1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/GCMetadataPrinter.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DebugInfo.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCSection.h"
33 #include "llvm/MC/MCStreamer.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Target/Mangler.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetLoweringObjectFile.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Assembly/Writer.h"
43 #include "llvm/ADT/SmallString.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Format.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/Timer.h"
49 using namespace llvm;
50 
51 static const char *DWARFGroupName = "DWARF Emission";
52 static const char *DbgTimerName = "DWARF Debug Writer";
53 static const char *EHTimerName = "DWARF Exception Writer";
54 
55 STATISTIC(EmittedInsts, "Number of machine instrs printed");
56 
57 char AsmPrinter::ID = 0;
58 
59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
60 static gcp_map_type &getGCMap(void *&P) {
61   if (P == 0)
62     P = new gcp_map_type();
63   return *(gcp_map_type*)P;
64 }
65 
66 
67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
68 /// value in log2 form.  This rounds up to the preferred alignment if possible
69 /// and legal.
70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD,
71                                    unsigned InBits = 0) {
72   unsigned NumBits = 0;
73   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
74     NumBits = TD.getPreferredAlignmentLog(GVar);
75 
76   // If InBits is specified, round it to it.
77   if (InBits > NumBits)
78     NumBits = InBits;
79 
80   // If the GV has a specified alignment, take it into account.
81   if (GV->getAlignment() == 0)
82     return NumBits;
83 
84   unsigned GVAlign = Log2_32(GV->getAlignment());
85 
86   // If the GVAlign is larger than NumBits, or if we are required to obey
87   // NumBits because the GV has an assigned section, obey it.
88   if (GVAlign > NumBits || GV->hasSection())
89     NumBits = GVAlign;
90   return NumBits;
91 }
92 
93 
94 
95 
96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97   : MachineFunctionPass(ID),
98     TM(tm), MAI(tm.getMCAsmInfo()),
99     OutContext(Streamer.getContext()),
100     OutStreamer(Streamer),
101     LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102   DD = 0; DE = 0; MMI = 0; LI = 0;
103   GCMetadataPrinters = 0;
104   VerboseAsm = Streamer.isVerboseAsm();
105 }
106 
107 AsmPrinter::~AsmPrinter() {
108   assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109 
110   if (GCMetadataPrinters != 0) {
111     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112 
113     for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114       delete I->second;
115     delete &GCMap;
116     GCMetadataPrinters = 0;
117   }
118 
119   delete &OutStreamer;
120 }
121 
122 /// getFunctionNumber - Return a unique ID for the current function.
123 ///
124 unsigned AsmPrinter::getFunctionNumber() const {
125   return MF->getFunctionNumber();
126 }
127 
128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129   return TM.getTargetLowering()->getObjFileLowering();
130 }
131 
132 
133 /// getTargetData - Return information about data layout.
134 const TargetData &AsmPrinter::getTargetData() const {
135   return *TM.getTargetData();
136 }
137 
138 /// getCurrentSection() - Return the current section we are emitting to.
139 const MCSection *AsmPrinter::getCurrentSection() const {
140   return OutStreamer.getCurrentSection();
141 }
142 
143 
144 
145 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
146   AU.setPreservesAll();
147   MachineFunctionPass::getAnalysisUsage(AU);
148   AU.addRequired<MachineModuleInfo>();
149   AU.addRequired<GCModuleInfo>();
150   if (isVerbose())
151     AU.addRequired<MachineLoopInfo>();
152 }
153 
154 bool AsmPrinter::doInitialization(Module &M) {
155   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
156   MMI->AnalyzeModule(M);
157 
158   // Initialize TargetLoweringObjectFile.
159   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
160     .Initialize(OutContext, TM);
161 
162   Mang = new Mangler(OutContext, *TM.getTargetData());
163 
164   // Allow the target to emit any magic that it wants at the start of the file.
165   EmitStartOfAsmFile(M);
166 
167   // Very minimal debug info. It is ignored if we emit actual debug info. If we
168   // don't, this at least helps the user find where a global came from.
169   if (MAI->hasSingleParameterDotFile()) {
170     // .file "foo.c"
171     OutStreamer.EmitFileDirective(M.getModuleIdentifier());
172   }
173 
174   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
175   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
176   for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
177     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
178       MP->beginAssembly(*this);
179 
180   // Emit module-level inline asm if it exists.
181   if (!M.getModuleInlineAsm().empty()) {
182     OutStreamer.AddComment("Start of file scope inline assembly");
183     OutStreamer.AddBlankLine();
184     EmitInlineAsm(M.getModuleInlineAsm()+"\n");
185     OutStreamer.AddComment("End of file scope inline assembly");
186     OutStreamer.AddBlankLine();
187   }
188 
189   if (MAI->doesSupportDebugInformation())
190     DD = new DwarfDebug(this, &M);
191 
192   switch (MAI->getExceptionHandlingType()) {
193   case ExceptionHandling::None:
194     return false;
195   case ExceptionHandling::SjLj:
196   case ExceptionHandling::DwarfCFI:
197     DE = new DwarfCFIException(this);
198     return false;
199   case ExceptionHandling::ARM:
200     DE = new ARMException(this);
201     return false;
202   case ExceptionHandling::Win64:
203     DE = new Win64Exception(this);
204     return false;
205   }
206 
207   llvm_unreachable("Unknown exception type.");
208 }
209 
210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
211   switch ((GlobalValue::LinkageTypes)Linkage) {
212   case GlobalValue::CommonLinkage:
213   case GlobalValue::LinkOnceAnyLinkage:
214   case GlobalValue::LinkOnceODRLinkage:
215   case GlobalValue::WeakAnyLinkage:
216   case GlobalValue::WeakODRLinkage:
217   case GlobalValue::LinkerPrivateWeakLinkage:
218   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
219     if (MAI->getWeakDefDirective() != 0) {
220       // .globl _foo
221       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
222 
223       if ((GlobalValue::LinkageTypes)Linkage !=
224           GlobalValue::LinkerPrivateWeakDefAutoLinkage)
225         // .weak_definition _foo
226         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
227       else
228         OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
229     } else if (MAI->getLinkOnceDirective() != 0) {
230       // .globl _foo
231       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
232       //NOTE: linkonce is handled by the section the symbol was assigned to.
233     } else {
234       // .weak _foo
235       OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
236     }
237     break;
238   case GlobalValue::DLLExportLinkage:
239   case GlobalValue::AppendingLinkage:
240     // FIXME: appending linkage variables should go into a section of
241     // their name or something.  For now, just emit them as external.
242   case GlobalValue::ExternalLinkage:
243     // If external or appending, declare as a global symbol.
244     // .globl _foo
245     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
246     break;
247   case GlobalValue::PrivateLinkage:
248   case GlobalValue::InternalLinkage:
249   case GlobalValue::LinkerPrivateLinkage:
250     break;
251   default:
252     llvm_unreachable("Unknown linkage type!");
253   }
254 }
255 
256 
257 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
259   if (GV->hasInitializer()) {
260     // Check to see if this is a special global used by LLVM, if so, emit it.
261     if (EmitSpecialLLVMGlobal(GV))
262       return;
263 
264     if (isVerbose()) {
265       WriteAsOperand(OutStreamer.GetCommentOS(), GV,
266                      /*PrintType=*/false, GV->getParent());
267       OutStreamer.GetCommentOS() << '\n';
268     }
269   }
270 
271   MCSymbol *GVSym = Mang->getSymbol(GV);
272   EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
273 
274   if (!GV->hasInitializer())   // External globals require no extra code.
275     return;
276 
277   if (MAI->hasDotTypeDotSizeDirective())
278     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
279 
280   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
281 
282   const TargetData *TD = TM.getTargetData();
283   uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
284 
285   // If the alignment is specified, we *must* obey it.  Overaligning a global
286   // with a specified alignment is a prompt way to break globals emitted to
287   // sections and expected to be contiguous (e.g. ObjC metadata).
288   unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
289 
290   // Handle common and BSS local symbols (.lcomm).
291   if (GVKind.isCommon() || GVKind.isBSSLocal()) {
292     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
293     unsigned Align = 1 << AlignLog;
294 
295     // Handle common symbols.
296     if (GVKind.isCommon()) {
297       if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
298         Align = 0;
299 
300       // .comm _foo, 42, 4
301       OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
302       return;
303     }
304 
305     // Handle local BSS symbols.
306     if (MAI->hasMachoZeroFillDirective()) {
307       const MCSection *TheSection =
308         getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
309       // .zerofill __DATA, __bss, _foo, 400, 5
310       OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
311       return;
312     }
313 
314     if (MAI->getLCOMMDirectiveType() != LCOMM::None &&
315         (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) {
316       // .lcomm _foo, 42
317       OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
318       return;
319     }
320 
321     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
322       Align = 0;
323 
324     // .local _foo
325     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
326     // .comm _foo, 42, 4
327     OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
328     return;
329   }
330 
331   const MCSection *TheSection =
332     getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
333 
334   // Handle the zerofill directive on darwin, which is a special form of BSS
335   // emission.
336   if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
337     if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
338 
339     // .globl _foo
340     OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
341     // .zerofill __DATA, __common, _foo, 400, 5
342     OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
343     return;
344   }
345 
346   // Handle thread local data for mach-o which requires us to output an
347   // additional structure of data and mangle the original symbol so that we
348   // can reference it later.
349   //
350   // TODO: This should become an "emit thread local global" method on TLOF.
351   // All of this macho specific stuff should be sunk down into TLOFMachO and
352   // stuff like "TLSExtraDataSection" should no longer be part of the parent
353   // TLOF class.  This will also make it more obvious that stuff like
354   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
355   // specific code.
356   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
357     // Emit the .tbss symbol
358     MCSymbol *MangSym =
359       OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
360 
361     if (GVKind.isThreadBSS())
362       OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
363     else if (GVKind.isThreadData()) {
364       OutStreamer.SwitchSection(TheSection);
365 
366       EmitAlignment(AlignLog, GV);
367       OutStreamer.EmitLabel(MangSym);
368 
369       EmitGlobalConstant(GV->getInitializer());
370     }
371 
372     OutStreamer.AddBlankLine();
373 
374     // Emit the variable struct for the runtime.
375     const MCSection *TLVSect
376       = getObjFileLowering().getTLSExtraDataSection();
377 
378     OutStreamer.SwitchSection(TLVSect);
379     // Emit the linkage here.
380     EmitLinkage(GV->getLinkage(), GVSym);
381     OutStreamer.EmitLabel(GVSym);
382 
383     // Three pointers in size:
384     //   - __tlv_bootstrap - used to make sure support exists
385     //   - spare pointer, used when mapped by the runtime
386     //   - pointer to mangled symbol above with initializer
387     unsigned PtrSize = TD->getPointerSizeInBits()/8;
388     OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
389                           PtrSize, 0);
390     OutStreamer.EmitIntValue(0, PtrSize, 0);
391     OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0);
392 
393     OutStreamer.AddBlankLine();
394     return;
395   }
396 
397   OutStreamer.SwitchSection(TheSection);
398 
399   EmitLinkage(GV->getLinkage(), GVSym);
400   EmitAlignment(AlignLog, GV);
401 
402   OutStreamer.EmitLabel(GVSym);
403 
404   EmitGlobalConstant(GV->getInitializer());
405 
406   if (MAI->hasDotTypeDotSizeDirective())
407     // .size foo, 42
408     OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
409 
410   OutStreamer.AddBlankLine();
411 }
412 
413 /// EmitFunctionHeader - This method emits the header for the current
414 /// function.
415 void AsmPrinter::EmitFunctionHeader() {
416   // Print out constants referenced by the function
417   EmitConstantPool();
418 
419   // Print the 'header' of function.
420   const Function *F = MF->getFunction();
421 
422   OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
423   EmitVisibility(CurrentFnSym, F->getVisibility());
424 
425   EmitLinkage(F->getLinkage(), CurrentFnSym);
426   EmitAlignment(MF->getAlignment(), F);
427 
428   if (MAI->hasDotTypeDotSizeDirective())
429     OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
430 
431   if (isVerbose()) {
432     WriteAsOperand(OutStreamer.GetCommentOS(), F,
433                    /*PrintType=*/false, F->getParent());
434     OutStreamer.GetCommentOS() << '\n';
435   }
436 
437   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
438   // do their wild and crazy things as required.
439   EmitFunctionEntryLabel();
440 
441   // If the function had address-taken blocks that got deleted, then we have
442   // references to the dangling symbols.  Emit them at the start of the function
443   // so that we don't get references to undefined symbols.
444   std::vector<MCSymbol*> DeadBlockSyms;
445   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
446   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
447     OutStreamer.AddComment("Address taken block that was later removed");
448     OutStreamer.EmitLabel(DeadBlockSyms[i]);
449   }
450 
451   // Add some workaround for linkonce linkage on Cygwin\MinGW.
452   if (MAI->getLinkOnceDirective() != 0 &&
453       (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
454     // FIXME: What is this?
455     MCSymbol *FakeStub =
456       OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
457                                    CurrentFnSym->getName());
458     OutStreamer.EmitLabel(FakeStub);
459   }
460 
461   // Emit pre-function debug and/or EH information.
462   if (DE) {
463     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
464     DE->BeginFunction(MF);
465   }
466   if (DD) {
467     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
468     DD->beginFunction(MF);
469   }
470 }
471 
472 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
473 /// function.  This can be overridden by targets as required to do custom stuff.
474 void AsmPrinter::EmitFunctionEntryLabel() {
475   // The function label could have already been emitted if two symbols end up
476   // conflicting due to asm renaming.  Detect this and emit an error.
477   if (CurrentFnSym->isUndefined()) {
478     OutStreamer.ForceCodeRegion();
479     return OutStreamer.EmitLabel(CurrentFnSym);
480   }
481 
482   report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
483                      "' label emitted multiple times to assembly file");
484 }
485 
486 
487 /// EmitComments - Pretty-print comments for instructions.
488 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
489   const MachineFunction *MF = MI.getParent()->getParent();
490   const TargetMachine &TM = MF->getTarget();
491 
492   // Check for spills and reloads
493   int FI;
494 
495   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
496 
497   // We assume a single instruction only has a spill or reload, not
498   // both.
499   const MachineMemOperand *MMO;
500   if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
501     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
502       MMO = *MI.memoperands_begin();
503       CommentOS << MMO->getSize() << "-byte Reload\n";
504     }
505   } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
506     if (FrameInfo->isSpillSlotObjectIndex(FI))
507       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
508   } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
509     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
510       MMO = *MI.memoperands_begin();
511       CommentOS << MMO->getSize() << "-byte Spill\n";
512     }
513   } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
514     if (FrameInfo->isSpillSlotObjectIndex(FI))
515       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
516   }
517 
518   // Check for spill-induced copies
519   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
520     CommentOS << " Reload Reuse\n";
521 }
522 
523 /// EmitImplicitDef - This method emits the specified machine instruction
524 /// that is an implicit def.
525 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
526   unsigned RegNo = MI->getOperand(0).getReg();
527   AP.OutStreamer.AddComment(Twine("implicit-def: ") +
528                             AP.TM.getRegisterInfo()->getName(RegNo));
529   AP.OutStreamer.AddBlankLine();
530 }
531 
532 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) {
533   std::string Str = "kill:";
534   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
535     const MachineOperand &Op = MI->getOperand(i);
536     assert(Op.isReg() && "KILL instruction must have only register operands");
537     Str += ' ';
538     Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
539     Str += (Op.isDef() ? "<def>" : "<kill>");
540   }
541   AP.OutStreamer.AddComment(Str);
542   AP.OutStreamer.AddBlankLine();
543 }
544 
545 /// EmitDebugValueComment - This method handles the target-independent form
546 /// of DBG_VALUE, returning true if it was able to do so.  A false return
547 /// means the target will need to handle MI in EmitInstruction.
548 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
549   // This code handles only the 3-operand target-independent form.
550   if (MI->getNumOperands() != 3)
551     return false;
552 
553   SmallString<128> Str;
554   raw_svector_ostream OS(Str);
555   OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
556 
557   // cast away const; DIetc do not take const operands for some reason.
558   DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
559   if (V.getContext().isSubprogram())
560     OS << DISubprogram(V.getContext()).getDisplayName() << ":";
561   OS << V.getName() << " <- ";
562 
563   // Register or immediate value. Register 0 means undef.
564   if (MI->getOperand(0).isFPImm()) {
565     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
566     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
567       OS << (double)APF.convertToFloat();
568     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
569       OS << APF.convertToDouble();
570     } else {
571       // There is no good way to print long double.  Convert a copy to
572       // double.  Ah well, it's only a comment.
573       bool ignored;
574       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
575                   &ignored);
576       OS << "(long double) " << APF.convertToDouble();
577     }
578   } else if (MI->getOperand(0).isImm()) {
579     OS << MI->getOperand(0).getImm();
580   } else if (MI->getOperand(0).isCImm()) {
581     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
582   } else {
583     assert(MI->getOperand(0).isReg() && "Unknown operand type");
584     if (MI->getOperand(0).getReg() == 0) {
585       // Suppress offset, it is not meaningful here.
586       OS << "undef";
587       // NOTE: Want this comment at start of line, don't emit with AddComment.
588       AP.OutStreamer.EmitRawText(OS.str());
589       return true;
590     }
591     OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg());
592   }
593 
594   OS << '+' << MI->getOperand(1).getImm();
595   // NOTE: Want this comment at start of line, don't emit with AddComment.
596   AP.OutStreamer.EmitRawText(OS.str());
597   return true;
598 }
599 
600 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
601   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
602       MF->getFunction()->needsUnwindTableEntry())
603     return CFI_M_EH;
604 
605   if (MMI->hasDebugInfo())
606     return CFI_M_Debug;
607 
608   return CFI_M_None;
609 }
610 
611 bool AsmPrinter::needsSEHMoves() {
612   return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
613     MF->getFunction()->needsUnwindTableEntry();
614 }
615 
616 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
617   return MAI->doesDwarfUseRelocationsForStringPool();
618 }
619 
620 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
621   MCSymbol *Label = MI.getOperand(0).getMCSymbol();
622 
623   if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
624     return;
625 
626   if (needsCFIMoves() == CFI_M_None)
627     return;
628 
629   if (MMI->getCompactUnwindEncoding() != 0)
630     OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
631 
632   MachineModuleInfo &MMI = MF->getMMI();
633   std::vector<MachineMove> &Moves = MMI.getFrameMoves();
634   bool FoundOne = false;
635   (void)FoundOne;
636   for (std::vector<MachineMove>::iterator I = Moves.begin(),
637          E = Moves.end(); I != E; ++I) {
638     if (I->getLabel() == Label) {
639       EmitCFIFrameMove(*I);
640       FoundOne = true;
641     }
642   }
643   assert(FoundOne);
644 }
645 
646 /// EmitFunctionBody - This method emits the body and trailer for a
647 /// function.
648 void AsmPrinter::EmitFunctionBody() {
649   // Emit target-specific gunk before the function body.
650   EmitFunctionBodyStart();
651 
652   bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
653 
654   // Print out code for the function.
655   bool HasAnyRealCode = false;
656   const MachineInstr *LastMI = 0;
657   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
658        I != E; ++I) {
659     // Print a label for the basic block.
660     EmitBasicBlockStart(I);
661     for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
662          II != IE; ++II) {
663       LastMI = II;
664 
665       // Print the assembly for the instruction.
666       if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
667           !II->isDebugValue()) {
668         HasAnyRealCode = true;
669         ++EmittedInsts;
670       }
671 
672       if (ShouldPrintDebugScopes) {
673         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
674         DD->beginInstruction(II);
675       }
676 
677       if (isVerbose())
678         EmitComments(*II, OutStreamer.GetCommentOS());
679 
680       switch (II->getOpcode()) {
681       case TargetOpcode::PROLOG_LABEL:
682         emitPrologLabel(*II);
683         break;
684 
685       case TargetOpcode::EH_LABEL:
686       case TargetOpcode::GC_LABEL:
687         OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
688         break;
689       case TargetOpcode::INLINEASM:
690         EmitInlineAsm(II);
691         break;
692       case TargetOpcode::DBG_VALUE:
693         if (isVerbose()) {
694           if (!EmitDebugValueComment(II, *this))
695             EmitInstruction(II);
696         }
697         break;
698       case TargetOpcode::IMPLICIT_DEF:
699         if (isVerbose()) EmitImplicitDef(II, *this);
700         break;
701       case TargetOpcode::KILL:
702         if (isVerbose()) EmitKill(II, *this);
703         break;
704       default:
705         if (!TM.hasMCUseLoc())
706           MCLineEntry::Make(&OutStreamer, getCurrentSection());
707 
708         EmitInstruction(II);
709         break;
710       }
711 
712       if (ShouldPrintDebugScopes) {
713         NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
714         DD->endInstruction(II);
715       }
716     }
717   }
718 
719   // If the last instruction was a prolog label, then we have a situation where
720   // we emitted a prolog but no function body. This results in the ending prolog
721   // label equaling the end of function label and an invalid "row" in the
722   // FDE. We need to emit a noop in this situation so that the FDE's rows are
723   // valid.
724   bool RequiresNoop = LastMI && LastMI->isPrologLabel();
725 
726   // If the function is empty and the object file uses .subsections_via_symbols,
727   // then we need to emit *something* to the function body to prevent the
728   // labels from collapsing together.  Just emit a noop.
729   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
730     MCInst Noop;
731     TM.getInstrInfo()->getNoopForMachoTarget(Noop);
732     if (Noop.getOpcode()) {
733       OutStreamer.AddComment("avoids zero-length function");
734       OutStreamer.EmitInstruction(Noop);
735     } else  // Target not mc-ized yet.
736       OutStreamer.EmitRawText(StringRef("\tnop\n"));
737   }
738 
739   const Function *F = MF->getFunction();
740   for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
741     const BasicBlock *BB = i;
742     if (!BB->hasAddressTaken())
743       continue;
744     MCSymbol *Sym = GetBlockAddressSymbol(BB);
745     if (Sym->isDefined())
746       continue;
747     OutStreamer.AddComment("Address of block that was removed by CodeGen");
748     OutStreamer.EmitLabel(Sym);
749   }
750 
751   // Emit target-specific gunk after the function body.
752   EmitFunctionBodyEnd();
753 
754   // If the target wants a .size directive for the size of the function, emit
755   // it.
756   if (MAI->hasDotTypeDotSizeDirective()) {
757     // Create a symbol for the end of function, so we can get the size as
758     // difference between the function label and the temp label.
759     MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
760     OutStreamer.EmitLabel(FnEndLabel);
761 
762     const MCExpr *SizeExp =
763       MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
764                               MCSymbolRefExpr::Create(CurrentFnSym, OutContext),
765                               OutContext);
766     OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
767   }
768 
769   // Emit post-function debug information.
770   if (DD) {
771     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
772     DD->endFunction(MF);
773   }
774   if (DE) {
775     NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
776     DE->EndFunction();
777   }
778   MMI->EndFunction();
779 
780   // Print out jump tables referenced by the function.
781   EmitJumpTableInfo();
782 
783   OutStreamer.AddBlankLine();
784 }
785 
786 /// getDebugValueLocation - Get location information encoded by DBG_VALUE
787 /// operands.
788 MachineLocation AsmPrinter::
789 getDebugValueLocation(const MachineInstr *MI) const {
790   // Target specific DBG_VALUE instructions are handled by each target.
791   return MachineLocation();
792 }
793 
794 /// EmitDwarfRegOp - Emit dwarf register operation.
795 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const {
796   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
797   int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
798 
799   for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg());
800        *SR && Reg < 0; ++SR) {
801     Reg = TRI->getDwarfRegNum(*SR, false);
802     // FIXME: Get the bit range this register uses of the superregister
803     // so that we can produce a DW_OP_bit_piece
804   }
805 
806   // FIXME: Handle cases like a super register being encoded as
807   // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
808 
809   // FIXME: We have no reasonable way of handling errors in here. The
810   // caller might be in the middle of an dwarf expression. We should
811   // probably assert that Reg >= 0 once debug info generation is more mature.
812 
813   if (int Offset =  MLoc.getOffset()) {
814     if (Reg < 32) {
815       OutStreamer.AddComment(
816         dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
817       EmitInt8(dwarf::DW_OP_breg0 + Reg);
818     } else {
819       OutStreamer.AddComment("DW_OP_bregx");
820       EmitInt8(dwarf::DW_OP_bregx);
821       OutStreamer.AddComment(Twine(Reg));
822       EmitULEB128(Reg);
823     }
824     EmitSLEB128(Offset);
825   } else {
826     if (Reg < 32) {
827       OutStreamer.AddComment(
828         dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
829       EmitInt8(dwarf::DW_OP_reg0 + Reg);
830     } else {
831       OutStreamer.AddComment("DW_OP_regx");
832       EmitInt8(dwarf::DW_OP_regx);
833       OutStreamer.AddComment(Twine(Reg));
834       EmitULEB128(Reg);
835     }
836   }
837 
838   // FIXME: Produce a DW_OP_bit_piece if we used a superregister
839 }
840 
841 bool AsmPrinter::doFinalization(Module &M) {
842   // Emit global variables.
843   for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
844        I != E; ++I)
845     EmitGlobalVariable(I);
846 
847   // Emit visibility info for declarations
848   for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
849     const Function &F = *I;
850     if (!F.isDeclaration())
851       continue;
852     GlobalValue::VisibilityTypes V = F.getVisibility();
853     if (V == GlobalValue::DefaultVisibility)
854       continue;
855 
856     MCSymbol *Name = Mang->getSymbol(&F);
857     EmitVisibility(Name, V, false);
858   }
859 
860   // Finalize debug and EH information.
861   if (DE) {
862     {
863       NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
864       DE->EndModule();
865     }
866     delete DE; DE = 0;
867   }
868   if (DD) {
869     {
870       NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
871       DD->endModule();
872     }
873     delete DD; DD = 0;
874   }
875 
876   // If the target wants to know about weak references, print them all.
877   if (MAI->getWeakRefDirective()) {
878     // FIXME: This is not lazy, it would be nice to only print weak references
879     // to stuff that is actually used.  Note that doing so would require targets
880     // to notice uses in operands (due to constant exprs etc).  This should
881     // happen with the MC stuff eventually.
882 
883     // Print out module-level global variables here.
884     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
885          I != E; ++I) {
886       if (!I->hasExternalWeakLinkage()) continue;
887       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
888     }
889 
890     for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
891       if (!I->hasExternalWeakLinkage()) continue;
892       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
893     }
894   }
895 
896   if (MAI->hasSetDirective()) {
897     OutStreamer.AddBlankLine();
898     for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
899          I != E; ++I) {
900       MCSymbol *Name = Mang->getSymbol(I);
901 
902       const GlobalValue *GV = I->getAliasedGlobal();
903       MCSymbol *Target = Mang->getSymbol(GV);
904 
905       if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
906         OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
907       else if (I->hasWeakLinkage())
908         OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
909       else
910         assert(I->hasLocalLinkage() && "Invalid alias linkage");
911 
912       EmitVisibility(Name, I->getVisibility());
913 
914       // Emit the directives as assignments aka .set:
915       OutStreamer.EmitAssignment(Name,
916                                  MCSymbolRefExpr::Create(Target, OutContext));
917     }
918   }
919 
920   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
921   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
922   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
923     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
924       MP->finishAssembly(*this);
925 
926   // If we don't have any trampolines, then we don't require stack memory
927   // to be executable. Some targets have a directive to declare this.
928   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
929   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
930     if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
931       OutStreamer.SwitchSection(S);
932 
933   // Allow the target to emit any magic that it wants at the end of the file,
934   // after everything else has gone out.
935   EmitEndOfAsmFile(M);
936 
937   delete Mang; Mang = 0;
938   MMI = 0;
939 
940   OutStreamer.Finish();
941   return false;
942 }
943 
944 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
945   this->MF = &MF;
946   // Get the function symbol.
947   CurrentFnSym = Mang->getSymbol(MF.getFunction());
948 
949   if (isVerbose())
950     LI = &getAnalysis<MachineLoopInfo>();
951 }
952 
953 namespace {
954   // SectionCPs - Keep track the alignment, constpool entries per Section.
955   struct SectionCPs {
956     const MCSection *S;
957     unsigned Alignment;
958     SmallVector<unsigned, 4> CPEs;
959     SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
960   };
961 }
962 
963 /// EmitConstantPool - Print to the current output stream assembly
964 /// representations of the constants in the constant pool MCP. This is
965 /// used to print out constants which have been "spilled to memory" by
966 /// the code generator.
967 ///
968 void AsmPrinter::EmitConstantPool() {
969   const MachineConstantPool *MCP = MF->getConstantPool();
970   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
971   if (CP.empty()) return;
972 
973   // Calculate sections for constant pool entries. We collect entries to go into
974   // the same section together to reduce amount of section switch statements.
975   SmallVector<SectionCPs, 4> CPSections;
976   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
977     const MachineConstantPoolEntry &CPE = CP[i];
978     unsigned Align = CPE.getAlignment();
979 
980     SectionKind Kind;
981     switch (CPE.getRelocationInfo()) {
982     default: llvm_unreachable("Unknown section kind");
983     case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
984     case 1:
985       Kind = SectionKind::getReadOnlyWithRelLocal();
986       break;
987     case 0:
988     switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
989     case 4:  Kind = SectionKind::getMergeableConst4(); break;
990     case 8:  Kind = SectionKind::getMergeableConst8(); break;
991     case 16: Kind = SectionKind::getMergeableConst16();break;
992     default: Kind = SectionKind::getMergeableConst(); break;
993     }
994     }
995 
996     const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
997 
998     // The number of sections are small, just do a linear search from the
999     // last section to the first.
1000     bool Found = false;
1001     unsigned SecIdx = CPSections.size();
1002     while (SecIdx != 0) {
1003       if (CPSections[--SecIdx].S == S) {
1004         Found = true;
1005         break;
1006       }
1007     }
1008     if (!Found) {
1009       SecIdx = CPSections.size();
1010       CPSections.push_back(SectionCPs(S, Align));
1011     }
1012 
1013     if (Align > CPSections[SecIdx].Alignment)
1014       CPSections[SecIdx].Alignment = Align;
1015     CPSections[SecIdx].CPEs.push_back(i);
1016   }
1017 
1018   // Now print stuff into the calculated sections.
1019   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1020     OutStreamer.SwitchSection(CPSections[i].S);
1021     EmitAlignment(Log2_32(CPSections[i].Alignment));
1022 
1023     unsigned Offset = 0;
1024     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1025       unsigned CPI = CPSections[i].CPEs[j];
1026       MachineConstantPoolEntry CPE = CP[CPI];
1027 
1028       // Emit inter-object padding for alignment.
1029       unsigned AlignMask = CPE.getAlignment() - 1;
1030       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1031       OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/);
1032 
1033       Type *Ty = CPE.getType();
1034       Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
1035       OutStreamer.EmitLabel(GetCPISymbol(CPI));
1036 
1037       if (CPE.isMachineConstantPoolEntry())
1038         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1039       else
1040         EmitGlobalConstant(CPE.Val.ConstVal);
1041     }
1042   }
1043 }
1044 
1045 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1046 /// by the current function to the current output stream.
1047 ///
1048 void AsmPrinter::EmitJumpTableInfo() {
1049   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1050   if (MJTI == 0) return;
1051   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1052   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1053   if (JT.empty()) return;
1054 
1055   // Pick the directive to use to print the jump table entries, and switch to
1056   // the appropriate section.
1057   const Function *F = MF->getFunction();
1058   bool JTInDiffSection = false;
1059   if (// In PIC mode, we need to emit the jump table to the same section as the
1060       // function body itself, otherwise the label differences won't make sense.
1061       // FIXME: Need a better predicate for this: what about custom entries?
1062       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1063       // We should also do if the section name is NULL or function is declared
1064       // in discardable section
1065       // FIXME: this isn't the right predicate, should be based on the MCSection
1066       // for the function.
1067       F->isWeakForLinker()) {
1068     OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1069   } else {
1070     // Otherwise, drop it in the readonly section.
1071     const MCSection *ReadOnlySection =
1072       getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1073     OutStreamer.SwitchSection(ReadOnlySection);
1074     JTInDiffSection = true;
1075   }
1076 
1077   EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData())));
1078 
1079   // If we know the form of the jump table, go ahead and tag it as such.
1080   if (!JTInDiffSection) {
1081     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) {
1082       OutStreamer.EmitJumpTable32Region();
1083     } else {
1084       OutStreamer.EmitDataRegion();
1085     }
1086   }
1087 
1088   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1089     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1090 
1091     // If this jump table was deleted, ignore it.
1092     if (JTBBs.empty()) continue;
1093 
1094     // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1095     // .set directive for each unique entry.  This reduces the number of
1096     // relocations the assembler will generate for the jump table.
1097     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1098         MAI->hasSetDirective()) {
1099       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1100       const TargetLowering *TLI = TM.getTargetLowering();
1101       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1102       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1103         const MachineBasicBlock *MBB = JTBBs[ii];
1104         if (!EmittedSets.insert(MBB)) continue;
1105 
1106         // .set LJTSet, LBB32-base
1107         const MCExpr *LHS =
1108           MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1109         OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1110                                 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1111       }
1112     }
1113 
1114     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1115     // before each jump table.  The first label is never referenced, but tells
1116     // the assembler and linker the extents of the jump table object.  The
1117     // second label is actually referenced by the code.
1118     if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1119       // FIXME: This doesn't have to have any specific name, just any randomly
1120       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1121       OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1122 
1123     OutStreamer.EmitLabel(GetJTISymbol(JTI));
1124 
1125     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1126       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1127   }
1128 }
1129 
1130 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1131 /// current stream.
1132 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1133                                     const MachineBasicBlock *MBB,
1134                                     unsigned UID) const {
1135   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1136   const MCExpr *Value = 0;
1137   switch (MJTI->getEntryKind()) {
1138   case MachineJumpTableInfo::EK_Inline:
1139     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1140   case MachineJumpTableInfo::EK_Custom32:
1141     Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1142                                                               OutContext);
1143     break;
1144   case MachineJumpTableInfo::EK_BlockAddress:
1145     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1146     //     .word LBB123
1147     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1148     break;
1149   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1150     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1151     // with a relocation as gp-relative, e.g.:
1152     //     .gprel32 LBB123
1153     MCSymbol *MBBSym = MBB->getSymbol();
1154     OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1155     return;
1156   }
1157 
1158   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1159     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1160     // with a relocation as gp-relative, e.g.:
1161     //     .gpdword LBB123
1162     MCSymbol *MBBSym = MBB->getSymbol();
1163     OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1164     return;
1165   }
1166 
1167   case MachineJumpTableInfo::EK_LabelDifference32: {
1168     // EK_LabelDifference32 - Each entry is the address of the block minus
1169     // the address of the jump table.  This is used for PIC jump tables where
1170     // gprel32 is not supported.  e.g.:
1171     //      .word LBB123 - LJTI1_2
1172     // If the .set directive is supported, this is emitted as:
1173     //      .set L4_5_set_123, LBB123 - LJTI1_2
1174     //      .word L4_5_set_123
1175 
1176     // If we have emitted set directives for the jump table entries, print
1177     // them rather than the entries themselves.  If we're emitting PIC, then
1178     // emit the table entries as differences between two text section labels.
1179     if (MAI->hasSetDirective()) {
1180       // If we used .set, reference the .set's symbol.
1181       Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1182                                       OutContext);
1183       break;
1184     }
1185     // Otherwise, use the difference as the jump table entry.
1186     Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1187     const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1188     Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1189     break;
1190   }
1191   }
1192 
1193   assert(Value && "Unknown entry kind!");
1194 
1195   unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData());
1196   OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0);
1197 }
1198 
1199 
1200 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1201 /// special global used by LLVM.  If so, emit it and return true, otherwise
1202 /// do nothing and return false.
1203 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1204   if (GV->getName() == "llvm.used") {
1205     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1206       EmitLLVMUsedList(GV->getInitializer());
1207     return true;
1208   }
1209 
1210   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1211   if (GV->getSection() == "llvm.metadata" ||
1212       GV->hasAvailableExternallyLinkage())
1213     return true;
1214 
1215   if (!GV->hasAppendingLinkage()) return false;
1216 
1217   assert(GV->hasInitializer() && "Not a special LLVM global!");
1218 
1219   if (GV->getName() == "llvm.global_ctors") {
1220     EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1221 
1222     if (TM.getRelocationModel() == Reloc::Static &&
1223         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1224       StringRef Sym(".constructors_used");
1225       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1226                                       MCSA_Reference);
1227     }
1228     return true;
1229   }
1230 
1231   if (GV->getName() == "llvm.global_dtors") {
1232     EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1233 
1234     if (TM.getRelocationModel() == Reloc::Static &&
1235         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1236       StringRef Sym(".destructors_used");
1237       OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1238                                       MCSA_Reference);
1239     }
1240     return true;
1241   }
1242 
1243   return false;
1244 }
1245 
1246 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1247 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1248 /// is true, as being used with this directive.
1249 void AsmPrinter::EmitLLVMUsedList(const Constant *List) {
1250   // Should be an array of 'i8*'.
1251   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1252   if (InitList == 0) return;
1253 
1254   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1255     const GlobalValue *GV =
1256       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1257     if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1258       OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1259   }
1260 }
1261 
1262 typedef std::pair<unsigned, Constant*> Structor;
1263 
1264 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1265   return lhs.first < rhs.first;
1266 }
1267 
1268 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1269 /// priority.
1270 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1271   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1272   // init priority.
1273   if (!isa<ConstantArray>(List)) return;
1274 
1275   // Sanity check the structors list.
1276   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1277   if (!InitList) return; // Not an array!
1278   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1279   if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1280   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1281       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1282 
1283   // Gather the structors in a form that's convenient for sorting by priority.
1284   SmallVector<Structor, 8> Structors;
1285   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1286     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1287     if (!CS) continue; // Malformed.
1288     if (CS->getOperand(1)->isNullValue())
1289       break;  // Found a null terminator, skip the rest.
1290     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1291     if (!Priority) continue; // Malformed.
1292     Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1293                                        CS->getOperand(1)));
1294   }
1295 
1296   // Emit the function pointers in the target-specific order
1297   const TargetData *TD = TM.getTargetData();
1298   unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1299   std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1300   for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1301     const MCSection *OutputSection =
1302       (isCtor ?
1303        getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1304        getObjFileLowering().getStaticDtorSection(Structors[i].first));
1305     OutStreamer.SwitchSection(OutputSection);
1306     if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1307       EmitAlignment(Align);
1308     EmitXXStructor(Structors[i].second);
1309   }
1310 }
1311 
1312 //===--------------------------------------------------------------------===//
1313 // Emission and print routines
1314 //
1315 
1316 /// EmitInt8 - Emit a byte directive and value.
1317 ///
1318 void AsmPrinter::EmitInt8(int Value) const {
1319   OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/);
1320 }
1321 
1322 /// EmitInt16 - Emit a short directive and value.
1323 ///
1324 void AsmPrinter::EmitInt16(int Value) const {
1325   OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/);
1326 }
1327 
1328 /// EmitInt32 - Emit a long directive and value.
1329 ///
1330 void AsmPrinter::EmitInt32(int Value) const {
1331   OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/);
1332 }
1333 
1334 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1335 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1336 /// labels.  This implicitly uses .set if it is available.
1337 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1338                                      unsigned Size) const {
1339   // Get the Hi-Lo expression.
1340   const MCExpr *Diff =
1341     MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1342                             MCSymbolRefExpr::Create(Lo, OutContext),
1343                             OutContext);
1344 
1345   if (!MAI->hasSetDirective()) {
1346     OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/);
1347     return;
1348   }
1349 
1350   // Otherwise, emit with .set (aka assignment).
1351   MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1352   OutStreamer.EmitAssignment(SetLabel, Diff);
1353   OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/);
1354 }
1355 
1356 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1357 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1358 /// specify the labels.  This implicitly uses .set if it is available.
1359 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1360                                            const MCSymbol *Lo, unsigned Size)
1361   const {
1362 
1363   // Emit Hi+Offset - Lo
1364   // Get the Hi+Offset expression.
1365   const MCExpr *Plus =
1366     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1367                             MCConstantExpr::Create(Offset, OutContext),
1368                             OutContext);
1369 
1370   // Get the Hi+Offset-Lo expression.
1371   const MCExpr *Diff =
1372     MCBinaryExpr::CreateSub(Plus,
1373                             MCSymbolRefExpr::Create(Lo, OutContext),
1374                             OutContext);
1375 
1376   if (!MAI->hasSetDirective())
1377     OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/);
1378   else {
1379     // Otherwise, emit with .set (aka assignment).
1380     MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1381     OutStreamer.EmitAssignment(SetLabel, Diff);
1382     OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/);
1383   }
1384 }
1385 
1386 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1387 /// where the size in bytes of the directive is specified by Size and Label
1388 /// specifies the label.  This implicitly uses .set if it is available.
1389 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1390                                       unsigned Size)
1391   const {
1392 
1393   // Emit Label+Offset
1394   const MCExpr *Plus =
1395     MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext),
1396                             MCConstantExpr::Create(Offset, OutContext),
1397                             OutContext);
1398 
1399   OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/);
1400 }
1401 
1402 
1403 //===----------------------------------------------------------------------===//
1404 
1405 // EmitAlignment - Emit an alignment directive to the specified power of
1406 // two boundary.  For example, if you pass in 3 here, you will get an 8
1407 // byte alignment.  If a global value is specified, and if that global has
1408 // an explicit alignment requested, it will override the alignment request
1409 // if required for correctness.
1410 //
1411 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1412   if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits);
1413 
1414   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1415 
1416   if (getCurrentSection()->getKind().isText())
1417     OutStreamer.EmitCodeAlignment(1 << NumBits);
1418   else
1419     OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1420 }
1421 
1422 //===----------------------------------------------------------------------===//
1423 // Constant emission.
1424 //===----------------------------------------------------------------------===//
1425 
1426 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
1427 ///
1428 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) {
1429   MCContext &Ctx = AP.OutContext;
1430 
1431   if (CV->isNullValue() || isa<UndefValue>(CV))
1432     return MCConstantExpr::Create(0, Ctx);
1433 
1434   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1435     return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1436 
1437   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1438     return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1439 
1440   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1441     return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1442 
1443   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1444   if (CE == 0) {
1445     llvm_unreachable("Unknown constant value to lower!");
1446   }
1447 
1448   switch (CE->getOpcode()) {
1449   default:
1450     // If the code isn't optimized, there may be outstanding folding
1451     // opportunities. Attempt to fold the expression using TargetData as a
1452     // last resort before giving up.
1453     if (Constant *C =
1454           ConstantFoldConstantExpression(CE, AP.TM.getTargetData()))
1455       if (C != CE)
1456         return LowerConstant(C, AP);
1457 
1458     // Otherwise report the problem to the user.
1459     {
1460       std::string S;
1461       raw_string_ostream OS(S);
1462       OS << "Unsupported expression in static initializer: ";
1463       WriteAsOperand(OS, CE, /*PrintType=*/false,
1464                      !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1465       report_fatal_error(OS.str());
1466     }
1467   case Instruction::GetElementPtr: {
1468     const TargetData &TD = *AP.TM.getTargetData();
1469     // Generate a symbolic expression for the byte address
1470     const Constant *PtrVal = CE->getOperand(0);
1471     SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end());
1472     int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec);
1473 
1474     const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
1475     if (Offset == 0)
1476       return Base;
1477 
1478     // Truncate/sext the offset to the pointer size.
1479     if (TD.getPointerSizeInBits() != 64) {
1480       int SExtAmount = 64-TD.getPointerSizeInBits();
1481       Offset = (Offset << SExtAmount) >> SExtAmount;
1482     }
1483 
1484     return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1485                                    Ctx);
1486   }
1487 
1488   case Instruction::Trunc:
1489     // We emit the value and depend on the assembler to truncate the generated
1490     // expression properly.  This is important for differences between
1491     // blockaddress labels.  Since the two labels are in the same function, it
1492     // is reasonable to treat their delta as a 32-bit value.
1493     // FALL THROUGH.
1494   case Instruction::BitCast:
1495     return LowerConstant(CE->getOperand(0), AP);
1496 
1497   case Instruction::IntToPtr: {
1498     const TargetData &TD = *AP.TM.getTargetData();
1499     // Handle casts to pointers by changing them into casts to the appropriate
1500     // integer type.  This promotes constant folding and simplifies this code.
1501     Constant *Op = CE->getOperand(0);
1502     Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1503                                       false/*ZExt*/);
1504     return LowerConstant(Op, AP);
1505   }
1506 
1507   case Instruction::PtrToInt: {
1508     const TargetData &TD = *AP.TM.getTargetData();
1509     // Support only foldable casts to/from pointers that can be eliminated by
1510     // changing the pointer to the appropriately sized integer type.
1511     Constant *Op = CE->getOperand(0);
1512     Type *Ty = CE->getType();
1513 
1514     const MCExpr *OpExpr = LowerConstant(Op, AP);
1515 
1516     // We can emit the pointer value into this slot if the slot is an
1517     // integer slot equal to the size of the pointer.
1518     if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1519       return OpExpr;
1520 
1521     // Otherwise the pointer is smaller than the resultant integer, mask off
1522     // the high bits so we are sure to get a proper truncation if the input is
1523     // a constant expr.
1524     unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1525     const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1526     return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1527   }
1528 
1529   // The MC library also has a right-shift operator, but it isn't consistently
1530   // signed or unsigned between different targets.
1531   case Instruction::Add:
1532   case Instruction::Sub:
1533   case Instruction::Mul:
1534   case Instruction::SDiv:
1535   case Instruction::SRem:
1536   case Instruction::Shl:
1537   case Instruction::And:
1538   case Instruction::Or:
1539   case Instruction::Xor: {
1540     const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
1541     const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
1542     switch (CE->getOpcode()) {
1543     default: llvm_unreachable("Unknown binary operator constant cast expr");
1544     case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1545     case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1546     case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1547     case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1548     case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1549     case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1550     case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1551     case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1552     case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1553     }
1554   }
1555   }
1556 }
1557 
1558 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace,
1559                                    AsmPrinter &AP);
1560 
1561 /// isRepeatedByteSequence - Determine whether the given value is
1562 /// composed of a repeated sequence of identical bytes and return the
1563 /// byte value.  If it is not a repeated sequence, return -1.
1564 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1565   StringRef Data = V->getRawDataValues();
1566   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1567   char C = Data[0];
1568   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1569     if (Data[i] != C) return -1;
1570   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1571 }
1572 
1573 
1574 /// isRepeatedByteSequence - Determine whether the given value is
1575 /// composed of a repeated sequence of identical bytes and return the
1576 /// byte value.  If it is not a repeated sequence, return -1.
1577 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1578 
1579   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1580     if (CI->getBitWidth() > 64) return -1;
1581 
1582     uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType());
1583     uint64_t Value = CI->getZExtValue();
1584 
1585     // Make sure the constant is at least 8 bits long and has a power
1586     // of 2 bit width.  This guarantees the constant bit width is
1587     // always a multiple of 8 bits, avoiding issues with padding out
1588     // to Size and other such corner cases.
1589     if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1590 
1591     uint8_t Byte = static_cast<uint8_t>(Value);
1592 
1593     for (unsigned i = 1; i < Size; ++i) {
1594       Value >>= 8;
1595       if (static_cast<uint8_t>(Value) != Byte) return -1;
1596     }
1597     return Byte;
1598   }
1599   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1600     // Make sure all array elements are sequences of the same repeated
1601     // byte.
1602     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1603     int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1604     if (Byte == -1) return -1;
1605 
1606     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1607       int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1608       if (ThisByte == -1) return -1;
1609       if (Byte != ThisByte) return -1;
1610     }
1611     return Byte;
1612   }
1613 
1614   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1615     return isRepeatedByteSequence(CDS);
1616 
1617   return -1;
1618 }
1619 
1620 static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1621                                              unsigned AddrSpace,AsmPrinter &AP){
1622 
1623   // See if we can aggregate this into a .fill, if so, emit it as such.
1624   int Value = isRepeatedByteSequence(CDS, AP.TM);
1625   if (Value != -1) {
1626     uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType());
1627     // Don't emit a 1-byte object as a .fill.
1628     if (Bytes > 1)
1629       return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1630   }
1631 
1632   // If this can be emitted with .ascii/.asciz, emit it as such.
1633   if (CDS->isString())
1634     return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace);
1635 
1636   // Otherwise, emit the values in successive locations.
1637   unsigned ElementByteSize = CDS->getElementByteSize();
1638   if (isa<IntegerType>(CDS->getElementType())) {
1639     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1640       if (AP.isVerbose())
1641         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1642                                                 CDS->getElementAsInteger(i));
1643       AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1644                                   ElementByteSize, AddrSpace);
1645     }
1646   } else if (ElementByteSize == 4) {
1647     // FP Constants are printed as integer constants to avoid losing
1648     // precision.
1649     assert(CDS->getElementType()->isFloatTy());
1650     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1651       union {
1652         float F;
1653         uint32_t I;
1654       };
1655 
1656       F = CDS->getElementAsFloat(i);
1657       if (AP.isVerbose())
1658         AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1659       AP.OutStreamer.EmitIntValue(I, 4, AddrSpace);
1660     }
1661   } else {
1662     assert(CDS->getElementType()->isDoubleTy());
1663     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1664       union {
1665         double F;
1666         uint64_t I;
1667       };
1668 
1669       F = CDS->getElementAsDouble(i);
1670       if (AP.isVerbose())
1671         AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1672       AP.OutStreamer.EmitIntValue(I, 8, AddrSpace);
1673     }
1674   }
1675 
1676   const TargetData &TD = *AP.TM.getTargetData();
1677   unsigned Size = TD.getTypeAllocSize(CDS->getType());
1678   unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1679                         CDS->getNumElements();
1680   if (unsigned Padding = Size - EmittedSize)
1681     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1682 
1683 }
1684 
1685 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace,
1686                                     AsmPrinter &AP) {
1687   if (AddrSpace != 0 || !CA->isString()) {
1688     // Not a string.  Print the values in successive locations.
1689 
1690     // See if we can aggregate some values.  Make sure it can be
1691     // represented as a series of bytes of the constant value.
1692     int Value = isRepeatedByteSequence(CA, AP.TM);
1693 
1694     if (Value != -1) {
1695       uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType());
1696       AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace);
1697     }
1698     else {
1699       for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1700         EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP);
1701     }
1702     return;
1703   }
1704 
1705   // Otherwise, it can be emitted as .ascii.
1706   SmallVector<char, 128> TmpVec;
1707   TmpVec.reserve(CA->getNumOperands());
1708   for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1709     TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue());
1710 
1711   AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace);
1712 }
1713 
1714 static void EmitGlobalConstantVector(const ConstantVector *CV,
1715                                      unsigned AddrSpace, AsmPrinter &AP) {
1716   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1717     EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP);
1718 
1719   const TargetData &TD = *AP.TM.getTargetData();
1720   unsigned Size = TD.getTypeAllocSize(CV->getType());
1721   unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1722                          CV->getType()->getNumElements();
1723   if (unsigned Padding = Size - EmittedSize)
1724     AP.OutStreamer.EmitZeros(Padding, AddrSpace);
1725 }
1726 
1727 static void EmitGlobalConstantStruct(const ConstantStruct *CS,
1728                                      unsigned AddrSpace, AsmPrinter &AP) {
1729   // Print the fields in successive locations. Pad to align if needed!
1730   const TargetData *TD = AP.TM.getTargetData();
1731   unsigned Size = TD->getTypeAllocSize(CS->getType());
1732   const StructLayout *Layout = TD->getStructLayout(CS->getType());
1733   uint64_t SizeSoFar = 0;
1734   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1735     const Constant *Field = CS->getOperand(i);
1736 
1737     // Check if padding is needed and insert one or more 0s.
1738     uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1739     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1740                         - Layout->getElementOffset(i)) - FieldSize;
1741     SizeSoFar += FieldSize + PadSize;
1742 
1743     // Now print the actual field value.
1744     EmitGlobalConstantImpl(Field, AddrSpace, AP);
1745 
1746     // Insert padding - this may include padding to increase the size of the
1747     // current field up to the ABI size (if the struct is not packed) as well
1748     // as padding to ensure that the next field starts at the right offset.
1749     AP.OutStreamer.EmitZeros(PadSize, AddrSpace);
1750   }
1751   assert(SizeSoFar == Layout->getSizeInBytes() &&
1752          "Layout of constant struct may be incorrect!");
1753 }
1754 
1755 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace,
1756                                  AsmPrinter &AP) {
1757   if (CFP->getType()->isHalfTy()) {
1758     if (AP.isVerbose()) {
1759       SmallString<10> Str;
1760       CFP->getValueAPF().toString(Str);
1761       AP.OutStreamer.GetCommentOS() << "half " << Str << '\n';
1762     }
1763     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1764     AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace);
1765     return;
1766   }
1767 
1768   if (CFP->getType()->isFloatTy()) {
1769     if (AP.isVerbose()) {
1770       float Val = CFP->getValueAPF().convertToFloat();
1771       AP.OutStreamer.GetCommentOS() << "float " << Val << '\n';
1772     }
1773     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1774     AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace);
1775     return;
1776   }
1777 
1778   // FP Constants are printed as integer constants to avoid losing
1779   // precision.
1780   if (CFP->getType()->isDoubleTy()) {
1781     if (AP.isVerbose()) {
1782       double Val = CFP->getValueAPF().convertToDouble();
1783       AP.OutStreamer.GetCommentOS() << "double " << Val << '\n';
1784     }
1785 
1786     uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
1787     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1788     return;
1789   }
1790 
1791   if (CFP->getType()->isX86_FP80Ty()) {
1792     // all long double variants are printed as hex
1793     // API needed to prevent premature destruction
1794     APInt API = CFP->getValueAPF().bitcastToAPInt();
1795     const uint64_t *p = API.getRawData();
1796     if (AP.isVerbose()) {
1797       // Convert to double so we can print the approximate val as a comment.
1798       APFloat DoubleVal = CFP->getValueAPF();
1799       bool ignored;
1800       DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1801                         &ignored);
1802       AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= "
1803         << DoubleVal.convertToDouble() << '\n';
1804     }
1805 
1806     if (AP.TM.getTargetData()->isBigEndian()) {
1807       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1808       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1809     } else {
1810       AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1811       AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace);
1812     }
1813 
1814     // Emit the tail padding for the long double.
1815     const TargetData &TD = *AP.TM.getTargetData();
1816     AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1817                              TD.getTypeStoreSize(CFP->getType()), AddrSpace);
1818     return;
1819   }
1820 
1821   assert(CFP->getType()->isPPC_FP128Ty() &&
1822          "Floating point constant type not handled");
1823   // All long double variants are printed as hex
1824   // API needed to prevent premature destruction.
1825   APInt API = CFP->getValueAPF().bitcastToAPInt();
1826   const uint64_t *p = API.getRawData();
1827   if (AP.TM.getTargetData()->isBigEndian()) {
1828     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1829     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1830   } else {
1831     AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace);
1832     AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace);
1833   }
1834 }
1835 
1836 static void EmitGlobalConstantLargeInt(const ConstantInt *CI,
1837                                        unsigned AddrSpace, AsmPrinter &AP) {
1838   const TargetData *TD = AP.TM.getTargetData();
1839   unsigned BitWidth = CI->getBitWidth();
1840   assert((BitWidth & 63) == 0 && "only support multiples of 64-bits");
1841 
1842   // We don't expect assemblers to support integer data directives
1843   // for more than 64 bits, so we emit the data in at most 64-bit
1844   // quantities at a time.
1845   const uint64_t *RawData = CI->getValue().getRawData();
1846   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1847     uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1848     AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace);
1849   }
1850 }
1851 
1852 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace,
1853                                    AsmPrinter &AP) {
1854   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) {
1855     uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1856     return AP.OutStreamer.EmitZeros(Size, AddrSpace);
1857   }
1858 
1859   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1860     unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1861     switch (Size) {
1862     case 1:
1863     case 2:
1864     case 4:
1865     case 8:
1866       if (AP.isVerbose())
1867         AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1868                                                 CI->getZExtValue());
1869       AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace);
1870       return;
1871     default:
1872       EmitGlobalConstantLargeInt(CI, AddrSpace, AP);
1873       return;
1874     }
1875   }
1876 
1877   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1878     return EmitGlobalConstantFP(CFP, AddrSpace, AP);
1879 
1880   if (isa<ConstantPointerNull>(CV)) {
1881     unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType());
1882     AP.OutStreamer.EmitIntValue(0, Size, AddrSpace);
1883     return;
1884   }
1885 
1886   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1887     return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP);
1888 
1889   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1890     return EmitGlobalConstantArray(CVA, AddrSpace, AP);
1891 
1892   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1893     return EmitGlobalConstantStruct(CVS, AddrSpace, AP);
1894 
1895   // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1896   // vectors).
1897   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV))
1898     if (CE->getOpcode() == Instruction::BitCast)
1899       return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP);
1900 
1901   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1902     return EmitGlobalConstantVector(V, AddrSpace, AP);
1903 
1904   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1905   // thread the streamer with EmitValue.
1906   AP.OutStreamer.EmitValue(LowerConstant(CV, AP),
1907                          AP.TM.getTargetData()->getTypeAllocSize(CV->getType()),
1908                            AddrSpace);
1909 }
1910 
1911 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1912 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
1913   uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType());
1914   if (Size)
1915     EmitGlobalConstantImpl(CV, AddrSpace, *this);
1916   else if (MAI->hasSubsectionsViaSymbols()) {
1917     // If the global has zero size, emit a single byte so that two labels don't
1918     // look like they are at the same location.
1919     OutStreamer.EmitIntValue(0, 1, AddrSpace);
1920   }
1921 }
1922 
1923 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1924   // Target doesn't support this yet!
1925   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1926 }
1927 
1928 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1929   if (Offset > 0)
1930     OS << '+' << Offset;
1931   else if (Offset < 0)
1932     OS << Offset;
1933 }
1934 
1935 //===----------------------------------------------------------------------===//
1936 // Symbol Lowering Routines.
1937 //===----------------------------------------------------------------------===//
1938 
1939 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1940 /// temporary label with the specified stem and unique ID.
1941 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1942   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1943                                       Name + Twine(ID));
1944 }
1945 
1946 /// GetTempSymbol - Return an assembler temporary label with the specified
1947 /// stem.
1948 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1949   return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1950                                       Name);
1951 }
1952 
1953 
1954 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1955   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1956 }
1957 
1958 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1959   return MMI->getAddrLabelSymbol(BB);
1960 }
1961 
1962 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
1963 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1964   return OutContext.GetOrCreateSymbol
1965     (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1966      + "_" + Twine(CPID));
1967 }
1968 
1969 /// GetJTISymbol - Return the symbol for the specified jump table entry.
1970 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1971   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1972 }
1973 
1974 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1975 /// FIXME: privatize to AsmPrinter.
1976 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1977   return OutContext.GetOrCreateSymbol
1978   (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1979    Twine(UID) + "_set_" + Twine(MBBID));
1980 }
1981 
1982 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
1983 /// global value name as its base, with the specified suffix, and where the
1984 /// symbol is forced to have private linkage if ForcePrivate is true.
1985 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
1986                                                    StringRef Suffix,
1987                                                    bool ForcePrivate) const {
1988   SmallString<60> NameStr;
1989   Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
1990   NameStr.append(Suffix.begin(), Suffix.end());
1991   return OutContext.GetOrCreateSymbol(NameStr.str());
1992 }
1993 
1994 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
1995 /// ExternalSymbol.
1996 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
1997   SmallString<60> NameStr;
1998   Mang->getNameWithPrefix(NameStr, Sym);
1999   return OutContext.GetOrCreateSymbol(NameStr.str());
2000 }
2001 
2002 
2003 
2004 /// PrintParentLoopComment - Print comments about parent loops of this one.
2005 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2006                                    unsigned FunctionNumber) {
2007   if (Loop == 0) return;
2008   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2009   OS.indent(Loop->getLoopDepth()*2)
2010     << "Parent Loop BB" << FunctionNumber << "_"
2011     << Loop->getHeader()->getNumber()
2012     << " Depth=" << Loop->getLoopDepth() << '\n';
2013 }
2014 
2015 
2016 /// PrintChildLoopComment - Print comments about child loops within
2017 /// the loop for this basic block, with nesting.
2018 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2019                                   unsigned FunctionNumber) {
2020   // Add child loop information
2021   for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2022     OS.indent((*CL)->getLoopDepth()*2)
2023       << "Child Loop BB" << FunctionNumber << "_"
2024       << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2025       << '\n';
2026     PrintChildLoopComment(OS, *CL, FunctionNumber);
2027   }
2028 }
2029 
2030 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2031 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2032                                        const MachineLoopInfo *LI,
2033                                        const AsmPrinter &AP) {
2034   // Add loop depth information
2035   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2036   if (Loop == 0) return;
2037 
2038   MachineBasicBlock *Header = Loop->getHeader();
2039   assert(Header && "No header for loop");
2040 
2041   // If this block is not a loop header, just print out what is the loop header
2042   // and return.
2043   if (Header != &MBB) {
2044     AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2045                               Twine(AP.getFunctionNumber())+"_" +
2046                               Twine(Loop->getHeader()->getNumber())+
2047                               " Depth="+Twine(Loop->getLoopDepth()));
2048     return;
2049   }
2050 
2051   // Otherwise, it is a loop header.  Print out information about child and
2052   // parent loops.
2053   raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2054 
2055   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2056 
2057   OS << "=>";
2058   OS.indent(Loop->getLoopDepth()*2-2);
2059 
2060   OS << "This ";
2061   if (Loop->empty())
2062     OS << "Inner ";
2063   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2064 
2065   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2066 }
2067 
2068 
2069 /// EmitBasicBlockStart - This method prints the label for the specified
2070 /// MachineBasicBlock, an alignment (if present) and a comment describing
2071 /// it if appropriate.
2072 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2073   // Emit an alignment directive for this block, if needed.
2074   if (unsigned Align = MBB->getAlignment())
2075     EmitAlignment(Align);
2076 
2077   // If the block has its address taken, emit any labels that were used to
2078   // reference the block.  It is possible that there is more than one label
2079   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2080   // the references were generated.
2081   if (MBB->hasAddressTaken()) {
2082     const BasicBlock *BB = MBB->getBasicBlock();
2083     if (isVerbose())
2084       OutStreamer.AddComment("Block address taken");
2085 
2086     std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2087 
2088     for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2089       OutStreamer.EmitLabel(Syms[i]);
2090   }
2091 
2092   // Print the main label for the block.
2093   if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2094     if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2095       if (const BasicBlock *BB = MBB->getBasicBlock())
2096         if (BB->hasName())
2097           OutStreamer.AddComment("%" + BB->getName());
2098 
2099       EmitBasicBlockLoopComments(*MBB, LI, *this);
2100 
2101       // NOTE: Want this comment at start of line, don't emit with AddComment.
2102       OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2103                               Twine(MBB->getNumber()) + ":");
2104     }
2105   } else {
2106     if (isVerbose()) {
2107       if (const BasicBlock *BB = MBB->getBasicBlock())
2108         if (BB->hasName())
2109           OutStreamer.AddComment("%" + BB->getName());
2110       EmitBasicBlockLoopComments(*MBB, LI, *this);
2111     }
2112 
2113     OutStreamer.EmitLabel(MBB->getSymbol());
2114   }
2115 }
2116 
2117 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2118                                 bool IsDefinition) const {
2119   MCSymbolAttr Attr = MCSA_Invalid;
2120 
2121   switch (Visibility) {
2122   default: break;
2123   case GlobalValue::HiddenVisibility:
2124     if (IsDefinition)
2125       Attr = MAI->getHiddenVisibilityAttr();
2126     else
2127       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2128     break;
2129   case GlobalValue::ProtectedVisibility:
2130     Attr = MAI->getProtectedVisibilityAttr();
2131     break;
2132   }
2133 
2134   if (Attr != MCSA_Invalid)
2135     OutStreamer.EmitSymbolAttribute(Sym, Attr);
2136 }
2137 
2138 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2139 /// exactly one predecessor and the control transfer mechanism between
2140 /// the predecessor and this block is a fall-through.
2141 bool AsmPrinter::
2142 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2143   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2144   // then nothing falls through to it.
2145   if (MBB->isLandingPad() || MBB->pred_empty())
2146     return false;
2147 
2148   // If there isn't exactly one predecessor, it can't be a fall through.
2149   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2150   ++PI2;
2151   if (PI2 != MBB->pred_end())
2152     return false;
2153 
2154   // The predecessor has to be immediately before this block.
2155   MachineBasicBlock *Pred = *PI;
2156 
2157   if (!Pred->isLayoutSuccessor(MBB))
2158     return false;
2159 
2160   // If the block is completely empty, then it definitely does fall through.
2161   if (Pred->empty())
2162     return true;
2163 
2164   // Check the terminators in the previous blocks
2165   for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2166          IE = Pred->end(); II != IE; ++II) {
2167     MachineInstr &MI = *II;
2168 
2169     // If it is not a simple branch, we are in a table somewhere.
2170     if (!MI.isBranch() || MI.isIndirectBranch())
2171       return false;
2172 
2173     // If we are the operands of one of the branches, this is not
2174     // a fall through.
2175     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2176            OE = MI.operands_end(); OI != OE; ++OI) {
2177       const MachineOperand& OP = *OI;
2178       if (OP.isJTI())
2179         return false;
2180       if (OP.isMBB() && OP.getMBB() == MBB)
2181         return false;
2182     }
2183   }
2184 
2185   return true;
2186 }
2187 
2188 
2189 
2190 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2191   if (!S->usesMetadata())
2192     return 0;
2193 
2194   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2195   gcp_map_type::iterator GCPI = GCMap.find(S);
2196   if (GCPI != GCMap.end())
2197     return GCPI->second;
2198 
2199   const char *Name = S->getName().c_str();
2200 
2201   for (GCMetadataPrinterRegistry::iterator
2202          I = GCMetadataPrinterRegistry::begin(),
2203          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2204     if (strcmp(Name, I->getName()) == 0) {
2205       GCMetadataPrinter *GMP = I->instantiate();
2206       GMP->S = S;
2207       GCMap.insert(std::make_pair(S, GMP));
2208       return GMP;
2209     }
2210 
2211   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2212 }
2213