1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/TargetRegistry.h" 117 #include "llvm/Support/Timer.h" 118 #include "llvm/Support/raw_ostream.h" 119 #include "llvm/Target/TargetLoweringObjectFile.h" 120 #include "llvm/Target/TargetMachine.h" 121 #include "llvm/Target/TargetOptions.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <limits> 128 #include <memory> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 138 static cl::opt<bool> 139 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 140 cl::desc("Disable debug info printing")); 141 142 const char DWARFGroupName[] = "dwarf"; 143 const char DWARFGroupDescription[] = "DWARF Emission"; 144 const char DbgTimerName[] = "emit"; 145 const char DbgTimerDescription[] = "Debug Info Emission"; 146 const char EHTimerName[] = "write_exception"; 147 const char EHTimerDescription[] = "DWARF Exception Writer"; 148 const char CFGuardName[] = "Control Flow Guard"; 149 const char CFGuardDescription[] = "Control Flow Guard"; 150 const char CodeViewLineTablesGroupName[] = "linetables"; 151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 152 const char PPTimerName[] = "emit"; 153 const char PPTimerDescription[] = "Pseudo Probe Emission"; 154 const char PPGroupName[] = "pseudo probe"; 155 const char PPGroupDescription[] = "Pseudo Probe Emission"; 156 157 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 158 159 char AsmPrinter::ID = 0; 160 161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 162 163 static gcp_map_type &getGCMap(void *&P) { 164 if (!P) 165 P = new gcp_map_type(); 166 return *(gcp_map_type*)P; 167 } 168 169 /// getGVAlignment - Return the alignment to use for the specified global 170 /// value. This rounds up to the preferred alignment if possible and legal. 171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 172 Align InAlign) { 173 Align Alignment; 174 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 175 Alignment = DL.getPreferredAlign(GVar); 176 177 // If InAlign is specified, round it to it. 178 if (InAlign > Alignment) 179 Alignment = InAlign; 180 181 // If the GV has a specified alignment, take it into account. 182 const MaybeAlign GVAlign(GV->getAlignment()); 183 if (!GVAlign) 184 return Alignment; 185 186 assert(GVAlign && "GVAlign must be set"); 187 188 // If the GVAlign is larger than NumBits, or if we are required to obey 189 // NumBits because the GV has an assigned section, obey it. 190 if (*GVAlign > Alignment || GV->hasSection()) 191 Alignment = *GVAlign; 192 return Alignment; 193 } 194 195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 196 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 197 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 198 VerboseAsm = OutStreamer->isVerboseAsm(); 199 } 200 201 AsmPrinter::~AsmPrinter() { 202 assert(!DD && Handlers.size() == NumUserHandlers && 203 "Debug/EH info didn't get finalized"); 204 205 if (GCMetadataPrinters) { 206 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 207 208 delete &GCMap; 209 GCMetadataPrinters = nullptr; 210 } 211 } 212 213 bool AsmPrinter::isPositionIndependent() const { 214 return TM.isPositionIndependent(); 215 } 216 217 /// getFunctionNumber - Return a unique ID for the current function. 218 unsigned AsmPrinter::getFunctionNumber() const { 219 return MF->getFunctionNumber(); 220 } 221 222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 223 return *TM.getObjFileLowering(); 224 } 225 226 const DataLayout &AsmPrinter::getDataLayout() const { 227 return MMI->getModule()->getDataLayout(); 228 } 229 230 // Do not use the cached DataLayout because some client use it without a Module 231 // (dsymutil, llvm-dwarfdump). 232 unsigned AsmPrinter::getPointerSize() const { 233 return TM.getPointerSize(0); // FIXME: Default address space 234 } 235 236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 237 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 238 return MF->getSubtarget<MCSubtargetInfo>(); 239 } 240 241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 242 S.emitInstruction(Inst, getSubtargetInfo()); 243 } 244 245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 246 if (DD) { 247 assert(OutStreamer->hasRawTextSupport() && 248 "Expected assembly output mode."); 249 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 250 } 251 } 252 253 /// getCurrentSection() - Return the current section we are emitting to. 254 const MCSection *AsmPrinter::getCurrentSection() const { 255 return OutStreamer->getCurrentSectionOnly(); 256 } 257 258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 259 AU.setPreservesAll(); 260 MachineFunctionPass::getAnalysisUsage(AU); 261 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 262 AU.addRequired<GCModuleInfo>(); 263 } 264 265 bool AsmPrinter::doInitialization(Module &M) { 266 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 267 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 268 269 // Initialize TargetLoweringObjectFile. 270 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 271 .Initialize(OutContext, TM); 272 273 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 274 .getModuleMetadata(M); 275 276 OutStreamer->InitSections(false); 277 278 if (DisableDebugInfoPrinting) 279 MMI->setDebugInfoAvailability(false); 280 281 // Emit the version-min deployment target directive if needed. 282 // 283 // FIXME: If we end up with a collection of these sorts of Darwin-specific 284 // or ELF-specific things, it may make sense to have a platform helper class 285 // that will work with the target helper class. For now keep it here, as the 286 // alternative is duplicated code in each of the target asm printers that 287 // use the directive, where it would need the same conditionalization 288 // anyway. 289 const Triple &Target = TM.getTargetTriple(); 290 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 291 292 // Allow the target to emit any magic that it wants at the start of the file. 293 emitStartOfAsmFile(M); 294 295 // Very minimal debug info. It is ignored if we emit actual debug info. If we 296 // don't, this at least helps the user find where a global came from. 297 if (MAI->hasSingleParameterDotFile()) { 298 // .file "foo.c" 299 OutStreamer->emitFileDirective( 300 llvm::sys::path::filename(M.getSourceFileName())); 301 } 302 303 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 304 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 305 for (auto &I : *MI) 306 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 307 MP->beginAssembly(M, *MI, *this); 308 309 // Emit module-level inline asm if it exists. 310 if (!M.getModuleInlineAsm().empty()) { 311 // We're at the module level. Construct MCSubtarget from the default CPU 312 // and target triple. 313 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 314 TM.getTargetTriple().str(), TM.getTargetCPU(), 315 TM.getTargetFeatureString())); 316 assert(STI && "Unable to create subtarget info"); 317 OutStreamer->AddComment("Start of file scope inline assembly"); 318 OutStreamer->AddBlankLine(); 319 emitInlineAsm(M.getModuleInlineAsm() + "\n", 320 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 321 OutStreamer->AddComment("End of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 } 324 325 if (MAI->doesSupportDebugInformation()) { 326 bool EmitCodeView = M.getCodeViewFlag(); 327 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 328 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 329 DbgTimerName, DbgTimerDescription, 330 CodeViewLineTablesGroupName, 331 CodeViewLineTablesGroupDescription); 332 } 333 if (!EmitCodeView || M.getDwarfVersion()) { 334 if (!DisableDebugInfoPrinting) { 335 DD = new DwarfDebug(this); 336 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 337 DbgTimerDescription, DWARFGroupName, 338 DWARFGroupDescription); 339 } 340 } 341 } 342 343 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 344 PP = new PseudoProbeHandler(this, &M); 345 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 346 PPTimerDescription, PPGroupName, PPGroupDescription); 347 } 348 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 case ExceptionHandling::ARM: 353 isCFIMoveForDebugging = true; 354 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 355 break; 356 for (auto &F: M.getFunctionList()) { 357 // If the module contains any function with unwind data, 358 // .eh_frame has to be emitted. 359 // Ignore functions that won't get emitted. 360 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 361 isCFIMoveForDebugging = false; 362 break; 363 } 364 } 365 break; 366 default: 367 isCFIMoveForDebugging = false; 368 break; 369 } 370 371 EHStreamer *ES = nullptr; 372 switch (MAI->getExceptionHandlingType()) { 373 case ExceptionHandling::None: 374 break; 375 case ExceptionHandling::SjLj: 376 case ExceptionHandling::DwarfCFI: 377 ES = new DwarfCFIException(this); 378 break; 379 case ExceptionHandling::ARM: 380 ES = new ARMException(this); 381 break; 382 case ExceptionHandling::WinEH: 383 switch (MAI->getWinEHEncodingType()) { 384 default: llvm_unreachable("unsupported unwinding information encoding"); 385 case WinEH::EncodingType::Invalid: 386 break; 387 case WinEH::EncodingType::X86: 388 case WinEH::EncodingType::Itanium: 389 ES = new WinException(this); 390 break; 391 } 392 break; 393 case ExceptionHandling::Wasm: 394 ES = new WasmException(this); 395 break; 396 case ExceptionHandling::AIX: 397 ES = new AIXException(this); 398 break; 399 } 400 if (ES) 401 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 402 EHTimerDescription, DWARFGroupName, 403 DWARFGroupDescription); 404 405 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 406 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 407 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 408 CFGuardDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 for (const HandlerInfo &HI : Handlers) { 412 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 413 HI.TimerGroupDescription, TimePassesIsEnabled); 414 HI.Handler->beginModule(&M); 415 } 416 417 return false; 418 } 419 420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 421 if (!MAI.hasWeakDefCanBeHiddenDirective()) 422 return false; 423 424 return GV->canBeOmittedFromSymbolTable(); 425 } 426 427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 428 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 429 switch (Linkage) { 430 case GlobalValue::CommonLinkage: 431 case GlobalValue::LinkOnceAnyLinkage: 432 case GlobalValue::LinkOnceODRLinkage: 433 case GlobalValue::WeakAnyLinkage: 434 case GlobalValue::WeakODRLinkage: 435 if (MAI->hasWeakDefDirective()) { 436 // .globl _foo 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 438 439 if (!canBeHidden(GV, *MAI)) 440 // .weak_definition _foo 441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 442 else 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 444 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 445 // .globl _foo 446 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 447 //NOTE: linkonce is handled by the section the symbol was assigned to. 448 } else { 449 // .weak _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 451 } 452 return; 453 case GlobalValue::ExternalLinkage: 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 455 return; 456 case GlobalValue::PrivateLinkage: 457 case GlobalValue::InternalLinkage: 458 return; 459 case GlobalValue::ExternalWeakLinkage: 460 case GlobalValue::AvailableExternallyLinkage: 461 case GlobalValue::AppendingLinkage: 462 llvm_unreachable("Should never emit this"); 463 } 464 llvm_unreachable("Unknown linkage type!"); 465 } 466 467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 468 const GlobalValue *GV) const { 469 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 470 } 471 472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 473 return TM.getSymbol(GV); 474 } 475 476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 477 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 478 // exact definion (intersection of GlobalValue::hasExactDefinition() and 479 // !isInterposable()). These linkages include: external, appending, internal, 480 // private. It may be profitable to use a local alias for external. The 481 // assembler would otherwise be conservative and assume a global default 482 // visibility symbol can be interposable, even if the code generator already 483 // assumed it. 484 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 485 const Module &M = *GV.getParent(); 486 if (TM.getRelocationModel() != Reloc::Static && 487 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 488 return getSymbolWithGlobalValueBase(&GV, "$local"); 489 } 490 return TM.getSymbol(&GV); 491 } 492 493 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 495 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 496 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 497 "No emulated TLS variables in the common section"); 498 499 // Never emit TLS variable xyz in emulated TLS model. 500 // The initialization value is in __emutls_t.xyz instead of xyz. 501 if (IsEmuTLSVar) 502 return; 503 504 if (GV->hasInitializer()) { 505 // Check to see if this is a special global used by LLVM, if so, emit it. 506 if (emitSpecialLLVMGlobal(GV)) 507 return; 508 509 // Skip the emission of global equivalents. The symbol can be emitted later 510 // on by emitGlobalGOTEquivs in case it turns out to be needed. 511 if (GlobalGOTEquivs.count(getSymbol(GV))) 512 return; 513 514 if (isVerbose()) { 515 // When printing the control variable __emutls_v.*, 516 // we don't need to print the original TLS variable name. 517 GV->printAsOperand(OutStreamer->GetCommentOS(), 518 /*PrintType=*/false, GV->getParent()); 519 OutStreamer->GetCommentOS() << '\n'; 520 } 521 } 522 523 MCSymbol *GVSym = getSymbol(GV); 524 MCSymbol *EmittedSym = GVSym; 525 526 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 527 // attributes. 528 // GV's or GVSym's attributes will be used for the EmittedSym. 529 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 530 531 if (!GV->hasInitializer()) // External globals require no extra code. 532 return; 533 534 GVSym->redefineIfPossible(); 535 if (GVSym->isDefined() || GVSym->isVariable()) 536 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 537 "' is already defined"); 538 539 if (MAI->hasDotTypeDotSizeDirective()) 540 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 541 542 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 543 544 const DataLayout &DL = GV->getParent()->getDataLayout(); 545 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 546 547 // If the alignment is specified, we *must* obey it. Overaligning a global 548 // with a specified alignment is a prompt way to break globals emitted to 549 // sections and expected to be contiguous (e.g. ObjC metadata). 550 const Align Alignment = getGVAlignment(GV, DL); 551 552 for (const HandlerInfo &HI : Handlers) { 553 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 554 HI.TimerGroupName, HI.TimerGroupDescription, 555 TimePassesIsEnabled); 556 HI.Handler->setSymbolSize(GVSym, Size); 557 } 558 559 // Handle common symbols 560 if (GVKind.isCommon()) { 561 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 562 // .comm _foo, 42, 4 563 const bool SupportsAlignment = 564 getObjFileLowering().getCommDirectiveSupportsAlignment(); 565 OutStreamer->emitCommonSymbol(GVSym, Size, 566 SupportsAlignment ? Alignment.value() : 0); 567 return; 568 } 569 570 // Determine to which section this global should be emitted. 571 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 572 573 // If we have a bss global going to a section that supports the 574 // zerofill directive, do so here. 575 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 576 TheSection->isVirtualSection()) { 577 if (Size == 0) 578 Size = 1; // zerofill of 0 bytes is undefined. 579 emitLinkage(GV, GVSym); 580 // .zerofill __DATA, __bss, _foo, 400, 5 581 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 582 return; 583 } 584 585 // If this is a BSS local symbol and we are emitting in the BSS 586 // section use .lcomm/.comm directive. 587 if (GVKind.isBSSLocal() && 588 getObjFileLowering().getBSSSection() == TheSection) { 589 if (Size == 0) 590 Size = 1; // .comm Foo, 0 is undefined, avoid it. 591 592 // Use .lcomm only if it supports user-specified alignment. 593 // Otherwise, while it would still be correct to use .lcomm in some 594 // cases (e.g. when Align == 1), the external assembler might enfore 595 // some -unknown- default alignment behavior, which could cause 596 // spurious differences between external and integrated assembler. 597 // Prefer to simply fall back to .local / .comm in this case. 598 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 599 // .lcomm _foo, 42 600 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 601 return; 602 } 603 604 // .local _foo 605 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 606 // .comm _foo, 42, 4 607 const bool SupportsAlignment = 608 getObjFileLowering().getCommDirectiveSupportsAlignment(); 609 OutStreamer->emitCommonSymbol(GVSym, Size, 610 SupportsAlignment ? Alignment.value() : 0); 611 return; 612 } 613 614 // Handle thread local data for mach-o which requires us to output an 615 // additional structure of data and mangle the original symbol so that we 616 // can reference it later. 617 // 618 // TODO: This should become an "emit thread local global" method on TLOF. 619 // All of this macho specific stuff should be sunk down into TLOFMachO and 620 // stuff like "TLSExtraDataSection" should no longer be part of the parent 621 // TLOF class. This will also make it more obvious that stuff like 622 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 623 // specific code. 624 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 625 // Emit the .tbss symbol 626 MCSymbol *MangSym = 627 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 628 629 if (GVKind.isThreadBSS()) { 630 TheSection = getObjFileLowering().getTLSBSSSection(); 631 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 632 } else if (GVKind.isThreadData()) { 633 OutStreamer->SwitchSection(TheSection); 634 635 emitAlignment(Alignment, GV); 636 OutStreamer->emitLabel(MangSym); 637 638 emitGlobalConstant(GV->getParent()->getDataLayout(), 639 GV->getInitializer()); 640 } 641 642 OutStreamer->AddBlankLine(); 643 644 // Emit the variable struct for the runtime. 645 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 646 647 OutStreamer->SwitchSection(TLVSect); 648 // Emit the linkage here. 649 emitLinkage(GV, GVSym); 650 OutStreamer->emitLabel(GVSym); 651 652 // Three pointers in size: 653 // - __tlv_bootstrap - used to make sure support exists 654 // - spare pointer, used when mapped by the runtime 655 // - pointer to mangled symbol above with initializer 656 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 657 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 658 PtrSize); 659 OutStreamer->emitIntValue(0, PtrSize); 660 OutStreamer->emitSymbolValue(MangSym, PtrSize); 661 662 OutStreamer->AddBlankLine(); 663 return; 664 } 665 666 MCSymbol *EmittedInitSym = GVSym; 667 668 OutStreamer->SwitchSection(TheSection); 669 670 emitLinkage(GV, EmittedInitSym); 671 emitAlignment(Alignment, GV); 672 673 OutStreamer->emitLabel(EmittedInitSym); 674 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 675 if (LocalAlias != EmittedInitSym) 676 OutStreamer->emitLabel(LocalAlias); 677 678 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 679 680 if (MAI->hasDotTypeDotSizeDirective()) 681 // .size foo, 42 682 OutStreamer->emitELFSize(EmittedInitSym, 683 MCConstantExpr::create(Size, OutContext)); 684 685 OutStreamer->AddBlankLine(); 686 } 687 688 /// Emit the directive and value for debug thread local expression 689 /// 690 /// \p Value - The value to emit. 691 /// \p Size - The size of the integer (in bytes) to emit. 692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 693 OutStreamer->emitValue(Value, Size); 694 } 695 696 void AsmPrinter::emitFunctionHeaderComment() {} 697 698 /// EmitFunctionHeader - This method emits the header for the current 699 /// function. 700 void AsmPrinter::emitFunctionHeader() { 701 const Function &F = MF->getFunction(); 702 703 if (isVerbose()) 704 OutStreamer->GetCommentOS() 705 << "-- Begin function " 706 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 707 708 // Print out constants referenced by the function 709 emitConstantPool(); 710 711 // Print the 'header' of function. 712 // If basic block sections is desired and function sections is off, 713 // explicitly request a unique section for this function. 714 if (MF->front().isBeginSection() && !TM.getFunctionSections()) 715 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 716 else 717 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 718 OutStreamer->SwitchSection(MF->getSection()); 719 720 if (!MAI->hasVisibilityOnlyWithLinkage()) 721 emitVisibility(CurrentFnSym, F.getVisibility()); 722 723 if (MAI->needsFunctionDescriptors()) 724 emitLinkage(&F, CurrentFnDescSym); 725 726 emitLinkage(&F, CurrentFnSym); 727 if (MAI->hasFunctionAlignment()) 728 emitAlignment(MF->getAlignment(), &F); 729 730 if (MAI->hasDotTypeDotSizeDirective()) 731 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 732 733 if (F.hasFnAttribute(Attribute::Cold)) 734 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 735 736 if (isVerbose()) { 737 F.printAsOperand(OutStreamer->GetCommentOS(), 738 /*PrintType=*/false, F.getParent()); 739 emitFunctionHeaderComment(); 740 OutStreamer->GetCommentOS() << '\n'; 741 } 742 743 // Emit the prefix data. 744 if (F.hasPrefixData()) { 745 if (MAI->hasSubsectionsViaSymbols()) { 746 // Preserving prefix data on platforms which use subsections-via-symbols 747 // is a bit tricky. Here we introduce a symbol for the prefix data 748 // and use the .alt_entry attribute to mark the function's real entry point 749 // as an alternative entry point to the prefix-data symbol. 750 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 751 OutStreamer->emitLabel(PrefixSym); 752 753 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 754 755 // Emit an .alt_entry directive for the actual function symbol. 756 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 757 } else { 758 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 759 } 760 } 761 762 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 763 // place prefix data before NOPs. 764 unsigned PatchableFunctionPrefix = 0; 765 unsigned PatchableFunctionEntry = 0; 766 (void)F.getFnAttribute("patchable-function-prefix") 767 .getValueAsString() 768 .getAsInteger(10, PatchableFunctionPrefix); 769 (void)F.getFnAttribute("patchable-function-entry") 770 .getValueAsString() 771 .getAsInteger(10, PatchableFunctionEntry); 772 if (PatchableFunctionPrefix) { 773 CurrentPatchableFunctionEntrySym = 774 OutContext.createLinkerPrivateTempSymbol(); 775 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 776 emitNops(PatchableFunctionPrefix); 777 } else if (PatchableFunctionEntry) { 778 // May be reassigned when emitting the body, to reference the label after 779 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 780 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 781 } 782 783 // Emit the function descriptor. This is a virtual function to allow targets 784 // to emit their specific function descriptor. Right now it is only used by 785 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 786 // descriptors and should be converted to use this hook as well. 787 if (MAI->needsFunctionDescriptors()) 788 emitFunctionDescriptor(); 789 790 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 791 // their wild and crazy things as required. 792 emitFunctionEntryLabel(); 793 794 // If the function had address-taken blocks that got deleted, then we have 795 // references to the dangling symbols. Emit them at the start of the function 796 // so that we don't get references to undefined symbols. 797 std::vector<MCSymbol*> DeadBlockSyms; 798 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 799 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 800 OutStreamer->AddComment("Address taken block that was later removed"); 801 OutStreamer->emitLabel(DeadBlockSyms[i]); 802 } 803 804 if (CurrentFnBegin) { 805 if (MAI->useAssignmentForEHBegin()) { 806 MCSymbol *CurPos = OutContext.createTempSymbol(); 807 OutStreamer->emitLabel(CurPos); 808 OutStreamer->emitAssignment(CurrentFnBegin, 809 MCSymbolRefExpr::create(CurPos, OutContext)); 810 } else { 811 OutStreamer->emitLabel(CurrentFnBegin); 812 } 813 } 814 815 // Emit pre-function debug and/or EH information. 816 for (const HandlerInfo &HI : Handlers) { 817 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 818 HI.TimerGroupDescription, TimePassesIsEnabled); 819 HI.Handler->beginFunction(MF); 820 } 821 822 // Emit the prologue data. 823 if (F.hasPrologueData()) 824 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 825 } 826 827 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 828 /// function. This can be overridden by targets as required to do custom stuff. 829 void AsmPrinter::emitFunctionEntryLabel() { 830 CurrentFnSym->redefineIfPossible(); 831 832 // The function label could have already been emitted if two symbols end up 833 // conflicting due to asm renaming. Detect this and emit an error. 834 if (CurrentFnSym->isVariable()) 835 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 836 "' is a protected alias"); 837 838 OutStreamer->emitLabel(CurrentFnSym); 839 840 if (TM.getTargetTriple().isOSBinFormatELF()) { 841 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 842 if (Sym != CurrentFnSym) 843 OutStreamer->emitLabel(Sym); 844 } 845 } 846 847 /// emitComments - Pretty-print comments for instructions. 848 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 849 const MachineFunction *MF = MI.getMF(); 850 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 851 852 // Check for spills and reloads 853 854 // We assume a single instruction only has a spill or reload, not 855 // both. 856 Optional<unsigned> Size; 857 if ((Size = MI.getRestoreSize(TII))) { 858 CommentOS << *Size << "-byte Reload\n"; 859 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 860 if (*Size) { 861 if (*Size == unsigned(MemoryLocation::UnknownSize)) 862 CommentOS << "Unknown-size Folded Reload\n"; 863 else 864 CommentOS << *Size << "-byte Folded Reload\n"; 865 } 866 } else if ((Size = MI.getSpillSize(TII))) { 867 CommentOS << *Size << "-byte Spill\n"; 868 } else if ((Size = MI.getFoldedSpillSize(TII))) { 869 if (*Size) { 870 if (*Size == unsigned(MemoryLocation::UnknownSize)) 871 CommentOS << "Unknown-size Folded Spill\n"; 872 else 873 CommentOS << *Size << "-byte Folded Spill\n"; 874 } 875 } 876 877 // Check for spill-induced copies 878 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 879 CommentOS << " Reload Reuse\n"; 880 } 881 882 /// emitImplicitDef - This method emits the specified machine instruction 883 /// that is an implicit def. 884 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 885 Register RegNo = MI->getOperand(0).getReg(); 886 887 SmallString<128> Str; 888 raw_svector_ostream OS(Str); 889 OS << "implicit-def: " 890 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 891 892 OutStreamer->AddComment(OS.str()); 893 OutStreamer->AddBlankLine(); 894 } 895 896 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 897 std::string Str; 898 raw_string_ostream OS(Str); 899 OS << "kill:"; 900 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 901 const MachineOperand &Op = MI->getOperand(i); 902 assert(Op.isReg() && "KILL instruction must have only register operands"); 903 OS << ' ' << (Op.isDef() ? "def " : "killed ") 904 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 905 } 906 AP.OutStreamer->AddComment(OS.str()); 907 AP.OutStreamer->AddBlankLine(); 908 } 909 910 /// emitDebugValueComment - This method handles the target-independent form 911 /// of DBG_VALUE, returning true if it was able to do so. A false return 912 /// means the target will need to handle MI in EmitInstruction. 913 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 914 // This code handles only the 4-operand target-independent form. 915 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 916 return false; 917 918 SmallString<128> Str; 919 raw_svector_ostream OS(Str); 920 OS << "DEBUG_VALUE: "; 921 922 const DILocalVariable *V = MI->getDebugVariable(); 923 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 924 StringRef Name = SP->getName(); 925 if (!Name.empty()) 926 OS << Name << ":"; 927 } 928 OS << V->getName(); 929 OS << " <- "; 930 931 const DIExpression *Expr = MI->getDebugExpression(); 932 if (Expr->getNumElements()) { 933 OS << '['; 934 ListSeparator LS; 935 for (auto Op : Expr->expr_ops()) { 936 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 937 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 938 OS << ' ' << Op.getArg(I); 939 } 940 OS << "] "; 941 } 942 943 // Register or immediate value. Register 0 means undef. 944 for (const MachineOperand &Op : MI->debug_operands()) { 945 if (&Op != MI->debug_operands().begin()) 946 OS << ", "; 947 switch (Op.getType()) { 948 case MachineOperand::MO_FPImmediate: { 949 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 950 if (Op.getFPImm()->getType()->isFloatTy()) { 951 OS << (double)APF.convertToFloat(); 952 } else if (Op.getFPImm()->getType()->isDoubleTy()) { 953 OS << APF.convertToDouble(); 954 } else { 955 // There is no good way to print long double. Convert a copy to 956 // double. Ah well, it's only a comment. 957 bool ignored; 958 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 959 &ignored); 960 OS << "(long double) " << APF.convertToDouble(); 961 } 962 break; 963 } 964 case MachineOperand::MO_Immediate: { 965 OS << Op.getImm(); 966 break; 967 } 968 case MachineOperand::MO_CImmediate: { 969 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 970 break; 971 } 972 case MachineOperand::MO_TargetIndex: { 973 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 974 // NOTE: Want this comment at start of line, don't emit with AddComment. 975 AP.OutStreamer->emitRawComment(OS.str()); 976 break; 977 } 978 case MachineOperand::MO_Register: 979 case MachineOperand::MO_FrameIndex: { 980 Register Reg; 981 Optional<StackOffset> Offset; 982 if (Op.isReg()) { 983 Reg = Op.getReg(); 984 } else { 985 const TargetFrameLowering *TFI = 986 AP.MF->getSubtarget().getFrameLowering(); 987 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 988 } 989 if (!Reg) { 990 // Suppress offset, it is not meaningful here. 991 OS << "undef"; 992 break; 993 } 994 // The second operand is only an offset if it's an immediate. 995 if (MI->isIndirectDebugValue()) 996 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 997 if (Offset) 998 OS << '['; 999 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1000 if (Offset) 1001 OS << '+' << Offset->getFixed() << ']'; 1002 break; 1003 } 1004 default: 1005 llvm_unreachable("Unknown operand type"); 1006 } 1007 } 1008 1009 // NOTE: Want this comment at start of line, don't emit with AddComment. 1010 AP.OutStreamer->emitRawComment(OS.str()); 1011 return true; 1012 } 1013 1014 /// This method handles the target-independent form of DBG_LABEL, returning 1015 /// true if it was able to do so. A false return means the target will need 1016 /// to handle MI in EmitInstruction. 1017 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1018 if (MI->getNumOperands() != 1) 1019 return false; 1020 1021 SmallString<128> Str; 1022 raw_svector_ostream OS(Str); 1023 OS << "DEBUG_LABEL: "; 1024 1025 const DILabel *V = MI->getDebugLabel(); 1026 if (auto *SP = dyn_cast<DISubprogram>( 1027 V->getScope()->getNonLexicalBlockFileScope())) { 1028 StringRef Name = SP->getName(); 1029 if (!Name.empty()) 1030 OS << Name << ":"; 1031 } 1032 OS << V->getName(); 1033 1034 // NOTE: Want this comment at start of line, don't emit with AddComment. 1035 AP.OutStreamer->emitRawComment(OS.str()); 1036 return true; 1037 } 1038 1039 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1040 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1041 MF->getFunction().needsUnwindTableEntry()) 1042 return CFI_M_EH; 1043 1044 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1045 return CFI_M_Debug; 1046 1047 return CFI_M_None; 1048 } 1049 1050 bool AsmPrinter::needsSEHMoves() { 1051 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1052 } 1053 1054 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1055 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1056 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1057 ExceptionHandlingType != ExceptionHandling::ARM) 1058 return; 1059 1060 if (needsCFIMoves() == CFI_M_None) 1061 return; 1062 1063 // If there is no "real" instruction following this CFI instruction, skip 1064 // emitting it; it would be beyond the end of the function's FDE range. 1065 auto *MBB = MI.getParent(); 1066 auto I = std::next(MI.getIterator()); 1067 while (I != MBB->end() && I->isTransient()) 1068 ++I; 1069 if (I == MBB->instr_end() && 1070 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1071 return; 1072 1073 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1074 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1075 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1076 emitCFIInstruction(CFI); 1077 } 1078 1079 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1080 // The operands are the MCSymbol and the frame offset of the allocation. 1081 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1082 int FrameOffset = MI.getOperand(1).getImm(); 1083 1084 // Emit a symbol assignment. 1085 OutStreamer->emitAssignment(FrameAllocSym, 1086 MCConstantExpr::create(FrameOffset, OutContext)); 1087 } 1088 1089 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1090 /// given basic block. This can be used to capture more precise profile 1091 /// information. We use the last 4 bits (LSBs) to encode the following 1092 /// information: 1093 /// * (1): set if return block (ret or tail call). 1094 /// * (2): set if ends with a tail call. 1095 /// * (3): set if exception handling (EH) landing pad. 1096 /// * (4): set if the block can fall through to its next. 1097 /// The remaining bits are zero. 1098 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1099 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1100 return ((unsigned)MBB.isReturnBlock()) | 1101 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1102 (MBB.isEHPad() << 2) | 1103 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1104 } 1105 1106 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1107 MCSection *BBAddrMapSection = 1108 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1109 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1110 1111 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1112 1113 OutStreamer->PushSection(); 1114 OutStreamer->SwitchSection(BBAddrMapSection); 1115 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1116 // Emit the total number of basic blocks in this function. 1117 OutStreamer->emitULEB128IntValue(MF.size()); 1118 // Emit BB Information for each basic block in the funciton. 1119 for (const MachineBasicBlock &MBB : MF) { 1120 const MCSymbol *MBBSymbol = 1121 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1122 // Emit the basic block offset. 1123 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1124 // Emit the basic block size. When BBs have alignments, their size cannot 1125 // always be computed from their offsets. 1126 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1127 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1128 } 1129 OutStreamer->PopSection(); 1130 } 1131 1132 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1133 auto GUID = MI.getOperand(0).getImm(); 1134 auto Index = MI.getOperand(1).getImm(); 1135 auto Type = MI.getOperand(2).getImm(); 1136 auto Attr = MI.getOperand(3).getImm(); 1137 DILocation *DebugLoc = MI.getDebugLoc(); 1138 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1139 } 1140 1141 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1142 if (!MF.getTarget().Options.EmitStackSizeSection) 1143 return; 1144 1145 MCSection *StackSizeSection = 1146 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1147 if (!StackSizeSection) 1148 return; 1149 1150 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1151 // Don't emit functions with dynamic stack allocations. 1152 if (FrameInfo.hasVarSizedObjects()) 1153 return; 1154 1155 OutStreamer->PushSection(); 1156 OutStreamer->SwitchSection(StackSizeSection); 1157 1158 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1159 uint64_t StackSize = FrameInfo.getStackSize(); 1160 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1161 OutStreamer->emitULEB128IntValue(StackSize); 1162 1163 OutStreamer->PopSection(); 1164 } 1165 1166 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1167 MachineModuleInfo &MMI = MF.getMMI(); 1168 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1169 return true; 1170 1171 // We might emit an EH table that uses function begin and end labels even if 1172 // we don't have any landingpads. 1173 if (!MF.getFunction().hasPersonalityFn()) 1174 return false; 1175 return !isNoOpWithoutInvoke( 1176 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1177 } 1178 1179 /// EmitFunctionBody - This method emits the body and trailer for a 1180 /// function. 1181 void AsmPrinter::emitFunctionBody() { 1182 emitFunctionHeader(); 1183 1184 // Emit target-specific gunk before the function body. 1185 emitFunctionBodyStart(); 1186 1187 if (isVerbose()) { 1188 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1189 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1190 if (!MDT) { 1191 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1192 OwnedMDT->getBase().recalculate(*MF); 1193 MDT = OwnedMDT.get(); 1194 } 1195 1196 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1197 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1198 if (!MLI) { 1199 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1200 OwnedMLI->getBase().analyze(MDT->getBase()); 1201 MLI = OwnedMLI.get(); 1202 } 1203 } 1204 1205 // Print out code for the function. 1206 bool HasAnyRealCode = false; 1207 int NumInstsInFunction = 0; 1208 1209 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1210 for (auto &MBB : *MF) { 1211 // Print a label for the basic block. 1212 emitBasicBlockStart(MBB); 1213 DenseMap<StringRef, unsigned> MnemonicCounts; 1214 for (auto &MI : MBB) { 1215 // Print the assembly for the instruction. 1216 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1217 !MI.isDebugInstr()) { 1218 HasAnyRealCode = true; 1219 ++NumInstsInFunction; 1220 } 1221 1222 // If there is a pre-instruction symbol, emit a label for it here. 1223 if (MCSymbol *S = MI.getPreInstrSymbol()) 1224 OutStreamer->emitLabel(S); 1225 1226 for (const HandlerInfo &HI : Handlers) { 1227 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1228 HI.TimerGroupDescription, TimePassesIsEnabled); 1229 HI.Handler->beginInstruction(&MI); 1230 } 1231 1232 if (isVerbose()) 1233 emitComments(MI, OutStreamer->GetCommentOS()); 1234 1235 switch (MI.getOpcode()) { 1236 case TargetOpcode::CFI_INSTRUCTION: 1237 emitCFIInstruction(MI); 1238 break; 1239 case TargetOpcode::LOCAL_ESCAPE: 1240 emitFrameAlloc(MI); 1241 break; 1242 case TargetOpcode::ANNOTATION_LABEL: 1243 case TargetOpcode::EH_LABEL: 1244 case TargetOpcode::GC_LABEL: 1245 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1246 break; 1247 case TargetOpcode::INLINEASM: 1248 case TargetOpcode::INLINEASM_BR: 1249 emitInlineAsm(&MI); 1250 break; 1251 case TargetOpcode::DBG_VALUE: 1252 case TargetOpcode::DBG_VALUE_LIST: 1253 if (isVerbose()) { 1254 if (!emitDebugValueComment(&MI, *this)) 1255 emitInstruction(&MI); 1256 } 1257 break; 1258 case TargetOpcode::DBG_INSTR_REF: 1259 // This instruction reference will have been resolved to a machine 1260 // location, and a nearby DBG_VALUE created. We can safely ignore 1261 // the instruction reference. 1262 break; 1263 case TargetOpcode::DBG_LABEL: 1264 if (isVerbose()) { 1265 if (!emitDebugLabelComment(&MI, *this)) 1266 emitInstruction(&MI); 1267 } 1268 break; 1269 case TargetOpcode::IMPLICIT_DEF: 1270 if (isVerbose()) emitImplicitDef(&MI); 1271 break; 1272 case TargetOpcode::KILL: 1273 if (isVerbose()) emitKill(&MI, *this); 1274 break; 1275 case TargetOpcode::PSEUDO_PROBE: 1276 emitPseudoProbe(MI); 1277 break; 1278 default: 1279 emitInstruction(&MI); 1280 if (CanDoExtraAnalysis) { 1281 MCInst MCI; 1282 MCI.setOpcode(MI.getOpcode()); 1283 auto Name = OutStreamer->getMnemonic(MCI); 1284 auto I = MnemonicCounts.insert({Name, 0u}); 1285 I.first->second++; 1286 } 1287 break; 1288 } 1289 1290 // If there is a post-instruction symbol, emit a label for it here. 1291 if (MCSymbol *S = MI.getPostInstrSymbol()) 1292 OutStreamer->emitLabel(S); 1293 1294 for (const HandlerInfo &HI : Handlers) { 1295 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1296 HI.TimerGroupDescription, TimePassesIsEnabled); 1297 HI.Handler->endInstruction(); 1298 } 1299 } 1300 1301 // We must emit temporary symbol for the end of this basic block, if either 1302 // we have BBLabels enabled or if this basic blocks marks the end of a 1303 // section (except the section containing the entry basic block as the end 1304 // symbol for that section is CurrentFnEnd). 1305 if (MF->hasBBLabels() || 1306 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1307 !MBB.sameSection(&MF->front()))) 1308 OutStreamer->emitLabel(MBB.getEndSymbol()); 1309 1310 if (MBB.isEndSection()) { 1311 // The size directive for the section containing the entry block is 1312 // handled separately by the function section. 1313 if (!MBB.sameSection(&MF->front())) { 1314 if (MAI->hasDotTypeDotSizeDirective()) { 1315 // Emit the size directive for the basic block section. 1316 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1317 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1318 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1319 OutContext); 1320 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1321 } 1322 MBBSectionRanges[MBB.getSectionIDNum()] = 1323 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1324 } 1325 } 1326 emitBasicBlockEnd(MBB); 1327 1328 if (CanDoExtraAnalysis) { 1329 // Skip empty blocks. 1330 if (MBB.empty()) 1331 continue; 1332 1333 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1334 MBB.begin()->getDebugLoc(), &MBB); 1335 1336 // Generate instruction mix remark. First, sort counts in descending order 1337 // by count and name. 1338 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1339 for (auto &KV : MnemonicCounts) 1340 MnemonicVec.emplace_back(KV.first, KV.second); 1341 1342 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1343 const std::pair<StringRef, unsigned> &B) { 1344 if (A.second > B.second) 1345 return true; 1346 if (A.second == B.second) 1347 return StringRef(A.first) < StringRef(B.first); 1348 return false; 1349 }); 1350 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1351 for (auto &KV : MnemonicVec) { 1352 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1353 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1354 } 1355 ORE->emit(R); 1356 } 1357 } 1358 1359 EmittedInsts += NumInstsInFunction; 1360 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1361 MF->getFunction().getSubprogram(), 1362 &MF->front()); 1363 R << ore::NV("NumInstructions", NumInstsInFunction) 1364 << " instructions in function"; 1365 ORE->emit(R); 1366 1367 // If the function is empty and the object file uses .subsections_via_symbols, 1368 // then we need to emit *something* to the function body to prevent the 1369 // labels from collapsing together. Just emit a noop. 1370 // Similarly, don't emit empty functions on Windows either. It can lead to 1371 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1372 // after linking, causing the kernel not to load the binary: 1373 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1374 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1375 const Triple &TT = TM.getTargetTriple(); 1376 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1377 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1378 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1379 1380 // Targets can opt-out of emitting the noop here by leaving the opcode 1381 // unspecified. 1382 if (Noop.getOpcode()) { 1383 OutStreamer->AddComment("avoids zero-length function"); 1384 emitNops(1); 1385 } 1386 } 1387 1388 // Switch to the original section in case basic block sections was used. 1389 OutStreamer->SwitchSection(MF->getSection()); 1390 1391 const Function &F = MF->getFunction(); 1392 for (const auto &BB : F) { 1393 if (!BB.hasAddressTaken()) 1394 continue; 1395 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1396 if (Sym->isDefined()) 1397 continue; 1398 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1399 OutStreamer->emitLabel(Sym); 1400 } 1401 1402 // Emit target-specific gunk after the function body. 1403 emitFunctionBodyEnd(); 1404 1405 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1406 MAI->hasDotTypeDotSizeDirective()) { 1407 // Create a symbol for the end of function. 1408 CurrentFnEnd = createTempSymbol("func_end"); 1409 OutStreamer->emitLabel(CurrentFnEnd); 1410 } 1411 1412 // If the target wants a .size directive for the size of the function, emit 1413 // it. 1414 if (MAI->hasDotTypeDotSizeDirective()) { 1415 // We can get the size as difference between the function label and the 1416 // temp label. 1417 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1418 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1419 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1420 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1421 } 1422 1423 for (const HandlerInfo &HI : Handlers) { 1424 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1425 HI.TimerGroupDescription, TimePassesIsEnabled); 1426 HI.Handler->markFunctionEnd(); 1427 } 1428 1429 MBBSectionRanges[MF->front().getSectionIDNum()] = 1430 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1431 1432 // Print out jump tables referenced by the function. 1433 emitJumpTableInfo(); 1434 1435 // Emit post-function debug and/or EH information. 1436 for (const HandlerInfo &HI : Handlers) { 1437 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1438 HI.TimerGroupDescription, TimePassesIsEnabled); 1439 HI.Handler->endFunction(MF); 1440 } 1441 1442 // Emit section containing BB address offsets and their metadata, when 1443 // BB labels are requested for this function. Skip empty functions. 1444 if (MF->hasBBLabels() && HasAnyRealCode) 1445 emitBBAddrMapSection(*MF); 1446 1447 // Emit section containing stack size metadata. 1448 emitStackSizeSection(*MF); 1449 1450 emitPatchableFunctionEntries(); 1451 1452 if (isVerbose()) 1453 OutStreamer->GetCommentOS() << "-- End function\n"; 1454 1455 OutStreamer->AddBlankLine(); 1456 } 1457 1458 /// Compute the number of Global Variables that uses a Constant. 1459 static unsigned getNumGlobalVariableUses(const Constant *C) { 1460 if (!C) 1461 return 0; 1462 1463 if (isa<GlobalVariable>(C)) 1464 return 1; 1465 1466 unsigned NumUses = 0; 1467 for (auto *CU : C->users()) 1468 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1469 1470 return NumUses; 1471 } 1472 1473 /// Only consider global GOT equivalents if at least one user is a 1474 /// cstexpr inside an initializer of another global variables. Also, don't 1475 /// handle cstexpr inside instructions. During global variable emission, 1476 /// candidates are skipped and are emitted later in case at least one cstexpr 1477 /// isn't replaced by a PC relative GOT entry access. 1478 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1479 unsigned &NumGOTEquivUsers) { 1480 // Global GOT equivalents are unnamed private globals with a constant 1481 // pointer initializer to another global symbol. They must point to a 1482 // GlobalVariable or Function, i.e., as GlobalValue. 1483 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1484 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1485 !isa<GlobalValue>(GV->getOperand(0))) 1486 return false; 1487 1488 // To be a got equivalent, at least one of its users need to be a constant 1489 // expression used by another global variable. 1490 for (auto *U : GV->users()) 1491 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1492 1493 return NumGOTEquivUsers > 0; 1494 } 1495 1496 /// Unnamed constant global variables solely contaning a pointer to 1497 /// another globals variable is equivalent to a GOT table entry; it contains the 1498 /// the address of another symbol. Optimize it and replace accesses to these 1499 /// "GOT equivalents" by using the GOT entry for the final global instead. 1500 /// Compute GOT equivalent candidates among all global variables to avoid 1501 /// emitting them if possible later on, after it use is replaced by a GOT entry 1502 /// access. 1503 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1504 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1505 return; 1506 1507 for (const auto &G : M.globals()) { 1508 unsigned NumGOTEquivUsers = 0; 1509 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1510 continue; 1511 1512 const MCSymbol *GOTEquivSym = getSymbol(&G); 1513 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1514 } 1515 } 1516 1517 /// Constant expressions using GOT equivalent globals may not be eligible 1518 /// for PC relative GOT entry conversion, in such cases we need to emit such 1519 /// globals we previously omitted in EmitGlobalVariable. 1520 void AsmPrinter::emitGlobalGOTEquivs() { 1521 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1522 return; 1523 1524 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1525 for (auto &I : GlobalGOTEquivs) { 1526 const GlobalVariable *GV = I.second.first; 1527 unsigned Cnt = I.second.second; 1528 if (Cnt) 1529 FailedCandidates.push_back(GV); 1530 } 1531 GlobalGOTEquivs.clear(); 1532 1533 for (auto *GV : FailedCandidates) 1534 emitGlobalVariable(GV); 1535 } 1536 1537 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1538 const GlobalIndirectSymbol& GIS) { 1539 MCSymbol *Name = getSymbol(&GIS); 1540 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1541 // Treat bitcasts of functions as functions also. This is important at least 1542 // on WebAssembly where object and function addresses can't alias each other. 1543 if (!IsFunction) 1544 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1545 if (CE->getOpcode() == Instruction::BitCast) 1546 IsFunction = 1547 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1548 1549 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1550 // so AIX has to use the extra-label-at-definition strategy. At this 1551 // point, all the extra label is emitted, we just have to emit linkage for 1552 // those labels. 1553 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1554 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1555 assert(MAI->hasVisibilityOnlyWithLinkage() && 1556 "Visibility should be handled with emitLinkage() on AIX."); 1557 emitLinkage(&GIS, Name); 1558 // If it's a function, also emit linkage for aliases of function entry 1559 // point. 1560 if (IsFunction) 1561 emitLinkage(&GIS, 1562 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1563 return; 1564 } 1565 1566 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1567 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1568 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1569 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1570 else 1571 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1572 1573 // Set the symbol type to function if the alias has a function type. 1574 // This affects codegen when the aliasee is not a function. 1575 if (IsFunction) 1576 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1577 ? MCSA_ELF_TypeIndFunction 1578 : MCSA_ELF_TypeFunction); 1579 1580 emitVisibility(Name, GIS.getVisibility()); 1581 1582 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1583 1584 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1585 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1586 1587 // Emit the directives as assignments aka .set: 1588 OutStreamer->emitAssignment(Name, Expr); 1589 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1590 if (LocalAlias != Name) 1591 OutStreamer->emitAssignment(LocalAlias, Expr); 1592 1593 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1594 // If the aliasee does not correspond to a symbol in the output, i.e. the 1595 // alias is not of an object or the aliased object is private, then set the 1596 // size of the alias symbol from the type of the alias. We don't do this in 1597 // other situations as the alias and aliasee having differing types but same 1598 // size may be intentional. 1599 const GlobalObject *BaseObject = GA->getBaseObject(); 1600 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1601 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1602 const DataLayout &DL = M.getDataLayout(); 1603 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1604 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1605 } 1606 } 1607 } 1608 1609 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1610 if (!RS.needsSection()) 1611 return; 1612 1613 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1614 1615 Optional<SmallString<128>> Filename; 1616 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1617 Filename = *FilenameRef; 1618 sys::fs::make_absolute(*Filename); 1619 assert(!Filename->empty() && "The filename can't be empty."); 1620 } 1621 1622 std::string Buf; 1623 raw_string_ostream OS(Buf); 1624 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1625 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1626 : RemarkSerializer.metaSerializer(OS); 1627 MetaSerializer->emit(); 1628 1629 // Switch to the remarks section. 1630 MCSection *RemarksSection = 1631 OutContext.getObjectFileInfo()->getRemarksSection(); 1632 OutStreamer->SwitchSection(RemarksSection); 1633 1634 OutStreamer->emitBinaryData(OS.str()); 1635 } 1636 1637 bool AsmPrinter::doFinalization(Module &M) { 1638 // Set the MachineFunction to nullptr so that we can catch attempted 1639 // accesses to MF specific features at the module level and so that 1640 // we can conditionalize accesses based on whether or not it is nullptr. 1641 MF = nullptr; 1642 1643 // Gather all GOT equivalent globals in the module. We really need two 1644 // passes over the globals: one to compute and another to avoid its emission 1645 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1646 // where the got equivalent shows up before its use. 1647 computeGlobalGOTEquivs(M); 1648 1649 // Emit global variables. 1650 for (const auto &G : M.globals()) 1651 emitGlobalVariable(&G); 1652 1653 // Emit remaining GOT equivalent globals. 1654 emitGlobalGOTEquivs(); 1655 1656 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1657 1658 // Emit linkage(XCOFF) and visibility info for declarations 1659 for (const Function &F : M) { 1660 if (!F.isDeclarationForLinker()) 1661 continue; 1662 1663 MCSymbol *Name = getSymbol(&F); 1664 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1665 1666 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1667 GlobalValue::VisibilityTypes V = F.getVisibility(); 1668 if (V == GlobalValue::DefaultVisibility) 1669 continue; 1670 1671 emitVisibility(Name, V, false); 1672 continue; 1673 } 1674 1675 if (F.isIntrinsic()) 1676 continue; 1677 1678 // Handle the XCOFF case. 1679 // Variable `Name` is the function descriptor symbol (see above). Get the 1680 // function entry point symbol. 1681 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1682 // Emit linkage for the function entry point. 1683 emitLinkage(&F, FnEntryPointSym); 1684 1685 // Emit linkage for the function descriptor. 1686 emitLinkage(&F, Name); 1687 } 1688 1689 // Emit the remarks section contents. 1690 // FIXME: Figure out when is the safest time to emit this section. It should 1691 // not come after debug info. 1692 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1693 emitRemarksSection(*RS); 1694 1695 TLOF.emitModuleMetadata(*OutStreamer, M); 1696 1697 if (TM.getTargetTriple().isOSBinFormatELF()) { 1698 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1699 1700 // Output stubs for external and common global variables. 1701 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1702 if (!Stubs.empty()) { 1703 OutStreamer->SwitchSection(TLOF.getDataSection()); 1704 const DataLayout &DL = M.getDataLayout(); 1705 1706 emitAlignment(Align(DL.getPointerSize())); 1707 for (const auto &Stub : Stubs) { 1708 OutStreamer->emitLabel(Stub.first); 1709 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1710 DL.getPointerSize()); 1711 } 1712 } 1713 } 1714 1715 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1716 MachineModuleInfoCOFF &MMICOFF = 1717 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1718 1719 // Output stubs for external and common global variables. 1720 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1721 if (!Stubs.empty()) { 1722 const DataLayout &DL = M.getDataLayout(); 1723 1724 for (const auto &Stub : Stubs) { 1725 SmallString<256> SectionName = StringRef(".rdata$"); 1726 SectionName += Stub.first->getName(); 1727 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1728 SectionName, 1729 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1730 COFF::IMAGE_SCN_LNK_COMDAT, 1731 SectionKind::getReadOnly(), Stub.first->getName(), 1732 COFF::IMAGE_COMDAT_SELECT_ANY)); 1733 emitAlignment(Align(DL.getPointerSize())); 1734 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1735 OutStreamer->emitLabel(Stub.first); 1736 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1737 DL.getPointerSize()); 1738 } 1739 } 1740 } 1741 1742 // Finalize debug and EH information. 1743 for (const HandlerInfo &HI : Handlers) { 1744 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1745 HI.TimerGroupDescription, TimePassesIsEnabled); 1746 HI.Handler->endModule(); 1747 } 1748 1749 // This deletes all the ephemeral handlers that AsmPrinter added, while 1750 // keeping all the user-added handlers alive until the AsmPrinter is 1751 // destroyed. 1752 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1753 DD = nullptr; 1754 1755 // If the target wants to know about weak references, print them all. 1756 if (MAI->getWeakRefDirective()) { 1757 // FIXME: This is not lazy, it would be nice to only print weak references 1758 // to stuff that is actually used. Note that doing so would require targets 1759 // to notice uses in operands (due to constant exprs etc). This should 1760 // happen with the MC stuff eventually. 1761 1762 // Print out module-level global objects here. 1763 for (const auto &GO : M.global_objects()) { 1764 if (!GO.hasExternalWeakLinkage()) 1765 continue; 1766 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1767 } 1768 } 1769 1770 // Print aliases in topological order, that is, for each alias a = b, 1771 // b must be printed before a. 1772 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1773 // such an order to generate correct TOC information. 1774 SmallVector<const GlobalAlias *, 16> AliasStack; 1775 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1776 for (const auto &Alias : M.aliases()) { 1777 for (const GlobalAlias *Cur = &Alias; Cur; 1778 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1779 if (!AliasVisited.insert(Cur).second) 1780 break; 1781 AliasStack.push_back(Cur); 1782 } 1783 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1784 emitGlobalIndirectSymbol(M, *AncestorAlias); 1785 AliasStack.clear(); 1786 } 1787 for (const auto &IFunc : M.ifuncs()) 1788 emitGlobalIndirectSymbol(M, IFunc); 1789 1790 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1791 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1792 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1793 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1794 MP->finishAssembly(M, *MI, *this); 1795 1796 // Emit llvm.ident metadata in an '.ident' directive. 1797 emitModuleIdents(M); 1798 1799 // Emit bytes for llvm.commandline metadata. 1800 emitModuleCommandLines(M); 1801 1802 // Emit __morestack address if needed for indirect calls. 1803 if (MMI->usesMorestackAddr()) { 1804 Align Alignment(1); 1805 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1806 getDataLayout(), SectionKind::getReadOnly(), 1807 /*C=*/nullptr, Alignment); 1808 OutStreamer->SwitchSection(ReadOnlySection); 1809 1810 MCSymbol *AddrSymbol = 1811 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1812 OutStreamer->emitLabel(AddrSymbol); 1813 1814 unsigned PtrSize = MAI->getCodePointerSize(); 1815 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1816 PtrSize); 1817 } 1818 1819 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1820 // split-stack is used. 1821 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1822 OutStreamer->SwitchSection( 1823 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1824 if (MMI->hasNosplitStack()) 1825 OutStreamer->SwitchSection( 1826 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1827 } 1828 1829 // If we don't have any trampolines, then we don't require stack memory 1830 // to be executable. Some targets have a directive to declare this. 1831 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1832 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1833 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1834 OutStreamer->SwitchSection(S); 1835 1836 if (TM.Options.EmitAddrsig) { 1837 // Emit address-significance attributes for all globals. 1838 OutStreamer->emitAddrsig(); 1839 for (const GlobalValue &GV : M.global_values()) 1840 if (!GV.use_empty() && !GV.isThreadLocal() && 1841 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1842 !GV.hasAtLeastLocalUnnamedAddr()) 1843 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1844 } 1845 1846 // Emit symbol partition specifications (ELF only). 1847 if (TM.getTargetTriple().isOSBinFormatELF()) { 1848 unsigned UniqueID = 0; 1849 for (const GlobalValue &GV : M.global_values()) { 1850 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1851 GV.getVisibility() != GlobalValue::DefaultVisibility) 1852 continue; 1853 1854 OutStreamer->SwitchSection( 1855 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1856 "", false, ++UniqueID, nullptr)); 1857 OutStreamer->emitBytes(GV.getPartition()); 1858 OutStreamer->emitZeros(1); 1859 OutStreamer->emitValue( 1860 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1861 MAI->getCodePointerSize()); 1862 } 1863 } 1864 1865 // Allow the target to emit any magic that it wants at the end of the file, 1866 // after everything else has gone out. 1867 emitEndOfAsmFile(M); 1868 1869 MMI = nullptr; 1870 1871 OutStreamer->Finish(); 1872 OutStreamer->reset(); 1873 OwnedMLI.reset(); 1874 OwnedMDT.reset(); 1875 1876 return false; 1877 } 1878 1879 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1880 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1881 if (Res.second) 1882 Res.first->second = createTempSymbol("exception"); 1883 return Res.first->second; 1884 } 1885 1886 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1887 this->MF = &MF; 1888 const Function &F = MF.getFunction(); 1889 1890 // Get the function symbol. 1891 if (!MAI->needsFunctionDescriptors()) { 1892 CurrentFnSym = getSymbol(&MF.getFunction()); 1893 } else { 1894 assert(TM.getTargetTriple().isOSAIX() && 1895 "Only AIX uses the function descriptor hooks."); 1896 // AIX is unique here in that the name of the symbol emitted for the 1897 // function body does not have the same name as the source function's 1898 // C-linkage name. 1899 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1900 " initalized first."); 1901 1902 // Get the function entry point symbol. 1903 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1904 } 1905 1906 CurrentFnSymForSize = CurrentFnSym; 1907 CurrentFnBegin = nullptr; 1908 CurrentSectionBeginSym = nullptr; 1909 MBBSectionRanges.clear(); 1910 MBBSectionExceptionSyms.clear(); 1911 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1912 if (F.hasFnAttribute("patchable-function-entry") || 1913 F.hasFnAttribute("function-instrument") || 1914 F.hasFnAttribute("xray-instruction-threshold") || 1915 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1916 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1917 CurrentFnBegin = createTempSymbol("func_begin"); 1918 if (NeedsLocalForSize) 1919 CurrentFnSymForSize = CurrentFnBegin; 1920 } 1921 1922 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1923 } 1924 1925 namespace { 1926 1927 // Keep track the alignment, constpool entries per Section. 1928 struct SectionCPs { 1929 MCSection *S; 1930 Align Alignment; 1931 SmallVector<unsigned, 4> CPEs; 1932 1933 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1934 }; 1935 1936 } // end anonymous namespace 1937 1938 /// EmitConstantPool - Print to the current output stream assembly 1939 /// representations of the constants in the constant pool MCP. This is 1940 /// used to print out constants which have been "spilled to memory" by 1941 /// the code generator. 1942 void AsmPrinter::emitConstantPool() { 1943 const MachineConstantPool *MCP = MF->getConstantPool(); 1944 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1945 if (CP.empty()) return; 1946 1947 // Calculate sections for constant pool entries. We collect entries to go into 1948 // the same section together to reduce amount of section switch statements. 1949 SmallVector<SectionCPs, 4> CPSections; 1950 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1951 const MachineConstantPoolEntry &CPE = CP[i]; 1952 Align Alignment = CPE.getAlign(); 1953 1954 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1955 1956 const Constant *C = nullptr; 1957 if (!CPE.isMachineConstantPoolEntry()) 1958 C = CPE.Val.ConstVal; 1959 1960 MCSection *S = getObjFileLowering().getSectionForConstant( 1961 getDataLayout(), Kind, C, Alignment); 1962 1963 // The number of sections are small, just do a linear search from the 1964 // last section to the first. 1965 bool Found = false; 1966 unsigned SecIdx = CPSections.size(); 1967 while (SecIdx != 0) { 1968 if (CPSections[--SecIdx].S == S) { 1969 Found = true; 1970 break; 1971 } 1972 } 1973 if (!Found) { 1974 SecIdx = CPSections.size(); 1975 CPSections.push_back(SectionCPs(S, Alignment)); 1976 } 1977 1978 if (Alignment > CPSections[SecIdx].Alignment) 1979 CPSections[SecIdx].Alignment = Alignment; 1980 CPSections[SecIdx].CPEs.push_back(i); 1981 } 1982 1983 // Now print stuff into the calculated sections. 1984 const MCSection *CurSection = nullptr; 1985 unsigned Offset = 0; 1986 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1987 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1988 unsigned CPI = CPSections[i].CPEs[j]; 1989 MCSymbol *Sym = GetCPISymbol(CPI); 1990 if (!Sym->isUndefined()) 1991 continue; 1992 1993 if (CurSection != CPSections[i].S) { 1994 OutStreamer->SwitchSection(CPSections[i].S); 1995 emitAlignment(Align(CPSections[i].Alignment)); 1996 CurSection = CPSections[i].S; 1997 Offset = 0; 1998 } 1999 2000 MachineConstantPoolEntry CPE = CP[CPI]; 2001 2002 // Emit inter-object padding for alignment. 2003 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2004 OutStreamer->emitZeros(NewOffset - Offset); 2005 2006 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2007 2008 OutStreamer->emitLabel(Sym); 2009 if (CPE.isMachineConstantPoolEntry()) 2010 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2011 else 2012 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2013 } 2014 } 2015 } 2016 2017 // Print assembly representations of the jump tables used by the current 2018 // function. 2019 void AsmPrinter::emitJumpTableInfo() { 2020 const DataLayout &DL = MF->getDataLayout(); 2021 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2022 if (!MJTI) return; 2023 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2024 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2025 if (JT.empty()) return; 2026 2027 // Pick the directive to use to print the jump table entries, and switch to 2028 // the appropriate section. 2029 const Function &F = MF->getFunction(); 2030 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2031 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2032 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2033 F); 2034 if (JTInDiffSection) { 2035 // Drop it in the readonly section. 2036 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2037 OutStreamer->SwitchSection(ReadOnlySection); 2038 } 2039 2040 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2041 2042 // Jump tables in code sections are marked with a data_region directive 2043 // where that's supported. 2044 if (!JTInDiffSection) 2045 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2046 2047 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2048 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2049 2050 // If this jump table was deleted, ignore it. 2051 if (JTBBs.empty()) continue; 2052 2053 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2054 /// emit a .set directive for each unique entry. 2055 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2056 MAI->doesSetDirectiveSuppressReloc()) { 2057 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2058 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2059 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2060 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2061 const MachineBasicBlock *MBB = JTBBs[ii]; 2062 if (!EmittedSets.insert(MBB).second) 2063 continue; 2064 2065 // .set LJTSet, LBB32-base 2066 const MCExpr *LHS = 2067 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2068 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2069 MCBinaryExpr::createSub(LHS, Base, 2070 OutContext)); 2071 } 2072 } 2073 2074 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2075 // before each jump table. The first label is never referenced, but tells 2076 // the assembler and linker the extents of the jump table object. The 2077 // second label is actually referenced by the code. 2078 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2079 // FIXME: This doesn't have to have any specific name, just any randomly 2080 // named and numbered local label started with 'l' would work. Simplify 2081 // GetJTISymbol. 2082 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2083 2084 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2085 OutStreamer->emitLabel(JTISymbol); 2086 2087 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2088 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2089 } 2090 if (!JTInDiffSection) 2091 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2092 } 2093 2094 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2095 /// current stream. 2096 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2097 const MachineBasicBlock *MBB, 2098 unsigned UID) const { 2099 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2100 const MCExpr *Value = nullptr; 2101 switch (MJTI->getEntryKind()) { 2102 case MachineJumpTableInfo::EK_Inline: 2103 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2104 case MachineJumpTableInfo::EK_Custom32: 2105 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2106 MJTI, MBB, UID, OutContext); 2107 break; 2108 case MachineJumpTableInfo::EK_BlockAddress: 2109 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2110 // .word LBB123 2111 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2112 break; 2113 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2114 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2115 // with a relocation as gp-relative, e.g.: 2116 // .gprel32 LBB123 2117 MCSymbol *MBBSym = MBB->getSymbol(); 2118 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2119 return; 2120 } 2121 2122 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2123 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2124 // with a relocation as gp-relative, e.g.: 2125 // .gpdword LBB123 2126 MCSymbol *MBBSym = MBB->getSymbol(); 2127 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2128 return; 2129 } 2130 2131 case MachineJumpTableInfo::EK_LabelDifference32: { 2132 // Each entry is the address of the block minus the address of the jump 2133 // table. This is used for PIC jump tables where gprel32 is not supported. 2134 // e.g.: 2135 // .word LBB123 - LJTI1_2 2136 // If the .set directive avoids relocations, this is emitted as: 2137 // .set L4_5_set_123, LBB123 - LJTI1_2 2138 // .word L4_5_set_123 2139 if (MAI->doesSetDirectiveSuppressReloc()) { 2140 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2141 OutContext); 2142 break; 2143 } 2144 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2145 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2146 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2147 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2148 break; 2149 } 2150 } 2151 2152 assert(Value && "Unknown entry kind!"); 2153 2154 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2155 OutStreamer->emitValue(Value, EntrySize); 2156 } 2157 2158 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2159 /// special global used by LLVM. If so, emit it and return true, otherwise 2160 /// do nothing and return false. 2161 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2162 if (GV->getName() == "llvm.used") { 2163 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2164 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2165 return true; 2166 } 2167 2168 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2169 if (GV->getSection() == "llvm.metadata" || 2170 GV->hasAvailableExternallyLinkage()) 2171 return true; 2172 2173 if (!GV->hasAppendingLinkage()) return false; 2174 2175 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2176 2177 if (GV->getName() == "llvm.global_ctors") { 2178 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2179 /* isCtor */ true); 2180 2181 return true; 2182 } 2183 2184 if (GV->getName() == "llvm.global_dtors") { 2185 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2186 /* isCtor */ false); 2187 2188 return true; 2189 } 2190 2191 report_fatal_error("unknown special variable"); 2192 } 2193 2194 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2195 /// global in the specified llvm.used list. 2196 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2197 // Should be an array of 'i8*'. 2198 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2199 const GlobalValue *GV = 2200 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2201 if (GV) 2202 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2203 } 2204 } 2205 2206 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2207 const Constant *List, 2208 SmallVector<Structor, 8> &Structors) { 2209 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2210 // the init priority. 2211 if (!isa<ConstantArray>(List)) 2212 return; 2213 2214 // Gather the structors in a form that's convenient for sorting by priority. 2215 for (Value *O : cast<ConstantArray>(List)->operands()) { 2216 auto *CS = cast<ConstantStruct>(O); 2217 if (CS->getOperand(1)->isNullValue()) 2218 break; // Found a null terminator, skip the rest. 2219 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2220 if (!Priority) 2221 continue; // Malformed. 2222 Structors.push_back(Structor()); 2223 Structor &S = Structors.back(); 2224 S.Priority = Priority->getLimitedValue(65535); 2225 S.Func = CS->getOperand(1); 2226 if (!CS->getOperand(2)->isNullValue()) { 2227 if (TM.getTargetTriple().isOSAIX()) 2228 llvm::report_fatal_error( 2229 "associated data of XXStructor list is not yet supported on AIX"); 2230 S.ComdatKey = 2231 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2232 } 2233 } 2234 2235 // Emit the function pointers in the target-specific order 2236 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2237 return L.Priority < R.Priority; 2238 }); 2239 } 2240 2241 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2242 /// priority. 2243 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2244 bool IsCtor) { 2245 SmallVector<Structor, 8> Structors; 2246 preprocessXXStructorList(DL, List, Structors); 2247 if (Structors.empty()) 2248 return; 2249 2250 const Align Align = DL.getPointerPrefAlignment(); 2251 for (Structor &S : Structors) { 2252 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2253 const MCSymbol *KeySym = nullptr; 2254 if (GlobalValue *GV = S.ComdatKey) { 2255 if (GV->isDeclarationForLinker()) 2256 // If the associated variable is not defined in this module 2257 // (it might be available_externally, or have been an 2258 // available_externally definition that was dropped by the 2259 // EliminateAvailableExternally pass), some other TU 2260 // will provide its dynamic initializer. 2261 continue; 2262 2263 KeySym = getSymbol(GV); 2264 } 2265 2266 MCSection *OutputSection = 2267 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2268 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2269 OutStreamer->SwitchSection(OutputSection); 2270 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2271 emitAlignment(Align); 2272 emitXXStructor(DL, S.Func); 2273 } 2274 } 2275 2276 void AsmPrinter::emitModuleIdents(Module &M) { 2277 if (!MAI->hasIdentDirective()) 2278 return; 2279 2280 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2281 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2282 const MDNode *N = NMD->getOperand(i); 2283 assert(N->getNumOperands() == 1 && 2284 "llvm.ident metadata entry can have only one operand"); 2285 const MDString *S = cast<MDString>(N->getOperand(0)); 2286 OutStreamer->emitIdent(S->getString()); 2287 } 2288 } 2289 } 2290 2291 void AsmPrinter::emitModuleCommandLines(Module &M) { 2292 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2293 if (!CommandLine) 2294 return; 2295 2296 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2297 if (!NMD || !NMD->getNumOperands()) 2298 return; 2299 2300 OutStreamer->PushSection(); 2301 OutStreamer->SwitchSection(CommandLine); 2302 OutStreamer->emitZeros(1); 2303 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2304 const MDNode *N = NMD->getOperand(i); 2305 assert(N->getNumOperands() == 1 && 2306 "llvm.commandline metadata entry can have only one operand"); 2307 const MDString *S = cast<MDString>(N->getOperand(0)); 2308 OutStreamer->emitBytes(S->getString()); 2309 OutStreamer->emitZeros(1); 2310 } 2311 OutStreamer->PopSection(); 2312 } 2313 2314 //===--------------------------------------------------------------------===// 2315 // Emission and print routines 2316 // 2317 2318 /// Emit a byte directive and value. 2319 /// 2320 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2321 2322 /// Emit a short directive and value. 2323 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2324 2325 /// Emit a long directive and value. 2326 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2327 2328 /// Emit a long long directive and value. 2329 void AsmPrinter::emitInt64(uint64_t Value) const { 2330 OutStreamer->emitInt64(Value); 2331 } 2332 2333 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2334 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2335 /// .set if it avoids relocations. 2336 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2337 unsigned Size) const { 2338 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2339 } 2340 2341 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2342 /// where the size in bytes of the directive is specified by Size and Label 2343 /// specifies the label. This implicitly uses .set if it is available. 2344 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2345 unsigned Size, 2346 bool IsSectionRelative) const { 2347 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2348 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2349 if (Size > 4) 2350 OutStreamer->emitZeros(Size - 4); 2351 return; 2352 } 2353 2354 // Emit Label+Offset (or just Label if Offset is zero) 2355 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2356 if (Offset) 2357 Expr = MCBinaryExpr::createAdd( 2358 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2359 2360 OutStreamer->emitValue(Expr, Size); 2361 } 2362 2363 //===----------------------------------------------------------------------===// 2364 2365 // EmitAlignment - Emit an alignment directive to the specified power of 2366 // two boundary. If a global value is specified, and if that global has 2367 // an explicit alignment requested, it will override the alignment request 2368 // if required for correctness. 2369 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2370 if (GV) 2371 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2372 2373 if (Alignment == Align(1)) 2374 return; // 1-byte aligned: no need to emit alignment. 2375 2376 if (getCurrentSection()->getKind().isText()) 2377 OutStreamer->emitCodeAlignment(Alignment.value()); 2378 else 2379 OutStreamer->emitValueToAlignment(Alignment.value()); 2380 } 2381 2382 //===----------------------------------------------------------------------===// 2383 // Constant emission. 2384 //===----------------------------------------------------------------------===// 2385 2386 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2387 MCContext &Ctx = OutContext; 2388 2389 if (CV->isNullValue() || isa<UndefValue>(CV)) 2390 return MCConstantExpr::create(0, Ctx); 2391 2392 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2393 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2394 2395 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2396 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2397 2398 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2399 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2400 2401 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2402 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2403 2404 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2405 if (!CE) { 2406 llvm_unreachable("Unknown constant value to lower!"); 2407 } 2408 2409 switch (CE->getOpcode()) { 2410 case Instruction::AddrSpaceCast: { 2411 const Constant *Op = CE->getOperand(0); 2412 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2413 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2414 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2415 return lowerConstant(Op); 2416 2417 // Fallthrough to error. 2418 LLVM_FALLTHROUGH; 2419 } 2420 default: { 2421 // If the code isn't optimized, there may be outstanding folding 2422 // opportunities. Attempt to fold the expression using DataLayout as a 2423 // last resort before giving up. 2424 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2425 if (C != CE) 2426 return lowerConstant(C); 2427 2428 // Otherwise report the problem to the user. 2429 std::string S; 2430 raw_string_ostream OS(S); 2431 OS << "Unsupported expression in static initializer: "; 2432 CE->printAsOperand(OS, /*PrintType=*/false, 2433 !MF ? nullptr : MF->getFunction().getParent()); 2434 report_fatal_error(OS.str()); 2435 } 2436 case Instruction::GetElementPtr: { 2437 // Generate a symbolic expression for the byte address 2438 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2439 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2440 2441 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2442 if (!OffsetAI) 2443 return Base; 2444 2445 int64_t Offset = OffsetAI.getSExtValue(); 2446 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2447 Ctx); 2448 } 2449 2450 case Instruction::Trunc: 2451 // We emit the value and depend on the assembler to truncate the generated 2452 // expression properly. This is important for differences between 2453 // blockaddress labels. Since the two labels are in the same function, it 2454 // is reasonable to treat their delta as a 32-bit value. 2455 LLVM_FALLTHROUGH; 2456 case Instruction::BitCast: 2457 return lowerConstant(CE->getOperand(0)); 2458 2459 case Instruction::IntToPtr: { 2460 const DataLayout &DL = getDataLayout(); 2461 2462 // Handle casts to pointers by changing them into casts to the appropriate 2463 // integer type. This promotes constant folding and simplifies this code. 2464 Constant *Op = CE->getOperand(0); 2465 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2466 false/*ZExt*/); 2467 return lowerConstant(Op); 2468 } 2469 2470 case Instruction::PtrToInt: { 2471 const DataLayout &DL = getDataLayout(); 2472 2473 // Support only foldable casts to/from pointers that can be eliminated by 2474 // changing the pointer to the appropriately sized integer type. 2475 Constant *Op = CE->getOperand(0); 2476 Type *Ty = CE->getType(); 2477 2478 const MCExpr *OpExpr = lowerConstant(Op); 2479 2480 // We can emit the pointer value into this slot if the slot is an 2481 // integer slot equal to the size of the pointer. 2482 // 2483 // If the pointer is larger than the resultant integer, then 2484 // as with Trunc just depend on the assembler to truncate it. 2485 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2486 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2487 return OpExpr; 2488 2489 // Otherwise the pointer is smaller than the resultant integer, mask off 2490 // the high bits so we are sure to get a proper truncation if the input is 2491 // a constant expr. 2492 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2493 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2494 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2495 } 2496 2497 case Instruction::Sub: { 2498 GlobalValue *LHSGV; 2499 APInt LHSOffset; 2500 DSOLocalEquivalent *DSOEquiv; 2501 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2502 getDataLayout(), &DSOEquiv)) { 2503 GlobalValue *RHSGV; 2504 APInt RHSOffset; 2505 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2506 getDataLayout())) { 2507 const MCExpr *RelocExpr = 2508 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2509 if (!RelocExpr) { 2510 const MCExpr *LHSExpr = 2511 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2512 if (DSOEquiv && 2513 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2514 LHSExpr = 2515 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2516 RelocExpr = MCBinaryExpr::createSub( 2517 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2518 } 2519 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2520 if (Addend != 0) 2521 RelocExpr = MCBinaryExpr::createAdd( 2522 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2523 return RelocExpr; 2524 } 2525 } 2526 } 2527 // else fallthrough 2528 LLVM_FALLTHROUGH; 2529 2530 // The MC library also has a right-shift operator, but it isn't consistently 2531 // signed or unsigned between different targets. 2532 case Instruction::Add: 2533 case Instruction::Mul: 2534 case Instruction::SDiv: 2535 case Instruction::SRem: 2536 case Instruction::Shl: 2537 case Instruction::And: 2538 case Instruction::Or: 2539 case Instruction::Xor: { 2540 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2541 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2542 switch (CE->getOpcode()) { 2543 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2544 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2545 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2546 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2547 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2548 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2549 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2550 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2551 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2552 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2553 } 2554 } 2555 } 2556 } 2557 2558 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2559 AsmPrinter &AP, 2560 const Constant *BaseCV = nullptr, 2561 uint64_t Offset = 0); 2562 2563 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2564 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2565 2566 /// isRepeatedByteSequence - Determine whether the given value is 2567 /// composed of a repeated sequence of identical bytes and return the 2568 /// byte value. If it is not a repeated sequence, return -1. 2569 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2570 StringRef Data = V->getRawDataValues(); 2571 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2572 char C = Data[0]; 2573 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2574 if (Data[i] != C) return -1; 2575 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2576 } 2577 2578 /// isRepeatedByteSequence - Determine whether the given value is 2579 /// composed of a repeated sequence of identical bytes and return the 2580 /// byte value. If it is not a repeated sequence, return -1. 2581 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2582 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2583 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2584 assert(Size % 8 == 0); 2585 2586 // Extend the element to take zero padding into account. 2587 APInt Value = CI->getValue().zextOrSelf(Size); 2588 if (!Value.isSplat(8)) 2589 return -1; 2590 2591 return Value.zextOrTrunc(8).getZExtValue(); 2592 } 2593 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2594 // Make sure all array elements are sequences of the same repeated 2595 // byte. 2596 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2597 Constant *Op0 = CA->getOperand(0); 2598 int Byte = isRepeatedByteSequence(Op0, DL); 2599 if (Byte == -1) 2600 return -1; 2601 2602 // All array elements must be equal. 2603 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2604 if (CA->getOperand(i) != Op0) 2605 return -1; 2606 return Byte; 2607 } 2608 2609 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2610 return isRepeatedByteSequence(CDS); 2611 2612 return -1; 2613 } 2614 2615 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2616 const ConstantDataSequential *CDS, 2617 AsmPrinter &AP) { 2618 // See if we can aggregate this into a .fill, if so, emit it as such. 2619 int Value = isRepeatedByteSequence(CDS, DL); 2620 if (Value != -1) { 2621 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2622 // Don't emit a 1-byte object as a .fill. 2623 if (Bytes > 1) 2624 return AP.OutStreamer->emitFill(Bytes, Value); 2625 } 2626 2627 // If this can be emitted with .ascii/.asciz, emit it as such. 2628 if (CDS->isString()) 2629 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2630 2631 // Otherwise, emit the values in successive locations. 2632 unsigned ElementByteSize = CDS->getElementByteSize(); 2633 if (isa<IntegerType>(CDS->getElementType())) { 2634 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2635 if (AP.isVerbose()) 2636 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2637 CDS->getElementAsInteger(i)); 2638 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2639 ElementByteSize); 2640 } 2641 } else { 2642 Type *ET = CDS->getElementType(); 2643 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2644 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2645 } 2646 2647 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2648 unsigned EmittedSize = 2649 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2650 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2651 if (unsigned Padding = Size - EmittedSize) 2652 AP.OutStreamer->emitZeros(Padding); 2653 } 2654 2655 static void emitGlobalConstantArray(const DataLayout &DL, 2656 const ConstantArray *CA, AsmPrinter &AP, 2657 const Constant *BaseCV, uint64_t Offset) { 2658 // See if we can aggregate some values. Make sure it can be 2659 // represented as a series of bytes of the constant value. 2660 int Value = isRepeatedByteSequence(CA, DL); 2661 2662 if (Value != -1) { 2663 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2664 AP.OutStreamer->emitFill(Bytes, Value); 2665 } 2666 else { 2667 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2668 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2669 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2670 } 2671 } 2672 } 2673 2674 static void emitGlobalConstantVector(const DataLayout &DL, 2675 const ConstantVector *CV, AsmPrinter &AP) { 2676 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2677 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2678 2679 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2680 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2681 CV->getType()->getNumElements(); 2682 if (unsigned Padding = Size - EmittedSize) 2683 AP.OutStreamer->emitZeros(Padding); 2684 } 2685 2686 static void emitGlobalConstantStruct(const DataLayout &DL, 2687 const ConstantStruct *CS, AsmPrinter &AP, 2688 const Constant *BaseCV, uint64_t Offset) { 2689 // Print the fields in successive locations. Pad to align if needed! 2690 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2691 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2692 uint64_t SizeSoFar = 0; 2693 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2694 const Constant *Field = CS->getOperand(i); 2695 2696 // Print the actual field value. 2697 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2698 2699 // Check if padding is needed and insert one or more 0s. 2700 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2701 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2702 - Layout->getElementOffset(i)) - FieldSize; 2703 SizeSoFar += FieldSize + PadSize; 2704 2705 // Insert padding - this may include padding to increase the size of the 2706 // current field up to the ABI size (if the struct is not packed) as well 2707 // as padding to ensure that the next field starts at the right offset. 2708 AP.OutStreamer->emitZeros(PadSize); 2709 } 2710 assert(SizeSoFar == Layout->getSizeInBytes() && 2711 "Layout of constant struct may be incorrect!"); 2712 } 2713 2714 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2715 assert(ET && "Unknown float type"); 2716 APInt API = APF.bitcastToAPInt(); 2717 2718 // First print a comment with what we think the original floating-point value 2719 // should have been. 2720 if (AP.isVerbose()) { 2721 SmallString<8> StrVal; 2722 APF.toString(StrVal); 2723 ET->print(AP.OutStreamer->GetCommentOS()); 2724 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2725 } 2726 2727 // Now iterate through the APInt chunks, emitting them in endian-correct 2728 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2729 // floats). 2730 unsigned NumBytes = API.getBitWidth() / 8; 2731 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2732 const uint64_t *p = API.getRawData(); 2733 2734 // PPC's long double has odd notions of endianness compared to how LLVM 2735 // handles it: p[0] goes first for *big* endian on PPC. 2736 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2737 int Chunk = API.getNumWords() - 1; 2738 2739 if (TrailingBytes) 2740 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2741 2742 for (; Chunk >= 0; --Chunk) 2743 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2744 } else { 2745 unsigned Chunk; 2746 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2747 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2748 2749 if (TrailingBytes) 2750 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2751 } 2752 2753 // Emit the tail padding for the long double. 2754 const DataLayout &DL = AP.getDataLayout(); 2755 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2756 } 2757 2758 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2759 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2760 } 2761 2762 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2763 const DataLayout &DL = AP.getDataLayout(); 2764 unsigned BitWidth = CI->getBitWidth(); 2765 2766 // Copy the value as we may massage the layout for constants whose bit width 2767 // is not a multiple of 64-bits. 2768 APInt Realigned(CI->getValue()); 2769 uint64_t ExtraBits = 0; 2770 unsigned ExtraBitsSize = BitWidth & 63; 2771 2772 if (ExtraBitsSize) { 2773 // The bit width of the data is not a multiple of 64-bits. 2774 // The extra bits are expected to be at the end of the chunk of the memory. 2775 // Little endian: 2776 // * Nothing to be done, just record the extra bits to emit. 2777 // Big endian: 2778 // * Record the extra bits to emit. 2779 // * Realign the raw data to emit the chunks of 64-bits. 2780 if (DL.isBigEndian()) { 2781 // Basically the structure of the raw data is a chunk of 64-bits cells: 2782 // 0 1 BitWidth / 64 2783 // [chunk1][chunk2] ... [chunkN]. 2784 // The most significant chunk is chunkN and it should be emitted first. 2785 // However, due to the alignment issue chunkN contains useless bits. 2786 // Realign the chunks so that they contain only useful information: 2787 // ExtraBits 0 1 (BitWidth / 64) - 1 2788 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2789 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2790 ExtraBits = Realigned.getRawData()[0] & 2791 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2792 Realigned.lshrInPlace(ExtraBitsSize); 2793 } else 2794 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2795 } 2796 2797 // We don't expect assemblers to support integer data directives 2798 // for more than 64 bits, so we emit the data in at most 64-bit 2799 // quantities at a time. 2800 const uint64_t *RawData = Realigned.getRawData(); 2801 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2802 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2803 AP.OutStreamer->emitIntValue(Val, 8); 2804 } 2805 2806 if (ExtraBitsSize) { 2807 // Emit the extra bits after the 64-bits chunks. 2808 2809 // Emit a directive that fills the expected size. 2810 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2811 Size -= (BitWidth / 64) * 8; 2812 assert(Size && Size * 8 >= ExtraBitsSize && 2813 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2814 == ExtraBits && "Directive too small for extra bits."); 2815 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2816 } 2817 } 2818 2819 /// Transform a not absolute MCExpr containing a reference to a GOT 2820 /// equivalent global, by a target specific GOT pc relative access to the 2821 /// final symbol. 2822 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2823 const Constant *BaseCst, 2824 uint64_t Offset) { 2825 // The global @foo below illustrates a global that uses a got equivalent. 2826 // 2827 // @bar = global i32 42 2828 // @gotequiv = private unnamed_addr constant i32* @bar 2829 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2830 // i64 ptrtoint (i32* @foo to i64)) 2831 // to i32) 2832 // 2833 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2834 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2835 // form: 2836 // 2837 // foo = cstexpr, where 2838 // cstexpr := <gotequiv> - "." + <cst> 2839 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2840 // 2841 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2842 // 2843 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2844 // gotpcrelcst := <offset from @foo base> + <cst> 2845 MCValue MV; 2846 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2847 return; 2848 const MCSymbolRefExpr *SymA = MV.getSymA(); 2849 if (!SymA) 2850 return; 2851 2852 // Check that GOT equivalent symbol is cached. 2853 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2854 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2855 return; 2856 2857 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2858 if (!BaseGV) 2859 return; 2860 2861 // Check for a valid base symbol 2862 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2863 const MCSymbolRefExpr *SymB = MV.getSymB(); 2864 2865 if (!SymB || BaseSym != &SymB->getSymbol()) 2866 return; 2867 2868 // Make sure to match: 2869 // 2870 // gotpcrelcst := <offset from @foo base> + <cst> 2871 // 2872 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2873 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2874 // if the target knows how to encode it. 2875 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2876 if (GOTPCRelCst < 0) 2877 return; 2878 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2879 return; 2880 2881 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2882 // 2883 // bar: 2884 // .long 42 2885 // gotequiv: 2886 // .quad bar 2887 // foo: 2888 // .long gotequiv - "." + <cst> 2889 // 2890 // is replaced by the target specific equivalent to: 2891 // 2892 // bar: 2893 // .long 42 2894 // foo: 2895 // .long bar@GOTPCREL+<gotpcrelcst> 2896 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2897 const GlobalVariable *GV = Result.first; 2898 int NumUses = (int)Result.second; 2899 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2900 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2901 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2902 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2903 2904 // Update GOT equivalent usage information 2905 --NumUses; 2906 if (NumUses >= 0) 2907 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2908 } 2909 2910 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2911 AsmPrinter &AP, const Constant *BaseCV, 2912 uint64_t Offset) { 2913 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2914 2915 // Globals with sub-elements such as combinations of arrays and structs 2916 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2917 // constant symbol base and the current position with BaseCV and Offset. 2918 if (!BaseCV && CV->hasOneUse()) 2919 BaseCV = dyn_cast<Constant>(CV->user_back()); 2920 2921 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2922 return AP.OutStreamer->emitZeros(Size); 2923 2924 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2925 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2926 2927 if (StoreSize <= 8) { 2928 if (AP.isVerbose()) 2929 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2930 CI->getZExtValue()); 2931 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2932 } else { 2933 emitGlobalConstantLargeInt(CI, AP); 2934 } 2935 2936 // Emit tail padding if needed 2937 if (Size != StoreSize) 2938 AP.OutStreamer->emitZeros(Size - StoreSize); 2939 2940 return; 2941 } 2942 2943 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2944 return emitGlobalConstantFP(CFP, AP); 2945 2946 if (isa<ConstantPointerNull>(CV)) { 2947 AP.OutStreamer->emitIntValue(0, Size); 2948 return; 2949 } 2950 2951 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2952 return emitGlobalConstantDataSequential(DL, CDS, AP); 2953 2954 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2955 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2956 2957 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2958 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2959 2960 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2961 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2962 // vectors). 2963 if (CE->getOpcode() == Instruction::BitCast) 2964 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2965 2966 if (Size > 8) { 2967 // If the constant expression's size is greater than 64-bits, then we have 2968 // to emit the value in chunks. Try to constant fold the value and emit it 2969 // that way. 2970 Constant *New = ConstantFoldConstant(CE, DL); 2971 if (New != CE) 2972 return emitGlobalConstantImpl(DL, New, AP); 2973 } 2974 } 2975 2976 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2977 return emitGlobalConstantVector(DL, V, AP); 2978 2979 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2980 // thread the streamer with EmitValue. 2981 const MCExpr *ME = AP.lowerConstant(CV); 2982 2983 // Since lowerConstant already folded and got rid of all IR pointer and 2984 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2985 // directly. 2986 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2987 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2988 2989 AP.OutStreamer->emitValue(ME, Size); 2990 } 2991 2992 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2993 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2994 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2995 if (Size) 2996 emitGlobalConstantImpl(DL, CV, *this); 2997 else if (MAI->hasSubsectionsViaSymbols()) { 2998 // If the global has zero size, emit a single byte so that two labels don't 2999 // look like they are at the same location. 3000 OutStreamer->emitIntValue(0, 1); 3001 } 3002 } 3003 3004 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3005 // Target doesn't support this yet! 3006 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3007 } 3008 3009 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3010 if (Offset > 0) 3011 OS << '+' << Offset; 3012 else if (Offset < 0) 3013 OS << Offset; 3014 } 3015 3016 void AsmPrinter::emitNops(unsigned N) { 3017 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3018 for (; N; --N) 3019 EmitToStreamer(*OutStreamer, Nop); 3020 } 3021 3022 //===----------------------------------------------------------------------===// 3023 // Symbol Lowering Routines. 3024 //===----------------------------------------------------------------------===// 3025 3026 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3027 return OutContext.createTempSymbol(Name, true); 3028 } 3029 3030 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3031 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3032 } 3033 3034 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3035 return MMI->getAddrLabelSymbol(BB); 3036 } 3037 3038 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3039 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3040 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3041 const MachineConstantPoolEntry &CPE = 3042 MF->getConstantPool()->getConstants()[CPID]; 3043 if (!CPE.isMachineConstantPoolEntry()) { 3044 const DataLayout &DL = MF->getDataLayout(); 3045 SectionKind Kind = CPE.getSectionKind(&DL); 3046 const Constant *C = CPE.Val.ConstVal; 3047 Align Alignment = CPE.Alignment; 3048 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3049 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3050 Alignment))) { 3051 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3052 if (Sym->isUndefined()) 3053 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3054 return Sym; 3055 } 3056 } 3057 } 3058 } 3059 3060 const DataLayout &DL = getDataLayout(); 3061 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3062 "CPI" + Twine(getFunctionNumber()) + "_" + 3063 Twine(CPID)); 3064 } 3065 3066 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3067 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3068 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3069 } 3070 3071 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3072 /// FIXME: privatize to AsmPrinter. 3073 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3074 const DataLayout &DL = getDataLayout(); 3075 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3076 Twine(getFunctionNumber()) + "_" + 3077 Twine(UID) + "_set_" + Twine(MBBID)); 3078 } 3079 3080 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3081 StringRef Suffix) const { 3082 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3083 } 3084 3085 /// Return the MCSymbol for the specified ExternalSymbol. 3086 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3087 SmallString<60> NameStr; 3088 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3089 return OutContext.getOrCreateSymbol(NameStr); 3090 } 3091 3092 /// PrintParentLoopComment - Print comments about parent loops of this one. 3093 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3094 unsigned FunctionNumber) { 3095 if (!Loop) return; 3096 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3097 OS.indent(Loop->getLoopDepth()*2) 3098 << "Parent Loop BB" << FunctionNumber << "_" 3099 << Loop->getHeader()->getNumber() 3100 << " Depth=" << Loop->getLoopDepth() << '\n'; 3101 } 3102 3103 /// PrintChildLoopComment - Print comments about child loops within 3104 /// the loop for this basic block, with nesting. 3105 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3106 unsigned FunctionNumber) { 3107 // Add child loop information 3108 for (const MachineLoop *CL : *Loop) { 3109 OS.indent(CL->getLoopDepth()*2) 3110 << "Child Loop BB" << FunctionNumber << "_" 3111 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3112 << '\n'; 3113 PrintChildLoopComment(OS, CL, FunctionNumber); 3114 } 3115 } 3116 3117 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3118 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3119 const MachineLoopInfo *LI, 3120 const AsmPrinter &AP) { 3121 // Add loop depth information 3122 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3123 if (!Loop) return; 3124 3125 MachineBasicBlock *Header = Loop->getHeader(); 3126 assert(Header && "No header for loop"); 3127 3128 // If this block is not a loop header, just print out what is the loop header 3129 // and return. 3130 if (Header != &MBB) { 3131 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3132 Twine(AP.getFunctionNumber())+"_" + 3133 Twine(Loop->getHeader()->getNumber())+ 3134 " Depth="+Twine(Loop->getLoopDepth())); 3135 return; 3136 } 3137 3138 // Otherwise, it is a loop header. Print out information about child and 3139 // parent loops. 3140 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3141 3142 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3143 3144 OS << "=>"; 3145 OS.indent(Loop->getLoopDepth()*2-2); 3146 3147 OS << "This "; 3148 if (Loop->isInnermost()) 3149 OS << "Inner "; 3150 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3151 3152 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3153 } 3154 3155 /// emitBasicBlockStart - This method prints the label for the specified 3156 /// MachineBasicBlock, an alignment (if present) and a comment describing 3157 /// it if appropriate. 3158 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3159 // End the previous funclet and start a new one. 3160 if (MBB.isEHFuncletEntry()) { 3161 for (const HandlerInfo &HI : Handlers) { 3162 HI.Handler->endFunclet(); 3163 HI.Handler->beginFunclet(MBB); 3164 } 3165 } 3166 3167 // Emit an alignment directive for this block, if needed. 3168 const Align Alignment = MBB.getAlignment(); 3169 if (Alignment != Align(1)) 3170 emitAlignment(Alignment); 3171 3172 // Switch to a new section if this basic block must begin a section. The 3173 // entry block is always placed in the function section and is handled 3174 // separately. 3175 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3176 OutStreamer->SwitchSection( 3177 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3178 MBB, TM)); 3179 CurrentSectionBeginSym = MBB.getSymbol(); 3180 } 3181 3182 // If the block has its address taken, emit any labels that were used to 3183 // reference the block. It is possible that there is more than one label 3184 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3185 // the references were generated. 3186 if (MBB.hasAddressTaken()) { 3187 const BasicBlock *BB = MBB.getBasicBlock(); 3188 if (isVerbose()) 3189 OutStreamer->AddComment("Block address taken"); 3190 3191 // MBBs can have their address taken as part of CodeGen without having 3192 // their corresponding BB's address taken in IR 3193 if (BB->hasAddressTaken()) 3194 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3195 OutStreamer->emitLabel(Sym); 3196 } 3197 3198 // Print some verbose block comments. 3199 if (isVerbose()) { 3200 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3201 if (BB->hasName()) { 3202 BB->printAsOperand(OutStreamer->GetCommentOS(), 3203 /*PrintType=*/false, BB->getModule()); 3204 OutStreamer->GetCommentOS() << '\n'; 3205 } 3206 } 3207 3208 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3209 emitBasicBlockLoopComments(MBB, MLI, *this); 3210 } 3211 3212 // Print the main label for the block. 3213 if (shouldEmitLabelForBasicBlock(MBB)) { 3214 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3215 OutStreamer->AddComment("Label of block must be emitted"); 3216 OutStreamer->emitLabel(MBB.getSymbol()); 3217 } else { 3218 if (isVerbose()) { 3219 // NOTE: Want this comment at start of line, don't emit with AddComment. 3220 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3221 false); 3222 } 3223 } 3224 3225 if (MBB.isEHCatchretTarget() && 3226 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3227 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3228 } 3229 3230 // With BB sections, each basic block must handle CFI information on its own 3231 // if it begins a section (Entry block is handled separately by 3232 // AsmPrinterHandler::beginFunction). 3233 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3234 for (const HandlerInfo &HI : Handlers) 3235 HI.Handler->beginBasicBlock(MBB); 3236 } 3237 3238 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3239 // Check if CFI information needs to be updated for this MBB with basic block 3240 // sections. 3241 if (MBB.isEndSection()) 3242 for (const HandlerInfo &HI : Handlers) 3243 HI.Handler->endBasicBlock(MBB); 3244 } 3245 3246 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3247 bool IsDefinition) const { 3248 MCSymbolAttr Attr = MCSA_Invalid; 3249 3250 switch (Visibility) { 3251 default: break; 3252 case GlobalValue::HiddenVisibility: 3253 if (IsDefinition) 3254 Attr = MAI->getHiddenVisibilityAttr(); 3255 else 3256 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3257 break; 3258 case GlobalValue::ProtectedVisibility: 3259 Attr = MAI->getProtectedVisibilityAttr(); 3260 break; 3261 } 3262 3263 if (Attr != MCSA_Invalid) 3264 OutStreamer->emitSymbolAttribute(Sym, Attr); 3265 } 3266 3267 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3268 const MachineBasicBlock &MBB) const { 3269 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3270 // in the labels mode (option `=labels`) and every section beginning in the 3271 // sections mode (`=all` and `=list=`). 3272 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3273 return true; 3274 // A label is needed for any block with at least one predecessor (when that 3275 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3276 // entry, or if a label is forced). 3277 return !MBB.pred_empty() && 3278 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3279 MBB.hasLabelMustBeEmitted()); 3280 } 3281 3282 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3283 /// exactly one predecessor and the control transfer mechanism between 3284 /// the predecessor and this block is a fall-through. 3285 bool AsmPrinter:: 3286 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3287 // If this is a landing pad, it isn't a fall through. If it has no preds, 3288 // then nothing falls through to it. 3289 if (MBB->isEHPad() || MBB->pred_empty()) 3290 return false; 3291 3292 // If there isn't exactly one predecessor, it can't be a fall through. 3293 if (MBB->pred_size() > 1) 3294 return false; 3295 3296 // The predecessor has to be immediately before this block. 3297 MachineBasicBlock *Pred = *MBB->pred_begin(); 3298 if (!Pred->isLayoutSuccessor(MBB)) 3299 return false; 3300 3301 // If the block is completely empty, then it definitely does fall through. 3302 if (Pred->empty()) 3303 return true; 3304 3305 // Check the terminators in the previous blocks 3306 for (const auto &MI : Pred->terminators()) { 3307 // If it is not a simple branch, we are in a table somewhere. 3308 if (!MI.isBranch() || MI.isIndirectBranch()) 3309 return false; 3310 3311 // If we are the operands of one of the branches, this is not a fall 3312 // through. Note that targets with delay slots will usually bundle 3313 // terminators with the delay slot instruction. 3314 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3315 if (OP->isJTI()) 3316 return false; 3317 if (OP->isMBB() && OP->getMBB() == MBB) 3318 return false; 3319 } 3320 } 3321 3322 return true; 3323 } 3324 3325 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3326 if (!S.usesMetadata()) 3327 return nullptr; 3328 3329 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3330 gcp_map_type::iterator GCPI = GCMap.find(&S); 3331 if (GCPI != GCMap.end()) 3332 return GCPI->second.get(); 3333 3334 auto Name = S.getName(); 3335 3336 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3337 GCMetadataPrinterRegistry::entries()) 3338 if (Name == GCMetaPrinter.getName()) { 3339 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3340 GMP->S = &S; 3341 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3342 return IterBool.first->second.get(); 3343 } 3344 3345 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3346 } 3347 3348 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3349 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3350 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3351 bool NeedsDefault = false; 3352 if (MI->begin() == MI->end()) 3353 // No GC strategy, use the default format. 3354 NeedsDefault = true; 3355 else 3356 for (auto &I : *MI) { 3357 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3358 if (MP->emitStackMaps(SM, *this)) 3359 continue; 3360 // The strategy doesn't have printer or doesn't emit custom stack maps. 3361 // Use the default format. 3362 NeedsDefault = true; 3363 } 3364 3365 if (NeedsDefault) 3366 SM.serializeToStackMapSection(); 3367 } 3368 3369 /// Pin vtable to this file. 3370 AsmPrinterHandler::~AsmPrinterHandler() = default; 3371 3372 void AsmPrinterHandler::markFunctionEnd() {} 3373 3374 // In the binary's "xray_instr_map" section, an array of these function entries 3375 // describes each instrumentation point. When XRay patches your code, the index 3376 // into this table will be given to your handler as a patch point identifier. 3377 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3378 auto Kind8 = static_cast<uint8_t>(Kind); 3379 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3380 Out->emitBinaryData( 3381 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3382 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3383 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3384 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3385 Out->emitZeros(Padding); 3386 } 3387 3388 void AsmPrinter::emitXRayTable() { 3389 if (Sleds.empty()) 3390 return; 3391 3392 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3393 const Function &F = MF->getFunction(); 3394 MCSection *InstMap = nullptr; 3395 MCSection *FnSledIndex = nullptr; 3396 const Triple &TT = TM.getTargetTriple(); 3397 // Use PC-relative addresses on all targets. 3398 if (TT.isOSBinFormatELF()) { 3399 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3400 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3401 StringRef GroupName; 3402 if (F.hasComdat()) { 3403 Flags |= ELF::SHF_GROUP; 3404 GroupName = F.getComdat()->getName(); 3405 } 3406 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3407 Flags, 0, GroupName, F.hasComdat(), 3408 MCSection::NonUniqueID, LinkedToSym); 3409 3410 if (!TM.Options.XRayOmitFunctionIndex) 3411 FnSledIndex = OutContext.getELFSection( 3412 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3413 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3414 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3415 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3416 SectionKind::getReadOnlyWithRel()); 3417 if (!TM.Options.XRayOmitFunctionIndex) 3418 FnSledIndex = OutContext.getMachOSection( 3419 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3420 } else { 3421 llvm_unreachable("Unsupported target"); 3422 } 3423 3424 auto WordSizeBytes = MAI->getCodePointerSize(); 3425 3426 // Now we switch to the instrumentation map section. Because this is done 3427 // per-function, we are able to create an index entry that will represent the 3428 // range of sleds associated with a function. 3429 auto &Ctx = OutContext; 3430 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3431 OutStreamer->SwitchSection(InstMap); 3432 OutStreamer->emitLabel(SledsStart); 3433 for (const auto &Sled : Sleds) { 3434 MCSymbol *Dot = Ctx.createTempSymbol(); 3435 OutStreamer->emitLabel(Dot); 3436 OutStreamer->emitValueImpl( 3437 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3438 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3439 WordSizeBytes); 3440 OutStreamer->emitValueImpl( 3441 MCBinaryExpr::createSub( 3442 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3443 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3444 MCConstantExpr::create(WordSizeBytes, Ctx), 3445 Ctx), 3446 Ctx), 3447 WordSizeBytes); 3448 Sled.emit(WordSizeBytes, OutStreamer.get()); 3449 } 3450 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3451 OutStreamer->emitLabel(SledsEnd); 3452 3453 // We then emit a single entry in the index per function. We use the symbols 3454 // that bound the instrumentation map as the range for a specific function. 3455 // Each entry here will be 2 * word size aligned, as we're writing down two 3456 // pointers. This should work for both 32-bit and 64-bit platforms. 3457 if (FnSledIndex) { 3458 OutStreamer->SwitchSection(FnSledIndex); 3459 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3460 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3461 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3462 OutStreamer->SwitchSection(PrevSection); 3463 } 3464 Sleds.clear(); 3465 } 3466 3467 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3468 SledKind Kind, uint8_t Version) { 3469 const Function &F = MI.getMF()->getFunction(); 3470 auto Attr = F.getFnAttribute("function-instrument"); 3471 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3472 bool AlwaysInstrument = 3473 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3474 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3475 Kind = SledKind::LOG_ARGS_ENTER; 3476 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3477 AlwaysInstrument, &F, Version}); 3478 } 3479 3480 void AsmPrinter::emitPatchableFunctionEntries() { 3481 const Function &F = MF->getFunction(); 3482 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3483 (void)F.getFnAttribute("patchable-function-prefix") 3484 .getValueAsString() 3485 .getAsInteger(10, PatchableFunctionPrefix); 3486 (void)F.getFnAttribute("patchable-function-entry") 3487 .getValueAsString() 3488 .getAsInteger(10, PatchableFunctionEntry); 3489 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3490 return; 3491 const unsigned PointerSize = getPointerSize(); 3492 if (TM.getTargetTriple().isOSBinFormatELF()) { 3493 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3494 const MCSymbolELF *LinkedToSym = nullptr; 3495 StringRef GroupName; 3496 3497 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3498 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3499 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3500 Flags |= ELF::SHF_LINK_ORDER; 3501 if (F.hasComdat()) { 3502 Flags |= ELF::SHF_GROUP; 3503 GroupName = F.getComdat()->getName(); 3504 } 3505 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3506 } 3507 OutStreamer->SwitchSection(OutContext.getELFSection( 3508 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3509 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3510 emitAlignment(Align(PointerSize)); 3511 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3512 } 3513 } 3514 3515 uint16_t AsmPrinter::getDwarfVersion() const { 3516 return OutStreamer->getContext().getDwarfVersion(); 3517 } 3518 3519 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3520 OutStreamer->getContext().setDwarfVersion(Version); 3521 } 3522 3523 bool AsmPrinter::isDwarf64() const { 3524 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3525 } 3526 3527 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3528 return dwarf::getDwarfOffsetByteSize( 3529 OutStreamer->getContext().getDwarfFormat()); 3530 } 3531 3532 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3533 return dwarf::getUnitLengthFieldByteSize( 3534 OutStreamer->getContext().getDwarfFormat()); 3535 } 3536