 2790 } else { 2791 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2792 ELF::SHF_ALLOC); 2793 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 2794 ELF::SHF_ALLOC); 2795 } 2796 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2797 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2798 SectionKind::getReadOnlyWithRel()); 2799 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2800 SectionKind::getReadOnlyWithRel()); 2801 } else { 2802 llvm_unreachable("Unsupported target"); 2803 } 2804 2805 // Before we switch over, we force a reference to a label inside the 2806 // xray_fn_idx sections. This makes sure that the xray_fn_idx section is kept 2807 // live by the linker if the function is not garbage-collected. Since this 2808 // function is always called just before the function's end, we assume that 2809 // this is happening after the last return instruction. 2810 auto WordSizeBytes = MAI->getCodePointerSize(); 2811 MCSymbol *IdxRef = OutContext.createTempSymbol("xray_fn_idx_synth_", true); 2812 OutStreamer->EmitCodeAlignment(16); 2813 OutStreamer->EmitSymbolValue(IdxRef, WordSizeBytes, false); 2814 2815 // Now we switch to the instrumentation map section. Because this is done 2816 // per-function, we are able to create an index entry that will represent the 2817 // range of sleds associated with a function. 2818 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2819 OutStreamer->SwitchSection(InstMap); 2820 OutStreamer->EmitLabel(SledsStart); 2821 for (const auto &Sled : Sleds) 2822 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2823 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2824 OutStreamer->EmitLabel(SledsEnd); 2825 2826 // We then emit a single entry in the index per function. We use the symbols 2827 // that bound the instrumentation map as the range for a specific function. 2828 // Each entry here will be 2 * word size aligned, as we're writing down two 2829 // pointers. This should work for both 32-bit and 64-bit platforms. 2830 OutStreamer->SwitchSection(FnSledIndex); 2831 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2832 OutStreamer->EmitLabel(IdxRef); 2833 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes); 2834 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes); 2835 OutStreamer->SwitchSection(PrevSection); 2836 Sleds.clear(); 2837 } 2838 2839 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2840 SledKind Kind) { 2841 auto Fn = MI.getParent()->getParent()->getFunction(); 2842 auto Attr = Fn->getFnAttribute("function-instrument"); 2843 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2844 bool AlwaysInstrument = 2845 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2846 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2847 Kind = SledKind::LOG_ARGS_ENTER; 2848 Sleds.emplace_back( 2849 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2850 } 2851 2852 uint16_t AsmPrinter::getDwarfVersion() const { 2853 return OutStreamer->getContext().getDwarfVersion(); 2854 } 2855 2856 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2857 OutStreamer->getContext().setDwarfVersion(Version); 2858 } 2859