1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/GCStrategy.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
55 #include "llvm/CodeGen/MachineOperand.h"
56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Remarks/Remark.h"
106 #include "llvm/Remarks/RemarkFormat.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Remarks/RemarkStringTable.h"
109 #include "llvm/Support/Casting.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/Support/FileSystem.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
139 static cl::opt<bool>
140     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
141                              cl::desc("Disable debug info printing"));
142 
143 const char DWARFGroupName[] = "dwarf";
144 const char DWARFGroupDescription[] = "DWARF Emission";
145 const char DbgTimerName[] = "emit";
146 const char DbgTimerDescription[] = "Debug Info Emission";
147 const char EHTimerName[] = "write_exception";
148 const char EHTimerDescription[] = "DWARF Exception Writer";
149 const char CFGuardName[] = "Control Flow Guard";
150 const char CFGuardDescription[] = "Control Flow Guard";
151 const char CodeViewLineTablesGroupName[] = "linetables";
152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
153 const char PPTimerName[] = "emit";
154 const char PPTimerDescription[] = "Pseudo Probe Emission";
155 const char PPGroupName[] = "pseudo probe";
156 const char PPGroupDescription[] = "Pseudo Probe Emission";
157 
158 STATISTIC(EmittedInsts, "Number of machine instrs printed");
159 
160 char AsmPrinter::ID = 0;
161 
162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
163 
164 static gcp_map_type &getGCMap(void *&P) {
165   if (!P)
166     P = new gcp_map_type();
167   return *(gcp_map_type*)P;
168 }
169 
170 /// getGVAlignment - Return the alignment to use for the specified global
171 /// value.  This rounds up to the preferred alignment if possible and legal.
172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
173                                  Align InAlign) {
174   Align Alignment;
175   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
176     Alignment = DL.getPreferredAlign(GVar);
177 
178   // If InAlign is specified, round it to it.
179   if (InAlign > Alignment)
180     Alignment = InAlign;
181 
182   // If the GV has a specified alignment, take it into account.
183   const MaybeAlign GVAlign(GV->getAlignment());
184   if (!GVAlign)
185     return Alignment;
186 
187   assert(GVAlign && "GVAlign must be set");
188 
189   // If the GVAlign is larger than NumBits, or if we are required to obey
190   // NumBits because the GV has an assigned section, obey it.
191   if (*GVAlign > Alignment || GV->hasSection())
192     Alignment = *GVAlign;
193   return Alignment;
194 }
195 
196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
197     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
198       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
199   VerboseAsm = OutStreamer->isVerboseAsm();
200 }
201 
202 AsmPrinter::~AsmPrinter() {
203   assert(!DD && Handlers.size() == NumUserHandlers &&
204          "Debug/EH info didn't get finalized");
205 
206   if (GCMetadataPrinters) {
207     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
208 
209     delete &GCMap;
210     GCMetadataPrinters = nullptr;
211   }
212 }
213 
214 bool AsmPrinter::isPositionIndependent() const {
215   return TM.isPositionIndependent();
216 }
217 
218 /// getFunctionNumber - Return a unique ID for the current function.
219 unsigned AsmPrinter::getFunctionNumber() const {
220   return MF->getFunctionNumber();
221 }
222 
223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
224   return *TM.getObjFileLowering();
225 }
226 
227 const DataLayout &AsmPrinter::getDataLayout() const {
228   return MMI->getModule()->getDataLayout();
229 }
230 
231 // Do not use the cached DataLayout because some client use it without a Module
232 // (dsymutil, llvm-dwarfdump).
233 unsigned AsmPrinter::getPointerSize() const {
234   return TM.getPointerSize(0); // FIXME: Default address space
235 }
236 
237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
238   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
239   return MF->getSubtarget<MCSubtargetInfo>();
240 }
241 
242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
243   S.emitInstruction(Inst, getSubtargetInfo());
244 }
245 
246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
247   if (DD) {
248     assert(OutStreamer->hasRawTextSupport() &&
249            "Expected assembly output mode.");
250     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
251   }
252 }
253 
254 /// getCurrentSection() - Return the current section we are emitting to.
255 const MCSection *AsmPrinter::getCurrentSection() const {
256   return OutStreamer->getCurrentSectionOnly();
257 }
258 
259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
260   AU.setPreservesAll();
261   MachineFunctionPass::getAnalysisUsage(AU);
262   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
263   AU.addRequired<GCModuleInfo>();
264 }
265 
266 bool AsmPrinter::doInitialization(Module &M) {
267   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
268   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
269 
270   // Initialize TargetLoweringObjectFile.
271   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
272     .Initialize(OutContext, TM);
273 
274   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
275       .getModuleMetadata(M);
276 
277   OutStreamer->InitSections(false);
278 
279   if (DisableDebugInfoPrinting)
280     MMI->setDebugInfoAvailability(false);
281 
282   // Emit the version-min deployment target directive if needed.
283   //
284   // FIXME: If we end up with a collection of these sorts of Darwin-specific
285   // or ELF-specific things, it may make sense to have a platform helper class
286   // that will work with the target helper class. For now keep it here, as the
287   // alternative is duplicated code in each of the target asm printers that
288   // use the directive, where it would need the same conditionalization
289   // anyway.
290   const Triple &Target = TM.getTargetTriple();
291   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
292 
293   // Allow the target to emit any magic that it wants at the start of the file.
294   emitStartOfAsmFile(M);
295 
296   // Very minimal debug info. It is ignored if we emit actual debug info. If we
297   // don't, this at least helps the user find where a global came from.
298   if (MAI->hasSingleParameterDotFile()) {
299     // .file "foo.c"
300     if (MAI->hasBasenameOnlyForFileDirective())
301       OutStreamer->emitFileDirective(
302           llvm::sys::path::filename(M.getSourceFileName()));
303     else
304       OutStreamer->emitFileDirective(M.getSourceFileName());
305   }
306 
307   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
308   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
309   for (auto &I : *MI)
310     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
311       MP->beginAssembly(M, *MI, *this);
312 
313   // Emit module-level inline asm if it exists.
314   if (!M.getModuleInlineAsm().empty()) {
315     // We're at the module level. Construct MCSubtarget from the default CPU
316     // and target triple.
317     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
318         TM.getTargetTriple().str(), TM.getTargetCPU(),
319         TM.getTargetFeatureString()));
320     assert(STI && "Unable to create subtarget info");
321     OutStreamer->AddComment("Start of file scope inline assembly");
322     OutStreamer->AddBlankLine();
323     emitInlineAsm(M.getModuleInlineAsm() + "\n",
324                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
325     OutStreamer->AddComment("End of file scope inline assembly");
326     OutStreamer->AddBlankLine();
327   }
328 
329   if (MAI->doesSupportDebugInformation()) {
330     bool EmitCodeView = M.getCodeViewFlag();
331     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
332       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
333                             DbgTimerName, DbgTimerDescription,
334                             CodeViewLineTablesGroupName,
335                             CodeViewLineTablesGroupDescription);
336     }
337     if (!EmitCodeView || M.getDwarfVersion()) {
338       if (!DisableDebugInfoPrinting) {
339         DD = new DwarfDebug(this);
340         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
341                               DbgTimerDescription, DWARFGroupName,
342                               DWARFGroupDescription);
343       }
344     }
345   }
346 
347   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
348     PP = new PseudoProbeHandler(this, &M);
349     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
350                           PPTimerDescription, PPGroupName, PPGroupDescription);
351   }
352 
353   switch (MAI->getExceptionHandlingType()) {
354   case ExceptionHandling::SjLj:
355   case ExceptionHandling::DwarfCFI:
356   case ExceptionHandling::ARM:
357     isCFIMoveForDebugging = true;
358     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
359       break;
360     for (auto &F : M.getFunctionList()) {
361       // If the module contains any function with unwind data,
362       // .eh_frame has to be emitted.
363       // Ignore functions that won't get emitted.
364       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
365         isCFIMoveForDebugging = false;
366         break;
367       }
368     }
369     break;
370   default:
371     isCFIMoveForDebugging = false;
372     break;
373   }
374 
375   EHStreamer *ES = nullptr;
376   switch (MAI->getExceptionHandlingType()) {
377   case ExceptionHandling::None:
378     break;
379   case ExceptionHandling::SjLj:
380   case ExceptionHandling::DwarfCFI:
381     ES = new DwarfCFIException(this);
382     break;
383   case ExceptionHandling::ARM:
384     ES = new ARMException(this);
385     break;
386   case ExceptionHandling::WinEH:
387     switch (MAI->getWinEHEncodingType()) {
388     default: llvm_unreachable("unsupported unwinding information encoding");
389     case WinEH::EncodingType::Invalid:
390       break;
391     case WinEH::EncodingType::X86:
392     case WinEH::EncodingType::Itanium:
393       ES = new WinException(this);
394       break;
395     }
396     break;
397   case ExceptionHandling::Wasm:
398     ES = new WasmException(this);
399     break;
400   case ExceptionHandling::AIX:
401     ES = new AIXException(this);
402     break;
403   }
404   if (ES)
405     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
406                           EHTimerDescription, DWARFGroupName,
407                           DWARFGroupDescription);
408 
409   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
410   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
411     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
412                           CFGuardDescription, DWARFGroupName,
413                           DWARFGroupDescription);
414 
415   for (const HandlerInfo &HI : Handlers) {
416     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
417                        HI.TimerGroupDescription, TimePassesIsEnabled);
418     HI.Handler->beginModule(&M);
419   }
420 
421   return false;
422 }
423 
424 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
425   if (!MAI.hasWeakDefCanBeHiddenDirective())
426     return false;
427 
428   return GV->canBeOmittedFromSymbolTable();
429 }
430 
431 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
432   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
433   switch (Linkage) {
434   case GlobalValue::CommonLinkage:
435   case GlobalValue::LinkOnceAnyLinkage:
436   case GlobalValue::LinkOnceODRLinkage:
437   case GlobalValue::WeakAnyLinkage:
438   case GlobalValue::WeakODRLinkage:
439     if (MAI->hasWeakDefDirective()) {
440       // .globl _foo
441       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
442 
443       if (!canBeHidden(GV, *MAI))
444         // .weak_definition _foo
445         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
446       else
447         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
448     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
449       // .globl _foo
450       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
451       //NOTE: linkonce is handled by the section the symbol was assigned to.
452     } else {
453       // .weak _foo
454       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
455     }
456     return;
457   case GlobalValue::ExternalLinkage:
458     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
459     return;
460   case GlobalValue::PrivateLinkage:
461   case GlobalValue::InternalLinkage:
462     return;
463   case GlobalValue::ExternalWeakLinkage:
464   case GlobalValue::AvailableExternallyLinkage:
465   case GlobalValue::AppendingLinkage:
466     llvm_unreachable("Should never emit this");
467   }
468   llvm_unreachable("Unknown linkage type!");
469 }
470 
471 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
472                                    const GlobalValue *GV) const {
473   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
474 }
475 
476 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
477   return TM.getSymbol(GV);
478 }
479 
480 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
481   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
482   // exact definion (intersection of GlobalValue::hasExactDefinition() and
483   // !isInterposable()). These linkages include: external, appending, internal,
484   // private. It may be profitable to use a local alias for external. The
485   // assembler would otherwise be conservative and assume a global default
486   // visibility symbol can be interposable, even if the code generator already
487   // assumed it.
488   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
489     const Module &M = *GV.getParent();
490     if (TM.getRelocationModel() != Reloc::Static &&
491         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
492       return getSymbolWithGlobalValueBase(&GV, "$local");
493   }
494   return TM.getSymbol(&GV);
495 }
496 
497 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
498 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
499   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
500   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
501          "No emulated TLS variables in the common section");
502 
503   // Never emit TLS variable xyz in emulated TLS model.
504   // The initialization value is in __emutls_t.xyz instead of xyz.
505   if (IsEmuTLSVar)
506     return;
507 
508   if (GV->hasInitializer()) {
509     // Check to see if this is a special global used by LLVM, if so, emit it.
510     if (emitSpecialLLVMGlobal(GV))
511       return;
512 
513     // Skip the emission of global equivalents. The symbol can be emitted later
514     // on by emitGlobalGOTEquivs in case it turns out to be needed.
515     if (GlobalGOTEquivs.count(getSymbol(GV)))
516       return;
517 
518     if (isVerbose()) {
519       // When printing the control variable __emutls_v.*,
520       // we don't need to print the original TLS variable name.
521       GV->printAsOperand(OutStreamer->GetCommentOS(),
522                      /*PrintType=*/false, GV->getParent());
523       OutStreamer->GetCommentOS() << '\n';
524     }
525   }
526 
527   MCSymbol *GVSym = getSymbol(GV);
528   MCSymbol *EmittedSym = GVSym;
529 
530   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
531   // attributes.
532   // GV's or GVSym's attributes will be used for the EmittedSym.
533   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
534 
535   if (!GV->hasInitializer())   // External globals require no extra code.
536     return;
537 
538   GVSym->redefineIfPossible();
539   if (GVSym->isDefined() || GVSym->isVariable())
540     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
541                                         "' is already defined");
542 
543   if (MAI->hasDotTypeDotSizeDirective())
544     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
545 
546   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
547 
548   const DataLayout &DL = GV->getParent()->getDataLayout();
549   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
550 
551   // If the alignment is specified, we *must* obey it.  Overaligning a global
552   // with a specified alignment is a prompt way to break globals emitted to
553   // sections and expected to be contiguous (e.g. ObjC metadata).
554   const Align Alignment = getGVAlignment(GV, DL);
555 
556   for (const HandlerInfo &HI : Handlers) {
557     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
558                        HI.TimerGroupName, HI.TimerGroupDescription,
559                        TimePassesIsEnabled);
560     HI.Handler->setSymbolSize(GVSym, Size);
561   }
562 
563   // Handle common symbols
564   if (GVKind.isCommon()) {
565     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
566     // .comm _foo, 42, 4
567     const bool SupportsAlignment =
568         getObjFileLowering().getCommDirectiveSupportsAlignment();
569     OutStreamer->emitCommonSymbol(GVSym, Size,
570                                   SupportsAlignment ? Alignment.value() : 0);
571     return;
572   }
573 
574   // Determine to which section this global should be emitted.
575   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
576 
577   // If we have a bss global going to a section that supports the
578   // zerofill directive, do so here.
579   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
580       TheSection->isVirtualSection()) {
581     if (Size == 0)
582       Size = 1; // zerofill of 0 bytes is undefined.
583     emitLinkage(GV, GVSym);
584     // .zerofill __DATA, __bss, _foo, 400, 5
585     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
586     return;
587   }
588 
589   // If this is a BSS local symbol and we are emitting in the BSS
590   // section use .lcomm/.comm directive.
591   if (GVKind.isBSSLocal() &&
592       getObjFileLowering().getBSSSection() == TheSection) {
593     if (Size == 0)
594       Size = 1; // .comm Foo, 0 is undefined, avoid it.
595 
596     // Use .lcomm only if it supports user-specified alignment.
597     // Otherwise, while it would still be correct to use .lcomm in some
598     // cases (e.g. when Align == 1), the external assembler might enfore
599     // some -unknown- default alignment behavior, which could cause
600     // spurious differences between external and integrated assembler.
601     // Prefer to simply fall back to .local / .comm in this case.
602     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
603       // .lcomm _foo, 42
604       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
605       return;
606     }
607 
608     // .local _foo
609     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
610     // .comm _foo, 42, 4
611     const bool SupportsAlignment =
612         getObjFileLowering().getCommDirectiveSupportsAlignment();
613     OutStreamer->emitCommonSymbol(GVSym, Size,
614                                   SupportsAlignment ? Alignment.value() : 0);
615     return;
616   }
617 
618   // Handle thread local data for mach-o which requires us to output an
619   // additional structure of data and mangle the original symbol so that we
620   // can reference it later.
621   //
622   // TODO: This should become an "emit thread local global" method on TLOF.
623   // All of this macho specific stuff should be sunk down into TLOFMachO and
624   // stuff like "TLSExtraDataSection" should no longer be part of the parent
625   // TLOF class.  This will also make it more obvious that stuff like
626   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
627   // specific code.
628   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
629     // Emit the .tbss symbol
630     MCSymbol *MangSym =
631         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
632 
633     if (GVKind.isThreadBSS()) {
634       TheSection = getObjFileLowering().getTLSBSSSection();
635       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
636     } else if (GVKind.isThreadData()) {
637       OutStreamer->SwitchSection(TheSection);
638 
639       emitAlignment(Alignment, GV);
640       OutStreamer->emitLabel(MangSym);
641 
642       emitGlobalConstant(GV->getParent()->getDataLayout(),
643                          GV->getInitializer());
644     }
645 
646     OutStreamer->AddBlankLine();
647 
648     // Emit the variable struct for the runtime.
649     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
650 
651     OutStreamer->SwitchSection(TLVSect);
652     // Emit the linkage here.
653     emitLinkage(GV, GVSym);
654     OutStreamer->emitLabel(GVSym);
655 
656     // Three pointers in size:
657     //   - __tlv_bootstrap - used to make sure support exists
658     //   - spare pointer, used when mapped by the runtime
659     //   - pointer to mangled symbol above with initializer
660     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
661     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
662                                 PtrSize);
663     OutStreamer->emitIntValue(0, PtrSize);
664     OutStreamer->emitSymbolValue(MangSym, PtrSize);
665 
666     OutStreamer->AddBlankLine();
667     return;
668   }
669 
670   MCSymbol *EmittedInitSym = GVSym;
671 
672   OutStreamer->SwitchSection(TheSection);
673 
674   emitLinkage(GV, EmittedInitSym);
675   emitAlignment(Alignment, GV);
676 
677   OutStreamer->emitLabel(EmittedInitSym);
678   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
679   if (LocalAlias != EmittedInitSym)
680     OutStreamer->emitLabel(LocalAlias);
681 
682   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
683 
684   if (MAI->hasDotTypeDotSizeDirective())
685     // .size foo, 42
686     OutStreamer->emitELFSize(EmittedInitSym,
687                              MCConstantExpr::create(Size, OutContext));
688 
689   OutStreamer->AddBlankLine();
690 }
691 
692 /// Emit the directive and value for debug thread local expression
693 ///
694 /// \p Value - The value to emit.
695 /// \p Size - The size of the integer (in bytes) to emit.
696 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
697   OutStreamer->emitValue(Value, Size);
698 }
699 
700 void AsmPrinter::emitFunctionHeaderComment() {}
701 
702 /// EmitFunctionHeader - This method emits the header for the current
703 /// function.
704 void AsmPrinter::emitFunctionHeader() {
705   const Function &F = MF->getFunction();
706 
707   if (isVerbose())
708     OutStreamer->GetCommentOS()
709         << "-- Begin function "
710         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
711 
712   // Print out constants referenced by the function
713   emitConstantPool();
714 
715   // Print the 'header' of function.
716   // If basic block sections is desired and function sections is off,
717   // explicitly request a unique section for this function.
718   if (MF->front().isBeginSection() && !TM.getFunctionSections())
719     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
720   else
721     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
722   OutStreamer->SwitchSection(MF->getSection());
723 
724   if (!MAI->hasVisibilityOnlyWithLinkage())
725     emitVisibility(CurrentFnSym, F.getVisibility());
726 
727   if (MAI->needsFunctionDescriptors())
728     emitLinkage(&F, CurrentFnDescSym);
729 
730   emitLinkage(&F, CurrentFnSym);
731   if (MAI->hasFunctionAlignment())
732     emitAlignment(MF->getAlignment(), &F);
733 
734   if (MAI->hasDotTypeDotSizeDirective())
735     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
736 
737   if (F.hasFnAttribute(Attribute::Cold))
738     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
739 
740   if (isVerbose()) {
741     F.printAsOperand(OutStreamer->GetCommentOS(),
742                    /*PrintType=*/false, F.getParent());
743     emitFunctionHeaderComment();
744     OutStreamer->GetCommentOS() << '\n';
745   }
746 
747   // Emit the prefix data.
748   if (F.hasPrefixData()) {
749     if (MAI->hasSubsectionsViaSymbols()) {
750       // Preserving prefix data on platforms which use subsections-via-symbols
751       // is a bit tricky. Here we introduce a symbol for the prefix data
752       // and use the .alt_entry attribute to mark the function's real entry point
753       // as an alternative entry point to the prefix-data symbol.
754       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
755       OutStreamer->emitLabel(PrefixSym);
756 
757       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
758 
759       // Emit an .alt_entry directive for the actual function symbol.
760       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
761     } else {
762       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
763     }
764   }
765 
766   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
767   // place prefix data before NOPs.
768   unsigned PatchableFunctionPrefix = 0;
769   unsigned PatchableFunctionEntry = 0;
770   (void)F.getFnAttribute("patchable-function-prefix")
771       .getValueAsString()
772       .getAsInteger(10, PatchableFunctionPrefix);
773   (void)F.getFnAttribute("patchable-function-entry")
774       .getValueAsString()
775       .getAsInteger(10, PatchableFunctionEntry);
776   if (PatchableFunctionPrefix) {
777     CurrentPatchableFunctionEntrySym =
778         OutContext.createLinkerPrivateTempSymbol();
779     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
780     emitNops(PatchableFunctionPrefix);
781   } else if (PatchableFunctionEntry) {
782     // May be reassigned when emitting the body, to reference the label after
783     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
784     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
785   }
786 
787   // Emit the function descriptor. This is a virtual function to allow targets
788   // to emit their specific function descriptor. Right now it is only used by
789   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
790   // descriptors and should be converted to use this hook as well.
791   if (MAI->needsFunctionDescriptors())
792     emitFunctionDescriptor();
793 
794   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
795   // their wild and crazy things as required.
796   emitFunctionEntryLabel();
797 
798   // If the function had address-taken blocks that got deleted, then we have
799   // references to the dangling symbols.  Emit them at the start of the function
800   // so that we don't get references to undefined symbols.
801   std::vector<MCSymbol*> DeadBlockSyms;
802   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
803   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
804     OutStreamer->AddComment("Address taken block that was later removed");
805     OutStreamer->emitLabel(DeadBlockSyms[i]);
806   }
807 
808   if (CurrentFnBegin) {
809     if (MAI->useAssignmentForEHBegin()) {
810       MCSymbol *CurPos = OutContext.createTempSymbol();
811       OutStreamer->emitLabel(CurPos);
812       OutStreamer->emitAssignment(CurrentFnBegin,
813                                  MCSymbolRefExpr::create(CurPos, OutContext));
814     } else {
815       OutStreamer->emitLabel(CurrentFnBegin);
816     }
817   }
818 
819   // Emit pre-function debug and/or EH information.
820   for (const HandlerInfo &HI : Handlers) {
821     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
822                        HI.TimerGroupDescription, TimePassesIsEnabled);
823     HI.Handler->beginFunction(MF);
824   }
825 
826   // Emit the prologue data.
827   if (F.hasPrologueData())
828     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
829 }
830 
831 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
832 /// function.  This can be overridden by targets as required to do custom stuff.
833 void AsmPrinter::emitFunctionEntryLabel() {
834   CurrentFnSym->redefineIfPossible();
835 
836   // The function label could have already been emitted if two symbols end up
837   // conflicting due to asm renaming.  Detect this and emit an error.
838   if (CurrentFnSym->isVariable())
839     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
840                        "' is a protected alias");
841 
842   OutStreamer->emitLabel(CurrentFnSym);
843 
844   if (TM.getTargetTriple().isOSBinFormatELF()) {
845     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
846     if (Sym != CurrentFnSym)
847       OutStreamer->emitLabel(Sym);
848   }
849 }
850 
851 /// emitComments - Pretty-print comments for instructions.
852 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
853   const MachineFunction *MF = MI.getMF();
854   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
855 
856   // Check for spills and reloads
857 
858   // We assume a single instruction only has a spill or reload, not
859   // both.
860   Optional<unsigned> Size;
861   if ((Size = MI.getRestoreSize(TII))) {
862     CommentOS << *Size << "-byte Reload\n";
863   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
864     if (*Size) {
865       if (*Size == unsigned(MemoryLocation::UnknownSize))
866         CommentOS << "Unknown-size Folded Reload\n";
867       else
868         CommentOS << *Size << "-byte Folded Reload\n";
869     }
870   } else if ((Size = MI.getSpillSize(TII))) {
871     CommentOS << *Size << "-byte Spill\n";
872   } else if ((Size = MI.getFoldedSpillSize(TII))) {
873     if (*Size) {
874       if (*Size == unsigned(MemoryLocation::UnknownSize))
875         CommentOS << "Unknown-size Folded Spill\n";
876       else
877         CommentOS << *Size << "-byte Folded Spill\n";
878     }
879   }
880 
881   // Check for spill-induced copies
882   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
883     CommentOS << " Reload Reuse\n";
884 }
885 
886 /// emitImplicitDef - This method emits the specified machine instruction
887 /// that is an implicit def.
888 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
889   Register RegNo = MI->getOperand(0).getReg();
890 
891   SmallString<128> Str;
892   raw_svector_ostream OS(Str);
893   OS << "implicit-def: "
894      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
895 
896   OutStreamer->AddComment(OS.str());
897   OutStreamer->AddBlankLine();
898 }
899 
900 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
901   std::string Str;
902   raw_string_ostream OS(Str);
903   OS << "kill:";
904   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
905     const MachineOperand &Op = MI->getOperand(i);
906     assert(Op.isReg() && "KILL instruction must have only register operands");
907     OS << ' ' << (Op.isDef() ? "def " : "killed ")
908        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
909   }
910   AP.OutStreamer->AddComment(OS.str());
911   AP.OutStreamer->AddBlankLine();
912 }
913 
914 /// emitDebugValueComment - This method handles the target-independent form
915 /// of DBG_VALUE, returning true if it was able to do so.  A false return
916 /// means the target will need to handle MI in EmitInstruction.
917 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
918   // This code handles only the 4-operand target-independent form.
919   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
920     return false;
921 
922   SmallString<128> Str;
923   raw_svector_ostream OS(Str);
924   OS << "DEBUG_VALUE: ";
925 
926   const DILocalVariable *V = MI->getDebugVariable();
927   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
928     StringRef Name = SP->getName();
929     if (!Name.empty())
930       OS << Name << ":";
931   }
932   OS << V->getName();
933   OS << " <- ";
934 
935   const DIExpression *Expr = MI->getDebugExpression();
936   if (Expr->getNumElements()) {
937     OS << '[';
938     ListSeparator LS;
939     for (auto Op : Expr->expr_ops()) {
940       OS << LS << dwarf::OperationEncodingString(Op.getOp());
941       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
942         OS << ' ' << Op.getArg(I);
943     }
944     OS << "] ";
945   }
946 
947   // Register or immediate value. Register 0 means undef.
948   for (const MachineOperand &Op : MI->debug_operands()) {
949     if (&Op != MI->debug_operands().begin())
950       OS << ", ";
951     switch (Op.getType()) {
952     case MachineOperand::MO_FPImmediate: {
953       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
954       if (Op.getFPImm()->getType()->isFloatTy()) {
955         OS << (double)APF.convertToFloat();
956       } else if (Op.getFPImm()->getType()->isDoubleTy()) {
957         OS << APF.convertToDouble();
958       } else {
959         // There is no good way to print long double.  Convert a copy to
960         // double.  Ah well, it's only a comment.
961         bool ignored;
962         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
963                     &ignored);
964         OS << "(long double) " << APF.convertToDouble();
965       }
966       break;
967     }
968     case MachineOperand::MO_Immediate: {
969       OS << Op.getImm();
970       break;
971     }
972     case MachineOperand::MO_CImmediate: {
973       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
974       break;
975     }
976     case MachineOperand::MO_TargetIndex: {
977       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
978       // NOTE: Want this comment at start of line, don't emit with AddComment.
979       AP.OutStreamer->emitRawComment(OS.str());
980       break;
981     }
982     case MachineOperand::MO_Register:
983     case MachineOperand::MO_FrameIndex: {
984       Register Reg;
985       Optional<StackOffset> Offset;
986       if (Op.isReg()) {
987         Reg = Op.getReg();
988       } else {
989         const TargetFrameLowering *TFI =
990             AP.MF->getSubtarget().getFrameLowering();
991         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
992       }
993       if (!Reg) {
994         // Suppress offset, it is not meaningful here.
995         OS << "undef";
996         break;
997       }
998       // The second operand is only an offset if it's an immediate.
999       if (MI->isIndirectDebugValue())
1000         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1001       if (Offset)
1002         OS << '[';
1003       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1004       if (Offset)
1005         OS << '+' << Offset->getFixed() << ']';
1006       break;
1007     }
1008     default:
1009       llvm_unreachable("Unknown operand type");
1010     }
1011   }
1012 
1013   // NOTE: Want this comment at start of line, don't emit with AddComment.
1014   AP.OutStreamer->emitRawComment(OS.str());
1015   return true;
1016 }
1017 
1018 /// This method handles the target-independent form of DBG_LABEL, returning
1019 /// true if it was able to do so.  A false return means the target will need
1020 /// to handle MI in EmitInstruction.
1021 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1022   if (MI->getNumOperands() != 1)
1023     return false;
1024 
1025   SmallString<128> Str;
1026   raw_svector_ostream OS(Str);
1027   OS << "DEBUG_LABEL: ";
1028 
1029   const DILabel *V = MI->getDebugLabel();
1030   if (auto *SP = dyn_cast<DISubprogram>(
1031           V->getScope()->getNonLexicalBlockFileScope())) {
1032     StringRef Name = SP->getName();
1033     if (!Name.empty())
1034       OS << Name << ":";
1035   }
1036   OS << V->getName();
1037 
1038   // NOTE: Want this comment at start of line, don't emit with AddComment.
1039   AP.OutStreamer->emitRawComment(OS.str());
1040   return true;
1041 }
1042 
1043 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
1044   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1045       MF->getFunction().needsUnwindTableEntry())
1046     return CFI_M_EH;
1047 
1048   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
1049     return CFI_M_Debug;
1050 
1051   return CFI_M_None;
1052 }
1053 
1054 bool AsmPrinter::needsSEHMoves() {
1055   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1056 }
1057 
1058 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1059   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1060   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1061       ExceptionHandlingType != ExceptionHandling::ARM)
1062     return;
1063 
1064   if (needsCFIMoves() == CFI_M_None)
1065     return;
1066 
1067   // If there is no "real" instruction following this CFI instruction, skip
1068   // emitting it; it would be beyond the end of the function's FDE range.
1069   auto *MBB = MI.getParent();
1070   auto I = std::next(MI.getIterator());
1071   while (I != MBB->end() && I->isTransient())
1072     ++I;
1073   if (I == MBB->instr_end() &&
1074       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1075     return;
1076 
1077   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1078   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1079   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1080   emitCFIInstruction(CFI);
1081 }
1082 
1083 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1084   // The operands are the MCSymbol and the frame offset of the allocation.
1085   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1086   int FrameOffset = MI.getOperand(1).getImm();
1087 
1088   // Emit a symbol assignment.
1089   OutStreamer->emitAssignment(FrameAllocSym,
1090                              MCConstantExpr::create(FrameOffset, OutContext));
1091 }
1092 
1093 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1094 /// given basic block. This can be used to capture more precise profile
1095 /// information. We use the last 4 bits (LSBs) to encode the following
1096 /// information:
1097 ///  * (1): set if return block (ret or tail call).
1098 ///  * (2): set if ends with a tail call.
1099 ///  * (3): set if exception handling (EH) landing pad.
1100 ///  * (4): set if the block can fall through to its next.
1101 /// The remaining bits are zero.
1102 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1103   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1104   return ((unsigned)MBB.isReturnBlock()) |
1105          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1106          (MBB.isEHPad() << 2) |
1107          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1108 }
1109 
1110 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1111   MCSection *BBAddrMapSection =
1112       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1113   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1114 
1115   const MCSymbol *FunctionSymbol = getFunctionBegin();
1116 
1117   OutStreamer->PushSection();
1118   OutStreamer->SwitchSection(BBAddrMapSection);
1119   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1120   // Emit the total number of basic blocks in this function.
1121   OutStreamer->emitULEB128IntValue(MF.size());
1122   // Emit BB Information for each basic block in the funciton.
1123   for (const MachineBasicBlock &MBB : MF) {
1124     const MCSymbol *MBBSymbol =
1125         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1126     // Emit the basic block offset.
1127     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1128     // Emit the basic block size. When BBs have alignments, their size cannot
1129     // always be computed from their offsets.
1130     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1131     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1132   }
1133   OutStreamer->PopSection();
1134 }
1135 
1136 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1137   auto GUID = MI.getOperand(0).getImm();
1138   auto Index = MI.getOperand(1).getImm();
1139   auto Type = MI.getOperand(2).getImm();
1140   auto Attr = MI.getOperand(3).getImm();
1141   DILocation *DebugLoc = MI.getDebugLoc();
1142   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1143 }
1144 
1145 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1146   if (!MF.getTarget().Options.EmitStackSizeSection)
1147     return;
1148 
1149   MCSection *StackSizeSection =
1150       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1151   if (!StackSizeSection)
1152     return;
1153 
1154   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1155   // Don't emit functions with dynamic stack allocations.
1156   if (FrameInfo.hasVarSizedObjects())
1157     return;
1158 
1159   OutStreamer->PushSection();
1160   OutStreamer->SwitchSection(StackSizeSection);
1161 
1162   const MCSymbol *FunctionSymbol = getFunctionBegin();
1163   uint64_t StackSize = FrameInfo.getStackSize();
1164   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1165   OutStreamer->emitULEB128IntValue(StackSize);
1166 
1167   OutStreamer->PopSection();
1168 }
1169 
1170 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1171   MachineModuleInfo &MMI = MF.getMMI();
1172   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1173     return true;
1174 
1175   // We might emit an EH table that uses function begin and end labels even if
1176   // we don't have any landingpads.
1177   if (!MF.getFunction().hasPersonalityFn())
1178     return false;
1179   return !isNoOpWithoutInvoke(
1180       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1181 }
1182 
1183 /// EmitFunctionBody - This method emits the body and trailer for a
1184 /// function.
1185 void AsmPrinter::emitFunctionBody() {
1186   emitFunctionHeader();
1187 
1188   // Emit target-specific gunk before the function body.
1189   emitFunctionBodyStart();
1190 
1191   if (isVerbose()) {
1192     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1193     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1194     if (!MDT) {
1195       OwnedMDT = std::make_unique<MachineDominatorTree>();
1196       OwnedMDT->getBase().recalculate(*MF);
1197       MDT = OwnedMDT.get();
1198     }
1199 
1200     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1201     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1202     if (!MLI) {
1203       OwnedMLI = std::make_unique<MachineLoopInfo>();
1204       OwnedMLI->getBase().analyze(MDT->getBase());
1205       MLI = OwnedMLI.get();
1206     }
1207   }
1208 
1209   // Print out code for the function.
1210   bool HasAnyRealCode = false;
1211   int NumInstsInFunction = 0;
1212 
1213   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1214   for (auto &MBB : *MF) {
1215     // Print a label for the basic block.
1216     emitBasicBlockStart(MBB);
1217     DenseMap<StringRef, unsigned> MnemonicCounts;
1218     for (auto &MI : MBB) {
1219       // Print the assembly for the instruction.
1220       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1221           !MI.isDebugInstr()) {
1222         HasAnyRealCode = true;
1223         ++NumInstsInFunction;
1224       }
1225 
1226       // If there is a pre-instruction symbol, emit a label for it here.
1227       if (MCSymbol *S = MI.getPreInstrSymbol())
1228         OutStreamer->emitLabel(S);
1229 
1230       for (const HandlerInfo &HI : Handlers) {
1231         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1232                            HI.TimerGroupDescription, TimePassesIsEnabled);
1233         HI.Handler->beginInstruction(&MI);
1234       }
1235 
1236       if (isVerbose())
1237         emitComments(MI, OutStreamer->GetCommentOS());
1238 
1239       switch (MI.getOpcode()) {
1240       case TargetOpcode::CFI_INSTRUCTION:
1241         emitCFIInstruction(MI);
1242         break;
1243       case TargetOpcode::LOCAL_ESCAPE:
1244         emitFrameAlloc(MI);
1245         break;
1246       case TargetOpcode::ANNOTATION_LABEL:
1247       case TargetOpcode::EH_LABEL:
1248       case TargetOpcode::GC_LABEL:
1249         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1250         break;
1251       case TargetOpcode::INLINEASM:
1252       case TargetOpcode::INLINEASM_BR:
1253         emitInlineAsm(&MI);
1254         break;
1255       case TargetOpcode::DBG_VALUE:
1256       case TargetOpcode::DBG_VALUE_LIST:
1257         if (isVerbose()) {
1258           if (!emitDebugValueComment(&MI, *this))
1259             emitInstruction(&MI);
1260         }
1261         break;
1262       case TargetOpcode::DBG_INSTR_REF:
1263         // This instruction reference will have been resolved to a machine
1264         // location, and a nearby DBG_VALUE created. We can safely ignore
1265         // the instruction reference.
1266         break;
1267       case TargetOpcode::DBG_LABEL:
1268         if (isVerbose()) {
1269           if (!emitDebugLabelComment(&MI, *this))
1270             emitInstruction(&MI);
1271         }
1272         break;
1273       case TargetOpcode::IMPLICIT_DEF:
1274         if (isVerbose()) emitImplicitDef(&MI);
1275         break;
1276       case TargetOpcode::KILL:
1277         if (isVerbose()) emitKill(&MI, *this);
1278         break;
1279       case TargetOpcode::PSEUDO_PROBE:
1280         emitPseudoProbe(MI);
1281         break;
1282       default:
1283         emitInstruction(&MI);
1284         if (CanDoExtraAnalysis) {
1285           MCInst MCI;
1286           MCI.setOpcode(MI.getOpcode());
1287           auto Name = OutStreamer->getMnemonic(MCI);
1288           auto I = MnemonicCounts.insert({Name, 0u});
1289           I.first->second++;
1290         }
1291         break;
1292       }
1293 
1294       // If there is a post-instruction symbol, emit a label for it here.
1295       if (MCSymbol *S = MI.getPostInstrSymbol())
1296         OutStreamer->emitLabel(S);
1297 
1298       for (const HandlerInfo &HI : Handlers) {
1299         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1300                            HI.TimerGroupDescription, TimePassesIsEnabled);
1301         HI.Handler->endInstruction();
1302       }
1303     }
1304 
1305     // We must emit temporary symbol for the end of this basic block, if either
1306     // we have BBLabels enabled or if this basic blocks marks the end of a
1307     // section (except the section containing the entry basic block as the end
1308     // symbol for that section is CurrentFnEnd).
1309     if (MF->hasBBLabels() ||
1310         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1311          !MBB.sameSection(&MF->front())))
1312       OutStreamer->emitLabel(MBB.getEndSymbol());
1313 
1314     if (MBB.isEndSection()) {
1315       // The size directive for the section containing the entry block is
1316       // handled separately by the function section.
1317       if (!MBB.sameSection(&MF->front())) {
1318         if (MAI->hasDotTypeDotSizeDirective()) {
1319           // Emit the size directive for the basic block section.
1320           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1321               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1322               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1323               OutContext);
1324           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1325         }
1326         MBBSectionRanges[MBB.getSectionIDNum()] =
1327             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1328       }
1329     }
1330     emitBasicBlockEnd(MBB);
1331 
1332     if (CanDoExtraAnalysis) {
1333       // Skip empty blocks.
1334       if (MBB.empty())
1335         continue;
1336 
1337       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1338                                           MBB.begin()->getDebugLoc(), &MBB);
1339 
1340       // Generate instruction mix remark. First, sort counts in descending order
1341       // by count and name.
1342       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1343       for (auto &KV : MnemonicCounts)
1344         MnemonicVec.emplace_back(KV.first, KV.second);
1345 
1346       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1347                            const std::pair<StringRef, unsigned> &B) {
1348         if (A.second > B.second)
1349           return true;
1350         if (A.second == B.second)
1351           return StringRef(A.first) < StringRef(B.first);
1352         return false;
1353       });
1354       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1355       for (auto &KV : MnemonicVec) {
1356         auto Name = (Twine("INST_") + KV.first.trim()).str();
1357         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1358       }
1359       ORE->emit(R);
1360     }
1361   }
1362 
1363   EmittedInsts += NumInstsInFunction;
1364   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1365                                       MF->getFunction().getSubprogram(),
1366                                       &MF->front());
1367   R << ore::NV("NumInstructions", NumInstsInFunction)
1368     << " instructions in function";
1369   ORE->emit(R);
1370 
1371   // If the function is empty and the object file uses .subsections_via_symbols,
1372   // then we need to emit *something* to the function body to prevent the
1373   // labels from collapsing together.  Just emit a noop.
1374   // Similarly, don't emit empty functions on Windows either. It can lead to
1375   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1376   // after linking, causing the kernel not to load the binary:
1377   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1378   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1379   const Triple &TT = TM.getTargetTriple();
1380   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1381                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1382     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1383 
1384     // Targets can opt-out of emitting the noop here by leaving the opcode
1385     // unspecified.
1386     if (Noop.getOpcode()) {
1387       OutStreamer->AddComment("avoids zero-length function");
1388       emitNops(1);
1389     }
1390   }
1391 
1392   // Switch to the original section in case basic block sections was used.
1393   OutStreamer->SwitchSection(MF->getSection());
1394 
1395   const Function &F = MF->getFunction();
1396   for (const auto &BB : F) {
1397     if (!BB.hasAddressTaken())
1398       continue;
1399     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1400     if (Sym->isDefined())
1401       continue;
1402     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1403     OutStreamer->emitLabel(Sym);
1404   }
1405 
1406   // Emit target-specific gunk after the function body.
1407   emitFunctionBodyEnd();
1408 
1409   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1410       MAI->hasDotTypeDotSizeDirective()) {
1411     // Create a symbol for the end of function.
1412     CurrentFnEnd = createTempSymbol("func_end");
1413     OutStreamer->emitLabel(CurrentFnEnd);
1414   }
1415 
1416   // If the target wants a .size directive for the size of the function, emit
1417   // it.
1418   if (MAI->hasDotTypeDotSizeDirective()) {
1419     // We can get the size as difference between the function label and the
1420     // temp label.
1421     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1422         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1423         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1424     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1425   }
1426 
1427   for (const HandlerInfo &HI : Handlers) {
1428     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1429                        HI.TimerGroupDescription, TimePassesIsEnabled);
1430     HI.Handler->markFunctionEnd();
1431   }
1432 
1433   MBBSectionRanges[MF->front().getSectionIDNum()] =
1434       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1435 
1436   // Print out jump tables referenced by the function.
1437   emitJumpTableInfo();
1438 
1439   // Emit post-function debug and/or EH information.
1440   for (const HandlerInfo &HI : Handlers) {
1441     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1442                        HI.TimerGroupDescription, TimePassesIsEnabled);
1443     HI.Handler->endFunction(MF);
1444   }
1445 
1446   // Emit section containing BB address offsets and their metadata, when
1447   // BB labels are requested for this function. Skip empty functions.
1448   if (MF->hasBBLabels() && HasAnyRealCode)
1449     emitBBAddrMapSection(*MF);
1450 
1451   // Emit section containing stack size metadata.
1452   emitStackSizeSection(*MF);
1453 
1454   emitPatchableFunctionEntries();
1455 
1456   if (isVerbose())
1457     OutStreamer->GetCommentOS() << "-- End function\n";
1458 
1459   OutStreamer->AddBlankLine();
1460 }
1461 
1462 /// Compute the number of Global Variables that uses a Constant.
1463 static unsigned getNumGlobalVariableUses(const Constant *C) {
1464   if (!C)
1465     return 0;
1466 
1467   if (isa<GlobalVariable>(C))
1468     return 1;
1469 
1470   unsigned NumUses = 0;
1471   for (auto *CU : C->users())
1472     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1473 
1474   return NumUses;
1475 }
1476 
1477 /// Only consider global GOT equivalents if at least one user is a
1478 /// cstexpr inside an initializer of another global variables. Also, don't
1479 /// handle cstexpr inside instructions. During global variable emission,
1480 /// candidates are skipped and are emitted later in case at least one cstexpr
1481 /// isn't replaced by a PC relative GOT entry access.
1482 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1483                                      unsigned &NumGOTEquivUsers) {
1484   // Global GOT equivalents are unnamed private globals with a constant
1485   // pointer initializer to another global symbol. They must point to a
1486   // GlobalVariable or Function, i.e., as GlobalValue.
1487   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1488       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1489       !isa<GlobalValue>(GV->getOperand(0)))
1490     return false;
1491 
1492   // To be a got equivalent, at least one of its users need to be a constant
1493   // expression used by another global variable.
1494   for (auto *U : GV->users())
1495     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1496 
1497   return NumGOTEquivUsers > 0;
1498 }
1499 
1500 /// Unnamed constant global variables solely contaning a pointer to
1501 /// another globals variable is equivalent to a GOT table entry; it contains the
1502 /// the address of another symbol. Optimize it and replace accesses to these
1503 /// "GOT equivalents" by using the GOT entry for the final global instead.
1504 /// Compute GOT equivalent candidates among all global variables to avoid
1505 /// emitting them if possible later on, after it use is replaced by a GOT entry
1506 /// access.
1507 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1508   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1509     return;
1510 
1511   for (const auto &G : M.globals()) {
1512     unsigned NumGOTEquivUsers = 0;
1513     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1514       continue;
1515 
1516     const MCSymbol *GOTEquivSym = getSymbol(&G);
1517     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1518   }
1519 }
1520 
1521 /// Constant expressions using GOT equivalent globals may not be eligible
1522 /// for PC relative GOT entry conversion, in such cases we need to emit such
1523 /// globals we previously omitted in EmitGlobalVariable.
1524 void AsmPrinter::emitGlobalGOTEquivs() {
1525   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1526     return;
1527 
1528   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1529   for (auto &I : GlobalGOTEquivs) {
1530     const GlobalVariable *GV = I.second.first;
1531     unsigned Cnt = I.second.second;
1532     if (Cnt)
1533       FailedCandidates.push_back(GV);
1534   }
1535   GlobalGOTEquivs.clear();
1536 
1537   for (auto *GV : FailedCandidates)
1538     emitGlobalVariable(GV);
1539 }
1540 
1541 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1542                                           const GlobalIndirectSymbol& GIS) {
1543   MCSymbol *Name = getSymbol(&GIS);
1544   bool IsFunction = GIS.getValueType()->isFunctionTy();
1545   // Treat bitcasts of functions as functions also. This is important at least
1546   // on WebAssembly where object and function addresses can't alias each other.
1547   if (!IsFunction)
1548     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1549       if (CE->getOpcode() == Instruction::BitCast)
1550         IsFunction =
1551           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1552 
1553   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1554   // so AIX has to use the extra-label-at-definition strategy. At this
1555   // point, all the extra label is emitted, we just have to emit linkage for
1556   // those labels.
1557   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1558     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1559     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1560            "Visibility should be handled with emitLinkage() on AIX.");
1561     emitLinkage(&GIS, Name);
1562     // If it's a function, also emit linkage for aliases of function entry
1563     // point.
1564     if (IsFunction)
1565       emitLinkage(&GIS,
1566                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1567     return;
1568   }
1569 
1570   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1571     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1572   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1573     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1574   else
1575     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1576 
1577   // Set the symbol type to function if the alias has a function type.
1578   // This affects codegen when the aliasee is not a function.
1579   if (IsFunction)
1580     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1581                                                ? MCSA_ELF_TypeIndFunction
1582                                                : MCSA_ELF_TypeFunction);
1583 
1584   emitVisibility(Name, GIS.getVisibility());
1585 
1586   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1587 
1588   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1589     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1590 
1591   // Emit the directives as assignments aka .set:
1592   OutStreamer->emitAssignment(Name, Expr);
1593   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1594   if (LocalAlias != Name)
1595     OutStreamer->emitAssignment(LocalAlias, Expr);
1596 
1597   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1598     // If the aliasee does not correspond to a symbol in the output, i.e. the
1599     // alias is not of an object or the aliased object is private, then set the
1600     // size of the alias symbol from the type of the alias. We don't do this in
1601     // other situations as the alias and aliasee having differing types but same
1602     // size may be intentional.
1603     const GlobalObject *BaseObject = GA->getBaseObject();
1604     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1605         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1606       const DataLayout &DL = M.getDataLayout();
1607       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1608       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1609     }
1610   }
1611 }
1612 
1613 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1614   if (!RS.needsSection())
1615     return;
1616 
1617   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1618 
1619   Optional<SmallString<128>> Filename;
1620   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1621     Filename = *FilenameRef;
1622     sys::fs::make_absolute(*Filename);
1623     assert(!Filename->empty() && "The filename can't be empty.");
1624   }
1625 
1626   std::string Buf;
1627   raw_string_ostream OS(Buf);
1628   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1629       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1630                : RemarkSerializer.metaSerializer(OS);
1631   MetaSerializer->emit();
1632 
1633   // Switch to the remarks section.
1634   MCSection *RemarksSection =
1635       OutContext.getObjectFileInfo()->getRemarksSection();
1636   OutStreamer->SwitchSection(RemarksSection);
1637 
1638   OutStreamer->emitBinaryData(OS.str());
1639 }
1640 
1641 bool AsmPrinter::doFinalization(Module &M) {
1642   // Set the MachineFunction to nullptr so that we can catch attempted
1643   // accesses to MF specific features at the module level and so that
1644   // we can conditionalize accesses based on whether or not it is nullptr.
1645   MF = nullptr;
1646 
1647   // Gather all GOT equivalent globals in the module. We really need two
1648   // passes over the globals: one to compute and another to avoid its emission
1649   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1650   // where the got equivalent shows up before its use.
1651   computeGlobalGOTEquivs(M);
1652 
1653   // Emit global variables.
1654   for (const auto &G : M.globals())
1655     emitGlobalVariable(&G);
1656 
1657   // Emit remaining GOT equivalent globals.
1658   emitGlobalGOTEquivs();
1659 
1660   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1661 
1662   // Emit linkage(XCOFF) and visibility info for declarations
1663   for (const Function &F : M) {
1664     if (!F.isDeclarationForLinker())
1665       continue;
1666 
1667     MCSymbol *Name = getSymbol(&F);
1668     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1669 
1670     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1671       GlobalValue::VisibilityTypes V = F.getVisibility();
1672       if (V == GlobalValue::DefaultVisibility)
1673         continue;
1674 
1675       emitVisibility(Name, V, false);
1676       continue;
1677     }
1678 
1679     if (F.isIntrinsic())
1680       continue;
1681 
1682     // Handle the XCOFF case.
1683     // Variable `Name` is the function descriptor symbol (see above). Get the
1684     // function entry point symbol.
1685     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1686     // Emit linkage for the function entry point.
1687     emitLinkage(&F, FnEntryPointSym);
1688 
1689     // Emit linkage for the function descriptor.
1690     emitLinkage(&F, Name);
1691   }
1692 
1693   // Emit the remarks section contents.
1694   // FIXME: Figure out when is the safest time to emit this section. It should
1695   // not come after debug info.
1696   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1697     emitRemarksSection(*RS);
1698 
1699   TLOF.emitModuleMetadata(*OutStreamer, M);
1700 
1701   if (TM.getTargetTriple().isOSBinFormatELF()) {
1702     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1703 
1704     // Output stubs for external and common global variables.
1705     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1706     if (!Stubs.empty()) {
1707       OutStreamer->SwitchSection(TLOF.getDataSection());
1708       const DataLayout &DL = M.getDataLayout();
1709 
1710       emitAlignment(Align(DL.getPointerSize()));
1711       for (const auto &Stub : Stubs) {
1712         OutStreamer->emitLabel(Stub.first);
1713         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1714                                      DL.getPointerSize());
1715       }
1716     }
1717   }
1718 
1719   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1720     MachineModuleInfoCOFF &MMICOFF =
1721         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1722 
1723     // Output stubs for external and common global variables.
1724     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1725     if (!Stubs.empty()) {
1726       const DataLayout &DL = M.getDataLayout();
1727 
1728       for (const auto &Stub : Stubs) {
1729         SmallString<256> SectionName = StringRef(".rdata$");
1730         SectionName += Stub.first->getName();
1731         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1732             SectionName,
1733             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1734                 COFF::IMAGE_SCN_LNK_COMDAT,
1735             SectionKind::getReadOnly(), Stub.first->getName(),
1736             COFF::IMAGE_COMDAT_SELECT_ANY));
1737         emitAlignment(Align(DL.getPointerSize()));
1738         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1739         OutStreamer->emitLabel(Stub.first);
1740         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1741                                      DL.getPointerSize());
1742       }
1743     }
1744   }
1745 
1746   // Finalize debug and EH information.
1747   for (const HandlerInfo &HI : Handlers) {
1748     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1749                        HI.TimerGroupDescription, TimePassesIsEnabled);
1750     HI.Handler->endModule();
1751   }
1752 
1753   // This deletes all the ephemeral handlers that AsmPrinter added, while
1754   // keeping all the user-added handlers alive until the AsmPrinter is
1755   // destroyed.
1756   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1757   DD = nullptr;
1758 
1759   // If the target wants to know about weak references, print them all.
1760   if (MAI->getWeakRefDirective()) {
1761     // FIXME: This is not lazy, it would be nice to only print weak references
1762     // to stuff that is actually used.  Note that doing so would require targets
1763     // to notice uses in operands (due to constant exprs etc).  This should
1764     // happen with the MC stuff eventually.
1765 
1766     // Print out module-level global objects here.
1767     for (const auto &GO : M.global_objects()) {
1768       if (!GO.hasExternalWeakLinkage())
1769         continue;
1770       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1771     }
1772   }
1773 
1774   // Print aliases in topological order, that is, for each alias a = b,
1775   // b must be printed before a.
1776   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1777   // such an order to generate correct TOC information.
1778   SmallVector<const GlobalAlias *, 16> AliasStack;
1779   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1780   for (const auto &Alias : M.aliases()) {
1781     for (const GlobalAlias *Cur = &Alias; Cur;
1782          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1783       if (!AliasVisited.insert(Cur).second)
1784         break;
1785       AliasStack.push_back(Cur);
1786     }
1787     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1788       emitGlobalIndirectSymbol(M, *AncestorAlias);
1789     AliasStack.clear();
1790   }
1791   for (const auto &IFunc : M.ifuncs())
1792     emitGlobalIndirectSymbol(M, IFunc);
1793 
1794   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1795   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1796   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1797     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1798       MP->finishAssembly(M, *MI, *this);
1799 
1800   // Emit llvm.ident metadata in an '.ident' directive.
1801   emitModuleIdents(M);
1802 
1803   // Emit bytes for llvm.commandline metadata.
1804   emitModuleCommandLines(M);
1805 
1806   // Emit __morestack address if needed for indirect calls.
1807   if (MMI->usesMorestackAddr()) {
1808     Align Alignment(1);
1809     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1810         getDataLayout(), SectionKind::getReadOnly(),
1811         /*C=*/nullptr, Alignment);
1812     OutStreamer->SwitchSection(ReadOnlySection);
1813 
1814     MCSymbol *AddrSymbol =
1815         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1816     OutStreamer->emitLabel(AddrSymbol);
1817 
1818     unsigned PtrSize = MAI->getCodePointerSize();
1819     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1820                                  PtrSize);
1821   }
1822 
1823   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1824   // split-stack is used.
1825   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1826     OutStreamer->SwitchSection(
1827         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1828     if (MMI->hasNosplitStack())
1829       OutStreamer->SwitchSection(
1830           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1831   }
1832 
1833   // If we don't have any trampolines, then we don't require stack memory
1834   // to be executable. Some targets have a directive to declare this.
1835   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1836   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1837     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1838       OutStreamer->SwitchSection(S);
1839 
1840   if (TM.Options.EmitAddrsig) {
1841     // Emit address-significance attributes for all globals.
1842     OutStreamer->emitAddrsig();
1843     for (const GlobalValue &GV : M.global_values())
1844       if (!GV.use_empty() && !GV.isThreadLocal() &&
1845           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1846           !GV.hasAtLeastLocalUnnamedAddr())
1847         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1848   }
1849 
1850   // Emit symbol partition specifications (ELF only).
1851   if (TM.getTargetTriple().isOSBinFormatELF()) {
1852     unsigned UniqueID = 0;
1853     for (const GlobalValue &GV : M.global_values()) {
1854       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1855           GV.getVisibility() != GlobalValue::DefaultVisibility)
1856         continue;
1857 
1858       OutStreamer->SwitchSection(
1859           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1860                                    "", false, ++UniqueID, nullptr));
1861       OutStreamer->emitBytes(GV.getPartition());
1862       OutStreamer->emitZeros(1);
1863       OutStreamer->emitValue(
1864           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1865           MAI->getCodePointerSize());
1866     }
1867   }
1868 
1869   // Allow the target to emit any magic that it wants at the end of the file,
1870   // after everything else has gone out.
1871   emitEndOfAsmFile(M);
1872 
1873   MMI = nullptr;
1874 
1875   OutStreamer->Finish();
1876   OutStreamer->reset();
1877   OwnedMLI.reset();
1878   OwnedMDT.reset();
1879 
1880   return false;
1881 }
1882 
1883 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1884   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1885   if (Res.second)
1886     Res.first->second = createTempSymbol("exception");
1887   return Res.first->second;
1888 }
1889 
1890 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1891   this->MF = &MF;
1892   const Function &F = MF.getFunction();
1893 
1894   // Get the function symbol.
1895   if (!MAI->needsFunctionDescriptors()) {
1896     CurrentFnSym = getSymbol(&MF.getFunction());
1897   } else {
1898     assert(TM.getTargetTriple().isOSAIX() &&
1899            "Only AIX uses the function descriptor hooks.");
1900     // AIX is unique here in that the name of the symbol emitted for the
1901     // function body does not have the same name as the source function's
1902     // C-linkage name.
1903     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1904                                " initalized first.");
1905 
1906     // Get the function entry point symbol.
1907     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1908   }
1909 
1910   CurrentFnSymForSize = CurrentFnSym;
1911   CurrentFnBegin = nullptr;
1912   CurrentSectionBeginSym = nullptr;
1913   MBBSectionRanges.clear();
1914   MBBSectionExceptionSyms.clear();
1915   bool NeedsLocalForSize = MAI->needsLocalForSize();
1916   if (F.hasFnAttribute("patchable-function-entry") ||
1917       F.hasFnAttribute("function-instrument") ||
1918       F.hasFnAttribute("xray-instruction-threshold") ||
1919       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1920       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1921     CurrentFnBegin = createTempSymbol("func_begin");
1922     if (NeedsLocalForSize)
1923       CurrentFnSymForSize = CurrentFnBegin;
1924   }
1925 
1926   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1927 }
1928 
1929 namespace {
1930 
1931 // Keep track the alignment, constpool entries per Section.
1932   struct SectionCPs {
1933     MCSection *S;
1934     Align Alignment;
1935     SmallVector<unsigned, 4> CPEs;
1936 
1937     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1938   };
1939 
1940 } // end anonymous namespace
1941 
1942 /// EmitConstantPool - Print to the current output stream assembly
1943 /// representations of the constants in the constant pool MCP. This is
1944 /// used to print out constants which have been "spilled to memory" by
1945 /// the code generator.
1946 void AsmPrinter::emitConstantPool() {
1947   const MachineConstantPool *MCP = MF->getConstantPool();
1948   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1949   if (CP.empty()) return;
1950 
1951   // Calculate sections for constant pool entries. We collect entries to go into
1952   // the same section together to reduce amount of section switch statements.
1953   SmallVector<SectionCPs, 4> CPSections;
1954   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1955     const MachineConstantPoolEntry &CPE = CP[i];
1956     Align Alignment = CPE.getAlign();
1957 
1958     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1959 
1960     const Constant *C = nullptr;
1961     if (!CPE.isMachineConstantPoolEntry())
1962       C = CPE.Val.ConstVal;
1963 
1964     MCSection *S = getObjFileLowering().getSectionForConstant(
1965         getDataLayout(), Kind, C, Alignment);
1966 
1967     // The number of sections are small, just do a linear search from the
1968     // last section to the first.
1969     bool Found = false;
1970     unsigned SecIdx = CPSections.size();
1971     while (SecIdx != 0) {
1972       if (CPSections[--SecIdx].S == S) {
1973         Found = true;
1974         break;
1975       }
1976     }
1977     if (!Found) {
1978       SecIdx = CPSections.size();
1979       CPSections.push_back(SectionCPs(S, Alignment));
1980     }
1981 
1982     if (Alignment > CPSections[SecIdx].Alignment)
1983       CPSections[SecIdx].Alignment = Alignment;
1984     CPSections[SecIdx].CPEs.push_back(i);
1985   }
1986 
1987   // Now print stuff into the calculated sections.
1988   const MCSection *CurSection = nullptr;
1989   unsigned Offset = 0;
1990   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1991     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1992       unsigned CPI = CPSections[i].CPEs[j];
1993       MCSymbol *Sym = GetCPISymbol(CPI);
1994       if (!Sym->isUndefined())
1995         continue;
1996 
1997       if (CurSection != CPSections[i].S) {
1998         OutStreamer->SwitchSection(CPSections[i].S);
1999         emitAlignment(Align(CPSections[i].Alignment));
2000         CurSection = CPSections[i].S;
2001         Offset = 0;
2002       }
2003 
2004       MachineConstantPoolEntry CPE = CP[CPI];
2005 
2006       // Emit inter-object padding for alignment.
2007       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2008       OutStreamer->emitZeros(NewOffset - Offset);
2009 
2010       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2011 
2012       OutStreamer->emitLabel(Sym);
2013       if (CPE.isMachineConstantPoolEntry())
2014         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2015       else
2016         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2017     }
2018   }
2019 }
2020 
2021 // Print assembly representations of the jump tables used by the current
2022 // function.
2023 void AsmPrinter::emitJumpTableInfo() {
2024   const DataLayout &DL = MF->getDataLayout();
2025   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2026   if (!MJTI) return;
2027   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2028   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2029   if (JT.empty()) return;
2030 
2031   // Pick the directive to use to print the jump table entries, and switch to
2032   // the appropriate section.
2033   const Function &F = MF->getFunction();
2034   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2035   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2036       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2037       F);
2038   if (JTInDiffSection) {
2039     // Drop it in the readonly section.
2040     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2041     OutStreamer->SwitchSection(ReadOnlySection);
2042   }
2043 
2044   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2045 
2046   // Jump tables in code sections are marked with a data_region directive
2047   // where that's supported.
2048   if (!JTInDiffSection)
2049     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2050 
2051   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2052     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2053 
2054     // If this jump table was deleted, ignore it.
2055     if (JTBBs.empty()) continue;
2056 
2057     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2058     /// emit a .set directive for each unique entry.
2059     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2060         MAI->doesSetDirectiveSuppressReloc()) {
2061       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2062       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2063       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2064       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2065         const MachineBasicBlock *MBB = JTBBs[ii];
2066         if (!EmittedSets.insert(MBB).second)
2067           continue;
2068 
2069         // .set LJTSet, LBB32-base
2070         const MCExpr *LHS =
2071           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2072         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2073                                     MCBinaryExpr::createSub(LHS, Base,
2074                                                             OutContext));
2075       }
2076     }
2077 
2078     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2079     // before each jump table.  The first label is never referenced, but tells
2080     // the assembler and linker the extents of the jump table object.  The
2081     // second label is actually referenced by the code.
2082     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2083       // FIXME: This doesn't have to have any specific name, just any randomly
2084       // named and numbered local label started with 'l' would work.  Simplify
2085       // GetJTISymbol.
2086       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2087 
2088     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2089     OutStreamer->emitLabel(JTISymbol);
2090 
2091     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2092       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2093   }
2094   if (!JTInDiffSection)
2095     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2096 }
2097 
2098 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2099 /// current stream.
2100 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2101                                     const MachineBasicBlock *MBB,
2102                                     unsigned UID) const {
2103   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2104   const MCExpr *Value = nullptr;
2105   switch (MJTI->getEntryKind()) {
2106   case MachineJumpTableInfo::EK_Inline:
2107     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2108   case MachineJumpTableInfo::EK_Custom32:
2109     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2110         MJTI, MBB, UID, OutContext);
2111     break;
2112   case MachineJumpTableInfo::EK_BlockAddress:
2113     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2114     //     .word LBB123
2115     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2116     break;
2117   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2118     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2119     // with a relocation as gp-relative, e.g.:
2120     //     .gprel32 LBB123
2121     MCSymbol *MBBSym = MBB->getSymbol();
2122     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2123     return;
2124   }
2125 
2126   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2127     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2128     // with a relocation as gp-relative, e.g.:
2129     //     .gpdword LBB123
2130     MCSymbol *MBBSym = MBB->getSymbol();
2131     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2132     return;
2133   }
2134 
2135   case MachineJumpTableInfo::EK_LabelDifference32: {
2136     // Each entry is the address of the block minus the address of the jump
2137     // table. This is used for PIC jump tables where gprel32 is not supported.
2138     // e.g.:
2139     //      .word LBB123 - LJTI1_2
2140     // If the .set directive avoids relocations, this is emitted as:
2141     //      .set L4_5_set_123, LBB123 - LJTI1_2
2142     //      .word L4_5_set_123
2143     if (MAI->doesSetDirectiveSuppressReloc()) {
2144       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2145                                       OutContext);
2146       break;
2147     }
2148     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2149     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2150     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2151     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2152     break;
2153   }
2154   }
2155 
2156   assert(Value && "Unknown entry kind!");
2157 
2158   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2159   OutStreamer->emitValue(Value, EntrySize);
2160 }
2161 
2162 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2163 /// special global used by LLVM.  If so, emit it and return true, otherwise
2164 /// do nothing and return false.
2165 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2166   if (GV->getName() == "llvm.used") {
2167     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2168       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2169     return true;
2170   }
2171 
2172   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2173   if (GV->getSection() == "llvm.metadata" ||
2174       GV->hasAvailableExternallyLinkage())
2175     return true;
2176 
2177   if (!GV->hasAppendingLinkage()) return false;
2178 
2179   assert(GV->hasInitializer() && "Not a special LLVM global!");
2180 
2181   if (GV->getName() == "llvm.global_ctors") {
2182     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2183                        /* isCtor */ true);
2184 
2185     return true;
2186   }
2187 
2188   if (GV->getName() == "llvm.global_dtors") {
2189     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2190                        /* isCtor */ false);
2191 
2192     return true;
2193   }
2194 
2195   report_fatal_error("unknown special variable");
2196 }
2197 
2198 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2199 /// global in the specified llvm.used list.
2200 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2201   // Should be an array of 'i8*'.
2202   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2203     const GlobalValue *GV =
2204       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2205     if (GV)
2206       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2207   }
2208 }
2209 
2210 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2211                                           const Constant *List,
2212                                           SmallVector<Structor, 8> &Structors) {
2213   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2214   // the init priority.
2215   if (!isa<ConstantArray>(List))
2216     return;
2217 
2218   // Gather the structors in a form that's convenient for sorting by priority.
2219   for (Value *O : cast<ConstantArray>(List)->operands()) {
2220     auto *CS = cast<ConstantStruct>(O);
2221     if (CS->getOperand(1)->isNullValue())
2222       break; // Found a null terminator, skip the rest.
2223     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2224     if (!Priority)
2225       continue; // Malformed.
2226     Structors.push_back(Structor());
2227     Structor &S = Structors.back();
2228     S.Priority = Priority->getLimitedValue(65535);
2229     S.Func = CS->getOperand(1);
2230     if (!CS->getOperand(2)->isNullValue()) {
2231       if (TM.getTargetTriple().isOSAIX())
2232         llvm::report_fatal_error(
2233             "associated data of XXStructor list is not yet supported on AIX");
2234       S.ComdatKey =
2235           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2236     }
2237   }
2238 
2239   // Emit the function pointers in the target-specific order
2240   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2241     return L.Priority < R.Priority;
2242   });
2243 }
2244 
2245 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2246 /// priority.
2247 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2248                                     bool IsCtor) {
2249   SmallVector<Structor, 8> Structors;
2250   preprocessXXStructorList(DL, List, Structors);
2251   if (Structors.empty())
2252     return;
2253 
2254   const Align Align = DL.getPointerPrefAlignment();
2255   for (Structor &S : Structors) {
2256     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2257     const MCSymbol *KeySym = nullptr;
2258     if (GlobalValue *GV = S.ComdatKey) {
2259       if (GV->isDeclarationForLinker())
2260         // If the associated variable is not defined in this module
2261         // (it might be available_externally, or have been an
2262         // available_externally definition that was dropped by the
2263         // EliminateAvailableExternally pass), some other TU
2264         // will provide its dynamic initializer.
2265         continue;
2266 
2267       KeySym = getSymbol(GV);
2268     }
2269 
2270     MCSection *OutputSection =
2271         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2272                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2273     OutStreamer->SwitchSection(OutputSection);
2274     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2275       emitAlignment(Align);
2276     emitXXStructor(DL, S.Func);
2277   }
2278 }
2279 
2280 void AsmPrinter::emitModuleIdents(Module &M) {
2281   if (!MAI->hasIdentDirective())
2282     return;
2283 
2284   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2285     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2286       const MDNode *N = NMD->getOperand(i);
2287       assert(N->getNumOperands() == 1 &&
2288              "llvm.ident metadata entry can have only one operand");
2289       const MDString *S = cast<MDString>(N->getOperand(0));
2290       OutStreamer->emitIdent(S->getString());
2291     }
2292   }
2293 }
2294 
2295 void AsmPrinter::emitModuleCommandLines(Module &M) {
2296   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2297   if (!CommandLine)
2298     return;
2299 
2300   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2301   if (!NMD || !NMD->getNumOperands())
2302     return;
2303 
2304   OutStreamer->PushSection();
2305   OutStreamer->SwitchSection(CommandLine);
2306   OutStreamer->emitZeros(1);
2307   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2308     const MDNode *N = NMD->getOperand(i);
2309     assert(N->getNumOperands() == 1 &&
2310            "llvm.commandline metadata entry can have only one operand");
2311     const MDString *S = cast<MDString>(N->getOperand(0));
2312     OutStreamer->emitBytes(S->getString());
2313     OutStreamer->emitZeros(1);
2314   }
2315   OutStreamer->PopSection();
2316 }
2317 
2318 //===--------------------------------------------------------------------===//
2319 // Emission and print routines
2320 //
2321 
2322 /// Emit a byte directive and value.
2323 ///
2324 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2325 
2326 /// Emit a short directive and value.
2327 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2328 
2329 /// Emit a long directive and value.
2330 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2331 
2332 /// Emit a long long directive and value.
2333 void AsmPrinter::emitInt64(uint64_t Value) const {
2334   OutStreamer->emitInt64(Value);
2335 }
2336 
2337 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2338 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2339 /// .set if it avoids relocations.
2340 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2341                                      unsigned Size) const {
2342   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2343 }
2344 
2345 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2346 /// where the size in bytes of the directive is specified by Size and Label
2347 /// specifies the label.  This implicitly uses .set if it is available.
2348 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2349                                      unsigned Size,
2350                                      bool IsSectionRelative) const {
2351   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2352     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2353     if (Size > 4)
2354       OutStreamer->emitZeros(Size - 4);
2355     return;
2356   }
2357 
2358   // Emit Label+Offset (or just Label if Offset is zero)
2359   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2360   if (Offset)
2361     Expr = MCBinaryExpr::createAdd(
2362         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2363 
2364   OutStreamer->emitValue(Expr, Size);
2365 }
2366 
2367 //===----------------------------------------------------------------------===//
2368 
2369 // EmitAlignment - Emit an alignment directive to the specified power of
2370 // two boundary.  If a global value is specified, and if that global has
2371 // an explicit alignment requested, it will override the alignment request
2372 // if required for correctness.
2373 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2374   if (GV)
2375     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2376 
2377   if (Alignment == Align(1))
2378     return; // 1-byte aligned: no need to emit alignment.
2379 
2380   if (getCurrentSection()->getKind().isText())
2381     OutStreamer->emitCodeAlignment(Alignment.value());
2382   else
2383     OutStreamer->emitValueToAlignment(Alignment.value());
2384 }
2385 
2386 //===----------------------------------------------------------------------===//
2387 // Constant emission.
2388 //===----------------------------------------------------------------------===//
2389 
2390 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2391   MCContext &Ctx = OutContext;
2392 
2393   if (CV->isNullValue() || isa<UndefValue>(CV))
2394     return MCConstantExpr::create(0, Ctx);
2395 
2396   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2397     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2398 
2399   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2400     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2401 
2402   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2403     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2404 
2405   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2406     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2407 
2408   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2409   if (!CE) {
2410     llvm_unreachable("Unknown constant value to lower!");
2411   }
2412 
2413   switch (CE->getOpcode()) {
2414   case Instruction::AddrSpaceCast: {
2415     const Constant *Op = CE->getOperand(0);
2416     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2417     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2418     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2419       return lowerConstant(Op);
2420 
2421     // Fallthrough to error.
2422     LLVM_FALLTHROUGH;
2423   }
2424   default: {
2425     // If the code isn't optimized, there may be outstanding folding
2426     // opportunities. Attempt to fold the expression using DataLayout as a
2427     // last resort before giving up.
2428     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2429     if (C != CE)
2430       return lowerConstant(C);
2431 
2432     // Otherwise report the problem to the user.
2433     std::string S;
2434     raw_string_ostream OS(S);
2435     OS << "Unsupported expression in static initializer: ";
2436     CE->printAsOperand(OS, /*PrintType=*/false,
2437                    !MF ? nullptr : MF->getFunction().getParent());
2438     report_fatal_error(OS.str());
2439   }
2440   case Instruction::GetElementPtr: {
2441     // Generate a symbolic expression for the byte address
2442     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2443     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2444 
2445     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2446     if (!OffsetAI)
2447       return Base;
2448 
2449     int64_t Offset = OffsetAI.getSExtValue();
2450     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2451                                    Ctx);
2452   }
2453 
2454   case Instruction::Trunc:
2455     // We emit the value and depend on the assembler to truncate the generated
2456     // expression properly.  This is important for differences between
2457     // blockaddress labels.  Since the two labels are in the same function, it
2458     // is reasonable to treat their delta as a 32-bit value.
2459     LLVM_FALLTHROUGH;
2460   case Instruction::BitCast:
2461     return lowerConstant(CE->getOperand(0));
2462 
2463   case Instruction::IntToPtr: {
2464     const DataLayout &DL = getDataLayout();
2465 
2466     // Handle casts to pointers by changing them into casts to the appropriate
2467     // integer type.  This promotes constant folding and simplifies this code.
2468     Constant *Op = CE->getOperand(0);
2469     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2470                                       false/*ZExt*/);
2471     return lowerConstant(Op);
2472   }
2473 
2474   case Instruction::PtrToInt: {
2475     const DataLayout &DL = getDataLayout();
2476 
2477     // Support only foldable casts to/from pointers that can be eliminated by
2478     // changing the pointer to the appropriately sized integer type.
2479     Constant *Op = CE->getOperand(0);
2480     Type *Ty = CE->getType();
2481 
2482     const MCExpr *OpExpr = lowerConstant(Op);
2483 
2484     // We can emit the pointer value into this slot if the slot is an
2485     // integer slot equal to the size of the pointer.
2486     //
2487     // If the pointer is larger than the resultant integer, then
2488     // as with Trunc just depend on the assembler to truncate it.
2489     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2490         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2491       return OpExpr;
2492 
2493     // Otherwise the pointer is smaller than the resultant integer, mask off
2494     // the high bits so we are sure to get a proper truncation if the input is
2495     // a constant expr.
2496     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2497     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2498     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2499   }
2500 
2501   case Instruction::Sub: {
2502     GlobalValue *LHSGV;
2503     APInt LHSOffset;
2504     DSOLocalEquivalent *DSOEquiv;
2505     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2506                                    getDataLayout(), &DSOEquiv)) {
2507       GlobalValue *RHSGV;
2508       APInt RHSOffset;
2509       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2510                                      getDataLayout())) {
2511         const MCExpr *RelocExpr =
2512             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2513         if (!RelocExpr) {
2514           const MCExpr *LHSExpr =
2515               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2516           if (DSOEquiv &&
2517               getObjFileLowering().supportDSOLocalEquivalentLowering())
2518             LHSExpr =
2519                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2520           RelocExpr = MCBinaryExpr::createSub(
2521               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2522         }
2523         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2524         if (Addend != 0)
2525           RelocExpr = MCBinaryExpr::createAdd(
2526               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2527         return RelocExpr;
2528       }
2529     }
2530   }
2531   // else fallthrough
2532   LLVM_FALLTHROUGH;
2533 
2534   // The MC library also has a right-shift operator, but it isn't consistently
2535   // signed or unsigned between different targets.
2536   case Instruction::Add:
2537   case Instruction::Mul:
2538   case Instruction::SDiv:
2539   case Instruction::SRem:
2540   case Instruction::Shl:
2541   case Instruction::And:
2542   case Instruction::Or:
2543   case Instruction::Xor: {
2544     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2545     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2546     switch (CE->getOpcode()) {
2547     default: llvm_unreachable("Unknown binary operator constant cast expr");
2548     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2549     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2550     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2551     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2552     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2553     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2554     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2555     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2556     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2557     }
2558   }
2559   }
2560 }
2561 
2562 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2563                                    AsmPrinter &AP,
2564                                    const Constant *BaseCV = nullptr,
2565                                    uint64_t Offset = 0);
2566 
2567 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2568 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2569 
2570 /// isRepeatedByteSequence - Determine whether the given value is
2571 /// composed of a repeated sequence of identical bytes and return the
2572 /// byte value.  If it is not a repeated sequence, return -1.
2573 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2574   StringRef Data = V->getRawDataValues();
2575   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2576   char C = Data[0];
2577   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2578     if (Data[i] != C) return -1;
2579   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2580 }
2581 
2582 /// isRepeatedByteSequence - Determine whether the given value is
2583 /// composed of a repeated sequence of identical bytes and return the
2584 /// byte value.  If it is not a repeated sequence, return -1.
2585 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2586   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2587     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2588     assert(Size % 8 == 0);
2589 
2590     // Extend the element to take zero padding into account.
2591     APInt Value = CI->getValue().zextOrSelf(Size);
2592     if (!Value.isSplat(8))
2593       return -1;
2594 
2595     return Value.zextOrTrunc(8).getZExtValue();
2596   }
2597   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2598     // Make sure all array elements are sequences of the same repeated
2599     // byte.
2600     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2601     Constant *Op0 = CA->getOperand(0);
2602     int Byte = isRepeatedByteSequence(Op0, DL);
2603     if (Byte == -1)
2604       return -1;
2605 
2606     // All array elements must be equal.
2607     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2608       if (CA->getOperand(i) != Op0)
2609         return -1;
2610     return Byte;
2611   }
2612 
2613   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2614     return isRepeatedByteSequence(CDS);
2615 
2616   return -1;
2617 }
2618 
2619 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2620                                              const ConstantDataSequential *CDS,
2621                                              AsmPrinter &AP) {
2622   // See if we can aggregate this into a .fill, if so, emit it as such.
2623   int Value = isRepeatedByteSequence(CDS, DL);
2624   if (Value != -1) {
2625     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2626     // Don't emit a 1-byte object as a .fill.
2627     if (Bytes > 1)
2628       return AP.OutStreamer->emitFill(Bytes, Value);
2629   }
2630 
2631   // If this can be emitted with .ascii/.asciz, emit it as such.
2632   if (CDS->isString())
2633     return AP.OutStreamer->emitBytes(CDS->getAsString());
2634 
2635   // Otherwise, emit the values in successive locations.
2636   unsigned ElementByteSize = CDS->getElementByteSize();
2637   if (isa<IntegerType>(CDS->getElementType())) {
2638     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2639       if (AP.isVerbose())
2640         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2641                                                  CDS->getElementAsInteger(i));
2642       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2643                                    ElementByteSize);
2644     }
2645   } else {
2646     Type *ET = CDS->getElementType();
2647     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2648       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2649   }
2650 
2651   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2652   unsigned EmittedSize =
2653       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2654   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2655   if (unsigned Padding = Size - EmittedSize)
2656     AP.OutStreamer->emitZeros(Padding);
2657 }
2658 
2659 static void emitGlobalConstantArray(const DataLayout &DL,
2660                                     const ConstantArray *CA, AsmPrinter &AP,
2661                                     const Constant *BaseCV, uint64_t Offset) {
2662   // See if we can aggregate some values.  Make sure it can be
2663   // represented as a series of bytes of the constant value.
2664   int Value = isRepeatedByteSequence(CA, DL);
2665 
2666   if (Value != -1) {
2667     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2668     AP.OutStreamer->emitFill(Bytes, Value);
2669   }
2670   else {
2671     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2672       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2673       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2674     }
2675   }
2676 }
2677 
2678 static void emitGlobalConstantVector(const DataLayout &DL,
2679                                      const ConstantVector *CV, AsmPrinter &AP) {
2680   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2681     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2682 
2683   unsigned Size = DL.getTypeAllocSize(CV->getType());
2684   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2685                          CV->getType()->getNumElements();
2686   if (unsigned Padding = Size - EmittedSize)
2687     AP.OutStreamer->emitZeros(Padding);
2688 }
2689 
2690 static void emitGlobalConstantStruct(const DataLayout &DL,
2691                                      const ConstantStruct *CS, AsmPrinter &AP,
2692                                      const Constant *BaseCV, uint64_t Offset) {
2693   // Print the fields in successive locations. Pad to align if needed!
2694   unsigned Size = DL.getTypeAllocSize(CS->getType());
2695   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2696   uint64_t SizeSoFar = 0;
2697   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2698     const Constant *Field = CS->getOperand(i);
2699 
2700     // Print the actual field value.
2701     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2702 
2703     // Check if padding is needed and insert one or more 0s.
2704     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2705     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2706                         - Layout->getElementOffset(i)) - FieldSize;
2707     SizeSoFar += FieldSize + PadSize;
2708 
2709     // Insert padding - this may include padding to increase the size of the
2710     // current field up to the ABI size (if the struct is not packed) as well
2711     // as padding to ensure that the next field starts at the right offset.
2712     AP.OutStreamer->emitZeros(PadSize);
2713   }
2714   assert(SizeSoFar == Layout->getSizeInBytes() &&
2715          "Layout of constant struct may be incorrect!");
2716 }
2717 
2718 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2719   assert(ET && "Unknown float type");
2720   APInt API = APF.bitcastToAPInt();
2721 
2722   // First print a comment with what we think the original floating-point value
2723   // should have been.
2724   if (AP.isVerbose()) {
2725     SmallString<8> StrVal;
2726     APF.toString(StrVal);
2727     ET->print(AP.OutStreamer->GetCommentOS());
2728     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2729   }
2730 
2731   // Now iterate through the APInt chunks, emitting them in endian-correct
2732   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2733   // floats).
2734   unsigned NumBytes = API.getBitWidth() / 8;
2735   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2736   const uint64_t *p = API.getRawData();
2737 
2738   // PPC's long double has odd notions of endianness compared to how LLVM
2739   // handles it: p[0] goes first for *big* endian on PPC.
2740   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2741     int Chunk = API.getNumWords() - 1;
2742 
2743     if (TrailingBytes)
2744       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2745 
2746     for (; Chunk >= 0; --Chunk)
2747       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2748   } else {
2749     unsigned Chunk;
2750     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2751       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2752 
2753     if (TrailingBytes)
2754       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2755   }
2756 
2757   // Emit the tail padding for the long double.
2758   const DataLayout &DL = AP.getDataLayout();
2759   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2760 }
2761 
2762 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2763   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2764 }
2765 
2766 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2767   const DataLayout &DL = AP.getDataLayout();
2768   unsigned BitWidth = CI->getBitWidth();
2769 
2770   // Copy the value as we may massage the layout for constants whose bit width
2771   // is not a multiple of 64-bits.
2772   APInt Realigned(CI->getValue());
2773   uint64_t ExtraBits = 0;
2774   unsigned ExtraBitsSize = BitWidth & 63;
2775 
2776   if (ExtraBitsSize) {
2777     // The bit width of the data is not a multiple of 64-bits.
2778     // The extra bits are expected to be at the end of the chunk of the memory.
2779     // Little endian:
2780     // * Nothing to be done, just record the extra bits to emit.
2781     // Big endian:
2782     // * Record the extra bits to emit.
2783     // * Realign the raw data to emit the chunks of 64-bits.
2784     if (DL.isBigEndian()) {
2785       // Basically the structure of the raw data is a chunk of 64-bits cells:
2786       //    0        1         BitWidth / 64
2787       // [chunk1][chunk2] ... [chunkN].
2788       // The most significant chunk is chunkN and it should be emitted first.
2789       // However, due to the alignment issue chunkN contains useless bits.
2790       // Realign the chunks so that they contain only useful information:
2791       // ExtraBits     0       1       (BitWidth / 64) - 1
2792       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2793       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2794       ExtraBits = Realigned.getRawData()[0] &
2795         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2796       Realigned.lshrInPlace(ExtraBitsSize);
2797     } else
2798       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2799   }
2800 
2801   // We don't expect assemblers to support integer data directives
2802   // for more than 64 bits, so we emit the data in at most 64-bit
2803   // quantities at a time.
2804   const uint64_t *RawData = Realigned.getRawData();
2805   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2806     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2807     AP.OutStreamer->emitIntValue(Val, 8);
2808   }
2809 
2810   if (ExtraBitsSize) {
2811     // Emit the extra bits after the 64-bits chunks.
2812 
2813     // Emit a directive that fills the expected size.
2814     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2815     Size -= (BitWidth / 64) * 8;
2816     assert(Size && Size * 8 >= ExtraBitsSize &&
2817            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2818            == ExtraBits && "Directive too small for extra bits.");
2819     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2820   }
2821 }
2822 
2823 /// Transform a not absolute MCExpr containing a reference to a GOT
2824 /// equivalent global, by a target specific GOT pc relative access to the
2825 /// final symbol.
2826 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2827                                          const Constant *BaseCst,
2828                                          uint64_t Offset) {
2829   // The global @foo below illustrates a global that uses a got equivalent.
2830   //
2831   //  @bar = global i32 42
2832   //  @gotequiv = private unnamed_addr constant i32* @bar
2833   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2834   //                             i64 ptrtoint (i32* @foo to i64))
2835   //                        to i32)
2836   //
2837   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2838   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2839   // form:
2840   //
2841   //  foo = cstexpr, where
2842   //    cstexpr := <gotequiv> - "." + <cst>
2843   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2844   //
2845   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2846   //
2847   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2848   //    gotpcrelcst := <offset from @foo base> + <cst>
2849   MCValue MV;
2850   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2851     return;
2852   const MCSymbolRefExpr *SymA = MV.getSymA();
2853   if (!SymA)
2854     return;
2855 
2856   // Check that GOT equivalent symbol is cached.
2857   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2858   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2859     return;
2860 
2861   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2862   if (!BaseGV)
2863     return;
2864 
2865   // Check for a valid base symbol
2866   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2867   const MCSymbolRefExpr *SymB = MV.getSymB();
2868 
2869   if (!SymB || BaseSym != &SymB->getSymbol())
2870     return;
2871 
2872   // Make sure to match:
2873   //
2874   //    gotpcrelcst := <offset from @foo base> + <cst>
2875   //
2876   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2877   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2878   // if the target knows how to encode it.
2879   int64_t GOTPCRelCst = Offset + MV.getConstant();
2880   if (GOTPCRelCst < 0)
2881     return;
2882   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2883     return;
2884 
2885   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2886   //
2887   //  bar:
2888   //    .long 42
2889   //  gotequiv:
2890   //    .quad bar
2891   //  foo:
2892   //    .long gotequiv - "." + <cst>
2893   //
2894   // is replaced by the target specific equivalent to:
2895   //
2896   //  bar:
2897   //    .long 42
2898   //  foo:
2899   //    .long bar@GOTPCREL+<gotpcrelcst>
2900   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2901   const GlobalVariable *GV = Result.first;
2902   int NumUses = (int)Result.second;
2903   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2904   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2905   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2906       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2907 
2908   // Update GOT equivalent usage information
2909   --NumUses;
2910   if (NumUses >= 0)
2911     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2912 }
2913 
2914 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2915                                    AsmPrinter &AP, const Constant *BaseCV,
2916                                    uint64_t Offset) {
2917   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2918 
2919   // Globals with sub-elements such as combinations of arrays and structs
2920   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2921   // constant symbol base and the current position with BaseCV and Offset.
2922   if (!BaseCV && CV->hasOneUse())
2923     BaseCV = dyn_cast<Constant>(CV->user_back());
2924 
2925   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2926     return AP.OutStreamer->emitZeros(Size);
2927 
2928   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2929     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2930 
2931     if (StoreSize <= 8) {
2932       if (AP.isVerbose())
2933         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2934                                                  CI->getZExtValue());
2935       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2936     } else {
2937       emitGlobalConstantLargeInt(CI, AP);
2938     }
2939 
2940     // Emit tail padding if needed
2941     if (Size != StoreSize)
2942       AP.OutStreamer->emitZeros(Size - StoreSize);
2943 
2944     return;
2945   }
2946 
2947   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2948     return emitGlobalConstantFP(CFP, AP);
2949 
2950   if (isa<ConstantPointerNull>(CV)) {
2951     AP.OutStreamer->emitIntValue(0, Size);
2952     return;
2953   }
2954 
2955   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2956     return emitGlobalConstantDataSequential(DL, CDS, AP);
2957 
2958   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2959     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2960 
2961   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2962     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2963 
2964   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2965     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2966     // vectors).
2967     if (CE->getOpcode() == Instruction::BitCast)
2968       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2969 
2970     if (Size > 8) {
2971       // If the constant expression's size is greater than 64-bits, then we have
2972       // to emit the value in chunks. Try to constant fold the value and emit it
2973       // that way.
2974       Constant *New = ConstantFoldConstant(CE, DL);
2975       if (New != CE)
2976         return emitGlobalConstantImpl(DL, New, AP);
2977     }
2978   }
2979 
2980   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2981     return emitGlobalConstantVector(DL, V, AP);
2982 
2983   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2984   // thread the streamer with EmitValue.
2985   const MCExpr *ME = AP.lowerConstant(CV);
2986 
2987   // Since lowerConstant already folded and got rid of all IR pointer and
2988   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2989   // directly.
2990   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2991     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2992 
2993   AP.OutStreamer->emitValue(ME, Size);
2994 }
2995 
2996 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2997 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2998   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2999   if (Size)
3000     emitGlobalConstantImpl(DL, CV, *this);
3001   else if (MAI->hasSubsectionsViaSymbols()) {
3002     // If the global has zero size, emit a single byte so that two labels don't
3003     // look like they are at the same location.
3004     OutStreamer->emitIntValue(0, 1);
3005   }
3006 }
3007 
3008 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3009   // Target doesn't support this yet!
3010   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3011 }
3012 
3013 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3014   if (Offset > 0)
3015     OS << '+' << Offset;
3016   else if (Offset < 0)
3017     OS << Offset;
3018 }
3019 
3020 void AsmPrinter::emitNops(unsigned N) {
3021   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3022   for (; N; --N)
3023     EmitToStreamer(*OutStreamer, Nop);
3024 }
3025 
3026 //===----------------------------------------------------------------------===//
3027 // Symbol Lowering Routines.
3028 //===----------------------------------------------------------------------===//
3029 
3030 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3031   return OutContext.createTempSymbol(Name, true);
3032 }
3033 
3034 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3035   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3036 }
3037 
3038 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3039   return MMI->getAddrLabelSymbol(BB);
3040 }
3041 
3042 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3043 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3044   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3045     const MachineConstantPoolEntry &CPE =
3046         MF->getConstantPool()->getConstants()[CPID];
3047     if (!CPE.isMachineConstantPoolEntry()) {
3048       const DataLayout &DL = MF->getDataLayout();
3049       SectionKind Kind = CPE.getSectionKind(&DL);
3050       const Constant *C = CPE.Val.ConstVal;
3051       Align Alignment = CPE.Alignment;
3052       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3053               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3054                                                          Alignment))) {
3055         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3056           if (Sym->isUndefined())
3057             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3058           return Sym;
3059         }
3060       }
3061     }
3062   }
3063 
3064   const DataLayout &DL = getDataLayout();
3065   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3066                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3067                                       Twine(CPID));
3068 }
3069 
3070 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3071 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3072   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3073 }
3074 
3075 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3076 /// FIXME: privatize to AsmPrinter.
3077 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3078   const DataLayout &DL = getDataLayout();
3079   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3080                                       Twine(getFunctionNumber()) + "_" +
3081                                       Twine(UID) + "_set_" + Twine(MBBID));
3082 }
3083 
3084 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3085                                                    StringRef Suffix) const {
3086   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3087 }
3088 
3089 /// Return the MCSymbol for the specified ExternalSymbol.
3090 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3091   SmallString<60> NameStr;
3092   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3093   return OutContext.getOrCreateSymbol(NameStr);
3094 }
3095 
3096 /// PrintParentLoopComment - Print comments about parent loops of this one.
3097 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3098                                    unsigned FunctionNumber) {
3099   if (!Loop) return;
3100   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3101   OS.indent(Loop->getLoopDepth()*2)
3102     << "Parent Loop BB" << FunctionNumber << "_"
3103     << Loop->getHeader()->getNumber()
3104     << " Depth=" << Loop->getLoopDepth() << '\n';
3105 }
3106 
3107 /// PrintChildLoopComment - Print comments about child loops within
3108 /// the loop for this basic block, with nesting.
3109 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3110                                   unsigned FunctionNumber) {
3111   // Add child loop information
3112   for (const MachineLoop *CL : *Loop) {
3113     OS.indent(CL->getLoopDepth()*2)
3114       << "Child Loop BB" << FunctionNumber << "_"
3115       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3116       << '\n';
3117     PrintChildLoopComment(OS, CL, FunctionNumber);
3118   }
3119 }
3120 
3121 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3122 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3123                                        const MachineLoopInfo *LI,
3124                                        const AsmPrinter &AP) {
3125   // Add loop depth information
3126   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3127   if (!Loop) return;
3128 
3129   MachineBasicBlock *Header = Loop->getHeader();
3130   assert(Header && "No header for loop");
3131 
3132   // If this block is not a loop header, just print out what is the loop header
3133   // and return.
3134   if (Header != &MBB) {
3135     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3136                                Twine(AP.getFunctionNumber())+"_" +
3137                                Twine(Loop->getHeader()->getNumber())+
3138                                " Depth="+Twine(Loop->getLoopDepth()));
3139     return;
3140   }
3141 
3142   // Otherwise, it is a loop header.  Print out information about child and
3143   // parent loops.
3144   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3145 
3146   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3147 
3148   OS << "=>";
3149   OS.indent(Loop->getLoopDepth()*2-2);
3150 
3151   OS << "This ";
3152   if (Loop->isInnermost())
3153     OS << "Inner ";
3154   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3155 
3156   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3157 }
3158 
3159 /// emitBasicBlockStart - This method prints the label for the specified
3160 /// MachineBasicBlock, an alignment (if present) and a comment describing
3161 /// it if appropriate.
3162 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3163   // End the previous funclet and start a new one.
3164   if (MBB.isEHFuncletEntry()) {
3165     for (const HandlerInfo &HI : Handlers) {
3166       HI.Handler->endFunclet();
3167       HI.Handler->beginFunclet(MBB);
3168     }
3169   }
3170 
3171   // Emit an alignment directive for this block, if needed.
3172   const Align Alignment = MBB.getAlignment();
3173   if (Alignment != Align(1))
3174     emitAlignment(Alignment);
3175 
3176   // Switch to a new section if this basic block must begin a section. The
3177   // entry block is always placed in the function section and is handled
3178   // separately.
3179   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3180     OutStreamer->SwitchSection(
3181         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3182                                                             MBB, TM));
3183     CurrentSectionBeginSym = MBB.getSymbol();
3184   }
3185 
3186   // If the block has its address taken, emit any labels that were used to
3187   // reference the block.  It is possible that there is more than one label
3188   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3189   // the references were generated.
3190   if (MBB.hasAddressTaken()) {
3191     const BasicBlock *BB = MBB.getBasicBlock();
3192     if (isVerbose())
3193       OutStreamer->AddComment("Block address taken");
3194 
3195     // MBBs can have their address taken as part of CodeGen without having
3196     // their corresponding BB's address taken in IR
3197     if (BB->hasAddressTaken())
3198       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3199         OutStreamer->emitLabel(Sym);
3200   }
3201 
3202   // Print some verbose block comments.
3203   if (isVerbose()) {
3204     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3205       if (BB->hasName()) {
3206         BB->printAsOperand(OutStreamer->GetCommentOS(),
3207                            /*PrintType=*/false, BB->getModule());
3208         OutStreamer->GetCommentOS() << '\n';
3209       }
3210     }
3211 
3212     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3213     emitBasicBlockLoopComments(MBB, MLI, *this);
3214   }
3215 
3216   // Print the main label for the block.
3217   if (shouldEmitLabelForBasicBlock(MBB)) {
3218     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3219       OutStreamer->AddComment("Label of block must be emitted");
3220     OutStreamer->emitLabel(MBB.getSymbol());
3221   } else {
3222     if (isVerbose()) {
3223       // NOTE: Want this comment at start of line, don't emit with AddComment.
3224       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3225                                   false);
3226     }
3227   }
3228 
3229   if (MBB.isEHCatchretTarget() &&
3230       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3231     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3232   }
3233 
3234   // With BB sections, each basic block must handle CFI information on its own
3235   // if it begins a section (Entry block is handled separately by
3236   // AsmPrinterHandler::beginFunction).
3237   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3238     for (const HandlerInfo &HI : Handlers)
3239       HI.Handler->beginBasicBlock(MBB);
3240 }
3241 
3242 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3243   // Check if CFI information needs to be updated for this MBB with basic block
3244   // sections.
3245   if (MBB.isEndSection())
3246     for (const HandlerInfo &HI : Handlers)
3247       HI.Handler->endBasicBlock(MBB);
3248 }
3249 
3250 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3251                                 bool IsDefinition) const {
3252   MCSymbolAttr Attr = MCSA_Invalid;
3253 
3254   switch (Visibility) {
3255   default: break;
3256   case GlobalValue::HiddenVisibility:
3257     if (IsDefinition)
3258       Attr = MAI->getHiddenVisibilityAttr();
3259     else
3260       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3261     break;
3262   case GlobalValue::ProtectedVisibility:
3263     Attr = MAI->getProtectedVisibilityAttr();
3264     break;
3265   }
3266 
3267   if (Attr != MCSA_Invalid)
3268     OutStreamer->emitSymbolAttribute(Sym, Attr);
3269 }
3270 
3271 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3272     const MachineBasicBlock &MBB) const {
3273   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3274   // in the labels mode (option `=labels`) and every section beginning in the
3275   // sections mode (`=all` and `=list=`).
3276   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3277     return true;
3278   // A label is needed for any block with at least one predecessor (when that
3279   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3280   // entry, or if a label is forced).
3281   return !MBB.pred_empty() &&
3282          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3283           MBB.hasLabelMustBeEmitted());
3284 }
3285 
3286 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3287 /// exactly one predecessor and the control transfer mechanism between
3288 /// the predecessor and this block is a fall-through.
3289 bool AsmPrinter::
3290 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3291   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3292   // then nothing falls through to it.
3293   if (MBB->isEHPad() || MBB->pred_empty())
3294     return false;
3295 
3296   // If there isn't exactly one predecessor, it can't be a fall through.
3297   if (MBB->pred_size() > 1)
3298     return false;
3299 
3300   // The predecessor has to be immediately before this block.
3301   MachineBasicBlock *Pred = *MBB->pred_begin();
3302   if (!Pred->isLayoutSuccessor(MBB))
3303     return false;
3304 
3305   // If the block is completely empty, then it definitely does fall through.
3306   if (Pred->empty())
3307     return true;
3308 
3309   // Check the terminators in the previous blocks
3310   for (const auto &MI : Pred->terminators()) {
3311     // If it is not a simple branch, we are in a table somewhere.
3312     if (!MI.isBranch() || MI.isIndirectBranch())
3313       return false;
3314 
3315     // If we are the operands of one of the branches, this is not a fall
3316     // through. Note that targets with delay slots will usually bundle
3317     // terminators with the delay slot instruction.
3318     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3319       if (OP->isJTI())
3320         return false;
3321       if (OP->isMBB() && OP->getMBB() == MBB)
3322         return false;
3323     }
3324   }
3325 
3326   return true;
3327 }
3328 
3329 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3330   if (!S.usesMetadata())
3331     return nullptr;
3332 
3333   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3334   gcp_map_type::iterator GCPI = GCMap.find(&S);
3335   if (GCPI != GCMap.end())
3336     return GCPI->second.get();
3337 
3338   auto Name = S.getName();
3339 
3340   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3341        GCMetadataPrinterRegistry::entries())
3342     if (Name == GCMetaPrinter.getName()) {
3343       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3344       GMP->S = &S;
3345       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3346       return IterBool.first->second.get();
3347     }
3348 
3349   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3350 }
3351 
3352 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3353   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3354   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3355   bool NeedsDefault = false;
3356   if (MI->begin() == MI->end())
3357     // No GC strategy, use the default format.
3358     NeedsDefault = true;
3359   else
3360     for (auto &I : *MI) {
3361       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3362         if (MP->emitStackMaps(SM, *this))
3363           continue;
3364       // The strategy doesn't have printer or doesn't emit custom stack maps.
3365       // Use the default format.
3366       NeedsDefault = true;
3367     }
3368 
3369   if (NeedsDefault)
3370     SM.serializeToStackMapSection();
3371 }
3372 
3373 /// Pin vtable to this file.
3374 AsmPrinterHandler::~AsmPrinterHandler() = default;
3375 
3376 void AsmPrinterHandler::markFunctionEnd() {}
3377 
3378 // In the binary's "xray_instr_map" section, an array of these function entries
3379 // describes each instrumentation point.  When XRay patches your code, the index
3380 // into this table will be given to your handler as a patch point identifier.
3381 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3382   auto Kind8 = static_cast<uint8_t>(Kind);
3383   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3384   Out->emitBinaryData(
3385       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3386   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3387   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3388   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3389   Out->emitZeros(Padding);
3390 }
3391 
3392 void AsmPrinter::emitXRayTable() {
3393   if (Sleds.empty())
3394     return;
3395 
3396   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3397   const Function &F = MF->getFunction();
3398   MCSection *InstMap = nullptr;
3399   MCSection *FnSledIndex = nullptr;
3400   const Triple &TT = TM.getTargetTriple();
3401   // Use PC-relative addresses on all targets.
3402   if (TT.isOSBinFormatELF()) {
3403     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3404     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3405     StringRef GroupName;
3406     if (F.hasComdat()) {
3407       Flags |= ELF::SHF_GROUP;
3408       GroupName = F.getComdat()->getName();
3409     }
3410     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3411                                        Flags, 0, GroupName, F.hasComdat(),
3412                                        MCSection::NonUniqueID, LinkedToSym);
3413 
3414     if (!TM.Options.XRayOmitFunctionIndex)
3415       FnSledIndex = OutContext.getELFSection(
3416           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3417           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3418   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3419     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3420                                          SectionKind::getReadOnlyWithRel());
3421     if (!TM.Options.XRayOmitFunctionIndex)
3422       FnSledIndex = OutContext.getMachOSection(
3423           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3424   } else {
3425     llvm_unreachable("Unsupported target");
3426   }
3427 
3428   auto WordSizeBytes = MAI->getCodePointerSize();
3429 
3430   // Now we switch to the instrumentation map section. Because this is done
3431   // per-function, we are able to create an index entry that will represent the
3432   // range of sleds associated with a function.
3433   auto &Ctx = OutContext;
3434   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3435   OutStreamer->SwitchSection(InstMap);
3436   OutStreamer->emitLabel(SledsStart);
3437   for (const auto &Sled : Sleds) {
3438     MCSymbol *Dot = Ctx.createTempSymbol();
3439     OutStreamer->emitLabel(Dot);
3440     OutStreamer->emitValueImpl(
3441         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3442                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3443         WordSizeBytes);
3444     OutStreamer->emitValueImpl(
3445         MCBinaryExpr::createSub(
3446             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3447             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3448                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3449                                     Ctx),
3450             Ctx),
3451         WordSizeBytes);
3452     Sled.emit(WordSizeBytes, OutStreamer.get());
3453   }
3454   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3455   OutStreamer->emitLabel(SledsEnd);
3456 
3457   // We then emit a single entry in the index per function. We use the symbols
3458   // that bound the instrumentation map as the range for a specific function.
3459   // Each entry here will be 2 * word size aligned, as we're writing down two
3460   // pointers. This should work for both 32-bit and 64-bit platforms.
3461   if (FnSledIndex) {
3462     OutStreamer->SwitchSection(FnSledIndex);
3463     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3464     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3465     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3466     OutStreamer->SwitchSection(PrevSection);
3467   }
3468   Sleds.clear();
3469 }
3470 
3471 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3472                             SledKind Kind, uint8_t Version) {
3473   const Function &F = MI.getMF()->getFunction();
3474   auto Attr = F.getFnAttribute("function-instrument");
3475   bool LogArgs = F.hasFnAttribute("xray-log-args");
3476   bool AlwaysInstrument =
3477     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3478   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3479     Kind = SledKind::LOG_ARGS_ENTER;
3480   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3481                                        AlwaysInstrument, &F, Version});
3482 }
3483 
3484 void AsmPrinter::emitPatchableFunctionEntries() {
3485   const Function &F = MF->getFunction();
3486   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3487   (void)F.getFnAttribute("patchable-function-prefix")
3488       .getValueAsString()
3489       .getAsInteger(10, PatchableFunctionPrefix);
3490   (void)F.getFnAttribute("patchable-function-entry")
3491       .getValueAsString()
3492       .getAsInteger(10, PatchableFunctionEntry);
3493   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3494     return;
3495   const unsigned PointerSize = getPointerSize();
3496   if (TM.getTargetTriple().isOSBinFormatELF()) {
3497     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3498     const MCSymbolELF *LinkedToSym = nullptr;
3499     StringRef GroupName;
3500 
3501     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3502     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3503     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3504       Flags |= ELF::SHF_LINK_ORDER;
3505       if (F.hasComdat()) {
3506         Flags |= ELF::SHF_GROUP;
3507         GroupName = F.getComdat()->getName();
3508       }
3509       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3510     }
3511     OutStreamer->SwitchSection(OutContext.getELFSection(
3512         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3513         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3514     emitAlignment(Align(PointerSize));
3515     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3516   }
3517 }
3518 
3519 uint16_t AsmPrinter::getDwarfVersion() const {
3520   return OutStreamer->getContext().getDwarfVersion();
3521 }
3522 
3523 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3524   OutStreamer->getContext().setDwarfVersion(Version);
3525 }
3526 
3527 bool AsmPrinter::isDwarf64() const {
3528   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3529 }
3530 
3531 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3532   return dwarf::getDwarfOffsetByteSize(
3533       OutStreamer->getContext().getDwarfFormat());
3534 }
3535 
3536 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3537   return dwarf::getUnitLengthFieldByteSize(
3538       OutStreamer->getContext().getDwarfFormat());
3539 }
3540