1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCContext.h"
84 #include "llvm/MC/MCDirectives.h"
85 #include "llvm/MC/MCDwarf.h"
86 #include "llvm/MC/MCExpr.h"
87 #include "llvm/MC/MCInst.h"
88 #include "llvm/MC/MCSection.h"
89 #include "llvm/MC/MCSectionCOFF.h"
90 #include "llvm/MC/MCSectionELF.h"
91 #include "llvm/MC/MCSectionMachO.h"
92 #include "llvm/MC/MCSectionXCOFF.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCSymbolXCOFF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStreamer.h"
105 #include "llvm/Remarks/RemarkStringTable.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/Format.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/Path.h"
113 #include "llvm/Support/TargetRegistry.h"
114 #include "llvm/Support/Timer.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetLoweringObjectFile.h"
117 #include "llvm/Target/TargetMachine.h"
118 #include "llvm/Target/TargetOptions.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cinttypes>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <memory>
126 #include <string>
127 #include <utility>
128 #include <vector>
129 
130 using namespace llvm;
131 
132 #define DEBUG_TYPE "asm-printer"
133 
134 static const char *const DWARFGroupName = "dwarf";
135 static const char *const DWARFGroupDescription = "DWARF Emission";
136 static const char *const DbgTimerName = "emit";
137 static const char *const DbgTimerDescription = "Debug Info Emission";
138 static const char *const EHTimerName = "write_exception";
139 static const char *const EHTimerDescription = "DWARF Exception Writer";
140 static const char *const CFGuardName = "Control Flow Guard";
141 static const char *const CFGuardDescription = "Control Flow Guard";
142 static const char *const CodeViewLineTablesGroupName = "linetables";
143 static const char *const CodeViewLineTablesGroupDescription =
144   "CodeView Line Tables";
145 
146 STATISTIC(EmittedInsts, "Number of machine instrs printed");
147 
148 char AsmPrinter::ID = 0;
149 
150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
151 
152 static gcp_map_type &getGCMap(void *&P) {
153   if (!P)
154     P = new gcp_map_type();
155   return *(gcp_map_type*)P;
156 }
157 
158 /// getGVAlignment - Return the alignment to use for the specified global
159 /// value.  This rounds up to the preferred alignment if possible and legal.
160 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
161                                  Align InAlign) {
162   Align Alignment;
163   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
164     Alignment = DL.getPreferredAlign(GVar);
165 
166   // If InAlign is specified, round it to it.
167   if (InAlign > Alignment)
168     Alignment = InAlign;
169 
170   // If the GV has a specified alignment, take it into account.
171   const MaybeAlign GVAlign(GV->getAlignment());
172   if (!GVAlign)
173     return Alignment;
174 
175   assert(GVAlign && "GVAlign must be set");
176 
177   // If the GVAlign is larger than NumBits, or if we are required to obey
178   // NumBits because the GV has an assigned section, obey it.
179   if (*GVAlign > Alignment || GV->hasSection())
180     Alignment = *GVAlign;
181   return Alignment;
182 }
183 
184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
185     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
186       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
187   VerboseAsm = OutStreamer->isVerboseAsm();
188 }
189 
190 AsmPrinter::~AsmPrinter() {
191   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
192 
193   if (GCMetadataPrinters) {
194     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
195 
196     delete &GCMap;
197     GCMetadataPrinters = nullptr;
198   }
199 }
200 
201 bool AsmPrinter::isPositionIndependent() const {
202   return TM.isPositionIndependent();
203 }
204 
205 /// getFunctionNumber - Return a unique ID for the current function.
206 unsigned AsmPrinter::getFunctionNumber() const {
207   return MF->getFunctionNumber();
208 }
209 
210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
211   return *TM.getObjFileLowering();
212 }
213 
214 const DataLayout &AsmPrinter::getDataLayout() const {
215   return MMI->getModule()->getDataLayout();
216 }
217 
218 // Do not use the cached DataLayout because some client use it without a Module
219 // (dsymutil, llvm-dwarfdump).
220 unsigned AsmPrinter::getPointerSize() const {
221   return TM.getPointerSize(0); // FIXME: Default address space
222 }
223 
224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
225   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
226   return MF->getSubtarget<MCSubtargetInfo>();
227 }
228 
229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
230   S.emitInstruction(Inst, getSubtargetInfo());
231 }
232 
233 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
234   assert(DD && "Dwarf debug file is not defined.");
235   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
236   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
237 }
238 
239 /// getCurrentSection() - Return the current section we are emitting to.
240 const MCSection *AsmPrinter::getCurrentSection() const {
241   return OutStreamer->getCurrentSectionOnly();
242 }
243 
244 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
245   AU.setPreservesAll();
246   MachineFunctionPass::getAnalysisUsage(AU);
247   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
248   AU.addRequired<GCModuleInfo>();
249 }
250 
251 bool AsmPrinter::doInitialization(Module &M) {
252   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
253   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
254 
255   // Initialize TargetLoweringObjectFile.
256   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
257     .Initialize(OutContext, TM);
258 
259   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
260       .getModuleMetadata(M);
261 
262   OutStreamer->InitSections(false);
263 
264   // Emit the version-min deployment target directive if needed.
265   //
266   // FIXME: If we end up with a collection of these sorts of Darwin-specific
267   // or ELF-specific things, it may make sense to have a platform helper class
268   // that will work with the target helper class. For now keep it here, as the
269   // alternative is duplicated code in each of the target asm printers that
270   // use the directive, where it would need the same conditionalization
271   // anyway.
272   const Triple &Target = TM.getTargetTriple();
273   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
274 
275   // Allow the target to emit any magic that it wants at the start of the file.
276   emitStartOfAsmFile(M);
277 
278   // Very minimal debug info. It is ignored if we emit actual debug info. If we
279   // don't, this at least helps the user find where a global came from.
280   if (MAI->hasSingleParameterDotFile()) {
281     // .file "foo.c"
282     OutStreamer->emitFileDirective(
283         llvm::sys::path::filename(M.getSourceFileName()));
284   }
285 
286   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
287   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
288   for (auto &I : *MI)
289     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
290       MP->beginAssembly(M, *MI, *this);
291 
292   // Emit module-level inline asm if it exists.
293   if (!M.getModuleInlineAsm().empty()) {
294     // We're at the module level. Construct MCSubtarget from the default CPU
295     // and target triple.
296     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
297         TM.getTargetTriple().str(), TM.getTargetCPU(),
298         TM.getTargetFeatureString()));
299     OutStreamer->AddComment("Start of file scope inline assembly");
300     OutStreamer->AddBlankLine();
301     emitInlineAsm(M.getModuleInlineAsm() + "\n",
302                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
303     OutStreamer->AddComment("End of file scope inline assembly");
304     OutStreamer->AddBlankLine();
305   }
306 
307   if (MAI->doesSupportDebugInformation()) {
308     bool EmitCodeView = M.getCodeViewFlag();
309     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
310       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
311                             DbgTimerName, DbgTimerDescription,
312                             CodeViewLineTablesGroupName,
313                             CodeViewLineTablesGroupDescription);
314     }
315     if (!EmitCodeView || M.getDwarfVersion()) {
316       DD = new DwarfDebug(this, &M);
317       DD->beginModule();
318       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
319                             DbgTimerDescription, DWARFGroupName,
320                             DWARFGroupDescription);
321     }
322   }
323 
324   switch (MAI->getExceptionHandlingType()) {
325   case ExceptionHandling::SjLj:
326   case ExceptionHandling::DwarfCFI:
327   case ExceptionHandling::ARM:
328     isCFIMoveForDebugging = true;
329     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
330       break;
331     for (auto &F: M.getFunctionList()) {
332       // If the module contains any function with unwind data,
333       // .eh_frame has to be emitted.
334       // Ignore functions that won't get emitted.
335       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
336         isCFIMoveForDebugging = false;
337         break;
338       }
339     }
340     break;
341   default:
342     isCFIMoveForDebugging = false;
343     break;
344   }
345 
346   EHStreamer *ES = nullptr;
347   switch (MAI->getExceptionHandlingType()) {
348   case ExceptionHandling::None:
349     break;
350   case ExceptionHandling::SjLj:
351   case ExceptionHandling::DwarfCFI:
352     ES = new DwarfCFIException(this);
353     break;
354   case ExceptionHandling::ARM:
355     ES = new ARMException(this);
356     break;
357   case ExceptionHandling::WinEH:
358     switch (MAI->getWinEHEncodingType()) {
359     default: llvm_unreachable("unsupported unwinding information encoding");
360     case WinEH::EncodingType::Invalid:
361       break;
362     case WinEH::EncodingType::X86:
363     case WinEH::EncodingType::Itanium:
364       ES = new WinException(this);
365       break;
366     }
367     break;
368   case ExceptionHandling::Wasm:
369     ES = new WasmException(this);
370     break;
371   }
372   if (ES)
373     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
374                           EHTimerDescription, DWARFGroupName,
375                           DWARFGroupDescription);
376 
377   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
378   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
379     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
380                           CFGuardDescription, DWARFGroupName,
381                           DWARFGroupDescription);
382   return false;
383 }
384 
385 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
386   if (!MAI.hasWeakDefCanBeHiddenDirective())
387     return false;
388 
389   return GV->canBeOmittedFromSymbolTable();
390 }
391 
392 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
393   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
394   switch (Linkage) {
395   case GlobalValue::CommonLinkage:
396   case GlobalValue::LinkOnceAnyLinkage:
397   case GlobalValue::LinkOnceODRLinkage:
398   case GlobalValue::WeakAnyLinkage:
399   case GlobalValue::WeakODRLinkage:
400     if (MAI->hasWeakDefDirective()) {
401       // .globl _foo
402       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
403 
404       if (!canBeHidden(GV, *MAI))
405         // .weak_definition _foo
406         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
407       else
408         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
409     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
410       // .globl _foo
411       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
412       //NOTE: linkonce is handled by the section the symbol was assigned to.
413     } else {
414       // .weak _foo
415       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
416     }
417     return;
418   case GlobalValue::ExternalLinkage:
419     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
420     return;
421   case GlobalValue::PrivateLinkage:
422   case GlobalValue::InternalLinkage:
423     return;
424   case GlobalValue::ExternalWeakLinkage:
425   case GlobalValue::AvailableExternallyLinkage:
426   case GlobalValue::AppendingLinkage:
427     llvm_unreachable("Should never emit this");
428   }
429   llvm_unreachable("Unknown linkage type!");
430 }
431 
432 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
433                                    const GlobalValue *GV) const {
434   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
435 }
436 
437 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
438   return TM.getSymbol(GV);
439 }
440 
441 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
442   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
443   // exact definion (intersection of GlobalValue::hasExactDefinition() and
444   // !isInterposable()). These linkages include: external, appending, internal,
445   // private. It may be profitable to use a local alias for external. The
446   // assembler would otherwise be conservative and assume a global default
447   // visibility symbol can be interposable, even if the code generator already
448   // assumed it.
449   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
450     const Module &M = *GV.getParent();
451     if (TM.getRelocationModel() != Reloc::Static &&
452         M.getPIELevel() == PIELevel::Default)
453       if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() &&
454                               GV.getParent()->noSemanticInterposition()))
455         return getSymbolWithGlobalValueBase(&GV, "$local");
456   }
457   return TM.getSymbol(&GV);
458 }
459 
460 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
461 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
462   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
463   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
464          "No emulated TLS variables in the common section");
465 
466   // Never emit TLS variable xyz in emulated TLS model.
467   // The initialization value is in __emutls_t.xyz instead of xyz.
468   if (IsEmuTLSVar)
469     return;
470 
471   if (GV->hasInitializer()) {
472     // Check to see if this is a special global used by LLVM, if so, emit it.
473     if (emitSpecialLLVMGlobal(GV))
474       return;
475 
476     // Skip the emission of global equivalents. The symbol can be emitted later
477     // on by emitGlobalGOTEquivs in case it turns out to be needed.
478     if (GlobalGOTEquivs.count(getSymbol(GV)))
479       return;
480 
481     if (isVerbose()) {
482       // When printing the control variable __emutls_v.*,
483       // we don't need to print the original TLS variable name.
484       GV->printAsOperand(OutStreamer->GetCommentOS(),
485                      /*PrintType=*/false, GV->getParent());
486       OutStreamer->GetCommentOS() << '\n';
487     }
488   }
489 
490   MCSymbol *GVSym = getSymbol(GV);
491   MCSymbol *EmittedSym = GVSym;
492 
493   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
494   // attributes.
495   // GV's or GVSym's attributes will be used for the EmittedSym.
496   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
497 
498   if (!GV->hasInitializer())   // External globals require no extra code.
499     return;
500 
501   GVSym->redefineIfPossible();
502   if (GVSym->isDefined() || GVSym->isVariable())
503     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
504                        "' is already defined");
505 
506   if (MAI->hasDotTypeDotSizeDirective())
507     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
508 
509   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
510 
511   const DataLayout &DL = GV->getParent()->getDataLayout();
512   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
513 
514   // If the alignment is specified, we *must* obey it.  Overaligning a global
515   // with a specified alignment is a prompt way to break globals emitted to
516   // sections and expected to be contiguous (e.g. ObjC metadata).
517   const Align Alignment = getGVAlignment(GV, DL);
518 
519   for (const HandlerInfo &HI : Handlers) {
520     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
521                        HI.TimerGroupName, HI.TimerGroupDescription,
522                        TimePassesIsEnabled);
523     HI.Handler->setSymbolSize(GVSym, Size);
524   }
525 
526   // Handle common symbols
527   if (GVKind.isCommon()) {
528     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
529     // .comm _foo, 42, 4
530     const bool SupportsAlignment =
531         getObjFileLowering().getCommDirectiveSupportsAlignment();
532     OutStreamer->emitCommonSymbol(GVSym, Size,
533                                   SupportsAlignment ? Alignment.value() : 0);
534     return;
535   }
536 
537   // Determine to which section this global should be emitted.
538   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
539 
540   // If we have a bss global going to a section that supports the
541   // zerofill directive, do so here.
542   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
543       TheSection->isVirtualSection()) {
544     if (Size == 0)
545       Size = 1; // zerofill of 0 bytes is undefined.
546     emitLinkage(GV, GVSym);
547     // .zerofill __DATA, __bss, _foo, 400, 5
548     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
549     return;
550   }
551 
552   // If this is a BSS local symbol and we are emitting in the BSS
553   // section use .lcomm/.comm directive.
554   if (GVKind.isBSSLocal() &&
555       getObjFileLowering().getBSSSection() == TheSection) {
556     if (Size == 0)
557       Size = 1; // .comm Foo, 0 is undefined, avoid it.
558 
559     // Use .lcomm only if it supports user-specified alignment.
560     // Otherwise, while it would still be correct to use .lcomm in some
561     // cases (e.g. when Align == 1), the external assembler might enfore
562     // some -unknown- default alignment behavior, which could cause
563     // spurious differences between external and integrated assembler.
564     // Prefer to simply fall back to .local / .comm in this case.
565     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
566       // .lcomm _foo, 42
567       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
568       return;
569     }
570 
571     // .local _foo
572     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
573     // .comm _foo, 42, 4
574     const bool SupportsAlignment =
575         getObjFileLowering().getCommDirectiveSupportsAlignment();
576     OutStreamer->emitCommonSymbol(GVSym, Size,
577                                   SupportsAlignment ? Alignment.value() : 0);
578     return;
579   }
580 
581   // Handle thread local data for mach-o which requires us to output an
582   // additional structure of data and mangle the original symbol so that we
583   // can reference it later.
584   //
585   // TODO: This should become an "emit thread local global" method on TLOF.
586   // All of this macho specific stuff should be sunk down into TLOFMachO and
587   // stuff like "TLSExtraDataSection" should no longer be part of the parent
588   // TLOF class.  This will also make it more obvious that stuff like
589   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
590   // specific code.
591   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
592     // Emit the .tbss symbol
593     MCSymbol *MangSym =
594         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
595 
596     if (GVKind.isThreadBSS()) {
597       TheSection = getObjFileLowering().getTLSBSSSection();
598       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
599     } else if (GVKind.isThreadData()) {
600       OutStreamer->SwitchSection(TheSection);
601 
602       emitAlignment(Alignment, GV);
603       OutStreamer->emitLabel(MangSym);
604 
605       emitGlobalConstant(GV->getParent()->getDataLayout(),
606                          GV->getInitializer());
607     }
608 
609     OutStreamer->AddBlankLine();
610 
611     // Emit the variable struct for the runtime.
612     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
613 
614     OutStreamer->SwitchSection(TLVSect);
615     // Emit the linkage here.
616     emitLinkage(GV, GVSym);
617     OutStreamer->emitLabel(GVSym);
618 
619     // Three pointers in size:
620     //   - __tlv_bootstrap - used to make sure support exists
621     //   - spare pointer, used when mapped by the runtime
622     //   - pointer to mangled symbol above with initializer
623     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
624     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
625                                 PtrSize);
626     OutStreamer->emitIntValue(0, PtrSize);
627     OutStreamer->emitSymbolValue(MangSym, PtrSize);
628 
629     OutStreamer->AddBlankLine();
630     return;
631   }
632 
633   MCSymbol *EmittedInitSym = GVSym;
634 
635   OutStreamer->SwitchSection(TheSection);
636 
637   emitLinkage(GV, EmittedInitSym);
638   emitAlignment(Alignment, GV);
639 
640   OutStreamer->emitLabel(EmittedInitSym);
641   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
642   if (LocalAlias != EmittedInitSym)
643     OutStreamer->emitLabel(LocalAlias);
644 
645   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
646 
647   if (MAI->hasDotTypeDotSizeDirective())
648     // .size foo, 42
649     OutStreamer->emitELFSize(EmittedInitSym,
650                              MCConstantExpr::create(Size, OutContext));
651 
652   OutStreamer->AddBlankLine();
653 }
654 
655 /// Emit the directive and value for debug thread local expression
656 ///
657 /// \p Value - The value to emit.
658 /// \p Size - The size of the integer (in bytes) to emit.
659 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
660   OutStreamer->emitValue(Value, Size);
661 }
662 
663 void AsmPrinter::emitFunctionHeaderComment() {}
664 
665 /// EmitFunctionHeader - This method emits the header for the current
666 /// function.
667 void AsmPrinter::emitFunctionHeader() {
668   const Function &F = MF->getFunction();
669 
670   if (isVerbose())
671     OutStreamer->GetCommentOS()
672         << "-- Begin function "
673         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
674 
675   // Print out constants referenced by the function
676   emitConstantPool();
677 
678   // Print the 'header' of function.
679   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
680   OutStreamer->SwitchSection(MF->getSection());
681 
682   if (!MAI->hasVisibilityOnlyWithLinkage())
683     emitVisibility(CurrentFnSym, F.getVisibility());
684 
685   if (MAI->needsFunctionDescriptors())
686     emitLinkage(&F, CurrentFnDescSym);
687 
688   emitLinkage(&F, CurrentFnSym);
689   if (MAI->hasFunctionAlignment())
690     emitAlignment(MF->getAlignment(), &F);
691 
692   if (MAI->hasDotTypeDotSizeDirective())
693     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
694 
695   if (F.hasFnAttribute(Attribute::Cold))
696     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
697 
698   if (isVerbose()) {
699     F.printAsOperand(OutStreamer->GetCommentOS(),
700                    /*PrintType=*/false, F.getParent());
701     emitFunctionHeaderComment();
702     OutStreamer->GetCommentOS() << '\n';
703   }
704 
705   // Emit the prefix data.
706   if (F.hasPrefixData()) {
707     if (MAI->hasSubsectionsViaSymbols()) {
708       // Preserving prefix data on platforms which use subsections-via-symbols
709       // is a bit tricky. Here we introduce a symbol for the prefix data
710       // and use the .alt_entry attribute to mark the function's real entry point
711       // as an alternative entry point to the prefix-data symbol.
712       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
713       OutStreamer->emitLabel(PrefixSym);
714 
715       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
716 
717       // Emit an .alt_entry directive for the actual function symbol.
718       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
719     } else {
720       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
721     }
722   }
723 
724   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
725   // place prefix data before NOPs.
726   unsigned PatchableFunctionPrefix = 0;
727   unsigned PatchableFunctionEntry = 0;
728   (void)F.getFnAttribute("patchable-function-prefix")
729       .getValueAsString()
730       .getAsInteger(10, PatchableFunctionPrefix);
731   (void)F.getFnAttribute("patchable-function-entry")
732       .getValueAsString()
733       .getAsInteger(10, PatchableFunctionEntry);
734   if (PatchableFunctionPrefix) {
735     CurrentPatchableFunctionEntrySym =
736         OutContext.createLinkerPrivateTempSymbol();
737     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
738     emitNops(PatchableFunctionPrefix);
739   } else if (PatchableFunctionEntry) {
740     // May be reassigned when emitting the body, to reference the label after
741     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
742     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
743   }
744 
745   // Emit the function descriptor. This is a virtual function to allow targets
746   // to emit their specific function descriptor. Right now it is only used by
747   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
748   // descriptors and should be converted to use this hook as well.
749   if (MAI->needsFunctionDescriptors())
750     emitFunctionDescriptor();
751 
752   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
753   // their wild and crazy things as required.
754   emitFunctionEntryLabel();
755 
756   if (CurrentFnBegin) {
757     if (MAI->useAssignmentForEHBegin()) {
758       MCSymbol *CurPos = OutContext.createTempSymbol();
759       OutStreamer->emitLabel(CurPos);
760       OutStreamer->emitAssignment(CurrentFnBegin,
761                                  MCSymbolRefExpr::create(CurPos, OutContext));
762     } else {
763       OutStreamer->emitLabel(CurrentFnBegin);
764     }
765   }
766 
767   // Emit pre-function debug and/or EH information.
768   for (const HandlerInfo &HI : Handlers) {
769     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
770                        HI.TimerGroupDescription, TimePassesIsEnabled);
771     HI.Handler->beginFunction(MF);
772   }
773 
774   // Emit the prologue data.
775   if (F.hasPrologueData())
776     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
777 }
778 
779 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
780 /// function.  This can be overridden by targets as required to do custom stuff.
781 void AsmPrinter::emitFunctionEntryLabel() {
782   CurrentFnSym->redefineIfPossible();
783 
784   // The function label could have already been emitted if two symbols end up
785   // conflicting due to asm renaming.  Detect this and emit an error.
786   if (CurrentFnSym->isVariable())
787     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
788                        "' is a protected alias");
789   if (CurrentFnSym->isDefined())
790     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
791                        "' label emitted multiple times to assembly file");
792 
793   OutStreamer->emitLabel(CurrentFnSym);
794 
795   if (TM.getTargetTriple().isOSBinFormatELF()) {
796     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
797     if (Sym != CurrentFnSym)
798       OutStreamer->emitLabel(Sym);
799   }
800 }
801 
802 /// emitComments - Pretty-print comments for instructions.
803 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
804   const MachineFunction *MF = MI.getMF();
805   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
806 
807   // Check for spills and reloads
808 
809   // We assume a single instruction only has a spill or reload, not
810   // both.
811   Optional<unsigned> Size;
812   if ((Size = MI.getRestoreSize(TII))) {
813     CommentOS << *Size << "-byte Reload\n";
814   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
815     if (*Size)
816       CommentOS << *Size << "-byte Folded Reload\n";
817   } else if ((Size = MI.getSpillSize(TII))) {
818     CommentOS << *Size << "-byte Spill\n";
819   } else if ((Size = MI.getFoldedSpillSize(TII))) {
820     if (*Size)
821       CommentOS << *Size << "-byte Folded Spill\n";
822   }
823 
824   // Check for spill-induced copies
825   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
826     CommentOS << " Reload Reuse\n";
827 }
828 
829 /// emitImplicitDef - This method emits the specified machine instruction
830 /// that is an implicit def.
831 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
832   Register RegNo = MI->getOperand(0).getReg();
833 
834   SmallString<128> Str;
835   raw_svector_ostream OS(Str);
836   OS << "implicit-def: "
837      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
838 
839   OutStreamer->AddComment(OS.str());
840   OutStreamer->AddBlankLine();
841 }
842 
843 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
844   std::string Str;
845   raw_string_ostream OS(Str);
846   OS << "kill:";
847   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
848     const MachineOperand &Op = MI->getOperand(i);
849     assert(Op.isReg() && "KILL instruction must have only register operands");
850     OS << ' ' << (Op.isDef() ? "def " : "killed ")
851        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
852   }
853   AP.OutStreamer->AddComment(OS.str());
854   AP.OutStreamer->AddBlankLine();
855 }
856 
857 /// emitDebugValueComment - This method handles the target-independent form
858 /// of DBG_VALUE, returning true if it was able to do so.  A false return
859 /// means the target will need to handle MI in EmitInstruction.
860 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
861   // This code handles only the 4-operand target-independent form.
862   if (MI->getNumOperands() != 4)
863     return false;
864 
865   SmallString<128> Str;
866   raw_svector_ostream OS(Str);
867   OS << "DEBUG_VALUE: ";
868 
869   const DILocalVariable *V = MI->getDebugVariable();
870   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
871     StringRef Name = SP->getName();
872     if (!Name.empty())
873       OS << Name << ":";
874   }
875   OS << V->getName();
876   OS << " <- ";
877 
878   // The second operand is only an offset if it's an immediate.
879   bool MemLoc = MI->isIndirectDebugValue();
880   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
881   const DIExpression *Expr = MI->getDebugExpression();
882   if (Expr->getNumElements()) {
883     OS << '[';
884     bool NeedSep = false;
885     for (auto Op : Expr->expr_ops()) {
886       if (NeedSep)
887         OS << ", ";
888       else
889         NeedSep = true;
890       OS << dwarf::OperationEncodingString(Op.getOp());
891       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
892         OS << ' ' << Op.getArg(I);
893     }
894     OS << "] ";
895   }
896 
897   // Register or immediate value. Register 0 means undef.
898   if (MI->getDebugOperand(0).isFPImm()) {
899     APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
900     if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
901       OS << (double)APF.convertToFloat();
902     } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
903       OS << APF.convertToDouble();
904     } else {
905       // There is no good way to print long double.  Convert a copy to
906       // double.  Ah well, it's only a comment.
907       bool ignored;
908       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
909                   &ignored);
910       OS << "(long double) " << APF.convertToDouble();
911     }
912   } else if (MI->getDebugOperand(0).isImm()) {
913     OS << MI->getDebugOperand(0).getImm();
914   } else if (MI->getDebugOperand(0).isCImm()) {
915     MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
916   } else if (MI->getDebugOperand(0).isTargetIndex()) {
917     auto Op = MI->getDebugOperand(0);
918     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
919     return true;
920   } else {
921     Register Reg;
922     if (MI->getDebugOperand(0).isReg()) {
923       Reg = MI->getDebugOperand(0).getReg();
924     } else {
925       assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
926       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
927       Offset += TFI->getFrameIndexReference(
928           *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
929       MemLoc = true;
930     }
931     if (Reg == 0) {
932       // Suppress offset, it is not meaningful here.
933       OS << "undef";
934       // NOTE: Want this comment at start of line, don't emit with AddComment.
935       AP.OutStreamer->emitRawComment(OS.str());
936       return true;
937     }
938     if (MemLoc)
939       OS << '[';
940     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
941   }
942 
943   if (MemLoc)
944     OS << '+' << Offset << ']';
945 
946   // NOTE: Want this comment at start of line, don't emit with AddComment.
947   AP.OutStreamer->emitRawComment(OS.str());
948   return true;
949 }
950 
951 /// This method handles the target-independent form of DBG_LABEL, returning
952 /// true if it was able to do so.  A false return means the target will need
953 /// to handle MI in EmitInstruction.
954 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
955   if (MI->getNumOperands() != 1)
956     return false;
957 
958   SmallString<128> Str;
959   raw_svector_ostream OS(Str);
960   OS << "DEBUG_LABEL: ";
961 
962   const DILabel *V = MI->getDebugLabel();
963   if (auto *SP = dyn_cast<DISubprogram>(
964           V->getScope()->getNonLexicalBlockFileScope())) {
965     StringRef Name = SP->getName();
966     if (!Name.empty())
967       OS << Name << ":";
968   }
969   OS << V->getName();
970 
971   // NOTE: Want this comment at start of line, don't emit with AddComment.
972   AP.OutStreamer->emitRawComment(OS.str());
973   return true;
974 }
975 
976 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
977   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
978       MF->getFunction().needsUnwindTableEntry())
979     return CFI_M_EH;
980 
981   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
982     return CFI_M_Debug;
983 
984   return CFI_M_None;
985 }
986 
987 bool AsmPrinter::needsSEHMoves() {
988   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
989 }
990 
991 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
992   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
993   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
994       ExceptionHandlingType != ExceptionHandling::ARM)
995     return;
996 
997   if (needsCFIMoves() == CFI_M_None)
998     return;
999 
1000   // If there is no "real" instruction following this CFI instruction, skip
1001   // emitting it; it would be beyond the end of the function's FDE range.
1002   auto *MBB = MI.getParent();
1003   auto I = std::next(MI.getIterator());
1004   while (I != MBB->end() && I->isTransient())
1005     ++I;
1006   if (I == MBB->instr_end() &&
1007       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1008     return;
1009 
1010   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1011   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1012   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1013   emitCFIInstruction(CFI);
1014 }
1015 
1016 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1017   // The operands are the MCSymbol and the frame offset of the allocation.
1018   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1019   int FrameOffset = MI.getOperand(1).getImm();
1020 
1021   // Emit a symbol assignment.
1022   OutStreamer->emitAssignment(FrameAllocSym,
1023                              MCConstantExpr::create(FrameOffset, OutContext));
1024 }
1025 
1026 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1027 /// given basic block. This can be used to capture more precise profile
1028 /// information. We use the last 3 bits (LSBs) to ecnode the following
1029 /// information:
1030 ///  * (1): set if return block (ret or tail call).
1031 ///  * (2): set if ends with a tail call.
1032 ///  * (3): set if exception handling (EH) landing pad.
1033 /// The remaining bits are zero.
1034 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1035   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1036   return ((unsigned)MBB.isReturnBlock()) |
1037          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1038          (MBB.isEHPad() << 2);
1039 }
1040 
1041 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1042   MCSection *BBAddrMapSection =
1043       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1044   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1045 
1046   const MCSymbol *FunctionSymbol = getFunctionBegin();
1047 
1048   OutStreamer->PushSection();
1049   OutStreamer->SwitchSection(BBAddrMapSection);
1050   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1051   // Emit the total number of basic blocks in this function.
1052   OutStreamer->emitULEB128IntValue(MF.size());
1053   // Emit BB Information for each basic block in the funciton.
1054   for (const MachineBasicBlock &MBB : MF) {
1055     const MCSymbol *MBBSymbol =
1056         MBB.pred_empty() ? FunctionSymbol : MBB.getSymbol();
1057     // Emit the basic block offset.
1058     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1059     // Emit the basic block size. When BBs have alignments, their size cannot
1060     // always be computed from their offsets.
1061     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1062     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1063   }
1064   OutStreamer->PopSection();
1065 }
1066 
1067 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1068   if (!MF.getTarget().Options.EmitStackSizeSection)
1069     return;
1070 
1071   MCSection *StackSizeSection =
1072       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1073   if (!StackSizeSection)
1074     return;
1075 
1076   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1077   // Don't emit functions with dynamic stack allocations.
1078   if (FrameInfo.hasVarSizedObjects())
1079     return;
1080 
1081   OutStreamer->PushSection();
1082   OutStreamer->SwitchSection(StackSizeSection);
1083 
1084   const MCSymbol *FunctionSymbol = getFunctionBegin();
1085   uint64_t StackSize = FrameInfo.getStackSize();
1086   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1087   OutStreamer->emitULEB128IntValue(StackSize);
1088 
1089   OutStreamer->PopSection();
1090 }
1091 
1092 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1093   MachineModuleInfo &MMI = MF.getMMI();
1094   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1095     return true;
1096 
1097   // We might emit an EH table that uses function begin and end labels even if
1098   // we don't have any landingpads.
1099   if (!MF.getFunction().hasPersonalityFn())
1100     return false;
1101   return !isNoOpWithoutInvoke(
1102       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1103 }
1104 
1105 /// EmitFunctionBody - This method emits the body and trailer for a
1106 /// function.
1107 void AsmPrinter::emitFunctionBody() {
1108   emitFunctionHeader();
1109 
1110   // Emit target-specific gunk before the function body.
1111   emitFunctionBodyStart();
1112 
1113   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1114 
1115   if (isVerbose()) {
1116     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1117     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1118     if (!MDT) {
1119       OwnedMDT = std::make_unique<MachineDominatorTree>();
1120       OwnedMDT->getBase().recalculate(*MF);
1121       MDT = OwnedMDT.get();
1122     }
1123 
1124     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1125     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1126     if (!MLI) {
1127       OwnedMLI = std::make_unique<MachineLoopInfo>();
1128       OwnedMLI->getBase().analyze(MDT->getBase());
1129       MLI = OwnedMLI.get();
1130     }
1131   }
1132 
1133   // Print out code for the function.
1134   bool HasAnyRealCode = false;
1135   int NumInstsInFunction = 0;
1136 
1137   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1138   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1139   for (auto &MBB : *MF) {
1140     // Print a label for the basic block.
1141     emitBasicBlockStart(MBB);
1142     DenseMap<unsigned, unsigned> OpcodeCounts;
1143     for (auto &MI : MBB) {
1144       // Print the assembly for the instruction.
1145       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1146           !MI.isDebugInstr()) {
1147         HasAnyRealCode = true;
1148         ++NumInstsInFunction;
1149       }
1150 
1151       // If there is a pre-instruction symbol, emit a label for it here.
1152       if (MCSymbol *S = MI.getPreInstrSymbol())
1153         OutStreamer->emitLabel(S);
1154 
1155       if (ShouldPrintDebugScopes) {
1156         for (const HandlerInfo &HI : Handlers) {
1157           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1158                              HI.TimerGroupName, HI.TimerGroupDescription,
1159                              TimePassesIsEnabled);
1160           HI.Handler->beginInstruction(&MI);
1161         }
1162       }
1163 
1164       if (isVerbose())
1165         emitComments(MI, OutStreamer->GetCommentOS());
1166 
1167       switch (MI.getOpcode()) {
1168       case TargetOpcode::CFI_INSTRUCTION:
1169         emitCFIInstruction(MI);
1170         break;
1171       case TargetOpcode::LOCAL_ESCAPE:
1172         emitFrameAlloc(MI);
1173         break;
1174       case TargetOpcode::ANNOTATION_LABEL:
1175       case TargetOpcode::EH_LABEL:
1176       case TargetOpcode::GC_LABEL:
1177         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1178         break;
1179       case TargetOpcode::INLINEASM:
1180       case TargetOpcode::INLINEASM_BR:
1181         emitInlineAsm(&MI);
1182         break;
1183       case TargetOpcode::DBG_VALUE:
1184         if (isVerbose()) {
1185           if (!emitDebugValueComment(&MI, *this))
1186             emitInstruction(&MI);
1187         }
1188         break;
1189       case TargetOpcode::DBG_INSTR_REF:
1190         // This instruction reference will have been resolved to a machine
1191         // location, and a nearby DBG_VALUE created. We can safely ignore
1192         // the instruction reference.
1193         break;
1194       case TargetOpcode::DBG_LABEL:
1195         if (isVerbose()) {
1196           if (!emitDebugLabelComment(&MI, *this))
1197             emitInstruction(&MI);
1198         }
1199         break;
1200       case TargetOpcode::IMPLICIT_DEF:
1201         if (isVerbose()) emitImplicitDef(&MI);
1202         break;
1203       case TargetOpcode::KILL:
1204         if (isVerbose()) emitKill(&MI, *this);
1205         break;
1206       default:
1207         emitInstruction(&MI);
1208         if (CanDoExtraAnalysis) {
1209           auto I = OpcodeCounts.insert({MI.getOpcode(), 0u});
1210           I.first->second++;
1211         }
1212         break;
1213       }
1214 
1215       // If there is a post-instruction symbol, emit a label for it here.
1216       if (MCSymbol *S = MI.getPostInstrSymbol())
1217         OutStreamer->emitLabel(S);
1218 
1219       if (ShouldPrintDebugScopes) {
1220         for (const HandlerInfo &HI : Handlers) {
1221           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1222                              HI.TimerGroupName, HI.TimerGroupDescription,
1223                              TimePassesIsEnabled);
1224           HI.Handler->endInstruction();
1225         }
1226       }
1227     }
1228 
1229     // We must emit temporary symbol for the end of this basic block, if either
1230     // we have BBLabels enabled or if this basic blocks marks the end of a
1231     // section (except the section containing the entry basic block as the end
1232     // symbol for that section is CurrentFnEnd).
1233     if (MF->hasBBLabels() ||
1234         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1235          !MBB.sameSection(&MF->front())))
1236       OutStreamer->emitLabel(MBB.getEndSymbol());
1237 
1238     if (MBB.isEndSection()) {
1239       // The size directive for the section containing the entry block is
1240       // handled separately by the function section.
1241       if (!MBB.sameSection(&MF->front())) {
1242         if (MAI->hasDotTypeDotSizeDirective()) {
1243           // Emit the size directive for the basic block section.
1244           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1245               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1246               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1247               OutContext);
1248           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1249         }
1250         MBBSectionRanges[MBB.getSectionIDNum()] =
1251             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1252       }
1253     }
1254     emitBasicBlockEnd(MBB);
1255 
1256     if (CanDoExtraAnalysis) {
1257       // Skip empty blocks.
1258       if (MBB.empty())
1259         continue;
1260 
1261       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1262                                           MBB.begin()->getDebugLoc(), &MBB);
1263 
1264       // Generate instruction mix remark. First, convert opcodes to string
1265       // names, then sort them in descending order by count and name.
1266       SmallVector<std::pair<std::string, unsigned>, 128> OpcodeCountsVec;
1267       for (auto &KV : OpcodeCounts) {
1268         auto Name = (Twine("INST_") + TII->getName(KV.first)).str();
1269         OpcodeCountsVec.emplace_back(Name, KV.second);
1270       }
1271       sort(OpcodeCountsVec, [](const std::pair<std::string, unsigned> &A,
1272                                const std::pair<std::string, unsigned> &B) {
1273         if (A.second > B.second)
1274           return true;
1275         if (A.second == B.second)
1276           return A.first < B.first;
1277         return false;
1278       });
1279       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1280       for (auto &KV : OpcodeCountsVec)
1281         R << KV.first << ": " << ore::NV(KV.first, KV.second) << "\n";
1282       ORE->emit(R);
1283     }
1284   }
1285 
1286   EmittedInsts += NumInstsInFunction;
1287   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1288                                       MF->getFunction().getSubprogram(),
1289                                       &MF->front());
1290   R << ore::NV("NumInstructions", NumInstsInFunction)
1291     << " instructions in function";
1292   ORE->emit(R);
1293 
1294   // If the function is empty and the object file uses .subsections_via_symbols,
1295   // then we need to emit *something* to the function body to prevent the
1296   // labels from collapsing together.  Just emit a noop.
1297   // Similarly, don't emit empty functions on Windows either. It can lead to
1298   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1299   // after linking, causing the kernel not to load the binary:
1300   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1301   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1302   const Triple &TT = TM.getTargetTriple();
1303   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1304                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1305     MCInst Noop;
1306     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1307 
1308     // Targets can opt-out of emitting the noop here by leaving the opcode
1309     // unspecified.
1310     if (Noop.getOpcode()) {
1311       OutStreamer->AddComment("avoids zero-length function");
1312       emitNops(1);
1313     }
1314   }
1315 
1316   // Switch to the original section in case basic block sections was used.
1317   OutStreamer->SwitchSection(MF->getSection());
1318 
1319   const Function &F = MF->getFunction();
1320   for (const auto &BB : F) {
1321     if (!BB.hasAddressTaken())
1322       continue;
1323     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1324     if (Sym->isDefined())
1325       continue;
1326     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1327     OutStreamer->emitLabel(Sym);
1328   }
1329 
1330   // Emit target-specific gunk after the function body.
1331   emitFunctionBodyEnd();
1332 
1333   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1334       MAI->hasDotTypeDotSizeDirective()) {
1335     // Create a symbol for the end of function.
1336     CurrentFnEnd = createTempSymbol("func_end");
1337     OutStreamer->emitLabel(CurrentFnEnd);
1338   }
1339 
1340   // If the target wants a .size directive for the size of the function, emit
1341   // it.
1342   if (MAI->hasDotTypeDotSizeDirective()) {
1343     // We can get the size as difference between the function label and the
1344     // temp label.
1345     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1346         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1347         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1348     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1349   }
1350 
1351   for (const HandlerInfo &HI : Handlers) {
1352     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1353                        HI.TimerGroupDescription, TimePassesIsEnabled);
1354     HI.Handler->markFunctionEnd();
1355   }
1356 
1357   MBBSectionRanges[MF->front().getSectionIDNum()] =
1358       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1359 
1360   // Print out jump tables referenced by the function.
1361   emitJumpTableInfo();
1362 
1363   // Emit post-function debug and/or EH information.
1364   for (const HandlerInfo &HI : Handlers) {
1365     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1366                        HI.TimerGroupDescription, TimePassesIsEnabled);
1367     HI.Handler->endFunction(MF);
1368   }
1369 
1370   // Emit section containing BB address offsets and their metadata, when
1371   // BB labels are requested for this function.
1372   if (MF->hasBBLabels())
1373     emitBBAddrMapSection(*MF);
1374 
1375   // Emit section containing stack size metadata.
1376   emitStackSizeSection(*MF);
1377 
1378   emitPatchableFunctionEntries();
1379 
1380   if (isVerbose())
1381     OutStreamer->GetCommentOS() << "-- End function\n";
1382 
1383   OutStreamer->AddBlankLine();
1384 }
1385 
1386 /// Compute the number of Global Variables that uses a Constant.
1387 static unsigned getNumGlobalVariableUses(const Constant *C) {
1388   if (!C)
1389     return 0;
1390 
1391   if (isa<GlobalVariable>(C))
1392     return 1;
1393 
1394   unsigned NumUses = 0;
1395   for (auto *CU : C->users())
1396     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1397 
1398   return NumUses;
1399 }
1400 
1401 /// Only consider global GOT equivalents if at least one user is a
1402 /// cstexpr inside an initializer of another global variables. Also, don't
1403 /// handle cstexpr inside instructions. During global variable emission,
1404 /// candidates are skipped and are emitted later in case at least one cstexpr
1405 /// isn't replaced by a PC relative GOT entry access.
1406 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1407                                      unsigned &NumGOTEquivUsers) {
1408   // Global GOT equivalents are unnamed private globals with a constant
1409   // pointer initializer to another global symbol. They must point to a
1410   // GlobalVariable or Function, i.e., as GlobalValue.
1411   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1412       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1413       !isa<GlobalValue>(GV->getOperand(0)))
1414     return false;
1415 
1416   // To be a got equivalent, at least one of its users need to be a constant
1417   // expression used by another global variable.
1418   for (auto *U : GV->users())
1419     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1420 
1421   return NumGOTEquivUsers > 0;
1422 }
1423 
1424 /// Unnamed constant global variables solely contaning a pointer to
1425 /// another globals variable is equivalent to a GOT table entry; it contains the
1426 /// the address of another symbol. Optimize it and replace accesses to these
1427 /// "GOT equivalents" by using the GOT entry for the final global instead.
1428 /// Compute GOT equivalent candidates among all global variables to avoid
1429 /// emitting them if possible later on, after it use is replaced by a GOT entry
1430 /// access.
1431 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1432   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1433     return;
1434 
1435   for (const auto &G : M.globals()) {
1436     unsigned NumGOTEquivUsers = 0;
1437     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1438       continue;
1439 
1440     const MCSymbol *GOTEquivSym = getSymbol(&G);
1441     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1442   }
1443 }
1444 
1445 /// Constant expressions using GOT equivalent globals may not be eligible
1446 /// for PC relative GOT entry conversion, in such cases we need to emit such
1447 /// globals we previously omitted in EmitGlobalVariable.
1448 void AsmPrinter::emitGlobalGOTEquivs() {
1449   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1450     return;
1451 
1452   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1453   for (auto &I : GlobalGOTEquivs) {
1454     const GlobalVariable *GV = I.second.first;
1455     unsigned Cnt = I.second.second;
1456     if (Cnt)
1457       FailedCandidates.push_back(GV);
1458   }
1459   GlobalGOTEquivs.clear();
1460 
1461   for (auto *GV : FailedCandidates)
1462     emitGlobalVariable(GV);
1463 }
1464 
1465 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1466                                           const GlobalIndirectSymbol& GIS) {
1467   MCSymbol *Name = getSymbol(&GIS);
1468   bool IsFunction = GIS.getValueType()->isFunctionTy();
1469   // Treat bitcasts of functions as functions also. This is important at least
1470   // on WebAssembly where object and function addresses can't alias each other.
1471   if (!IsFunction)
1472     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1473       if (CE->getOpcode() == Instruction::BitCast)
1474         IsFunction =
1475           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1476 
1477   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1478   // so AIX has to use the extra-label-at-definition strategy. At this
1479   // point, all the extra label is emitted, we just have to emit linkage for
1480   // those labels.
1481   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1482     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1483     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1484            "Visibility should be handled with emitLinkage() on AIX.");
1485     emitLinkage(&GIS, Name);
1486     // If it's a function, also emit linkage for aliases of function entry
1487     // point.
1488     if (IsFunction)
1489       emitLinkage(&GIS,
1490                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1491     return;
1492   }
1493 
1494   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1495     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1496   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1497     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1498   else
1499     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1500 
1501   // Set the symbol type to function if the alias has a function type.
1502   // This affects codegen when the aliasee is not a function.
1503   if (IsFunction)
1504     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1505                                                ? MCSA_ELF_TypeIndFunction
1506                                                : MCSA_ELF_TypeFunction);
1507 
1508   emitVisibility(Name, GIS.getVisibility());
1509 
1510   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1511 
1512   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1513     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1514 
1515   // Emit the directives as assignments aka .set:
1516   OutStreamer->emitAssignment(Name, Expr);
1517   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1518   if (LocalAlias != Name)
1519     OutStreamer->emitAssignment(LocalAlias, Expr);
1520 
1521   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1522     // If the aliasee does not correspond to a symbol in the output, i.e. the
1523     // alias is not of an object or the aliased object is private, then set the
1524     // size of the alias symbol from the type of the alias. We don't do this in
1525     // other situations as the alias and aliasee having differing types but same
1526     // size may be intentional.
1527     const GlobalObject *BaseObject = GA->getBaseObject();
1528     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1529         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1530       const DataLayout &DL = M.getDataLayout();
1531       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1532       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1533     }
1534   }
1535 }
1536 
1537 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1538   if (!RS.needsSection())
1539     return;
1540 
1541   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1542 
1543   Optional<SmallString<128>> Filename;
1544   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1545     Filename = *FilenameRef;
1546     sys::fs::make_absolute(*Filename);
1547     assert(!Filename->empty() && "The filename can't be empty.");
1548   }
1549 
1550   std::string Buf;
1551   raw_string_ostream OS(Buf);
1552   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1553       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1554                : RemarkSerializer.metaSerializer(OS);
1555   MetaSerializer->emit();
1556 
1557   // Switch to the remarks section.
1558   MCSection *RemarksSection =
1559       OutContext.getObjectFileInfo()->getRemarksSection();
1560   OutStreamer->SwitchSection(RemarksSection);
1561 
1562   OutStreamer->emitBinaryData(OS.str());
1563 }
1564 
1565 bool AsmPrinter::doFinalization(Module &M) {
1566   // Set the MachineFunction to nullptr so that we can catch attempted
1567   // accesses to MF specific features at the module level and so that
1568   // we can conditionalize accesses based on whether or not it is nullptr.
1569   MF = nullptr;
1570 
1571   // Gather all GOT equivalent globals in the module. We really need two
1572   // passes over the globals: one to compute and another to avoid its emission
1573   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1574   // where the got equivalent shows up before its use.
1575   computeGlobalGOTEquivs(M);
1576 
1577   // Emit global variables.
1578   for (const auto &G : M.globals())
1579     emitGlobalVariable(&G);
1580 
1581   // Emit remaining GOT equivalent globals.
1582   emitGlobalGOTEquivs();
1583 
1584   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1585 
1586   // Emit linkage(XCOFF) and visibility info for declarations
1587   for (const Function &F : M) {
1588     if (!F.isDeclarationForLinker())
1589       continue;
1590 
1591     MCSymbol *Name = getSymbol(&F);
1592     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1593 
1594     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1595       GlobalValue::VisibilityTypes V = F.getVisibility();
1596       if (V == GlobalValue::DefaultVisibility)
1597         continue;
1598 
1599       emitVisibility(Name, V, false);
1600       continue;
1601     }
1602 
1603     if (F.isIntrinsic())
1604       continue;
1605 
1606     // Handle the XCOFF case.
1607     // Variable `Name` is the function descriptor symbol (see above). Get the
1608     // function entry point symbol.
1609     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1610     // Emit linkage for the function entry point.
1611     emitLinkage(&F, FnEntryPointSym);
1612 
1613     // Emit linkage for the function descriptor.
1614     emitLinkage(&F, Name);
1615   }
1616 
1617   // Emit the remarks section contents.
1618   // FIXME: Figure out when is the safest time to emit this section. It should
1619   // not come after debug info.
1620   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1621     emitRemarksSection(*RS);
1622 
1623   TLOF.emitModuleMetadata(*OutStreamer, M);
1624 
1625   if (TM.getTargetTriple().isOSBinFormatELF()) {
1626     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1627 
1628     // Output stubs for external and common global variables.
1629     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1630     if (!Stubs.empty()) {
1631       OutStreamer->SwitchSection(TLOF.getDataSection());
1632       const DataLayout &DL = M.getDataLayout();
1633 
1634       emitAlignment(Align(DL.getPointerSize()));
1635       for (const auto &Stub : Stubs) {
1636         OutStreamer->emitLabel(Stub.first);
1637         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1638                                      DL.getPointerSize());
1639       }
1640     }
1641   }
1642 
1643   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1644     MachineModuleInfoCOFF &MMICOFF =
1645         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1646 
1647     // Output stubs for external and common global variables.
1648     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1649     if (!Stubs.empty()) {
1650       const DataLayout &DL = M.getDataLayout();
1651 
1652       for (const auto &Stub : Stubs) {
1653         SmallString<256> SectionName = StringRef(".rdata$");
1654         SectionName += Stub.first->getName();
1655         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1656             SectionName,
1657             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1658                 COFF::IMAGE_SCN_LNK_COMDAT,
1659             SectionKind::getReadOnly(), Stub.first->getName(),
1660             COFF::IMAGE_COMDAT_SELECT_ANY));
1661         emitAlignment(Align(DL.getPointerSize()));
1662         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1663         OutStreamer->emitLabel(Stub.first);
1664         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1665                                      DL.getPointerSize());
1666       }
1667     }
1668   }
1669 
1670   // Finalize debug and EH information.
1671   for (const HandlerInfo &HI : Handlers) {
1672     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1673                        HI.TimerGroupDescription, TimePassesIsEnabled);
1674     HI.Handler->endModule();
1675   }
1676   Handlers.clear();
1677   DD = nullptr;
1678 
1679   // If the target wants to know about weak references, print them all.
1680   if (MAI->getWeakRefDirective()) {
1681     // FIXME: This is not lazy, it would be nice to only print weak references
1682     // to stuff that is actually used.  Note that doing so would require targets
1683     // to notice uses in operands (due to constant exprs etc).  This should
1684     // happen with the MC stuff eventually.
1685 
1686     // Print out module-level global objects here.
1687     for (const auto &GO : M.global_objects()) {
1688       if (!GO.hasExternalWeakLinkage())
1689         continue;
1690       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1691     }
1692   }
1693 
1694   // Print aliases in topological order, that is, for each alias a = b,
1695   // b must be printed before a.
1696   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1697   // such an order to generate correct TOC information.
1698   SmallVector<const GlobalAlias *, 16> AliasStack;
1699   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1700   for (const auto &Alias : M.aliases()) {
1701     for (const GlobalAlias *Cur = &Alias; Cur;
1702          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1703       if (!AliasVisited.insert(Cur).second)
1704         break;
1705       AliasStack.push_back(Cur);
1706     }
1707     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1708       emitGlobalIndirectSymbol(M, *AncestorAlias);
1709     AliasStack.clear();
1710   }
1711   for (const auto &IFunc : M.ifuncs())
1712     emitGlobalIndirectSymbol(M, IFunc);
1713 
1714   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1715   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1716   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1717     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1718       MP->finishAssembly(M, *MI, *this);
1719 
1720   // Emit llvm.ident metadata in an '.ident' directive.
1721   emitModuleIdents(M);
1722 
1723   // Emit bytes for llvm.commandline metadata.
1724   emitModuleCommandLines(M);
1725 
1726   // Emit __morestack address if needed for indirect calls.
1727   if (MMI->usesMorestackAddr()) {
1728     Align Alignment(1);
1729     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1730         getDataLayout(), SectionKind::getReadOnly(),
1731         /*C=*/nullptr, Alignment);
1732     OutStreamer->SwitchSection(ReadOnlySection);
1733 
1734     MCSymbol *AddrSymbol =
1735         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1736     OutStreamer->emitLabel(AddrSymbol);
1737 
1738     unsigned PtrSize = MAI->getCodePointerSize();
1739     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1740                                  PtrSize);
1741   }
1742 
1743   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1744   // split-stack is used.
1745   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1746     OutStreamer->SwitchSection(
1747         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1748     if (MMI->hasNosplitStack())
1749       OutStreamer->SwitchSection(
1750           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1751   }
1752 
1753   // If we don't have any trampolines, then we don't require stack memory
1754   // to be executable. Some targets have a directive to declare this.
1755   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1756   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1757     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1758       OutStreamer->SwitchSection(S);
1759 
1760   if (TM.Options.EmitAddrsig) {
1761     // Emit address-significance attributes for all globals.
1762     OutStreamer->emitAddrsig();
1763     for (const GlobalValue &GV : M.global_values())
1764       if (!GV.use_empty() && !GV.isThreadLocal() &&
1765           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1766           !GV.hasAtLeastLocalUnnamedAddr())
1767         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1768   }
1769 
1770   // Emit symbol partition specifications (ELF only).
1771   if (TM.getTargetTriple().isOSBinFormatELF()) {
1772     unsigned UniqueID = 0;
1773     for (const GlobalValue &GV : M.global_values()) {
1774       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1775           GV.getVisibility() != GlobalValue::DefaultVisibility)
1776         continue;
1777 
1778       OutStreamer->SwitchSection(
1779           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1780                                    "", ++UniqueID, nullptr));
1781       OutStreamer->emitBytes(GV.getPartition());
1782       OutStreamer->emitZeros(1);
1783       OutStreamer->emitValue(
1784           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1785           MAI->getCodePointerSize());
1786     }
1787   }
1788 
1789   // Allow the target to emit any magic that it wants at the end of the file,
1790   // after everything else has gone out.
1791   emitEndOfAsmFile(M);
1792 
1793   MMI = nullptr;
1794 
1795   OutStreamer->Finish();
1796   OutStreamer->reset();
1797   OwnedMLI.reset();
1798   OwnedMDT.reset();
1799 
1800   return false;
1801 }
1802 
1803 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1804   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1805   if (Res.second)
1806     Res.first->second = createTempSymbol("exception");
1807   return Res.first->second;
1808 }
1809 
1810 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1811   this->MF = &MF;
1812   const Function &F = MF.getFunction();
1813 
1814   // Get the function symbol.
1815   if (!MAI->needsFunctionDescriptors()) {
1816     CurrentFnSym = getSymbol(&MF.getFunction());
1817   } else {
1818     assert(TM.getTargetTriple().isOSAIX() &&
1819            "Only AIX uses the function descriptor hooks.");
1820     // AIX is unique here in that the name of the symbol emitted for the
1821     // function body does not have the same name as the source function's
1822     // C-linkage name.
1823     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1824                                " initalized first.");
1825 
1826     // Get the function entry point symbol.
1827     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1828   }
1829 
1830   CurrentFnSymForSize = CurrentFnSym;
1831   CurrentFnBegin = nullptr;
1832   CurrentSectionBeginSym = nullptr;
1833   MBBSectionRanges.clear();
1834   MBBSectionExceptionSyms.clear();
1835   bool NeedsLocalForSize = MAI->needsLocalForSize();
1836   if (F.hasFnAttribute("patchable-function-entry") ||
1837       F.hasFnAttribute("function-instrument") ||
1838       F.hasFnAttribute("xray-instruction-threshold") ||
1839       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1840       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1841     CurrentFnBegin = createTempSymbol("func_begin");
1842     if (NeedsLocalForSize)
1843       CurrentFnSymForSize = CurrentFnBegin;
1844   }
1845 
1846   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1847 }
1848 
1849 namespace {
1850 
1851 // Keep track the alignment, constpool entries per Section.
1852   struct SectionCPs {
1853     MCSection *S;
1854     Align Alignment;
1855     SmallVector<unsigned, 4> CPEs;
1856 
1857     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1858   };
1859 
1860 } // end anonymous namespace
1861 
1862 /// EmitConstantPool - Print to the current output stream assembly
1863 /// representations of the constants in the constant pool MCP. This is
1864 /// used to print out constants which have been "spilled to memory" by
1865 /// the code generator.
1866 void AsmPrinter::emitConstantPool() {
1867   const MachineConstantPool *MCP = MF->getConstantPool();
1868   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1869   if (CP.empty()) return;
1870 
1871   // Calculate sections for constant pool entries. We collect entries to go into
1872   // the same section together to reduce amount of section switch statements.
1873   SmallVector<SectionCPs, 4> CPSections;
1874   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1875     const MachineConstantPoolEntry &CPE = CP[i];
1876     Align Alignment = CPE.getAlign();
1877 
1878     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1879 
1880     const Constant *C = nullptr;
1881     if (!CPE.isMachineConstantPoolEntry())
1882       C = CPE.Val.ConstVal;
1883 
1884     MCSection *S = getObjFileLowering().getSectionForConstant(
1885         getDataLayout(), Kind, C, Alignment);
1886 
1887     // The number of sections are small, just do a linear search from the
1888     // last section to the first.
1889     bool Found = false;
1890     unsigned SecIdx = CPSections.size();
1891     while (SecIdx != 0) {
1892       if (CPSections[--SecIdx].S == S) {
1893         Found = true;
1894         break;
1895       }
1896     }
1897     if (!Found) {
1898       SecIdx = CPSections.size();
1899       CPSections.push_back(SectionCPs(S, Alignment));
1900     }
1901 
1902     if (Alignment > CPSections[SecIdx].Alignment)
1903       CPSections[SecIdx].Alignment = Alignment;
1904     CPSections[SecIdx].CPEs.push_back(i);
1905   }
1906 
1907   // Now print stuff into the calculated sections.
1908   const MCSection *CurSection = nullptr;
1909   unsigned Offset = 0;
1910   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1911     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1912       unsigned CPI = CPSections[i].CPEs[j];
1913       MCSymbol *Sym = GetCPISymbol(CPI);
1914       if (!Sym->isUndefined())
1915         continue;
1916 
1917       if (CurSection != CPSections[i].S) {
1918         OutStreamer->SwitchSection(CPSections[i].S);
1919         emitAlignment(Align(CPSections[i].Alignment));
1920         CurSection = CPSections[i].S;
1921         Offset = 0;
1922       }
1923 
1924       MachineConstantPoolEntry CPE = CP[CPI];
1925 
1926       // Emit inter-object padding for alignment.
1927       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1928       OutStreamer->emitZeros(NewOffset - Offset);
1929 
1930       Type *Ty = CPE.getType();
1931       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1932 
1933       OutStreamer->emitLabel(Sym);
1934       if (CPE.isMachineConstantPoolEntry())
1935         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1936       else
1937         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1938     }
1939   }
1940 }
1941 
1942 // Print assembly representations of the jump tables used by the current
1943 // function.
1944 void AsmPrinter::emitJumpTableInfo() {
1945   const DataLayout &DL = MF->getDataLayout();
1946   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1947   if (!MJTI) return;
1948   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1949   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1950   if (JT.empty()) return;
1951 
1952   // Pick the directive to use to print the jump table entries, and switch to
1953   // the appropriate section.
1954   const Function &F = MF->getFunction();
1955   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1956   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1957       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1958       F);
1959   if (JTInDiffSection) {
1960     // Drop it in the readonly section.
1961     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1962     OutStreamer->SwitchSection(ReadOnlySection);
1963   }
1964 
1965   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
1966 
1967   // Jump tables in code sections are marked with a data_region directive
1968   // where that's supported.
1969   if (!JTInDiffSection)
1970     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
1971 
1972   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1973     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1974 
1975     // If this jump table was deleted, ignore it.
1976     if (JTBBs.empty()) continue;
1977 
1978     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1979     /// emit a .set directive for each unique entry.
1980     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1981         MAI->doesSetDirectiveSuppressReloc()) {
1982       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1983       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1984       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1985       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1986         const MachineBasicBlock *MBB = JTBBs[ii];
1987         if (!EmittedSets.insert(MBB).second)
1988           continue;
1989 
1990         // .set LJTSet, LBB32-base
1991         const MCExpr *LHS =
1992           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1993         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1994                                     MCBinaryExpr::createSub(LHS, Base,
1995                                                             OutContext));
1996       }
1997     }
1998 
1999     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2000     // before each jump table.  The first label is never referenced, but tells
2001     // the assembler and linker the extents of the jump table object.  The
2002     // second label is actually referenced by the code.
2003     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2004       // FIXME: This doesn't have to have any specific name, just any randomly
2005       // named and numbered local label started with 'l' would work.  Simplify
2006       // GetJTISymbol.
2007       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2008 
2009     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2010     OutStreamer->emitLabel(JTISymbol);
2011 
2012     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2013       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2014   }
2015   if (!JTInDiffSection)
2016     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2017 }
2018 
2019 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2020 /// current stream.
2021 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2022                                     const MachineBasicBlock *MBB,
2023                                     unsigned UID) const {
2024   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2025   const MCExpr *Value = nullptr;
2026   switch (MJTI->getEntryKind()) {
2027   case MachineJumpTableInfo::EK_Inline:
2028     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2029   case MachineJumpTableInfo::EK_Custom32:
2030     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2031         MJTI, MBB, UID, OutContext);
2032     break;
2033   case MachineJumpTableInfo::EK_BlockAddress:
2034     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2035     //     .word LBB123
2036     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2037     break;
2038   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2039     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2040     // with a relocation as gp-relative, e.g.:
2041     //     .gprel32 LBB123
2042     MCSymbol *MBBSym = MBB->getSymbol();
2043     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2044     return;
2045   }
2046 
2047   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2048     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2049     // with a relocation as gp-relative, e.g.:
2050     //     .gpdword LBB123
2051     MCSymbol *MBBSym = MBB->getSymbol();
2052     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2053     return;
2054   }
2055 
2056   case MachineJumpTableInfo::EK_LabelDifference32: {
2057     // Each entry is the address of the block minus the address of the jump
2058     // table. This is used for PIC jump tables where gprel32 is not supported.
2059     // e.g.:
2060     //      .word LBB123 - LJTI1_2
2061     // If the .set directive avoids relocations, this is emitted as:
2062     //      .set L4_5_set_123, LBB123 - LJTI1_2
2063     //      .word L4_5_set_123
2064     if (MAI->doesSetDirectiveSuppressReloc()) {
2065       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2066                                       OutContext);
2067       break;
2068     }
2069     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2070     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2071     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2072     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2073     break;
2074   }
2075   }
2076 
2077   assert(Value && "Unknown entry kind!");
2078 
2079   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2080   OutStreamer->emitValue(Value, EntrySize);
2081 }
2082 
2083 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2084 /// special global used by LLVM.  If so, emit it and return true, otherwise
2085 /// do nothing and return false.
2086 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2087   if (GV->getName() == "llvm.used") {
2088     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2089       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2090     return true;
2091   }
2092 
2093   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2094   if (GV->getSection() == "llvm.metadata" ||
2095       GV->hasAvailableExternallyLinkage())
2096     return true;
2097 
2098   if (!GV->hasAppendingLinkage()) return false;
2099 
2100   assert(GV->hasInitializer() && "Not a special LLVM global!");
2101 
2102   if (GV->getName() == "llvm.global_ctors") {
2103     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2104                        /* isCtor */ true);
2105 
2106     return true;
2107   }
2108 
2109   if (GV->getName() == "llvm.global_dtors") {
2110     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2111                        /* isCtor */ false);
2112 
2113     return true;
2114   }
2115 
2116   report_fatal_error("unknown special variable");
2117 }
2118 
2119 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2120 /// global in the specified llvm.used list.
2121 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2122   // Should be an array of 'i8*'.
2123   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2124     const GlobalValue *GV =
2125       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2126     if (GV)
2127       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2128   }
2129 }
2130 
2131 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2132                                           const Constant *List,
2133                                           SmallVector<Structor, 8> &Structors) {
2134   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2135   // the init priority.
2136   if (!isa<ConstantArray>(List))
2137     return;
2138 
2139   // Gather the structors in a form that's convenient for sorting by priority.
2140   for (Value *O : cast<ConstantArray>(List)->operands()) {
2141     auto *CS = cast<ConstantStruct>(O);
2142     if (CS->getOperand(1)->isNullValue())
2143       break; // Found a null terminator, skip the rest.
2144     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2145     if (!Priority)
2146       continue; // Malformed.
2147     Structors.push_back(Structor());
2148     Structor &S = Structors.back();
2149     S.Priority = Priority->getLimitedValue(65535);
2150     S.Func = CS->getOperand(1);
2151     if (!CS->getOperand(2)->isNullValue()) {
2152       if (TM.getTargetTriple().isOSAIX())
2153         llvm::report_fatal_error(
2154             "associated data of XXStructor list is not yet supported on AIX");
2155       S.ComdatKey =
2156           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2157     }
2158   }
2159 
2160   // Emit the function pointers in the target-specific order
2161   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2162     return L.Priority < R.Priority;
2163   });
2164 }
2165 
2166 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2167 /// priority.
2168 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2169                                     bool IsCtor) {
2170   SmallVector<Structor, 8> Structors;
2171   preprocessXXStructorList(DL, List, Structors);
2172   if (Structors.empty())
2173     return;
2174 
2175   const Align Align = DL.getPointerPrefAlignment();
2176   for (Structor &S : Structors) {
2177     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2178     const MCSymbol *KeySym = nullptr;
2179     if (GlobalValue *GV = S.ComdatKey) {
2180       if (GV->isDeclarationForLinker())
2181         // If the associated variable is not defined in this module
2182         // (it might be available_externally, or have been an
2183         // available_externally definition that was dropped by the
2184         // EliminateAvailableExternally pass), some other TU
2185         // will provide its dynamic initializer.
2186         continue;
2187 
2188       KeySym = getSymbol(GV);
2189     }
2190 
2191     MCSection *OutputSection =
2192         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2193                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2194     OutStreamer->SwitchSection(OutputSection);
2195     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2196       emitAlignment(Align);
2197     emitXXStructor(DL, S.Func);
2198   }
2199 }
2200 
2201 void AsmPrinter::emitModuleIdents(Module &M) {
2202   if (!MAI->hasIdentDirective())
2203     return;
2204 
2205   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2206     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2207       const MDNode *N = NMD->getOperand(i);
2208       assert(N->getNumOperands() == 1 &&
2209              "llvm.ident metadata entry can have only one operand");
2210       const MDString *S = cast<MDString>(N->getOperand(0));
2211       OutStreamer->emitIdent(S->getString());
2212     }
2213   }
2214 }
2215 
2216 void AsmPrinter::emitModuleCommandLines(Module &M) {
2217   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2218   if (!CommandLine)
2219     return;
2220 
2221   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2222   if (!NMD || !NMD->getNumOperands())
2223     return;
2224 
2225   OutStreamer->PushSection();
2226   OutStreamer->SwitchSection(CommandLine);
2227   OutStreamer->emitZeros(1);
2228   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2229     const MDNode *N = NMD->getOperand(i);
2230     assert(N->getNumOperands() == 1 &&
2231            "llvm.commandline metadata entry can have only one operand");
2232     const MDString *S = cast<MDString>(N->getOperand(0));
2233     OutStreamer->emitBytes(S->getString());
2234     OutStreamer->emitZeros(1);
2235   }
2236   OutStreamer->PopSection();
2237 }
2238 
2239 //===--------------------------------------------------------------------===//
2240 // Emission and print routines
2241 //
2242 
2243 /// Emit a byte directive and value.
2244 ///
2245 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2246 
2247 /// Emit a short directive and value.
2248 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2249 
2250 /// Emit a long directive and value.
2251 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2252 
2253 /// Emit a long long directive and value.
2254 void AsmPrinter::emitInt64(uint64_t Value) const {
2255   OutStreamer->emitInt64(Value);
2256 }
2257 
2258 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2259 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2260 /// .set if it avoids relocations.
2261 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2262                                      unsigned Size) const {
2263   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2264 }
2265 
2266 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2267 /// where the size in bytes of the directive is specified by Size and Label
2268 /// specifies the label.  This implicitly uses .set if it is available.
2269 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2270                                      unsigned Size,
2271                                      bool IsSectionRelative) const {
2272   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2273     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2274     if (Size > 4)
2275       OutStreamer->emitZeros(Size - 4);
2276     return;
2277   }
2278 
2279   // Emit Label+Offset (or just Label if Offset is zero)
2280   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2281   if (Offset)
2282     Expr = MCBinaryExpr::createAdd(
2283         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2284 
2285   OutStreamer->emitValue(Expr, Size);
2286 }
2287 
2288 //===----------------------------------------------------------------------===//
2289 
2290 // EmitAlignment - Emit an alignment directive to the specified power of
2291 // two boundary.  If a global value is specified, and if that global has
2292 // an explicit alignment requested, it will override the alignment request
2293 // if required for correctness.
2294 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2295   if (GV)
2296     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2297 
2298   if (Alignment == Align(1))
2299     return; // 1-byte aligned: no need to emit alignment.
2300 
2301   if (getCurrentSection()->getKind().isText())
2302     OutStreamer->emitCodeAlignment(Alignment.value());
2303   else
2304     OutStreamer->emitValueToAlignment(Alignment.value());
2305 }
2306 
2307 //===----------------------------------------------------------------------===//
2308 // Constant emission.
2309 //===----------------------------------------------------------------------===//
2310 
2311 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2312   MCContext &Ctx = OutContext;
2313 
2314   if (CV->isNullValue() || isa<UndefValue>(CV))
2315     return MCConstantExpr::create(0, Ctx);
2316 
2317   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2318     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2319 
2320   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2321     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2322 
2323   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2324     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2325 
2326   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2327   if (!CE) {
2328     llvm_unreachable("Unknown constant value to lower!");
2329   }
2330 
2331   switch (CE->getOpcode()) {
2332   case Instruction::AddrSpaceCast: {
2333     const Constant *Op = CE->getOperand(0);
2334     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2335     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2336     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2337       return lowerConstant(Op);
2338 
2339     // Fallthrough to error.
2340     LLVM_FALLTHROUGH;
2341   }
2342   default: {
2343     // If the code isn't optimized, there may be outstanding folding
2344     // opportunities. Attempt to fold the expression using DataLayout as a
2345     // last resort before giving up.
2346     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2347     if (C != CE)
2348       return lowerConstant(C);
2349 
2350     // Otherwise report the problem to the user.
2351     std::string S;
2352     raw_string_ostream OS(S);
2353     OS << "Unsupported expression in static initializer: ";
2354     CE->printAsOperand(OS, /*PrintType=*/false,
2355                    !MF ? nullptr : MF->getFunction().getParent());
2356     report_fatal_error(OS.str());
2357   }
2358   case Instruction::GetElementPtr: {
2359     // Generate a symbolic expression for the byte address
2360     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2361     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2362 
2363     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2364     if (!OffsetAI)
2365       return Base;
2366 
2367     int64_t Offset = OffsetAI.getSExtValue();
2368     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2369                                    Ctx);
2370   }
2371 
2372   case Instruction::Trunc:
2373     // We emit the value and depend on the assembler to truncate the generated
2374     // expression properly.  This is important for differences between
2375     // blockaddress labels.  Since the two labels are in the same function, it
2376     // is reasonable to treat their delta as a 32-bit value.
2377     LLVM_FALLTHROUGH;
2378   case Instruction::BitCast:
2379     return lowerConstant(CE->getOperand(0));
2380 
2381   case Instruction::IntToPtr: {
2382     const DataLayout &DL = getDataLayout();
2383 
2384     // Handle casts to pointers by changing them into casts to the appropriate
2385     // integer type.  This promotes constant folding and simplifies this code.
2386     Constant *Op = CE->getOperand(0);
2387     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2388                                       false/*ZExt*/);
2389     return lowerConstant(Op);
2390   }
2391 
2392   case Instruction::PtrToInt: {
2393     const DataLayout &DL = getDataLayout();
2394 
2395     // Support only foldable casts to/from pointers that can be eliminated by
2396     // changing the pointer to the appropriately sized integer type.
2397     Constant *Op = CE->getOperand(0);
2398     Type *Ty = CE->getType();
2399 
2400     const MCExpr *OpExpr = lowerConstant(Op);
2401 
2402     // We can emit the pointer value into this slot if the slot is an
2403     // integer slot equal to the size of the pointer.
2404     //
2405     // If the pointer is larger than the resultant integer, then
2406     // as with Trunc just depend on the assembler to truncate it.
2407     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2408         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2409       return OpExpr;
2410 
2411     // Otherwise the pointer is smaller than the resultant integer, mask off
2412     // the high bits so we are sure to get a proper truncation if the input is
2413     // a constant expr.
2414     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2415     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2416     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2417   }
2418 
2419   case Instruction::Sub: {
2420     GlobalValue *LHSGV;
2421     APInt LHSOffset;
2422     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2423                                    getDataLayout())) {
2424       GlobalValue *RHSGV;
2425       APInt RHSOffset;
2426       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2427                                      getDataLayout())) {
2428         const MCExpr *RelocExpr =
2429             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2430         if (!RelocExpr)
2431           RelocExpr = MCBinaryExpr::createSub(
2432               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2433               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2434         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2435         if (Addend != 0)
2436           RelocExpr = MCBinaryExpr::createAdd(
2437               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2438         return RelocExpr;
2439       }
2440     }
2441   }
2442   // else fallthrough
2443   LLVM_FALLTHROUGH;
2444 
2445   // The MC library also has a right-shift operator, but it isn't consistently
2446   // signed or unsigned between different targets.
2447   case Instruction::Add:
2448   case Instruction::Mul:
2449   case Instruction::SDiv:
2450   case Instruction::SRem:
2451   case Instruction::Shl:
2452   case Instruction::And:
2453   case Instruction::Or:
2454   case Instruction::Xor: {
2455     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2456     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2457     switch (CE->getOpcode()) {
2458     default: llvm_unreachable("Unknown binary operator constant cast expr");
2459     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2460     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2461     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2462     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2463     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2464     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2465     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2466     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2467     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2468     }
2469   }
2470   }
2471 }
2472 
2473 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2474                                    AsmPrinter &AP,
2475                                    const Constant *BaseCV = nullptr,
2476                                    uint64_t Offset = 0);
2477 
2478 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2479 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2480 
2481 /// isRepeatedByteSequence - Determine whether the given value is
2482 /// composed of a repeated sequence of identical bytes and return the
2483 /// byte value.  If it is not a repeated sequence, return -1.
2484 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2485   StringRef Data = V->getRawDataValues();
2486   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2487   char C = Data[0];
2488   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2489     if (Data[i] != C) return -1;
2490   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2491 }
2492 
2493 /// isRepeatedByteSequence - Determine whether the given value is
2494 /// composed of a repeated sequence of identical bytes and return the
2495 /// byte value.  If it is not a repeated sequence, return -1.
2496 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2497   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2498     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2499     assert(Size % 8 == 0);
2500 
2501     // Extend the element to take zero padding into account.
2502     APInt Value = CI->getValue().zextOrSelf(Size);
2503     if (!Value.isSplat(8))
2504       return -1;
2505 
2506     return Value.zextOrTrunc(8).getZExtValue();
2507   }
2508   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2509     // Make sure all array elements are sequences of the same repeated
2510     // byte.
2511     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2512     Constant *Op0 = CA->getOperand(0);
2513     int Byte = isRepeatedByteSequence(Op0, DL);
2514     if (Byte == -1)
2515       return -1;
2516 
2517     // All array elements must be equal.
2518     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2519       if (CA->getOperand(i) != Op0)
2520         return -1;
2521     return Byte;
2522   }
2523 
2524   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2525     return isRepeatedByteSequence(CDS);
2526 
2527   return -1;
2528 }
2529 
2530 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2531                                              const ConstantDataSequential *CDS,
2532                                              AsmPrinter &AP) {
2533   // See if we can aggregate this into a .fill, if so, emit it as such.
2534   int Value = isRepeatedByteSequence(CDS, DL);
2535   if (Value != -1) {
2536     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2537     // Don't emit a 1-byte object as a .fill.
2538     if (Bytes > 1)
2539       return AP.OutStreamer->emitFill(Bytes, Value);
2540   }
2541 
2542   // If this can be emitted with .ascii/.asciz, emit it as such.
2543   if (CDS->isString())
2544     return AP.OutStreamer->emitBytes(CDS->getAsString());
2545 
2546   // Otherwise, emit the values in successive locations.
2547   unsigned ElementByteSize = CDS->getElementByteSize();
2548   if (isa<IntegerType>(CDS->getElementType())) {
2549     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2550       if (AP.isVerbose())
2551         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2552                                                  CDS->getElementAsInteger(i));
2553       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2554                                    ElementByteSize);
2555     }
2556   } else {
2557     Type *ET = CDS->getElementType();
2558     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2559       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2560   }
2561 
2562   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2563   unsigned EmittedSize =
2564       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2565   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2566   if (unsigned Padding = Size - EmittedSize)
2567     AP.OutStreamer->emitZeros(Padding);
2568 }
2569 
2570 static void emitGlobalConstantArray(const DataLayout &DL,
2571                                     const ConstantArray *CA, AsmPrinter &AP,
2572                                     const Constant *BaseCV, uint64_t Offset) {
2573   // See if we can aggregate some values.  Make sure it can be
2574   // represented as a series of bytes of the constant value.
2575   int Value = isRepeatedByteSequence(CA, DL);
2576 
2577   if (Value != -1) {
2578     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2579     AP.OutStreamer->emitFill(Bytes, Value);
2580   }
2581   else {
2582     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2583       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2584       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2585     }
2586   }
2587 }
2588 
2589 static void emitGlobalConstantVector(const DataLayout &DL,
2590                                      const ConstantVector *CV, AsmPrinter &AP) {
2591   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2592     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2593 
2594   unsigned Size = DL.getTypeAllocSize(CV->getType());
2595   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2596                          CV->getType()->getNumElements();
2597   if (unsigned Padding = Size - EmittedSize)
2598     AP.OutStreamer->emitZeros(Padding);
2599 }
2600 
2601 static void emitGlobalConstantStruct(const DataLayout &DL,
2602                                      const ConstantStruct *CS, AsmPrinter &AP,
2603                                      const Constant *BaseCV, uint64_t Offset) {
2604   // Print the fields in successive locations. Pad to align if needed!
2605   unsigned Size = DL.getTypeAllocSize(CS->getType());
2606   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2607   uint64_t SizeSoFar = 0;
2608   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2609     const Constant *Field = CS->getOperand(i);
2610 
2611     // Print the actual field value.
2612     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2613 
2614     // Check if padding is needed and insert one or more 0s.
2615     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2616     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2617                         - Layout->getElementOffset(i)) - FieldSize;
2618     SizeSoFar += FieldSize + PadSize;
2619 
2620     // Insert padding - this may include padding to increase the size of the
2621     // current field up to the ABI size (if the struct is not packed) as well
2622     // as padding to ensure that the next field starts at the right offset.
2623     AP.OutStreamer->emitZeros(PadSize);
2624   }
2625   assert(SizeSoFar == Layout->getSizeInBytes() &&
2626          "Layout of constant struct may be incorrect!");
2627 }
2628 
2629 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2630   assert(ET && "Unknown float type");
2631   APInt API = APF.bitcastToAPInt();
2632 
2633   // First print a comment with what we think the original floating-point value
2634   // should have been.
2635   if (AP.isVerbose()) {
2636     SmallString<8> StrVal;
2637     APF.toString(StrVal);
2638     ET->print(AP.OutStreamer->GetCommentOS());
2639     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2640   }
2641 
2642   // Now iterate through the APInt chunks, emitting them in endian-correct
2643   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2644   // floats).
2645   unsigned NumBytes = API.getBitWidth() / 8;
2646   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2647   const uint64_t *p = API.getRawData();
2648 
2649   // PPC's long double has odd notions of endianness compared to how LLVM
2650   // handles it: p[0] goes first for *big* endian on PPC.
2651   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2652     int Chunk = API.getNumWords() - 1;
2653 
2654     if (TrailingBytes)
2655       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2656 
2657     for (; Chunk >= 0; --Chunk)
2658       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2659   } else {
2660     unsigned Chunk;
2661     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2662       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2663 
2664     if (TrailingBytes)
2665       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2666   }
2667 
2668   // Emit the tail padding for the long double.
2669   const DataLayout &DL = AP.getDataLayout();
2670   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2671 }
2672 
2673 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2674   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2675 }
2676 
2677 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2678   const DataLayout &DL = AP.getDataLayout();
2679   unsigned BitWidth = CI->getBitWidth();
2680 
2681   // Copy the value as we may massage the layout for constants whose bit width
2682   // is not a multiple of 64-bits.
2683   APInt Realigned(CI->getValue());
2684   uint64_t ExtraBits = 0;
2685   unsigned ExtraBitsSize = BitWidth & 63;
2686 
2687   if (ExtraBitsSize) {
2688     // The bit width of the data is not a multiple of 64-bits.
2689     // The extra bits are expected to be at the end of the chunk of the memory.
2690     // Little endian:
2691     // * Nothing to be done, just record the extra bits to emit.
2692     // Big endian:
2693     // * Record the extra bits to emit.
2694     // * Realign the raw data to emit the chunks of 64-bits.
2695     if (DL.isBigEndian()) {
2696       // Basically the structure of the raw data is a chunk of 64-bits cells:
2697       //    0        1         BitWidth / 64
2698       // [chunk1][chunk2] ... [chunkN].
2699       // The most significant chunk is chunkN and it should be emitted first.
2700       // However, due to the alignment issue chunkN contains useless bits.
2701       // Realign the chunks so that they contain only useful information:
2702       // ExtraBits     0       1       (BitWidth / 64) - 1
2703       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2704       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2705       ExtraBits = Realigned.getRawData()[0] &
2706         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2707       Realigned.lshrInPlace(ExtraBitsSize);
2708     } else
2709       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2710   }
2711 
2712   // We don't expect assemblers to support integer data directives
2713   // for more than 64 bits, so we emit the data in at most 64-bit
2714   // quantities at a time.
2715   const uint64_t *RawData = Realigned.getRawData();
2716   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2717     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2718     AP.OutStreamer->emitIntValue(Val, 8);
2719   }
2720 
2721   if (ExtraBitsSize) {
2722     // Emit the extra bits after the 64-bits chunks.
2723 
2724     // Emit a directive that fills the expected size.
2725     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2726     Size -= (BitWidth / 64) * 8;
2727     assert(Size && Size * 8 >= ExtraBitsSize &&
2728            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2729            == ExtraBits && "Directive too small for extra bits.");
2730     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2731   }
2732 }
2733 
2734 /// Transform a not absolute MCExpr containing a reference to a GOT
2735 /// equivalent global, by a target specific GOT pc relative access to the
2736 /// final symbol.
2737 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2738                                          const Constant *BaseCst,
2739                                          uint64_t Offset) {
2740   // The global @foo below illustrates a global that uses a got equivalent.
2741   //
2742   //  @bar = global i32 42
2743   //  @gotequiv = private unnamed_addr constant i32* @bar
2744   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2745   //                             i64 ptrtoint (i32* @foo to i64))
2746   //                        to i32)
2747   //
2748   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2749   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2750   // form:
2751   //
2752   //  foo = cstexpr, where
2753   //    cstexpr := <gotequiv> - "." + <cst>
2754   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2755   //
2756   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2757   //
2758   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2759   //    gotpcrelcst := <offset from @foo base> + <cst>
2760   MCValue MV;
2761   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2762     return;
2763   const MCSymbolRefExpr *SymA = MV.getSymA();
2764   if (!SymA)
2765     return;
2766 
2767   // Check that GOT equivalent symbol is cached.
2768   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2769   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2770     return;
2771 
2772   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2773   if (!BaseGV)
2774     return;
2775 
2776   // Check for a valid base symbol
2777   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2778   const MCSymbolRefExpr *SymB = MV.getSymB();
2779 
2780   if (!SymB || BaseSym != &SymB->getSymbol())
2781     return;
2782 
2783   // Make sure to match:
2784   //
2785   //    gotpcrelcst := <offset from @foo base> + <cst>
2786   //
2787   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2788   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2789   // if the target knows how to encode it.
2790   int64_t GOTPCRelCst = Offset + MV.getConstant();
2791   if (GOTPCRelCst < 0)
2792     return;
2793   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2794     return;
2795 
2796   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2797   //
2798   //  bar:
2799   //    .long 42
2800   //  gotequiv:
2801   //    .quad bar
2802   //  foo:
2803   //    .long gotequiv - "." + <cst>
2804   //
2805   // is replaced by the target specific equivalent to:
2806   //
2807   //  bar:
2808   //    .long 42
2809   //  foo:
2810   //    .long bar@GOTPCREL+<gotpcrelcst>
2811   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2812   const GlobalVariable *GV = Result.first;
2813   int NumUses = (int)Result.second;
2814   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2815   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2816   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2817       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2818 
2819   // Update GOT equivalent usage information
2820   --NumUses;
2821   if (NumUses >= 0)
2822     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2823 }
2824 
2825 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2826                                    AsmPrinter &AP, const Constant *BaseCV,
2827                                    uint64_t Offset) {
2828   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2829 
2830   // Globals with sub-elements such as combinations of arrays and structs
2831   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2832   // constant symbol base and the current position with BaseCV and Offset.
2833   if (!BaseCV && CV->hasOneUse())
2834     BaseCV = dyn_cast<Constant>(CV->user_back());
2835 
2836   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2837     return AP.OutStreamer->emitZeros(Size);
2838 
2839   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2840     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2841 
2842     if (StoreSize <= 8) {
2843       if (AP.isVerbose())
2844         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2845                                                  CI->getZExtValue());
2846       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2847     } else {
2848       emitGlobalConstantLargeInt(CI, AP);
2849     }
2850 
2851     // Emit tail padding if needed
2852     if (Size != StoreSize)
2853       AP.OutStreamer->emitZeros(Size - StoreSize);
2854 
2855     return;
2856   }
2857 
2858   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2859     return emitGlobalConstantFP(CFP, AP);
2860 
2861   if (isa<ConstantPointerNull>(CV)) {
2862     AP.OutStreamer->emitIntValue(0, Size);
2863     return;
2864   }
2865 
2866   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2867     return emitGlobalConstantDataSequential(DL, CDS, AP);
2868 
2869   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2870     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2871 
2872   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2873     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2874 
2875   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2876     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2877     // vectors).
2878     if (CE->getOpcode() == Instruction::BitCast)
2879       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2880 
2881     if (Size > 8) {
2882       // If the constant expression's size is greater than 64-bits, then we have
2883       // to emit the value in chunks. Try to constant fold the value and emit it
2884       // that way.
2885       Constant *New = ConstantFoldConstant(CE, DL);
2886       if (New != CE)
2887         return emitGlobalConstantImpl(DL, New, AP);
2888     }
2889   }
2890 
2891   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2892     return emitGlobalConstantVector(DL, V, AP);
2893 
2894   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2895   // thread the streamer with EmitValue.
2896   const MCExpr *ME = AP.lowerConstant(CV);
2897 
2898   // Since lowerConstant already folded and got rid of all IR pointer and
2899   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2900   // directly.
2901   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2902     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2903 
2904   AP.OutStreamer->emitValue(ME, Size);
2905 }
2906 
2907 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2908 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2909   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2910   if (Size)
2911     emitGlobalConstantImpl(DL, CV, *this);
2912   else if (MAI->hasSubsectionsViaSymbols()) {
2913     // If the global has zero size, emit a single byte so that two labels don't
2914     // look like they are at the same location.
2915     OutStreamer->emitIntValue(0, 1);
2916   }
2917 }
2918 
2919 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2920   // Target doesn't support this yet!
2921   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2922 }
2923 
2924 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2925   if (Offset > 0)
2926     OS << '+' << Offset;
2927   else if (Offset < 0)
2928     OS << Offset;
2929 }
2930 
2931 void AsmPrinter::emitNops(unsigned N) {
2932   MCInst Nop;
2933   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2934   for (; N; --N)
2935     EmitToStreamer(*OutStreamer, Nop);
2936 }
2937 
2938 //===----------------------------------------------------------------------===//
2939 // Symbol Lowering Routines.
2940 //===----------------------------------------------------------------------===//
2941 
2942 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2943   return OutContext.createTempSymbol(Name, true);
2944 }
2945 
2946 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2947   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2948 }
2949 
2950 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2951   return MMI->getAddrLabelSymbol(BB);
2952 }
2953 
2954 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2955 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2956   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2957     const MachineConstantPoolEntry &CPE =
2958         MF->getConstantPool()->getConstants()[CPID];
2959     if (!CPE.isMachineConstantPoolEntry()) {
2960       const DataLayout &DL = MF->getDataLayout();
2961       SectionKind Kind = CPE.getSectionKind(&DL);
2962       const Constant *C = CPE.Val.ConstVal;
2963       Align Alignment = CPE.Alignment;
2964       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2965               getObjFileLowering().getSectionForConstant(DL, Kind, C,
2966                                                          Alignment))) {
2967         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2968           if (Sym->isUndefined())
2969             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2970           return Sym;
2971         }
2972       }
2973     }
2974   }
2975 
2976   const DataLayout &DL = getDataLayout();
2977   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2978                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2979                                       Twine(CPID));
2980 }
2981 
2982 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2983 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2984   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2985 }
2986 
2987 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2988 /// FIXME: privatize to AsmPrinter.
2989 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2990   const DataLayout &DL = getDataLayout();
2991   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2992                                       Twine(getFunctionNumber()) + "_" +
2993                                       Twine(UID) + "_set_" + Twine(MBBID));
2994 }
2995 
2996 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2997                                                    StringRef Suffix) const {
2998   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2999 }
3000 
3001 /// Return the MCSymbol for the specified ExternalSymbol.
3002 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3003   SmallString<60> NameStr;
3004   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3005   return OutContext.getOrCreateSymbol(NameStr);
3006 }
3007 
3008 /// PrintParentLoopComment - Print comments about parent loops of this one.
3009 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3010                                    unsigned FunctionNumber) {
3011   if (!Loop) return;
3012   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3013   OS.indent(Loop->getLoopDepth()*2)
3014     << "Parent Loop BB" << FunctionNumber << "_"
3015     << Loop->getHeader()->getNumber()
3016     << " Depth=" << Loop->getLoopDepth() << '\n';
3017 }
3018 
3019 /// PrintChildLoopComment - Print comments about child loops within
3020 /// the loop for this basic block, with nesting.
3021 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3022                                   unsigned FunctionNumber) {
3023   // Add child loop information
3024   for (const MachineLoop *CL : *Loop) {
3025     OS.indent(CL->getLoopDepth()*2)
3026       << "Child Loop BB" << FunctionNumber << "_"
3027       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3028       << '\n';
3029     PrintChildLoopComment(OS, CL, FunctionNumber);
3030   }
3031 }
3032 
3033 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3034 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3035                                        const MachineLoopInfo *LI,
3036                                        const AsmPrinter &AP) {
3037   // Add loop depth information
3038   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3039   if (!Loop) return;
3040 
3041   MachineBasicBlock *Header = Loop->getHeader();
3042   assert(Header && "No header for loop");
3043 
3044   // If this block is not a loop header, just print out what is the loop header
3045   // and return.
3046   if (Header != &MBB) {
3047     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3048                                Twine(AP.getFunctionNumber())+"_" +
3049                                Twine(Loop->getHeader()->getNumber())+
3050                                " Depth="+Twine(Loop->getLoopDepth()));
3051     return;
3052   }
3053 
3054   // Otherwise, it is a loop header.  Print out information about child and
3055   // parent loops.
3056   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3057 
3058   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3059 
3060   OS << "=>";
3061   OS.indent(Loop->getLoopDepth()*2-2);
3062 
3063   OS << "This ";
3064   if (Loop->isInnermost())
3065     OS << "Inner ";
3066   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3067 
3068   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3069 }
3070 
3071 /// emitBasicBlockStart - This method prints the label for the specified
3072 /// MachineBasicBlock, an alignment (if present) and a comment describing
3073 /// it if appropriate.
3074 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3075   // End the previous funclet and start a new one.
3076   if (MBB.isEHFuncletEntry()) {
3077     for (const HandlerInfo &HI : Handlers) {
3078       HI.Handler->endFunclet();
3079       HI.Handler->beginFunclet(MBB);
3080     }
3081   }
3082 
3083   // Emit an alignment directive for this block, if needed.
3084   const Align Alignment = MBB.getAlignment();
3085   if (Alignment != Align(1))
3086     emitAlignment(Alignment);
3087 
3088   // Switch to a new section if this basic block must begin a section. The
3089   // entry block is always placed in the function section and is handled
3090   // separately.
3091   if (MBB.isBeginSection() && !MBB.pred_empty()) {
3092     OutStreamer->SwitchSection(
3093         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3094                                                             MBB, TM));
3095     CurrentSectionBeginSym = MBB.getSymbol();
3096   }
3097 
3098   // If the block has its address taken, emit any labels that were used to
3099   // reference the block.  It is possible that there is more than one label
3100   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3101   // the references were generated.
3102   if (MBB.hasAddressTaken()) {
3103     const BasicBlock *BB = MBB.getBasicBlock();
3104     if (isVerbose())
3105       OutStreamer->AddComment("Block address taken");
3106 
3107     // MBBs can have their address taken as part of CodeGen without having
3108     // their corresponding BB's address taken in IR
3109     if (BB->hasAddressTaken())
3110       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3111         OutStreamer->emitLabel(Sym);
3112   }
3113 
3114   // Print some verbose block comments.
3115   if (isVerbose()) {
3116     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3117       if (BB->hasName()) {
3118         BB->printAsOperand(OutStreamer->GetCommentOS(),
3119                            /*PrintType=*/false, BB->getModule());
3120         OutStreamer->GetCommentOS() << '\n';
3121       }
3122     }
3123 
3124     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3125     emitBasicBlockLoopComments(MBB, MLI, *this);
3126   }
3127 
3128   // Print the main label for the block.
3129   if (MBB.pred_empty() ||
3130       (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) &&
3131        !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) {
3132     if (isVerbose()) {
3133       // NOTE: Want this comment at start of line, don't emit with AddComment.
3134       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3135                                   false);
3136     }
3137   } else {
3138     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3139       OutStreamer->AddComment("Label of block must be emitted");
3140     OutStreamer->emitLabel(MBB.getSymbol());
3141   }
3142 
3143   // With BB sections, each basic block must handle CFI information on its own
3144   // if it begins a section (Entry block is handled separately by
3145   // AsmPrinterHandler::beginFunction).
3146   if (MBB.isBeginSection() && !MBB.pred_empty())
3147     for (const HandlerInfo &HI : Handlers)
3148       HI.Handler->beginBasicBlock(MBB);
3149 }
3150 
3151 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3152   // Check if CFI information needs to be updated for this MBB with basic block
3153   // sections.
3154   if (MBB.isEndSection())
3155     for (const HandlerInfo &HI : Handlers)
3156       HI.Handler->endBasicBlock(MBB);
3157 }
3158 
3159 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3160                                 bool IsDefinition) const {
3161   MCSymbolAttr Attr = MCSA_Invalid;
3162 
3163   switch (Visibility) {
3164   default: break;
3165   case GlobalValue::HiddenVisibility:
3166     if (IsDefinition)
3167       Attr = MAI->getHiddenVisibilityAttr();
3168     else
3169       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3170     break;
3171   case GlobalValue::ProtectedVisibility:
3172     Attr = MAI->getProtectedVisibilityAttr();
3173     break;
3174   }
3175 
3176   if (Attr != MCSA_Invalid)
3177     OutStreamer->emitSymbolAttribute(Sym, Attr);
3178 }
3179 
3180 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3181 /// exactly one predecessor and the control transfer mechanism between
3182 /// the predecessor and this block is a fall-through.
3183 bool AsmPrinter::
3184 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3185   // With BasicBlock Sections, beginning of the section is not a fallthrough.
3186   if (MBB->isBeginSection())
3187     return false;
3188 
3189   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3190   // then nothing falls through to it.
3191   if (MBB->isEHPad() || MBB->pred_empty())
3192     return false;
3193 
3194   // If there isn't exactly one predecessor, it can't be a fall through.
3195   if (MBB->pred_size() > 1)
3196     return false;
3197 
3198   // The predecessor has to be immediately before this block.
3199   MachineBasicBlock *Pred = *MBB->pred_begin();
3200   if (!Pred->isLayoutSuccessor(MBB))
3201     return false;
3202 
3203   // If the block is completely empty, then it definitely does fall through.
3204   if (Pred->empty())
3205     return true;
3206 
3207   // Check the terminators in the previous blocks
3208   for (const auto &MI : Pred->terminators()) {
3209     // If it is not a simple branch, we are in a table somewhere.
3210     if (!MI.isBranch() || MI.isIndirectBranch())
3211       return false;
3212 
3213     // If we are the operands of one of the branches, this is not a fall
3214     // through. Note that targets with delay slots will usually bundle
3215     // terminators with the delay slot instruction.
3216     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3217       if (OP->isJTI())
3218         return false;
3219       if (OP->isMBB() && OP->getMBB() == MBB)
3220         return false;
3221     }
3222   }
3223 
3224   return true;
3225 }
3226 
3227 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3228   if (!S.usesMetadata())
3229     return nullptr;
3230 
3231   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3232   gcp_map_type::iterator GCPI = GCMap.find(&S);
3233   if (GCPI != GCMap.end())
3234     return GCPI->second.get();
3235 
3236   auto Name = S.getName();
3237 
3238   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3239        GCMetadataPrinterRegistry::entries())
3240     if (Name == GCMetaPrinter.getName()) {
3241       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3242       GMP->S = &S;
3243       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3244       return IterBool.first->second.get();
3245     }
3246 
3247   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3248 }
3249 
3250 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3251   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3252   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3253   bool NeedsDefault = false;
3254   if (MI->begin() == MI->end())
3255     // No GC strategy, use the default format.
3256     NeedsDefault = true;
3257   else
3258     for (auto &I : *MI) {
3259       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3260         if (MP->emitStackMaps(SM, *this))
3261           continue;
3262       // The strategy doesn't have printer or doesn't emit custom stack maps.
3263       // Use the default format.
3264       NeedsDefault = true;
3265     }
3266 
3267   if (NeedsDefault)
3268     SM.serializeToStackMapSection();
3269 }
3270 
3271 /// Pin vtable to this file.
3272 AsmPrinterHandler::~AsmPrinterHandler() = default;
3273 
3274 void AsmPrinterHandler::markFunctionEnd() {}
3275 
3276 // In the binary's "xray_instr_map" section, an array of these function entries
3277 // describes each instrumentation point.  When XRay patches your code, the index
3278 // into this table will be given to your handler as a patch point identifier.
3279 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3280   auto Kind8 = static_cast<uint8_t>(Kind);
3281   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3282   Out->emitBinaryData(
3283       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3284   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3285   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3286   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3287   Out->emitZeros(Padding);
3288 }
3289 
3290 void AsmPrinter::emitXRayTable() {
3291   if (Sleds.empty())
3292     return;
3293 
3294   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3295   const Function &F = MF->getFunction();
3296   MCSection *InstMap = nullptr;
3297   MCSection *FnSledIndex = nullptr;
3298   const Triple &TT = TM.getTargetTriple();
3299   // Use PC-relative addresses on all targets.
3300   if (TT.isOSBinFormatELF()) {
3301     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3302     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3303     StringRef GroupName;
3304     if (F.hasComdat()) {
3305       Flags |= ELF::SHF_GROUP;
3306       GroupName = F.getComdat()->getName();
3307     }
3308     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3309                                        Flags, 0, GroupName,
3310                                        MCSection::NonUniqueID, LinkedToSym);
3311 
3312     if (!TM.Options.XRayOmitFunctionIndex)
3313       FnSledIndex = OutContext.getELFSection(
3314           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3315           GroupName, MCSection::NonUniqueID, LinkedToSym);
3316   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3317     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3318                                          SectionKind::getReadOnlyWithRel());
3319     if (!TM.Options.XRayOmitFunctionIndex)
3320       FnSledIndex = OutContext.getMachOSection(
3321           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3322   } else {
3323     llvm_unreachable("Unsupported target");
3324   }
3325 
3326   auto WordSizeBytes = MAI->getCodePointerSize();
3327 
3328   // Now we switch to the instrumentation map section. Because this is done
3329   // per-function, we are able to create an index entry that will represent the
3330   // range of sleds associated with a function.
3331   auto &Ctx = OutContext;
3332   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3333   OutStreamer->SwitchSection(InstMap);
3334   OutStreamer->emitLabel(SledsStart);
3335   for (const auto &Sled : Sleds) {
3336     MCSymbol *Dot = Ctx.createTempSymbol();
3337     OutStreamer->emitLabel(Dot);
3338     OutStreamer->emitValueImpl(
3339         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3340                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3341         WordSizeBytes);
3342     OutStreamer->emitValueImpl(
3343         MCBinaryExpr::createSub(
3344             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3345             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3346                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3347                                     Ctx),
3348             Ctx),
3349         WordSizeBytes);
3350     Sled.emit(WordSizeBytes, OutStreamer.get());
3351   }
3352   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3353   OutStreamer->emitLabel(SledsEnd);
3354 
3355   // We then emit a single entry in the index per function. We use the symbols
3356   // that bound the instrumentation map as the range for a specific function.
3357   // Each entry here will be 2 * word size aligned, as we're writing down two
3358   // pointers. This should work for both 32-bit and 64-bit platforms.
3359   if (FnSledIndex) {
3360     OutStreamer->SwitchSection(FnSledIndex);
3361     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3362     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3363     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3364     OutStreamer->SwitchSection(PrevSection);
3365   }
3366   Sleds.clear();
3367 }
3368 
3369 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3370                             SledKind Kind, uint8_t Version) {
3371   const Function &F = MI.getMF()->getFunction();
3372   auto Attr = F.getFnAttribute("function-instrument");
3373   bool LogArgs = F.hasFnAttribute("xray-log-args");
3374   bool AlwaysInstrument =
3375     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3376   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3377     Kind = SledKind::LOG_ARGS_ENTER;
3378   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3379                                        AlwaysInstrument, &F, Version});
3380 }
3381 
3382 void AsmPrinter::emitPatchableFunctionEntries() {
3383   const Function &F = MF->getFunction();
3384   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3385   (void)F.getFnAttribute("patchable-function-prefix")
3386       .getValueAsString()
3387       .getAsInteger(10, PatchableFunctionPrefix);
3388   (void)F.getFnAttribute("patchable-function-entry")
3389       .getValueAsString()
3390       .getAsInteger(10, PatchableFunctionEntry);
3391   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3392     return;
3393   const unsigned PointerSize = getPointerSize();
3394   if (TM.getTargetTriple().isOSBinFormatELF()) {
3395     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3396     const MCSymbolELF *LinkedToSym = nullptr;
3397     StringRef GroupName;
3398 
3399     // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3400     // if we are using the integrated assembler.
3401     if (MAI->useIntegratedAssembler()) {
3402       Flags |= ELF::SHF_LINK_ORDER;
3403       if (F.hasComdat()) {
3404         Flags |= ELF::SHF_GROUP;
3405         GroupName = F.getComdat()->getName();
3406       }
3407       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3408     }
3409     OutStreamer->SwitchSection(OutContext.getELFSection(
3410         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3411         MCSection::NonUniqueID, LinkedToSym));
3412     emitAlignment(Align(PointerSize));
3413     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3414   }
3415 }
3416 
3417 uint16_t AsmPrinter::getDwarfVersion() const {
3418   return OutStreamer->getContext().getDwarfVersion();
3419 }
3420 
3421 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3422   OutStreamer->getContext().setDwarfVersion(Version);
3423 }
3424 
3425 bool AsmPrinter::isDwarf64() const {
3426   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3427 }
3428 
3429 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3430   return dwarf::getDwarfOffsetByteSize(
3431       OutStreamer->getContext().getDwarfFormat());
3432 }
3433 
3434 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3435   return dwarf::getUnitLengthFieldByteSize(
3436       OutStreamer->getContext().getDwarfFormat());
3437 }
3438