1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/TargetRegistry.h" 117 #include "llvm/Support/Timer.h" 118 #include "llvm/Support/raw_ostream.h" 119 #include "llvm/Target/TargetLoweringObjectFile.h" 120 #include "llvm/Target/TargetMachine.h" 121 #include "llvm/Target/TargetOptions.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <limits> 128 #include <memory> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 138 static cl::opt<bool> 139 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 140 cl::desc("Disable debug info printing")); 141 142 const char DWARFGroupName[] = "dwarf"; 143 const char DWARFGroupDescription[] = "DWARF Emission"; 144 const char DbgTimerName[] = "emit"; 145 const char DbgTimerDescription[] = "Debug Info Emission"; 146 const char EHTimerName[] = "write_exception"; 147 const char EHTimerDescription[] = "DWARF Exception Writer"; 148 const char CFGuardName[] = "Control Flow Guard"; 149 const char CFGuardDescription[] = "Control Flow Guard"; 150 const char CodeViewLineTablesGroupName[] = "linetables"; 151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 152 const char PPTimerName[] = "emit"; 153 const char PPTimerDescription[] = "Pseudo Probe Emission"; 154 const char PPGroupName[] = "pseudo probe"; 155 const char PPGroupDescription[] = "Pseudo Probe Emission"; 156 157 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 158 159 char AsmPrinter::ID = 0; 160 161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 162 163 static gcp_map_type &getGCMap(void *&P) { 164 if (!P) 165 P = new gcp_map_type(); 166 return *(gcp_map_type*)P; 167 } 168 169 /// getGVAlignment - Return the alignment to use for the specified global 170 /// value. This rounds up to the preferred alignment if possible and legal. 171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 172 Align InAlign) { 173 Align Alignment; 174 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 175 Alignment = DL.getPreferredAlign(GVar); 176 177 // If InAlign is specified, round it to it. 178 if (InAlign > Alignment) 179 Alignment = InAlign; 180 181 // If the GV has a specified alignment, take it into account. 182 const MaybeAlign GVAlign(GV->getAlignment()); 183 if (!GVAlign) 184 return Alignment; 185 186 assert(GVAlign && "GVAlign must be set"); 187 188 // If the GVAlign is larger than NumBits, or if we are required to obey 189 // NumBits because the GV has an assigned section, obey it. 190 if (*GVAlign > Alignment || GV->hasSection()) 191 Alignment = *GVAlign; 192 return Alignment; 193 } 194 195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 196 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 197 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 198 VerboseAsm = OutStreamer->isVerboseAsm(); 199 } 200 201 AsmPrinter::~AsmPrinter() { 202 assert(!DD && Handlers.size() == NumUserHandlers && 203 "Debug/EH info didn't get finalized"); 204 205 if (GCMetadataPrinters) { 206 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 207 208 delete &GCMap; 209 GCMetadataPrinters = nullptr; 210 } 211 } 212 213 bool AsmPrinter::isPositionIndependent() const { 214 return TM.isPositionIndependent(); 215 } 216 217 /// getFunctionNumber - Return a unique ID for the current function. 218 unsigned AsmPrinter::getFunctionNumber() const { 219 return MF->getFunctionNumber(); 220 } 221 222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 223 return *TM.getObjFileLowering(); 224 } 225 226 const DataLayout &AsmPrinter::getDataLayout() const { 227 return MMI->getModule()->getDataLayout(); 228 } 229 230 // Do not use the cached DataLayout because some client use it without a Module 231 // (dsymutil, llvm-dwarfdump). 232 unsigned AsmPrinter::getPointerSize() const { 233 return TM.getPointerSize(0); // FIXME: Default address space 234 } 235 236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 237 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 238 return MF->getSubtarget<MCSubtargetInfo>(); 239 } 240 241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 242 S.emitInstruction(Inst, getSubtargetInfo()); 243 } 244 245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 246 if (DD) { 247 assert(OutStreamer->hasRawTextSupport() && 248 "Expected assembly output mode."); 249 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 250 } 251 } 252 253 /// getCurrentSection() - Return the current section we are emitting to. 254 const MCSection *AsmPrinter::getCurrentSection() const { 255 return OutStreamer->getCurrentSectionOnly(); 256 } 257 258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 259 AU.setPreservesAll(); 260 MachineFunctionPass::getAnalysisUsage(AU); 261 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 262 AU.addRequired<GCModuleInfo>(); 263 } 264 265 bool AsmPrinter::doInitialization(Module &M) { 266 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 267 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 268 269 // Initialize TargetLoweringObjectFile. 270 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 271 .Initialize(OutContext, TM); 272 273 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 274 .getModuleMetadata(M); 275 276 OutStreamer->InitSections(false); 277 278 if (DisableDebugInfoPrinting) 279 MMI->setDebugInfoAvailability(false); 280 281 // Emit the version-min deployment target directive if needed. 282 // 283 // FIXME: If we end up with a collection of these sorts of Darwin-specific 284 // or ELF-specific things, it may make sense to have a platform helper class 285 // that will work with the target helper class. For now keep it here, as the 286 // alternative is duplicated code in each of the target asm printers that 287 // use the directive, where it would need the same conditionalization 288 // anyway. 289 const Triple &Target = TM.getTargetTriple(); 290 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 291 292 // Allow the target to emit any magic that it wants at the start of the file. 293 emitStartOfAsmFile(M); 294 295 // Very minimal debug info. It is ignored if we emit actual debug info. If we 296 // don't, this at least helps the user find where a global came from. 297 if (MAI->hasSingleParameterDotFile()) { 298 // .file "foo.c" 299 OutStreamer->emitFileDirective( 300 llvm::sys::path::filename(M.getSourceFileName())); 301 } 302 303 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 304 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 305 for (auto &I : *MI) 306 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 307 MP->beginAssembly(M, *MI, *this); 308 309 // Emit module-level inline asm if it exists. 310 if (!M.getModuleInlineAsm().empty()) { 311 // We're at the module level. Construct MCSubtarget from the default CPU 312 // and target triple. 313 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 314 TM.getTargetTriple().str(), TM.getTargetCPU(), 315 TM.getTargetFeatureString())); 316 assert(STI && "Unable to create subtarget info"); 317 OutStreamer->AddComment("Start of file scope inline assembly"); 318 OutStreamer->AddBlankLine(); 319 emitInlineAsm(M.getModuleInlineAsm() + "\n", 320 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 321 OutStreamer->AddComment("End of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 } 324 325 if (MAI->doesSupportDebugInformation()) { 326 bool EmitCodeView = M.getCodeViewFlag(); 327 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 328 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 329 DbgTimerName, DbgTimerDescription, 330 CodeViewLineTablesGroupName, 331 CodeViewLineTablesGroupDescription); 332 } 333 if (!EmitCodeView || M.getDwarfVersion()) { 334 if (!DisableDebugInfoPrinting) { 335 DD = new DwarfDebug(this); 336 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 337 DbgTimerDescription, DWARFGroupName, 338 DWARFGroupDescription); 339 } 340 } 341 } 342 343 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 344 PP = new PseudoProbeHandler(this, &M); 345 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 346 PPTimerDescription, PPGroupName, PPGroupDescription); 347 } 348 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 case ExceptionHandling::ARM: 353 isCFIMoveForDebugging = true; 354 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 355 break; 356 for (auto &F: M.getFunctionList()) { 357 // If the module contains any function with unwind data, 358 // .eh_frame has to be emitted. 359 // Ignore functions that won't get emitted. 360 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 361 isCFIMoveForDebugging = false; 362 break; 363 } 364 } 365 break; 366 default: 367 isCFIMoveForDebugging = false; 368 break; 369 } 370 371 EHStreamer *ES = nullptr; 372 switch (MAI->getExceptionHandlingType()) { 373 case ExceptionHandling::None: 374 break; 375 case ExceptionHandling::SjLj: 376 case ExceptionHandling::DwarfCFI: 377 ES = new DwarfCFIException(this); 378 break; 379 case ExceptionHandling::ARM: 380 ES = new ARMException(this); 381 break; 382 case ExceptionHandling::WinEH: 383 switch (MAI->getWinEHEncodingType()) { 384 default: llvm_unreachable("unsupported unwinding information encoding"); 385 case WinEH::EncodingType::Invalid: 386 break; 387 case WinEH::EncodingType::X86: 388 case WinEH::EncodingType::Itanium: 389 ES = new WinException(this); 390 break; 391 } 392 break; 393 case ExceptionHandling::Wasm: 394 ES = new WasmException(this); 395 break; 396 case ExceptionHandling::AIX: 397 ES = new AIXException(this); 398 break; 399 } 400 if (ES) 401 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 402 EHTimerDescription, DWARFGroupName, 403 DWARFGroupDescription); 404 405 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 406 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 407 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 408 CFGuardDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 for (const HandlerInfo &HI : Handlers) { 412 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 413 HI.TimerGroupDescription, TimePassesIsEnabled); 414 HI.Handler->beginModule(&M); 415 } 416 417 return false; 418 } 419 420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 421 if (!MAI.hasWeakDefCanBeHiddenDirective()) 422 return false; 423 424 return GV->canBeOmittedFromSymbolTable(); 425 } 426 427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 428 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 429 switch (Linkage) { 430 case GlobalValue::CommonLinkage: 431 case GlobalValue::LinkOnceAnyLinkage: 432 case GlobalValue::LinkOnceODRLinkage: 433 case GlobalValue::WeakAnyLinkage: 434 case GlobalValue::WeakODRLinkage: 435 if (MAI->hasWeakDefDirective()) { 436 // .globl _foo 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 438 439 if (!canBeHidden(GV, *MAI)) 440 // .weak_definition _foo 441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 442 else 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 444 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 445 // .globl _foo 446 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 447 //NOTE: linkonce is handled by the section the symbol was assigned to. 448 } else { 449 // .weak _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 451 } 452 return; 453 case GlobalValue::ExternalLinkage: 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 455 return; 456 case GlobalValue::PrivateLinkage: 457 case GlobalValue::InternalLinkage: 458 return; 459 case GlobalValue::ExternalWeakLinkage: 460 case GlobalValue::AvailableExternallyLinkage: 461 case GlobalValue::AppendingLinkage: 462 llvm_unreachable("Should never emit this"); 463 } 464 llvm_unreachable("Unknown linkage type!"); 465 } 466 467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 468 const GlobalValue *GV) const { 469 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 470 } 471 472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 473 return TM.getSymbol(GV); 474 } 475 476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 477 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 478 // exact definion (intersection of GlobalValue::hasExactDefinition() and 479 // !isInterposable()). These linkages include: external, appending, internal, 480 // private. It may be profitable to use a local alias for external. The 481 // assembler would otherwise be conservative and assume a global default 482 // visibility symbol can be interposable, even if the code generator already 483 // assumed it. 484 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 485 const Module &M = *GV.getParent(); 486 if (TM.getRelocationModel() != Reloc::Static && 487 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 488 return getSymbolWithGlobalValueBase(&GV, "$local"); 489 } 490 return TM.getSymbol(&GV); 491 } 492 493 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 495 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 496 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 497 "No emulated TLS variables in the common section"); 498 499 // Never emit TLS variable xyz in emulated TLS model. 500 // The initialization value is in __emutls_t.xyz instead of xyz. 501 if (IsEmuTLSVar) 502 return; 503 504 if (GV->hasInitializer()) { 505 // Check to see if this is a special global used by LLVM, if so, emit it. 506 if (emitSpecialLLVMGlobal(GV)) 507 return; 508 509 // Skip the emission of global equivalents. The symbol can be emitted later 510 // on by emitGlobalGOTEquivs in case it turns out to be needed. 511 if (GlobalGOTEquivs.count(getSymbol(GV))) 512 return; 513 514 if (isVerbose()) { 515 // When printing the control variable __emutls_v.*, 516 // we don't need to print the original TLS variable name. 517 GV->printAsOperand(OutStreamer->GetCommentOS(), 518 /*PrintType=*/false, GV->getParent()); 519 OutStreamer->GetCommentOS() << '\n'; 520 } 521 } 522 523 MCSymbol *GVSym = getSymbol(GV); 524 MCSymbol *EmittedSym = GVSym; 525 526 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 527 // attributes. 528 // GV's or GVSym's attributes will be used for the EmittedSym. 529 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 530 531 if (!GV->hasInitializer()) // External globals require no extra code. 532 return; 533 534 GVSym->redefineIfPossible(); 535 if (GVSym->isDefined() || GVSym->isVariable()) 536 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 537 "' is already defined"); 538 539 if (MAI->hasDotTypeDotSizeDirective()) 540 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 541 542 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 543 544 const DataLayout &DL = GV->getParent()->getDataLayout(); 545 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 546 547 // If the alignment is specified, we *must* obey it. Overaligning a global 548 // with a specified alignment is a prompt way to break globals emitted to 549 // sections and expected to be contiguous (e.g. ObjC metadata). 550 const Align Alignment = getGVAlignment(GV, DL); 551 552 for (const HandlerInfo &HI : Handlers) { 553 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 554 HI.TimerGroupName, HI.TimerGroupDescription, 555 TimePassesIsEnabled); 556 HI.Handler->setSymbolSize(GVSym, Size); 557 } 558 559 // Handle common symbols 560 if (GVKind.isCommon()) { 561 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 562 // .comm _foo, 42, 4 563 const bool SupportsAlignment = 564 getObjFileLowering().getCommDirectiveSupportsAlignment(); 565 OutStreamer->emitCommonSymbol(GVSym, Size, 566 SupportsAlignment ? Alignment.value() : 0); 567 return; 568 } 569 570 // Determine to which section this global should be emitted. 571 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 572 573 // If we have a bss global going to a section that supports the 574 // zerofill directive, do so here. 575 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 576 TheSection->isVirtualSection()) { 577 if (Size == 0) 578 Size = 1; // zerofill of 0 bytes is undefined. 579 emitLinkage(GV, GVSym); 580 // .zerofill __DATA, __bss, _foo, 400, 5 581 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 582 return; 583 } 584 585 // If this is a BSS local symbol and we are emitting in the BSS 586 // section use .lcomm/.comm directive. 587 if (GVKind.isBSSLocal() && 588 getObjFileLowering().getBSSSection() == TheSection) { 589 if (Size == 0) 590 Size = 1; // .comm Foo, 0 is undefined, avoid it. 591 592 // Use .lcomm only if it supports user-specified alignment. 593 // Otherwise, while it would still be correct to use .lcomm in some 594 // cases (e.g. when Align == 1), the external assembler might enfore 595 // some -unknown- default alignment behavior, which could cause 596 // spurious differences between external and integrated assembler. 597 // Prefer to simply fall back to .local / .comm in this case. 598 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 599 // .lcomm _foo, 42 600 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 601 return; 602 } 603 604 // .local _foo 605 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 606 // .comm _foo, 42, 4 607 const bool SupportsAlignment = 608 getObjFileLowering().getCommDirectiveSupportsAlignment(); 609 OutStreamer->emitCommonSymbol(GVSym, Size, 610 SupportsAlignment ? Alignment.value() : 0); 611 return; 612 } 613 614 // Handle thread local data for mach-o which requires us to output an 615 // additional structure of data and mangle the original symbol so that we 616 // can reference it later. 617 // 618 // TODO: This should become an "emit thread local global" method on TLOF. 619 // All of this macho specific stuff should be sunk down into TLOFMachO and 620 // stuff like "TLSExtraDataSection" should no longer be part of the parent 621 // TLOF class. This will also make it more obvious that stuff like 622 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 623 // specific code. 624 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 625 // Emit the .tbss symbol 626 MCSymbol *MangSym = 627 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 628 629 if (GVKind.isThreadBSS()) { 630 TheSection = getObjFileLowering().getTLSBSSSection(); 631 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 632 } else if (GVKind.isThreadData()) { 633 OutStreamer->SwitchSection(TheSection); 634 635 emitAlignment(Alignment, GV); 636 OutStreamer->emitLabel(MangSym); 637 638 emitGlobalConstant(GV->getParent()->getDataLayout(), 639 GV->getInitializer()); 640 } 641 642 OutStreamer->AddBlankLine(); 643 644 // Emit the variable struct for the runtime. 645 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 646 647 OutStreamer->SwitchSection(TLVSect); 648 // Emit the linkage here. 649 emitLinkage(GV, GVSym); 650 OutStreamer->emitLabel(GVSym); 651 652 // Three pointers in size: 653 // - __tlv_bootstrap - used to make sure support exists 654 // - spare pointer, used when mapped by the runtime 655 // - pointer to mangled symbol above with initializer 656 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 657 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 658 PtrSize); 659 OutStreamer->emitIntValue(0, PtrSize); 660 OutStreamer->emitSymbolValue(MangSym, PtrSize); 661 662 OutStreamer->AddBlankLine(); 663 return; 664 } 665 666 MCSymbol *EmittedInitSym = GVSym; 667 668 OutStreamer->SwitchSection(TheSection); 669 670 emitLinkage(GV, EmittedInitSym); 671 emitAlignment(Alignment, GV); 672 673 OutStreamer->emitLabel(EmittedInitSym); 674 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 675 if (LocalAlias != EmittedInitSym) 676 OutStreamer->emitLabel(LocalAlias); 677 678 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 679 680 if (MAI->hasDotTypeDotSizeDirective()) 681 // .size foo, 42 682 OutStreamer->emitELFSize(EmittedInitSym, 683 MCConstantExpr::create(Size, OutContext)); 684 685 OutStreamer->AddBlankLine(); 686 } 687 688 /// Emit the directive and value for debug thread local expression 689 /// 690 /// \p Value - The value to emit. 691 /// \p Size - The size of the integer (in bytes) to emit. 692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 693 OutStreamer->emitValue(Value, Size); 694 } 695 696 void AsmPrinter::emitFunctionHeaderComment() {} 697 698 /// EmitFunctionHeader - This method emits the header for the current 699 /// function. 700 void AsmPrinter::emitFunctionHeader() { 701 const Function &F = MF->getFunction(); 702 703 if (isVerbose()) 704 OutStreamer->GetCommentOS() 705 << "-- Begin function " 706 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 707 708 // Print out constants referenced by the function 709 emitConstantPool(); 710 711 // Print the 'header' of function. 712 // If basic block sections is desired and function sections is off, 713 // explicitly request a unique section for this function. 714 if (MF->front().isBeginSection() && !TM.getFunctionSections()) 715 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 716 else 717 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 718 OutStreamer->SwitchSection(MF->getSection()); 719 720 if (!MAI->hasVisibilityOnlyWithLinkage()) 721 emitVisibility(CurrentFnSym, F.getVisibility()); 722 723 if (MAI->needsFunctionDescriptors()) 724 emitLinkage(&F, CurrentFnDescSym); 725 726 emitLinkage(&F, CurrentFnSym); 727 if (MAI->hasFunctionAlignment()) 728 emitAlignment(MF->getAlignment(), &F); 729 730 if (MAI->hasDotTypeDotSizeDirective()) 731 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 732 733 if (F.hasFnAttribute(Attribute::Cold)) 734 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 735 736 if (isVerbose()) { 737 F.printAsOperand(OutStreamer->GetCommentOS(), 738 /*PrintType=*/false, F.getParent()); 739 emitFunctionHeaderComment(); 740 OutStreamer->GetCommentOS() << '\n'; 741 } 742 743 // Emit the prefix data. 744 if (F.hasPrefixData()) { 745 if (MAI->hasSubsectionsViaSymbols()) { 746 // Preserving prefix data on platforms which use subsections-via-symbols 747 // is a bit tricky. Here we introduce a symbol for the prefix data 748 // and use the .alt_entry attribute to mark the function's real entry point 749 // as an alternative entry point to the prefix-data symbol. 750 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 751 OutStreamer->emitLabel(PrefixSym); 752 753 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 754 755 // Emit an .alt_entry directive for the actual function symbol. 756 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 757 } else { 758 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 759 } 760 } 761 762 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 763 // place prefix data before NOPs. 764 unsigned PatchableFunctionPrefix = 0; 765 unsigned PatchableFunctionEntry = 0; 766 (void)F.getFnAttribute("patchable-function-prefix") 767 .getValueAsString() 768 .getAsInteger(10, PatchableFunctionPrefix); 769 (void)F.getFnAttribute("patchable-function-entry") 770 .getValueAsString() 771 .getAsInteger(10, PatchableFunctionEntry); 772 if (PatchableFunctionPrefix) { 773 CurrentPatchableFunctionEntrySym = 774 OutContext.createLinkerPrivateTempSymbol(); 775 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 776 emitNops(PatchableFunctionPrefix); 777 } else if (PatchableFunctionEntry) { 778 // May be reassigned when emitting the body, to reference the label after 779 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 780 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 781 } 782 783 // Emit the function descriptor. This is a virtual function to allow targets 784 // to emit their specific function descriptor. Right now it is only used by 785 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 786 // descriptors and should be converted to use this hook as well. 787 if (MAI->needsFunctionDescriptors()) 788 emitFunctionDescriptor(); 789 790 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 791 // their wild and crazy things as required. 792 emitFunctionEntryLabel(); 793 794 if (CurrentFnBegin) { 795 if (MAI->useAssignmentForEHBegin()) { 796 MCSymbol *CurPos = OutContext.createTempSymbol(); 797 OutStreamer->emitLabel(CurPos); 798 OutStreamer->emitAssignment(CurrentFnBegin, 799 MCSymbolRefExpr::create(CurPos, OutContext)); 800 } else { 801 OutStreamer->emitLabel(CurrentFnBegin); 802 } 803 } 804 805 // Emit pre-function debug and/or EH information. 806 for (const HandlerInfo &HI : Handlers) { 807 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 808 HI.TimerGroupDescription, TimePassesIsEnabled); 809 HI.Handler->beginFunction(MF); 810 } 811 812 // Emit the prologue data. 813 if (F.hasPrologueData()) 814 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 815 } 816 817 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 818 /// function. This can be overridden by targets as required to do custom stuff. 819 void AsmPrinter::emitFunctionEntryLabel() { 820 CurrentFnSym->redefineIfPossible(); 821 822 // The function label could have already been emitted if two symbols end up 823 // conflicting due to asm renaming. Detect this and emit an error. 824 if (CurrentFnSym->isVariable()) 825 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 826 "' is a protected alias"); 827 828 OutStreamer->emitLabel(CurrentFnSym); 829 830 if (TM.getTargetTriple().isOSBinFormatELF()) { 831 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 832 if (Sym != CurrentFnSym) 833 OutStreamer->emitLabel(Sym); 834 } 835 } 836 837 /// emitComments - Pretty-print comments for instructions. 838 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 839 const MachineFunction *MF = MI.getMF(); 840 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 841 842 // Check for spills and reloads 843 844 // We assume a single instruction only has a spill or reload, not 845 // both. 846 Optional<unsigned> Size; 847 if ((Size = MI.getRestoreSize(TII))) { 848 CommentOS << *Size << "-byte Reload\n"; 849 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 850 if (*Size) { 851 if (*Size == unsigned(MemoryLocation::UnknownSize)) 852 CommentOS << "Unknown-size Folded Reload\n"; 853 else 854 CommentOS << *Size << "-byte Folded Reload\n"; 855 } 856 } else if ((Size = MI.getSpillSize(TII))) { 857 CommentOS << *Size << "-byte Spill\n"; 858 } else if ((Size = MI.getFoldedSpillSize(TII))) { 859 if (*Size) { 860 if (*Size == unsigned(MemoryLocation::UnknownSize)) 861 CommentOS << "Unknown-size Folded Spill\n"; 862 else 863 CommentOS << *Size << "-byte Folded Spill\n"; 864 } 865 } 866 867 // Check for spill-induced copies 868 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 869 CommentOS << " Reload Reuse\n"; 870 } 871 872 /// emitImplicitDef - This method emits the specified machine instruction 873 /// that is an implicit def. 874 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 875 Register RegNo = MI->getOperand(0).getReg(); 876 877 SmallString<128> Str; 878 raw_svector_ostream OS(Str); 879 OS << "implicit-def: " 880 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 881 882 OutStreamer->AddComment(OS.str()); 883 OutStreamer->AddBlankLine(); 884 } 885 886 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 887 std::string Str; 888 raw_string_ostream OS(Str); 889 OS << "kill:"; 890 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 891 const MachineOperand &Op = MI->getOperand(i); 892 assert(Op.isReg() && "KILL instruction must have only register operands"); 893 OS << ' ' << (Op.isDef() ? "def " : "killed ") 894 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 895 } 896 AP.OutStreamer->AddComment(OS.str()); 897 AP.OutStreamer->AddBlankLine(); 898 } 899 900 /// emitDebugValueComment - This method handles the target-independent form 901 /// of DBG_VALUE, returning true if it was able to do so. A false return 902 /// means the target will need to handle MI in EmitInstruction. 903 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 904 // This code handles only the 4-operand target-independent form. 905 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 906 return false; 907 908 SmallString<128> Str; 909 raw_svector_ostream OS(Str); 910 OS << "DEBUG_VALUE: "; 911 912 const DILocalVariable *V = MI->getDebugVariable(); 913 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 914 StringRef Name = SP->getName(); 915 if (!Name.empty()) 916 OS << Name << ":"; 917 } 918 OS << V->getName(); 919 OS << " <- "; 920 921 // The second operand is only an offset if it's an immediate. 922 bool MemLoc = MI->isIndirectDebugValue(); 923 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0); 924 const DIExpression *Expr = MI->getDebugExpression(); 925 if (Expr->getNumElements()) { 926 OS << '['; 927 ListSeparator LS; 928 for (auto Op : Expr->expr_ops()) { 929 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 930 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 931 OS << ' ' << Op.getArg(I); 932 } 933 OS << "] "; 934 } 935 936 // Register or immediate value. Register 0 means undef. 937 if (MI->getDebugOperand(0).isFPImm()) { 938 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 939 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 940 OS << (double)APF.convertToFloat(); 941 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 942 OS << APF.convertToDouble(); 943 } else { 944 // There is no good way to print long double. Convert a copy to 945 // double. Ah well, it's only a comment. 946 bool ignored; 947 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 948 &ignored); 949 OS << "(long double) " << APF.convertToDouble(); 950 } 951 } else if (MI->getDebugOperand(0).isImm()) { 952 OS << MI->getDebugOperand(0).getImm(); 953 } else if (MI->getDebugOperand(0).isCImm()) { 954 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 955 } else if (MI->getDebugOperand(0).isTargetIndex()) { 956 auto Op = MI->getDebugOperand(0); 957 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 958 // NOTE: Want this comment at start of line, don't emit with AddComment. 959 AP.OutStreamer->emitRawComment(OS.str()); 960 return true; 961 } else { 962 Register Reg; 963 if (MI->getDebugOperand(0).isReg()) { 964 Reg = MI->getDebugOperand(0).getReg(); 965 } else { 966 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 967 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 968 Offset += TFI->getFrameIndexReference( 969 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 970 MemLoc = true; 971 } 972 if (Reg == 0) { 973 // Suppress offset, it is not meaningful here. 974 OS << "undef"; 975 // NOTE: Want this comment at start of line, don't emit with AddComment. 976 AP.OutStreamer->emitRawComment(OS.str()); 977 return true; 978 } 979 if (MemLoc) 980 OS << '['; 981 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 982 } 983 984 if (MemLoc) 985 OS << '+' << Offset.getFixed() << ']'; 986 987 // NOTE: Want this comment at start of line, don't emit with AddComment. 988 AP.OutStreamer->emitRawComment(OS.str()); 989 return true; 990 } 991 992 /// This method handles the target-independent form of DBG_LABEL, returning 993 /// true if it was able to do so. A false return means the target will need 994 /// to handle MI in EmitInstruction. 995 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 996 if (MI->getNumOperands() != 1) 997 return false; 998 999 SmallString<128> Str; 1000 raw_svector_ostream OS(Str); 1001 OS << "DEBUG_LABEL: "; 1002 1003 const DILabel *V = MI->getDebugLabel(); 1004 if (auto *SP = dyn_cast<DISubprogram>( 1005 V->getScope()->getNonLexicalBlockFileScope())) { 1006 StringRef Name = SP->getName(); 1007 if (!Name.empty()) 1008 OS << Name << ":"; 1009 } 1010 OS << V->getName(); 1011 1012 // NOTE: Want this comment at start of line, don't emit with AddComment. 1013 AP.OutStreamer->emitRawComment(OS.str()); 1014 return true; 1015 } 1016 1017 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1018 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1019 MF->getFunction().needsUnwindTableEntry()) 1020 return CFI_M_EH; 1021 1022 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1023 return CFI_M_Debug; 1024 1025 return CFI_M_None; 1026 } 1027 1028 bool AsmPrinter::needsSEHMoves() { 1029 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1030 } 1031 1032 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1033 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1034 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1035 ExceptionHandlingType != ExceptionHandling::ARM) 1036 return; 1037 1038 if (needsCFIMoves() == CFI_M_None) 1039 return; 1040 1041 // If there is no "real" instruction following this CFI instruction, skip 1042 // emitting it; it would be beyond the end of the function's FDE range. 1043 auto *MBB = MI.getParent(); 1044 auto I = std::next(MI.getIterator()); 1045 while (I != MBB->end() && I->isTransient()) 1046 ++I; 1047 if (I == MBB->instr_end() && 1048 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1049 return; 1050 1051 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1052 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1053 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1054 emitCFIInstruction(CFI); 1055 } 1056 1057 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1058 // The operands are the MCSymbol and the frame offset of the allocation. 1059 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1060 int FrameOffset = MI.getOperand(1).getImm(); 1061 1062 // Emit a symbol assignment. 1063 OutStreamer->emitAssignment(FrameAllocSym, 1064 MCConstantExpr::create(FrameOffset, OutContext)); 1065 } 1066 1067 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1068 /// given basic block. This can be used to capture more precise profile 1069 /// information. We use the last 3 bits (LSBs) to ecnode the following 1070 /// information: 1071 /// * (1): set if return block (ret or tail call). 1072 /// * (2): set if ends with a tail call. 1073 /// * (3): set if exception handling (EH) landing pad. 1074 /// The remaining bits are zero. 1075 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1076 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1077 return ((unsigned)MBB.isReturnBlock()) | 1078 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1079 (MBB.isEHPad() << 2); 1080 } 1081 1082 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1083 MCSection *BBAddrMapSection = 1084 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1085 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1086 1087 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1088 1089 OutStreamer->PushSection(); 1090 OutStreamer->SwitchSection(BBAddrMapSection); 1091 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1092 // Emit the total number of basic blocks in this function. 1093 OutStreamer->emitULEB128IntValue(MF.size()); 1094 // Emit BB Information for each basic block in the funciton. 1095 for (const MachineBasicBlock &MBB : MF) { 1096 const MCSymbol *MBBSymbol = 1097 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1098 // Emit the basic block offset. 1099 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1100 // Emit the basic block size. When BBs have alignments, their size cannot 1101 // always be computed from their offsets. 1102 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1103 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1104 } 1105 OutStreamer->PopSection(); 1106 } 1107 1108 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1109 auto GUID = MI.getOperand(0).getImm(); 1110 auto Index = MI.getOperand(1).getImm(); 1111 auto Type = MI.getOperand(2).getImm(); 1112 auto Attr = MI.getOperand(3).getImm(); 1113 DILocation *DebugLoc = MI.getDebugLoc(); 1114 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1115 } 1116 1117 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1118 if (!MF.getTarget().Options.EmitStackSizeSection) 1119 return; 1120 1121 MCSection *StackSizeSection = 1122 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1123 if (!StackSizeSection) 1124 return; 1125 1126 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1127 // Don't emit functions with dynamic stack allocations. 1128 if (FrameInfo.hasVarSizedObjects()) 1129 return; 1130 1131 OutStreamer->PushSection(); 1132 OutStreamer->SwitchSection(StackSizeSection); 1133 1134 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1135 uint64_t StackSize = FrameInfo.getStackSize(); 1136 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1137 OutStreamer->emitULEB128IntValue(StackSize); 1138 1139 OutStreamer->PopSection(); 1140 } 1141 1142 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1143 MachineModuleInfo &MMI = MF.getMMI(); 1144 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1145 return true; 1146 1147 // We might emit an EH table that uses function begin and end labels even if 1148 // we don't have any landingpads. 1149 if (!MF.getFunction().hasPersonalityFn()) 1150 return false; 1151 return !isNoOpWithoutInvoke( 1152 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1153 } 1154 1155 /// EmitFunctionBody - This method emits the body and trailer for a 1156 /// function. 1157 void AsmPrinter::emitFunctionBody() { 1158 emitFunctionHeader(); 1159 1160 // Emit target-specific gunk before the function body. 1161 emitFunctionBodyStart(); 1162 1163 if (isVerbose()) { 1164 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1165 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1166 if (!MDT) { 1167 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1168 OwnedMDT->getBase().recalculate(*MF); 1169 MDT = OwnedMDT.get(); 1170 } 1171 1172 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1173 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1174 if (!MLI) { 1175 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1176 OwnedMLI->getBase().analyze(MDT->getBase()); 1177 MLI = OwnedMLI.get(); 1178 } 1179 } 1180 1181 // Print out code for the function. 1182 bool HasAnyRealCode = false; 1183 int NumInstsInFunction = 0; 1184 1185 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1186 for (auto &MBB : *MF) { 1187 // Print a label for the basic block. 1188 emitBasicBlockStart(MBB); 1189 DenseMap<StringRef, unsigned> MnemonicCounts; 1190 for (auto &MI : MBB) { 1191 // Print the assembly for the instruction. 1192 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1193 !MI.isDebugInstr()) { 1194 HasAnyRealCode = true; 1195 ++NumInstsInFunction; 1196 } 1197 1198 // If there is a pre-instruction symbol, emit a label for it here. 1199 if (MCSymbol *S = MI.getPreInstrSymbol()) 1200 OutStreamer->emitLabel(S); 1201 1202 for (const HandlerInfo &HI : Handlers) { 1203 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1204 HI.TimerGroupDescription, TimePassesIsEnabled); 1205 HI.Handler->beginInstruction(&MI); 1206 } 1207 1208 if (isVerbose()) 1209 emitComments(MI, OutStreamer->GetCommentOS()); 1210 1211 switch (MI.getOpcode()) { 1212 case TargetOpcode::CFI_INSTRUCTION: 1213 emitCFIInstruction(MI); 1214 break; 1215 case TargetOpcode::LOCAL_ESCAPE: 1216 emitFrameAlloc(MI); 1217 break; 1218 case TargetOpcode::ANNOTATION_LABEL: 1219 case TargetOpcode::EH_LABEL: 1220 case TargetOpcode::GC_LABEL: 1221 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1222 break; 1223 case TargetOpcode::INLINEASM: 1224 case TargetOpcode::INLINEASM_BR: 1225 emitInlineAsm(&MI); 1226 break; 1227 case TargetOpcode::DBG_VALUE: 1228 case TargetOpcode::DBG_VALUE_LIST: 1229 if (isVerbose()) { 1230 if (!emitDebugValueComment(&MI, *this)) 1231 emitInstruction(&MI); 1232 } 1233 break; 1234 case TargetOpcode::DBG_INSTR_REF: 1235 // This instruction reference will have been resolved to a machine 1236 // location, and a nearby DBG_VALUE created. We can safely ignore 1237 // the instruction reference. 1238 break; 1239 case TargetOpcode::DBG_LABEL: 1240 if (isVerbose()) { 1241 if (!emitDebugLabelComment(&MI, *this)) 1242 emitInstruction(&MI); 1243 } 1244 break; 1245 case TargetOpcode::IMPLICIT_DEF: 1246 if (isVerbose()) emitImplicitDef(&MI); 1247 break; 1248 case TargetOpcode::KILL: 1249 if (isVerbose()) emitKill(&MI, *this); 1250 break; 1251 case TargetOpcode::PSEUDO_PROBE: 1252 emitPseudoProbe(MI); 1253 break; 1254 default: 1255 emitInstruction(&MI); 1256 if (CanDoExtraAnalysis) { 1257 MCInst MCI; 1258 MCI.setOpcode(MI.getOpcode()); 1259 auto Name = OutStreamer->getMnemonic(MCI); 1260 auto I = MnemonicCounts.insert({Name, 0u}); 1261 I.first->second++; 1262 } 1263 break; 1264 } 1265 1266 // If there is a post-instruction symbol, emit a label for it here. 1267 if (MCSymbol *S = MI.getPostInstrSymbol()) 1268 OutStreamer->emitLabel(S); 1269 1270 for (const HandlerInfo &HI : Handlers) { 1271 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1272 HI.TimerGroupDescription, TimePassesIsEnabled); 1273 HI.Handler->endInstruction(); 1274 } 1275 } 1276 1277 // We must emit temporary symbol for the end of this basic block, if either 1278 // we have BBLabels enabled or if this basic blocks marks the end of a 1279 // section (except the section containing the entry basic block as the end 1280 // symbol for that section is CurrentFnEnd). 1281 if (MF->hasBBLabels() || 1282 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1283 !MBB.sameSection(&MF->front()))) 1284 OutStreamer->emitLabel(MBB.getEndSymbol()); 1285 1286 if (MBB.isEndSection()) { 1287 // The size directive for the section containing the entry block is 1288 // handled separately by the function section. 1289 if (!MBB.sameSection(&MF->front())) { 1290 if (MAI->hasDotTypeDotSizeDirective()) { 1291 // Emit the size directive for the basic block section. 1292 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1293 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1294 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1295 OutContext); 1296 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1297 } 1298 MBBSectionRanges[MBB.getSectionIDNum()] = 1299 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1300 } 1301 } 1302 emitBasicBlockEnd(MBB); 1303 1304 if (CanDoExtraAnalysis) { 1305 // Skip empty blocks. 1306 if (MBB.empty()) 1307 continue; 1308 1309 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1310 MBB.begin()->getDebugLoc(), &MBB); 1311 1312 // Generate instruction mix remark. First, sort counts in descending order 1313 // by count and name. 1314 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1315 for (auto &KV : MnemonicCounts) 1316 MnemonicVec.emplace_back(KV.first, KV.second); 1317 1318 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1319 const std::pair<StringRef, unsigned> &B) { 1320 if (A.second > B.second) 1321 return true; 1322 if (A.second == B.second) 1323 return StringRef(A.first) < StringRef(B.first); 1324 return false; 1325 }); 1326 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1327 for (auto &KV : MnemonicVec) { 1328 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1329 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1330 } 1331 ORE->emit(R); 1332 } 1333 } 1334 1335 EmittedInsts += NumInstsInFunction; 1336 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1337 MF->getFunction().getSubprogram(), 1338 &MF->front()); 1339 R << ore::NV("NumInstructions", NumInstsInFunction) 1340 << " instructions in function"; 1341 ORE->emit(R); 1342 1343 // If the function is empty and the object file uses .subsections_via_symbols, 1344 // then we need to emit *something* to the function body to prevent the 1345 // labels from collapsing together. Just emit a noop. 1346 // Similarly, don't emit empty functions on Windows either. It can lead to 1347 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1348 // after linking, causing the kernel not to load the binary: 1349 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1350 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1351 const Triple &TT = TM.getTargetTriple(); 1352 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1353 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1354 MCInst Noop; 1355 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1356 1357 // Targets can opt-out of emitting the noop here by leaving the opcode 1358 // unspecified. 1359 if (Noop.getOpcode()) { 1360 OutStreamer->AddComment("avoids zero-length function"); 1361 emitNops(1); 1362 } 1363 } 1364 1365 // Switch to the original section in case basic block sections was used. 1366 OutStreamer->SwitchSection(MF->getSection()); 1367 1368 const Function &F = MF->getFunction(); 1369 for (const auto &BB : F) { 1370 if (!BB.hasAddressTaken()) 1371 continue; 1372 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1373 if (Sym->isDefined()) 1374 continue; 1375 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1376 OutStreamer->emitLabel(Sym); 1377 } 1378 1379 // Emit target-specific gunk after the function body. 1380 emitFunctionBodyEnd(); 1381 1382 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1383 MAI->hasDotTypeDotSizeDirective()) { 1384 // Create a symbol for the end of function. 1385 CurrentFnEnd = createTempSymbol("func_end"); 1386 OutStreamer->emitLabel(CurrentFnEnd); 1387 } 1388 1389 // If the target wants a .size directive for the size of the function, emit 1390 // it. 1391 if (MAI->hasDotTypeDotSizeDirective()) { 1392 // We can get the size as difference between the function label and the 1393 // temp label. 1394 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1395 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1396 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1397 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1398 } 1399 1400 for (const HandlerInfo &HI : Handlers) { 1401 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1402 HI.TimerGroupDescription, TimePassesIsEnabled); 1403 HI.Handler->markFunctionEnd(); 1404 } 1405 1406 MBBSectionRanges[MF->front().getSectionIDNum()] = 1407 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1408 1409 // Print out jump tables referenced by the function. 1410 emitJumpTableInfo(); 1411 1412 // Emit post-function debug and/or EH information. 1413 for (const HandlerInfo &HI : Handlers) { 1414 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1415 HI.TimerGroupDescription, TimePassesIsEnabled); 1416 HI.Handler->endFunction(MF); 1417 } 1418 1419 // Emit section containing BB address offsets and their metadata, when 1420 // BB labels are requested for this function. 1421 if (MF->hasBBLabels()) 1422 emitBBAddrMapSection(*MF); 1423 1424 // Emit section containing stack size metadata. 1425 emitStackSizeSection(*MF); 1426 1427 emitPatchableFunctionEntries(); 1428 1429 if (isVerbose()) 1430 OutStreamer->GetCommentOS() << "-- End function\n"; 1431 1432 OutStreamer->AddBlankLine(); 1433 } 1434 1435 /// Compute the number of Global Variables that uses a Constant. 1436 static unsigned getNumGlobalVariableUses(const Constant *C) { 1437 if (!C) 1438 return 0; 1439 1440 if (isa<GlobalVariable>(C)) 1441 return 1; 1442 1443 unsigned NumUses = 0; 1444 for (auto *CU : C->users()) 1445 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1446 1447 return NumUses; 1448 } 1449 1450 /// Only consider global GOT equivalents if at least one user is a 1451 /// cstexpr inside an initializer of another global variables. Also, don't 1452 /// handle cstexpr inside instructions. During global variable emission, 1453 /// candidates are skipped and are emitted later in case at least one cstexpr 1454 /// isn't replaced by a PC relative GOT entry access. 1455 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1456 unsigned &NumGOTEquivUsers) { 1457 // Global GOT equivalents are unnamed private globals with a constant 1458 // pointer initializer to another global symbol. They must point to a 1459 // GlobalVariable or Function, i.e., as GlobalValue. 1460 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1461 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1462 !isa<GlobalValue>(GV->getOperand(0))) 1463 return false; 1464 1465 // To be a got equivalent, at least one of its users need to be a constant 1466 // expression used by another global variable. 1467 for (auto *U : GV->users()) 1468 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1469 1470 return NumGOTEquivUsers > 0; 1471 } 1472 1473 /// Unnamed constant global variables solely contaning a pointer to 1474 /// another globals variable is equivalent to a GOT table entry; it contains the 1475 /// the address of another symbol. Optimize it and replace accesses to these 1476 /// "GOT equivalents" by using the GOT entry for the final global instead. 1477 /// Compute GOT equivalent candidates among all global variables to avoid 1478 /// emitting them if possible later on, after it use is replaced by a GOT entry 1479 /// access. 1480 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1481 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1482 return; 1483 1484 for (const auto &G : M.globals()) { 1485 unsigned NumGOTEquivUsers = 0; 1486 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1487 continue; 1488 1489 const MCSymbol *GOTEquivSym = getSymbol(&G); 1490 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1491 } 1492 } 1493 1494 /// Constant expressions using GOT equivalent globals may not be eligible 1495 /// for PC relative GOT entry conversion, in such cases we need to emit such 1496 /// globals we previously omitted in EmitGlobalVariable. 1497 void AsmPrinter::emitGlobalGOTEquivs() { 1498 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1499 return; 1500 1501 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1502 for (auto &I : GlobalGOTEquivs) { 1503 const GlobalVariable *GV = I.second.first; 1504 unsigned Cnt = I.second.second; 1505 if (Cnt) 1506 FailedCandidates.push_back(GV); 1507 } 1508 GlobalGOTEquivs.clear(); 1509 1510 for (auto *GV : FailedCandidates) 1511 emitGlobalVariable(GV); 1512 } 1513 1514 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1515 const GlobalIndirectSymbol& GIS) { 1516 MCSymbol *Name = getSymbol(&GIS); 1517 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1518 // Treat bitcasts of functions as functions also. This is important at least 1519 // on WebAssembly where object and function addresses can't alias each other. 1520 if (!IsFunction) 1521 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1522 if (CE->getOpcode() == Instruction::BitCast) 1523 IsFunction = 1524 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1525 1526 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1527 // so AIX has to use the extra-label-at-definition strategy. At this 1528 // point, all the extra label is emitted, we just have to emit linkage for 1529 // those labels. 1530 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1531 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1532 assert(MAI->hasVisibilityOnlyWithLinkage() && 1533 "Visibility should be handled with emitLinkage() on AIX."); 1534 emitLinkage(&GIS, Name); 1535 // If it's a function, also emit linkage for aliases of function entry 1536 // point. 1537 if (IsFunction) 1538 emitLinkage(&GIS, 1539 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1540 return; 1541 } 1542 1543 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1544 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1545 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1546 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1547 else 1548 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1549 1550 // Set the symbol type to function if the alias has a function type. 1551 // This affects codegen when the aliasee is not a function. 1552 if (IsFunction) 1553 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1554 ? MCSA_ELF_TypeIndFunction 1555 : MCSA_ELF_TypeFunction); 1556 1557 emitVisibility(Name, GIS.getVisibility()); 1558 1559 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1560 1561 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1562 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1563 1564 // Emit the directives as assignments aka .set: 1565 OutStreamer->emitAssignment(Name, Expr); 1566 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1567 if (LocalAlias != Name) 1568 OutStreamer->emitAssignment(LocalAlias, Expr); 1569 1570 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1571 // If the aliasee does not correspond to a symbol in the output, i.e. the 1572 // alias is not of an object or the aliased object is private, then set the 1573 // size of the alias symbol from the type of the alias. We don't do this in 1574 // other situations as the alias and aliasee having differing types but same 1575 // size may be intentional. 1576 const GlobalObject *BaseObject = GA->getBaseObject(); 1577 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1578 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1579 const DataLayout &DL = M.getDataLayout(); 1580 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1581 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1582 } 1583 } 1584 } 1585 1586 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1587 if (!RS.needsSection()) 1588 return; 1589 1590 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1591 1592 Optional<SmallString<128>> Filename; 1593 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1594 Filename = *FilenameRef; 1595 sys::fs::make_absolute(*Filename); 1596 assert(!Filename->empty() && "The filename can't be empty."); 1597 } 1598 1599 std::string Buf; 1600 raw_string_ostream OS(Buf); 1601 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1602 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1603 : RemarkSerializer.metaSerializer(OS); 1604 MetaSerializer->emit(); 1605 1606 // Switch to the remarks section. 1607 MCSection *RemarksSection = 1608 OutContext.getObjectFileInfo()->getRemarksSection(); 1609 OutStreamer->SwitchSection(RemarksSection); 1610 1611 OutStreamer->emitBinaryData(OS.str()); 1612 } 1613 1614 bool AsmPrinter::doFinalization(Module &M) { 1615 // Set the MachineFunction to nullptr so that we can catch attempted 1616 // accesses to MF specific features at the module level and so that 1617 // we can conditionalize accesses based on whether or not it is nullptr. 1618 MF = nullptr; 1619 1620 // Gather all GOT equivalent globals in the module. We really need two 1621 // passes over the globals: one to compute and another to avoid its emission 1622 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1623 // where the got equivalent shows up before its use. 1624 computeGlobalGOTEquivs(M); 1625 1626 // Emit global variables. 1627 for (const auto &G : M.globals()) 1628 emitGlobalVariable(&G); 1629 1630 // Emit remaining GOT equivalent globals. 1631 emitGlobalGOTEquivs(); 1632 1633 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1634 1635 // Emit linkage(XCOFF) and visibility info for declarations 1636 for (const Function &F : M) { 1637 if (!F.isDeclarationForLinker()) 1638 continue; 1639 1640 MCSymbol *Name = getSymbol(&F); 1641 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1642 1643 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1644 GlobalValue::VisibilityTypes V = F.getVisibility(); 1645 if (V == GlobalValue::DefaultVisibility) 1646 continue; 1647 1648 emitVisibility(Name, V, false); 1649 continue; 1650 } 1651 1652 if (F.isIntrinsic()) 1653 continue; 1654 1655 // Handle the XCOFF case. 1656 // Variable `Name` is the function descriptor symbol (see above). Get the 1657 // function entry point symbol. 1658 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1659 // Emit linkage for the function entry point. 1660 emitLinkage(&F, FnEntryPointSym); 1661 1662 // Emit linkage for the function descriptor. 1663 emitLinkage(&F, Name); 1664 } 1665 1666 // Emit the remarks section contents. 1667 // FIXME: Figure out when is the safest time to emit this section. It should 1668 // not come after debug info. 1669 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1670 emitRemarksSection(*RS); 1671 1672 TLOF.emitModuleMetadata(*OutStreamer, M); 1673 1674 if (TM.getTargetTriple().isOSBinFormatELF()) { 1675 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1676 1677 // Output stubs for external and common global variables. 1678 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1679 if (!Stubs.empty()) { 1680 OutStreamer->SwitchSection(TLOF.getDataSection()); 1681 const DataLayout &DL = M.getDataLayout(); 1682 1683 emitAlignment(Align(DL.getPointerSize())); 1684 for (const auto &Stub : Stubs) { 1685 OutStreamer->emitLabel(Stub.first); 1686 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1687 DL.getPointerSize()); 1688 } 1689 } 1690 } 1691 1692 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1693 MachineModuleInfoCOFF &MMICOFF = 1694 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1695 1696 // Output stubs for external and common global variables. 1697 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1698 if (!Stubs.empty()) { 1699 const DataLayout &DL = M.getDataLayout(); 1700 1701 for (const auto &Stub : Stubs) { 1702 SmallString<256> SectionName = StringRef(".rdata$"); 1703 SectionName += Stub.first->getName(); 1704 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1705 SectionName, 1706 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1707 COFF::IMAGE_SCN_LNK_COMDAT, 1708 SectionKind::getReadOnly(), Stub.first->getName(), 1709 COFF::IMAGE_COMDAT_SELECT_ANY)); 1710 emitAlignment(Align(DL.getPointerSize())); 1711 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1712 OutStreamer->emitLabel(Stub.first); 1713 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1714 DL.getPointerSize()); 1715 } 1716 } 1717 } 1718 1719 // Finalize debug and EH information. 1720 for (const HandlerInfo &HI : Handlers) { 1721 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1722 HI.TimerGroupDescription, TimePassesIsEnabled); 1723 HI.Handler->endModule(); 1724 } 1725 1726 // This deletes all the ephemeral handlers that AsmPrinter added, while 1727 // keeping all the user-added handlers alive until the AsmPrinter is 1728 // destroyed. 1729 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1730 DD = nullptr; 1731 1732 // If the target wants to know about weak references, print them all. 1733 if (MAI->getWeakRefDirective()) { 1734 // FIXME: This is not lazy, it would be nice to only print weak references 1735 // to stuff that is actually used. Note that doing so would require targets 1736 // to notice uses in operands (due to constant exprs etc). This should 1737 // happen with the MC stuff eventually. 1738 1739 // Print out module-level global objects here. 1740 for (const auto &GO : M.global_objects()) { 1741 if (!GO.hasExternalWeakLinkage()) 1742 continue; 1743 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1744 } 1745 } 1746 1747 // Print aliases in topological order, that is, for each alias a = b, 1748 // b must be printed before a. 1749 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1750 // such an order to generate correct TOC information. 1751 SmallVector<const GlobalAlias *, 16> AliasStack; 1752 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1753 for (const auto &Alias : M.aliases()) { 1754 for (const GlobalAlias *Cur = &Alias; Cur; 1755 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1756 if (!AliasVisited.insert(Cur).second) 1757 break; 1758 AliasStack.push_back(Cur); 1759 } 1760 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1761 emitGlobalIndirectSymbol(M, *AncestorAlias); 1762 AliasStack.clear(); 1763 } 1764 for (const auto &IFunc : M.ifuncs()) 1765 emitGlobalIndirectSymbol(M, IFunc); 1766 1767 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1768 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1769 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1770 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1771 MP->finishAssembly(M, *MI, *this); 1772 1773 // Emit llvm.ident metadata in an '.ident' directive. 1774 emitModuleIdents(M); 1775 1776 // Emit bytes for llvm.commandline metadata. 1777 emitModuleCommandLines(M); 1778 1779 // Emit __morestack address if needed for indirect calls. 1780 if (MMI->usesMorestackAddr()) { 1781 Align Alignment(1); 1782 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1783 getDataLayout(), SectionKind::getReadOnly(), 1784 /*C=*/nullptr, Alignment); 1785 OutStreamer->SwitchSection(ReadOnlySection); 1786 1787 MCSymbol *AddrSymbol = 1788 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1789 OutStreamer->emitLabel(AddrSymbol); 1790 1791 unsigned PtrSize = MAI->getCodePointerSize(); 1792 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1793 PtrSize); 1794 } 1795 1796 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1797 // split-stack is used. 1798 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1799 OutStreamer->SwitchSection( 1800 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1801 if (MMI->hasNosplitStack()) 1802 OutStreamer->SwitchSection( 1803 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1804 } 1805 1806 // If we don't have any trampolines, then we don't require stack memory 1807 // to be executable. Some targets have a directive to declare this. 1808 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1809 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1810 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1811 OutStreamer->SwitchSection(S); 1812 1813 if (TM.Options.EmitAddrsig) { 1814 // Emit address-significance attributes for all globals. 1815 OutStreamer->emitAddrsig(); 1816 for (const GlobalValue &GV : M.global_values()) 1817 if (!GV.use_empty() && !GV.isThreadLocal() && 1818 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1819 !GV.hasAtLeastLocalUnnamedAddr()) 1820 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1821 } 1822 1823 // Emit symbol partition specifications (ELF only). 1824 if (TM.getTargetTriple().isOSBinFormatELF()) { 1825 unsigned UniqueID = 0; 1826 for (const GlobalValue &GV : M.global_values()) { 1827 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1828 GV.getVisibility() != GlobalValue::DefaultVisibility) 1829 continue; 1830 1831 OutStreamer->SwitchSection( 1832 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1833 "", false, ++UniqueID, nullptr)); 1834 OutStreamer->emitBytes(GV.getPartition()); 1835 OutStreamer->emitZeros(1); 1836 OutStreamer->emitValue( 1837 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1838 MAI->getCodePointerSize()); 1839 } 1840 } 1841 1842 // Allow the target to emit any magic that it wants at the end of the file, 1843 // after everything else has gone out. 1844 emitEndOfAsmFile(M); 1845 1846 MMI = nullptr; 1847 1848 OutStreamer->Finish(); 1849 OutStreamer->reset(); 1850 OwnedMLI.reset(); 1851 OwnedMDT.reset(); 1852 1853 return false; 1854 } 1855 1856 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1857 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1858 if (Res.second) 1859 Res.first->second = createTempSymbol("exception"); 1860 return Res.first->second; 1861 } 1862 1863 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1864 this->MF = &MF; 1865 const Function &F = MF.getFunction(); 1866 1867 // Get the function symbol. 1868 if (!MAI->needsFunctionDescriptors()) { 1869 CurrentFnSym = getSymbol(&MF.getFunction()); 1870 } else { 1871 assert(TM.getTargetTriple().isOSAIX() && 1872 "Only AIX uses the function descriptor hooks."); 1873 // AIX is unique here in that the name of the symbol emitted for the 1874 // function body does not have the same name as the source function's 1875 // C-linkage name. 1876 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1877 " initalized first."); 1878 1879 // Get the function entry point symbol. 1880 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1881 } 1882 1883 CurrentFnSymForSize = CurrentFnSym; 1884 CurrentFnBegin = nullptr; 1885 CurrentSectionBeginSym = nullptr; 1886 MBBSectionRanges.clear(); 1887 MBBSectionExceptionSyms.clear(); 1888 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1889 if (F.hasFnAttribute("patchable-function-entry") || 1890 F.hasFnAttribute("function-instrument") || 1891 F.hasFnAttribute("xray-instruction-threshold") || 1892 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1893 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1894 CurrentFnBegin = createTempSymbol("func_begin"); 1895 if (NeedsLocalForSize) 1896 CurrentFnSymForSize = CurrentFnBegin; 1897 } 1898 1899 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1900 } 1901 1902 namespace { 1903 1904 // Keep track the alignment, constpool entries per Section. 1905 struct SectionCPs { 1906 MCSection *S; 1907 Align Alignment; 1908 SmallVector<unsigned, 4> CPEs; 1909 1910 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1911 }; 1912 1913 } // end anonymous namespace 1914 1915 /// EmitConstantPool - Print to the current output stream assembly 1916 /// representations of the constants in the constant pool MCP. This is 1917 /// used to print out constants which have been "spilled to memory" by 1918 /// the code generator. 1919 void AsmPrinter::emitConstantPool() { 1920 const MachineConstantPool *MCP = MF->getConstantPool(); 1921 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1922 if (CP.empty()) return; 1923 1924 // Calculate sections for constant pool entries. We collect entries to go into 1925 // the same section together to reduce amount of section switch statements. 1926 SmallVector<SectionCPs, 4> CPSections; 1927 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1928 const MachineConstantPoolEntry &CPE = CP[i]; 1929 Align Alignment = CPE.getAlign(); 1930 1931 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1932 1933 const Constant *C = nullptr; 1934 if (!CPE.isMachineConstantPoolEntry()) 1935 C = CPE.Val.ConstVal; 1936 1937 MCSection *S = getObjFileLowering().getSectionForConstant( 1938 getDataLayout(), Kind, C, Alignment); 1939 1940 // The number of sections are small, just do a linear search from the 1941 // last section to the first. 1942 bool Found = false; 1943 unsigned SecIdx = CPSections.size(); 1944 while (SecIdx != 0) { 1945 if (CPSections[--SecIdx].S == S) { 1946 Found = true; 1947 break; 1948 } 1949 } 1950 if (!Found) { 1951 SecIdx = CPSections.size(); 1952 CPSections.push_back(SectionCPs(S, Alignment)); 1953 } 1954 1955 if (Alignment > CPSections[SecIdx].Alignment) 1956 CPSections[SecIdx].Alignment = Alignment; 1957 CPSections[SecIdx].CPEs.push_back(i); 1958 } 1959 1960 // Now print stuff into the calculated sections. 1961 const MCSection *CurSection = nullptr; 1962 unsigned Offset = 0; 1963 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1964 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1965 unsigned CPI = CPSections[i].CPEs[j]; 1966 MCSymbol *Sym = GetCPISymbol(CPI); 1967 if (!Sym->isUndefined()) 1968 continue; 1969 1970 if (CurSection != CPSections[i].S) { 1971 OutStreamer->SwitchSection(CPSections[i].S); 1972 emitAlignment(Align(CPSections[i].Alignment)); 1973 CurSection = CPSections[i].S; 1974 Offset = 0; 1975 } 1976 1977 MachineConstantPoolEntry CPE = CP[CPI]; 1978 1979 // Emit inter-object padding for alignment. 1980 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1981 OutStreamer->emitZeros(NewOffset - Offset); 1982 1983 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 1984 1985 OutStreamer->emitLabel(Sym); 1986 if (CPE.isMachineConstantPoolEntry()) 1987 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1988 else 1989 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1990 } 1991 } 1992 } 1993 1994 // Print assembly representations of the jump tables used by the current 1995 // function. 1996 void AsmPrinter::emitJumpTableInfo() { 1997 const DataLayout &DL = MF->getDataLayout(); 1998 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1999 if (!MJTI) return; 2000 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2001 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2002 if (JT.empty()) return; 2003 2004 // Pick the directive to use to print the jump table entries, and switch to 2005 // the appropriate section. 2006 const Function &F = MF->getFunction(); 2007 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2008 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2009 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2010 F); 2011 if (JTInDiffSection) { 2012 // Drop it in the readonly section. 2013 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2014 OutStreamer->SwitchSection(ReadOnlySection); 2015 } 2016 2017 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2018 2019 // Jump tables in code sections are marked with a data_region directive 2020 // where that's supported. 2021 if (!JTInDiffSection) 2022 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2023 2024 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2025 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2026 2027 // If this jump table was deleted, ignore it. 2028 if (JTBBs.empty()) continue; 2029 2030 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2031 /// emit a .set directive for each unique entry. 2032 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2033 MAI->doesSetDirectiveSuppressReloc()) { 2034 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2035 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2036 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2037 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2038 const MachineBasicBlock *MBB = JTBBs[ii]; 2039 if (!EmittedSets.insert(MBB).second) 2040 continue; 2041 2042 // .set LJTSet, LBB32-base 2043 const MCExpr *LHS = 2044 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2045 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2046 MCBinaryExpr::createSub(LHS, Base, 2047 OutContext)); 2048 } 2049 } 2050 2051 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2052 // before each jump table. The first label is never referenced, but tells 2053 // the assembler and linker the extents of the jump table object. The 2054 // second label is actually referenced by the code. 2055 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2056 // FIXME: This doesn't have to have any specific name, just any randomly 2057 // named and numbered local label started with 'l' would work. Simplify 2058 // GetJTISymbol. 2059 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2060 2061 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2062 OutStreamer->emitLabel(JTISymbol); 2063 2064 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2065 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2066 } 2067 if (!JTInDiffSection) 2068 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2069 } 2070 2071 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2072 /// current stream. 2073 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2074 const MachineBasicBlock *MBB, 2075 unsigned UID) const { 2076 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2077 const MCExpr *Value = nullptr; 2078 switch (MJTI->getEntryKind()) { 2079 case MachineJumpTableInfo::EK_Inline: 2080 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2081 case MachineJumpTableInfo::EK_Custom32: 2082 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2083 MJTI, MBB, UID, OutContext); 2084 break; 2085 case MachineJumpTableInfo::EK_BlockAddress: 2086 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2087 // .word LBB123 2088 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2089 break; 2090 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2091 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2092 // with a relocation as gp-relative, e.g.: 2093 // .gprel32 LBB123 2094 MCSymbol *MBBSym = MBB->getSymbol(); 2095 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2096 return; 2097 } 2098 2099 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2100 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2101 // with a relocation as gp-relative, e.g.: 2102 // .gpdword LBB123 2103 MCSymbol *MBBSym = MBB->getSymbol(); 2104 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2105 return; 2106 } 2107 2108 case MachineJumpTableInfo::EK_LabelDifference32: { 2109 // Each entry is the address of the block minus the address of the jump 2110 // table. This is used for PIC jump tables where gprel32 is not supported. 2111 // e.g.: 2112 // .word LBB123 - LJTI1_2 2113 // If the .set directive avoids relocations, this is emitted as: 2114 // .set L4_5_set_123, LBB123 - LJTI1_2 2115 // .word L4_5_set_123 2116 if (MAI->doesSetDirectiveSuppressReloc()) { 2117 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2118 OutContext); 2119 break; 2120 } 2121 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2122 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2123 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2124 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2125 break; 2126 } 2127 } 2128 2129 assert(Value && "Unknown entry kind!"); 2130 2131 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2132 OutStreamer->emitValue(Value, EntrySize); 2133 } 2134 2135 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2136 /// special global used by LLVM. If so, emit it and return true, otherwise 2137 /// do nothing and return false. 2138 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2139 if (GV->getName() == "llvm.used") { 2140 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2141 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2142 return true; 2143 } 2144 2145 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2146 if (GV->getSection() == "llvm.metadata" || 2147 GV->hasAvailableExternallyLinkage()) 2148 return true; 2149 2150 if (!GV->hasAppendingLinkage()) return false; 2151 2152 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2153 2154 if (GV->getName() == "llvm.global_ctors") { 2155 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2156 /* isCtor */ true); 2157 2158 return true; 2159 } 2160 2161 if (GV->getName() == "llvm.global_dtors") { 2162 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2163 /* isCtor */ false); 2164 2165 return true; 2166 } 2167 2168 report_fatal_error("unknown special variable"); 2169 } 2170 2171 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2172 /// global in the specified llvm.used list. 2173 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2174 // Should be an array of 'i8*'. 2175 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2176 const GlobalValue *GV = 2177 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2178 if (GV) 2179 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2180 } 2181 } 2182 2183 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2184 const Constant *List, 2185 SmallVector<Structor, 8> &Structors) { 2186 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2187 // the init priority. 2188 if (!isa<ConstantArray>(List)) 2189 return; 2190 2191 // Gather the structors in a form that's convenient for sorting by priority. 2192 for (Value *O : cast<ConstantArray>(List)->operands()) { 2193 auto *CS = cast<ConstantStruct>(O); 2194 if (CS->getOperand(1)->isNullValue()) 2195 break; // Found a null terminator, skip the rest. 2196 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2197 if (!Priority) 2198 continue; // Malformed. 2199 Structors.push_back(Structor()); 2200 Structor &S = Structors.back(); 2201 S.Priority = Priority->getLimitedValue(65535); 2202 S.Func = CS->getOperand(1); 2203 if (!CS->getOperand(2)->isNullValue()) { 2204 if (TM.getTargetTriple().isOSAIX()) 2205 llvm::report_fatal_error( 2206 "associated data of XXStructor list is not yet supported on AIX"); 2207 S.ComdatKey = 2208 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2209 } 2210 } 2211 2212 // Emit the function pointers in the target-specific order 2213 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2214 return L.Priority < R.Priority; 2215 }); 2216 } 2217 2218 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2219 /// priority. 2220 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2221 bool IsCtor) { 2222 SmallVector<Structor, 8> Structors; 2223 preprocessXXStructorList(DL, List, Structors); 2224 if (Structors.empty()) 2225 return; 2226 2227 const Align Align = DL.getPointerPrefAlignment(); 2228 for (Structor &S : Structors) { 2229 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2230 const MCSymbol *KeySym = nullptr; 2231 if (GlobalValue *GV = S.ComdatKey) { 2232 if (GV->isDeclarationForLinker()) 2233 // If the associated variable is not defined in this module 2234 // (it might be available_externally, or have been an 2235 // available_externally definition that was dropped by the 2236 // EliminateAvailableExternally pass), some other TU 2237 // will provide its dynamic initializer. 2238 continue; 2239 2240 KeySym = getSymbol(GV); 2241 } 2242 2243 MCSection *OutputSection = 2244 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2245 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2246 OutStreamer->SwitchSection(OutputSection); 2247 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2248 emitAlignment(Align); 2249 emitXXStructor(DL, S.Func); 2250 } 2251 } 2252 2253 void AsmPrinter::emitModuleIdents(Module &M) { 2254 if (!MAI->hasIdentDirective()) 2255 return; 2256 2257 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2258 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2259 const MDNode *N = NMD->getOperand(i); 2260 assert(N->getNumOperands() == 1 && 2261 "llvm.ident metadata entry can have only one operand"); 2262 const MDString *S = cast<MDString>(N->getOperand(0)); 2263 OutStreamer->emitIdent(S->getString()); 2264 } 2265 } 2266 } 2267 2268 void AsmPrinter::emitModuleCommandLines(Module &M) { 2269 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2270 if (!CommandLine) 2271 return; 2272 2273 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2274 if (!NMD || !NMD->getNumOperands()) 2275 return; 2276 2277 OutStreamer->PushSection(); 2278 OutStreamer->SwitchSection(CommandLine); 2279 OutStreamer->emitZeros(1); 2280 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2281 const MDNode *N = NMD->getOperand(i); 2282 assert(N->getNumOperands() == 1 && 2283 "llvm.commandline metadata entry can have only one operand"); 2284 const MDString *S = cast<MDString>(N->getOperand(0)); 2285 OutStreamer->emitBytes(S->getString()); 2286 OutStreamer->emitZeros(1); 2287 } 2288 OutStreamer->PopSection(); 2289 } 2290 2291 //===--------------------------------------------------------------------===// 2292 // Emission and print routines 2293 // 2294 2295 /// Emit a byte directive and value. 2296 /// 2297 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2298 2299 /// Emit a short directive and value. 2300 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2301 2302 /// Emit a long directive and value. 2303 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2304 2305 /// Emit a long long directive and value. 2306 void AsmPrinter::emitInt64(uint64_t Value) const { 2307 OutStreamer->emitInt64(Value); 2308 } 2309 2310 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2311 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2312 /// .set if it avoids relocations. 2313 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2314 unsigned Size) const { 2315 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2316 } 2317 2318 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2319 /// where the size in bytes of the directive is specified by Size and Label 2320 /// specifies the label. This implicitly uses .set if it is available. 2321 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2322 unsigned Size, 2323 bool IsSectionRelative) const { 2324 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2325 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2326 if (Size > 4) 2327 OutStreamer->emitZeros(Size - 4); 2328 return; 2329 } 2330 2331 // Emit Label+Offset (or just Label if Offset is zero) 2332 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2333 if (Offset) 2334 Expr = MCBinaryExpr::createAdd( 2335 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2336 2337 OutStreamer->emitValue(Expr, Size); 2338 } 2339 2340 //===----------------------------------------------------------------------===// 2341 2342 // EmitAlignment - Emit an alignment directive to the specified power of 2343 // two boundary. If a global value is specified, and if that global has 2344 // an explicit alignment requested, it will override the alignment request 2345 // if required for correctness. 2346 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2347 if (GV) 2348 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2349 2350 if (Alignment == Align(1)) 2351 return; // 1-byte aligned: no need to emit alignment. 2352 2353 if (getCurrentSection()->getKind().isText()) 2354 OutStreamer->emitCodeAlignment(Alignment.value()); 2355 else 2356 OutStreamer->emitValueToAlignment(Alignment.value()); 2357 } 2358 2359 //===----------------------------------------------------------------------===// 2360 // Constant emission. 2361 //===----------------------------------------------------------------------===// 2362 2363 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2364 MCContext &Ctx = OutContext; 2365 2366 if (CV->isNullValue() || isa<UndefValue>(CV)) 2367 return MCConstantExpr::create(0, Ctx); 2368 2369 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2370 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2371 2372 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2373 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2374 2375 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2376 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2377 2378 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2379 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2380 2381 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2382 if (!CE) { 2383 llvm_unreachable("Unknown constant value to lower!"); 2384 } 2385 2386 switch (CE->getOpcode()) { 2387 case Instruction::AddrSpaceCast: { 2388 const Constant *Op = CE->getOperand(0); 2389 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2390 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2391 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2392 return lowerConstant(Op); 2393 2394 // Fallthrough to error. 2395 LLVM_FALLTHROUGH; 2396 } 2397 default: { 2398 // If the code isn't optimized, there may be outstanding folding 2399 // opportunities. Attempt to fold the expression using DataLayout as a 2400 // last resort before giving up. 2401 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2402 if (C != CE) 2403 return lowerConstant(C); 2404 2405 // Otherwise report the problem to the user. 2406 std::string S; 2407 raw_string_ostream OS(S); 2408 OS << "Unsupported expression in static initializer: "; 2409 CE->printAsOperand(OS, /*PrintType=*/false, 2410 !MF ? nullptr : MF->getFunction().getParent()); 2411 report_fatal_error(OS.str()); 2412 } 2413 case Instruction::GetElementPtr: { 2414 // Generate a symbolic expression for the byte address 2415 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2416 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2417 2418 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2419 if (!OffsetAI) 2420 return Base; 2421 2422 int64_t Offset = OffsetAI.getSExtValue(); 2423 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2424 Ctx); 2425 } 2426 2427 case Instruction::Trunc: 2428 // We emit the value and depend on the assembler to truncate the generated 2429 // expression properly. This is important for differences between 2430 // blockaddress labels. Since the two labels are in the same function, it 2431 // is reasonable to treat their delta as a 32-bit value. 2432 LLVM_FALLTHROUGH; 2433 case Instruction::BitCast: 2434 return lowerConstant(CE->getOperand(0)); 2435 2436 case Instruction::IntToPtr: { 2437 const DataLayout &DL = getDataLayout(); 2438 2439 // Handle casts to pointers by changing them into casts to the appropriate 2440 // integer type. This promotes constant folding and simplifies this code. 2441 Constant *Op = CE->getOperand(0); 2442 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2443 false/*ZExt*/); 2444 return lowerConstant(Op); 2445 } 2446 2447 case Instruction::PtrToInt: { 2448 const DataLayout &DL = getDataLayout(); 2449 2450 // Support only foldable casts to/from pointers that can be eliminated by 2451 // changing the pointer to the appropriately sized integer type. 2452 Constant *Op = CE->getOperand(0); 2453 Type *Ty = CE->getType(); 2454 2455 const MCExpr *OpExpr = lowerConstant(Op); 2456 2457 // We can emit the pointer value into this slot if the slot is an 2458 // integer slot equal to the size of the pointer. 2459 // 2460 // If the pointer is larger than the resultant integer, then 2461 // as with Trunc just depend on the assembler to truncate it. 2462 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2463 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2464 return OpExpr; 2465 2466 // Otherwise the pointer is smaller than the resultant integer, mask off 2467 // the high bits so we are sure to get a proper truncation if the input is 2468 // a constant expr. 2469 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2470 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2471 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2472 } 2473 2474 case Instruction::Sub: { 2475 GlobalValue *LHSGV; 2476 APInt LHSOffset; 2477 DSOLocalEquivalent *DSOEquiv; 2478 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2479 getDataLayout(), &DSOEquiv)) { 2480 GlobalValue *RHSGV; 2481 APInt RHSOffset; 2482 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2483 getDataLayout())) { 2484 const MCExpr *RelocExpr = 2485 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2486 if (!RelocExpr) { 2487 const MCExpr *LHSExpr = 2488 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2489 if (DSOEquiv && 2490 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2491 LHSExpr = 2492 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2493 RelocExpr = MCBinaryExpr::createSub( 2494 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2495 } 2496 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2497 if (Addend != 0) 2498 RelocExpr = MCBinaryExpr::createAdd( 2499 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2500 return RelocExpr; 2501 } 2502 } 2503 } 2504 // else fallthrough 2505 LLVM_FALLTHROUGH; 2506 2507 // The MC library also has a right-shift operator, but it isn't consistently 2508 // signed or unsigned between different targets. 2509 case Instruction::Add: 2510 case Instruction::Mul: 2511 case Instruction::SDiv: 2512 case Instruction::SRem: 2513 case Instruction::Shl: 2514 case Instruction::And: 2515 case Instruction::Or: 2516 case Instruction::Xor: { 2517 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2518 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2519 switch (CE->getOpcode()) { 2520 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2521 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2522 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2523 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2524 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2525 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2526 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2527 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2528 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2529 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2530 } 2531 } 2532 } 2533 } 2534 2535 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2536 AsmPrinter &AP, 2537 const Constant *BaseCV = nullptr, 2538 uint64_t Offset = 0); 2539 2540 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2541 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2542 2543 /// isRepeatedByteSequence - Determine whether the given value is 2544 /// composed of a repeated sequence of identical bytes and return the 2545 /// byte value. If it is not a repeated sequence, return -1. 2546 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2547 StringRef Data = V->getRawDataValues(); 2548 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2549 char C = Data[0]; 2550 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2551 if (Data[i] != C) return -1; 2552 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2553 } 2554 2555 /// isRepeatedByteSequence - Determine whether the given value is 2556 /// composed of a repeated sequence of identical bytes and return the 2557 /// byte value. If it is not a repeated sequence, return -1. 2558 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2559 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2560 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2561 assert(Size % 8 == 0); 2562 2563 // Extend the element to take zero padding into account. 2564 APInt Value = CI->getValue().zextOrSelf(Size); 2565 if (!Value.isSplat(8)) 2566 return -1; 2567 2568 return Value.zextOrTrunc(8).getZExtValue(); 2569 } 2570 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2571 // Make sure all array elements are sequences of the same repeated 2572 // byte. 2573 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2574 Constant *Op0 = CA->getOperand(0); 2575 int Byte = isRepeatedByteSequence(Op0, DL); 2576 if (Byte == -1) 2577 return -1; 2578 2579 // All array elements must be equal. 2580 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2581 if (CA->getOperand(i) != Op0) 2582 return -1; 2583 return Byte; 2584 } 2585 2586 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2587 return isRepeatedByteSequence(CDS); 2588 2589 return -1; 2590 } 2591 2592 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2593 const ConstantDataSequential *CDS, 2594 AsmPrinter &AP) { 2595 // See if we can aggregate this into a .fill, if so, emit it as such. 2596 int Value = isRepeatedByteSequence(CDS, DL); 2597 if (Value != -1) { 2598 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2599 // Don't emit a 1-byte object as a .fill. 2600 if (Bytes > 1) 2601 return AP.OutStreamer->emitFill(Bytes, Value); 2602 } 2603 2604 // If this can be emitted with .ascii/.asciz, emit it as such. 2605 if (CDS->isString()) 2606 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2607 2608 // Otherwise, emit the values in successive locations. 2609 unsigned ElementByteSize = CDS->getElementByteSize(); 2610 if (isa<IntegerType>(CDS->getElementType())) { 2611 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2612 if (AP.isVerbose()) 2613 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2614 CDS->getElementAsInteger(i)); 2615 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2616 ElementByteSize); 2617 } 2618 } else { 2619 Type *ET = CDS->getElementType(); 2620 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2621 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2622 } 2623 2624 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2625 unsigned EmittedSize = 2626 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2627 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2628 if (unsigned Padding = Size - EmittedSize) 2629 AP.OutStreamer->emitZeros(Padding); 2630 } 2631 2632 static void emitGlobalConstantArray(const DataLayout &DL, 2633 const ConstantArray *CA, AsmPrinter &AP, 2634 const Constant *BaseCV, uint64_t Offset) { 2635 // See if we can aggregate some values. Make sure it can be 2636 // represented as a series of bytes of the constant value. 2637 int Value = isRepeatedByteSequence(CA, DL); 2638 2639 if (Value != -1) { 2640 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2641 AP.OutStreamer->emitFill(Bytes, Value); 2642 } 2643 else { 2644 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2645 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2646 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2647 } 2648 } 2649 } 2650 2651 static void emitGlobalConstantVector(const DataLayout &DL, 2652 const ConstantVector *CV, AsmPrinter &AP) { 2653 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2654 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2655 2656 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2657 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2658 CV->getType()->getNumElements(); 2659 if (unsigned Padding = Size - EmittedSize) 2660 AP.OutStreamer->emitZeros(Padding); 2661 } 2662 2663 static void emitGlobalConstantStruct(const DataLayout &DL, 2664 const ConstantStruct *CS, AsmPrinter &AP, 2665 const Constant *BaseCV, uint64_t Offset) { 2666 // Print the fields in successive locations. Pad to align if needed! 2667 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2668 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2669 uint64_t SizeSoFar = 0; 2670 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2671 const Constant *Field = CS->getOperand(i); 2672 2673 // Print the actual field value. 2674 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2675 2676 // Check if padding is needed and insert one or more 0s. 2677 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2678 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2679 - Layout->getElementOffset(i)) - FieldSize; 2680 SizeSoFar += FieldSize + PadSize; 2681 2682 // Insert padding - this may include padding to increase the size of the 2683 // current field up to the ABI size (if the struct is not packed) as well 2684 // as padding to ensure that the next field starts at the right offset. 2685 AP.OutStreamer->emitZeros(PadSize); 2686 } 2687 assert(SizeSoFar == Layout->getSizeInBytes() && 2688 "Layout of constant struct may be incorrect!"); 2689 } 2690 2691 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2692 assert(ET && "Unknown float type"); 2693 APInt API = APF.bitcastToAPInt(); 2694 2695 // First print a comment with what we think the original floating-point value 2696 // should have been. 2697 if (AP.isVerbose()) { 2698 SmallString<8> StrVal; 2699 APF.toString(StrVal); 2700 ET->print(AP.OutStreamer->GetCommentOS()); 2701 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2702 } 2703 2704 // Now iterate through the APInt chunks, emitting them in endian-correct 2705 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2706 // floats). 2707 unsigned NumBytes = API.getBitWidth() / 8; 2708 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2709 const uint64_t *p = API.getRawData(); 2710 2711 // PPC's long double has odd notions of endianness compared to how LLVM 2712 // handles it: p[0] goes first for *big* endian on PPC. 2713 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2714 int Chunk = API.getNumWords() - 1; 2715 2716 if (TrailingBytes) 2717 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2718 2719 for (; Chunk >= 0; --Chunk) 2720 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2721 } else { 2722 unsigned Chunk; 2723 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2724 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2725 2726 if (TrailingBytes) 2727 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2728 } 2729 2730 // Emit the tail padding for the long double. 2731 const DataLayout &DL = AP.getDataLayout(); 2732 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2733 } 2734 2735 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2736 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2737 } 2738 2739 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2740 const DataLayout &DL = AP.getDataLayout(); 2741 unsigned BitWidth = CI->getBitWidth(); 2742 2743 // Copy the value as we may massage the layout for constants whose bit width 2744 // is not a multiple of 64-bits. 2745 APInt Realigned(CI->getValue()); 2746 uint64_t ExtraBits = 0; 2747 unsigned ExtraBitsSize = BitWidth & 63; 2748 2749 if (ExtraBitsSize) { 2750 // The bit width of the data is not a multiple of 64-bits. 2751 // The extra bits are expected to be at the end of the chunk of the memory. 2752 // Little endian: 2753 // * Nothing to be done, just record the extra bits to emit. 2754 // Big endian: 2755 // * Record the extra bits to emit. 2756 // * Realign the raw data to emit the chunks of 64-bits. 2757 if (DL.isBigEndian()) { 2758 // Basically the structure of the raw data is a chunk of 64-bits cells: 2759 // 0 1 BitWidth / 64 2760 // [chunk1][chunk2] ... [chunkN]. 2761 // The most significant chunk is chunkN and it should be emitted first. 2762 // However, due to the alignment issue chunkN contains useless bits. 2763 // Realign the chunks so that they contain only useful information: 2764 // ExtraBits 0 1 (BitWidth / 64) - 1 2765 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2766 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2767 ExtraBits = Realigned.getRawData()[0] & 2768 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2769 Realigned.lshrInPlace(ExtraBitsSize); 2770 } else 2771 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2772 } 2773 2774 // We don't expect assemblers to support integer data directives 2775 // for more than 64 bits, so we emit the data in at most 64-bit 2776 // quantities at a time. 2777 const uint64_t *RawData = Realigned.getRawData(); 2778 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2779 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2780 AP.OutStreamer->emitIntValue(Val, 8); 2781 } 2782 2783 if (ExtraBitsSize) { 2784 // Emit the extra bits after the 64-bits chunks. 2785 2786 // Emit a directive that fills the expected size. 2787 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2788 Size -= (BitWidth / 64) * 8; 2789 assert(Size && Size * 8 >= ExtraBitsSize && 2790 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2791 == ExtraBits && "Directive too small for extra bits."); 2792 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2793 } 2794 } 2795 2796 /// Transform a not absolute MCExpr containing a reference to a GOT 2797 /// equivalent global, by a target specific GOT pc relative access to the 2798 /// final symbol. 2799 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2800 const Constant *BaseCst, 2801 uint64_t Offset) { 2802 // The global @foo below illustrates a global that uses a got equivalent. 2803 // 2804 // @bar = global i32 42 2805 // @gotequiv = private unnamed_addr constant i32* @bar 2806 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2807 // i64 ptrtoint (i32* @foo to i64)) 2808 // to i32) 2809 // 2810 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2811 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2812 // form: 2813 // 2814 // foo = cstexpr, where 2815 // cstexpr := <gotequiv> - "." + <cst> 2816 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2817 // 2818 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2819 // 2820 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2821 // gotpcrelcst := <offset from @foo base> + <cst> 2822 MCValue MV; 2823 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2824 return; 2825 const MCSymbolRefExpr *SymA = MV.getSymA(); 2826 if (!SymA) 2827 return; 2828 2829 // Check that GOT equivalent symbol is cached. 2830 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2831 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2832 return; 2833 2834 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2835 if (!BaseGV) 2836 return; 2837 2838 // Check for a valid base symbol 2839 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2840 const MCSymbolRefExpr *SymB = MV.getSymB(); 2841 2842 if (!SymB || BaseSym != &SymB->getSymbol()) 2843 return; 2844 2845 // Make sure to match: 2846 // 2847 // gotpcrelcst := <offset from @foo base> + <cst> 2848 // 2849 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2850 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2851 // if the target knows how to encode it. 2852 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2853 if (GOTPCRelCst < 0) 2854 return; 2855 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2856 return; 2857 2858 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2859 // 2860 // bar: 2861 // .long 42 2862 // gotequiv: 2863 // .quad bar 2864 // foo: 2865 // .long gotequiv - "." + <cst> 2866 // 2867 // is replaced by the target specific equivalent to: 2868 // 2869 // bar: 2870 // .long 42 2871 // foo: 2872 // .long bar@GOTPCREL+<gotpcrelcst> 2873 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2874 const GlobalVariable *GV = Result.first; 2875 int NumUses = (int)Result.second; 2876 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2877 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2878 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2879 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2880 2881 // Update GOT equivalent usage information 2882 --NumUses; 2883 if (NumUses >= 0) 2884 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2885 } 2886 2887 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2888 AsmPrinter &AP, const Constant *BaseCV, 2889 uint64_t Offset) { 2890 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2891 2892 // Globals with sub-elements such as combinations of arrays and structs 2893 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2894 // constant symbol base and the current position with BaseCV and Offset. 2895 if (!BaseCV && CV->hasOneUse()) 2896 BaseCV = dyn_cast<Constant>(CV->user_back()); 2897 2898 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2899 return AP.OutStreamer->emitZeros(Size); 2900 2901 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2902 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2903 2904 if (StoreSize <= 8) { 2905 if (AP.isVerbose()) 2906 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2907 CI->getZExtValue()); 2908 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2909 } else { 2910 emitGlobalConstantLargeInt(CI, AP); 2911 } 2912 2913 // Emit tail padding if needed 2914 if (Size != StoreSize) 2915 AP.OutStreamer->emitZeros(Size - StoreSize); 2916 2917 return; 2918 } 2919 2920 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2921 return emitGlobalConstantFP(CFP, AP); 2922 2923 if (isa<ConstantPointerNull>(CV)) { 2924 AP.OutStreamer->emitIntValue(0, Size); 2925 return; 2926 } 2927 2928 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2929 return emitGlobalConstantDataSequential(DL, CDS, AP); 2930 2931 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2932 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2933 2934 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2935 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2936 2937 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2938 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2939 // vectors). 2940 if (CE->getOpcode() == Instruction::BitCast) 2941 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2942 2943 if (Size > 8) { 2944 // If the constant expression's size is greater than 64-bits, then we have 2945 // to emit the value in chunks. Try to constant fold the value and emit it 2946 // that way. 2947 Constant *New = ConstantFoldConstant(CE, DL); 2948 if (New != CE) 2949 return emitGlobalConstantImpl(DL, New, AP); 2950 } 2951 } 2952 2953 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2954 return emitGlobalConstantVector(DL, V, AP); 2955 2956 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2957 // thread the streamer with EmitValue. 2958 const MCExpr *ME = AP.lowerConstant(CV); 2959 2960 // Since lowerConstant already folded and got rid of all IR pointer and 2961 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2962 // directly. 2963 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2964 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2965 2966 AP.OutStreamer->emitValue(ME, Size); 2967 } 2968 2969 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2970 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2971 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2972 if (Size) 2973 emitGlobalConstantImpl(DL, CV, *this); 2974 else if (MAI->hasSubsectionsViaSymbols()) { 2975 // If the global has zero size, emit a single byte so that two labels don't 2976 // look like they are at the same location. 2977 OutStreamer->emitIntValue(0, 1); 2978 } 2979 } 2980 2981 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2982 // Target doesn't support this yet! 2983 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2984 } 2985 2986 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2987 if (Offset > 0) 2988 OS << '+' << Offset; 2989 else if (Offset < 0) 2990 OS << Offset; 2991 } 2992 2993 void AsmPrinter::emitNops(unsigned N) { 2994 MCInst Nop; 2995 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2996 for (; N; --N) 2997 EmitToStreamer(*OutStreamer, Nop); 2998 } 2999 3000 //===----------------------------------------------------------------------===// 3001 // Symbol Lowering Routines. 3002 //===----------------------------------------------------------------------===// 3003 3004 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3005 return OutContext.createTempSymbol(Name, true); 3006 } 3007 3008 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3009 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3010 } 3011 3012 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3013 return MMI->getAddrLabelSymbol(BB); 3014 } 3015 3016 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3017 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3018 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3019 const MachineConstantPoolEntry &CPE = 3020 MF->getConstantPool()->getConstants()[CPID]; 3021 if (!CPE.isMachineConstantPoolEntry()) { 3022 const DataLayout &DL = MF->getDataLayout(); 3023 SectionKind Kind = CPE.getSectionKind(&DL); 3024 const Constant *C = CPE.Val.ConstVal; 3025 Align Alignment = CPE.Alignment; 3026 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3027 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3028 Alignment))) { 3029 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3030 if (Sym->isUndefined()) 3031 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3032 return Sym; 3033 } 3034 } 3035 } 3036 } 3037 3038 const DataLayout &DL = getDataLayout(); 3039 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3040 "CPI" + Twine(getFunctionNumber()) + "_" + 3041 Twine(CPID)); 3042 } 3043 3044 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3045 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3046 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3047 } 3048 3049 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3050 /// FIXME: privatize to AsmPrinter. 3051 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3052 const DataLayout &DL = getDataLayout(); 3053 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3054 Twine(getFunctionNumber()) + "_" + 3055 Twine(UID) + "_set_" + Twine(MBBID)); 3056 } 3057 3058 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3059 StringRef Suffix) const { 3060 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3061 } 3062 3063 /// Return the MCSymbol for the specified ExternalSymbol. 3064 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3065 SmallString<60> NameStr; 3066 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3067 return OutContext.getOrCreateSymbol(NameStr); 3068 } 3069 3070 /// PrintParentLoopComment - Print comments about parent loops of this one. 3071 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3072 unsigned FunctionNumber) { 3073 if (!Loop) return; 3074 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3075 OS.indent(Loop->getLoopDepth()*2) 3076 << "Parent Loop BB" << FunctionNumber << "_" 3077 << Loop->getHeader()->getNumber() 3078 << " Depth=" << Loop->getLoopDepth() << '\n'; 3079 } 3080 3081 /// PrintChildLoopComment - Print comments about child loops within 3082 /// the loop for this basic block, with nesting. 3083 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3084 unsigned FunctionNumber) { 3085 // Add child loop information 3086 for (const MachineLoop *CL : *Loop) { 3087 OS.indent(CL->getLoopDepth()*2) 3088 << "Child Loop BB" << FunctionNumber << "_" 3089 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3090 << '\n'; 3091 PrintChildLoopComment(OS, CL, FunctionNumber); 3092 } 3093 } 3094 3095 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3096 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3097 const MachineLoopInfo *LI, 3098 const AsmPrinter &AP) { 3099 // Add loop depth information 3100 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3101 if (!Loop) return; 3102 3103 MachineBasicBlock *Header = Loop->getHeader(); 3104 assert(Header && "No header for loop"); 3105 3106 // If this block is not a loop header, just print out what is the loop header 3107 // and return. 3108 if (Header != &MBB) { 3109 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3110 Twine(AP.getFunctionNumber())+"_" + 3111 Twine(Loop->getHeader()->getNumber())+ 3112 " Depth="+Twine(Loop->getLoopDepth())); 3113 return; 3114 } 3115 3116 // Otherwise, it is a loop header. Print out information about child and 3117 // parent loops. 3118 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3119 3120 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3121 3122 OS << "=>"; 3123 OS.indent(Loop->getLoopDepth()*2-2); 3124 3125 OS << "This "; 3126 if (Loop->isInnermost()) 3127 OS << "Inner "; 3128 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3129 3130 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3131 } 3132 3133 /// emitBasicBlockStart - This method prints the label for the specified 3134 /// MachineBasicBlock, an alignment (if present) and a comment describing 3135 /// it if appropriate. 3136 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3137 // End the previous funclet and start a new one. 3138 if (MBB.isEHFuncletEntry()) { 3139 for (const HandlerInfo &HI : Handlers) { 3140 HI.Handler->endFunclet(); 3141 HI.Handler->beginFunclet(MBB); 3142 } 3143 } 3144 3145 // Emit an alignment directive for this block, if needed. 3146 const Align Alignment = MBB.getAlignment(); 3147 if (Alignment != Align(1)) 3148 emitAlignment(Alignment); 3149 3150 // Switch to a new section if this basic block must begin a section. The 3151 // entry block is always placed in the function section and is handled 3152 // separately. 3153 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3154 OutStreamer->SwitchSection( 3155 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3156 MBB, TM)); 3157 CurrentSectionBeginSym = MBB.getSymbol(); 3158 } 3159 3160 // If the block has its address taken, emit any labels that were used to 3161 // reference the block. It is possible that there is more than one label 3162 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3163 // the references were generated. 3164 if (MBB.hasAddressTaken()) { 3165 const BasicBlock *BB = MBB.getBasicBlock(); 3166 if (isVerbose()) 3167 OutStreamer->AddComment("Block address taken"); 3168 3169 // MBBs can have their address taken as part of CodeGen without having 3170 // their corresponding BB's address taken in IR 3171 if (BB->hasAddressTaken()) 3172 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3173 OutStreamer->emitLabel(Sym); 3174 } 3175 3176 // Print some verbose block comments. 3177 if (isVerbose()) { 3178 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3179 if (BB->hasName()) { 3180 BB->printAsOperand(OutStreamer->GetCommentOS(), 3181 /*PrintType=*/false, BB->getModule()); 3182 OutStreamer->GetCommentOS() << '\n'; 3183 } 3184 } 3185 3186 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3187 emitBasicBlockLoopComments(MBB, MLI, *this); 3188 } 3189 3190 // Print the main label for the block. 3191 if (shouldEmitLabelForBasicBlock(MBB)) { 3192 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3193 OutStreamer->AddComment("Label of block must be emitted"); 3194 OutStreamer->emitLabel(MBB.getSymbol()); 3195 } else { 3196 if (isVerbose()) { 3197 // NOTE: Want this comment at start of line, don't emit with AddComment. 3198 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3199 false); 3200 } 3201 } 3202 3203 if (MBB.isEHCatchretTarget() && 3204 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3205 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3206 } 3207 3208 // With BB sections, each basic block must handle CFI information on its own 3209 // if it begins a section (Entry block is handled separately by 3210 // AsmPrinterHandler::beginFunction). 3211 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3212 for (const HandlerInfo &HI : Handlers) 3213 HI.Handler->beginBasicBlock(MBB); 3214 } 3215 3216 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3217 // Check if CFI information needs to be updated for this MBB with basic block 3218 // sections. 3219 if (MBB.isEndSection()) 3220 for (const HandlerInfo &HI : Handlers) 3221 HI.Handler->endBasicBlock(MBB); 3222 } 3223 3224 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3225 bool IsDefinition) const { 3226 MCSymbolAttr Attr = MCSA_Invalid; 3227 3228 switch (Visibility) { 3229 default: break; 3230 case GlobalValue::HiddenVisibility: 3231 if (IsDefinition) 3232 Attr = MAI->getHiddenVisibilityAttr(); 3233 else 3234 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3235 break; 3236 case GlobalValue::ProtectedVisibility: 3237 Attr = MAI->getProtectedVisibilityAttr(); 3238 break; 3239 } 3240 3241 if (Attr != MCSA_Invalid) 3242 OutStreamer->emitSymbolAttribute(Sym, Attr); 3243 } 3244 3245 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3246 const MachineBasicBlock &MBB) const { 3247 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3248 // in the labels mode (option `=labels`) and every section beginning in the 3249 // sections mode (`=all` and `=list=`). 3250 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3251 return true; 3252 // A label is needed for any block with at least one predecessor (when that 3253 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3254 // entry, or if a label is forced). 3255 return !MBB.pred_empty() && 3256 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3257 MBB.hasLabelMustBeEmitted()); 3258 } 3259 3260 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3261 /// exactly one predecessor and the control transfer mechanism between 3262 /// the predecessor and this block is a fall-through. 3263 bool AsmPrinter:: 3264 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3265 // If this is a landing pad, it isn't a fall through. If it has no preds, 3266 // then nothing falls through to it. 3267 if (MBB->isEHPad() || MBB->pred_empty()) 3268 return false; 3269 3270 // If there isn't exactly one predecessor, it can't be a fall through. 3271 if (MBB->pred_size() > 1) 3272 return false; 3273 3274 // The predecessor has to be immediately before this block. 3275 MachineBasicBlock *Pred = *MBB->pred_begin(); 3276 if (!Pred->isLayoutSuccessor(MBB)) 3277 return false; 3278 3279 // If the block is completely empty, then it definitely does fall through. 3280 if (Pred->empty()) 3281 return true; 3282 3283 // Check the terminators in the previous blocks 3284 for (const auto &MI : Pred->terminators()) { 3285 // If it is not a simple branch, we are in a table somewhere. 3286 if (!MI.isBranch() || MI.isIndirectBranch()) 3287 return false; 3288 3289 // If we are the operands of one of the branches, this is not a fall 3290 // through. Note that targets with delay slots will usually bundle 3291 // terminators with the delay slot instruction. 3292 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3293 if (OP->isJTI()) 3294 return false; 3295 if (OP->isMBB() && OP->getMBB() == MBB) 3296 return false; 3297 } 3298 } 3299 3300 return true; 3301 } 3302 3303 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3304 if (!S.usesMetadata()) 3305 return nullptr; 3306 3307 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3308 gcp_map_type::iterator GCPI = GCMap.find(&S); 3309 if (GCPI != GCMap.end()) 3310 return GCPI->second.get(); 3311 3312 auto Name = S.getName(); 3313 3314 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3315 GCMetadataPrinterRegistry::entries()) 3316 if (Name == GCMetaPrinter.getName()) { 3317 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3318 GMP->S = &S; 3319 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3320 return IterBool.first->second.get(); 3321 } 3322 3323 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3324 } 3325 3326 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3327 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3328 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3329 bool NeedsDefault = false; 3330 if (MI->begin() == MI->end()) 3331 // No GC strategy, use the default format. 3332 NeedsDefault = true; 3333 else 3334 for (auto &I : *MI) { 3335 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3336 if (MP->emitStackMaps(SM, *this)) 3337 continue; 3338 // The strategy doesn't have printer or doesn't emit custom stack maps. 3339 // Use the default format. 3340 NeedsDefault = true; 3341 } 3342 3343 if (NeedsDefault) 3344 SM.serializeToStackMapSection(); 3345 } 3346 3347 /// Pin vtable to this file. 3348 AsmPrinterHandler::~AsmPrinterHandler() = default; 3349 3350 void AsmPrinterHandler::markFunctionEnd() {} 3351 3352 // In the binary's "xray_instr_map" section, an array of these function entries 3353 // describes each instrumentation point. When XRay patches your code, the index 3354 // into this table will be given to your handler as a patch point identifier. 3355 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3356 auto Kind8 = static_cast<uint8_t>(Kind); 3357 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3358 Out->emitBinaryData( 3359 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3360 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3361 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3362 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3363 Out->emitZeros(Padding); 3364 } 3365 3366 void AsmPrinter::emitXRayTable() { 3367 if (Sleds.empty()) 3368 return; 3369 3370 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3371 const Function &F = MF->getFunction(); 3372 MCSection *InstMap = nullptr; 3373 MCSection *FnSledIndex = nullptr; 3374 const Triple &TT = TM.getTargetTriple(); 3375 // Use PC-relative addresses on all targets. 3376 if (TT.isOSBinFormatELF()) { 3377 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3378 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3379 StringRef GroupName; 3380 if (F.hasComdat()) { 3381 Flags |= ELF::SHF_GROUP; 3382 GroupName = F.getComdat()->getName(); 3383 } 3384 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3385 Flags, 0, GroupName, F.hasComdat(), 3386 MCSection::NonUniqueID, LinkedToSym); 3387 3388 if (!TM.Options.XRayOmitFunctionIndex) 3389 FnSledIndex = OutContext.getELFSection( 3390 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3391 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3392 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3393 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3394 SectionKind::getReadOnlyWithRel()); 3395 if (!TM.Options.XRayOmitFunctionIndex) 3396 FnSledIndex = OutContext.getMachOSection( 3397 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3398 } else { 3399 llvm_unreachable("Unsupported target"); 3400 } 3401 3402 auto WordSizeBytes = MAI->getCodePointerSize(); 3403 3404 // Now we switch to the instrumentation map section. Because this is done 3405 // per-function, we are able to create an index entry that will represent the 3406 // range of sleds associated with a function. 3407 auto &Ctx = OutContext; 3408 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3409 OutStreamer->SwitchSection(InstMap); 3410 OutStreamer->emitLabel(SledsStart); 3411 for (const auto &Sled : Sleds) { 3412 MCSymbol *Dot = Ctx.createTempSymbol(); 3413 OutStreamer->emitLabel(Dot); 3414 OutStreamer->emitValueImpl( 3415 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3416 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3417 WordSizeBytes); 3418 OutStreamer->emitValueImpl( 3419 MCBinaryExpr::createSub( 3420 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3421 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3422 MCConstantExpr::create(WordSizeBytes, Ctx), 3423 Ctx), 3424 Ctx), 3425 WordSizeBytes); 3426 Sled.emit(WordSizeBytes, OutStreamer.get()); 3427 } 3428 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3429 OutStreamer->emitLabel(SledsEnd); 3430 3431 // We then emit a single entry in the index per function. We use the symbols 3432 // that bound the instrumentation map as the range for a specific function. 3433 // Each entry here will be 2 * word size aligned, as we're writing down two 3434 // pointers. This should work for both 32-bit and 64-bit platforms. 3435 if (FnSledIndex) { 3436 OutStreamer->SwitchSection(FnSledIndex); 3437 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3438 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3439 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3440 OutStreamer->SwitchSection(PrevSection); 3441 } 3442 Sleds.clear(); 3443 } 3444 3445 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3446 SledKind Kind, uint8_t Version) { 3447 const Function &F = MI.getMF()->getFunction(); 3448 auto Attr = F.getFnAttribute("function-instrument"); 3449 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3450 bool AlwaysInstrument = 3451 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3452 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3453 Kind = SledKind::LOG_ARGS_ENTER; 3454 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3455 AlwaysInstrument, &F, Version}); 3456 } 3457 3458 void AsmPrinter::emitPatchableFunctionEntries() { 3459 const Function &F = MF->getFunction(); 3460 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3461 (void)F.getFnAttribute("patchable-function-prefix") 3462 .getValueAsString() 3463 .getAsInteger(10, PatchableFunctionPrefix); 3464 (void)F.getFnAttribute("patchable-function-entry") 3465 .getValueAsString() 3466 .getAsInteger(10, PatchableFunctionEntry); 3467 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3468 return; 3469 const unsigned PointerSize = getPointerSize(); 3470 if (TM.getTargetTriple().isOSBinFormatELF()) { 3471 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3472 const MCSymbolELF *LinkedToSym = nullptr; 3473 StringRef GroupName; 3474 3475 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3476 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3477 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3478 Flags |= ELF::SHF_LINK_ORDER; 3479 if (F.hasComdat()) { 3480 Flags |= ELF::SHF_GROUP; 3481 GroupName = F.getComdat()->getName(); 3482 } 3483 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3484 } 3485 OutStreamer->SwitchSection(OutContext.getELFSection( 3486 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3487 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3488 emitAlignment(Align(PointerSize)); 3489 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3490 } 3491 } 3492 3493 uint16_t AsmPrinter::getDwarfVersion() const { 3494 return OutStreamer->getContext().getDwarfVersion(); 3495 } 3496 3497 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3498 OutStreamer->getContext().setDwarfVersion(Version); 3499 } 3500 3501 bool AsmPrinter::isDwarf64() const { 3502 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3503 } 3504 3505 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3506 return dwarf::getDwarfOffsetByteSize( 3507 OutStreamer->getContext().getDwarfFormat()); 3508 } 3509 3510 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3511 return dwarf::getUnitLengthFieldByteSize( 3512 OutStreamer->getContext().getDwarfFormat()); 3513 } 3514