1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/AsmPrinterHandler.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/RemarkStreamer.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/MC/MCAsmInfo.h" 85 #include "llvm/MC/MCCodePadder.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCStreamer.h" 96 #include "llvm/MC/MCSubtargetInfo.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/MC/MCSymbolELF.h" 99 #include "llvm/MC/MCTargetOptions.h" 100 #include "llvm/MC/MCValue.h" 101 #include "llvm/MC/SectionKind.h" 102 #include "llvm/Pass.h" 103 #include "llvm/Remarks/Remark.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/ErrorHandling.h" 108 #include "llvm/Support/Format.h" 109 #include "llvm/Support/MathExtras.h" 110 #include "llvm/Support/Path.h" 111 #include "llvm/Support/TargetRegistry.h" 112 #include "llvm/Support/Timer.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Target/TargetLoweringObjectFile.h" 115 #include "llvm/Target/TargetMachine.h" 116 #include "llvm/Target/TargetOptions.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cinttypes> 120 #include <cstdint> 121 #include <iterator> 122 #include <limits> 123 #include <memory> 124 #include <string> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 130 #define DEBUG_TYPE "asm-printer" 131 132 static const char *const DWARFGroupName = "dwarf"; 133 static const char *const DWARFGroupDescription = "DWARF Emission"; 134 static const char *const DbgTimerName = "emit"; 135 static const char *const DbgTimerDescription = "Debug Info Emission"; 136 static const char *const EHTimerName = "write_exception"; 137 static const char *const EHTimerDescription = "DWARF Exception Writer"; 138 static const char *const CFGuardName = "Control Flow Guard"; 139 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 140 static const char *const CodeViewLineTablesGroupName = "linetables"; 141 static const char *const CodeViewLineTablesGroupDescription = 142 "CodeView Line Tables"; 143 144 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 145 146 static cl::opt<bool> EnableRemarksSection( 147 "remarks-section", 148 cl::desc("Emit a section containing remark diagnostics metadata"), 149 cl::init(false)); 150 151 char AsmPrinter::ID = 0; 152 153 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 154 155 static gcp_map_type &getGCMap(void *&P) { 156 if (!P) 157 P = new gcp_map_type(); 158 return *(gcp_map_type*)P; 159 } 160 161 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 162 /// value in log2 form. This rounds up to the preferred alignment if possible 163 /// and legal. 164 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 165 unsigned InBits = 0) { 166 unsigned NumBits = 0; 167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 168 NumBits = DL.getPreferredAlignmentLog(GVar); 169 170 // If InBits is specified, round it to it. 171 if (InBits > NumBits) 172 NumBits = InBits; 173 174 // If the GV has a specified alignment, take it into account. 175 if (GV->getAlignment() == 0) 176 return NumBits; 177 178 unsigned GVAlign = Log2_32(GV->getAlignment()); 179 180 // If the GVAlign is larger than NumBits, or if we are required to obey 181 // NumBits because the GV has an assigned section, obey it. 182 if (GVAlign > NumBits || GV->hasSection()) 183 NumBits = GVAlign; 184 return NumBits; 185 } 186 187 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 188 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 189 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 190 VerboseAsm = OutStreamer->isVerboseAsm(); 191 } 192 193 AsmPrinter::~AsmPrinter() { 194 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 195 196 if (GCMetadataPrinters) { 197 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 198 199 delete &GCMap; 200 GCMetadataPrinters = nullptr; 201 } 202 } 203 204 bool AsmPrinter::isPositionIndependent() const { 205 return TM.isPositionIndependent(); 206 } 207 208 /// getFunctionNumber - Return a unique ID for the current function. 209 unsigned AsmPrinter::getFunctionNumber() const { 210 return MF->getFunctionNumber(); 211 } 212 213 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 214 return *TM.getObjFileLowering(); 215 } 216 217 const DataLayout &AsmPrinter::getDataLayout() const { 218 return MMI->getModule()->getDataLayout(); 219 } 220 221 // Do not use the cached DataLayout because some client use it without a Module 222 // (dsymutil, llvm-dwarfdump). 223 unsigned AsmPrinter::getPointerSize() const { 224 return TM.getPointerSize(0); // FIXME: Default address space 225 } 226 227 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 228 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 229 return MF->getSubtarget<MCSubtargetInfo>(); 230 } 231 232 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 233 S.EmitInstruction(Inst, getSubtargetInfo()); 234 } 235 236 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 237 assert(DD && "Dwarf debug file is not defined."); 238 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 239 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 240 } 241 242 /// getCurrentSection() - Return the current section we are emitting to. 243 const MCSection *AsmPrinter::getCurrentSection() const { 244 return OutStreamer->getCurrentSectionOnly(); 245 } 246 247 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 248 AU.setPreservesAll(); 249 MachineFunctionPass::getAnalysisUsage(AU); 250 AU.addRequired<MachineModuleInfo>(); 251 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 252 AU.addRequired<GCModuleInfo>(); 253 } 254 255 bool AsmPrinter::doInitialization(Module &M) { 256 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 257 258 // Initialize TargetLoweringObjectFile. 259 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 260 .Initialize(OutContext, TM); 261 262 OutStreamer->InitSections(false); 263 264 // Emit the version-min deployment target directive if needed. 265 // 266 // FIXME: If we end up with a collection of these sorts of Darwin-specific 267 // or ELF-specific things, it may make sense to have a platform helper class 268 // that will work with the target helper class. For now keep it here, as the 269 // alternative is duplicated code in each of the target asm printers that 270 // use the directive, where it would need the same conditionalization 271 // anyway. 272 const Triple &Target = TM.getTargetTriple(); 273 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 274 275 // Allow the target to emit any magic that it wants at the start of the file. 276 EmitStartOfAsmFile(M); 277 278 // Very minimal debug info. It is ignored if we emit actual debug info. If we 279 // don't, this at least helps the user find where a global came from. 280 if (MAI->hasSingleParameterDotFile()) { 281 // .file "foo.c" 282 OutStreamer->EmitFileDirective( 283 llvm::sys::path::filename(M.getSourceFileName())); 284 } 285 286 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 287 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 288 for (auto &I : *MI) 289 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 290 MP->beginAssembly(M, *MI, *this); 291 292 // Emit module-level inline asm if it exists. 293 if (!M.getModuleInlineAsm().empty()) { 294 // We're at the module level. Construct MCSubtarget from the default CPU 295 // and target triple. 296 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 297 TM.getTargetTriple().str(), TM.getTargetCPU(), 298 TM.getTargetFeatureString())); 299 OutStreamer->AddComment("Start of file scope inline assembly"); 300 OutStreamer->AddBlankLine(); 301 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 302 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 303 OutStreamer->AddComment("End of file scope inline assembly"); 304 OutStreamer->AddBlankLine(); 305 } 306 307 if (MAI->doesSupportDebugInformation()) { 308 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 309 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 310 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 311 DbgTimerName, DbgTimerDescription, 312 CodeViewLineTablesGroupName, 313 CodeViewLineTablesGroupDescription)); 314 } 315 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 316 DD = new DwarfDebug(this, &M); 317 DD->beginModule(); 318 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 319 DWARFGroupName, DWARFGroupDescription)); 320 } 321 } 322 323 switch (MAI->getExceptionHandlingType()) { 324 case ExceptionHandling::SjLj: 325 case ExceptionHandling::DwarfCFI: 326 case ExceptionHandling::ARM: 327 isCFIMoveForDebugging = true; 328 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 329 break; 330 for (auto &F: M.getFunctionList()) { 331 // If the module contains any function with unwind data, 332 // .eh_frame has to be emitted. 333 // Ignore functions that won't get emitted. 334 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 335 isCFIMoveForDebugging = false; 336 break; 337 } 338 } 339 break; 340 default: 341 isCFIMoveForDebugging = false; 342 break; 343 } 344 345 EHStreamer *ES = nullptr; 346 switch (MAI->getExceptionHandlingType()) { 347 case ExceptionHandling::None: 348 break; 349 case ExceptionHandling::SjLj: 350 case ExceptionHandling::DwarfCFI: 351 ES = new DwarfCFIException(this); 352 break; 353 case ExceptionHandling::ARM: 354 ES = new ARMException(this); 355 break; 356 case ExceptionHandling::WinEH: 357 switch (MAI->getWinEHEncodingType()) { 358 default: llvm_unreachable("unsupported unwinding information encoding"); 359 case WinEH::EncodingType::Invalid: 360 break; 361 case WinEH::EncodingType::X86: 362 case WinEH::EncodingType::Itanium: 363 ES = new WinException(this); 364 break; 365 } 366 break; 367 case ExceptionHandling::Wasm: 368 ES = new WasmException(this); 369 break; 370 } 371 if (ES) 372 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 373 DWARFGroupName, DWARFGroupDescription)); 374 375 if (mdconst::extract_or_null<ConstantInt>( 376 MMI->getModule()->getModuleFlag("cfguardtable"))) 377 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 378 CFGuardDescription, DWARFGroupName, 379 DWARFGroupDescription)); 380 381 return false; 382 } 383 384 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 385 if (!MAI.hasWeakDefCanBeHiddenDirective()) 386 return false; 387 388 return GV->canBeOmittedFromSymbolTable(); 389 } 390 391 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 392 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 393 switch (Linkage) { 394 case GlobalValue::CommonLinkage: 395 case GlobalValue::LinkOnceAnyLinkage: 396 case GlobalValue::LinkOnceODRLinkage: 397 case GlobalValue::WeakAnyLinkage: 398 case GlobalValue::WeakODRLinkage: 399 if (MAI->hasWeakDefDirective()) { 400 // .globl _foo 401 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 402 403 if (!canBeHidden(GV, *MAI)) 404 // .weak_definition _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 406 else 407 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 408 } else if (MAI->hasLinkOnceDirective()) { 409 // .globl _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 411 //NOTE: linkonce is handled by the section the symbol was assigned to. 412 } else { 413 // .weak _foo 414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 415 } 416 return; 417 case GlobalValue::ExternalLinkage: 418 // If external, declare as a global symbol: .globl _foo 419 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 420 return; 421 case GlobalValue::PrivateLinkage: 422 case GlobalValue::InternalLinkage: 423 return; 424 case GlobalValue::AppendingLinkage: 425 case GlobalValue::AvailableExternallyLinkage: 426 case GlobalValue::ExternalWeakLinkage: 427 llvm_unreachable("Should never emit this"); 428 } 429 llvm_unreachable("Unknown linkage type!"); 430 } 431 432 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 433 const GlobalValue *GV) const { 434 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 435 } 436 437 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 438 return TM.getSymbol(GV); 439 } 440 441 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 442 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 443 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 444 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 445 "No emulated TLS variables in the common section"); 446 447 // Never emit TLS variable xyz in emulated TLS model. 448 // The initialization value is in __emutls_t.xyz instead of xyz. 449 if (IsEmuTLSVar) 450 return; 451 452 if (GV->hasInitializer()) { 453 // Check to see if this is a special global used by LLVM, if so, emit it. 454 if (EmitSpecialLLVMGlobal(GV)) 455 return; 456 457 // Skip the emission of global equivalents. The symbol can be emitted later 458 // on by emitGlobalGOTEquivs in case it turns out to be needed. 459 if (GlobalGOTEquivs.count(getSymbol(GV))) 460 return; 461 462 if (isVerbose()) { 463 // When printing the control variable __emutls_v.*, 464 // we don't need to print the original TLS variable name. 465 GV->printAsOperand(OutStreamer->GetCommentOS(), 466 /*PrintType=*/false, GV->getParent()); 467 OutStreamer->GetCommentOS() << '\n'; 468 } 469 } 470 471 MCSymbol *GVSym = getSymbol(GV); 472 MCSymbol *EmittedSym = GVSym; 473 474 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 475 // attributes. 476 // GV's or GVSym's attributes will be used for the EmittedSym. 477 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 478 479 if (!GV->hasInitializer()) // External globals require no extra code. 480 return; 481 482 GVSym->redefineIfPossible(); 483 if (GVSym->isDefined() || GVSym->isVariable()) 484 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 485 "' is already defined"); 486 487 if (MAI->hasDotTypeDotSizeDirective()) 488 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 489 490 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 491 492 const DataLayout &DL = GV->getParent()->getDataLayout(); 493 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 494 495 // If the alignment is specified, we *must* obey it. Overaligning a global 496 // with a specified alignment is a prompt way to break globals emitted to 497 // sections and expected to be contiguous (e.g. ObjC metadata). 498 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 499 500 for (const HandlerInfo &HI : Handlers) { 501 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 502 HI.TimerGroupName, HI.TimerGroupDescription, 503 TimePassesIsEnabled); 504 HI.Handler->setSymbolSize(GVSym, Size); 505 } 506 507 // Handle common symbols 508 if (GVKind.isCommon()) { 509 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 510 unsigned Align = 1 << AlignLog; 511 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 512 Align = 0; 513 514 // .comm _foo, 42, 4 515 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 516 return; 517 } 518 519 // Determine to which section this global should be emitted. 520 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 521 522 // If we have a bss global going to a section that supports the 523 // zerofill directive, do so here. 524 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 525 TheSection->isVirtualSection()) { 526 if (Size == 0) 527 Size = 1; // zerofill of 0 bytes is undefined. 528 unsigned Align = 1 << AlignLog; 529 EmitLinkage(GV, GVSym); 530 // .zerofill __DATA, __bss, _foo, 400, 5 531 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 532 return; 533 } 534 535 // If this is a BSS local symbol and we are emitting in the BSS 536 // section use .lcomm/.comm directive. 537 if (GVKind.isBSSLocal() && 538 getObjFileLowering().getBSSSection() == TheSection) { 539 if (Size == 0) 540 Size = 1; // .comm Foo, 0 is undefined, avoid it. 541 unsigned Align = 1 << AlignLog; 542 543 // Use .lcomm only if it supports user-specified alignment. 544 // Otherwise, while it would still be correct to use .lcomm in some 545 // cases (e.g. when Align == 1), the external assembler might enfore 546 // some -unknown- default alignment behavior, which could cause 547 // spurious differences between external and integrated assembler. 548 // Prefer to simply fall back to .local / .comm in this case. 549 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 550 // .lcomm _foo, 42 551 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 552 return; 553 } 554 555 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 556 Align = 0; 557 558 // .local _foo 559 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 560 // .comm _foo, 42, 4 561 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 562 return; 563 } 564 565 // Handle thread local data for mach-o which requires us to output an 566 // additional structure of data and mangle the original symbol so that we 567 // can reference it later. 568 // 569 // TODO: This should become an "emit thread local global" method on TLOF. 570 // All of this macho specific stuff should be sunk down into TLOFMachO and 571 // stuff like "TLSExtraDataSection" should no longer be part of the parent 572 // TLOF class. This will also make it more obvious that stuff like 573 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 574 // specific code. 575 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 576 // Emit the .tbss symbol 577 MCSymbol *MangSym = 578 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 579 580 if (GVKind.isThreadBSS()) { 581 TheSection = getObjFileLowering().getTLSBSSSection(); 582 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 583 } else if (GVKind.isThreadData()) { 584 OutStreamer->SwitchSection(TheSection); 585 586 EmitAlignment(AlignLog, GV); 587 OutStreamer->EmitLabel(MangSym); 588 589 EmitGlobalConstant(GV->getParent()->getDataLayout(), 590 GV->getInitializer()); 591 } 592 593 OutStreamer->AddBlankLine(); 594 595 // Emit the variable struct for the runtime. 596 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 597 598 OutStreamer->SwitchSection(TLVSect); 599 // Emit the linkage here. 600 EmitLinkage(GV, GVSym); 601 OutStreamer->EmitLabel(GVSym); 602 603 // Three pointers in size: 604 // - __tlv_bootstrap - used to make sure support exists 605 // - spare pointer, used when mapped by the runtime 606 // - pointer to mangled symbol above with initializer 607 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 608 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 609 PtrSize); 610 OutStreamer->EmitIntValue(0, PtrSize); 611 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 612 613 OutStreamer->AddBlankLine(); 614 return; 615 } 616 617 MCSymbol *EmittedInitSym = GVSym; 618 619 OutStreamer->SwitchSection(TheSection); 620 621 EmitLinkage(GV, EmittedInitSym); 622 EmitAlignment(AlignLog, GV); 623 624 OutStreamer->EmitLabel(EmittedInitSym); 625 626 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 627 628 if (MAI->hasDotTypeDotSizeDirective()) 629 // .size foo, 42 630 OutStreamer->emitELFSize(EmittedInitSym, 631 MCConstantExpr::create(Size, OutContext)); 632 633 OutStreamer->AddBlankLine(); 634 } 635 636 /// Emit the directive and value for debug thread local expression 637 /// 638 /// \p Value - The value to emit. 639 /// \p Size - The size of the integer (in bytes) to emit. 640 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 641 OutStreamer->EmitValue(Value, Size); 642 } 643 644 /// EmitFunctionHeader - This method emits the header for the current 645 /// function. 646 void AsmPrinter::EmitFunctionHeader() { 647 const Function &F = MF->getFunction(); 648 649 if (isVerbose()) 650 OutStreamer->GetCommentOS() 651 << "-- Begin function " 652 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 653 654 // Print out constants referenced by the function 655 EmitConstantPool(); 656 657 // Print the 'header' of function. 658 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 659 EmitVisibility(CurrentFnSym, F.getVisibility()); 660 661 EmitLinkage(&F, CurrentFnSym); 662 if (MAI->hasFunctionAlignment()) 663 EmitAlignment(MF->getAlignment(), &F); 664 665 if (MAI->hasDotTypeDotSizeDirective()) 666 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 667 668 if (F.hasFnAttribute(Attribute::Cold)) 669 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 670 671 if (isVerbose()) { 672 F.printAsOperand(OutStreamer->GetCommentOS(), 673 /*PrintType=*/false, F.getParent()); 674 OutStreamer->GetCommentOS() << '\n'; 675 } 676 677 // Emit the prefix data. 678 if (F.hasPrefixData()) { 679 if (MAI->hasSubsectionsViaSymbols()) { 680 // Preserving prefix data on platforms which use subsections-via-symbols 681 // is a bit tricky. Here we introduce a symbol for the prefix data 682 // and use the .alt_entry attribute to mark the function's real entry point 683 // as an alternative entry point to the prefix-data symbol. 684 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 685 OutStreamer->EmitLabel(PrefixSym); 686 687 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 688 689 // Emit an .alt_entry directive for the actual function symbol. 690 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 691 } else { 692 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 693 } 694 } 695 696 // Emit the CurrentFnSym. This is a virtual function to allow targets to 697 // do their wild and crazy things as required. 698 EmitFunctionEntryLabel(); 699 700 // If the function had address-taken blocks that got deleted, then we have 701 // references to the dangling symbols. Emit them at the start of the function 702 // so that we don't get references to undefined symbols. 703 std::vector<MCSymbol*> DeadBlockSyms; 704 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 705 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 706 OutStreamer->AddComment("Address taken block that was later removed"); 707 OutStreamer->EmitLabel(DeadBlockSyms[i]); 708 } 709 710 if (CurrentFnBegin) { 711 if (MAI->useAssignmentForEHBegin()) { 712 MCSymbol *CurPos = OutContext.createTempSymbol(); 713 OutStreamer->EmitLabel(CurPos); 714 OutStreamer->EmitAssignment(CurrentFnBegin, 715 MCSymbolRefExpr::create(CurPos, OutContext)); 716 } else { 717 OutStreamer->EmitLabel(CurrentFnBegin); 718 } 719 } 720 721 // Emit pre-function debug and/or EH information. 722 for (const HandlerInfo &HI : Handlers) { 723 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 724 HI.TimerGroupDescription, TimePassesIsEnabled); 725 HI.Handler->beginFunction(MF); 726 } 727 728 // Emit the prologue data. 729 if (F.hasPrologueData()) 730 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 731 } 732 733 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 734 /// function. This can be overridden by targets as required to do custom stuff. 735 void AsmPrinter::EmitFunctionEntryLabel() { 736 CurrentFnSym->redefineIfPossible(); 737 738 // The function label could have already been emitted if two symbols end up 739 // conflicting due to asm renaming. Detect this and emit an error. 740 if (CurrentFnSym->isVariable()) 741 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 742 "' is a protected alias"); 743 if (CurrentFnSym->isDefined()) 744 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 745 "' label emitted multiple times to assembly file"); 746 747 return OutStreamer->EmitLabel(CurrentFnSym); 748 } 749 750 /// emitComments - Pretty-print comments for instructions. 751 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 752 const MachineFunction *MF = MI.getMF(); 753 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 754 755 // Check for spills and reloads 756 757 // We assume a single instruction only has a spill or reload, not 758 // both. 759 Optional<unsigned> Size; 760 if ((Size = MI.getRestoreSize(TII))) { 761 CommentOS << *Size << "-byte Reload\n"; 762 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 763 if (*Size) 764 CommentOS << *Size << "-byte Folded Reload\n"; 765 } else if ((Size = MI.getSpillSize(TII))) { 766 CommentOS << *Size << "-byte Spill\n"; 767 } else if ((Size = MI.getFoldedSpillSize(TII))) { 768 if (*Size) 769 CommentOS << *Size << "-byte Folded Spill\n"; 770 } 771 772 // Check for spill-induced copies 773 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 774 CommentOS << " Reload Reuse\n"; 775 } 776 777 /// emitImplicitDef - This method emits the specified machine instruction 778 /// that is an implicit def. 779 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 780 unsigned RegNo = MI->getOperand(0).getReg(); 781 782 SmallString<128> Str; 783 raw_svector_ostream OS(Str); 784 OS << "implicit-def: " 785 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 786 787 OutStreamer->AddComment(OS.str()); 788 OutStreamer->AddBlankLine(); 789 } 790 791 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 792 std::string Str; 793 raw_string_ostream OS(Str); 794 OS << "kill:"; 795 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 796 const MachineOperand &Op = MI->getOperand(i); 797 assert(Op.isReg() && "KILL instruction must have only register operands"); 798 OS << ' ' << (Op.isDef() ? "def " : "killed ") 799 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 800 } 801 AP.OutStreamer->AddComment(OS.str()); 802 AP.OutStreamer->AddBlankLine(); 803 } 804 805 /// emitDebugValueComment - This method handles the target-independent form 806 /// of DBG_VALUE, returning true if it was able to do so. A false return 807 /// means the target will need to handle MI in EmitInstruction. 808 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 809 // This code handles only the 4-operand target-independent form. 810 if (MI->getNumOperands() != 4) 811 return false; 812 813 SmallString<128> Str; 814 raw_svector_ostream OS(Str); 815 OS << "DEBUG_VALUE: "; 816 817 const DILocalVariable *V = MI->getDebugVariable(); 818 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 819 StringRef Name = SP->getName(); 820 if (!Name.empty()) 821 OS << Name << ":"; 822 } 823 OS << V->getName(); 824 OS << " <- "; 825 826 // The second operand is only an offset if it's an immediate. 827 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 828 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 829 const DIExpression *Expr = MI->getDebugExpression(); 830 if (Expr->getNumElements()) { 831 OS << '['; 832 bool NeedSep = false; 833 for (auto Op : Expr->expr_ops()) { 834 if (NeedSep) 835 OS << ", "; 836 else 837 NeedSep = true; 838 OS << dwarf::OperationEncodingString(Op.getOp()); 839 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 840 OS << ' ' << Op.getArg(I); 841 } 842 OS << "] "; 843 } 844 845 // Register or immediate value. Register 0 means undef. 846 if (MI->getOperand(0).isFPImm()) { 847 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 848 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 849 OS << (double)APF.convertToFloat(); 850 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 851 OS << APF.convertToDouble(); 852 } else { 853 // There is no good way to print long double. Convert a copy to 854 // double. Ah well, it's only a comment. 855 bool ignored; 856 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 857 &ignored); 858 OS << "(long double) " << APF.convertToDouble(); 859 } 860 } else if (MI->getOperand(0).isImm()) { 861 OS << MI->getOperand(0).getImm(); 862 } else if (MI->getOperand(0).isCImm()) { 863 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 864 } else { 865 unsigned Reg; 866 if (MI->getOperand(0).isReg()) { 867 Reg = MI->getOperand(0).getReg(); 868 } else { 869 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 870 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 871 Offset += TFI->getFrameIndexReference(*AP.MF, 872 MI->getOperand(0).getIndex(), Reg); 873 MemLoc = true; 874 } 875 if (Reg == 0) { 876 // Suppress offset, it is not meaningful here. 877 OS << "undef"; 878 // NOTE: Want this comment at start of line, don't emit with AddComment. 879 AP.OutStreamer->emitRawComment(OS.str()); 880 return true; 881 } 882 if (MemLoc) 883 OS << '['; 884 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 885 } 886 887 if (MemLoc) 888 OS << '+' << Offset << ']'; 889 890 // NOTE: Want this comment at start of line, don't emit with AddComment. 891 AP.OutStreamer->emitRawComment(OS.str()); 892 return true; 893 } 894 895 /// This method handles the target-independent form of DBG_LABEL, returning 896 /// true if it was able to do so. A false return means the target will need 897 /// to handle MI in EmitInstruction. 898 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 899 if (MI->getNumOperands() != 1) 900 return false; 901 902 SmallString<128> Str; 903 raw_svector_ostream OS(Str); 904 OS << "DEBUG_LABEL: "; 905 906 const DILabel *V = MI->getDebugLabel(); 907 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 908 StringRef Name = SP->getName(); 909 if (!Name.empty()) 910 OS << Name << ":"; 911 } 912 OS << V->getName(); 913 914 // NOTE: Want this comment at start of line, don't emit with AddComment. 915 AP.OutStreamer->emitRawComment(OS.str()); 916 return true; 917 } 918 919 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 920 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 921 MF->getFunction().needsUnwindTableEntry()) 922 return CFI_M_EH; 923 924 if (MMI->hasDebugInfo()) 925 return CFI_M_Debug; 926 927 return CFI_M_None; 928 } 929 930 bool AsmPrinter::needsSEHMoves() { 931 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 932 } 933 934 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 935 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 936 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 937 ExceptionHandlingType != ExceptionHandling::ARM) 938 return; 939 940 if (needsCFIMoves() == CFI_M_None) 941 return; 942 943 // If there is no "real" instruction following this CFI instruction, skip 944 // emitting it; it would be beyond the end of the function's FDE range. 945 auto *MBB = MI.getParent(); 946 auto I = std::next(MI.getIterator()); 947 while (I != MBB->end() && I->isTransient()) 948 ++I; 949 if (I == MBB->instr_end() && 950 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 951 return; 952 953 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 954 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 955 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 956 emitCFIInstruction(CFI); 957 } 958 959 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 960 // The operands are the MCSymbol and the frame offset of the allocation. 961 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 962 int FrameOffset = MI.getOperand(1).getImm(); 963 964 // Emit a symbol assignment. 965 OutStreamer->EmitAssignment(FrameAllocSym, 966 MCConstantExpr::create(FrameOffset, OutContext)); 967 } 968 969 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 970 if (!MF.getTarget().Options.EmitStackSizeSection) 971 return; 972 973 MCSection *StackSizeSection = 974 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 975 if (!StackSizeSection) 976 return; 977 978 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 979 // Don't emit functions with dynamic stack allocations. 980 if (FrameInfo.hasVarSizedObjects()) 981 return; 982 983 OutStreamer->PushSection(); 984 OutStreamer->SwitchSection(StackSizeSection); 985 986 const MCSymbol *FunctionSymbol = getFunctionBegin(); 987 uint64_t StackSize = FrameInfo.getStackSize(); 988 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 989 OutStreamer->EmitULEB128IntValue(StackSize); 990 991 OutStreamer->PopSection(); 992 } 993 994 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 995 MachineModuleInfo *MMI) { 996 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 997 return true; 998 999 // We might emit an EH table that uses function begin and end labels even if 1000 // we don't have any landingpads. 1001 if (!MF.getFunction().hasPersonalityFn()) 1002 return false; 1003 return !isNoOpWithoutInvoke( 1004 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1005 } 1006 1007 /// EmitFunctionBody - This method emits the body and trailer for a 1008 /// function. 1009 void AsmPrinter::EmitFunctionBody() { 1010 EmitFunctionHeader(); 1011 1012 // Emit target-specific gunk before the function body. 1013 EmitFunctionBodyStart(); 1014 1015 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1016 1017 if (isVerbose()) { 1018 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1019 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1020 if (!MDT) { 1021 OwnedMDT = make_unique<MachineDominatorTree>(); 1022 OwnedMDT->getBase().recalculate(*MF); 1023 MDT = OwnedMDT.get(); 1024 } 1025 1026 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1027 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1028 if (!MLI) { 1029 OwnedMLI = make_unique<MachineLoopInfo>(); 1030 OwnedMLI->getBase().analyze(MDT->getBase()); 1031 MLI = OwnedMLI.get(); 1032 } 1033 } 1034 1035 // Print out code for the function. 1036 bool HasAnyRealCode = false; 1037 int NumInstsInFunction = 0; 1038 for (auto &MBB : *MF) { 1039 // Print a label for the basic block. 1040 EmitBasicBlockStart(MBB); 1041 for (auto &MI : MBB) { 1042 // Print the assembly for the instruction. 1043 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1044 !MI.isDebugInstr()) { 1045 HasAnyRealCode = true; 1046 ++NumInstsInFunction; 1047 } 1048 1049 // If there is a pre-instruction symbol, emit a label for it here. 1050 if (MCSymbol *S = MI.getPreInstrSymbol()) 1051 OutStreamer->EmitLabel(S); 1052 1053 if (ShouldPrintDebugScopes) { 1054 for (const HandlerInfo &HI : Handlers) { 1055 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1056 HI.TimerGroupName, HI.TimerGroupDescription, 1057 TimePassesIsEnabled); 1058 HI.Handler->beginInstruction(&MI); 1059 } 1060 } 1061 1062 if (isVerbose()) 1063 emitComments(MI, OutStreamer->GetCommentOS()); 1064 1065 switch (MI.getOpcode()) { 1066 case TargetOpcode::CFI_INSTRUCTION: 1067 emitCFIInstruction(MI); 1068 break; 1069 case TargetOpcode::LOCAL_ESCAPE: 1070 emitFrameAlloc(MI); 1071 break; 1072 case TargetOpcode::EH_LABEL: 1073 case TargetOpcode::GC_LABEL: 1074 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1075 break; 1076 case TargetOpcode::INLINEASM: 1077 case TargetOpcode::INLINEASM_BR: 1078 EmitInlineAsm(&MI); 1079 break; 1080 case TargetOpcode::DBG_VALUE: 1081 if (isVerbose()) { 1082 if (!emitDebugValueComment(&MI, *this)) 1083 EmitInstruction(&MI); 1084 } 1085 break; 1086 case TargetOpcode::DBG_LABEL: 1087 if (isVerbose()) { 1088 if (!emitDebugLabelComment(&MI, *this)) 1089 EmitInstruction(&MI); 1090 } 1091 break; 1092 case TargetOpcode::IMPLICIT_DEF: 1093 if (isVerbose()) emitImplicitDef(&MI); 1094 break; 1095 case TargetOpcode::KILL: 1096 if (isVerbose()) emitKill(&MI, *this); 1097 break; 1098 default: 1099 EmitInstruction(&MI); 1100 break; 1101 } 1102 1103 // If there is a post-instruction symbol, emit a label for it here. 1104 if (MCSymbol *S = MI.getPostInstrSymbol()) 1105 OutStreamer->EmitLabel(S); 1106 1107 if (ShouldPrintDebugScopes) { 1108 for (const HandlerInfo &HI : Handlers) { 1109 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1110 HI.TimerGroupName, HI.TimerGroupDescription, 1111 TimePassesIsEnabled); 1112 HI.Handler->endInstruction(); 1113 } 1114 } 1115 } 1116 1117 EmitBasicBlockEnd(MBB); 1118 } 1119 1120 EmittedInsts += NumInstsInFunction; 1121 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1122 MF->getFunction().getSubprogram(), 1123 &MF->front()); 1124 R << ore::NV("NumInstructions", NumInstsInFunction) 1125 << " instructions in function"; 1126 ORE->emit(R); 1127 1128 // If the function is empty and the object file uses .subsections_via_symbols, 1129 // then we need to emit *something* to the function body to prevent the 1130 // labels from collapsing together. Just emit a noop. 1131 // Similarly, don't emit empty functions on Windows either. It can lead to 1132 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1133 // after linking, causing the kernel not to load the binary: 1134 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1135 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1136 const Triple &TT = TM.getTargetTriple(); 1137 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1138 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1139 MCInst Noop; 1140 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1141 1142 // Targets can opt-out of emitting the noop here by leaving the opcode 1143 // unspecified. 1144 if (Noop.getOpcode()) { 1145 OutStreamer->AddComment("avoids zero-length function"); 1146 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1147 } 1148 } 1149 1150 const Function &F = MF->getFunction(); 1151 for (const auto &BB : F) { 1152 if (!BB.hasAddressTaken()) 1153 continue; 1154 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1155 if (Sym->isDefined()) 1156 continue; 1157 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1158 OutStreamer->EmitLabel(Sym); 1159 } 1160 1161 // Emit target-specific gunk after the function body. 1162 EmitFunctionBodyEnd(); 1163 1164 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1165 MAI->hasDotTypeDotSizeDirective()) { 1166 // Create a symbol for the end of function. 1167 CurrentFnEnd = createTempSymbol("func_end"); 1168 OutStreamer->EmitLabel(CurrentFnEnd); 1169 } 1170 1171 // If the target wants a .size directive for the size of the function, emit 1172 // it. 1173 if (MAI->hasDotTypeDotSizeDirective()) { 1174 // We can get the size as difference between the function label and the 1175 // temp label. 1176 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1177 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1178 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1179 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1180 } 1181 1182 for (const HandlerInfo &HI : Handlers) { 1183 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1184 HI.TimerGroupDescription, TimePassesIsEnabled); 1185 HI.Handler->markFunctionEnd(); 1186 } 1187 1188 // Print out jump tables referenced by the function. 1189 EmitJumpTableInfo(); 1190 1191 // Emit post-function debug and/or EH information. 1192 for (const HandlerInfo &HI : Handlers) { 1193 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1194 HI.TimerGroupDescription, TimePassesIsEnabled); 1195 HI.Handler->endFunction(MF); 1196 } 1197 1198 // Emit section containing stack size metadata. 1199 emitStackSizeSection(*MF); 1200 1201 if (isVerbose()) 1202 OutStreamer->GetCommentOS() << "-- End function\n"; 1203 1204 OutStreamer->AddBlankLine(); 1205 } 1206 1207 /// Compute the number of Global Variables that uses a Constant. 1208 static unsigned getNumGlobalVariableUses(const Constant *C) { 1209 if (!C) 1210 return 0; 1211 1212 if (isa<GlobalVariable>(C)) 1213 return 1; 1214 1215 unsigned NumUses = 0; 1216 for (auto *CU : C->users()) 1217 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1218 1219 return NumUses; 1220 } 1221 1222 /// Only consider global GOT equivalents if at least one user is a 1223 /// cstexpr inside an initializer of another global variables. Also, don't 1224 /// handle cstexpr inside instructions. During global variable emission, 1225 /// candidates are skipped and are emitted later in case at least one cstexpr 1226 /// isn't replaced by a PC relative GOT entry access. 1227 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1228 unsigned &NumGOTEquivUsers) { 1229 // Global GOT equivalents are unnamed private globals with a constant 1230 // pointer initializer to another global symbol. They must point to a 1231 // GlobalVariable or Function, i.e., as GlobalValue. 1232 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1233 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1234 !isa<GlobalValue>(GV->getOperand(0))) 1235 return false; 1236 1237 // To be a got equivalent, at least one of its users need to be a constant 1238 // expression used by another global variable. 1239 for (auto *U : GV->users()) 1240 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1241 1242 return NumGOTEquivUsers > 0; 1243 } 1244 1245 /// Unnamed constant global variables solely contaning a pointer to 1246 /// another globals variable is equivalent to a GOT table entry; it contains the 1247 /// the address of another symbol. Optimize it and replace accesses to these 1248 /// "GOT equivalents" by using the GOT entry for the final global instead. 1249 /// Compute GOT equivalent candidates among all global variables to avoid 1250 /// emitting them if possible later on, after it use is replaced by a GOT entry 1251 /// access. 1252 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1253 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1254 return; 1255 1256 for (const auto &G : M.globals()) { 1257 unsigned NumGOTEquivUsers = 0; 1258 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1259 continue; 1260 1261 const MCSymbol *GOTEquivSym = getSymbol(&G); 1262 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1263 } 1264 } 1265 1266 /// Constant expressions using GOT equivalent globals may not be eligible 1267 /// for PC relative GOT entry conversion, in such cases we need to emit such 1268 /// globals we previously omitted in EmitGlobalVariable. 1269 void AsmPrinter::emitGlobalGOTEquivs() { 1270 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1271 return; 1272 1273 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1274 for (auto &I : GlobalGOTEquivs) { 1275 const GlobalVariable *GV = I.second.first; 1276 unsigned Cnt = I.second.second; 1277 if (Cnt) 1278 FailedCandidates.push_back(GV); 1279 } 1280 GlobalGOTEquivs.clear(); 1281 1282 for (auto *GV : FailedCandidates) 1283 EmitGlobalVariable(GV); 1284 } 1285 1286 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1287 const GlobalIndirectSymbol& GIS) { 1288 MCSymbol *Name = getSymbol(&GIS); 1289 1290 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1291 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1292 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1293 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1294 else 1295 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1296 1297 bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy(); 1298 1299 // Treat bitcasts of functions as functions also. This is important at least 1300 // on WebAssembly where object and function addresses can't alias each other. 1301 if (!IsFunction) 1302 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1303 if (CE->getOpcode() == Instruction::BitCast) 1304 IsFunction = 1305 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1306 1307 // Set the symbol type to function if the alias has a function type. 1308 // This affects codegen when the aliasee is not a function. 1309 if (IsFunction) { 1310 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1311 if (isa<GlobalIFunc>(GIS)) 1312 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1313 } 1314 1315 EmitVisibility(Name, GIS.getVisibility()); 1316 1317 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1318 1319 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1320 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1321 1322 // Emit the directives as assignments aka .set: 1323 OutStreamer->EmitAssignment(Name, Expr); 1324 1325 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1326 // If the aliasee does not correspond to a symbol in the output, i.e. the 1327 // alias is not of an object or the aliased object is private, then set the 1328 // size of the alias symbol from the type of the alias. We don't do this in 1329 // other situations as the alias and aliasee having differing types but same 1330 // size may be intentional. 1331 const GlobalObject *BaseObject = GA->getBaseObject(); 1332 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1333 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1334 const DataLayout &DL = M.getDataLayout(); 1335 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1336 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1337 } 1338 } 1339 } 1340 1341 void AsmPrinter::emitRemarksSection(Module &M) { 1342 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1343 if (!RS) 1344 return; 1345 1346 // Switch to the right section: .remarks/__remarks. 1347 MCSection *RemarksSection = 1348 OutContext.getObjectFileInfo()->getRemarksSection(); 1349 OutStreamer->SwitchSection(RemarksSection); 1350 1351 // Emit the magic number. 1352 OutStreamer->EmitBytes(remarks::Magic); 1353 // Explicitly emit a '\0'. 1354 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1355 1356 // Emit the version number: little-endian uint64_t. 1357 // The version number is located at the offset 0x0 in the section. 1358 std::array<char, 8> Version; 1359 support::endian::write64le(Version.data(), remarks::Version); 1360 OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size())); 1361 1362 // Emit the null-terminated absolute path to the remark file. 1363 // The path is located at the offset 0x4 in the section. 1364 StringRef FilenameRef = RS->getFilename(); 1365 SmallString<128> Filename = FilenameRef; 1366 sys::fs::make_absolute(Filename); 1367 assert(!Filename.empty() && "The filename can't be empty."); 1368 OutStreamer->EmitBytes(Filename); 1369 // Explicitly emit a '\0'. 1370 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1371 } 1372 1373 bool AsmPrinter::doFinalization(Module &M) { 1374 // Set the MachineFunction to nullptr so that we can catch attempted 1375 // accesses to MF specific features at the module level and so that 1376 // we can conditionalize accesses based on whether or not it is nullptr. 1377 MF = nullptr; 1378 1379 // Gather all GOT equivalent globals in the module. We really need two 1380 // passes over the globals: one to compute and another to avoid its emission 1381 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1382 // where the got equivalent shows up before its use. 1383 computeGlobalGOTEquivs(M); 1384 1385 // Emit global variables. 1386 for (const auto &G : M.globals()) 1387 EmitGlobalVariable(&G); 1388 1389 // Emit remaining GOT equivalent globals. 1390 emitGlobalGOTEquivs(); 1391 1392 // Emit visibility info for declarations 1393 for (const Function &F : M) { 1394 if (!F.isDeclarationForLinker()) 1395 continue; 1396 GlobalValue::VisibilityTypes V = F.getVisibility(); 1397 if (V == GlobalValue::DefaultVisibility) 1398 continue; 1399 1400 MCSymbol *Name = getSymbol(&F); 1401 EmitVisibility(Name, V, false); 1402 } 1403 1404 // Emit the remarks section contents. 1405 // FIXME: Figure out when is the safest time to emit this section. It should 1406 // not come after debug info. 1407 if (EnableRemarksSection) 1408 emitRemarksSection(M); 1409 1410 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1411 1412 TLOF.emitModuleMetadata(*OutStreamer, M); 1413 1414 if (TM.getTargetTriple().isOSBinFormatELF()) { 1415 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1416 1417 // Output stubs for external and common global variables. 1418 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1419 if (!Stubs.empty()) { 1420 OutStreamer->SwitchSection(TLOF.getDataSection()); 1421 const DataLayout &DL = M.getDataLayout(); 1422 1423 EmitAlignment(Log2_32(DL.getPointerSize())); 1424 for (const auto &Stub : Stubs) { 1425 OutStreamer->EmitLabel(Stub.first); 1426 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1427 DL.getPointerSize()); 1428 } 1429 } 1430 } 1431 1432 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1433 MachineModuleInfoCOFF &MMICOFF = 1434 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1435 1436 // Output stubs for external and common global variables. 1437 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1438 if (!Stubs.empty()) { 1439 const DataLayout &DL = M.getDataLayout(); 1440 1441 for (const auto &Stub : Stubs) { 1442 SmallString<256> SectionName = StringRef(".rdata$"); 1443 SectionName += Stub.first->getName(); 1444 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1445 SectionName, 1446 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1447 COFF::IMAGE_SCN_LNK_COMDAT, 1448 SectionKind::getReadOnly(), Stub.first->getName(), 1449 COFF::IMAGE_COMDAT_SELECT_ANY)); 1450 EmitAlignment(Log2_32(DL.getPointerSize())); 1451 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1452 OutStreamer->EmitLabel(Stub.first); 1453 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1454 DL.getPointerSize()); 1455 } 1456 } 1457 } 1458 1459 // Finalize debug and EH information. 1460 for (const HandlerInfo &HI : Handlers) { 1461 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1462 HI.TimerGroupDescription, TimePassesIsEnabled); 1463 HI.Handler->endModule(); 1464 delete HI.Handler; 1465 } 1466 Handlers.clear(); 1467 DD = nullptr; 1468 1469 // If the target wants to know about weak references, print them all. 1470 if (MAI->getWeakRefDirective()) { 1471 // FIXME: This is not lazy, it would be nice to only print weak references 1472 // to stuff that is actually used. Note that doing so would require targets 1473 // to notice uses in operands (due to constant exprs etc). This should 1474 // happen with the MC stuff eventually. 1475 1476 // Print out module-level global objects here. 1477 for (const auto &GO : M.global_objects()) { 1478 if (!GO.hasExternalWeakLinkage()) 1479 continue; 1480 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1481 } 1482 } 1483 1484 OutStreamer->AddBlankLine(); 1485 1486 // Print aliases in topological order, that is, for each alias a = b, 1487 // b must be printed before a. 1488 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1489 // such an order to generate correct TOC information. 1490 SmallVector<const GlobalAlias *, 16> AliasStack; 1491 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1492 for (const auto &Alias : M.aliases()) { 1493 for (const GlobalAlias *Cur = &Alias; Cur; 1494 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1495 if (!AliasVisited.insert(Cur).second) 1496 break; 1497 AliasStack.push_back(Cur); 1498 } 1499 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1500 emitGlobalIndirectSymbol(M, *AncestorAlias); 1501 AliasStack.clear(); 1502 } 1503 for (const auto &IFunc : M.ifuncs()) 1504 emitGlobalIndirectSymbol(M, IFunc); 1505 1506 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1507 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1508 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1509 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1510 MP->finishAssembly(M, *MI, *this); 1511 1512 // Emit llvm.ident metadata in an '.ident' directive. 1513 EmitModuleIdents(M); 1514 1515 // Emit bytes for llvm.commandline metadata. 1516 EmitModuleCommandLines(M); 1517 1518 // Emit __morestack address if needed for indirect calls. 1519 if (MMI->usesMorestackAddr()) { 1520 unsigned Align = 1; 1521 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1522 getDataLayout(), SectionKind::getReadOnly(), 1523 /*C=*/nullptr, Align); 1524 OutStreamer->SwitchSection(ReadOnlySection); 1525 1526 MCSymbol *AddrSymbol = 1527 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1528 OutStreamer->EmitLabel(AddrSymbol); 1529 1530 unsigned PtrSize = MAI->getCodePointerSize(); 1531 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1532 PtrSize); 1533 } 1534 1535 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1536 // split-stack is used. 1537 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1538 OutStreamer->SwitchSection( 1539 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1540 if (MMI->hasNosplitStack()) 1541 OutStreamer->SwitchSection( 1542 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1543 } 1544 1545 // If we don't have any trampolines, then we don't require stack memory 1546 // to be executable. Some targets have a directive to declare this. 1547 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1548 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1549 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1550 OutStreamer->SwitchSection(S); 1551 1552 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1553 // Emit /EXPORT: flags for each exported global as necessary. 1554 const auto &TLOF = getObjFileLowering(); 1555 std::string Flags; 1556 1557 for (const GlobalValue &GV : M.global_values()) { 1558 raw_string_ostream OS(Flags); 1559 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1560 OS.flush(); 1561 if (!Flags.empty()) { 1562 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1563 OutStreamer->EmitBytes(Flags); 1564 } 1565 Flags.clear(); 1566 } 1567 1568 // Emit /INCLUDE: flags for each used global as necessary. 1569 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1570 assert(LU->hasInitializer() && 1571 "expected llvm.used to have an initializer"); 1572 assert(isa<ArrayType>(LU->getValueType()) && 1573 "expected llvm.used to be an array type"); 1574 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1575 for (const Value *Op : A->operands()) { 1576 const auto *GV = 1577 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1578 // Global symbols with internal or private linkage are not visible to 1579 // the linker, and thus would cause an error when the linker tried to 1580 // preserve the symbol due to the `/include:` directive. 1581 if (GV->hasLocalLinkage()) 1582 continue; 1583 1584 raw_string_ostream OS(Flags); 1585 TLOF.emitLinkerFlagsForUsed(OS, GV); 1586 OS.flush(); 1587 1588 if (!Flags.empty()) { 1589 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1590 OutStreamer->EmitBytes(Flags); 1591 } 1592 Flags.clear(); 1593 } 1594 } 1595 } 1596 } 1597 1598 if (TM.Options.EmitAddrsig) { 1599 // Emit address-significance attributes for all globals. 1600 OutStreamer->EmitAddrsig(); 1601 for (const GlobalValue &GV : M.global_values()) 1602 if (!GV.use_empty() && !GV.isThreadLocal() && 1603 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1604 !GV.hasAtLeastLocalUnnamedAddr()) 1605 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1606 } 1607 1608 // Allow the target to emit any magic that it wants at the end of the file, 1609 // after everything else has gone out. 1610 EmitEndOfAsmFile(M); 1611 1612 MMI = nullptr; 1613 1614 OutStreamer->Finish(); 1615 OutStreamer->reset(); 1616 OwnedMLI.reset(); 1617 OwnedMDT.reset(); 1618 1619 return false; 1620 } 1621 1622 MCSymbol *AsmPrinter::getCurExceptionSym() { 1623 if (!CurExceptionSym) 1624 CurExceptionSym = createTempSymbol("exception"); 1625 return CurExceptionSym; 1626 } 1627 1628 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1629 this->MF = &MF; 1630 // Get the function symbol. 1631 CurrentFnSym = getSymbol(&MF.getFunction()); 1632 CurrentFnSymForSize = CurrentFnSym; 1633 CurrentFnBegin = nullptr; 1634 CurExceptionSym = nullptr; 1635 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1636 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1637 MF.getTarget().Options.EmitStackSizeSection) { 1638 CurrentFnBegin = createTempSymbol("func_begin"); 1639 if (NeedsLocalForSize) 1640 CurrentFnSymForSize = CurrentFnBegin; 1641 } 1642 1643 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1644 } 1645 1646 namespace { 1647 1648 // Keep track the alignment, constpool entries per Section. 1649 struct SectionCPs { 1650 MCSection *S; 1651 unsigned Alignment; 1652 SmallVector<unsigned, 4> CPEs; 1653 1654 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1655 }; 1656 1657 } // end anonymous namespace 1658 1659 /// EmitConstantPool - Print to the current output stream assembly 1660 /// representations of the constants in the constant pool MCP. This is 1661 /// used to print out constants which have been "spilled to memory" by 1662 /// the code generator. 1663 void AsmPrinter::EmitConstantPool() { 1664 const MachineConstantPool *MCP = MF->getConstantPool(); 1665 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1666 if (CP.empty()) return; 1667 1668 // Calculate sections for constant pool entries. We collect entries to go into 1669 // the same section together to reduce amount of section switch statements. 1670 SmallVector<SectionCPs, 4> CPSections; 1671 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1672 const MachineConstantPoolEntry &CPE = CP[i]; 1673 unsigned Align = CPE.getAlignment(); 1674 1675 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1676 1677 const Constant *C = nullptr; 1678 if (!CPE.isMachineConstantPoolEntry()) 1679 C = CPE.Val.ConstVal; 1680 1681 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1682 Kind, C, Align); 1683 1684 // The number of sections are small, just do a linear search from the 1685 // last section to the first. 1686 bool Found = false; 1687 unsigned SecIdx = CPSections.size(); 1688 while (SecIdx != 0) { 1689 if (CPSections[--SecIdx].S == S) { 1690 Found = true; 1691 break; 1692 } 1693 } 1694 if (!Found) { 1695 SecIdx = CPSections.size(); 1696 CPSections.push_back(SectionCPs(S, Align)); 1697 } 1698 1699 if (Align > CPSections[SecIdx].Alignment) 1700 CPSections[SecIdx].Alignment = Align; 1701 CPSections[SecIdx].CPEs.push_back(i); 1702 } 1703 1704 // Now print stuff into the calculated sections. 1705 const MCSection *CurSection = nullptr; 1706 unsigned Offset = 0; 1707 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1708 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1709 unsigned CPI = CPSections[i].CPEs[j]; 1710 MCSymbol *Sym = GetCPISymbol(CPI); 1711 if (!Sym->isUndefined()) 1712 continue; 1713 1714 if (CurSection != CPSections[i].S) { 1715 OutStreamer->SwitchSection(CPSections[i].S); 1716 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1717 CurSection = CPSections[i].S; 1718 Offset = 0; 1719 } 1720 1721 MachineConstantPoolEntry CPE = CP[CPI]; 1722 1723 // Emit inter-object padding for alignment. 1724 unsigned AlignMask = CPE.getAlignment() - 1; 1725 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1726 OutStreamer->EmitZeros(NewOffset - Offset); 1727 1728 Type *Ty = CPE.getType(); 1729 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1730 1731 OutStreamer->EmitLabel(Sym); 1732 if (CPE.isMachineConstantPoolEntry()) 1733 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1734 else 1735 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1736 } 1737 } 1738 } 1739 1740 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1741 /// by the current function to the current output stream. 1742 void AsmPrinter::EmitJumpTableInfo() { 1743 const DataLayout &DL = MF->getDataLayout(); 1744 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1745 if (!MJTI) return; 1746 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1747 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1748 if (JT.empty()) return; 1749 1750 // Pick the directive to use to print the jump table entries, and switch to 1751 // the appropriate section. 1752 const Function &F = MF->getFunction(); 1753 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1754 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1755 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1756 F); 1757 if (JTInDiffSection) { 1758 // Drop it in the readonly section. 1759 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1760 OutStreamer->SwitchSection(ReadOnlySection); 1761 } 1762 1763 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1764 1765 // Jump tables in code sections are marked with a data_region directive 1766 // where that's supported. 1767 if (!JTInDiffSection) 1768 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1769 1770 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1771 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1772 1773 // If this jump table was deleted, ignore it. 1774 if (JTBBs.empty()) continue; 1775 1776 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1777 /// emit a .set directive for each unique entry. 1778 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1779 MAI->doesSetDirectiveSuppressReloc()) { 1780 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1781 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1782 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1783 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1784 const MachineBasicBlock *MBB = JTBBs[ii]; 1785 if (!EmittedSets.insert(MBB).second) 1786 continue; 1787 1788 // .set LJTSet, LBB32-base 1789 const MCExpr *LHS = 1790 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1791 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1792 MCBinaryExpr::createSub(LHS, Base, 1793 OutContext)); 1794 } 1795 } 1796 1797 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1798 // before each jump table. The first label is never referenced, but tells 1799 // the assembler and linker the extents of the jump table object. The 1800 // second label is actually referenced by the code. 1801 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1802 // FIXME: This doesn't have to have any specific name, just any randomly 1803 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1804 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1805 1806 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1807 1808 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1809 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1810 } 1811 if (!JTInDiffSection) 1812 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1813 } 1814 1815 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1816 /// current stream. 1817 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1818 const MachineBasicBlock *MBB, 1819 unsigned UID) const { 1820 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1821 const MCExpr *Value = nullptr; 1822 switch (MJTI->getEntryKind()) { 1823 case MachineJumpTableInfo::EK_Inline: 1824 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1825 case MachineJumpTableInfo::EK_Custom32: 1826 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1827 MJTI, MBB, UID, OutContext); 1828 break; 1829 case MachineJumpTableInfo::EK_BlockAddress: 1830 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1831 // .word LBB123 1832 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1833 break; 1834 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1835 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1836 // with a relocation as gp-relative, e.g.: 1837 // .gprel32 LBB123 1838 MCSymbol *MBBSym = MBB->getSymbol(); 1839 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1840 return; 1841 } 1842 1843 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1844 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1845 // with a relocation as gp-relative, e.g.: 1846 // .gpdword LBB123 1847 MCSymbol *MBBSym = MBB->getSymbol(); 1848 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1849 return; 1850 } 1851 1852 case MachineJumpTableInfo::EK_LabelDifference32: { 1853 // Each entry is the address of the block minus the address of the jump 1854 // table. This is used for PIC jump tables where gprel32 is not supported. 1855 // e.g.: 1856 // .word LBB123 - LJTI1_2 1857 // If the .set directive avoids relocations, this is emitted as: 1858 // .set L4_5_set_123, LBB123 - LJTI1_2 1859 // .word L4_5_set_123 1860 if (MAI->doesSetDirectiveSuppressReloc()) { 1861 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1862 OutContext); 1863 break; 1864 } 1865 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1866 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1867 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1868 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1869 break; 1870 } 1871 } 1872 1873 assert(Value && "Unknown entry kind!"); 1874 1875 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1876 OutStreamer->EmitValue(Value, EntrySize); 1877 } 1878 1879 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1880 /// special global used by LLVM. If so, emit it and return true, otherwise 1881 /// do nothing and return false. 1882 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1883 if (GV->getName() == "llvm.used") { 1884 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1885 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1886 return true; 1887 } 1888 1889 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1890 if (GV->getSection() == "llvm.metadata" || 1891 GV->hasAvailableExternallyLinkage()) 1892 return true; 1893 1894 if (!GV->hasAppendingLinkage()) return false; 1895 1896 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1897 1898 if (GV->getName() == "llvm.global_ctors") { 1899 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1900 /* isCtor */ true); 1901 1902 return true; 1903 } 1904 1905 if (GV->getName() == "llvm.global_dtors") { 1906 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1907 /* isCtor */ false); 1908 1909 return true; 1910 } 1911 1912 report_fatal_error("unknown special variable"); 1913 } 1914 1915 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1916 /// global in the specified llvm.used list. 1917 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1918 // Should be an array of 'i8*'. 1919 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1920 const GlobalValue *GV = 1921 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1922 if (GV) 1923 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1924 } 1925 } 1926 1927 namespace { 1928 1929 struct Structor { 1930 int Priority = 0; 1931 Constant *Func = nullptr; 1932 GlobalValue *ComdatKey = nullptr; 1933 1934 Structor() = default; 1935 }; 1936 1937 } // end anonymous namespace 1938 1939 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1940 /// priority. 1941 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1942 bool isCtor) { 1943 // Should be an array of '{ int, void ()* }' structs. The first value is the 1944 // init priority. 1945 if (!isa<ConstantArray>(List)) return; 1946 1947 // Sanity check the structors list. 1948 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1949 if (!InitList) return; // Not an array! 1950 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1951 // FIXME: Only allow the 3-field form in LLVM 4.0. 1952 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1953 return; // Not an array of two or three elements! 1954 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1955 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1956 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1957 return; // Not (int, ptr, ptr). 1958 1959 // Gather the structors in a form that's convenient for sorting by priority. 1960 SmallVector<Structor, 8> Structors; 1961 for (Value *O : InitList->operands()) { 1962 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1963 if (!CS) continue; // Malformed. 1964 if (CS->getOperand(1)->isNullValue()) 1965 break; // Found a null terminator, skip the rest. 1966 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1967 if (!Priority) continue; // Malformed. 1968 Structors.push_back(Structor()); 1969 Structor &S = Structors.back(); 1970 S.Priority = Priority->getLimitedValue(65535); 1971 S.Func = CS->getOperand(1); 1972 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1973 S.ComdatKey = 1974 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1975 } 1976 1977 // Emit the function pointers in the target-specific order 1978 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1979 std::stable_sort(Structors.begin(), Structors.end(), 1980 [](const Structor &L, 1981 const Structor &R) { return L.Priority < R.Priority; }); 1982 for (Structor &S : Structors) { 1983 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1984 const MCSymbol *KeySym = nullptr; 1985 if (GlobalValue *GV = S.ComdatKey) { 1986 if (GV->isDeclarationForLinker()) 1987 // If the associated variable is not defined in this module 1988 // (it might be available_externally, or have been an 1989 // available_externally definition that was dropped by the 1990 // EliminateAvailableExternally pass), some other TU 1991 // will provide its dynamic initializer. 1992 continue; 1993 1994 KeySym = getSymbol(GV); 1995 } 1996 MCSection *OutputSection = 1997 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1998 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1999 OutStreamer->SwitchSection(OutputSection); 2000 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2001 EmitAlignment(Align); 2002 EmitXXStructor(DL, S.Func); 2003 } 2004 } 2005 2006 void AsmPrinter::EmitModuleIdents(Module &M) { 2007 if (!MAI->hasIdentDirective()) 2008 return; 2009 2010 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2011 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2012 const MDNode *N = NMD->getOperand(i); 2013 assert(N->getNumOperands() == 1 && 2014 "llvm.ident metadata entry can have only one operand"); 2015 const MDString *S = cast<MDString>(N->getOperand(0)); 2016 OutStreamer->EmitIdent(S->getString()); 2017 } 2018 } 2019 } 2020 2021 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2022 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2023 if (!CommandLine) 2024 return; 2025 2026 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2027 if (!NMD || !NMD->getNumOperands()) 2028 return; 2029 2030 OutStreamer->PushSection(); 2031 OutStreamer->SwitchSection(CommandLine); 2032 OutStreamer->EmitZeros(1); 2033 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2034 const MDNode *N = NMD->getOperand(i); 2035 assert(N->getNumOperands() == 1 && 2036 "llvm.commandline metadata entry can have only one operand"); 2037 const MDString *S = cast<MDString>(N->getOperand(0)); 2038 OutStreamer->EmitBytes(S->getString()); 2039 OutStreamer->EmitZeros(1); 2040 } 2041 OutStreamer->PopSection(); 2042 } 2043 2044 //===--------------------------------------------------------------------===// 2045 // Emission and print routines 2046 // 2047 2048 /// Emit a byte directive and value. 2049 /// 2050 void AsmPrinter::emitInt8(int Value) const { 2051 OutStreamer->EmitIntValue(Value, 1); 2052 } 2053 2054 /// Emit a short directive and value. 2055 void AsmPrinter::emitInt16(int Value) const { 2056 OutStreamer->EmitIntValue(Value, 2); 2057 } 2058 2059 /// Emit a long directive and value. 2060 void AsmPrinter::emitInt32(int Value) const { 2061 OutStreamer->EmitIntValue(Value, 4); 2062 } 2063 2064 /// Emit a long long directive and value. 2065 void AsmPrinter::emitInt64(uint64_t Value) const { 2066 OutStreamer->EmitIntValue(Value, 8); 2067 } 2068 2069 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2070 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2071 /// .set if it avoids relocations. 2072 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2073 unsigned Size) const { 2074 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2075 } 2076 2077 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2078 /// where the size in bytes of the directive is specified by Size and Label 2079 /// specifies the label. This implicitly uses .set if it is available. 2080 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2081 unsigned Size, 2082 bool IsSectionRelative) const { 2083 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2084 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2085 if (Size > 4) 2086 OutStreamer->EmitZeros(Size - 4); 2087 return; 2088 } 2089 2090 // Emit Label+Offset (or just Label if Offset is zero) 2091 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2092 if (Offset) 2093 Expr = MCBinaryExpr::createAdd( 2094 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2095 2096 OutStreamer->EmitValue(Expr, Size); 2097 } 2098 2099 //===----------------------------------------------------------------------===// 2100 2101 // EmitAlignment - Emit an alignment directive to the specified power of 2102 // two boundary. For example, if you pass in 3 here, you will get an 8 2103 // byte alignment. If a global value is specified, and if that global has 2104 // an explicit alignment requested, it will override the alignment request 2105 // if required for correctness. 2106 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2107 if (GV) 2108 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2109 2110 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2111 2112 assert(NumBits < 2113 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2114 "undefined behavior"); 2115 if (getCurrentSection()->getKind().isText()) 2116 OutStreamer->EmitCodeAlignment(1u << NumBits); 2117 else 2118 OutStreamer->EmitValueToAlignment(1u << NumBits); 2119 } 2120 2121 //===----------------------------------------------------------------------===// 2122 // Constant emission. 2123 //===----------------------------------------------------------------------===// 2124 2125 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2126 MCContext &Ctx = OutContext; 2127 2128 if (CV->isNullValue() || isa<UndefValue>(CV)) 2129 return MCConstantExpr::create(0, Ctx); 2130 2131 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2132 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2133 2134 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2135 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2136 2137 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2138 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2139 2140 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2141 if (!CE) { 2142 llvm_unreachable("Unknown constant value to lower!"); 2143 } 2144 2145 switch (CE->getOpcode()) { 2146 default: 2147 // If the code isn't optimized, there may be outstanding folding 2148 // opportunities. Attempt to fold the expression using DataLayout as a 2149 // last resort before giving up. 2150 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2151 if (C != CE) 2152 return lowerConstant(C); 2153 2154 // Otherwise report the problem to the user. 2155 { 2156 std::string S; 2157 raw_string_ostream OS(S); 2158 OS << "Unsupported expression in static initializer: "; 2159 CE->printAsOperand(OS, /*PrintType=*/false, 2160 !MF ? nullptr : MF->getFunction().getParent()); 2161 report_fatal_error(OS.str()); 2162 } 2163 case Instruction::GetElementPtr: { 2164 // Generate a symbolic expression for the byte address 2165 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2166 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2167 2168 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2169 if (!OffsetAI) 2170 return Base; 2171 2172 int64_t Offset = OffsetAI.getSExtValue(); 2173 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2174 Ctx); 2175 } 2176 2177 case Instruction::Trunc: 2178 // We emit the value and depend on the assembler to truncate the generated 2179 // expression properly. This is important for differences between 2180 // blockaddress labels. Since the two labels are in the same function, it 2181 // is reasonable to treat their delta as a 32-bit value. 2182 LLVM_FALLTHROUGH; 2183 case Instruction::BitCast: 2184 return lowerConstant(CE->getOperand(0)); 2185 2186 case Instruction::IntToPtr: { 2187 const DataLayout &DL = getDataLayout(); 2188 2189 // Handle casts to pointers by changing them into casts to the appropriate 2190 // integer type. This promotes constant folding and simplifies this code. 2191 Constant *Op = CE->getOperand(0); 2192 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2193 false/*ZExt*/); 2194 return lowerConstant(Op); 2195 } 2196 2197 case Instruction::PtrToInt: { 2198 const DataLayout &DL = getDataLayout(); 2199 2200 // Support only foldable casts to/from pointers that can be eliminated by 2201 // changing the pointer to the appropriately sized integer type. 2202 Constant *Op = CE->getOperand(0); 2203 Type *Ty = CE->getType(); 2204 2205 const MCExpr *OpExpr = lowerConstant(Op); 2206 2207 // We can emit the pointer value into this slot if the slot is an 2208 // integer slot equal to the size of the pointer. 2209 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2210 return OpExpr; 2211 2212 // Otherwise the pointer is smaller than the resultant integer, mask off 2213 // the high bits so we are sure to get a proper truncation if the input is 2214 // a constant expr. 2215 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2216 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2217 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2218 } 2219 2220 case Instruction::Sub: { 2221 GlobalValue *LHSGV; 2222 APInt LHSOffset; 2223 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2224 getDataLayout())) { 2225 GlobalValue *RHSGV; 2226 APInt RHSOffset; 2227 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2228 getDataLayout())) { 2229 const MCExpr *RelocExpr = 2230 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2231 if (!RelocExpr) 2232 RelocExpr = MCBinaryExpr::createSub( 2233 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2234 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2235 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2236 if (Addend != 0) 2237 RelocExpr = MCBinaryExpr::createAdd( 2238 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2239 return RelocExpr; 2240 } 2241 } 2242 } 2243 // else fallthrough 2244 LLVM_FALLTHROUGH; 2245 2246 // The MC library also has a right-shift operator, but it isn't consistently 2247 // signed or unsigned between different targets. 2248 case Instruction::Add: 2249 case Instruction::Mul: 2250 case Instruction::SDiv: 2251 case Instruction::SRem: 2252 case Instruction::Shl: 2253 case Instruction::And: 2254 case Instruction::Or: 2255 case Instruction::Xor: { 2256 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2257 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2258 switch (CE->getOpcode()) { 2259 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2260 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2261 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2262 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2263 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2264 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2265 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2266 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2267 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2268 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2269 } 2270 } 2271 } 2272 } 2273 2274 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2275 AsmPrinter &AP, 2276 const Constant *BaseCV = nullptr, 2277 uint64_t Offset = 0); 2278 2279 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2280 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2281 2282 /// isRepeatedByteSequence - Determine whether the given value is 2283 /// composed of a repeated sequence of identical bytes and return the 2284 /// byte value. If it is not a repeated sequence, return -1. 2285 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2286 StringRef Data = V->getRawDataValues(); 2287 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2288 char C = Data[0]; 2289 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2290 if (Data[i] != C) return -1; 2291 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2292 } 2293 2294 /// isRepeatedByteSequence - Determine whether the given value is 2295 /// composed of a repeated sequence of identical bytes and return the 2296 /// byte value. If it is not a repeated sequence, return -1. 2297 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2298 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2299 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2300 assert(Size % 8 == 0); 2301 2302 // Extend the element to take zero padding into account. 2303 APInt Value = CI->getValue().zextOrSelf(Size); 2304 if (!Value.isSplat(8)) 2305 return -1; 2306 2307 return Value.zextOrTrunc(8).getZExtValue(); 2308 } 2309 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2310 // Make sure all array elements are sequences of the same repeated 2311 // byte. 2312 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2313 Constant *Op0 = CA->getOperand(0); 2314 int Byte = isRepeatedByteSequence(Op0, DL); 2315 if (Byte == -1) 2316 return -1; 2317 2318 // All array elements must be equal. 2319 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2320 if (CA->getOperand(i) != Op0) 2321 return -1; 2322 return Byte; 2323 } 2324 2325 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2326 return isRepeatedByteSequence(CDS); 2327 2328 return -1; 2329 } 2330 2331 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2332 const ConstantDataSequential *CDS, 2333 AsmPrinter &AP) { 2334 // See if we can aggregate this into a .fill, if so, emit it as such. 2335 int Value = isRepeatedByteSequence(CDS, DL); 2336 if (Value != -1) { 2337 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2338 // Don't emit a 1-byte object as a .fill. 2339 if (Bytes > 1) 2340 return AP.OutStreamer->emitFill(Bytes, Value); 2341 } 2342 2343 // If this can be emitted with .ascii/.asciz, emit it as such. 2344 if (CDS->isString()) 2345 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2346 2347 // Otherwise, emit the values in successive locations. 2348 unsigned ElementByteSize = CDS->getElementByteSize(); 2349 if (isa<IntegerType>(CDS->getElementType())) { 2350 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2351 if (AP.isVerbose()) 2352 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2353 CDS->getElementAsInteger(i)); 2354 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2355 ElementByteSize); 2356 } 2357 } else { 2358 Type *ET = CDS->getElementType(); 2359 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2360 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2361 } 2362 2363 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2364 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2365 CDS->getNumElements(); 2366 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2367 if (unsigned Padding = Size - EmittedSize) 2368 AP.OutStreamer->EmitZeros(Padding); 2369 } 2370 2371 static void emitGlobalConstantArray(const DataLayout &DL, 2372 const ConstantArray *CA, AsmPrinter &AP, 2373 const Constant *BaseCV, uint64_t Offset) { 2374 // See if we can aggregate some values. Make sure it can be 2375 // represented as a series of bytes of the constant value. 2376 int Value = isRepeatedByteSequence(CA, DL); 2377 2378 if (Value != -1) { 2379 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2380 AP.OutStreamer->emitFill(Bytes, Value); 2381 } 2382 else { 2383 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2384 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2385 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2386 } 2387 } 2388 } 2389 2390 static void emitGlobalConstantVector(const DataLayout &DL, 2391 const ConstantVector *CV, AsmPrinter &AP) { 2392 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2393 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2394 2395 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2396 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2397 CV->getType()->getNumElements(); 2398 if (unsigned Padding = Size - EmittedSize) 2399 AP.OutStreamer->EmitZeros(Padding); 2400 } 2401 2402 static void emitGlobalConstantStruct(const DataLayout &DL, 2403 const ConstantStruct *CS, AsmPrinter &AP, 2404 const Constant *BaseCV, uint64_t Offset) { 2405 // Print the fields in successive locations. Pad to align if needed! 2406 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2407 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2408 uint64_t SizeSoFar = 0; 2409 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2410 const Constant *Field = CS->getOperand(i); 2411 2412 // Print the actual field value. 2413 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2414 2415 // Check if padding is needed and insert one or more 0s. 2416 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2417 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2418 - Layout->getElementOffset(i)) - FieldSize; 2419 SizeSoFar += FieldSize + PadSize; 2420 2421 // Insert padding - this may include padding to increase the size of the 2422 // current field up to the ABI size (if the struct is not packed) as well 2423 // as padding to ensure that the next field starts at the right offset. 2424 AP.OutStreamer->EmitZeros(PadSize); 2425 } 2426 assert(SizeSoFar == Layout->getSizeInBytes() && 2427 "Layout of constant struct may be incorrect!"); 2428 } 2429 2430 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2431 APInt API = APF.bitcastToAPInt(); 2432 2433 // First print a comment with what we think the original floating-point value 2434 // should have been. 2435 if (AP.isVerbose()) { 2436 SmallString<8> StrVal; 2437 APF.toString(StrVal); 2438 2439 if (ET) 2440 ET->print(AP.OutStreamer->GetCommentOS()); 2441 else 2442 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2443 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2444 } 2445 2446 // Now iterate through the APInt chunks, emitting them in endian-correct 2447 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2448 // floats). 2449 unsigned NumBytes = API.getBitWidth() / 8; 2450 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2451 const uint64_t *p = API.getRawData(); 2452 2453 // PPC's long double has odd notions of endianness compared to how LLVM 2454 // handles it: p[0] goes first for *big* endian on PPC. 2455 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2456 int Chunk = API.getNumWords() - 1; 2457 2458 if (TrailingBytes) 2459 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2460 2461 for (; Chunk >= 0; --Chunk) 2462 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2463 } else { 2464 unsigned Chunk; 2465 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2466 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2467 2468 if (TrailingBytes) 2469 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2470 } 2471 2472 // Emit the tail padding for the long double. 2473 const DataLayout &DL = AP.getDataLayout(); 2474 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2475 } 2476 2477 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2478 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2479 } 2480 2481 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2482 const DataLayout &DL = AP.getDataLayout(); 2483 unsigned BitWidth = CI->getBitWidth(); 2484 2485 // Copy the value as we may massage the layout for constants whose bit width 2486 // is not a multiple of 64-bits. 2487 APInt Realigned(CI->getValue()); 2488 uint64_t ExtraBits = 0; 2489 unsigned ExtraBitsSize = BitWidth & 63; 2490 2491 if (ExtraBitsSize) { 2492 // The bit width of the data is not a multiple of 64-bits. 2493 // The extra bits are expected to be at the end of the chunk of the memory. 2494 // Little endian: 2495 // * Nothing to be done, just record the extra bits to emit. 2496 // Big endian: 2497 // * Record the extra bits to emit. 2498 // * Realign the raw data to emit the chunks of 64-bits. 2499 if (DL.isBigEndian()) { 2500 // Basically the structure of the raw data is a chunk of 64-bits cells: 2501 // 0 1 BitWidth / 64 2502 // [chunk1][chunk2] ... [chunkN]. 2503 // The most significant chunk is chunkN and it should be emitted first. 2504 // However, due to the alignment issue chunkN contains useless bits. 2505 // Realign the chunks so that they contain only useless information: 2506 // ExtraBits 0 1 (BitWidth / 64) - 1 2507 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2508 ExtraBits = Realigned.getRawData()[0] & 2509 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2510 Realigned.lshrInPlace(ExtraBitsSize); 2511 } else 2512 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2513 } 2514 2515 // We don't expect assemblers to support integer data directives 2516 // for more than 64 bits, so we emit the data in at most 64-bit 2517 // quantities at a time. 2518 const uint64_t *RawData = Realigned.getRawData(); 2519 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2520 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2521 AP.OutStreamer->EmitIntValue(Val, 8); 2522 } 2523 2524 if (ExtraBitsSize) { 2525 // Emit the extra bits after the 64-bits chunks. 2526 2527 // Emit a directive that fills the expected size. 2528 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2529 Size -= (BitWidth / 64) * 8; 2530 assert(Size && Size * 8 >= ExtraBitsSize && 2531 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2532 == ExtraBits && "Directive too small for extra bits."); 2533 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2534 } 2535 } 2536 2537 /// Transform a not absolute MCExpr containing a reference to a GOT 2538 /// equivalent global, by a target specific GOT pc relative access to the 2539 /// final symbol. 2540 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2541 const Constant *BaseCst, 2542 uint64_t Offset) { 2543 // The global @foo below illustrates a global that uses a got equivalent. 2544 // 2545 // @bar = global i32 42 2546 // @gotequiv = private unnamed_addr constant i32* @bar 2547 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2548 // i64 ptrtoint (i32* @foo to i64)) 2549 // to i32) 2550 // 2551 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2552 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2553 // form: 2554 // 2555 // foo = cstexpr, where 2556 // cstexpr := <gotequiv> - "." + <cst> 2557 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2558 // 2559 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2560 // 2561 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2562 // gotpcrelcst := <offset from @foo base> + <cst> 2563 MCValue MV; 2564 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2565 return; 2566 const MCSymbolRefExpr *SymA = MV.getSymA(); 2567 if (!SymA) 2568 return; 2569 2570 // Check that GOT equivalent symbol is cached. 2571 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2572 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2573 return; 2574 2575 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2576 if (!BaseGV) 2577 return; 2578 2579 // Check for a valid base symbol 2580 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2581 const MCSymbolRefExpr *SymB = MV.getSymB(); 2582 2583 if (!SymB || BaseSym != &SymB->getSymbol()) 2584 return; 2585 2586 // Make sure to match: 2587 // 2588 // gotpcrelcst := <offset from @foo base> + <cst> 2589 // 2590 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2591 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2592 // if the target knows how to encode it. 2593 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2594 if (GOTPCRelCst < 0) 2595 return; 2596 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2597 return; 2598 2599 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2600 // 2601 // bar: 2602 // .long 42 2603 // gotequiv: 2604 // .quad bar 2605 // foo: 2606 // .long gotequiv - "." + <cst> 2607 // 2608 // is replaced by the target specific equivalent to: 2609 // 2610 // bar: 2611 // .long 42 2612 // foo: 2613 // .long bar@GOTPCREL+<gotpcrelcst> 2614 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2615 const GlobalVariable *GV = Result.first; 2616 int NumUses = (int)Result.second; 2617 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2618 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2619 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2620 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2621 2622 // Update GOT equivalent usage information 2623 --NumUses; 2624 if (NumUses >= 0) 2625 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2626 } 2627 2628 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2629 AsmPrinter &AP, const Constant *BaseCV, 2630 uint64_t Offset) { 2631 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2632 2633 // Globals with sub-elements such as combinations of arrays and structs 2634 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2635 // constant symbol base and the current position with BaseCV and Offset. 2636 if (!BaseCV && CV->hasOneUse()) 2637 BaseCV = dyn_cast<Constant>(CV->user_back()); 2638 2639 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2640 return AP.OutStreamer->EmitZeros(Size); 2641 2642 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2643 switch (Size) { 2644 case 1: 2645 case 2: 2646 case 4: 2647 case 8: 2648 if (AP.isVerbose()) 2649 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2650 CI->getZExtValue()); 2651 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2652 return; 2653 default: 2654 emitGlobalConstantLargeInt(CI, AP); 2655 return; 2656 } 2657 } 2658 2659 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2660 return emitGlobalConstantFP(CFP, AP); 2661 2662 if (isa<ConstantPointerNull>(CV)) { 2663 AP.OutStreamer->EmitIntValue(0, Size); 2664 return; 2665 } 2666 2667 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2668 return emitGlobalConstantDataSequential(DL, CDS, AP); 2669 2670 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2671 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2672 2673 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2674 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2675 2676 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2677 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2678 // vectors). 2679 if (CE->getOpcode() == Instruction::BitCast) 2680 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2681 2682 if (Size > 8) { 2683 // If the constant expression's size is greater than 64-bits, then we have 2684 // to emit the value in chunks. Try to constant fold the value and emit it 2685 // that way. 2686 Constant *New = ConstantFoldConstant(CE, DL); 2687 if (New && New != CE) 2688 return emitGlobalConstantImpl(DL, New, AP); 2689 } 2690 } 2691 2692 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2693 return emitGlobalConstantVector(DL, V, AP); 2694 2695 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2696 // thread the streamer with EmitValue. 2697 const MCExpr *ME = AP.lowerConstant(CV); 2698 2699 // Since lowerConstant already folded and got rid of all IR pointer and 2700 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2701 // directly. 2702 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2703 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2704 2705 AP.OutStreamer->EmitValue(ME, Size); 2706 } 2707 2708 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2709 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2710 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2711 if (Size) 2712 emitGlobalConstantImpl(DL, CV, *this); 2713 else if (MAI->hasSubsectionsViaSymbols()) { 2714 // If the global has zero size, emit a single byte so that two labels don't 2715 // look like they are at the same location. 2716 OutStreamer->EmitIntValue(0, 1); 2717 } 2718 } 2719 2720 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2721 // Target doesn't support this yet! 2722 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2723 } 2724 2725 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2726 if (Offset > 0) 2727 OS << '+' << Offset; 2728 else if (Offset < 0) 2729 OS << Offset; 2730 } 2731 2732 //===----------------------------------------------------------------------===// 2733 // Symbol Lowering Routines. 2734 //===----------------------------------------------------------------------===// 2735 2736 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2737 return OutContext.createTempSymbol(Name, true); 2738 } 2739 2740 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2741 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2742 } 2743 2744 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2745 return MMI->getAddrLabelSymbol(BB); 2746 } 2747 2748 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2749 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2750 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2751 const MachineConstantPoolEntry &CPE = 2752 MF->getConstantPool()->getConstants()[CPID]; 2753 if (!CPE.isMachineConstantPoolEntry()) { 2754 const DataLayout &DL = MF->getDataLayout(); 2755 SectionKind Kind = CPE.getSectionKind(&DL); 2756 const Constant *C = CPE.Val.ConstVal; 2757 unsigned Align = CPE.Alignment; 2758 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2759 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2760 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2761 if (Sym->isUndefined()) 2762 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2763 return Sym; 2764 } 2765 } 2766 } 2767 } 2768 2769 const DataLayout &DL = getDataLayout(); 2770 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2771 "CPI" + Twine(getFunctionNumber()) + "_" + 2772 Twine(CPID)); 2773 } 2774 2775 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2776 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2777 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2778 } 2779 2780 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2781 /// FIXME: privatize to AsmPrinter. 2782 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2783 const DataLayout &DL = getDataLayout(); 2784 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2785 Twine(getFunctionNumber()) + "_" + 2786 Twine(UID) + "_set_" + Twine(MBBID)); 2787 } 2788 2789 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2790 StringRef Suffix) const { 2791 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2792 } 2793 2794 /// Return the MCSymbol for the specified ExternalSymbol. 2795 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2796 SmallString<60> NameStr; 2797 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2798 return OutContext.getOrCreateSymbol(NameStr); 2799 } 2800 2801 /// PrintParentLoopComment - Print comments about parent loops of this one. 2802 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2803 unsigned FunctionNumber) { 2804 if (!Loop) return; 2805 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2806 OS.indent(Loop->getLoopDepth()*2) 2807 << "Parent Loop BB" << FunctionNumber << "_" 2808 << Loop->getHeader()->getNumber() 2809 << " Depth=" << Loop->getLoopDepth() << '\n'; 2810 } 2811 2812 /// PrintChildLoopComment - Print comments about child loops within 2813 /// the loop for this basic block, with nesting. 2814 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2815 unsigned FunctionNumber) { 2816 // Add child loop information 2817 for (const MachineLoop *CL : *Loop) { 2818 OS.indent(CL->getLoopDepth()*2) 2819 << "Child Loop BB" << FunctionNumber << "_" 2820 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2821 << '\n'; 2822 PrintChildLoopComment(OS, CL, FunctionNumber); 2823 } 2824 } 2825 2826 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2827 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2828 const MachineLoopInfo *LI, 2829 const AsmPrinter &AP) { 2830 // Add loop depth information 2831 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2832 if (!Loop) return; 2833 2834 MachineBasicBlock *Header = Loop->getHeader(); 2835 assert(Header && "No header for loop"); 2836 2837 // If this block is not a loop header, just print out what is the loop header 2838 // and return. 2839 if (Header != &MBB) { 2840 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2841 Twine(AP.getFunctionNumber())+"_" + 2842 Twine(Loop->getHeader()->getNumber())+ 2843 " Depth="+Twine(Loop->getLoopDepth())); 2844 return; 2845 } 2846 2847 // Otherwise, it is a loop header. Print out information about child and 2848 // parent loops. 2849 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2850 2851 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2852 2853 OS << "=>"; 2854 OS.indent(Loop->getLoopDepth()*2-2); 2855 2856 OS << "This "; 2857 if (Loop->empty()) 2858 OS << "Inner "; 2859 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2860 2861 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2862 } 2863 2864 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2865 MCCodePaddingContext &Context) const { 2866 assert(MF != nullptr && "Machine function must be valid"); 2867 Context.IsPaddingActive = !MF->hasInlineAsm() && 2868 !MF->getFunction().hasOptSize() && 2869 TM.getOptLevel() != CodeGenOpt::None; 2870 Context.IsBasicBlockReachableViaFallthrough = 2871 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2872 MBB.pred_end(); 2873 Context.IsBasicBlockReachableViaBranch = 2874 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2875 } 2876 2877 /// EmitBasicBlockStart - This method prints the label for the specified 2878 /// MachineBasicBlock, an alignment (if present) and a comment describing 2879 /// it if appropriate. 2880 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2881 // End the previous funclet and start a new one. 2882 if (MBB.isEHFuncletEntry()) { 2883 for (const HandlerInfo &HI : Handlers) { 2884 HI.Handler->endFunclet(); 2885 HI.Handler->beginFunclet(MBB); 2886 } 2887 } 2888 2889 // Emit an alignment directive for this block, if needed. 2890 if (unsigned Align = MBB.getAlignment()) 2891 EmitAlignment(Align); 2892 MCCodePaddingContext Context; 2893 setupCodePaddingContext(MBB, Context); 2894 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2895 2896 // If the block has its address taken, emit any labels that were used to 2897 // reference the block. It is possible that there is more than one label 2898 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2899 // the references were generated. 2900 if (MBB.hasAddressTaken()) { 2901 const BasicBlock *BB = MBB.getBasicBlock(); 2902 if (isVerbose()) 2903 OutStreamer->AddComment("Block address taken"); 2904 2905 // MBBs can have their address taken as part of CodeGen without having 2906 // their corresponding BB's address taken in IR 2907 if (BB->hasAddressTaken()) 2908 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2909 OutStreamer->EmitLabel(Sym); 2910 } 2911 2912 // Print some verbose block comments. 2913 if (isVerbose()) { 2914 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2915 if (BB->hasName()) { 2916 BB->printAsOperand(OutStreamer->GetCommentOS(), 2917 /*PrintType=*/false, BB->getModule()); 2918 OutStreamer->GetCommentOS() << '\n'; 2919 } 2920 } 2921 2922 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2923 emitBasicBlockLoopComments(MBB, MLI, *this); 2924 } 2925 2926 // Print the main label for the block. 2927 if (MBB.pred_empty() || 2928 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2929 !MBB.hasLabelMustBeEmitted())) { 2930 if (isVerbose()) { 2931 // NOTE: Want this comment at start of line, don't emit with AddComment. 2932 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2933 false); 2934 } 2935 } else { 2936 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2937 OutStreamer->AddComment("Label of block must be emitted"); 2938 OutStreamer->EmitLabel(MBB.getSymbol()); 2939 } 2940 } 2941 2942 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2943 MCCodePaddingContext Context; 2944 setupCodePaddingContext(MBB, Context); 2945 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2946 } 2947 2948 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2949 bool IsDefinition) const { 2950 MCSymbolAttr Attr = MCSA_Invalid; 2951 2952 switch (Visibility) { 2953 default: break; 2954 case GlobalValue::HiddenVisibility: 2955 if (IsDefinition) 2956 Attr = MAI->getHiddenVisibilityAttr(); 2957 else 2958 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2959 break; 2960 case GlobalValue::ProtectedVisibility: 2961 Attr = MAI->getProtectedVisibilityAttr(); 2962 break; 2963 } 2964 2965 if (Attr != MCSA_Invalid) 2966 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2967 } 2968 2969 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2970 /// exactly one predecessor and the control transfer mechanism between 2971 /// the predecessor and this block is a fall-through. 2972 bool AsmPrinter:: 2973 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2974 // If this is a landing pad, it isn't a fall through. If it has no preds, 2975 // then nothing falls through to it. 2976 if (MBB->isEHPad() || MBB->pred_empty()) 2977 return false; 2978 2979 // If there isn't exactly one predecessor, it can't be a fall through. 2980 if (MBB->pred_size() > 1) 2981 return false; 2982 2983 // The predecessor has to be immediately before this block. 2984 MachineBasicBlock *Pred = *MBB->pred_begin(); 2985 if (!Pred->isLayoutSuccessor(MBB)) 2986 return false; 2987 2988 // If the block is completely empty, then it definitely does fall through. 2989 if (Pred->empty()) 2990 return true; 2991 2992 // Check the terminators in the previous blocks 2993 for (const auto &MI : Pred->terminators()) { 2994 // If it is not a simple branch, we are in a table somewhere. 2995 if (!MI.isBranch() || MI.isIndirectBranch()) 2996 return false; 2997 2998 // If we are the operands of one of the branches, this is not a fall 2999 // through. Note that targets with delay slots will usually bundle 3000 // terminators with the delay slot instruction. 3001 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3002 if (OP->isJTI()) 3003 return false; 3004 if (OP->isMBB() && OP->getMBB() == MBB) 3005 return false; 3006 } 3007 } 3008 3009 return true; 3010 } 3011 3012 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3013 if (!S.usesMetadata()) 3014 return nullptr; 3015 3016 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3017 gcp_map_type::iterator GCPI = GCMap.find(&S); 3018 if (GCPI != GCMap.end()) 3019 return GCPI->second.get(); 3020 3021 auto Name = S.getName(); 3022 3023 for (GCMetadataPrinterRegistry::iterator 3024 I = GCMetadataPrinterRegistry::begin(), 3025 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3026 if (Name == I->getName()) { 3027 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3028 GMP->S = &S; 3029 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3030 return IterBool.first->second.get(); 3031 } 3032 3033 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3034 } 3035 3036 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3037 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3038 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3039 bool NeedsDefault = false; 3040 if (MI->begin() == MI->end()) 3041 // No GC strategy, use the default format. 3042 NeedsDefault = true; 3043 else 3044 for (auto &I : *MI) { 3045 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3046 if (MP->emitStackMaps(SM, *this)) 3047 continue; 3048 // The strategy doesn't have printer or doesn't emit custom stack maps. 3049 // Use the default format. 3050 NeedsDefault = true; 3051 } 3052 3053 if (NeedsDefault) 3054 SM.serializeToStackMapSection(); 3055 } 3056 3057 /// Pin vtable to this file. 3058 AsmPrinterHandler::~AsmPrinterHandler() = default; 3059 3060 void AsmPrinterHandler::markFunctionEnd() {} 3061 3062 // In the binary's "xray_instr_map" section, an array of these function entries 3063 // describes each instrumentation point. When XRay patches your code, the index 3064 // into this table will be given to your handler as a patch point identifier. 3065 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3066 const MCSymbol *CurrentFnSym) const { 3067 Out->EmitSymbolValue(Sled, Bytes); 3068 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3069 auto Kind8 = static_cast<uint8_t>(Kind); 3070 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3071 Out->EmitBinaryData( 3072 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3073 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3074 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3075 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3076 Out->EmitZeros(Padding); 3077 } 3078 3079 void AsmPrinter::emitXRayTable() { 3080 if (Sleds.empty()) 3081 return; 3082 3083 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3084 const Function &F = MF->getFunction(); 3085 MCSection *InstMap = nullptr; 3086 MCSection *FnSledIndex = nullptr; 3087 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3088 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3089 assert(Associated != nullptr); 3090 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3091 std::string GroupName; 3092 if (F.hasComdat()) { 3093 Flags |= ELF::SHF_GROUP; 3094 GroupName = F.getComdat()->getName(); 3095 } 3096 3097 auto UniqueID = ++XRayFnUniqueID; 3098 InstMap = 3099 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3100 GroupName, UniqueID, Associated); 3101 FnSledIndex = 3102 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3103 GroupName, UniqueID, Associated); 3104 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3105 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3106 SectionKind::getReadOnlyWithRel()); 3107 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3108 SectionKind::getReadOnlyWithRel()); 3109 } else { 3110 llvm_unreachable("Unsupported target"); 3111 } 3112 3113 auto WordSizeBytes = MAI->getCodePointerSize(); 3114 3115 // Now we switch to the instrumentation map section. Because this is done 3116 // per-function, we are able to create an index entry that will represent the 3117 // range of sleds associated with a function. 3118 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3119 OutStreamer->SwitchSection(InstMap); 3120 OutStreamer->EmitLabel(SledsStart); 3121 for (const auto &Sled : Sleds) 3122 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3123 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3124 OutStreamer->EmitLabel(SledsEnd); 3125 3126 // We then emit a single entry in the index per function. We use the symbols 3127 // that bound the instrumentation map as the range for a specific function. 3128 // Each entry here will be 2 * word size aligned, as we're writing down two 3129 // pointers. This should work for both 32-bit and 64-bit platforms. 3130 OutStreamer->SwitchSection(FnSledIndex); 3131 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3132 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3133 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3134 OutStreamer->SwitchSection(PrevSection); 3135 Sleds.clear(); 3136 } 3137 3138 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3139 SledKind Kind, uint8_t Version) { 3140 const Function &F = MI.getMF()->getFunction(); 3141 auto Attr = F.getFnAttribute("function-instrument"); 3142 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3143 bool AlwaysInstrument = 3144 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3145 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3146 Kind = SledKind::LOG_ARGS_ENTER; 3147 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3148 AlwaysInstrument, &F, Version}); 3149 } 3150 3151 uint16_t AsmPrinter::getDwarfVersion() const { 3152 return OutStreamer->getContext().getDwarfVersion(); 3153 } 3154 3155 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3156 OutStreamer->getContext().setDwarfVersion(Version); 3157 } 3158