1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "asm-printer" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "llvm/Module.h" 19 #include "llvm/CodeGen/GCMetadataPrinter.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DebugInfo.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCSection.h" 33 #include "llvm/MC/MCStreamer.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Target/Mangler.h" 36 #include "llvm/Target/TargetData.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetLoweringObjectFile.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Assembly/Writer.h" 43 #include "llvm/ADT/SmallString.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/Timer.h" 49 using namespace llvm; 50 51 static const char *DWARFGroupName = "DWARF Emission"; 52 static const char *DbgTimerName = "DWARF Debug Writer"; 53 static const char *EHTimerName = "DWARF Exception Writer"; 54 55 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 56 57 char AsmPrinter::ID = 0; 58 59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 60 static gcp_map_type &getGCMap(void *&P) { 61 if (P == 0) 62 P = new gcp_map_type(); 63 return *(gcp_map_type*)P; 64 } 65 66 67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 68 /// value in log2 form. This rounds up to the preferred alignment if possible 69 /// and legal. 70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, 71 unsigned InBits = 0) { 72 unsigned NumBits = 0; 73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 74 NumBits = TD.getPreferredAlignmentLog(GVar); 75 76 // If InBits is specified, round it to it. 77 if (InBits > NumBits) 78 NumBits = InBits; 79 80 // If the GV has a specified alignment, take it into account. 81 if (GV->getAlignment() == 0) 82 return NumBits; 83 84 unsigned GVAlign = Log2_32(GV->getAlignment()); 85 86 // If the GVAlign is larger than NumBits, or if we are required to obey 87 // NumBits because the GV has an assigned section, obey it. 88 if (GVAlign > NumBits || GV->hasSection()) 89 NumBits = GVAlign; 90 return NumBits; 91 } 92 93 94 95 96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 97 : MachineFunctionPass(ID), 98 TM(tm), MAI(tm.getMCAsmInfo()), 99 OutContext(Streamer.getContext()), 100 OutStreamer(Streamer), 101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 102 DD = 0; DE = 0; MMI = 0; LI = 0; 103 GCMetadataPrinters = 0; 104 VerboseAsm = Streamer.isVerboseAsm(); 105 } 106 107 AsmPrinter::~AsmPrinter() { 108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 109 110 if (GCMetadataPrinters != 0) { 111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 112 113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 114 delete I->second; 115 delete &GCMap; 116 GCMetadataPrinters = 0; 117 } 118 119 delete &OutStreamer; 120 } 121 122 /// getFunctionNumber - Return a unique ID for the current function. 123 /// 124 unsigned AsmPrinter::getFunctionNumber() const { 125 return MF->getFunctionNumber(); 126 } 127 128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 129 return TM.getTargetLowering()->getObjFileLowering(); 130 } 131 132 133 /// getTargetData - Return information about data layout. 134 const TargetData &AsmPrinter::getTargetData() const { 135 return *TM.getTargetData(); 136 } 137 138 /// getCurrentSection() - Return the current section we are emitting to. 139 const MCSection *AsmPrinter::getCurrentSection() const { 140 return OutStreamer.getCurrentSection(); 141 } 142 143 144 145 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 146 AU.setPreservesAll(); 147 MachineFunctionPass::getAnalysisUsage(AU); 148 AU.addRequired<MachineModuleInfo>(); 149 AU.addRequired<GCModuleInfo>(); 150 if (isVerbose()) 151 AU.addRequired<MachineLoopInfo>(); 152 } 153 154 bool AsmPrinter::doInitialization(Module &M) { 155 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 156 MMI->AnalyzeModule(M); 157 158 // Initialize TargetLoweringObjectFile. 159 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 160 .Initialize(OutContext, TM); 161 162 Mang = new Mangler(OutContext, *TM.getTargetData()); 163 164 // Allow the target to emit any magic that it wants at the start of the file. 165 EmitStartOfAsmFile(M); 166 167 // Very minimal debug info. It is ignored if we emit actual debug info. If we 168 // don't, this at least helps the user find where a global came from. 169 if (MAI->hasSingleParameterDotFile()) { 170 // .file "foo.c" 171 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 172 } 173 174 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 175 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 178 MP->beginAssembly(*this); 179 180 // Emit module-level inline asm if it exists. 181 if (!M.getModuleInlineAsm().empty()) { 182 OutStreamer.AddComment("Start of file scope inline assembly"); 183 OutStreamer.AddBlankLine(); 184 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 185 OutStreamer.AddComment("End of file scope inline assembly"); 186 OutStreamer.AddBlankLine(); 187 } 188 189 if (MAI->doesSupportDebugInformation()) 190 DD = new DwarfDebug(this, &M); 191 192 switch (MAI->getExceptionHandlingType()) { 193 case ExceptionHandling::None: 194 return false; 195 case ExceptionHandling::SjLj: 196 case ExceptionHandling::DwarfCFI: 197 DE = new DwarfCFIException(this); 198 return false; 199 case ExceptionHandling::ARM: 200 DE = new ARMException(this); 201 return false; 202 case ExceptionHandling::Win64: 203 DE = new Win64Exception(this); 204 return false; 205 } 206 207 llvm_unreachable("Unknown exception type."); 208 } 209 210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 211 switch ((GlobalValue::LinkageTypes)Linkage) { 212 case GlobalValue::CommonLinkage: 213 case GlobalValue::LinkOnceAnyLinkage: 214 case GlobalValue::LinkOnceODRLinkage: 215 case GlobalValue::WeakAnyLinkage: 216 case GlobalValue::WeakODRLinkage: 217 case GlobalValue::LinkerPrivateWeakLinkage: 218 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 219 if (MAI->getWeakDefDirective() != 0) { 220 // .globl _foo 221 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 222 223 if ((GlobalValue::LinkageTypes)Linkage != 224 GlobalValue::LinkerPrivateWeakDefAutoLinkage) 225 // .weak_definition _foo 226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 227 else 228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 229 } else if (MAI->getLinkOnceDirective() != 0) { 230 // .globl _foo 231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 232 //NOTE: linkonce is handled by the section the symbol was assigned to. 233 } else { 234 // .weak _foo 235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 236 } 237 break; 238 case GlobalValue::DLLExportLinkage: 239 case GlobalValue::AppendingLinkage: 240 // FIXME: appending linkage variables should go into a section of 241 // their name or something. For now, just emit them as external. 242 case GlobalValue::ExternalLinkage: 243 // If external or appending, declare as a global symbol. 244 // .globl _foo 245 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 246 break; 247 case GlobalValue::PrivateLinkage: 248 case GlobalValue::InternalLinkage: 249 case GlobalValue::LinkerPrivateLinkage: 250 break; 251 default: 252 llvm_unreachable("Unknown linkage type!"); 253 } 254 } 255 256 257 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 259 if (GV->hasInitializer()) { 260 // Check to see if this is a special global used by LLVM, if so, emit it. 261 if (EmitSpecialLLVMGlobal(GV)) 262 return; 263 264 if (isVerbose()) { 265 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 266 /*PrintType=*/false, GV->getParent()); 267 OutStreamer.GetCommentOS() << '\n'; 268 } 269 } 270 271 MCSymbol *GVSym = Mang->getSymbol(GV); 272 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 273 274 if (!GV->hasInitializer()) // External globals require no extra code. 275 return; 276 277 if (MAI->hasDotTypeDotSizeDirective()) 278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 279 280 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 281 282 const TargetData *TD = TM.getTargetData(); 283 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 284 285 // If the alignment is specified, we *must* obey it. Overaligning a global 286 // with a specified alignment is a prompt way to break globals emitted to 287 // sections and expected to be contiguous (e.g. ObjC metadata). 288 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 289 290 // Handle common and BSS local symbols (.lcomm). 291 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 292 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 293 unsigned Align = 1 << AlignLog; 294 295 // Handle common symbols. 296 if (GVKind.isCommon()) { 297 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 298 Align = 0; 299 300 // .comm _foo, 42, 4 301 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 302 return; 303 } 304 305 // Handle local BSS symbols. 306 if (MAI->hasMachoZeroFillDirective()) { 307 const MCSection *TheSection = 308 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 309 // .zerofill __DATA, __bss, _foo, 400, 5 310 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 311 return; 312 } 313 314 if (MAI->getLCOMMDirectiveType() != LCOMM::None && 315 (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) { 316 // .lcomm _foo, 42 317 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 318 return; 319 } 320 321 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 322 Align = 0; 323 324 // .local _foo 325 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 326 // .comm _foo, 42, 4 327 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 328 return; 329 } 330 331 const MCSection *TheSection = 332 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 333 334 // Handle the zerofill directive on darwin, which is a special form of BSS 335 // emission. 336 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 337 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 338 339 // .globl _foo 340 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 341 // .zerofill __DATA, __common, _foo, 400, 5 342 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 343 return; 344 } 345 346 // Handle thread local data for mach-o which requires us to output an 347 // additional structure of data and mangle the original symbol so that we 348 // can reference it later. 349 // 350 // TODO: This should become an "emit thread local global" method on TLOF. 351 // All of this macho specific stuff should be sunk down into TLOFMachO and 352 // stuff like "TLSExtraDataSection" should no longer be part of the parent 353 // TLOF class. This will also make it more obvious that stuff like 354 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 355 // specific code. 356 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 357 // Emit the .tbss symbol 358 MCSymbol *MangSym = 359 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 360 361 if (GVKind.isThreadBSS()) 362 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 363 else if (GVKind.isThreadData()) { 364 OutStreamer.SwitchSection(TheSection); 365 366 EmitAlignment(AlignLog, GV); 367 OutStreamer.EmitLabel(MangSym); 368 369 EmitGlobalConstant(GV->getInitializer()); 370 } 371 372 OutStreamer.AddBlankLine(); 373 374 // Emit the variable struct for the runtime. 375 const MCSection *TLVSect 376 = getObjFileLowering().getTLSExtraDataSection(); 377 378 OutStreamer.SwitchSection(TLVSect); 379 // Emit the linkage here. 380 EmitLinkage(GV->getLinkage(), GVSym); 381 OutStreamer.EmitLabel(GVSym); 382 383 // Three pointers in size: 384 // - __tlv_bootstrap - used to make sure support exists 385 // - spare pointer, used when mapped by the runtime 386 // - pointer to mangled symbol above with initializer 387 unsigned PtrSize = TD->getPointerSizeInBits()/8; 388 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 389 PtrSize, 0); 390 OutStreamer.EmitIntValue(0, PtrSize, 0); 391 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 392 393 OutStreamer.AddBlankLine(); 394 return; 395 } 396 397 OutStreamer.SwitchSection(TheSection); 398 399 EmitLinkage(GV->getLinkage(), GVSym); 400 EmitAlignment(AlignLog, GV); 401 402 OutStreamer.EmitLabel(GVSym); 403 404 EmitGlobalConstant(GV->getInitializer()); 405 406 if (MAI->hasDotTypeDotSizeDirective()) 407 // .size foo, 42 408 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 409 410 OutStreamer.AddBlankLine(); 411 } 412 413 /// EmitFunctionHeader - This method emits the header for the current 414 /// function. 415 void AsmPrinter::EmitFunctionHeader() { 416 // Print out constants referenced by the function 417 EmitConstantPool(); 418 419 // Print the 'header' of function. 420 const Function *F = MF->getFunction(); 421 422 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 423 EmitVisibility(CurrentFnSym, F->getVisibility()); 424 425 EmitLinkage(F->getLinkage(), CurrentFnSym); 426 EmitAlignment(MF->getAlignment(), F); 427 428 if (MAI->hasDotTypeDotSizeDirective()) 429 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 430 431 if (isVerbose()) { 432 WriteAsOperand(OutStreamer.GetCommentOS(), F, 433 /*PrintType=*/false, F->getParent()); 434 OutStreamer.GetCommentOS() << '\n'; 435 } 436 437 // Emit the CurrentFnSym. This is a virtual function to allow targets to 438 // do their wild and crazy things as required. 439 EmitFunctionEntryLabel(); 440 441 // If the function had address-taken blocks that got deleted, then we have 442 // references to the dangling symbols. Emit them at the start of the function 443 // so that we don't get references to undefined symbols. 444 std::vector<MCSymbol*> DeadBlockSyms; 445 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 446 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 447 OutStreamer.AddComment("Address taken block that was later removed"); 448 OutStreamer.EmitLabel(DeadBlockSyms[i]); 449 } 450 451 // Add some workaround for linkonce linkage on Cygwin\MinGW. 452 if (MAI->getLinkOnceDirective() != 0 && 453 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 454 // FIXME: What is this? 455 MCSymbol *FakeStub = 456 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 457 CurrentFnSym->getName()); 458 OutStreamer.EmitLabel(FakeStub); 459 } 460 461 // Emit pre-function debug and/or EH information. 462 if (DE) { 463 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 464 DE->BeginFunction(MF); 465 } 466 if (DD) { 467 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 468 DD->beginFunction(MF); 469 } 470 } 471 472 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 473 /// function. This can be overridden by targets as required to do custom stuff. 474 void AsmPrinter::EmitFunctionEntryLabel() { 475 // The function label could have already been emitted if two symbols end up 476 // conflicting due to asm renaming. Detect this and emit an error. 477 if (CurrentFnSym->isUndefined()) { 478 OutStreamer.ForceCodeRegion(); 479 return OutStreamer.EmitLabel(CurrentFnSym); 480 } 481 482 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 483 "' label emitted multiple times to assembly file"); 484 } 485 486 487 /// EmitComments - Pretty-print comments for instructions. 488 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 489 const MachineFunction *MF = MI.getParent()->getParent(); 490 const TargetMachine &TM = MF->getTarget(); 491 492 // Check for spills and reloads 493 int FI; 494 495 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 496 497 // We assume a single instruction only has a spill or reload, not 498 // both. 499 const MachineMemOperand *MMO; 500 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 501 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 502 MMO = *MI.memoperands_begin(); 503 CommentOS << MMO->getSize() << "-byte Reload\n"; 504 } 505 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 506 if (FrameInfo->isSpillSlotObjectIndex(FI)) 507 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 508 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 509 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 510 MMO = *MI.memoperands_begin(); 511 CommentOS << MMO->getSize() << "-byte Spill\n"; 512 } 513 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 514 if (FrameInfo->isSpillSlotObjectIndex(FI)) 515 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 516 } 517 518 // Check for spill-induced copies 519 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 520 CommentOS << " Reload Reuse\n"; 521 } 522 523 /// EmitImplicitDef - This method emits the specified machine instruction 524 /// that is an implicit def. 525 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 526 unsigned RegNo = MI->getOperand(0).getReg(); 527 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 528 AP.TM.getRegisterInfo()->getName(RegNo)); 529 AP.OutStreamer.AddBlankLine(); 530 } 531 532 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) { 533 std::string Str = "kill:"; 534 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 535 const MachineOperand &Op = MI->getOperand(i); 536 assert(Op.isReg() && "KILL instruction must have only register operands"); 537 Str += ' '; 538 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 539 Str += (Op.isDef() ? "<def>" : "<kill>"); 540 } 541 AP.OutStreamer.AddComment(Str); 542 AP.OutStreamer.AddBlankLine(); 543 } 544 545 /// EmitDebugValueComment - This method handles the target-independent form 546 /// of DBG_VALUE, returning true if it was able to do so. A false return 547 /// means the target will need to handle MI in EmitInstruction. 548 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 549 // This code handles only the 3-operand target-independent form. 550 if (MI->getNumOperands() != 3) 551 return false; 552 553 SmallString<128> Str; 554 raw_svector_ostream OS(Str); 555 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 556 557 // cast away const; DIetc do not take const operands for some reason. 558 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 559 if (V.getContext().isSubprogram()) 560 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 561 OS << V.getName() << " <- "; 562 563 // Register or immediate value. Register 0 means undef. 564 if (MI->getOperand(0).isFPImm()) { 565 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 566 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 567 OS << (double)APF.convertToFloat(); 568 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 569 OS << APF.convertToDouble(); 570 } else { 571 // There is no good way to print long double. Convert a copy to 572 // double. Ah well, it's only a comment. 573 bool ignored; 574 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 575 &ignored); 576 OS << "(long double) " << APF.convertToDouble(); 577 } 578 } else if (MI->getOperand(0).isImm()) { 579 OS << MI->getOperand(0).getImm(); 580 } else if (MI->getOperand(0).isCImm()) { 581 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 582 } else { 583 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 584 if (MI->getOperand(0).getReg() == 0) { 585 // Suppress offset, it is not meaningful here. 586 OS << "undef"; 587 // NOTE: Want this comment at start of line, don't emit with AddComment. 588 AP.OutStreamer.EmitRawText(OS.str()); 589 return true; 590 } 591 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 592 } 593 594 OS << '+' << MI->getOperand(1).getImm(); 595 // NOTE: Want this comment at start of line, don't emit with AddComment. 596 AP.OutStreamer.EmitRawText(OS.str()); 597 return true; 598 } 599 600 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 601 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 602 MF->getFunction()->needsUnwindTableEntry()) 603 return CFI_M_EH; 604 605 if (MMI->hasDebugInfo()) 606 return CFI_M_Debug; 607 608 return CFI_M_None; 609 } 610 611 bool AsmPrinter::needsSEHMoves() { 612 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 613 MF->getFunction()->needsUnwindTableEntry(); 614 } 615 616 bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 617 return MAI->doesDwarfUseRelocationsForStringPool(); 618 } 619 620 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 621 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 622 623 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 624 return; 625 626 if (needsCFIMoves() == CFI_M_None) 627 return; 628 629 if (MMI->getCompactUnwindEncoding() != 0) 630 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 631 632 MachineModuleInfo &MMI = MF->getMMI(); 633 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 634 bool FoundOne = false; 635 (void)FoundOne; 636 for (std::vector<MachineMove>::iterator I = Moves.begin(), 637 E = Moves.end(); I != E; ++I) { 638 if (I->getLabel() == Label) { 639 EmitCFIFrameMove(*I); 640 FoundOne = true; 641 } 642 } 643 assert(FoundOne); 644 } 645 646 /// EmitFunctionBody - This method emits the body and trailer for a 647 /// function. 648 void AsmPrinter::EmitFunctionBody() { 649 // Emit target-specific gunk before the function body. 650 EmitFunctionBodyStart(); 651 652 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 653 654 // Print out code for the function. 655 bool HasAnyRealCode = false; 656 const MachineInstr *LastMI = 0; 657 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 658 I != E; ++I) { 659 // Print a label for the basic block. 660 EmitBasicBlockStart(I); 661 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 662 II != IE; ++II) { 663 LastMI = II; 664 665 // Print the assembly for the instruction. 666 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 667 !II->isDebugValue()) { 668 HasAnyRealCode = true; 669 ++EmittedInsts; 670 } 671 672 if (ShouldPrintDebugScopes) { 673 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 674 DD->beginInstruction(II); 675 } 676 677 if (isVerbose()) 678 EmitComments(*II, OutStreamer.GetCommentOS()); 679 680 switch (II->getOpcode()) { 681 case TargetOpcode::PROLOG_LABEL: 682 emitPrologLabel(*II); 683 break; 684 685 case TargetOpcode::EH_LABEL: 686 case TargetOpcode::GC_LABEL: 687 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 688 break; 689 case TargetOpcode::INLINEASM: 690 EmitInlineAsm(II); 691 break; 692 case TargetOpcode::DBG_VALUE: 693 if (isVerbose()) { 694 if (!EmitDebugValueComment(II, *this)) 695 EmitInstruction(II); 696 } 697 break; 698 case TargetOpcode::IMPLICIT_DEF: 699 if (isVerbose()) EmitImplicitDef(II, *this); 700 break; 701 case TargetOpcode::KILL: 702 if (isVerbose()) EmitKill(II, *this); 703 break; 704 default: 705 if (!TM.hasMCUseLoc()) 706 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 707 708 EmitInstruction(II); 709 break; 710 } 711 712 if (ShouldPrintDebugScopes) { 713 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 714 DD->endInstruction(II); 715 } 716 } 717 } 718 719 // If the last instruction was a prolog label, then we have a situation where 720 // we emitted a prolog but no function body. This results in the ending prolog 721 // label equaling the end of function label and an invalid "row" in the 722 // FDE. We need to emit a noop in this situation so that the FDE's rows are 723 // valid. 724 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 725 726 // If the function is empty and the object file uses .subsections_via_symbols, 727 // then we need to emit *something* to the function body to prevent the 728 // labels from collapsing together. Just emit a noop. 729 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 730 MCInst Noop; 731 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 732 if (Noop.getOpcode()) { 733 OutStreamer.AddComment("avoids zero-length function"); 734 OutStreamer.EmitInstruction(Noop); 735 } else // Target not mc-ized yet. 736 OutStreamer.EmitRawText(StringRef("\tnop\n")); 737 } 738 739 const Function *F = MF->getFunction(); 740 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 741 const BasicBlock *BB = i; 742 if (!BB->hasAddressTaken()) 743 continue; 744 MCSymbol *Sym = GetBlockAddressSymbol(BB); 745 if (Sym->isDefined()) 746 continue; 747 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 748 OutStreamer.EmitLabel(Sym); 749 } 750 751 // Emit target-specific gunk after the function body. 752 EmitFunctionBodyEnd(); 753 754 // If the target wants a .size directive for the size of the function, emit 755 // it. 756 if (MAI->hasDotTypeDotSizeDirective()) { 757 // Create a symbol for the end of function, so we can get the size as 758 // difference between the function label and the temp label. 759 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 760 OutStreamer.EmitLabel(FnEndLabel); 761 762 const MCExpr *SizeExp = 763 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 764 MCSymbolRefExpr::Create(CurrentFnSym, OutContext), 765 OutContext); 766 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 767 } 768 769 // Emit post-function debug information. 770 if (DD) { 771 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 772 DD->endFunction(MF); 773 } 774 if (DE) { 775 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 776 DE->EndFunction(); 777 } 778 MMI->EndFunction(); 779 780 // Print out jump tables referenced by the function. 781 EmitJumpTableInfo(); 782 783 OutStreamer.AddBlankLine(); 784 } 785 786 /// getDebugValueLocation - Get location information encoded by DBG_VALUE 787 /// operands. 788 MachineLocation AsmPrinter:: 789 getDebugValueLocation(const MachineInstr *MI) const { 790 // Target specific DBG_VALUE instructions are handled by each target. 791 return MachineLocation(); 792 } 793 794 /// EmitDwarfRegOp - Emit dwarf register operation. 795 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 796 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 797 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 798 799 for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg()); 800 *SR && Reg < 0; ++SR) { 801 Reg = TRI->getDwarfRegNum(*SR, false); 802 // FIXME: Get the bit range this register uses of the superregister 803 // so that we can produce a DW_OP_bit_piece 804 } 805 806 // FIXME: Handle cases like a super register being encoded as 807 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 808 809 // FIXME: We have no reasonable way of handling errors in here. The 810 // caller might be in the middle of an dwarf expression. We should 811 // probably assert that Reg >= 0 once debug info generation is more mature. 812 813 if (int Offset = MLoc.getOffset()) { 814 if (Reg < 32) { 815 OutStreamer.AddComment( 816 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 817 EmitInt8(dwarf::DW_OP_breg0 + Reg); 818 } else { 819 OutStreamer.AddComment("DW_OP_bregx"); 820 EmitInt8(dwarf::DW_OP_bregx); 821 OutStreamer.AddComment(Twine(Reg)); 822 EmitULEB128(Reg); 823 } 824 EmitSLEB128(Offset); 825 } else { 826 if (Reg < 32) { 827 OutStreamer.AddComment( 828 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 829 EmitInt8(dwarf::DW_OP_reg0 + Reg); 830 } else { 831 OutStreamer.AddComment("DW_OP_regx"); 832 EmitInt8(dwarf::DW_OP_regx); 833 OutStreamer.AddComment(Twine(Reg)); 834 EmitULEB128(Reg); 835 } 836 } 837 838 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 839 } 840 841 bool AsmPrinter::doFinalization(Module &M) { 842 // Emit global variables. 843 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 844 I != E; ++I) 845 EmitGlobalVariable(I); 846 847 // Emit visibility info for declarations 848 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 849 const Function &F = *I; 850 if (!F.isDeclaration()) 851 continue; 852 GlobalValue::VisibilityTypes V = F.getVisibility(); 853 if (V == GlobalValue::DefaultVisibility) 854 continue; 855 856 MCSymbol *Name = Mang->getSymbol(&F); 857 EmitVisibility(Name, V, false); 858 } 859 860 // Finalize debug and EH information. 861 if (DE) { 862 { 863 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 864 DE->EndModule(); 865 } 866 delete DE; DE = 0; 867 } 868 if (DD) { 869 { 870 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 871 DD->endModule(); 872 } 873 delete DD; DD = 0; 874 } 875 876 // If the target wants to know about weak references, print them all. 877 if (MAI->getWeakRefDirective()) { 878 // FIXME: This is not lazy, it would be nice to only print weak references 879 // to stuff that is actually used. Note that doing so would require targets 880 // to notice uses in operands (due to constant exprs etc). This should 881 // happen with the MC stuff eventually. 882 883 // Print out module-level global variables here. 884 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 885 I != E; ++I) { 886 if (!I->hasExternalWeakLinkage()) continue; 887 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 888 } 889 890 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 891 if (!I->hasExternalWeakLinkage()) continue; 892 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 893 } 894 } 895 896 if (MAI->hasSetDirective()) { 897 OutStreamer.AddBlankLine(); 898 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 899 I != E; ++I) { 900 MCSymbol *Name = Mang->getSymbol(I); 901 902 const GlobalValue *GV = I->getAliasedGlobal(); 903 MCSymbol *Target = Mang->getSymbol(GV); 904 905 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 906 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 907 else if (I->hasWeakLinkage()) 908 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 909 else 910 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 911 912 EmitVisibility(Name, I->getVisibility()); 913 914 // Emit the directives as assignments aka .set: 915 OutStreamer.EmitAssignment(Name, 916 MCSymbolRefExpr::Create(Target, OutContext)); 917 } 918 } 919 920 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 921 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 922 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 923 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 924 MP->finishAssembly(*this); 925 926 // If we don't have any trampolines, then we don't require stack memory 927 // to be executable. Some targets have a directive to declare this. 928 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 929 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 930 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 931 OutStreamer.SwitchSection(S); 932 933 // Allow the target to emit any magic that it wants at the end of the file, 934 // after everything else has gone out. 935 EmitEndOfAsmFile(M); 936 937 delete Mang; Mang = 0; 938 MMI = 0; 939 940 OutStreamer.Finish(); 941 return false; 942 } 943 944 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 945 this->MF = &MF; 946 // Get the function symbol. 947 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 948 949 if (isVerbose()) 950 LI = &getAnalysis<MachineLoopInfo>(); 951 } 952 953 namespace { 954 // SectionCPs - Keep track the alignment, constpool entries per Section. 955 struct SectionCPs { 956 const MCSection *S; 957 unsigned Alignment; 958 SmallVector<unsigned, 4> CPEs; 959 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 960 }; 961 } 962 963 /// EmitConstantPool - Print to the current output stream assembly 964 /// representations of the constants in the constant pool MCP. This is 965 /// used to print out constants which have been "spilled to memory" by 966 /// the code generator. 967 /// 968 void AsmPrinter::EmitConstantPool() { 969 const MachineConstantPool *MCP = MF->getConstantPool(); 970 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 971 if (CP.empty()) return; 972 973 // Calculate sections for constant pool entries. We collect entries to go into 974 // the same section together to reduce amount of section switch statements. 975 SmallVector<SectionCPs, 4> CPSections; 976 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 977 const MachineConstantPoolEntry &CPE = CP[i]; 978 unsigned Align = CPE.getAlignment(); 979 980 SectionKind Kind; 981 switch (CPE.getRelocationInfo()) { 982 default: llvm_unreachable("Unknown section kind"); 983 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 984 case 1: 985 Kind = SectionKind::getReadOnlyWithRelLocal(); 986 break; 987 case 0: 988 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 989 case 4: Kind = SectionKind::getMergeableConst4(); break; 990 case 8: Kind = SectionKind::getMergeableConst8(); break; 991 case 16: Kind = SectionKind::getMergeableConst16();break; 992 default: Kind = SectionKind::getMergeableConst(); break; 993 } 994 } 995 996 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 997 998 // The number of sections are small, just do a linear search from the 999 // last section to the first. 1000 bool Found = false; 1001 unsigned SecIdx = CPSections.size(); 1002 while (SecIdx != 0) { 1003 if (CPSections[--SecIdx].S == S) { 1004 Found = true; 1005 break; 1006 } 1007 } 1008 if (!Found) { 1009 SecIdx = CPSections.size(); 1010 CPSections.push_back(SectionCPs(S, Align)); 1011 } 1012 1013 if (Align > CPSections[SecIdx].Alignment) 1014 CPSections[SecIdx].Alignment = Align; 1015 CPSections[SecIdx].CPEs.push_back(i); 1016 } 1017 1018 // Now print stuff into the calculated sections. 1019 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1020 OutStreamer.SwitchSection(CPSections[i].S); 1021 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1022 1023 unsigned Offset = 0; 1024 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1025 unsigned CPI = CPSections[i].CPEs[j]; 1026 MachineConstantPoolEntry CPE = CP[CPI]; 1027 1028 // Emit inter-object padding for alignment. 1029 unsigned AlignMask = CPE.getAlignment() - 1; 1030 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1031 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1032 1033 Type *Ty = CPE.getType(); 1034 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 1035 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1036 1037 if (CPE.isMachineConstantPoolEntry()) 1038 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1039 else 1040 EmitGlobalConstant(CPE.Val.ConstVal); 1041 } 1042 } 1043 } 1044 1045 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1046 /// by the current function to the current output stream. 1047 /// 1048 void AsmPrinter::EmitJumpTableInfo() { 1049 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1050 if (MJTI == 0) return; 1051 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1052 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1053 if (JT.empty()) return; 1054 1055 // Pick the directive to use to print the jump table entries, and switch to 1056 // the appropriate section. 1057 const Function *F = MF->getFunction(); 1058 bool JTInDiffSection = false; 1059 if (// In PIC mode, we need to emit the jump table to the same section as the 1060 // function body itself, otherwise the label differences won't make sense. 1061 // FIXME: Need a better predicate for this: what about custom entries? 1062 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1063 // We should also do if the section name is NULL or function is declared 1064 // in discardable section 1065 // FIXME: this isn't the right predicate, should be based on the MCSection 1066 // for the function. 1067 F->isWeakForLinker()) { 1068 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1069 } else { 1070 // Otherwise, drop it in the readonly section. 1071 const MCSection *ReadOnlySection = 1072 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1073 OutStreamer.SwitchSection(ReadOnlySection); 1074 JTInDiffSection = true; 1075 } 1076 1077 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 1078 1079 // If we know the form of the jump table, go ahead and tag it as such. 1080 if (!JTInDiffSection) { 1081 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) { 1082 OutStreamer.EmitJumpTable32Region(); 1083 } else { 1084 OutStreamer.EmitDataRegion(); 1085 } 1086 } 1087 1088 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1089 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1090 1091 // If this jump table was deleted, ignore it. 1092 if (JTBBs.empty()) continue; 1093 1094 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1095 // .set directive for each unique entry. This reduces the number of 1096 // relocations the assembler will generate for the jump table. 1097 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1098 MAI->hasSetDirective()) { 1099 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1100 const TargetLowering *TLI = TM.getTargetLowering(); 1101 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1102 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1103 const MachineBasicBlock *MBB = JTBBs[ii]; 1104 if (!EmittedSets.insert(MBB)) continue; 1105 1106 // .set LJTSet, LBB32-base 1107 const MCExpr *LHS = 1108 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1109 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1110 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1111 } 1112 } 1113 1114 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1115 // before each jump table. The first label is never referenced, but tells 1116 // the assembler and linker the extents of the jump table object. The 1117 // second label is actually referenced by the code. 1118 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1119 // FIXME: This doesn't have to have any specific name, just any randomly 1120 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1121 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1122 1123 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1124 1125 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1126 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1127 } 1128 } 1129 1130 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1131 /// current stream. 1132 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1133 const MachineBasicBlock *MBB, 1134 unsigned UID) const { 1135 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1136 const MCExpr *Value = 0; 1137 switch (MJTI->getEntryKind()) { 1138 case MachineJumpTableInfo::EK_Inline: 1139 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1140 case MachineJumpTableInfo::EK_Custom32: 1141 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1142 OutContext); 1143 break; 1144 case MachineJumpTableInfo::EK_BlockAddress: 1145 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1146 // .word LBB123 1147 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1148 break; 1149 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1150 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1151 // with a relocation as gp-relative, e.g.: 1152 // .gprel32 LBB123 1153 MCSymbol *MBBSym = MBB->getSymbol(); 1154 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1155 return; 1156 } 1157 1158 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1159 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1160 // with a relocation as gp-relative, e.g.: 1161 // .gpdword LBB123 1162 MCSymbol *MBBSym = MBB->getSymbol(); 1163 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1164 return; 1165 } 1166 1167 case MachineJumpTableInfo::EK_LabelDifference32: { 1168 // EK_LabelDifference32 - Each entry is the address of the block minus 1169 // the address of the jump table. This is used for PIC jump tables where 1170 // gprel32 is not supported. e.g.: 1171 // .word LBB123 - LJTI1_2 1172 // If the .set directive is supported, this is emitted as: 1173 // .set L4_5_set_123, LBB123 - LJTI1_2 1174 // .word L4_5_set_123 1175 1176 // If we have emitted set directives for the jump table entries, print 1177 // them rather than the entries themselves. If we're emitting PIC, then 1178 // emit the table entries as differences between two text section labels. 1179 if (MAI->hasSetDirective()) { 1180 // If we used .set, reference the .set's symbol. 1181 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1182 OutContext); 1183 break; 1184 } 1185 // Otherwise, use the difference as the jump table entry. 1186 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1187 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1188 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1189 break; 1190 } 1191 } 1192 1193 assert(Value && "Unknown entry kind!"); 1194 1195 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 1196 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1197 } 1198 1199 1200 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1201 /// special global used by LLVM. If so, emit it and return true, otherwise 1202 /// do nothing and return false. 1203 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1204 if (GV->getName() == "llvm.used") { 1205 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1206 EmitLLVMUsedList(GV->getInitializer()); 1207 return true; 1208 } 1209 1210 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1211 if (GV->getSection() == "llvm.metadata" || 1212 GV->hasAvailableExternallyLinkage()) 1213 return true; 1214 1215 if (!GV->hasAppendingLinkage()) return false; 1216 1217 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1218 1219 if (GV->getName() == "llvm.global_ctors") { 1220 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1221 1222 if (TM.getRelocationModel() == Reloc::Static && 1223 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1224 StringRef Sym(".constructors_used"); 1225 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1226 MCSA_Reference); 1227 } 1228 return true; 1229 } 1230 1231 if (GV->getName() == "llvm.global_dtors") { 1232 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1233 1234 if (TM.getRelocationModel() == Reloc::Static && 1235 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1236 StringRef Sym(".destructors_used"); 1237 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1238 MCSA_Reference); 1239 } 1240 return true; 1241 } 1242 1243 return false; 1244 } 1245 1246 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1247 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1248 /// is true, as being used with this directive. 1249 void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1250 // Should be an array of 'i8*'. 1251 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1252 if (InitList == 0) return; 1253 1254 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1255 const GlobalValue *GV = 1256 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1257 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1258 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1259 } 1260 } 1261 1262 typedef std::pair<unsigned, Constant*> Structor; 1263 1264 static bool priority_order(const Structor& lhs, const Structor& rhs) { 1265 return lhs.first < rhs.first; 1266 } 1267 1268 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1269 /// priority. 1270 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1271 // Should be an array of '{ int, void ()* }' structs. The first value is the 1272 // init priority. 1273 if (!isa<ConstantArray>(List)) return; 1274 1275 // Sanity check the structors list. 1276 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1277 if (!InitList) return; // Not an array! 1278 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1279 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1280 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1281 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1282 1283 // Gather the structors in a form that's convenient for sorting by priority. 1284 SmallVector<Structor, 8> Structors; 1285 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1286 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1287 if (!CS) continue; // Malformed. 1288 if (CS->getOperand(1)->isNullValue()) 1289 break; // Found a null terminator, skip the rest. 1290 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1291 if (!Priority) continue; // Malformed. 1292 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1293 CS->getOperand(1))); 1294 } 1295 1296 // Emit the function pointers in the target-specific order 1297 const TargetData *TD = TM.getTargetData(); 1298 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1299 std::stable_sort(Structors.begin(), Structors.end(), priority_order); 1300 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1301 const MCSection *OutputSection = 1302 (isCtor ? 1303 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1304 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1305 OutStreamer.SwitchSection(OutputSection); 1306 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1307 EmitAlignment(Align); 1308 EmitXXStructor(Structors[i].second); 1309 } 1310 } 1311 1312 //===--------------------------------------------------------------------===// 1313 // Emission and print routines 1314 // 1315 1316 /// EmitInt8 - Emit a byte directive and value. 1317 /// 1318 void AsmPrinter::EmitInt8(int Value) const { 1319 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1320 } 1321 1322 /// EmitInt16 - Emit a short directive and value. 1323 /// 1324 void AsmPrinter::EmitInt16(int Value) const { 1325 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1326 } 1327 1328 /// EmitInt32 - Emit a long directive and value. 1329 /// 1330 void AsmPrinter::EmitInt32(int Value) const { 1331 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1332 } 1333 1334 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1335 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1336 /// labels. This implicitly uses .set if it is available. 1337 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1338 unsigned Size) const { 1339 // Get the Hi-Lo expression. 1340 const MCExpr *Diff = 1341 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1342 MCSymbolRefExpr::Create(Lo, OutContext), 1343 OutContext); 1344 1345 if (!MAI->hasSetDirective()) { 1346 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1347 return; 1348 } 1349 1350 // Otherwise, emit with .set (aka assignment). 1351 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1352 OutStreamer.EmitAssignment(SetLabel, Diff); 1353 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1354 } 1355 1356 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1357 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1358 /// specify the labels. This implicitly uses .set if it is available. 1359 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1360 const MCSymbol *Lo, unsigned Size) 1361 const { 1362 1363 // Emit Hi+Offset - Lo 1364 // Get the Hi+Offset expression. 1365 const MCExpr *Plus = 1366 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1367 MCConstantExpr::Create(Offset, OutContext), 1368 OutContext); 1369 1370 // Get the Hi+Offset-Lo expression. 1371 const MCExpr *Diff = 1372 MCBinaryExpr::CreateSub(Plus, 1373 MCSymbolRefExpr::Create(Lo, OutContext), 1374 OutContext); 1375 1376 if (!MAI->hasSetDirective()) 1377 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1378 else { 1379 // Otherwise, emit with .set (aka assignment). 1380 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1381 OutStreamer.EmitAssignment(SetLabel, Diff); 1382 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1383 } 1384 } 1385 1386 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1387 /// where the size in bytes of the directive is specified by Size and Label 1388 /// specifies the label. This implicitly uses .set if it is available. 1389 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1390 unsigned Size) 1391 const { 1392 1393 // Emit Label+Offset 1394 const MCExpr *Plus = 1395 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext), 1396 MCConstantExpr::Create(Offset, OutContext), 1397 OutContext); 1398 1399 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/); 1400 } 1401 1402 1403 //===----------------------------------------------------------------------===// 1404 1405 // EmitAlignment - Emit an alignment directive to the specified power of 1406 // two boundary. For example, if you pass in 3 here, you will get an 8 1407 // byte alignment. If a global value is specified, and if that global has 1408 // an explicit alignment requested, it will override the alignment request 1409 // if required for correctness. 1410 // 1411 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1412 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); 1413 1414 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1415 1416 if (getCurrentSection()->getKind().isText()) 1417 OutStreamer.EmitCodeAlignment(1 << NumBits); 1418 else 1419 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1420 } 1421 1422 //===----------------------------------------------------------------------===// 1423 // Constant emission. 1424 //===----------------------------------------------------------------------===// 1425 1426 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr. 1427 /// 1428 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { 1429 MCContext &Ctx = AP.OutContext; 1430 1431 if (CV->isNullValue() || isa<UndefValue>(CV)) 1432 return MCConstantExpr::Create(0, Ctx); 1433 1434 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1435 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1436 1437 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1438 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1439 1440 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1441 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1442 1443 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1444 if (CE == 0) { 1445 llvm_unreachable("Unknown constant value to lower!"); 1446 } 1447 1448 switch (CE->getOpcode()) { 1449 default: 1450 // If the code isn't optimized, there may be outstanding folding 1451 // opportunities. Attempt to fold the expression using TargetData as a 1452 // last resort before giving up. 1453 if (Constant *C = 1454 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 1455 if (C != CE) 1456 return LowerConstant(C, AP); 1457 1458 // Otherwise report the problem to the user. 1459 { 1460 std::string S; 1461 raw_string_ostream OS(S); 1462 OS << "Unsupported expression in static initializer: "; 1463 WriteAsOperand(OS, CE, /*PrintType=*/false, 1464 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1465 report_fatal_error(OS.str()); 1466 } 1467 case Instruction::GetElementPtr: { 1468 const TargetData &TD = *AP.TM.getTargetData(); 1469 // Generate a symbolic expression for the byte address 1470 const Constant *PtrVal = CE->getOperand(0); 1471 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1472 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1473 1474 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); 1475 if (Offset == 0) 1476 return Base; 1477 1478 // Truncate/sext the offset to the pointer size. 1479 if (TD.getPointerSizeInBits() != 64) { 1480 int SExtAmount = 64-TD.getPointerSizeInBits(); 1481 Offset = (Offset << SExtAmount) >> SExtAmount; 1482 } 1483 1484 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1485 Ctx); 1486 } 1487 1488 case Instruction::Trunc: 1489 // We emit the value and depend on the assembler to truncate the generated 1490 // expression properly. This is important for differences between 1491 // blockaddress labels. Since the two labels are in the same function, it 1492 // is reasonable to treat their delta as a 32-bit value. 1493 // FALL THROUGH. 1494 case Instruction::BitCast: 1495 return LowerConstant(CE->getOperand(0), AP); 1496 1497 case Instruction::IntToPtr: { 1498 const TargetData &TD = *AP.TM.getTargetData(); 1499 // Handle casts to pointers by changing them into casts to the appropriate 1500 // integer type. This promotes constant folding and simplifies this code. 1501 Constant *Op = CE->getOperand(0); 1502 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1503 false/*ZExt*/); 1504 return LowerConstant(Op, AP); 1505 } 1506 1507 case Instruction::PtrToInt: { 1508 const TargetData &TD = *AP.TM.getTargetData(); 1509 // Support only foldable casts to/from pointers that can be eliminated by 1510 // changing the pointer to the appropriately sized integer type. 1511 Constant *Op = CE->getOperand(0); 1512 Type *Ty = CE->getType(); 1513 1514 const MCExpr *OpExpr = LowerConstant(Op, AP); 1515 1516 // We can emit the pointer value into this slot if the slot is an 1517 // integer slot equal to the size of the pointer. 1518 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1519 return OpExpr; 1520 1521 // Otherwise the pointer is smaller than the resultant integer, mask off 1522 // the high bits so we are sure to get a proper truncation if the input is 1523 // a constant expr. 1524 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1525 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1526 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1527 } 1528 1529 // The MC library also has a right-shift operator, but it isn't consistently 1530 // signed or unsigned between different targets. 1531 case Instruction::Add: 1532 case Instruction::Sub: 1533 case Instruction::Mul: 1534 case Instruction::SDiv: 1535 case Instruction::SRem: 1536 case Instruction::Shl: 1537 case Instruction::And: 1538 case Instruction::Or: 1539 case Instruction::Xor: { 1540 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); 1541 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); 1542 switch (CE->getOpcode()) { 1543 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1544 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1545 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1546 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1547 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1548 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1549 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1550 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1551 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1552 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1553 } 1554 } 1555 } 1556 } 1557 1558 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1559 AsmPrinter &AP); 1560 1561 /// isRepeatedByteSequence - Determine whether the given value is 1562 /// composed of a repeated sequence of identical bytes and return the 1563 /// byte value. If it is not a repeated sequence, return -1. 1564 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1565 StringRef Data = V->getRawDataValues(); 1566 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1567 char C = Data[0]; 1568 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1569 if (Data[i] != C) return -1; 1570 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1571 } 1572 1573 1574 /// isRepeatedByteSequence - Determine whether the given value is 1575 /// composed of a repeated sequence of identical bytes and return the 1576 /// byte value. If it is not a repeated sequence, return -1. 1577 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1578 1579 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1580 if (CI->getBitWidth() > 64) return -1; 1581 1582 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType()); 1583 uint64_t Value = CI->getZExtValue(); 1584 1585 // Make sure the constant is at least 8 bits long and has a power 1586 // of 2 bit width. This guarantees the constant bit width is 1587 // always a multiple of 8 bits, avoiding issues with padding out 1588 // to Size and other such corner cases. 1589 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1590 1591 uint8_t Byte = static_cast<uint8_t>(Value); 1592 1593 for (unsigned i = 1; i < Size; ++i) { 1594 Value >>= 8; 1595 if (static_cast<uint8_t>(Value) != Byte) return -1; 1596 } 1597 return Byte; 1598 } 1599 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1600 // Make sure all array elements are sequences of the same repeated 1601 // byte. 1602 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1603 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1604 if (Byte == -1) return -1; 1605 1606 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1607 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1608 if (ThisByte == -1) return -1; 1609 if (Byte != ThisByte) return -1; 1610 } 1611 return Byte; 1612 } 1613 1614 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1615 return isRepeatedByteSequence(CDS); 1616 1617 return -1; 1618 } 1619 1620 static void EmitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1621 unsigned AddrSpace,AsmPrinter &AP){ 1622 1623 // See if we can aggregate this into a .fill, if so, emit it as such. 1624 int Value = isRepeatedByteSequence(CDS, AP.TM); 1625 if (Value != -1) { 1626 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CDS->getType()); 1627 // Don't emit a 1-byte object as a .fill. 1628 if (Bytes > 1) 1629 return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1630 } 1631 1632 // If this can be emitted with .ascii/.asciz, emit it as such. 1633 if (CDS->isString()) 1634 return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace); 1635 1636 // Otherwise, emit the values in successive locations. 1637 unsigned ElementByteSize = CDS->getElementByteSize(); 1638 if (isa<IntegerType>(CDS->getElementType())) { 1639 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1640 if (AP.isVerbose()) 1641 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1642 CDS->getElementAsInteger(i)); 1643 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1644 ElementByteSize, AddrSpace); 1645 } 1646 } else if (ElementByteSize == 4) { 1647 // FP Constants are printed as integer constants to avoid losing 1648 // precision. 1649 assert(CDS->getElementType()->isFloatTy()); 1650 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1651 union { 1652 float F; 1653 uint32_t I; 1654 }; 1655 1656 F = CDS->getElementAsFloat(i); 1657 if (AP.isVerbose()) 1658 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1659 AP.OutStreamer.EmitIntValue(I, 4, AddrSpace); 1660 } 1661 } else { 1662 assert(CDS->getElementType()->isDoubleTy()); 1663 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1664 union { 1665 double F; 1666 uint64_t I; 1667 }; 1668 1669 F = CDS->getElementAsDouble(i); 1670 if (AP.isVerbose()) 1671 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1672 AP.OutStreamer.EmitIntValue(I, 8, AddrSpace); 1673 } 1674 } 1675 1676 const TargetData &TD = *AP.TM.getTargetData(); 1677 unsigned Size = TD.getTypeAllocSize(CDS->getType()); 1678 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) * 1679 CDS->getNumElements(); 1680 if (unsigned Padding = Size - EmittedSize) 1681 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1682 1683 } 1684 1685 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1686 AsmPrinter &AP) { 1687 if (AddrSpace != 0 || !CA->isString()) { 1688 // Not a string. Print the values in successive locations. 1689 1690 // See if we can aggregate some values. Make sure it can be 1691 // represented as a series of bytes of the constant value. 1692 int Value = isRepeatedByteSequence(CA, AP.TM); 1693 1694 if (Value != -1) { 1695 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType()); 1696 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1697 } 1698 else { 1699 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1700 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1701 } 1702 return; 1703 } 1704 1705 // Otherwise, it can be emitted as .ascii. 1706 SmallVector<char, 128> TmpVec; 1707 TmpVec.reserve(CA->getNumOperands()); 1708 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1709 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue()); 1710 1711 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace); 1712 } 1713 1714 static void EmitGlobalConstantVector(const ConstantVector *CV, 1715 unsigned AddrSpace, AsmPrinter &AP) { 1716 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1717 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1718 1719 const TargetData &TD = *AP.TM.getTargetData(); 1720 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1721 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1722 CV->getType()->getNumElements(); 1723 if (unsigned Padding = Size - EmittedSize) 1724 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1725 } 1726 1727 static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1728 unsigned AddrSpace, AsmPrinter &AP) { 1729 // Print the fields in successive locations. Pad to align if needed! 1730 const TargetData *TD = AP.TM.getTargetData(); 1731 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1732 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1733 uint64_t SizeSoFar = 0; 1734 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1735 const Constant *Field = CS->getOperand(i); 1736 1737 // Check if padding is needed and insert one or more 0s. 1738 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1739 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1740 - Layout->getElementOffset(i)) - FieldSize; 1741 SizeSoFar += FieldSize + PadSize; 1742 1743 // Now print the actual field value. 1744 EmitGlobalConstantImpl(Field, AddrSpace, AP); 1745 1746 // Insert padding - this may include padding to increase the size of the 1747 // current field up to the ABI size (if the struct is not packed) as well 1748 // as padding to ensure that the next field starts at the right offset. 1749 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1750 } 1751 assert(SizeSoFar == Layout->getSizeInBytes() && 1752 "Layout of constant struct may be incorrect!"); 1753 } 1754 1755 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1756 AsmPrinter &AP) { 1757 if (CFP->getType()->isHalfTy()) { 1758 if (AP.isVerbose()) { 1759 SmallString<10> Str; 1760 CFP->getValueAPF().toString(Str); 1761 AP.OutStreamer.GetCommentOS() << "half " << Str << '\n'; 1762 } 1763 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1764 AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace); 1765 return; 1766 } 1767 1768 if (CFP->getType()->isFloatTy()) { 1769 if (AP.isVerbose()) { 1770 float Val = CFP->getValueAPF().convertToFloat(); 1771 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; 1772 } 1773 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1774 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1775 return; 1776 } 1777 1778 // FP Constants are printed as integer constants to avoid losing 1779 // precision. 1780 if (CFP->getType()->isDoubleTy()) { 1781 if (AP.isVerbose()) { 1782 double Val = CFP->getValueAPF().convertToDouble(); 1783 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; 1784 } 1785 1786 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1787 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1788 return; 1789 } 1790 1791 if (CFP->getType()->isX86_FP80Ty()) { 1792 // all long double variants are printed as hex 1793 // API needed to prevent premature destruction 1794 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1795 const uint64_t *p = API.getRawData(); 1796 if (AP.isVerbose()) { 1797 // Convert to double so we can print the approximate val as a comment. 1798 APFloat DoubleVal = CFP->getValueAPF(); 1799 bool ignored; 1800 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1801 &ignored); 1802 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1803 << DoubleVal.convertToDouble() << '\n'; 1804 } 1805 1806 if (AP.TM.getTargetData()->isBigEndian()) { 1807 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1808 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1809 } else { 1810 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1811 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1812 } 1813 1814 // Emit the tail padding for the long double. 1815 const TargetData &TD = *AP.TM.getTargetData(); 1816 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1817 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1818 return; 1819 } 1820 1821 assert(CFP->getType()->isPPC_FP128Ty() && 1822 "Floating point constant type not handled"); 1823 // All long double variants are printed as hex 1824 // API needed to prevent premature destruction. 1825 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1826 const uint64_t *p = API.getRawData(); 1827 if (AP.TM.getTargetData()->isBigEndian()) { 1828 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1829 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1830 } else { 1831 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1832 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1833 } 1834 } 1835 1836 static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1837 unsigned AddrSpace, AsmPrinter &AP) { 1838 const TargetData *TD = AP.TM.getTargetData(); 1839 unsigned BitWidth = CI->getBitWidth(); 1840 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1841 1842 // We don't expect assemblers to support integer data directives 1843 // for more than 64 bits, so we emit the data in at most 64-bit 1844 // quantities at a time. 1845 const uint64_t *RawData = CI->getValue().getRawData(); 1846 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1847 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1848 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1849 } 1850 } 1851 1852 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1853 AsmPrinter &AP) { 1854 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { 1855 uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1856 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1857 } 1858 1859 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1860 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1861 switch (Size) { 1862 case 1: 1863 case 2: 1864 case 4: 1865 case 8: 1866 if (AP.isVerbose()) 1867 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1868 CI->getZExtValue()); 1869 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1870 return; 1871 default: 1872 EmitGlobalConstantLargeInt(CI, AddrSpace, AP); 1873 return; 1874 } 1875 } 1876 1877 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1878 return EmitGlobalConstantFP(CFP, AddrSpace, AP); 1879 1880 if (isa<ConstantPointerNull>(CV)) { 1881 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1882 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1883 return; 1884 } 1885 1886 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1887 return EmitGlobalConstantDataSequential(CDS, AddrSpace, AP); 1888 1889 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1890 return EmitGlobalConstantArray(CVA, AddrSpace, AP); 1891 1892 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1893 return EmitGlobalConstantStruct(CVS, AddrSpace, AP); 1894 1895 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1896 // vectors). 1897 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) 1898 if (CE->getOpcode() == Instruction::BitCast) 1899 return EmitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP); 1900 1901 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1902 return EmitGlobalConstantVector(V, AddrSpace, AP); 1903 1904 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1905 // thread the streamer with EmitValue. 1906 AP.OutStreamer.EmitValue(LowerConstant(CV, AP), 1907 AP.TM.getTargetData()->getTypeAllocSize(CV->getType()), 1908 AddrSpace); 1909 } 1910 1911 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1912 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1913 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1914 if (Size) 1915 EmitGlobalConstantImpl(CV, AddrSpace, *this); 1916 else if (MAI->hasSubsectionsViaSymbols()) { 1917 // If the global has zero size, emit a single byte so that two labels don't 1918 // look like they are at the same location. 1919 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1920 } 1921 } 1922 1923 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1924 // Target doesn't support this yet! 1925 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1926 } 1927 1928 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1929 if (Offset > 0) 1930 OS << '+' << Offset; 1931 else if (Offset < 0) 1932 OS << Offset; 1933 } 1934 1935 //===----------------------------------------------------------------------===// 1936 // Symbol Lowering Routines. 1937 //===----------------------------------------------------------------------===// 1938 1939 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1940 /// temporary label with the specified stem and unique ID. 1941 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1942 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1943 Name + Twine(ID)); 1944 } 1945 1946 /// GetTempSymbol - Return an assembler temporary label with the specified 1947 /// stem. 1948 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1949 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1950 Name); 1951 } 1952 1953 1954 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1955 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1956 } 1957 1958 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1959 return MMI->getAddrLabelSymbol(BB); 1960 } 1961 1962 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 1963 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1964 return OutContext.GetOrCreateSymbol 1965 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1966 + "_" + Twine(CPID)); 1967 } 1968 1969 /// GetJTISymbol - Return the symbol for the specified jump table entry. 1970 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1971 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1972 } 1973 1974 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 1975 /// FIXME: privatize to AsmPrinter. 1976 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1977 return OutContext.GetOrCreateSymbol 1978 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1979 Twine(UID) + "_set_" + Twine(MBBID)); 1980 } 1981 1982 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1983 /// global value name as its base, with the specified suffix, and where the 1984 /// symbol is forced to have private linkage if ForcePrivate is true. 1985 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1986 StringRef Suffix, 1987 bool ForcePrivate) const { 1988 SmallString<60> NameStr; 1989 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1990 NameStr.append(Suffix.begin(), Suffix.end()); 1991 return OutContext.GetOrCreateSymbol(NameStr.str()); 1992 } 1993 1994 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1995 /// ExternalSymbol. 1996 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1997 SmallString<60> NameStr; 1998 Mang->getNameWithPrefix(NameStr, Sym); 1999 return OutContext.GetOrCreateSymbol(NameStr.str()); 2000 } 2001 2002 2003 2004 /// PrintParentLoopComment - Print comments about parent loops of this one. 2005 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2006 unsigned FunctionNumber) { 2007 if (Loop == 0) return; 2008 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2009 OS.indent(Loop->getLoopDepth()*2) 2010 << "Parent Loop BB" << FunctionNumber << "_" 2011 << Loop->getHeader()->getNumber() 2012 << " Depth=" << Loop->getLoopDepth() << '\n'; 2013 } 2014 2015 2016 /// PrintChildLoopComment - Print comments about child loops within 2017 /// the loop for this basic block, with nesting. 2018 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2019 unsigned FunctionNumber) { 2020 // Add child loop information 2021 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2022 OS.indent((*CL)->getLoopDepth()*2) 2023 << "Child Loop BB" << FunctionNumber << "_" 2024 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2025 << '\n'; 2026 PrintChildLoopComment(OS, *CL, FunctionNumber); 2027 } 2028 } 2029 2030 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2031 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2032 const MachineLoopInfo *LI, 2033 const AsmPrinter &AP) { 2034 // Add loop depth information 2035 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2036 if (Loop == 0) return; 2037 2038 MachineBasicBlock *Header = Loop->getHeader(); 2039 assert(Header && "No header for loop"); 2040 2041 // If this block is not a loop header, just print out what is the loop header 2042 // and return. 2043 if (Header != &MBB) { 2044 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2045 Twine(AP.getFunctionNumber())+"_" + 2046 Twine(Loop->getHeader()->getNumber())+ 2047 " Depth="+Twine(Loop->getLoopDepth())); 2048 return; 2049 } 2050 2051 // Otherwise, it is a loop header. Print out information about child and 2052 // parent loops. 2053 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2054 2055 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2056 2057 OS << "=>"; 2058 OS.indent(Loop->getLoopDepth()*2-2); 2059 2060 OS << "This "; 2061 if (Loop->empty()) 2062 OS << "Inner "; 2063 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2064 2065 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2066 } 2067 2068 2069 /// EmitBasicBlockStart - This method prints the label for the specified 2070 /// MachineBasicBlock, an alignment (if present) and a comment describing 2071 /// it if appropriate. 2072 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2073 // Emit an alignment directive for this block, if needed. 2074 if (unsigned Align = MBB->getAlignment()) 2075 EmitAlignment(Align); 2076 2077 // If the block has its address taken, emit any labels that were used to 2078 // reference the block. It is possible that there is more than one label 2079 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2080 // the references were generated. 2081 if (MBB->hasAddressTaken()) { 2082 const BasicBlock *BB = MBB->getBasicBlock(); 2083 if (isVerbose()) 2084 OutStreamer.AddComment("Block address taken"); 2085 2086 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2087 2088 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2089 OutStreamer.EmitLabel(Syms[i]); 2090 } 2091 2092 // Print the main label for the block. 2093 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2094 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2095 if (const BasicBlock *BB = MBB->getBasicBlock()) 2096 if (BB->hasName()) 2097 OutStreamer.AddComment("%" + BB->getName()); 2098 2099 EmitBasicBlockLoopComments(*MBB, LI, *this); 2100 2101 // NOTE: Want this comment at start of line, don't emit with AddComment. 2102 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2103 Twine(MBB->getNumber()) + ":"); 2104 } 2105 } else { 2106 if (isVerbose()) { 2107 if (const BasicBlock *BB = MBB->getBasicBlock()) 2108 if (BB->hasName()) 2109 OutStreamer.AddComment("%" + BB->getName()); 2110 EmitBasicBlockLoopComments(*MBB, LI, *this); 2111 } 2112 2113 OutStreamer.EmitLabel(MBB->getSymbol()); 2114 } 2115 } 2116 2117 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2118 bool IsDefinition) const { 2119 MCSymbolAttr Attr = MCSA_Invalid; 2120 2121 switch (Visibility) { 2122 default: break; 2123 case GlobalValue::HiddenVisibility: 2124 if (IsDefinition) 2125 Attr = MAI->getHiddenVisibilityAttr(); 2126 else 2127 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2128 break; 2129 case GlobalValue::ProtectedVisibility: 2130 Attr = MAI->getProtectedVisibilityAttr(); 2131 break; 2132 } 2133 2134 if (Attr != MCSA_Invalid) 2135 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2136 } 2137 2138 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2139 /// exactly one predecessor and the control transfer mechanism between 2140 /// the predecessor and this block is a fall-through. 2141 bool AsmPrinter:: 2142 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2143 // If this is a landing pad, it isn't a fall through. If it has no preds, 2144 // then nothing falls through to it. 2145 if (MBB->isLandingPad() || MBB->pred_empty()) 2146 return false; 2147 2148 // If there isn't exactly one predecessor, it can't be a fall through. 2149 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2150 ++PI2; 2151 if (PI2 != MBB->pred_end()) 2152 return false; 2153 2154 // The predecessor has to be immediately before this block. 2155 MachineBasicBlock *Pred = *PI; 2156 2157 if (!Pred->isLayoutSuccessor(MBB)) 2158 return false; 2159 2160 // If the block is completely empty, then it definitely does fall through. 2161 if (Pred->empty()) 2162 return true; 2163 2164 // Check the terminators in the previous blocks 2165 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2166 IE = Pred->end(); II != IE; ++II) { 2167 MachineInstr &MI = *II; 2168 2169 // If it is not a simple branch, we are in a table somewhere. 2170 if (!MI.isBranch() || MI.isIndirectBranch()) 2171 return false; 2172 2173 // If we are the operands of one of the branches, this is not 2174 // a fall through. 2175 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2176 OE = MI.operands_end(); OI != OE; ++OI) { 2177 const MachineOperand& OP = *OI; 2178 if (OP.isJTI()) 2179 return false; 2180 if (OP.isMBB() && OP.getMBB() == MBB) 2181 return false; 2182 } 2183 } 2184 2185 return true; 2186 } 2187 2188 2189 2190 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2191 if (!S->usesMetadata()) 2192 return 0; 2193 2194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2195 gcp_map_type::iterator GCPI = GCMap.find(S); 2196 if (GCPI != GCMap.end()) 2197 return GCPI->second; 2198 2199 const char *Name = S->getName().c_str(); 2200 2201 for (GCMetadataPrinterRegistry::iterator 2202 I = GCMetadataPrinterRegistry::begin(), 2203 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2204 if (strcmp(Name, I->getName()) == 0) { 2205 GCMetadataPrinter *GMP = I->instantiate(); 2206 GMP->S = S; 2207 GCMap.insert(std::make_pair(S, GMP)); 2208 return GMP; 2209 } 2210 2211 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2212 } 2213