1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCContext.h" 84 #include "llvm/MC/MCDirectives.h" 85 #include "llvm/MC/MCDwarf.h" 86 #include "llvm/MC/MCExpr.h" 87 #include "llvm/MC/MCInst.h" 88 #include "llvm/MC/MCSection.h" 89 #include "llvm/MC/MCSectionCOFF.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCSectionXCOFF.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCSymbolXCOFF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStreamer.h" 105 #include "llvm/Remarks/RemarkStringTable.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/Format.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/Path.h" 113 #include "llvm/Support/TargetRegistry.h" 114 #include "llvm/Support/Timer.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetLoweringObjectFile.h" 117 #include "llvm/Target/TargetMachine.h" 118 #include "llvm/Target/TargetOptions.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cinttypes> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <memory> 126 #include <string> 127 #include <utility> 128 #include <vector> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "asm-printer" 133 134 static const char *const DWARFGroupName = "dwarf"; 135 static const char *const DWARFGroupDescription = "DWARF Emission"; 136 static const char *const DbgTimerName = "emit"; 137 static const char *const DbgTimerDescription = "Debug Info Emission"; 138 static const char *const EHTimerName = "write_exception"; 139 static const char *const EHTimerDescription = "DWARF Exception Writer"; 140 static const char *const CFGuardName = "Control Flow Guard"; 141 static const char *const CFGuardDescription = "Control Flow Guard"; 142 static const char *const CodeViewLineTablesGroupName = "linetables"; 143 static const char *const CodeViewLineTablesGroupDescription = 144 "CodeView Line Tables"; 145 146 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 147 148 char AsmPrinter::ID = 0; 149 150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 151 152 static gcp_map_type &getGCMap(void *&P) { 153 if (!P) 154 P = new gcp_map_type(); 155 return *(gcp_map_type*)P; 156 } 157 158 /// getGVAlignment - Return the alignment to use for the specified global 159 /// value. This rounds up to the preferred alignment if possible and legal. 160 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 161 Align InAlign) { 162 Align Alignment; 163 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 164 Alignment = Align(DL.getPreferredAlignment(GVar)); 165 166 // If InAlign is specified, round it to it. 167 if (InAlign > Alignment) 168 Alignment = InAlign; 169 170 // If the GV has a specified alignment, take it into account. 171 const MaybeAlign GVAlign(GV->getAlignment()); 172 if (!GVAlign) 173 return Alignment; 174 175 assert(GVAlign && "GVAlign must be set"); 176 177 // If the GVAlign is larger than NumBits, or if we are required to obey 178 // NumBits because the GV has an assigned section, obey it. 179 if (*GVAlign > Alignment || GV->hasSection()) 180 Alignment = *GVAlign; 181 return Alignment; 182 } 183 184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 185 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 186 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 187 VerboseAsm = OutStreamer->isVerboseAsm(); 188 } 189 190 AsmPrinter::~AsmPrinter() { 191 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 192 193 if (GCMetadataPrinters) { 194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 195 196 delete &GCMap; 197 GCMetadataPrinters = nullptr; 198 } 199 } 200 201 bool AsmPrinter::isPositionIndependent() const { 202 return TM.isPositionIndependent(); 203 } 204 205 /// getFunctionNumber - Return a unique ID for the current function. 206 unsigned AsmPrinter::getFunctionNumber() const { 207 return MF->getFunctionNumber(); 208 } 209 210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 211 return *TM.getObjFileLowering(); 212 } 213 214 const DataLayout &AsmPrinter::getDataLayout() const { 215 return MMI->getModule()->getDataLayout(); 216 } 217 218 // Do not use the cached DataLayout because some client use it without a Module 219 // (dsymutil, llvm-dwarfdump). 220 unsigned AsmPrinter::getPointerSize() const { 221 return TM.getPointerSize(0); // FIXME: Default address space 222 } 223 224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 225 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 226 return MF->getSubtarget<MCSubtargetInfo>(); 227 } 228 229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 230 S.emitInstruction(Inst, getSubtargetInfo()); 231 } 232 233 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 234 assert(DD && "Dwarf debug file is not defined."); 235 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 236 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 237 } 238 239 /// getCurrentSection() - Return the current section we are emitting to. 240 const MCSection *AsmPrinter::getCurrentSection() const { 241 return OutStreamer->getCurrentSectionOnly(); 242 } 243 244 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 245 AU.setPreservesAll(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 AU.addRequired<MachineModuleInfoWrapperPass>(); 248 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 249 AU.addRequired<GCModuleInfo>(); 250 } 251 252 bool AsmPrinter::doInitialization(Module &M) { 253 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 254 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 255 256 // Initialize TargetLoweringObjectFile. 257 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 258 .Initialize(OutContext, TM); 259 260 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 261 .getModuleMetadata(M); 262 263 OutStreamer->InitSections(false); 264 265 // Emit the version-min deployment target directive if needed. 266 // 267 // FIXME: If we end up with a collection of these sorts of Darwin-specific 268 // or ELF-specific things, it may make sense to have a platform helper class 269 // that will work with the target helper class. For now keep it here, as the 270 // alternative is duplicated code in each of the target asm printers that 271 // use the directive, where it would need the same conditionalization 272 // anyway. 273 const Triple &Target = TM.getTargetTriple(); 274 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 275 276 // Allow the target to emit any magic that it wants at the start of the file. 277 emitStartOfAsmFile(M); 278 279 // Very minimal debug info. It is ignored if we emit actual debug info. If we 280 // don't, this at least helps the user find where a global came from. 281 if (MAI->hasSingleParameterDotFile()) { 282 // .file "foo.c" 283 OutStreamer->emitFileDirective( 284 llvm::sys::path::filename(M.getSourceFileName())); 285 } 286 287 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 288 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 289 for (auto &I : *MI) 290 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 291 MP->beginAssembly(M, *MI, *this); 292 293 // Emit module-level inline asm if it exists. 294 if (!M.getModuleInlineAsm().empty()) { 295 // We're at the module level. Construct MCSubtarget from the default CPU 296 // and target triple. 297 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 298 TM.getTargetTriple().str(), TM.getTargetCPU(), 299 TM.getTargetFeatureString())); 300 OutStreamer->AddComment("Start of file scope inline assembly"); 301 OutStreamer->AddBlankLine(); 302 emitInlineAsm(M.getModuleInlineAsm() + "\n", 303 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 304 OutStreamer->AddComment("End of file scope inline assembly"); 305 OutStreamer->AddBlankLine(); 306 } 307 308 if (MAI->doesSupportDebugInformation()) { 309 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 310 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 311 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 312 DbgTimerName, DbgTimerDescription, 313 CodeViewLineTablesGroupName, 314 CodeViewLineTablesGroupDescription); 315 } 316 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 317 DD = new DwarfDebug(this, &M); 318 DD->beginModule(); 319 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 320 DbgTimerDescription, DWARFGroupName, 321 DWARFGroupDescription); 322 } 323 } 324 325 switch (MAI->getExceptionHandlingType()) { 326 case ExceptionHandling::SjLj: 327 case ExceptionHandling::DwarfCFI: 328 case ExceptionHandling::ARM: 329 isCFIMoveForDebugging = true; 330 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 331 break; 332 for (auto &F: M.getFunctionList()) { 333 // If the module contains any function with unwind data, 334 // .eh_frame has to be emitted. 335 // Ignore functions that won't get emitted. 336 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 337 isCFIMoveForDebugging = false; 338 break; 339 } 340 } 341 break; 342 default: 343 isCFIMoveForDebugging = false; 344 break; 345 } 346 347 EHStreamer *ES = nullptr; 348 switch (MAI->getExceptionHandlingType()) { 349 case ExceptionHandling::None: 350 break; 351 case ExceptionHandling::SjLj: 352 case ExceptionHandling::DwarfCFI: 353 ES = new DwarfCFIException(this); 354 break; 355 case ExceptionHandling::ARM: 356 ES = new ARMException(this); 357 break; 358 case ExceptionHandling::WinEH: 359 switch (MAI->getWinEHEncodingType()) { 360 default: llvm_unreachable("unsupported unwinding information encoding"); 361 case WinEH::EncodingType::Invalid: 362 break; 363 case WinEH::EncodingType::X86: 364 case WinEH::EncodingType::Itanium: 365 ES = new WinException(this); 366 break; 367 } 368 break; 369 case ExceptionHandling::Wasm: 370 ES = new WasmException(this); 371 break; 372 } 373 if (ES) 374 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 375 EHTimerDescription, DWARFGroupName, 376 DWARFGroupDescription); 377 378 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 379 if (mdconst::extract_or_null<ConstantInt>( 380 MMI->getModule()->getModuleFlag("cfguard"))) 381 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 382 CFGuardDescription, DWARFGroupName, 383 DWARFGroupDescription); 384 return false; 385 } 386 387 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 388 if (!MAI.hasWeakDefCanBeHiddenDirective()) 389 return false; 390 391 return GV->canBeOmittedFromSymbolTable(); 392 } 393 394 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 395 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 396 switch (Linkage) { 397 case GlobalValue::CommonLinkage: 398 case GlobalValue::LinkOnceAnyLinkage: 399 case GlobalValue::LinkOnceODRLinkage: 400 case GlobalValue::WeakAnyLinkage: 401 case GlobalValue::WeakODRLinkage: 402 if (MAI->hasWeakDefDirective()) { 403 // .globl _foo 404 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 405 406 if (!canBeHidden(GV, *MAI)) 407 // .weak_definition _foo 408 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 409 else 410 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 411 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 412 // .globl _foo 413 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 414 //NOTE: linkonce is handled by the section the symbol was assigned to. 415 } else { 416 // .weak _foo 417 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 418 } 419 return; 420 case GlobalValue::ExternalLinkage: 421 // If external, declare as a global symbol: .globl _foo 422 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 423 return; 424 case GlobalValue::PrivateLinkage: 425 return; 426 case GlobalValue::InternalLinkage: 427 if (MAI->hasDotLGloblDirective()) 428 OutStreamer->emitSymbolAttribute(GVSym, MCSA_LGlobal); 429 return; 430 case GlobalValue::AppendingLinkage: 431 case GlobalValue::AvailableExternallyLinkage: 432 case GlobalValue::ExternalWeakLinkage: 433 llvm_unreachable("Should never emit this"); 434 } 435 llvm_unreachable("Unknown linkage type!"); 436 } 437 438 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 439 const GlobalValue *GV) const { 440 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 441 } 442 443 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 444 return TM.getSymbol(GV); 445 } 446 447 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 448 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 449 // exact definion (intersection of GlobalValue::hasExactDefinition() and 450 // !isInterposable()). These linkages include: external, appending, internal, 451 // private. It may be profitable to use a local alias for external. The 452 // assembler would otherwise be conservative and assume a global default 453 // visibility symbol can be interposable, even if the code generator already 454 // assumed it. 455 if (TM.getTargetTriple().isOSBinFormatELF() && 456 GlobalObject::isExternalLinkage(GV.getLinkage()) && GV.isDSOLocal() && 457 !GV.isDeclaration() && !isa<GlobalIFunc>(GV) && !GV.hasComdat()) 458 return getSymbolWithGlobalValueBase(&GV, "$local"); 459 return TM.getSymbol(&GV); 460 } 461 462 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 463 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 464 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 465 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 466 "No emulated TLS variables in the common section"); 467 468 // Never emit TLS variable xyz in emulated TLS model. 469 // The initialization value is in __emutls_t.xyz instead of xyz. 470 if (IsEmuTLSVar) 471 return; 472 473 if (GV->hasInitializer()) { 474 // Check to see if this is a special global used by LLVM, if so, emit it. 475 if (emitSpecialLLVMGlobal(GV)) 476 return; 477 478 // Skip the emission of global equivalents. The symbol can be emitted later 479 // on by emitGlobalGOTEquivs in case it turns out to be needed. 480 if (GlobalGOTEquivs.count(getSymbol(GV))) 481 return; 482 483 if (isVerbose()) { 484 // When printing the control variable __emutls_v.*, 485 // we don't need to print the original TLS variable name. 486 GV->printAsOperand(OutStreamer->GetCommentOS(), 487 /*PrintType=*/false, GV->getParent()); 488 OutStreamer->GetCommentOS() << '\n'; 489 } 490 } 491 492 MCSymbol *GVSym = getSymbol(GV); 493 MCSymbol *EmittedSym = GVSym; 494 495 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 496 // attributes. 497 // GV's or GVSym's attributes will be used for the EmittedSym. 498 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 499 500 if (!GV->hasInitializer()) // External globals require no extra code. 501 return; 502 503 GVSym->redefineIfPossible(); 504 if (GVSym->isDefined() || GVSym->isVariable()) 505 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 506 "' is already defined"); 507 508 if (MAI->hasDotTypeDotSizeDirective()) 509 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 510 511 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 512 513 const DataLayout &DL = GV->getParent()->getDataLayout(); 514 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 515 516 // If the alignment is specified, we *must* obey it. Overaligning a global 517 // with a specified alignment is a prompt way to break globals emitted to 518 // sections and expected to be contiguous (e.g. ObjC metadata). 519 const Align Alignment = getGVAlignment(GV, DL); 520 521 for (const HandlerInfo &HI : Handlers) { 522 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 523 HI.TimerGroupName, HI.TimerGroupDescription, 524 TimePassesIsEnabled); 525 HI.Handler->setSymbolSize(GVSym, Size); 526 } 527 528 // Handle common symbols 529 if (GVKind.isCommon()) { 530 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 531 // .comm _foo, 42, 4 532 const bool SupportsAlignment = 533 getObjFileLowering().getCommDirectiveSupportsAlignment(); 534 OutStreamer->emitCommonSymbol(GVSym, Size, 535 SupportsAlignment ? Alignment.value() : 0); 536 return; 537 } 538 539 // Determine to which section this global should be emitted. 540 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 541 542 // If we have a bss global going to a section that supports the 543 // zerofill directive, do so here. 544 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 545 TheSection->isVirtualSection()) { 546 if (Size == 0) 547 Size = 1; // zerofill of 0 bytes is undefined. 548 emitLinkage(GV, GVSym); 549 // .zerofill __DATA, __bss, _foo, 400, 5 550 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 551 return; 552 } 553 554 // If this is a BSS local symbol and we are emitting in the BSS 555 // section use .lcomm/.comm directive. 556 if (GVKind.isBSSLocal() && 557 getObjFileLowering().getBSSSection() == TheSection) { 558 if (Size == 0) 559 Size = 1; // .comm Foo, 0 is undefined, avoid it. 560 561 // Use .lcomm only if it supports user-specified alignment. 562 // Otherwise, while it would still be correct to use .lcomm in some 563 // cases (e.g. when Align == 1), the external assembler might enfore 564 // some -unknown- default alignment behavior, which could cause 565 // spurious differences between external and integrated assembler. 566 // Prefer to simply fall back to .local / .comm in this case. 567 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 568 // .lcomm _foo, 42 569 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 570 return; 571 } 572 573 // .local _foo 574 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 575 // .comm _foo, 42, 4 576 const bool SupportsAlignment = 577 getObjFileLowering().getCommDirectiveSupportsAlignment(); 578 OutStreamer->emitCommonSymbol(GVSym, Size, 579 SupportsAlignment ? Alignment.value() : 0); 580 return; 581 } 582 583 // Handle thread local data for mach-o which requires us to output an 584 // additional structure of data and mangle the original symbol so that we 585 // can reference it later. 586 // 587 // TODO: This should become an "emit thread local global" method on TLOF. 588 // All of this macho specific stuff should be sunk down into TLOFMachO and 589 // stuff like "TLSExtraDataSection" should no longer be part of the parent 590 // TLOF class. This will also make it more obvious that stuff like 591 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 592 // specific code. 593 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 594 // Emit the .tbss symbol 595 MCSymbol *MangSym = 596 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 597 598 if (GVKind.isThreadBSS()) { 599 TheSection = getObjFileLowering().getTLSBSSSection(); 600 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 601 } else if (GVKind.isThreadData()) { 602 OutStreamer->SwitchSection(TheSection); 603 604 emitAlignment(Alignment, GV); 605 OutStreamer->emitLabel(MangSym); 606 607 emitGlobalConstant(GV->getParent()->getDataLayout(), 608 GV->getInitializer()); 609 } 610 611 OutStreamer->AddBlankLine(); 612 613 // Emit the variable struct for the runtime. 614 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 615 616 OutStreamer->SwitchSection(TLVSect); 617 // Emit the linkage here. 618 emitLinkage(GV, GVSym); 619 OutStreamer->emitLabel(GVSym); 620 621 // Three pointers in size: 622 // - __tlv_bootstrap - used to make sure support exists 623 // - spare pointer, used when mapped by the runtime 624 // - pointer to mangled symbol above with initializer 625 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 626 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 627 PtrSize); 628 OutStreamer->emitIntValue(0, PtrSize); 629 OutStreamer->emitSymbolValue(MangSym, PtrSize); 630 631 OutStreamer->AddBlankLine(); 632 return; 633 } 634 635 MCSymbol *EmittedInitSym = GVSym; 636 637 OutStreamer->SwitchSection(TheSection); 638 639 emitLinkage(GV, EmittedInitSym); 640 emitAlignment(Alignment, GV); 641 642 OutStreamer->emitLabel(EmittedInitSym); 643 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 644 if (LocalAlias != EmittedInitSym) 645 OutStreamer->emitLabel(LocalAlias); 646 647 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 648 649 if (MAI->hasDotTypeDotSizeDirective()) 650 // .size foo, 42 651 OutStreamer->emitELFSize(EmittedInitSym, 652 MCConstantExpr::create(Size, OutContext)); 653 654 OutStreamer->AddBlankLine(); 655 } 656 657 /// Emit the directive and value for debug thread local expression 658 /// 659 /// \p Value - The value to emit. 660 /// \p Size - The size of the integer (in bytes) to emit. 661 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 662 OutStreamer->emitValue(Value, Size); 663 } 664 665 void AsmPrinter::emitFunctionHeaderComment() {} 666 667 /// EmitFunctionHeader - This method emits the header for the current 668 /// function. 669 void AsmPrinter::emitFunctionHeader() { 670 const Function &F = MF->getFunction(); 671 672 if (isVerbose()) 673 OutStreamer->GetCommentOS() 674 << "-- Begin function " 675 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 676 677 // Print out constants referenced by the function 678 emitConstantPool(); 679 680 // Print the 'header' of function. 681 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 682 OutStreamer->SwitchSection(MF->getSection()); 683 684 emitVisibility(CurrentFnSym, F.getVisibility()); 685 686 if (MAI->needsFunctionDescriptors() && 687 F.getLinkage() != GlobalValue::InternalLinkage) 688 emitLinkage(&F, CurrentFnDescSym); 689 690 emitLinkage(&F, CurrentFnSym); 691 if (MAI->hasFunctionAlignment()) 692 emitAlignment(MF->getAlignment(), &F); 693 694 if (MAI->hasDotTypeDotSizeDirective()) 695 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 696 697 if (F.hasFnAttribute(Attribute::Cold)) 698 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 699 700 if (isVerbose()) { 701 F.printAsOperand(OutStreamer->GetCommentOS(), 702 /*PrintType=*/false, F.getParent()); 703 emitFunctionHeaderComment(); 704 OutStreamer->GetCommentOS() << '\n'; 705 } 706 707 // Emit the prefix data. 708 if (F.hasPrefixData()) { 709 if (MAI->hasSubsectionsViaSymbols()) { 710 // Preserving prefix data on platforms which use subsections-via-symbols 711 // is a bit tricky. Here we introduce a symbol for the prefix data 712 // and use the .alt_entry attribute to mark the function's real entry point 713 // as an alternative entry point to the prefix-data symbol. 714 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 715 OutStreamer->emitLabel(PrefixSym); 716 717 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 718 719 // Emit an .alt_entry directive for the actual function symbol. 720 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 721 } else { 722 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 723 } 724 } 725 726 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 727 // place prefix data before NOPs. 728 unsigned PatchableFunctionPrefix = 0; 729 unsigned PatchableFunctionEntry = 0; 730 (void)F.getFnAttribute("patchable-function-prefix") 731 .getValueAsString() 732 .getAsInteger(10, PatchableFunctionPrefix); 733 (void)F.getFnAttribute("patchable-function-entry") 734 .getValueAsString() 735 .getAsInteger(10, PatchableFunctionEntry); 736 if (PatchableFunctionPrefix) { 737 CurrentPatchableFunctionEntrySym = 738 OutContext.createLinkerPrivateTempSymbol(); 739 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 740 emitNops(PatchableFunctionPrefix); 741 } else if (PatchableFunctionEntry) { 742 // May be reassigned when emitting the body, to reference the label after 743 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 744 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 745 } 746 747 // Emit the function descriptor. This is a virtual function to allow targets 748 // to emit their specific function descriptor. Right now it is only used by 749 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 750 // descriptors and should be converted to use this hook as well. 751 if (MAI->needsFunctionDescriptors()) 752 emitFunctionDescriptor(); 753 754 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 755 // their wild and crazy things as required. 756 emitFunctionEntryLabel(); 757 758 if (CurrentFnBegin) { 759 if (MAI->useAssignmentForEHBegin()) { 760 MCSymbol *CurPos = OutContext.createTempSymbol(); 761 OutStreamer->emitLabel(CurPos); 762 OutStreamer->emitAssignment(CurrentFnBegin, 763 MCSymbolRefExpr::create(CurPos, OutContext)); 764 } else { 765 OutStreamer->emitLabel(CurrentFnBegin); 766 } 767 } 768 769 // Emit pre-function debug and/or EH information. 770 for (const HandlerInfo &HI : Handlers) { 771 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 772 HI.TimerGroupDescription, TimePassesIsEnabled); 773 HI.Handler->beginFunction(MF); 774 } 775 776 // Emit the prologue data. 777 if (F.hasPrologueData()) 778 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 779 } 780 781 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 782 /// function. This can be overridden by targets as required to do custom stuff. 783 void AsmPrinter::emitFunctionEntryLabel() { 784 CurrentFnSym->redefineIfPossible(); 785 786 // The function label could have already been emitted if two symbols end up 787 // conflicting due to asm renaming. Detect this and emit an error. 788 if (CurrentFnSym->isVariable()) 789 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 790 "' is a protected alias"); 791 if (CurrentFnSym->isDefined()) 792 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 793 "' label emitted multiple times to assembly file"); 794 795 OutStreamer->emitLabel(CurrentFnSym); 796 797 if (TM.getTargetTriple().isOSBinFormatELF()) { 798 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 799 if (Sym != CurrentFnSym) 800 OutStreamer->emitLabel(Sym); 801 } 802 } 803 804 /// emitComments - Pretty-print comments for instructions. 805 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 806 const MachineFunction *MF = MI.getMF(); 807 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 808 809 // Check for spills and reloads 810 811 // We assume a single instruction only has a spill or reload, not 812 // both. 813 Optional<unsigned> Size; 814 if ((Size = MI.getRestoreSize(TII))) { 815 CommentOS << *Size << "-byte Reload\n"; 816 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 817 if (*Size) 818 CommentOS << *Size << "-byte Folded Reload\n"; 819 } else if ((Size = MI.getSpillSize(TII))) { 820 CommentOS << *Size << "-byte Spill\n"; 821 } else if ((Size = MI.getFoldedSpillSize(TII))) { 822 if (*Size) 823 CommentOS << *Size << "-byte Folded Spill\n"; 824 } 825 826 // Check for spill-induced copies 827 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 828 CommentOS << " Reload Reuse\n"; 829 } 830 831 /// emitImplicitDef - This method emits the specified machine instruction 832 /// that is an implicit def. 833 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 834 Register RegNo = MI->getOperand(0).getReg(); 835 836 SmallString<128> Str; 837 raw_svector_ostream OS(Str); 838 OS << "implicit-def: " 839 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 840 841 OutStreamer->AddComment(OS.str()); 842 OutStreamer->AddBlankLine(); 843 } 844 845 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 846 std::string Str; 847 raw_string_ostream OS(Str); 848 OS << "kill:"; 849 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 850 const MachineOperand &Op = MI->getOperand(i); 851 assert(Op.isReg() && "KILL instruction must have only register operands"); 852 OS << ' ' << (Op.isDef() ? "def " : "killed ") 853 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 854 } 855 AP.OutStreamer->AddComment(OS.str()); 856 AP.OutStreamer->AddBlankLine(); 857 } 858 859 /// emitDebugValueComment - This method handles the target-independent form 860 /// of DBG_VALUE, returning true if it was able to do so. A false return 861 /// means the target will need to handle MI in EmitInstruction. 862 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 863 // This code handles only the 4-operand target-independent form. 864 if (MI->getNumOperands() != 4) 865 return false; 866 867 SmallString<128> Str; 868 raw_svector_ostream OS(Str); 869 OS << "DEBUG_VALUE: "; 870 871 const DILocalVariable *V = MI->getDebugVariable(); 872 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 873 StringRef Name = SP->getName(); 874 if (!Name.empty()) 875 OS << Name << ":"; 876 } 877 OS << V->getName(); 878 OS << " <- "; 879 880 // The second operand is only an offset if it's an immediate. 881 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 882 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 883 const DIExpression *Expr = MI->getDebugExpression(); 884 if (Expr->getNumElements()) { 885 OS << '['; 886 bool NeedSep = false; 887 for (auto Op : Expr->expr_ops()) { 888 if (NeedSep) 889 OS << ", "; 890 else 891 NeedSep = true; 892 OS << dwarf::OperationEncodingString(Op.getOp()); 893 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 894 OS << ' ' << Op.getArg(I); 895 } 896 OS << "] "; 897 } 898 899 // Register or immediate value. Register 0 means undef. 900 if (MI->getOperand(0).isFPImm()) { 901 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 902 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 903 OS << (double)APF.convertToFloat(); 904 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 905 OS << APF.convertToDouble(); 906 } else { 907 // There is no good way to print long double. Convert a copy to 908 // double. Ah well, it's only a comment. 909 bool ignored; 910 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 911 &ignored); 912 OS << "(long double) " << APF.convertToDouble(); 913 } 914 } else if (MI->getOperand(0).isImm()) { 915 OS << MI->getOperand(0).getImm(); 916 } else if (MI->getOperand(0).isCImm()) { 917 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 918 } else if (MI->getOperand(0).isTargetIndex()) { 919 auto Op = MI->getOperand(0); 920 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 921 return true; 922 } else { 923 Register Reg; 924 if (MI->getOperand(0).isReg()) { 925 Reg = MI->getOperand(0).getReg(); 926 } else { 927 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 928 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 929 Offset += TFI->getFrameIndexReference(*AP.MF, 930 MI->getOperand(0).getIndex(), Reg); 931 MemLoc = true; 932 } 933 if (Reg == 0) { 934 // Suppress offset, it is not meaningful here. 935 OS << "undef"; 936 // NOTE: Want this comment at start of line, don't emit with AddComment. 937 AP.OutStreamer->emitRawComment(OS.str()); 938 return true; 939 } 940 if (MemLoc) 941 OS << '['; 942 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 943 } 944 945 if (MemLoc) 946 OS << '+' << Offset << ']'; 947 948 // NOTE: Want this comment at start of line, don't emit with AddComment. 949 AP.OutStreamer->emitRawComment(OS.str()); 950 return true; 951 } 952 953 /// This method handles the target-independent form of DBG_LABEL, returning 954 /// true if it was able to do so. A false return means the target will need 955 /// to handle MI in EmitInstruction. 956 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 957 if (MI->getNumOperands() != 1) 958 return false; 959 960 SmallString<128> Str; 961 raw_svector_ostream OS(Str); 962 OS << "DEBUG_LABEL: "; 963 964 const DILabel *V = MI->getDebugLabel(); 965 if (auto *SP = dyn_cast<DISubprogram>( 966 V->getScope()->getNonLexicalBlockFileScope())) { 967 StringRef Name = SP->getName(); 968 if (!Name.empty()) 969 OS << Name << ":"; 970 } 971 OS << V->getName(); 972 973 // NOTE: Want this comment at start of line, don't emit with AddComment. 974 AP.OutStreamer->emitRawComment(OS.str()); 975 return true; 976 } 977 978 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 979 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 980 MF->getFunction().needsUnwindTableEntry()) 981 return CFI_M_EH; 982 983 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 984 return CFI_M_Debug; 985 986 return CFI_M_None; 987 } 988 989 bool AsmPrinter::needsSEHMoves() { 990 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 991 } 992 993 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 994 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 995 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 996 ExceptionHandlingType != ExceptionHandling::ARM) 997 return; 998 999 if (needsCFIMoves() == CFI_M_None) 1000 return; 1001 1002 // If there is no "real" instruction following this CFI instruction, skip 1003 // emitting it; it would be beyond the end of the function's FDE range. 1004 auto *MBB = MI.getParent(); 1005 auto I = std::next(MI.getIterator()); 1006 while (I != MBB->end() && I->isTransient()) 1007 ++I; 1008 if (I == MBB->instr_end() && 1009 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1010 return; 1011 1012 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1013 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1014 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1015 emitCFIInstruction(CFI); 1016 } 1017 1018 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1019 // The operands are the MCSymbol and the frame offset of the allocation. 1020 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1021 int FrameOffset = MI.getOperand(1).getImm(); 1022 1023 // Emit a symbol assignment. 1024 OutStreamer->emitAssignment(FrameAllocSym, 1025 MCConstantExpr::create(FrameOffset, OutContext)); 1026 } 1027 1028 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1029 if (!MF.getTarget().Options.EmitStackSizeSection) 1030 return; 1031 1032 MCSection *StackSizeSection = 1033 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1034 if (!StackSizeSection) 1035 return; 1036 1037 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1038 // Don't emit functions with dynamic stack allocations. 1039 if (FrameInfo.hasVarSizedObjects()) 1040 return; 1041 1042 OutStreamer->PushSection(); 1043 OutStreamer->SwitchSection(StackSizeSection); 1044 1045 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1046 uint64_t StackSize = FrameInfo.getStackSize(); 1047 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1048 OutStreamer->emitULEB128IntValue(StackSize); 1049 1050 OutStreamer->PopSection(); 1051 } 1052 1053 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1054 MachineModuleInfo *MMI) { 1055 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1056 return true; 1057 1058 // We might emit an EH table that uses function begin and end labels even if 1059 // we don't have any landingpads. 1060 if (!MF.getFunction().hasPersonalityFn()) 1061 return false; 1062 return !isNoOpWithoutInvoke( 1063 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1064 } 1065 1066 /// EmitFunctionBody - This method emits the body and trailer for a 1067 /// function. 1068 void AsmPrinter::emitFunctionBody() { 1069 emitFunctionHeader(); 1070 1071 // Emit target-specific gunk before the function body. 1072 emitFunctionBodyStart(); 1073 1074 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1075 1076 if (isVerbose()) { 1077 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1078 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1079 if (!MDT) { 1080 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1081 OwnedMDT->getBase().recalculate(*MF); 1082 MDT = OwnedMDT.get(); 1083 } 1084 1085 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1086 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1087 if (!MLI) { 1088 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1089 OwnedMLI->getBase().analyze(MDT->getBase()); 1090 MLI = OwnedMLI.get(); 1091 } 1092 } 1093 1094 // Print out code for the function. 1095 bool HasAnyRealCode = false; 1096 int NumInstsInFunction = 0; 1097 1098 for (auto &MBB : *MF) { 1099 // Print a label for the basic block. 1100 emitBasicBlockStart(MBB); 1101 for (auto &MI : MBB) { 1102 // Print the assembly for the instruction. 1103 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1104 !MI.isDebugInstr()) { 1105 HasAnyRealCode = true; 1106 ++NumInstsInFunction; 1107 } 1108 1109 // If there is a pre-instruction symbol, emit a label for it here. 1110 if (MCSymbol *S = MI.getPreInstrSymbol()) 1111 OutStreamer->emitLabel(S); 1112 1113 if (ShouldPrintDebugScopes) { 1114 for (const HandlerInfo &HI : Handlers) { 1115 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1116 HI.TimerGroupName, HI.TimerGroupDescription, 1117 TimePassesIsEnabled); 1118 HI.Handler->beginInstruction(&MI); 1119 } 1120 } 1121 1122 if (isVerbose()) 1123 emitComments(MI, OutStreamer->GetCommentOS()); 1124 1125 switch (MI.getOpcode()) { 1126 case TargetOpcode::CFI_INSTRUCTION: 1127 emitCFIInstruction(MI); 1128 break; 1129 case TargetOpcode::LOCAL_ESCAPE: 1130 emitFrameAlloc(MI); 1131 break; 1132 case TargetOpcode::ANNOTATION_LABEL: 1133 case TargetOpcode::EH_LABEL: 1134 case TargetOpcode::GC_LABEL: 1135 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1136 break; 1137 case TargetOpcode::INLINEASM: 1138 case TargetOpcode::INLINEASM_BR: 1139 emitInlineAsm(&MI); 1140 break; 1141 case TargetOpcode::DBG_VALUE: 1142 if (isVerbose()) { 1143 if (!emitDebugValueComment(&MI, *this)) 1144 emitInstruction(&MI); 1145 } 1146 break; 1147 case TargetOpcode::DBG_LABEL: 1148 if (isVerbose()) { 1149 if (!emitDebugLabelComment(&MI, *this)) 1150 emitInstruction(&MI); 1151 } 1152 break; 1153 case TargetOpcode::IMPLICIT_DEF: 1154 if (isVerbose()) emitImplicitDef(&MI); 1155 break; 1156 case TargetOpcode::KILL: 1157 if (isVerbose()) emitKill(&MI, *this); 1158 break; 1159 default: 1160 emitInstruction(&MI); 1161 break; 1162 } 1163 1164 // If there is a post-instruction symbol, emit a label for it here. 1165 if (MCSymbol *S = MI.getPostInstrSymbol()) 1166 OutStreamer->emitLabel(S); 1167 1168 if (ShouldPrintDebugScopes) { 1169 for (const HandlerInfo &HI : Handlers) { 1170 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1171 HI.TimerGroupName, HI.TimerGroupDescription, 1172 TimePassesIsEnabled); 1173 HI.Handler->endInstruction(); 1174 } 1175 } 1176 } 1177 1178 // We need a temporary symbol for the end of this basic block, if either we 1179 // have BBLabels enabled and we want to emit size directive for the BBs, or 1180 // if this basic blocks marks the end of a section (except the section 1181 // containing the entry basic block as the end symbol for that section is 1182 // CurrentFnEnd). 1183 MCSymbol *CurrentBBEnd = nullptr; 1184 if ((MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) || 1185 (MBB.isEndSection() && !MBB.sameSection(&MF->front()))) { 1186 CurrentBBEnd = OutContext.createTempSymbol(); 1187 OutStreamer->emitLabel(CurrentBBEnd); 1188 } 1189 1190 // Helper for emitting the size directive associated with a basic block 1191 // symbol. 1192 auto emitELFSizeDirective = [&](MCSymbol *SymForSize) { 1193 assert(CurrentBBEnd && "Basicblock end symbol not set!"); 1194 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1195 MCSymbolRefExpr::create(CurrentBBEnd, OutContext), 1196 MCSymbolRefExpr::create(SymForSize, OutContext), OutContext); 1197 OutStreamer->emitELFSize(SymForSize, SizeExp); 1198 }; 1199 1200 // Emit size directive for the size of each basic block, if BBLabels is 1201 // enabled. 1202 if (MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) 1203 emitELFSizeDirective(MBB.getSymbol()); 1204 1205 // Emit size directive for the size of each basic block section once we 1206 // get to the end of that section. 1207 if (MBB.isEndSection()) { 1208 if (!MBB.sameSection(&MF->front())) { 1209 if (MAI->hasDotTypeDotSizeDirective()) 1210 emitELFSizeDirective(CurrentSectionBeginSym); 1211 } 1212 } 1213 emitBasicBlockEnd(MBB); 1214 } 1215 1216 EmittedInsts += NumInstsInFunction; 1217 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1218 MF->getFunction().getSubprogram(), 1219 &MF->front()); 1220 R << ore::NV("NumInstructions", NumInstsInFunction) 1221 << " instructions in function"; 1222 ORE->emit(R); 1223 1224 // If the function is empty and the object file uses .subsections_via_symbols, 1225 // then we need to emit *something* to the function body to prevent the 1226 // labels from collapsing together. Just emit a noop. 1227 // Similarly, don't emit empty functions on Windows either. It can lead to 1228 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1229 // after linking, causing the kernel not to load the binary: 1230 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1231 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1232 const Triple &TT = TM.getTargetTriple(); 1233 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1234 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1235 MCInst Noop; 1236 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1237 1238 // Targets can opt-out of emitting the noop here by leaving the opcode 1239 // unspecified. 1240 if (Noop.getOpcode()) { 1241 OutStreamer->AddComment("avoids zero-length function"); 1242 emitNops(1); 1243 } 1244 } 1245 1246 // Switch to the original section in case basic block sections was used. 1247 OutStreamer->SwitchSection(MF->getSection()); 1248 1249 const Function &F = MF->getFunction(); 1250 for (const auto &BB : F) { 1251 if (!BB.hasAddressTaken()) 1252 continue; 1253 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1254 if (Sym->isDefined()) 1255 continue; 1256 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1257 OutStreamer->emitLabel(Sym); 1258 } 1259 1260 // Emit target-specific gunk after the function body. 1261 emitFunctionBodyEnd(); 1262 1263 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1264 MAI->hasDotTypeDotSizeDirective()) { 1265 // Create a symbol for the end of function. 1266 CurrentFnEnd = createTempSymbol("func_end"); 1267 OutStreamer->emitLabel(CurrentFnEnd); 1268 } 1269 1270 // If the target wants a .size directive for the size of the function, emit 1271 // it. 1272 if (MAI->hasDotTypeDotSizeDirective()) { 1273 // We can get the size as difference between the function label and the 1274 // temp label. 1275 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1276 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1277 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1278 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1279 } 1280 1281 for (const HandlerInfo &HI : Handlers) { 1282 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1283 HI.TimerGroupDescription, TimePassesIsEnabled); 1284 HI.Handler->markFunctionEnd(); 1285 } 1286 1287 1288 // Print out jump tables referenced by the function. 1289 emitJumpTableInfo(); 1290 1291 // Emit post-function debug and/or EH information. 1292 for (const HandlerInfo &HI : Handlers) { 1293 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1294 HI.TimerGroupDescription, TimePassesIsEnabled); 1295 HI.Handler->endFunction(MF); 1296 } 1297 1298 // Emit section containing stack size metadata. 1299 emitStackSizeSection(*MF); 1300 1301 emitPatchableFunctionEntries(); 1302 1303 if (isVerbose()) 1304 OutStreamer->GetCommentOS() << "-- End function\n"; 1305 1306 OutStreamer->AddBlankLine(); 1307 } 1308 1309 /// Compute the number of Global Variables that uses a Constant. 1310 static unsigned getNumGlobalVariableUses(const Constant *C) { 1311 if (!C) 1312 return 0; 1313 1314 if (isa<GlobalVariable>(C)) 1315 return 1; 1316 1317 unsigned NumUses = 0; 1318 for (auto *CU : C->users()) 1319 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1320 1321 return NumUses; 1322 } 1323 1324 /// Only consider global GOT equivalents if at least one user is a 1325 /// cstexpr inside an initializer of another global variables. Also, don't 1326 /// handle cstexpr inside instructions. During global variable emission, 1327 /// candidates are skipped and are emitted later in case at least one cstexpr 1328 /// isn't replaced by a PC relative GOT entry access. 1329 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1330 unsigned &NumGOTEquivUsers) { 1331 // Global GOT equivalents are unnamed private globals with a constant 1332 // pointer initializer to another global symbol. They must point to a 1333 // GlobalVariable or Function, i.e., as GlobalValue. 1334 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1335 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1336 !isa<GlobalValue>(GV->getOperand(0))) 1337 return false; 1338 1339 // To be a got equivalent, at least one of its users need to be a constant 1340 // expression used by another global variable. 1341 for (auto *U : GV->users()) 1342 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1343 1344 return NumGOTEquivUsers > 0; 1345 } 1346 1347 /// Unnamed constant global variables solely contaning a pointer to 1348 /// another globals variable is equivalent to a GOT table entry; it contains the 1349 /// the address of another symbol. Optimize it and replace accesses to these 1350 /// "GOT equivalents" by using the GOT entry for the final global instead. 1351 /// Compute GOT equivalent candidates among all global variables to avoid 1352 /// emitting them if possible later on, after it use is replaced by a GOT entry 1353 /// access. 1354 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1355 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1356 return; 1357 1358 for (const auto &G : M.globals()) { 1359 unsigned NumGOTEquivUsers = 0; 1360 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1361 continue; 1362 1363 const MCSymbol *GOTEquivSym = getSymbol(&G); 1364 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1365 } 1366 } 1367 1368 /// Constant expressions using GOT equivalent globals may not be eligible 1369 /// for PC relative GOT entry conversion, in such cases we need to emit such 1370 /// globals we previously omitted in EmitGlobalVariable. 1371 void AsmPrinter::emitGlobalGOTEquivs() { 1372 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1373 return; 1374 1375 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1376 for (auto &I : GlobalGOTEquivs) { 1377 const GlobalVariable *GV = I.second.first; 1378 unsigned Cnt = I.second.second; 1379 if (Cnt) 1380 FailedCandidates.push_back(GV); 1381 } 1382 GlobalGOTEquivs.clear(); 1383 1384 for (auto *GV : FailedCandidates) 1385 emitGlobalVariable(GV); 1386 } 1387 1388 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1389 const GlobalIndirectSymbol& GIS) { 1390 MCSymbol *Name = getSymbol(&GIS); 1391 1392 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1393 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1394 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1395 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1396 else 1397 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1398 1399 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1400 1401 // Treat bitcasts of functions as functions also. This is important at least 1402 // on WebAssembly where object and function addresses can't alias each other. 1403 if (!IsFunction) 1404 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1405 if (CE->getOpcode() == Instruction::BitCast) 1406 IsFunction = 1407 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1408 1409 // Set the symbol type to function if the alias has a function type. 1410 // This affects codegen when the aliasee is not a function. 1411 if (IsFunction) 1412 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1413 ? MCSA_ELF_TypeIndFunction 1414 : MCSA_ELF_TypeFunction); 1415 1416 emitVisibility(Name, GIS.getVisibility()); 1417 1418 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1419 1420 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1421 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1422 1423 // Emit the directives as assignments aka .set: 1424 OutStreamer->emitAssignment(Name, Expr); 1425 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1426 if (LocalAlias != Name) 1427 OutStreamer->emitAssignment(LocalAlias, Expr); 1428 1429 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1430 // If the aliasee does not correspond to a symbol in the output, i.e. the 1431 // alias is not of an object or the aliased object is private, then set the 1432 // size of the alias symbol from the type of the alias. We don't do this in 1433 // other situations as the alias and aliasee having differing types but same 1434 // size may be intentional. 1435 const GlobalObject *BaseObject = GA->getBaseObject(); 1436 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1437 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1438 const DataLayout &DL = M.getDataLayout(); 1439 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1440 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1441 } 1442 } 1443 } 1444 1445 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1446 if (!RS.needsSection()) 1447 return; 1448 1449 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1450 1451 Optional<SmallString<128>> Filename; 1452 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1453 Filename = *FilenameRef; 1454 sys::fs::make_absolute(*Filename); 1455 assert(!Filename->empty() && "The filename can't be empty."); 1456 } 1457 1458 std::string Buf; 1459 raw_string_ostream OS(Buf); 1460 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1461 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1462 : RemarkSerializer.metaSerializer(OS); 1463 MetaSerializer->emit(); 1464 1465 // Switch to the remarks section. 1466 MCSection *RemarksSection = 1467 OutContext.getObjectFileInfo()->getRemarksSection(); 1468 OutStreamer->SwitchSection(RemarksSection); 1469 1470 OutStreamer->emitBinaryData(OS.str()); 1471 } 1472 1473 bool AsmPrinter::doFinalization(Module &M) { 1474 // Set the MachineFunction to nullptr so that we can catch attempted 1475 // accesses to MF specific features at the module level and so that 1476 // we can conditionalize accesses based on whether or not it is nullptr. 1477 MF = nullptr; 1478 1479 // Gather all GOT equivalent globals in the module. We really need two 1480 // passes over the globals: one to compute and another to avoid its emission 1481 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1482 // where the got equivalent shows up before its use. 1483 computeGlobalGOTEquivs(M); 1484 1485 // Emit global variables. 1486 for (const auto &G : M.globals()) 1487 emitGlobalVariable(&G); 1488 1489 // Emit remaining GOT equivalent globals. 1490 emitGlobalGOTEquivs(); 1491 1492 // Emit visibility info for declarations 1493 for (const Function &F : M) { 1494 if (!F.isDeclarationForLinker()) 1495 continue; 1496 GlobalValue::VisibilityTypes V = F.getVisibility(); 1497 if (V == GlobalValue::DefaultVisibility) 1498 continue; 1499 1500 MCSymbol *Name = getSymbol(&F); 1501 emitVisibility(Name, V, false); 1502 } 1503 1504 // Emit the remarks section contents. 1505 // FIXME: Figure out when is the safest time to emit this section. It should 1506 // not come after debug info. 1507 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1508 emitRemarksSection(*RS); 1509 1510 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1511 1512 TLOF.emitModuleMetadata(*OutStreamer, M); 1513 1514 if (TM.getTargetTriple().isOSBinFormatELF()) { 1515 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1516 1517 // Output stubs for external and common global variables. 1518 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1519 if (!Stubs.empty()) { 1520 OutStreamer->SwitchSection(TLOF.getDataSection()); 1521 const DataLayout &DL = M.getDataLayout(); 1522 1523 emitAlignment(Align(DL.getPointerSize())); 1524 for (const auto &Stub : Stubs) { 1525 OutStreamer->emitLabel(Stub.first); 1526 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1527 DL.getPointerSize()); 1528 } 1529 } 1530 } 1531 1532 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1533 MachineModuleInfoCOFF &MMICOFF = 1534 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1535 1536 // Output stubs for external and common global variables. 1537 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1538 if (!Stubs.empty()) { 1539 const DataLayout &DL = M.getDataLayout(); 1540 1541 for (const auto &Stub : Stubs) { 1542 SmallString<256> SectionName = StringRef(".rdata$"); 1543 SectionName += Stub.first->getName(); 1544 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1545 SectionName, 1546 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1547 COFF::IMAGE_SCN_LNK_COMDAT, 1548 SectionKind::getReadOnly(), Stub.first->getName(), 1549 COFF::IMAGE_COMDAT_SELECT_ANY)); 1550 emitAlignment(Align(DL.getPointerSize())); 1551 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1552 OutStreamer->emitLabel(Stub.first); 1553 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1554 DL.getPointerSize()); 1555 } 1556 } 1557 } 1558 1559 // Finalize debug and EH information. 1560 for (const HandlerInfo &HI : Handlers) { 1561 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1562 HI.TimerGroupDescription, TimePassesIsEnabled); 1563 HI.Handler->endModule(); 1564 } 1565 Handlers.clear(); 1566 DD = nullptr; 1567 1568 // If the target wants to know about weak references, print them all. 1569 if (MAI->getWeakRefDirective()) { 1570 // FIXME: This is not lazy, it would be nice to only print weak references 1571 // to stuff that is actually used. Note that doing so would require targets 1572 // to notice uses in operands (due to constant exprs etc). This should 1573 // happen with the MC stuff eventually. 1574 1575 // Print out module-level global objects here. 1576 for (const auto &GO : M.global_objects()) { 1577 if (!GO.hasExternalWeakLinkage()) 1578 continue; 1579 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1580 } 1581 } 1582 1583 // Print aliases in topological order, that is, for each alias a = b, 1584 // b must be printed before a. 1585 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1586 // such an order to generate correct TOC information. 1587 SmallVector<const GlobalAlias *, 16> AliasStack; 1588 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1589 for (const auto &Alias : M.aliases()) { 1590 for (const GlobalAlias *Cur = &Alias; Cur; 1591 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1592 if (!AliasVisited.insert(Cur).second) 1593 break; 1594 AliasStack.push_back(Cur); 1595 } 1596 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1597 emitGlobalIndirectSymbol(M, *AncestorAlias); 1598 AliasStack.clear(); 1599 } 1600 for (const auto &IFunc : M.ifuncs()) 1601 emitGlobalIndirectSymbol(M, IFunc); 1602 1603 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1604 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1605 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1606 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1607 MP->finishAssembly(M, *MI, *this); 1608 1609 // Emit llvm.ident metadata in an '.ident' directive. 1610 emitModuleIdents(M); 1611 1612 // Emit bytes for llvm.commandline metadata. 1613 emitModuleCommandLines(M); 1614 1615 // Emit __morestack address if needed for indirect calls. 1616 if (MMI->usesMorestackAddr()) { 1617 unsigned Align = 1; 1618 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1619 getDataLayout(), SectionKind::getReadOnly(), 1620 /*C=*/nullptr, Align); 1621 OutStreamer->SwitchSection(ReadOnlySection); 1622 1623 MCSymbol *AddrSymbol = 1624 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1625 OutStreamer->emitLabel(AddrSymbol); 1626 1627 unsigned PtrSize = MAI->getCodePointerSize(); 1628 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1629 PtrSize); 1630 } 1631 1632 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1633 // split-stack is used. 1634 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1635 OutStreamer->SwitchSection( 1636 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1637 if (MMI->hasNosplitStack()) 1638 OutStreamer->SwitchSection( 1639 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1640 } 1641 1642 // If we don't have any trampolines, then we don't require stack memory 1643 // to be executable. Some targets have a directive to declare this. 1644 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1645 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1646 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1647 OutStreamer->SwitchSection(S); 1648 1649 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1650 // Emit /EXPORT: flags for each exported global as necessary. 1651 const auto &TLOF = getObjFileLowering(); 1652 std::string Flags; 1653 1654 for (const GlobalValue &GV : M.global_values()) { 1655 raw_string_ostream OS(Flags); 1656 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1657 OS.flush(); 1658 if (!Flags.empty()) { 1659 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1660 OutStreamer->emitBytes(Flags); 1661 } 1662 Flags.clear(); 1663 } 1664 1665 // Emit /INCLUDE: flags for each used global as necessary. 1666 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1667 assert(LU->hasInitializer() && 1668 "expected llvm.used to have an initializer"); 1669 assert(isa<ArrayType>(LU->getValueType()) && 1670 "expected llvm.used to be an array type"); 1671 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1672 for (const Value *Op : A->operands()) { 1673 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1674 // Global symbols with internal or private linkage are not visible to 1675 // the linker, and thus would cause an error when the linker tried to 1676 // preserve the symbol due to the `/include:` directive. 1677 if (GV->hasLocalLinkage()) 1678 continue; 1679 1680 raw_string_ostream OS(Flags); 1681 TLOF.emitLinkerFlagsForUsed(OS, GV); 1682 OS.flush(); 1683 1684 if (!Flags.empty()) { 1685 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1686 OutStreamer->emitBytes(Flags); 1687 } 1688 Flags.clear(); 1689 } 1690 } 1691 } 1692 } 1693 1694 if (TM.Options.EmitAddrsig) { 1695 // Emit address-significance attributes for all globals. 1696 OutStreamer->emitAddrsig(); 1697 for (const GlobalValue &GV : M.global_values()) 1698 if (!GV.use_empty() && !GV.isThreadLocal() && 1699 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1700 !GV.hasAtLeastLocalUnnamedAddr()) 1701 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1702 } 1703 1704 // Emit symbol partition specifications (ELF only). 1705 if (TM.getTargetTriple().isOSBinFormatELF()) { 1706 unsigned UniqueID = 0; 1707 for (const GlobalValue &GV : M.global_values()) { 1708 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1709 GV.getVisibility() != GlobalValue::DefaultVisibility) 1710 continue; 1711 1712 OutStreamer->SwitchSection( 1713 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1714 "", ++UniqueID, nullptr)); 1715 OutStreamer->emitBytes(GV.getPartition()); 1716 OutStreamer->emitZeros(1); 1717 OutStreamer->emitValue( 1718 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1719 MAI->getCodePointerSize()); 1720 } 1721 } 1722 1723 // Allow the target to emit any magic that it wants at the end of the file, 1724 // after everything else has gone out. 1725 emitEndOfAsmFile(M); 1726 1727 MMI = nullptr; 1728 1729 OutStreamer->Finish(); 1730 OutStreamer->reset(); 1731 OwnedMLI.reset(); 1732 OwnedMDT.reset(); 1733 1734 return false; 1735 } 1736 1737 MCSymbol *AsmPrinter::getCurExceptionSym() { 1738 if (!CurExceptionSym) 1739 CurExceptionSym = createTempSymbol("exception"); 1740 return CurExceptionSym; 1741 } 1742 1743 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1744 this->MF = &MF; 1745 const Function &F = MF.getFunction(); 1746 1747 // Get the function symbol. 1748 if (!MAI->needsFunctionDescriptors()) { 1749 CurrentFnSym = getSymbol(&MF.getFunction()); 1750 } else { 1751 assert(TM.getTargetTriple().isOSAIX() && 1752 "Only AIX uses the function descriptor hooks."); 1753 // AIX is unique here in that the name of the symbol emitted for the 1754 // function body does not have the same name as the source function's 1755 // C-linkage name. 1756 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1757 " initalized first."); 1758 1759 // Get the function entry point symbol. 1760 CurrentFnSym = OutContext.getOrCreateSymbol( 1761 "." + cast<MCSymbolXCOFF>(CurrentFnDescSym)->getUnqualifiedName()); 1762 } 1763 1764 CurrentFnSymForSize = CurrentFnSym; 1765 CurrentFnBegin = nullptr; 1766 CurrentSectionBeginSym = nullptr; 1767 CurExceptionSym = nullptr; 1768 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1769 if (F.hasFnAttribute("patchable-function-entry") || 1770 needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1771 MF.getTarget().Options.EmitStackSizeSection) { 1772 CurrentFnBegin = createTempSymbol("func_begin"); 1773 if (NeedsLocalForSize) 1774 CurrentFnSymForSize = CurrentFnBegin; 1775 } 1776 1777 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1778 } 1779 1780 namespace { 1781 1782 // Keep track the alignment, constpool entries per Section. 1783 struct SectionCPs { 1784 MCSection *S; 1785 unsigned Alignment; 1786 SmallVector<unsigned, 4> CPEs; 1787 1788 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1789 }; 1790 1791 } // end anonymous namespace 1792 1793 /// EmitConstantPool - Print to the current output stream assembly 1794 /// representations of the constants in the constant pool MCP. This is 1795 /// used to print out constants which have been "spilled to memory" by 1796 /// the code generator. 1797 void AsmPrinter::emitConstantPool() { 1798 const MachineConstantPool *MCP = MF->getConstantPool(); 1799 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1800 if (CP.empty()) return; 1801 1802 // Calculate sections for constant pool entries. We collect entries to go into 1803 // the same section together to reduce amount of section switch statements. 1804 SmallVector<SectionCPs, 4> CPSections; 1805 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1806 const MachineConstantPoolEntry &CPE = CP[i]; 1807 unsigned Align = CPE.getAlignment(); 1808 1809 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1810 1811 const Constant *C = nullptr; 1812 if (!CPE.isMachineConstantPoolEntry()) 1813 C = CPE.Val.ConstVal; 1814 1815 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1816 Kind, C, Align); 1817 1818 // The number of sections are small, just do a linear search from the 1819 // last section to the first. 1820 bool Found = false; 1821 unsigned SecIdx = CPSections.size(); 1822 while (SecIdx != 0) { 1823 if (CPSections[--SecIdx].S == S) { 1824 Found = true; 1825 break; 1826 } 1827 } 1828 if (!Found) { 1829 SecIdx = CPSections.size(); 1830 CPSections.push_back(SectionCPs(S, Align)); 1831 } 1832 1833 if (Align > CPSections[SecIdx].Alignment) 1834 CPSections[SecIdx].Alignment = Align; 1835 CPSections[SecIdx].CPEs.push_back(i); 1836 } 1837 1838 // Now print stuff into the calculated sections. 1839 const MCSection *CurSection = nullptr; 1840 unsigned Offset = 0; 1841 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1842 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1843 unsigned CPI = CPSections[i].CPEs[j]; 1844 MCSymbol *Sym = GetCPISymbol(CPI); 1845 if (!Sym->isUndefined()) 1846 continue; 1847 1848 if (CurSection != CPSections[i].S) { 1849 OutStreamer->SwitchSection(CPSections[i].S); 1850 emitAlignment(Align(CPSections[i].Alignment)); 1851 CurSection = CPSections[i].S; 1852 Offset = 0; 1853 } 1854 1855 MachineConstantPoolEntry CPE = CP[CPI]; 1856 1857 // Emit inter-object padding for alignment. 1858 unsigned AlignMask = CPE.getAlignment() - 1; 1859 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1860 OutStreamer->emitZeros(NewOffset - Offset); 1861 1862 Type *Ty = CPE.getType(); 1863 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1864 1865 OutStreamer->emitLabel(Sym); 1866 if (CPE.isMachineConstantPoolEntry()) 1867 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1868 else 1869 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1870 } 1871 } 1872 } 1873 1874 // Print assembly representations of the jump tables used by the current 1875 // function. 1876 void AsmPrinter::emitJumpTableInfo() { 1877 const DataLayout &DL = MF->getDataLayout(); 1878 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1879 if (!MJTI) return; 1880 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1881 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1882 if (JT.empty()) return; 1883 1884 // Pick the directive to use to print the jump table entries, and switch to 1885 // the appropriate section. 1886 const Function &F = MF->getFunction(); 1887 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1888 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1889 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1890 F); 1891 if (JTInDiffSection) { 1892 // Drop it in the readonly section. 1893 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1894 OutStreamer->SwitchSection(ReadOnlySection); 1895 } 1896 1897 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1898 1899 // Jump tables in code sections are marked with a data_region directive 1900 // where that's supported. 1901 if (!JTInDiffSection) 1902 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1903 1904 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1905 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1906 1907 // If this jump table was deleted, ignore it. 1908 if (JTBBs.empty()) continue; 1909 1910 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1911 /// emit a .set directive for each unique entry. 1912 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1913 MAI->doesSetDirectiveSuppressReloc()) { 1914 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1915 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1916 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1917 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1918 const MachineBasicBlock *MBB = JTBBs[ii]; 1919 if (!EmittedSets.insert(MBB).second) 1920 continue; 1921 1922 // .set LJTSet, LBB32-base 1923 const MCExpr *LHS = 1924 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1925 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1926 MCBinaryExpr::createSub(LHS, Base, 1927 OutContext)); 1928 } 1929 } 1930 1931 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1932 // before each jump table. The first label is never referenced, but tells 1933 // the assembler and linker the extents of the jump table object. The 1934 // second label is actually referenced by the code. 1935 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1936 // FIXME: This doesn't have to have any specific name, just any randomly 1937 // named and numbered local label started with 'l' would work. Simplify 1938 // GetJTISymbol. 1939 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 1940 1941 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1942 OutStreamer->emitLabel(JTISymbol); 1943 1944 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1945 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1946 } 1947 if (!JTInDiffSection) 1948 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1949 } 1950 1951 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1952 /// current stream. 1953 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1954 const MachineBasicBlock *MBB, 1955 unsigned UID) const { 1956 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1957 const MCExpr *Value = nullptr; 1958 switch (MJTI->getEntryKind()) { 1959 case MachineJumpTableInfo::EK_Inline: 1960 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1961 case MachineJumpTableInfo::EK_Custom32: 1962 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1963 MJTI, MBB, UID, OutContext); 1964 break; 1965 case MachineJumpTableInfo::EK_BlockAddress: 1966 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1967 // .word LBB123 1968 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1969 break; 1970 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1971 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1972 // with a relocation as gp-relative, e.g.: 1973 // .gprel32 LBB123 1974 MCSymbol *MBBSym = MBB->getSymbol(); 1975 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1976 return; 1977 } 1978 1979 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1980 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1981 // with a relocation as gp-relative, e.g.: 1982 // .gpdword LBB123 1983 MCSymbol *MBBSym = MBB->getSymbol(); 1984 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1985 return; 1986 } 1987 1988 case MachineJumpTableInfo::EK_LabelDifference32: { 1989 // Each entry is the address of the block minus the address of the jump 1990 // table. This is used for PIC jump tables where gprel32 is not supported. 1991 // e.g.: 1992 // .word LBB123 - LJTI1_2 1993 // If the .set directive avoids relocations, this is emitted as: 1994 // .set L4_5_set_123, LBB123 - LJTI1_2 1995 // .word L4_5_set_123 1996 if (MAI->doesSetDirectiveSuppressReloc()) { 1997 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1998 OutContext); 1999 break; 2000 } 2001 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2002 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2003 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2004 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2005 break; 2006 } 2007 } 2008 2009 assert(Value && "Unknown entry kind!"); 2010 2011 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2012 OutStreamer->emitValue(Value, EntrySize); 2013 } 2014 2015 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2016 /// special global used by LLVM. If so, emit it and return true, otherwise 2017 /// do nothing and return false. 2018 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2019 if (GV->getName() == "llvm.used") { 2020 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2021 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2022 return true; 2023 } 2024 2025 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2026 if (GV->getSection() == "llvm.metadata" || 2027 GV->hasAvailableExternallyLinkage()) 2028 return true; 2029 2030 if (!GV->hasAppendingLinkage()) return false; 2031 2032 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2033 2034 if (GV->getName() == "llvm.global_ctors") { 2035 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2036 /* isCtor */ true); 2037 2038 return true; 2039 } 2040 2041 if (GV->getName() == "llvm.global_dtors") { 2042 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2043 /* isCtor */ false); 2044 2045 return true; 2046 } 2047 2048 report_fatal_error("unknown special variable"); 2049 } 2050 2051 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2052 /// global in the specified llvm.used list. 2053 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2054 // Should be an array of 'i8*'. 2055 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2056 const GlobalValue *GV = 2057 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2058 if (GV) 2059 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2060 } 2061 } 2062 2063 namespace { 2064 2065 struct Structor { 2066 int Priority = 0; 2067 Constant *Func = nullptr; 2068 GlobalValue *ComdatKey = nullptr; 2069 2070 Structor() = default; 2071 }; 2072 2073 } // end anonymous namespace 2074 2075 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2076 /// priority. 2077 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2078 bool isCtor) { 2079 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2080 // init priority. 2081 if (!isa<ConstantArray>(List)) return; 2082 2083 // Gather the structors in a form that's convenient for sorting by priority. 2084 SmallVector<Structor, 8> Structors; 2085 for (Value *O : cast<ConstantArray>(List)->operands()) { 2086 auto *CS = cast<ConstantStruct>(O); 2087 if (CS->getOperand(1)->isNullValue()) 2088 break; // Found a null terminator, skip the rest. 2089 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2090 if (!Priority) continue; // Malformed. 2091 Structors.push_back(Structor()); 2092 Structor &S = Structors.back(); 2093 S.Priority = Priority->getLimitedValue(65535); 2094 S.Func = CS->getOperand(1); 2095 if (!CS->getOperand(2)->isNullValue()) 2096 S.ComdatKey = 2097 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2098 } 2099 2100 // Emit the function pointers in the target-specific order 2101 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2102 return L.Priority < R.Priority; 2103 }); 2104 const Align Align = DL.getPointerPrefAlignment(); 2105 for (Structor &S : Structors) { 2106 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2107 const MCSymbol *KeySym = nullptr; 2108 if (GlobalValue *GV = S.ComdatKey) { 2109 if (GV->isDeclarationForLinker()) 2110 // If the associated variable is not defined in this module 2111 // (it might be available_externally, or have been an 2112 // available_externally definition that was dropped by the 2113 // EliminateAvailableExternally pass), some other TU 2114 // will provide its dynamic initializer. 2115 continue; 2116 2117 KeySym = getSymbol(GV); 2118 } 2119 MCSection *OutputSection = 2120 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2121 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2122 OutStreamer->SwitchSection(OutputSection); 2123 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2124 emitAlignment(Align); 2125 emitXXStructor(DL, S.Func); 2126 } 2127 } 2128 2129 void AsmPrinter::emitModuleIdents(Module &M) { 2130 if (!MAI->hasIdentDirective()) 2131 return; 2132 2133 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2134 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2135 const MDNode *N = NMD->getOperand(i); 2136 assert(N->getNumOperands() == 1 && 2137 "llvm.ident metadata entry can have only one operand"); 2138 const MDString *S = cast<MDString>(N->getOperand(0)); 2139 OutStreamer->emitIdent(S->getString()); 2140 } 2141 } 2142 } 2143 2144 void AsmPrinter::emitModuleCommandLines(Module &M) { 2145 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2146 if (!CommandLine) 2147 return; 2148 2149 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2150 if (!NMD || !NMD->getNumOperands()) 2151 return; 2152 2153 OutStreamer->PushSection(); 2154 OutStreamer->SwitchSection(CommandLine); 2155 OutStreamer->emitZeros(1); 2156 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2157 const MDNode *N = NMD->getOperand(i); 2158 assert(N->getNumOperands() == 1 && 2159 "llvm.commandline metadata entry can have only one operand"); 2160 const MDString *S = cast<MDString>(N->getOperand(0)); 2161 OutStreamer->emitBytes(S->getString()); 2162 OutStreamer->emitZeros(1); 2163 } 2164 OutStreamer->PopSection(); 2165 } 2166 2167 //===--------------------------------------------------------------------===// 2168 // Emission and print routines 2169 // 2170 2171 /// Emit a byte directive and value. 2172 /// 2173 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2174 2175 /// Emit a short directive and value. 2176 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2177 2178 /// Emit a long directive and value. 2179 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2180 2181 /// Emit a long long directive and value. 2182 void AsmPrinter::emitInt64(uint64_t Value) const { 2183 OutStreamer->emitInt64(Value); 2184 } 2185 2186 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2187 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2188 /// .set if it avoids relocations. 2189 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2190 unsigned Size) const { 2191 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2192 } 2193 2194 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2195 /// where the size in bytes of the directive is specified by Size and Label 2196 /// specifies the label. This implicitly uses .set if it is available. 2197 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2198 unsigned Size, 2199 bool IsSectionRelative) const { 2200 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2201 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2202 if (Size > 4) 2203 OutStreamer->emitZeros(Size - 4); 2204 return; 2205 } 2206 2207 // Emit Label+Offset (or just Label if Offset is zero) 2208 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2209 if (Offset) 2210 Expr = MCBinaryExpr::createAdd( 2211 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2212 2213 OutStreamer->emitValue(Expr, Size); 2214 } 2215 2216 //===----------------------------------------------------------------------===// 2217 2218 // EmitAlignment - Emit an alignment directive to the specified power of 2219 // two boundary. If a global value is specified, and if that global has 2220 // an explicit alignment requested, it will override the alignment request 2221 // if required for correctness. 2222 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2223 if (GV) 2224 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2225 2226 if (Alignment == Align(1)) 2227 return; // 1-byte aligned: no need to emit alignment. 2228 2229 if (getCurrentSection()->getKind().isText()) 2230 OutStreamer->emitCodeAlignment(Alignment.value()); 2231 else 2232 OutStreamer->emitValueToAlignment(Alignment.value()); 2233 } 2234 2235 //===----------------------------------------------------------------------===// 2236 // Constant emission. 2237 //===----------------------------------------------------------------------===// 2238 2239 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2240 MCContext &Ctx = OutContext; 2241 2242 if (CV->isNullValue() || isa<UndefValue>(CV)) 2243 return MCConstantExpr::create(0, Ctx); 2244 2245 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2246 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2247 2248 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2249 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2250 2251 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2252 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2253 2254 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2255 if (!CE) { 2256 llvm_unreachable("Unknown constant value to lower!"); 2257 } 2258 2259 switch (CE->getOpcode()) { 2260 default: { 2261 // If the code isn't optimized, there may be outstanding folding 2262 // opportunities. Attempt to fold the expression using DataLayout as a 2263 // last resort before giving up. 2264 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2265 if (C != CE) 2266 return lowerConstant(C); 2267 2268 // Otherwise report the problem to the user. 2269 std::string S; 2270 raw_string_ostream OS(S); 2271 OS << "Unsupported expression in static initializer: "; 2272 CE->printAsOperand(OS, /*PrintType=*/false, 2273 !MF ? nullptr : MF->getFunction().getParent()); 2274 report_fatal_error(OS.str()); 2275 } 2276 case Instruction::GetElementPtr: { 2277 // Generate a symbolic expression for the byte address 2278 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2279 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2280 2281 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2282 if (!OffsetAI) 2283 return Base; 2284 2285 int64_t Offset = OffsetAI.getSExtValue(); 2286 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2287 Ctx); 2288 } 2289 2290 case Instruction::Trunc: 2291 // We emit the value and depend on the assembler to truncate the generated 2292 // expression properly. This is important for differences between 2293 // blockaddress labels. Since the two labels are in the same function, it 2294 // is reasonable to treat their delta as a 32-bit value. 2295 LLVM_FALLTHROUGH; 2296 case Instruction::BitCast: 2297 return lowerConstant(CE->getOperand(0)); 2298 2299 case Instruction::IntToPtr: { 2300 const DataLayout &DL = getDataLayout(); 2301 2302 // Handle casts to pointers by changing them into casts to the appropriate 2303 // integer type. This promotes constant folding and simplifies this code. 2304 Constant *Op = CE->getOperand(0); 2305 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2306 false/*ZExt*/); 2307 return lowerConstant(Op); 2308 } 2309 2310 case Instruction::PtrToInt: { 2311 const DataLayout &DL = getDataLayout(); 2312 2313 // Support only foldable casts to/from pointers that can be eliminated by 2314 // changing the pointer to the appropriately sized integer type. 2315 Constant *Op = CE->getOperand(0); 2316 Type *Ty = CE->getType(); 2317 2318 const MCExpr *OpExpr = lowerConstant(Op); 2319 2320 // We can emit the pointer value into this slot if the slot is an 2321 // integer slot equal to the size of the pointer. 2322 // 2323 // If the pointer is larger than the resultant integer, then 2324 // as with Trunc just depend on the assembler to truncate it. 2325 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2326 return OpExpr; 2327 2328 // Otherwise the pointer is smaller than the resultant integer, mask off 2329 // the high bits so we are sure to get a proper truncation if the input is 2330 // a constant expr. 2331 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2332 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2333 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2334 } 2335 2336 case Instruction::Sub: { 2337 GlobalValue *LHSGV; 2338 APInt LHSOffset; 2339 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2340 getDataLayout())) { 2341 GlobalValue *RHSGV; 2342 APInt RHSOffset; 2343 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2344 getDataLayout())) { 2345 const MCExpr *RelocExpr = 2346 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2347 if (!RelocExpr) 2348 RelocExpr = MCBinaryExpr::createSub( 2349 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2350 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2351 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2352 if (Addend != 0) 2353 RelocExpr = MCBinaryExpr::createAdd( 2354 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2355 return RelocExpr; 2356 } 2357 } 2358 } 2359 // else fallthrough 2360 LLVM_FALLTHROUGH; 2361 2362 // The MC library also has a right-shift operator, but it isn't consistently 2363 // signed or unsigned between different targets. 2364 case Instruction::Add: 2365 case Instruction::Mul: 2366 case Instruction::SDiv: 2367 case Instruction::SRem: 2368 case Instruction::Shl: 2369 case Instruction::And: 2370 case Instruction::Or: 2371 case Instruction::Xor: { 2372 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2373 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2374 switch (CE->getOpcode()) { 2375 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2376 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2377 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2378 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2379 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2380 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2381 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2382 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2383 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2384 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2385 } 2386 } 2387 } 2388 } 2389 2390 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2391 AsmPrinter &AP, 2392 const Constant *BaseCV = nullptr, 2393 uint64_t Offset = 0); 2394 2395 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2396 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2397 2398 /// isRepeatedByteSequence - Determine whether the given value is 2399 /// composed of a repeated sequence of identical bytes and return the 2400 /// byte value. If it is not a repeated sequence, return -1. 2401 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2402 StringRef Data = V->getRawDataValues(); 2403 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2404 char C = Data[0]; 2405 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2406 if (Data[i] != C) return -1; 2407 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2408 } 2409 2410 /// isRepeatedByteSequence - Determine whether the given value is 2411 /// composed of a repeated sequence of identical bytes and return the 2412 /// byte value. If it is not a repeated sequence, return -1. 2413 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2414 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2415 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2416 assert(Size % 8 == 0); 2417 2418 // Extend the element to take zero padding into account. 2419 APInt Value = CI->getValue().zextOrSelf(Size); 2420 if (!Value.isSplat(8)) 2421 return -1; 2422 2423 return Value.zextOrTrunc(8).getZExtValue(); 2424 } 2425 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2426 // Make sure all array elements are sequences of the same repeated 2427 // byte. 2428 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2429 Constant *Op0 = CA->getOperand(0); 2430 int Byte = isRepeatedByteSequence(Op0, DL); 2431 if (Byte == -1) 2432 return -1; 2433 2434 // All array elements must be equal. 2435 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2436 if (CA->getOperand(i) != Op0) 2437 return -1; 2438 return Byte; 2439 } 2440 2441 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2442 return isRepeatedByteSequence(CDS); 2443 2444 return -1; 2445 } 2446 2447 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2448 const ConstantDataSequential *CDS, 2449 AsmPrinter &AP) { 2450 // See if we can aggregate this into a .fill, if so, emit it as such. 2451 int Value = isRepeatedByteSequence(CDS, DL); 2452 if (Value != -1) { 2453 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2454 // Don't emit a 1-byte object as a .fill. 2455 if (Bytes > 1) 2456 return AP.OutStreamer->emitFill(Bytes, Value); 2457 } 2458 2459 // If this can be emitted with .ascii/.asciz, emit it as such. 2460 if (CDS->isString()) 2461 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2462 2463 // Otherwise, emit the values in successive locations. 2464 unsigned ElementByteSize = CDS->getElementByteSize(); 2465 if (isa<IntegerType>(CDS->getElementType())) { 2466 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2467 if (AP.isVerbose()) 2468 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2469 CDS->getElementAsInteger(i)); 2470 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2471 ElementByteSize); 2472 } 2473 } else { 2474 Type *ET = CDS->getElementType(); 2475 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2476 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2477 } 2478 2479 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2480 unsigned EmittedSize = 2481 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2482 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2483 if (unsigned Padding = Size - EmittedSize) 2484 AP.OutStreamer->emitZeros(Padding); 2485 } 2486 2487 static void emitGlobalConstantArray(const DataLayout &DL, 2488 const ConstantArray *CA, AsmPrinter &AP, 2489 const Constant *BaseCV, uint64_t Offset) { 2490 // See if we can aggregate some values. Make sure it can be 2491 // represented as a series of bytes of the constant value. 2492 int Value = isRepeatedByteSequence(CA, DL); 2493 2494 if (Value != -1) { 2495 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2496 AP.OutStreamer->emitFill(Bytes, Value); 2497 } 2498 else { 2499 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2500 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2501 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2502 } 2503 } 2504 } 2505 2506 static void emitGlobalConstantVector(const DataLayout &DL, 2507 const ConstantVector *CV, AsmPrinter &AP) { 2508 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2509 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2510 2511 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2512 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2513 CV->getType()->getNumElements(); 2514 if (unsigned Padding = Size - EmittedSize) 2515 AP.OutStreamer->emitZeros(Padding); 2516 } 2517 2518 static void emitGlobalConstantStruct(const DataLayout &DL, 2519 const ConstantStruct *CS, AsmPrinter &AP, 2520 const Constant *BaseCV, uint64_t Offset) { 2521 // Print the fields in successive locations. Pad to align if needed! 2522 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2523 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2524 uint64_t SizeSoFar = 0; 2525 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2526 const Constant *Field = CS->getOperand(i); 2527 2528 // Print the actual field value. 2529 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2530 2531 // Check if padding is needed and insert one or more 0s. 2532 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2533 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2534 - Layout->getElementOffset(i)) - FieldSize; 2535 SizeSoFar += FieldSize + PadSize; 2536 2537 // Insert padding - this may include padding to increase the size of the 2538 // current field up to the ABI size (if the struct is not packed) as well 2539 // as padding to ensure that the next field starts at the right offset. 2540 AP.OutStreamer->emitZeros(PadSize); 2541 } 2542 assert(SizeSoFar == Layout->getSizeInBytes() && 2543 "Layout of constant struct may be incorrect!"); 2544 } 2545 2546 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2547 assert(ET && "Unknown float type"); 2548 APInt API = APF.bitcastToAPInt(); 2549 2550 // First print a comment with what we think the original floating-point value 2551 // should have been. 2552 if (AP.isVerbose()) { 2553 SmallString<8> StrVal; 2554 APF.toString(StrVal); 2555 ET->print(AP.OutStreamer->GetCommentOS()); 2556 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2557 } 2558 2559 // Now iterate through the APInt chunks, emitting them in endian-correct 2560 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2561 // floats). 2562 unsigned NumBytes = API.getBitWidth() / 8; 2563 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2564 const uint64_t *p = API.getRawData(); 2565 2566 // PPC's long double has odd notions of endianness compared to how LLVM 2567 // handles it: p[0] goes first for *big* endian on PPC. 2568 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2569 int Chunk = API.getNumWords() - 1; 2570 2571 if (TrailingBytes) 2572 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2573 2574 for (; Chunk >= 0; --Chunk) 2575 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2576 } else { 2577 unsigned Chunk; 2578 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2579 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2580 2581 if (TrailingBytes) 2582 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2583 } 2584 2585 // Emit the tail padding for the long double. 2586 const DataLayout &DL = AP.getDataLayout(); 2587 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2588 } 2589 2590 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2591 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2592 } 2593 2594 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2595 const DataLayout &DL = AP.getDataLayout(); 2596 unsigned BitWidth = CI->getBitWidth(); 2597 2598 // Copy the value as we may massage the layout for constants whose bit width 2599 // is not a multiple of 64-bits. 2600 APInt Realigned(CI->getValue()); 2601 uint64_t ExtraBits = 0; 2602 unsigned ExtraBitsSize = BitWidth & 63; 2603 2604 if (ExtraBitsSize) { 2605 // The bit width of the data is not a multiple of 64-bits. 2606 // The extra bits are expected to be at the end of the chunk of the memory. 2607 // Little endian: 2608 // * Nothing to be done, just record the extra bits to emit. 2609 // Big endian: 2610 // * Record the extra bits to emit. 2611 // * Realign the raw data to emit the chunks of 64-bits. 2612 if (DL.isBigEndian()) { 2613 // Basically the structure of the raw data is a chunk of 64-bits cells: 2614 // 0 1 BitWidth / 64 2615 // [chunk1][chunk2] ... [chunkN]. 2616 // The most significant chunk is chunkN and it should be emitted first. 2617 // However, due to the alignment issue chunkN contains useless bits. 2618 // Realign the chunks so that they contain only useless information: 2619 // ExtraBits 0 1 (BitWidth / 64) - 1 2620 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2621 ExtraBits = Realigned.getRawData()[0] & 2622 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2623 Realigned.lshrInPlace(ExtraBitsSize); 2624 } else 2625 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2626 } 2627 2628 // We don't expect assemblers to support integer data directives 2629 // for more than 64 bits, so we emit the data in at most 64-bit 2630 // quantities at a time. 2631 const uint64_t *RawData = Realigned.getRawData(); 2632 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2633 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2634 AP.OutStreamer->emitIntValue(Val, 8); 2635 } 2636 2637 if (ExtraBitsSize) { 2638 // Emit the extra bits after the 64-bits chunks. 2639 2640 // Emit a directive that fills the expected size. 2641 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2642 Size -= (BitWidth / 64) * 8; 2643 assert(Size && Size * 8 >= ExtraBitsSize && 2644 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2645 == ExtraBits && "Directive too small for extra bits."); 2646 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2647 } 2648 } 2649 2650 /// Transform a not absolute MCExpr containing a reference to a GOT 2651 /// equivalent global, by a target specific GOT pc relative access to the 2652 /// final symbol. 2653 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2654 const Constant *BaseCst, 2655 uint64_t Offset) { 2656 // The global @foo below illustrates a global that uses a got equivalent. 2657 // 2658 // @bar = global i32 42 2659 // @gotequiv = private unnamed_addr constant i32* @bar 2660 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2661 // i64 ptrtoint (i32* @foo to i64)) 2662 // to i32) 2663 // 2664 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2665 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2666 // form: 2667 // 2668 // foo = cstexpr, where 2669 // cstexpr := <gotequiv> - "." + <cst> 2670 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2671 // 2672 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2673 // 2674 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2675 // gotpcrelcst := <offset from @foo base> + <cst> 2676 MCValue MV; 2677 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2678 return; 2679 const MCSymbolRefExpr *SymA = MV.getSymA(); 2680 if (!SymA) 2681 return; 2682 2683 // Check that GOT equivalent symbol is cached. 2684 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2685 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2686 return; 2687 2688 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2689 if (!BaseGV) 2690 return; 2691 2692 // Check for a valid base symbol 2693 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2694 const MCSymbolRefExpr *SymB = MV.getSymB(); 2695 2696 if (!SymB || BaseSym != &SymB->getSymbol()) 2697 return; 2698 2699 // Make sure to match: 2700 // 2701 // gotpcrelcst := <offset from @foo base> + <cst> 2702 // 2703 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2704 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2705 // if the target knows how to encode it. 2706 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2707 if (GOTPCRelCst < 0) 2708 return; 2709 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2710 return; 2711 2712 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2713 // 2714 // bar: 2715 // .long 42 2716 // gotequiv: 2717 // .quad bar 2718 // foo: 2719 // .long gotequiv - "." + <cst> 2720 // 2721 // is replaced by the target specific equivalent to: 2722 // 2723 // bar: 2724 // .long 42 2725 // foo: 2726 // .long bar@GOTPCREL+<gotpcrelcst> 2727 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2728 const GlobalVariable *GV = Result.first; 2729 int NumUses = (int)Result.second; 2730 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2731 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2732 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2733 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2734 2735 // Update GOT equivalent usage information 2736 --NumUses; 2737 if (NumUses >= 0) 2738 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2739 } 2740 2741 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2742 AsmPrinter &AP, const Constant *BaseCV, 2743 uint64_t Offset) { 2744 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2745 2746 // Globals with sub-elements such as combinations of arrays and structs 2747 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2748 // constant symbol base and the current position with BaseCV and Offset. 2749 if (!BaseCV && CV->hasOneUse()) 2750 BaseCV = dyn_cast<Constant>(CV->user_back()); 2751 2752 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2753 return AP.OutStreamer->emitZeros(Size); 2754 2755 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2756 switch (Size) { 2757 case 1: 2758 case 2: 2759 case 4: 2760 case 8: 2761 if (AP.isVerbose()) 2762 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2763 CI->getZExtValue()); 2764 AP.OutStreamer->emitIntValue(CI->getZExtValue(), Size); 2765 return; 2766 default: 2767 emitGlobalConstantLargeInt(CI, AP); 2768 return; 2769 } 2770 } 2771 2772 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2773 return emitGlobalConstantFP(CFP, AP); 2774 2775 if (isa<ConstantPointerNull>(CV)) { 2776 AP.OutStreamer->emitIntValue(0, Size); 2777 return; 2778 } 2779 2780 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2781 return emitGlobalConstantDataSequential(DL, CDS, AP); 2782 2783 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2784 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2785 2786 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2787 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2788 2789 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2790 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2791 // vectors). 2792 if (CE->getOpcode() == Instruction::BitCast) 2793 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2794 2795 if (Size > 8) { 2796 // If the constant expression's size is greater than 64-bits, then we have 2797 // to emit the value in chunks. Try to constant fold the value and emit it 2798 // that way. 2799 Constant *New = ConstantFoldConstant(CE, DL); 2800 if (New != CE) 2801 return emitGlobalConstantImpl(DL, New, AP); 2802 } 2803 } 2804 2805 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2806 return emitGlobalConstantVector(DL, V, AP); 2807 2808 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2809 // thread the streamer with EmitValue. 2810 const MCExpr *ME = AP.lowerConstant(CV); 2811 2812 // Since lowerConstant already folded and got rid of all IR pointer and 2813 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2814 // directly. 2815 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2816 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2817 2818 AP.OutStreamer->emitValue(ME, Size); 2819 } 2820 2821 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2822 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2823 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2824 if (Size) 2825 emitGlobalConstantImpl(DL, CV, *this); 2826 else if (MAI->hasSubsectionsViaSymbols()) { 2827 // If the global has zero size, emit a single byte so that two labels don't 2828 // look like they are at the same location. 2829 OutStreamer->emitIntValue(0, 1); 2830 } 2831 } 2832 2833 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2834 // Target doesn't support this yet! 2835 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2836 } 2837 2838 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2839 if (Offset > 0) 2840 OS << '+' << Offset; 2841 else if (Offset < 0) 2842 OS << Offset; 2843 } 2844 2845 void AsmPrinter::emitNops(unsigned N) { 2846 MCInst Nop; 2847 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2848 for (; N; --N) 2849 EmitToStreamer(*OutStreamer, Nop); 2850 } 2851 2852 //===----------------------------------------------------------------------===// 2853 // Symbol Lowering Routines. 2854 //===----------------------------------------------------------------------===// 2855 2856 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2857 return OutContext.createTempSymbol(Name, true); 2858 } 2859 2860 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2861 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2862 } 2863 2864 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2865 return MMI->getAddrLabelSymbol(BB); 2866 } 2867 2868 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2869 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2870 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2871 const MachineConstantPoolEntry &CPE = 2872 MF->getConstantPool()->getConstants()[CPID]; 2873 if (!CPE.isMachineConstantPoolEntry()) { 2874 const DataLayout &DL = MF->getDataLayout(); 2875 SectionKind Kind = CPE.getSectionKind(&DL); 2876 const Constant *C = CPE.Val.ConstVal; 2877 unsigned Align = CPE.Alignment; 2878 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2879 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2880 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2881 if (Sym->isUndefined()) 2882 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2883 return Sym; 2884 } 2885 } 2886 } 2887 } 2888 2889 const DataLayout &DL = getDataLayout(); 2890 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2891 "CPI" + Twine(getFunctionNumber()) + "_" + 2892 Twine(CPID)); 2893 } 2894 2895 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2896 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2897 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2898 } 2899 2900 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2901 /// FIXME: privatize to AsmPrinter. 2902 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2903 const DataLayout &DL = getDataLayout(); 2904 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2905 Twine(getFunctionNumber()) + "_" + 2906 Twine(UID) + "_set_" + Twine(MBBID)); 2907 } 2908 2909 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2910 StringRef Suffix) const { 2911 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2912 } 2913 2914 /// Return the MCSymbol for the specified ExternalSymbol. 2915 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2916 SmallString<60> NameStr; 2917 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2918 return OutContext.getOrCreateSymbol(NameStr); 2919 } 2920 2921 /// PrintParentLoopComment - Print comments about parent loops of this one. 2922 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2923 unsigned FunctionNumber) { 2924 if (!Loop) return; 2925 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2926 OS.indent(Loop->getLoopDepth()*2) 2927 << "Parent Loop BB" << FunctionNumber << "_" 2928 << Loop->getHeader()->getNumber() 2929 << " Depth=" << Loop->getLoopDepth() << '\n'; 2930 } 2931 2932 /// PrintChildLoopComment - Print comments about child loops within 2933 /// the loop for this basic block, with nesting. 2934 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2935 unsigned FunctionNumber) { 2936 // Add child loop information 2937 for (const MachineLoop *CL : *Loop) { 2938 OS.indent(CL->getLoopDepth()*2) 2939 << "Child Loop BB" << FunctionNumber << "_" 2940 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2941 << '\n'; 2942 PrintChildLoopComment(OS, CL, FunctionNumber); 2943 } 2944 } 2945 2946 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2947 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2948 const MachineLoopInfo *LI, 2949 const AsmPrinter &AP) { 2950 // Add loop depth information 2951 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2952 if (!Loop) return; 2953 2954 MachineBasicBlock *Header = Loop->getHeader(); 2955 assert(Header && "No header for loop"); 2956 2957 // If this block is not a loop header, just print out what is the loop header 2958 // and return. 2959 if (Header != &MBB) { 2960 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2961 Twine(AP.getFunctionNumber())+"_" + 2962 Twine(Loop->getHeader()->getNumber())+ 2963 " Depth="+Twine(Loop->getLoopDepth())); 2964 return; 2965 } 2966 2967 // Otherwise, it is a loop header. Print out information about child and 2968 // parent loops. 2969 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2970 2971 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2972 2973 OS << "=>"; 2974 OS.indent(Loop->getLoopDepth()*2-2); 2975 2976 OS << "This "; 2977 if (Loop->empty()) 2978 OS << "Inner "; 2979 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2980 2981 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2982 } 2983 2984 /// emitBasicBlockStart - This method prints the label for the specified 2985 /// MachineBasicBlock, an alignment (if present) and a comment describing 2986 /// it if appropriate. 2987 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 2988 // End the previous funclet and start a new one. 2989 if (MBB.isEHFuncletEntry()) { 2990 for (const HandlerInfo &HI : Handlers) { 2991 HI.Handler->endFunclet(); 2992 HI.Handler->beginFunclet(MBB); 2993 } 2994 } 2995 2996 // Emit an alignment directive for this block, if needed. 2997 const Align Alignment = MBB.getAlignment(); 2998 if (Alignment != Align(1)) 2999 emitAlignment(Alignment); 3000 3001 // If the block has its address taken, emit any labels that were used to 3002 // reference the block. It is possible that there is more than one label 3003 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3004 // the references were generated. 3005 if (MBB.hasAddressTaken()) { 3006 const BasicBlock *BB = MBB.getBasicBlock(); 3007 if (isVerbose()) 3008 OutStreamer->AddComment("Block address taken"); 3009 3010 // MBBs can have their address taken as part of CodeGen without having 3011 // their corresponding BB's address taken in IR 3012 if (BB->hasAddressTaken()) 3013 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3014 OutStreamer->emitLabel(Sym); 3015 } 3016 3017 // Print some verbose block comments. 3018 if (isVerbose()) { 3019 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3020 if (BB->hasName()) { 3021 BB->printAsOperand(OutStreamer->GetCommentOS(), 3022 /*PrintType=*/false, BB->getModule()); 3023 OutStreamer->GetCommentOS() << '\n'; 3024 } 3025 } 3026 3027 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3028 emitBasicBlockLoopComments(MBB, MLI, *this); 3029 } 3030 3031 if (MBB.pred_empty() || 3032 (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) && 3033 !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) { 3034 if (isVerbose()) { 3035 // NOTE: Want this comment at start of line, don't emit with AddComment. 3036 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3037 false); 3038 } 3039 } else { 3040 if (isVerbose() && MBB.hasLabelMustBeEmitted()) { 3041 OutStreamer->AddComment("Label of block must be emitted"); 3042 } 3043 // Switch to a new section if this basic block must begin a section. 3044 if (MBB.isBeginSection()) { 3045 OutStreamer->SwitchSection( 3046 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3047 MBB, TM)); 3048 CurrentSectionBeginSym = MBB.getSymbol(); 3049 } 3050 OutStreamer->emitLabel(MBB.getSymbol()); 3051 } 3052 } 3053 3054 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {} 3055 3056 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3057 bool IsDefinition) const { 3058 MCSymbolAttr Attr = MCSA_Invalid; 3059 3060 switch (Visibility) { 3061 default: break; 3062 case GlobalValue::HiddenVisibility: 3063 if (IsDefinition) 3064 Attr = MAI->getHiddenVisibilityAttr(); 3065 else 3066 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3067 break; 3068 case GlobalValue::ProtectedVisibility: 3069 Attr = MAI->getProtectedVisibilityAttr(); 3070 break; 3071 } 3072 3073 if (Attr != MCSA_Invalid) 3074 OutStreamer->emitSymbolAttribute(Sym, Attr); 3075 } 3076 3077 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3078 /// exactly one predecessor and the control transfer mechanism between 3079 /// the predecessor and this block is a fall-through. 3080 bool AsmPrinter:: 3081 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3082 // With BasicBlock Sections, beginning of the section is not a fallthrough. 3083 if (MBB->isBeginSection()) 3084 return false; 3085 3086 // If this is a landing pad, it isn't a fall through. If it has no preds, 3087 // then nothing falls through to it. 3088 if (MBB->isEHPad() || MBB->pred_empty()) 3089 return false; 3090 3091 // If there isn't exactly one predecessor, it can't be a fall through. 3092 if (MBB->pred_size() > 1) 3093 return false; 3094 3095 // The predecessor has to be immediately before this block. 3096 MachineBasicBlock *Pred = *MBB->pred_begin(); 3097 if (!Pred->isLayoutSuccessor(MBB)) 3098 return false; 3099 3100 // If the block is completely empty, then it definitely does fall through. 3101 if (Pred->empty()) 3102 return true; 3103 3104 // Check the terminators in the previous blocks 3105 for (const auto &MI : Pred->terminators()) { 3106 // If it is not a simple branch, we are in a table somewhere. 3107 if (!MI.isBranch() || MI.isIndirectBranch()) 3108 return false; 3109 3110 // If we are the operands of one of the branches, this is not a fall 3111 // through. Note that targets with delay slots will usually bundle 3112 // terminators with the delay slot instruction. 3113 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3114 if (OP->isJTI()) 3115 return false; 3116 if (OP->isMBB() && OP->getMBB() == MBB) 3117 return false; 3118 } 3119 } 3120 3121 return true; 3122 } 3123 3124 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3125 if (!S.usesMetadata()) 3126 return nullptr; 3127 3128 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3129 gcp_map_type::iterator GCPI = GCMap.find(&S); 3130 if (GCPI != GCMap.end()) 3131 return GCPI->second.get(); 3132 3133 auto Name = S.getName(); 3134 3135 for (GCMetadataPrinterRegistry::iterator 3136 I = GCMetadataPrinterRegistry::begin(), 3137 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3138 if (Name == I->getName()) { 3139 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3140 GMP->S = &S; 3141 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3142 return IterBool.first->second.get(); 3143 } 3144 3145 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3146 } 3147 3148 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3149 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3150 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3151 bool NeedsDefault = false; 3152 if (MI->begin() == MI->end()) 3153 // No GC strategy, use the default format. 3154 NeedsDefault = true; 3155 else 3156 for (auto &I : *MI) { 3157 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3158 if (MP->emitStackMaps(SM, *this)) 3159 continue; 3160 // The strategy doesn't have printer or doesn't emit custom stack maps. 3161 // Use the default format. 3162 NeedsDefault = true; 3163 } 3164 3165 if (NeedsDefault) 3166 SM.serializeToStackMapSection(); 3167 } 3168 3169 /// Pin vtable to this file. 3170 AsmPrinterHandler::~AsmPrinterHandler() = default; 3171 3172 void AsmPrinterHandler::markFunctionEnd() {} 3173 3174 // In the binary's "xray_instr_map" section, an array of these function entries 3175 // describes each instrumentation point. When XRay patches your code, the index 3176 // into this table will be given to your handler as a patch point identifier. 3177 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3178 const MCExpr *Location, 3179 const MCSymbol *CurrentFnSym) const { 3180 if (Location) 3181 Out->emitValueImpl(Location, Bytes); 3182 else 3183 Out->emitSymbolValue(Sled, Bytes); 3184 Out->emitSymbolValue(CurrentFnSym, Bytes); 3185 auto Kind8 = static_cast<uint8_t>(Kind); 3186 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3187 Out->emitBinaryData( 3188 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3189 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3190 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3191 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3192 Out->emitZeros(Padding); 3193 } 3194 3195 void AsmPrinter::emitXRayTable() { 3196 if (Sleds.empty()) 3197 return; 3198 3199 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3200 const Function &F = MF->getFunction(); 3201 MCSection *InstMap = nullptr; 3202 MCSection *FnSledIndex = nullptr; 3203 const Triple &TT = TM.getTargetTriple(); 3204 // Version 2 uses a PC-relative address on all supported targets. 3205 bool PCRel = TT.isX86(); 3206 if (TT.isOSBinFormatELF()) { 3207 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3208 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3209 if (!PCRel) 3210 Flags |= ELF::SHF_WRITE; 3211 StringRef GroupName; 3212 if (F.hasComdat()) { 3213 Flags |= ELF::SHF_GROUP; 3214 GroupName = F.getComdat()->getName(); 3215 } 3216 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3217 Flags, 0, GroupName, 3218 MCSection::NonUniqueID, LinkedToSym); 3219 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 3220 Flags | ELF::SHF_WRITE, 0, GroupName, 3221 MCSection::NonUniqueID, LinkedToSym); 3222 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3223 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3224 SectionKind::getReadOnlyWithRel()); 3225 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3226 SectionKind::getReadOnlyWithRel()); 3227 } else { 3228 llvm_unreachable("Unsupported target"); 3229 } 3230 3231 auto WordSizeBytes = MAI->getCodePointerSize(); 3232 3233 // Now we switch to the instrumentation map section. Because this is done 3234 // per-function, we are able to create an index entry that will represent the 3235 // range of sleds associated with a function. 3236 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3237 OutStreamer->SwitchSection(InstMap); 3238 OutStreamer->emitLabel(SledsStart); 3239 for (const auto &Sled : Sleds) { 3240 const MCExpr *Location = nullptr; 3241 if (PCRel) { 3242 MCSymbol *Dot = OutContext.createTempSymbol(); 3243 OutStreamer->emitLabel(Dot); 3244 Location = MCBinaryExpr::createSub( 3245 MCSymbolRefExpr::create(Sled.Sled, OutContext), 3246 MCSymbolRefExpr::create(Dot, OutContext), OutContext); 3247 } 3248 Sled.emit(WordSizeBytes, OutStreamer.get(), Location, CurrentFnSym); 3249 } 3250 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3251 OutStreamer->emitLabel(SledsEnd); 3252 3253 // We then emit a single entry in the index per function. We use the symbols 3254 // that bound the instrumentation map as the range for a specific function. 3255 // Each entry here will be 2 * word size aligned, as we're writing down two 3256 // pointers. This should work for both 32-bit and 64-bit platforms. 3257 OutStreamer->SwitchSection(FnSledIndex); 3258 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3259 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3260 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3261 OutStreamer->SwitchSection(PrevSection); 3262 Sleds.clear(); 3263 } 3264 3265 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3266 SledKind Kind, uint8_t Version) { 3267 const Function &F = MI.getMF()->getFunction(); 3268 auto Attr = F.getFnAttribute("function-instrument"); 3269 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3270 bool AlwaysInstrument = 3271 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3272 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3273 Kind = SledKind::LOG_ARGS_ENTER; 3274 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3275 AlwaysInstrument, &F, Version}); 3276 } 3277 3278 void AsmPrinter::emitPatchableFunctionEntries() { 3279 const Function &F = MF->getFunction(); 3280 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3281 (void)F.getFnAttribute("patchable-function-prefix") 3282 .getValueAsString() 3283 .getAsInteger(10, PatchableFunctionPrefix); 3284 (void)F.getFnAttribute("patchable-function-entry") 3285 .getValueAsString() 3286 .getAsInteger(10, PatchableFunctionEntry); 3287 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3288 return; 3289 const unsigned PointerSize = getPointerSize(); 3290 if (TM.getTargetTriple().isOSBinFormatELF()) { 3291 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3292 const MCSymbolELF *LinkedToSym = nullptr; 3293 StringRef GroupName; 3294 3295 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3296 // if we are using the integrated assembler. 3297 if (MAI->useIntegratedAssembler()) { 3298 Flags |= ELF::SHF_LINK_ORDER; 3299 if (F.hasComdat()) { 3300 Flags |= ELF::SHF_GROUP; 3301 GroupName = F.getComdat()->getName(); 3302 } 3303 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3304 } 3305 OutStreamer->SwitchSection(OutContext.getELFSection( 3306 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3307 MCSection::NonUniqueID, LinkedToSym)); 3308 emitAlignment(Align(PointerSize)); 3309 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3310 } 3311 } 3312 3313 uint16_t AsmPrinter::getDwarfVersion() const { 3314 return OutStreamer->getContext().getDwarfVersion(); 3315 } 3316 3317 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3318 OutStreamer->getContext().setDwarfVersion(Version); 3319 } 3320