1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCContext.h" 84 #include "llvm/MC/MCDirectives.h" 85 #include "llvm/MC/MCDwarf.h" 86 #include "llvm/MC/MCExpr.h" 87 #include "llvm/MC/MCInst.h" 88 #include "llvm/MC/MCSection.h" 89 #include "llvm/MC/MCSectionCOFF.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCSectionXCOFF.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCSymbolXCOFF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStreamer.h" 105 #include "llvm/Remarks/RemarkStringTable.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/Format.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/Path.h" 113 #include "llvm/Support/TargetRegistry.h" 114 #include "llvm/Support/Timer.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetLoweringObjectFile.h" 117 #include "llvm/Target/TargetMachine.h" 118 #include "llvm/Target/TargetOptions.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cinttypes> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <memory> 126 #include <string> 127 #include <utility> 128 #include <vector> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "asm-printer" 133 134 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 135 static cl::opt<bool> 136 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 137 cl::desc("Disable debug info printing")); 138 139 static const char *const DWARFGroupName = "dwarf"; 140 static const char *const DWARFGroupDescription = "DWARF Emission"; 141 static const char *const DbgTimerName = "emit"; 142 static const char *const DbgTimerDescription = "Debug Info Emission"; 143 static const char *const EHTimerName = "write_exception"; 144 static const char *const EHTimerDescription = "DWARF Exception Writer"; 145 static const char *const CFGuardName = "Control Flow Guard"; 146 static const char *const CFGuardDescription = "Control Flow Guard"; 147 static const char *const CodeViewLineTablesGroupName = "linetables"; 148 static const char *const CodeViewLineTablesGroupDescription = 149 "CodeView Line Tables"; 150 151 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 152 153 char AsmPrinter::ID = 0; 154 155 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 156 157 static gcp_map_type &getGCMap(void *&P) { 158 if (!P) 159 P = new gcp_map_type(); 160 return *(gcp_map_type*)P; 161 } 162 163 /// getGVAlignment - Return the alignment to use for the specified global 164 /// value. This rounds up to the preferred alignment if possible and legal. 165 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 166 Align InAlign) { 167 Align Alignment; 168 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 169 Alignment = DL.getPreferredAlign(GVar); 170 171 // If InAlign is specified, round it to it. 172 if (InAlign > Alignment) 173 Alignment = InAlign; 174 175 // If the GV has a specified alignment, take it into account. 176 const MaybeAlign GVAlign(GV->getAlignment()); 177 if (!GVAlign) 178 return Alignment; 179 180 assert(GVAlign && "GVAlign must be set"); 181 182 // If the GVAlign is larger than NumBits, or if we are required to obey 183 // NumBits because the GV has an assigned section, obey it. 184 if (*GVAlign > Alignment || GV->hasSection()) 185 Alignment = *GVAlign; 186 return Alignment; 187 } 188 189 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 190 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 191 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 192 VerboseAsm = OutStreamer->isVerboseAsm(); 193 } 194 195 AsmPrinter::~AsmPrinter() { 196 assert(!DD && Handlers.size() == NumUserHandlers && 197 "Debug/EH info didn't get finalized"); 198 199 if (GCMetadataPrinters) { 200 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 201 202 delete &GCMap; 203 GCMetadataPrinters = nullptr; 204 } 205 } 206 207 bool AsmPrinter::isPositionIndependent() const { 208 return TM.isPositionIndependent(); 209 } 210 211 /// getFunctionNumber - Return a unique ID for the current function. 212 unsigned AsmPrinter::getFunctionNumber() const { 213 return MF->getFunctionNumber(); 214 } 215 216 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 217 return *TM.getObjFileLowering(); 218 } 219 220 const DataLayout &AsmPrinter::getDataLayout() const { 221 return MMI->getModule()->getDataLayout(); 222 } 223 224 // Do not use the cached DataLayout because some client use it without a Module 225 // (dsymutil, llvm-dwarfdump). 226 unsigned AsmPrinter::getPointerSize() const { 227 return TM.getPointerSize(0); // FIXME: Default address space 228 } 229 230 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 231 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 232 return MF->getSubtarget<MCSubtargetInfo>(); 233 } 234 235 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 236 S.emitInstruction(Inst, getSubtargetInfo()); 237 } 238 239 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 240 if (DD) { 241 assert(OutStreamer->hasRawTextSupport() && 242 "Expected assembly output mode."); 243 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 244 } 245 } 246 247 /// getCurrentSection() - Return the current section we are emitting to. 248 const MCSection *AsmPrinter::getCurrentSection() const { 249 return OutStreamer->getCurrentSectionOnly(); 250 } 251 252 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 253 AU.setPreservesAll(); 254 MachineFunctionPass::getAnalysisUsage(AU); 255 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 256 AU.addRequired<GCModuleInfo>(); 257 } 258 259 bool AsmPrinter::doInitialization(Module &M) { 260 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 261 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 262 263 // Initialize TargetLoweringObjectFile. 264 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 265 .Initialize(OutContext, TM); 266 267 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 268 .getModuleMetadata(M); 269 270 OutStreamer->InitSections(false); 271 272 if (DisableDebugInfoPrinting) 273 MMI->setDebugInfoAvailability(false); 274 275 // Emit the version-min deployment target directive if needed. 276 // 277 // FIXME: If we end up with a collection of these sorts of Darwin-specific 278 // or ELF-specific things, it may make sense to have a platform helper class 279 // that will work with the target helper class. For now keep it here, as the 280 // alternative is duplicated code in each of the target asm printers that 281 // use the directive, where it would need the same conditionalization 282 // anyway. 283 const Triple &Target = TM.getTargetTriple(); 284 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 285 286 // Allow the target to emit any magic that it wants at the start of the file. 287 emitStartOfAsmFile(M); 288 289 // Very minimal debug info. It is ignored if we emit actual debug info. If we 290 // don't, this at least helps the user find where a global came from. 291 if (MAI->hasSingleParameterDotFile()) { 292 // .file "foo.c" 293 OutStreamer->emitFileDirective( 294 llvm::sys::path::filename(M.getSourceFileName())); 295 } 296 297 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 298 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 299 for (auto &I : *MI) 300 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 301 MP->beginAssembly(M, *MI, *this); 302 303 // Emit module-level inline asm if it exists. 304 if (!M.getModuleInlineAsm().empty()) { 305 // We're at the module level. Construct MCSubtarget from the default CPU 306 // and target triple. 307 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 308 TM.getTargetTriple().str(), TM.getTargetCPU(), 309 TM.getTargetFeatureString())); 310 OutStreamer->AddComment("Start of file scope inline assembly"); 311 OutStreamer->AddBlankLine(); 312 emitInlineAsm(M.getModuleInlineAsm() + "\n", 313 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 314 OutStreamer->AddComment("End of file scope inline assembly"); 315 OutStreamer->AddBlankLine(); 316 } 317 318 if (MAI->doesSupportDebugInformation()) { 319 bool EmitCodeView = M.getCodeViewFlag(); 320 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 321 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 322 DbgTimerName, DbgTimerDescription, 323 CodeViewLineTablesGroupName, 324 CodeViewLineTablesGroupDescription); 325 } 326 if (!EmitCodeView || M.getDwarfVersion()) { 327 if (!DisableDebugInfoPrinting) { 328 DD = new DwarfDebug(this); 329 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 330 DbgTimerDescription, DWARFGroupName, 331 DWARFGroupDescription); 332 } 333 } 334 } 335 336 switch (MAI->getExceptionHandlingType()) { 337 case ExceptionHandling::SjLj: 338 case ExceptionHandling::DwarfCFI: 339 case ExceptionHandling::ARM: 340 isCFIMoveForDebugging = true; 341 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 342 break; 343 for (auto &F: M.getFunctionList()) { 344 // If the module contains any function with unwind data, 345 // .eh_frame has to be emitted. 346 // Ignore functions that won't get emitted. 347 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 348 isCFIMoveForDebugging = false; 349 break; 350 } 351 } 352 break; 353 default: 354 isCFIMoveForDebugging = false; 355 break; 356 } 357 358 EHStreamer *ES = nullptr; 359 switch (MAI->getExceptionHandlingType()) { 360 case ExceptionHandling::None: 361 break; 362 case ExceptionHandling::SjLj: 363 case ExceptionHandling::DwarfCFI: 364 ES = new DwarfCFIException(this); 365 break; 366 case ExceptionHandling::ARM: 367 ES = new ARMException(this); 368 break; 369 case ExceptionHandling::WinEH: 370 switch (MAI->getWinEHEncodingType()) { 371 default: llvm_unreachable("unsupported unwinding information encoding"); 372 case WinEH::EncodingType::Invalid: 373 break; 374 case WinEH::EncodingType::X86: 375 case WinEH::EncodingType::Itanium: 376 ES = new WinException(this); 377 break; 378 } 379 break; 380 case ExceptionHandling::Wasm: 381 ES = new WasmException(this); 382 break; 383 } 384 if (ES) 385 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 386 EHTimerDescription, DWARFGroupName, 387 DWARFGroupDescription); 388 389 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 390 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 391 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 392 CFGuardDescription, DWARFGroupName, 393 DWARFGroupDescription); 394 395 for (const HandlerInfo &HI : Handlers) { 396 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 397 HI.TimerGroupDescription, TimePassesIsEnabled); 398 HI.Handler->beginModule(&M); 399 } 400 401 return false; 402 } 403 404 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 405 if (!MAI.hasWeakDefCanBeHiddenDirective()) 406 return false; 407 408 return GV->canBeOmittedFromSymbolTable(); 409 } 410 411 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 412 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 413 switch (Linkage) { 414 case GlobalValue::CommonLinkage: 415 case GlobalValue::LinkOnceAnyLinkage: 416 case GlobalValue::LinkOnceODRLinkage: 417 case GlobalValue::WeakAnyLinkage: 418 case GlobalValue::WeakODRLinkage: 419 if (MAI->hasWeakDefDirective()) { 420 // .globl _foo 421 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 422 423 if (!canBeHidden(GV, *MAI)) 424 // .weak_definition _foo 425 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 426 else 427 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 428 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 429 // .globl _foo 430 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 431 //NOTE: linkonce is handled by the section the symbol was assigned to. 432 } else { 433 // .weak _foo 434 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 435 } 436 return; 437 case GlobalValue::ExternalLinkage: 438 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 439 return; 440 case GlobalValue::PrivateLinkage: 441 case GlobalValue::InternalLinkage: 442 return; 443 case GlobalValue::ExternalWeakLinkage: 444 case GlobalValue::AvailableExternallyLinkage: 445 case GlobalValue::AppendingLinkage: 446 llvm_unreachable("Should never emit this"); 447 } 448 llvm_unreachable("Unknown linkage type!"); 449 } 450 451 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 452 const GlobalValue *GV) const { 453 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 454 } 455 456 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 457 return TM.getSymbol(GV); 458 } 459 460 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 461 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 462 // exact definion (intersection of GlobalValue::hasExactDefinition() and 463 // !isInterposable()). These linkages include: external, appending, internal, 464 // private. It may be profitable to use a local alias for external. The 465 // assembler would otherwise be conservative and assume a global default 466 // visibility symbol can be interposable, even if the code generator already 467 // assumed it. 468 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 469 const Module &M = *GV.getParent(); 470 if (TM.getRelocationModel() != Reloc::Static && 471 M.getPIELevel() == PIELevel::Default) 472 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() && 473 GV.getParent()->noSemanticInterposition())) 474 return getSymbolWithGlobalValueBase(&GV, "$local"); 475 } 476 return TM.getSymbol(&GV); 477 } 478 479 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 480 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 481 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 482 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 483 "No emulated TLS variables in the common section"); 484 485 // Never emit TLS variable xyz in emulated TLS model. 486 // The initialization value is in __emutls_t.xyz instead of xyz. 487 if (IsEmuTLSVar) 488 return; 489 490 if (GV->hasInitializer()) { 491 // Check to see if this is a special global used by LLVM, if so, emit it. 492 if (emitSpecialLLVMGlobal(GV)) 493 return; 494 495 // Skip the emission of global equivalents. The symbol can be emitted later 496 // on by emitGlobalGOTEquivs in case it turns out to be needed. 497 if (GlobalGOTEquivs.count(getSymbol(GV))) 498 return; 499 500 if (isVerbose()) { 501 // When printing the control variable __emutls_v.*, 502 // we don't need to print the original TLS variable name. 503 GV->printAsOperand(OutStreamer->GetCommentOS(), 504 /*PrintType=*/false, GV->getParent()); 505 OutStreamer->GetCommentOS() << '\n'; 506 } 507 } 508 509 MCSymbol *GVSym = getSymbol(GV); 510 MCSymbol *EmittedSym = GVSym; 511 512 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 513 // attributes. 514 // GV's or GVSym's attributes will be used for the EmittedSym. 515 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 516 517 if (!GV->hasInitializer()) // External globals require no extra code. 518 return; 519 520 GVSym->redefineIfPossible(); 521 if (GVSym->isDefined() || GVSym->isVariable()) 522 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 523 "' is already defined"); 524 525 if (MAI->hasDotTypeDotSizeDirective()) 526 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 527 528 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 529 530 const DataLayout &DL = GV->getParent()->getDataLayout(); 531 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 532 533 // If the alignment is specified, we *must* obey it. Overaligning a global 534 // with a specified alignment is a prompt way to break globals emitted to 535 // sections and expected to be contiguous (e.g. ObjC metadata). 536 const Align Alignment = getGVAlignment(GV, DL); 537 538 for (const HandlerInfo &HI : Handlers) { 539 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 540 HI.TimerGroupName, HI.TimerGroupDescription, 541 TimePassesIsEnabled); 542 HI.Handler->setSymbolSize(GVSym, Size); 543 } 544 545 // Handle common symbols 546 if (GVKind.isCommon()) { 547 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 548 // .comm _foo, 42, 4 549 const bool SupportsAlignment = 550 getObjFileLowering().getCommDirectiveSupportsAlignment(); 551 OutStreamer->emitCommonSymbol(GVSym, Size, 552 SupportsAlignment ? Alignment.value() : 0); 553 return; 554 } 555 556 // Determine to which section this global should be emitted. 557 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 558 559 // If we have a bss global going to a section that supports the 560 // zerofill directive, do so here. 561 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 562 TheSection->isVirtualSection()) { 563 if (Size == 0) 564 Size = 1; // zerofill of 0 bytes is undefined. 565 emitLinkage(GV, GVSym); 566 // .zerofill __DATA, __bss, _foo, 400, 5 567 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 568 return; 569 } 570 571 // If this is a BSS local symbol and we are emitting in the BSS 572 // section use .lcomm/.comm directive. 573 if (GVKind.isBSSLocal() && 574 getObjFileLowering().getBSSSection() == TheSection) { 575 if (Size == 0) 576 Size = 1; // .comm Foo, 0 is undefined, avoid it. 577 578 // Use .lcomm only if it supports user-specified alignment. 579 // Otherwise, while it would still be correct to use .lcomm in some 580 // cases (e.g. when Align == 1), the external assembler might enfore 581 // some -unknown- default alignment behavior, which could cause 582 // spurious differences between external and integrated assembler. 583 // Prefer to simply fall back to .local / .comm in this case. 584 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 585 // .lcomm _foo, 42 586 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 587 return; 588 } 589 590 // .local _foo 591 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 592 // .comm _foo, 42, 4 593 const bool SupportsAlignment = 594 getObjFileLowering().getCommDirectiveSupportsAlignment(); 595 OutStreamer->emitCommonSymbol(GVSym, Size, 596 SupportsAlignment ? Alignment.value() : 0); 597 return; 598 } 599 600 // Handle thread local data for mach-o which requires us to output an 601 // additional structure of data and mangle the original symbol so that we 602 // can reference it later. 603 // 604 // TODO: This should become an "emit thread local global" method on TLOF. 605 // All of this macho specific stuff should be sunk down into TLOFMachO and 606 // stuff like "TLSExtraDataSection" should no longer be part of the parent 607 // TLOF class. This will also make it more obvious that stuff like 608 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 609 // specific code. 610 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 611 // Emit the .tbss symbol 612 MCSymbol *MangSym = 613 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 614 615 if (GVKind.isThreadBSS()) { 616 TheSection = getObjFileLowering().getTLSBSSSection(); 617 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 618 } else if (GVKind.isThreadData()) { 619 OutStreamer->SwitchSection(TheSection); 620 621 emitAlignment(Alignment, GV); 622 OutStreamer->emitLabel(MangSym); 623 624 emitGlobalConstant(GV->getParent()->getDataLayout(), 625 GV->getInitializer()); 626 } 627 628 OutStreamer->AddBlankLine(); 629 630 // Emit the variable struct for the runtime. 631 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 632 633 OutStreamer->SwitchSection(TLVSect); 634 // Emit the linkage here. 635 emitLinkage(GV, GVSym); 636 OutStreamer->emitLabel(GVSym); 637 638 // Three pointers in size: 639 // - __tlv_bootstrap - used to make sure support exists 640 // - spare pointer, used when mapped by the runtime 641 // - pointer to mangled symbol above with initializer 642 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 643 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 644 PtrSize); 645 OutStreamer->emitIntValue(0, PtrSize); 646 OutStreamer->emitSymbolValue(MangSym, PtrSize); 647 648 OutStreamer->AddBlankLine(); 649 return; 650 } 651 652 MCSymbol *EmittedInitSym = GVSym; 653 654 OutStreamer->SwitchSection(TheSection); 655 656 emitLinkage(GV, EmittedInitSym); 657 emitAlignment(Alignment, GV); 658 659 OutStreamer->emitLabel(EmittedInitSym); 660 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 661 if (LocalAlias != EmittedInitSym) 662 OutStreamer->emitLabel(LocalAlias); 663 664 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 665 666 if (MAI->hasDotTypeDotSizeDirective()) 667 // .size foo, 42 668 OutStreamer->emitELFSize(EmittedInitSym, 669 MCConstantExpr::create(Size, OutContext)); 670 671 OutStreamer->AddBlankLine(); 672 } 673 674 /// Emit the directive and value for debug thread local expression 675 /// 676 /// \p Value - The value to emit. 677 /// \p Size - The size of the integer (in bytes) to emit. 678 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 679 OutStreamer->emitValue(Value, Size); 680 } 681 682 void AsmPrinter::emitFunctionHeaderComment() {} 683 684 /// EmitFunctionHeader - This method emits the header for the current 685 /// function. 686 void AsmPrinter::emitFunctionHeader() { 687 const Function &F = MF->getFunction(); 688 689 if (isVerbose()) 690 OutStreamer->GetCommentOS() 691 << "-- Begin function " 692 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 693 694 // Print out constants referenced by the function 695 emitConstantPool(); 696 697 // Print the 'header' of function. 698 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 699 OutStreamer->SwitchSection(MF->getSection()); 700 701 if (!MAI->hasVisibilityOnlyWithLinkage()) 702 emitVisibility(CurrentFnSym, F.getVisibility()); 703 704 if (MAI->needsFunctionDescriptors()) 705 emitLinkage(&F, CurrentFnDescSym); 706 707 emitLinkage(&F, CurrentFnSym); 708 if (MAI->hasFunctionAlignment()) 709 emitAlignment(MF->getAlignment(), &F); 710 711 if (MAI->hasDotTypeDotSizeDirective()) 712 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 713 714 if (F.hasFnAttribute(Attribute::Cold)) 715 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 716 717 if (isVerbose()) { 718 F.printAsOperand(OutStreamer->GetCommentOS(), 719 /*PrintType=*/false, F.getParent()); 720 emitFunctionHeaderComment(); 721 OutStreamer->GetCommentOS() << '\n'; 722 } 723 724 // Emit the prefix data. 725 if (F.hasPrefixData()) { 726 if (MAI->hasSubsectionsViaSymbols()) { 727 // Preserving prefix data on platforms which use subsections-via-symbols 728 // is a bit tricky. Here we introduce a symbol for the prefix data 729 // and use the .alt_entry attribute to mark the function's real entry point 730 // as an alternative entry point to the prefix-data symbol. 731 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 732 OutStreamer->emitLabel(PrefixSym); 733 734 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 735 736 // Emit an .alt_entry directive for the actual function symbol. 737 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 738 } else { 739 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 740 } 741 } 742 743 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 744 // place prefix data before NOPs. 745 unsigned PatchableFunctionPrefix = 0; 746 unsigned PatchableFunctionEntry = 0; 747 (void)F.getFnAttribute("patchable-function-prefix") 748 .getValueAsString() 749 .getAsInteger(10, PatchableFunctionPrefix); 750 (void)F.getFnAttribute("patchable-function-entry") 751 .getValueAsString() 752 .getAsInteger(10, PatchableFunctionEntry); 753 if (PatchableFunctionPrefix) { 754 CurrentPatchableFunctionEntrySym = 755 OutContext.createLinkerPrivateTempSymbol(); 756 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 757 emitNops(PatchableFunctionPrefix); 758 } else if (PatchableFunctionEntry) { 759 // May be reassigned when emitting the body, to reference the label after 760 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 761 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 762 } 763 764 // Emit the function descriptor. This is a virtual function to allow targets 765 // to emit their specific function descriptor. Right now it is only used by 766 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 767 // descriptors and should be converted to use this hook as well. 768 if (MAI->needsFunctionDescriptors()) 769 emitFunctionDescriptor(); 770 771 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 772 // their wild and crazy things as required. 773 emitFunctionEntryLabel(); 774 775 if (CurrentFnBegin) { 776 if (MAI->useAssignmentForEHBegin()) { 777 MCSymbol *CurPos = OutContext.createTempSymbol(); 778 OutStreamer->emitLabel(CurPos); 779 OutStreamer->emitAssignment(CurrentFnBegin, 780 MCSymbolRefExpr::create(CurPos, OutContext)); 781 } else { 782 OutStreamer->emitLabel(CurrentFnBegin); 783 } 784 } 785 786 // Emit pre-function debug and/or EH information. 787 for (const HandlerInfo &HI : Handlers) { 788 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 789 HI.TimerGroupDescription, TimePassesIsEnabled); 790 HI.Handler->beginFunction(MF); 791 } 792 793 // Emit the prologue data. 794 if (F.hasPrologueData()) 795 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 796 } 797 798 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 799 /// function. This can be overridden by targets as required to do custom stuff. 800 void AsmPrinter::emitFunctionEntryLabel() { 801 CurrentFnSym->redefineIfPossible(); 802 803 // The function label could have already been emitted if two symbols end up 804 // conflicting due to asm renaming. Detect this and emit an error. 805 if (CurrentFnSym->isVariable()) 806 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 807 "' is a protected alias"); 808 if (CurrentFnSym->isDefined()) 809 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 810 "' label emitted multiple times to assembly file"); 811 812 OutStreamer->emitLabel(CurrentFnSym); 813 814 if (TM.getTargetTriple().isOSBinFormatELF()) { 815 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 816 if (Sym != CurrentFnSym) 817 OutStreamer->emitLabel(Sym); 818 } 819 } 820 821 /// emitComments - Pretty-print comments for instructions. 822 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 823 const MachineFunction *MF = MI.getMF(); 824 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 825 826 // Check for spills and reloads 827 828 // We assume a single instruction only has a spill or reload, not 829 // both. 830 Optional<unsigned> Size; 831 if ((Size = MI.getRestoreSize(TII))) { 832 CommentOS << *Size << "-byte Reload\n"; 833 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 834 if (*Size) 835 CommentOS << *Size << "-byte Folded Reload\n"; 836 } else if ((Size = MI.getSpillSize(TII))) { 837 CommentOS << *Size << "-byte Spill\n"; 838 } else if ((Size = MI.getFoldedSpillSize(TII))) { 839 if (*Size) 840 CommentOS << *Size << "-byte Folded Spill\n"; 841 } 842 843 // Check for spill-induced copies 844 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 845 CommentOS << " Reload Reuse\n"; 846 } 847 848 /// emitImplicitDef - This method emits the specified machine instruction 849 /// that is an implicit def. 850 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 851 Register RegNo = MI->getOperand(0).getReg(); 852 853 SmallString<128> Str; 854 raw_svector_ostream OS(Str); 855 OS << "implicit-def: " 856 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 857 858 OutStreamer->AddComment(OS.str()); 859 OutStreamer->AddBlankLine(); 860 } 861 862 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 863 std::string Str; 864 raw_string_ostream OS(Str); 865 OS << "kill:"; 866 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 867 const MachineOperand &Op = MI->getOperand(i); 868 assert(Op.isReg() && "KILL instruction must have only register operands"); 869 OS << ' ' << (Op.isDef() ? "def " : "killed ") 870 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 871 } 872 AP.OutStreamer->AddComment(OS.str()); 873 AP.OutStreamer->AddBlankLine(); 874 } 875 876 /// emitDebugValueComment - This method handles the target-independent form 877 /// of DBG_VALUE, returning true if it was able to do so. A false return 878 /// means the target will need to handle MI in EmitInstruction. 879 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 880 // This code handles only the 4-operand target-independent form. 881 if (MI->getNumOperands() != 4) 882 return false; 883 884 SmallString<128> Str; 885 raw_svector_ostream OS(Str); 886 OS << "DEBUG_VALUE: "; 887 888 const DILocalVariable *V = MI->getDebugVariable(); 889 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 890 StringRef Name = SP->getName(); 891 if (!Name.empty()) 892 OS << Name << ":"; 893 } 894 OS << V->getName(); 895 OS << " <- "; 896 897 // The second operand is only an offset if it's an immediate. 898 bool MemLoc = MI->isIndirectDebugValue(); 899 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0); 900 const DIExpression *Expr = MI->getDebugExpression(); 901 if (Expr->getNumElements()) { 902 OS << '['; 903 bool NeedSep = false; 904 for (auto Op : Expr->expr_ops()) { 905 if (NeedSep) 906 OS << ", "; 907 else 908 NeedSep = true; 909 OS << dwarf::OperationEncodingString(Op.getOp()); 910 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 911 OS << ' ' << Op.getArg(I); 912 } 913 OS << "] "; 914 } 915 916 // Register or immediate value. Register 0 means undef. 917 if (MI->getDebugOperand(0).isFPImm()) { 918 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 919 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 920 OS << (double)APF.convertToFloat(); 921 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 922 OS << APF.convertToDouble(); 923 } else { 924 // There is no good way to print long double. Convert a copy to 925 // double. Ah well, it's only a comment. 926 bool ignored; 927 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 928 &ignored); 929 OS << "(long double) " << APF.convertToDouble(); 930 } 931 } else if (MI->getDebugOperand(0).isImm()) { 932 OS << MI->getDebugOperand(0).getImm(); 933 } else if (MI->getDebugOperand(0).isCImm()) { 934 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 935 } else if (MI->getDebugOperand(0).isTargetIndex()) { 936 auto Op = MI->getDebugOperand(0); 937 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 938 return true; 939 } else { 940 Register Reg; 941 if (MI->getDebugOperand(0).isReg()) { 942 Reg = MI->getDebugOperand(0).getReg(); 943 } else { 944 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 945 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 946 Offset += TFI->getFrameIndexReference( 947 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 948 MemLoc = true; 949 } 950 if (Reg == 0) { 951 // Suppress offset, it is not meaningful here. 952 OS << "undef"; 953 // NOTE: Want this comment at start of line, don't emit with AddComment. 954 AP.OutStreamer->emitRawComment(OS.str()); 955 return true; 956 } 957 if (MemLoc) 958 OS << '['; 959 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 960 } 961 962 if (MemLoc) 963 OS << '+' << Offset.getFixed() << ']'; 964 965 // NOTE: Want this comment at start of line, don't emit with AddComment. 966 AP.OutStreamer->emitRawComment(OS.str()); 967 return true; 968 } 969 970 /// This method handles the target-independent form of DBG_LABEL, returning 971 /// true if it was able to do so. A false return means the target will need 972 /// to handle MI in EmitInstruction. 973 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 974 if (MI->getNumOperands() != 1) 975 return false; 976 977 SmallString<128> Str; 978 raw_svector_ostream OS(Str); 979 OS << "DEBUG_LABEL: "; 980 981 const DILabel *V = MI->getDebugLabel(); 982 if (auto *SP = dyn_cast<DISubprogram>( 983 V->getScope()->getNonLexicalBlockFileScope())) { 984 StringRef Name = SP->getName(); 985 if (!Name.empty()) 986 OS << Name << ":"; 987 } 988 OS << V->getName(); 989 990 // NOTE: Want this comment at start of line, don't emit with AddComment. 991 AP.OutStreamer->emitRawComment(OS.str()); 992 return true; 993 } 994 995 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 996 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 997 MF->getFunction().needsUnwindTableEntry()) 998 return CFI_M_EH; 999 1000 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1001 return CFI_M_Debug; 1002 1003 return CFI_M_None; 1004 } 1005 1006 bool AsmPrinter::needsSEHMoves() { 1007 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1008 } 1009 1010 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1011 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1012 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1013 ExceptionHandlingType != ExceptionHandling::ARM) 1014 return; 1015 1016 if (needsCFIMoves() == CFI_M_None) 1017 return; 1018 1019 // If there is no "real" instruction following this CFI instruction, skip 1020 // emitting it; it would be beyond the end of the function's FDE range. 1021 auto *MBB = MI.getParent(); 1022 auto I = std::next(MI.getIterator()); 1023 while (I != MBB->end() && I->isTransient()) 1024 ++I; 1025 if (I == MBB->instr_end() && 1026 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1027 return; 1028 1029 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1030 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1031 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1032 emitCFIInstruction(CFI); 1033 } 1034 1035 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1036 // The operands are the MCSymbol and the frame offset of the allocation. 1037 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1038 int FrameOffset = MI.getOperand(1).getImm(); 1039 1040 // Emit a symbol assignment. 1041 OutStreamer->emitAssignment(FrameAllocSym, 1042 MCConstantExpr::create(FrameOffset, OutContext)); 1043 } 1044 1045 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1046 /// given basic block. This can be used to capture more precise profile 1047 /// information. We use the last 3 bits (LSBs) to ecnode the following 1048 /// information: 1049 /// * (1): set if return block (ret or tail call). 1050 /// * (2): set if ends with a tail call. 1051 /// * (3): set if exception handling (EH) landing pad. 1052 /// The remaining bits are zero. 1053 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1054 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1055 return ((unsigned)MBB.isReturnBlock()) | 1056 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1057 (MBB.isEHPad() << 2); 1058 } 1059 1060 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1061 MCSection *BBAddrMapSection = 1062 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1063 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1064 1065 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1066 1067 OutStreamer->PushSection(); 1068 OutStreamer->SwitchSection(BBAddrMapSection); 1069 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1070 // Emit the total number of basic blocks in this function. 1071 OutStreamer->emitULEB128IntValue(MF.size()); 1072 // Emit BB Information for each basic block in the funciton. 1073 for (const MachineBasicBlock &MBB : MF) { 1074 const MCSymbol *MBBSymbol = 1075 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1076 // Emit the basic block offset. 1077 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1078 // Emit the basic block size. When BBs have alignments, their size cannot 1079 // always be computed from their offsets. 1080 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1081 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1082 } 1083 OutStreamer->PopSection(); 1084 } 1085 1086 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1087 if (!MF.getTarget().Options.EmitStackSizeSection) 1088 return; 1089 1090 MCSection *StackSizeSection = 1091 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1092 if (!StackSizeSection) 1093 return; 1094 1095 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1096 // Don't emit functions with dynamic stack allocations. 1097 if (FrameInfo.hasVarSizedObjects()) 1098 return; 1099 1100 OutStreamer->PushSection(); 1101 OutStreamer->SwitchSection(StackSizeSection); 1102 1103 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1104 uint64_t StackSize = FrameInfo.getStackSize(); 1105 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1106 OutStreamer->emitULEB128IntValue(StackSize); 1107 1108 OutStreamer->PopSection(); 1109 } 1110 1111 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1112 MachineModuleInfo &MMI = MF.getMMI(); 1113 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1114 return true; 1115 1116 // We might emit an EH table that uses function begin and end labels even if 1117 // we don't have any landingpads. 1118 if (!MF.getFunction().hasPersonalityFn()) 1119 return false; 1120 return !isNoOpWithoutInvoke( 1121 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1122 } 1123 1124 /// EmitFunctionBody - This method emits the body and trailer for a 1125 /// function. 1126 void AsmPrinter::emitFunctionBody() { 1127 emitFunctionHeader(); 1128 1129 // Emit target-specific gunk before the function body. 1130 emitFunctionBodyStart(); 1131 1132 if (isVerbose()) { 1133 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1134 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1135 if (!MDT) { 1136 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1137 OwnedMDT->getBase().recalculate(*MF); 1138 MDT = OwnedMDT.get(); 1139 } 1140 1141 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1142 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1143 if (!MLI) { 1144 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1145 OwnedMLI->getBase().analyze(MDT->getBase()); 1146 MLI = OwnedMLI.get(); 1147 } 1148 } 1149 1150 // Print out code for the function. 1151 bool HasAnyRealCode = false; 1152 int NumInstsInFunction = 0; 1153 1154 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1155 for (auto &MBB : *MF) { 1156 // Print a label for the basic block. 1157 emitBasicBlockStart(MBB); 1158 DenseMap<StringRef, unsigned> MnemonicCounts; 1159 for (auto &MI : MBB) { 1160 // Print the assembly for the instruction. 1161 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1162 !MI.isDebugInstr()) { 1163 HasAnyRealCode = true; 1164 ++NumInstsInFunction; 1165 } 1166 1167 // If there is a pre-instruction symbol, emit a label for it here. 1168 if (MCSymbol *S = MI.getPreInstrSymbol()) 1169 OutStreamer->emitLabel(S); 1170 1171 for (const HandlerInfo &HI : Handlers) { 1172 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1173 HI.TimerGroupDescription, TimePassesIsEnabled); 1174 HI.Handler->beginInstruction(&MI); 1175 } 1176 1177 if (isVerbose()) 1178 emitComments(MI, OutStreamer->GetCommentOS()); 1179 1180 switch (MI.getOpcode()) { 1181 case TargetOpcode::CFI_INSTRUCTION: 1182 emitCFIInstruction(MI); 1183 break; 1184 case TargetOpcode::LOCAL_ESCAPE: 1185 emitFrameAlloc(MI); 1186 break; 1187 case TargetOpcode::ANNOTATION_LABEL: 1188 case TargetOpcode::EH_LABEL: 1189 case TargetOpcode::GC_LABEL: 1190 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1191 break; 1192 case TargetOpcode::INLINEASM: 1193 case TargetOpcode::INLINEASM_BR: 1194 emitInlineAsm(&MI); 1195 break; 1196 case TargetOpcode::DBG_VALUE: 1197 if (isVerbose()) { 1198 if (!emitDebugValueComment(&MI, *this)) 1199 emitInstruction(&MI); 1200 } 1201 break; 1202 case TargetOpcode::DBG_INSTR_REF: 1203 // This instruction reference will have been resolved to a machine 1204 // location, and a nearby DBG_VALUE created. We can safely ignore 1205 // the instruction reference. 1206 break; 1207 case TargetOpcode::DBG_LABEL: 1208 if (isVerbose()) { 1209 if (!emitDebugLabelComment(&MI, *this)) 1210 emitInstruction(&MI); 1211 } 1212 break; 1213 case TargetOpcode::IMPLICIT_DEF: 1214 if (isVerbose()) emitImplicitDef(&MI); 1215 break; 1216 case TargetOpcode::KILL: 1217 if (isVerbose()) emitKill(&MI, *this); 1218 break; 1219 default: 1220 emitInstruction(&MI); 1221 if (CanDoExtraAnalysis) { 1222 MCInst MCI; 1223 MCI.setOpcode(MI.getOpcode()); 1224 auto Name = OutStreamer->getMnemonic(MCI); 1225 auto I = MnemonicCounts.insert({Name, 0u}); 1226 I.first->second++; 1227 } 1228 break; 1229 } 1230 1231 // If there is a post-instruction symbol, emit a label for it here. 1232 if (MCSymbol *S = MI.getPostInstrSymbol()) 1233 OutStreamer->emitLabel(S); 1234 1235 for (const HandlerInfo &HI : Handlers) { 1236 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1237 HI.TimerGroupDescription, TimePassesIsEnabled); 1238 HI.Handler->endInstruction(); 1239 } 1240 } 1241 1242 // We must emit temporary symbol for the end of this basic block, if either 1243 // we have BBLabels enabled or if this basic blocks marks the end of a 1244 // section (except the section containing the entry basic block as the end 1245 // symbol for that section is CurrentFnEnd). 1246 if (MF->hasBBLabels() || 1247 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1248 !MBB.sameSection(&MF->front()))) 1249 OutStreamer->emitLabel(MBB.getEndSymbol()); 1250 1251 if (MBB.isEndSection()) { 1252 // The size directive for the section containing the entry block is 1253 // handled separately by the function section. 1254 if (!MBB.sameSection(&MF->front())) { 1255 if (MAI->hasDotTypeDotSizeDirective()) { 1256 // Emit the size directive for the basic block section. 1257 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1258 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1259 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1260 OutContext); 1261 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1262 } 1263 MBBSectionRanges[MBB.getSectionIDNum()] = 1264 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1265 } 1266 } 1267 emitBasicBlockEnd(MBB); 1268 1269 if (CanDoExtraAnalysis) { 1270 // Skip empty blocks. 1271 if (MBB.empty()) 1272 continue; 1273 1274 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1275 MBB.begin()->getDebugLoc(), &MBB); 1276 1277 // Generate instruction mix remark. First, sort counts in descending order 1278 // by count and name. 1279 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1280 for (auto &KV : MnemonicCounts) 1281 MnemonicVec.emplace_back(KV.first, KV.second); 1282 1283 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1284 const std::pair<StringRef, unsigned> &B) { 1285 if (A.second > B.second) 1286 return true; 1287 if (A.second == B.second) 1288 return StringRef(A.first) < StringRef(B.first); 1289 return false; 1290 }); 1291 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1292 for (auto &KV : MnemonicVec) { 1293 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1294 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1295 } 1296 ORE->emit(R); 1297 } 1298 } 1299 1300 EmittedInsts += NumInstsInFunction; 1301 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1302 MF->getFunction().getSubprogram(), 1303 &MF->front()); 1304 R << ore::NV("NumInstructions", NumInstsInFunction) 1305 << " instructions in function"; 1306 ORE->emit(R); 1307 1308 // If the function is empty and the object file uses .subsections_via_symbols, 1309 // then we need to emit *something* to the function body to prevent the 1310 // labels from collapsing together. Just emit a noop. 1311 // Similarly, don't emit empty functions on Windows either. It can lead to 1312 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1313 // after linking, causing the kernel not to load the binary: 1314 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1315 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1316 const Triple &TT = TM.getTargetTriple(); 1317 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1318 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1319 MCInst Noop; 1320 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1321 1322 // Targets can opt-out of emitting the noop here by leaving the opcode 1323 // unspecified. 1324 if (Noop.getOpcode()) { 1325 OutStreamer->AddComment("avoids zero-length function"); 1326 emitNops(1); 1327 } 1328 } 1329 1330 // Switch to the original section in case basic block sections was used. 1331 OutStreamer->SwitchSection(MF->getSection()); 1332 1333 const Function &F = MF->getFunction(); 1334 for (const auto &BB : F) { 1335 if (!BB.hasAddressTaken()) 1336 continue; 1337 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1338 if (Sym->isDefined()) 1339 continue; 1340 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1341 OutStreamer->emitLabel(Sym); 1342 } 1343 1344 // Emit target-specific gunk after the function body. 1345 emitFunctionBodyEnd(); 1346 1347 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1348 MAI->hasDotTypeDotSizeDirective()) { 1349 // Create a symbol for the end of function. 1350 CurrentFnEnd = createTempSymbol("func_end"); 1351 OutStreamer->emitLabel(CurrentFnEnd); 1352 } 1353 1354 // If the target wants a .size directive for the size of the function, emit 1355 // it. 1356 if (MAI->hasDotTypeDotSizeDirective()) { 1357 // We can get the size as difference between the function label and the 1358 // temp label. 1359 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1360 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1361 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1362 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1363 } 1364 1365 for (const HandlerInfo &HI : Handlers) { 1366 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1367 HI.TimerGroupDescription, TimePassesIsEnabled); 1368 HI.Handler->markFunctionEnd(); 1369 } 1370 1371 MBBSectionRanges[MF->front().getSectionIDNum()] = 1372 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1373 1374 // Print out jump tables referenced by the function. 1375 emitJumpTableInfo(); 1376 1377 // Emit post-function debug and/or EH information. 1378 for (const HandlerInfo &HI : Handlers) { 1379 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1380 HI.TimerGroupDescription, TimePassesIsEnabled); 1381 HI.Handler->endFunction(MF); 1382 } 1383 1384 // Emit section containing BB address offsets and their metadata, when 1385 // BB labels are requested for this function. 1386 if (MF->hasBBLabels()) 1387 emitBBAddrMapSection(*MF); 1388 1389 // Emit section containing stack size metadata. 1390 emitStackSizeSection(*MF); 1391 1392 emitPatchableFunctionEntries(); 1393 1394 if (isVerbose()) 1395 OutStreamer->GetCommentOS() << "-- End function\n"; 1396 1397 OutStreamer->AddBlankLine(); 1398 } 1399 1400 /// Compute the number of Global Variables that uses a Constant. 1401 static unsigned getNumGlobalVariableUses(const Constant *C) { 1402 if (!C) 1403 return 0; 1404 1405 if (isa<GlobalVariable>(C)) 1406 return 1; 1407 1408 unsigned NumUses = 0; 1409 for (auto *CU : C->users()) 1410 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1411 1412 return NumUses; 1413 } 1414 1415 /// Only consider global GOT equivalents if at least one user is a 1416 /// cstexpr inside an initializer of another global variables. Also, don't 1417 /// handle cstexpr inside instructions. During global variable emission, 1418 /// candidates are skipped and are emitted later in case at least one cstexpr 1419 /// isn't replaced by a PC relative GOT entry access. 1420 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1421 unsigned &NumGOTEquivUsers) { 1422 // Global GOT equivalents are unnamed private globals with a constant 1423 // pointer initializer to another global symbol. They must point to a 1424 // GlobalVariable or Function, i.e., as GlobalValue. 1425 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1426 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1427 !isa<GlobalValue>(GV->getOperand(0))) 1428 return false; 1429 1430 // To be a got equivalent, at least one of its users need to be a constant 1431 // expression used by another global variable. 1432 for (auto *U : GV->users()) 1433 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1434 1435 return NumGOTEquivUsers > 0; 1436 } 1437 1438 /// Unnamed constant global variables solely contaning a pointer to 1439 /// another globals variable is equivalent to a GOT table entry; it contains the 1440 /// the address of another symbol. Optimize it and replace accesses to these 1441 /// "GOT equivalents" by using the GOT entry for the final global instead. 1442 /// Compute GOT equivalent candidates among all global variables to avoid 1443 /// emitting them if possible later on, after it use is replaced by a GOT entry 1444 /// access. 1445 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1446 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1447 return; 1448 1449 for (const auto &G : M.globals()) { 1450 unsigned NumGOTEquivUsers = 0; 1451 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1452 continue; 1453 1454 const MCSymbol *GOTEquivSym = getSymbol(&G); 1455 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1456 } 1457 } 1458 1459 /// Constant expressions using GOT equivalent globals may not be eligible 1460 /// for PC relative GOT entry conversion, in such cases we need to emit such 1461 /// globals we previously omitted in EmitGlobalVariable. 1462 void AsmPrinter::emitGlobalGOTEquivs() { 1463 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1464 return; 1465 1466 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1467 for (auto &I : GlobalGOTEquivs) { 1468 const GlobalVariable *GV = I.second.first; 1469 unsigned Cnt = I.second.second; 1470 if (Cnt) 1471 FailedCandidates.push_back(GV); 1472 } 1473 GlobalGOTEquivs.clear(); 1474 1475 for (auto *GV : FailedCandidates) 1476 emitGlobalVariable(GV); 1477 } 1478 1479 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1480 const GlobalIndirectSymbol& GIS) { 1481 MCSymbol *Name = getSymbol(&GIS); 1482 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1483 // Treat bitcasts of functions as functions also. This is important at least 1484 // on WebAssembly where object and function addresses can't alias each other. 1485 if (!IsFunction) 1486 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1487 if (CE->getOpcode() == Instruction::BitCast) 1488 IsFunction = 1489 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1490 1491 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1492 // so AIX has to use the extra-label-at-definition strategy. At this 1493 // point, all the extra label is emitted, we just have to emit linkage for 1494 // those labels. 1495 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1496 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1497 assert(MAI->hasVisibilityOnlyWithLinkage() && 1498 "Visibility should be handled with emitLinkage() on AIX."); 1499 emitLinkage(&GIS, Name); 1500 // If it's a function, also emit linkage for aliases of function entry 1501 // point. 1502 if (IsFunction) 1503 emitLinkage(&GIS, 1504 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1505 return; 1506 } 1507 1508 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1509 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1510 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1511 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1512 else 1513 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1514 1515 // Set the symbol type to function if the alias has a function type. 1516 // This affects codegen when the aliasee is not a function. 1517 if (IsFunction) 1518 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1519 ? MCSA_ELF_TypeIndFunction 1520 : MCSA_ELF_TypeFunction); 1521 1522 emitVisibility(Name, GIS.getVisibility()); 1523 1524 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1525 1526 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1527 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1528 1529 // Emit the directives as assignments aka .set: 1530 OutStreamer->emitAssignment(Name, Expr); 1531 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1532 if (LocalAlias != Name) 1533 OutStreamer->emitAssignment(LocalAlias, Expr); 1534 1535 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1536 // If the aliasee does not correspond to a symbol in the output, i.e. the 1537 // alias is not of an object or the aliased object is private, then set the 1538 // size of the alias symbol from the type of the alias. We don't do this in 1539 // other situations as the alias and aliasee having differing types but same 1540 // size may be intentional. 1541 const GlobalObject *BaseObject = GA->getBaseObject(); 1542 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1543 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1544 const DataLayout &DL = M.getDataLayout(); 1545 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1546 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1547 } 1548 } 1549 } 1550 1551 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1552 if (!RS.needsSection()) 1553 return; 1554 1555 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1556 1557 Optional<SmallString<128>> Filename; 1558 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1559 Filename = *FilenameRef; 1560 sys::fs::make_absolute(*Filename); 1561 assert(!Filename->empty() && "The filename can't be empty."); 1562 } 1563 1564 std::string Buf; 1565 raw_string_ostream OS(Buf); 1566 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1567 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1568 : RemarkSerializer.metaSerializer(OS); 1569 MetaSerializer->emit(); 1570 1571 // Switch to the remarks section. 1572 MCSection *RemarksSection = 1573 OutContext.getObjectFileInfo()->getRemarksSection(); 1574 OutStreamer->SwitchSection(RemarksSection); 1575 1576 OutStreamer->emitBinaryData(OS.str()); 1577 } 1578 1579 bool AsmPrinter::doFinalization(Module &M) { 1580 // Set the MachineFunction to nullptr so that we can catch attempted 1581 // accesses to MF specific features at the module level and so that 1582 // we can conditionalize accesses based on whether or not it is nullptr. 1583 MF = nullptr; 1584 1585 // Gather all GOT equivalent globals in the module. We really need two 1586 // passes over the globals: one to compute and another to avoid its emission 1587 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1588 // where the got equivalent shows up before its use. 1589 computeGlobalGOTEquivs(M); 1590 1591 // Emit global variables. 1592 for (const auto &G : M.globals()) 1593 emitGlobalVariable(&G); 1594 1595 // Emit remaining GOT equivalent globals. 1596 emitGlobalGOTEquivs(); 1597 1598 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1599 1600 // Emit linkage(XCOFF) and visibility info for declarations 1601 for (const Function &F : M) { 1602 if (!F.isDeclarationForLinker()) 1603 continue; 1604 1605 MCSymbol *Name = getSymbol(&F); 1606 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1607 1608 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1609 GlobalValue::VisibilityTypes V = F.getVisibility(); 1610 if (V == GlobalValue::DefaultVisibility) 1611 continue; 1612 1613 emitVisibility(Name, V, false); 1614 continue; 1615 } 1616 1617 if (F.isIntrinsic()) 1618 continue; 1619 1620 // Handle the XCOFF case. 1621 // Variable `Name` is the function descriptor symbol (see above). Get the 1622 // function entry point symbol. 1623 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1624 // Emit linkage for the function entry point. 1625 emitLinkage(&F, FnEntryPointSym); 1626 1627 // Emit linkage for the function descriptor. 1628 emitLinkage(&F, Name); 1629 } 1630 1631 // Emit the remarks section contents. 1632 // FIXME: Figure out when is the safest time to emit this section. It should 1633 // not come after debug info. 1634 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1635 emitRemarksSection(*RS); 1636 1637 TLOF.emitModuleMetadata(*OutStreamer, M); 1638 1639 if (TM.getTargetTriple().isOSBinFormatELF()) { 1640 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1641 1642 // Output stubs for external and common global variables. 1643 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1644 if (!Stubs.empty()) { 1645 OutStreamer->SwitchSection(TLOF.getDataSection()); 1646 const DataLayout &DL = M.getDataLayout(); 1647 1648 emitAlignment(Align(DL.getPointerSize())); 1649 for (const auto &Stub : Stubs) { 1650 OutStreamer->emitLabel(Stub.first); 1651 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1652 DL.getPointerSize()); 1653 } 1654 } 1655 } 1656 1657 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1658 MachineModuleInfoCOFF &MMICOFF = 1659 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1660 1661 // Output stubs for external and common global variables. 1662 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1663 if (!Stubs.empty()) { 1664 const DataLayout &DL = M.getDataLayout(); 1665 1666 for (const auto &Stub : Stubs) { 1667 SmallString<256> SectionName = StringRef(".rdata$"); 1668 SectionName += Stub.first->getName(); 1669 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1670 SectionName, 1671 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1672 COFF::IMAGE_SCN_LNK_COMDAT, 1673 SectionKind::getReadOnly(), Stub.first->getName(), 1674 COFF::IMAGE_COMDAT_SELECT_ANY)); 1675 emitAlignment(Align(DL.getPointerSize())); 1676 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1677 OutStreamer->emitLabel(Stub.first); 1678 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1679 DL.getPointerSize()); 1680 } 1681 } 1682 } 1683 1684 // Finalize debug and EH information. 1685 for (const HandlerInfo &HI : Handlers) { 1686 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1687 HI.TimerGroupDescription, TimePassesIsEnabled); 1688 HI.Handler->endModule(); 1689 } 1690 1691 // This deletes all the ephemeral handlers that AsmPrinter added, while 1692 // keeping all the user-added handlers alive until the AsmPrinter is 1693 // destroyed. 1694 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1695 DD = nullptr; 1696 1697 // If the target wants to know about weak references, print them all. 1698 if (MAI->getWeakRefDirective()) { 1699 // FIXME: This is not lazy, it would be nice to only print weak references 1700 // to stuff that is actually used. Note that doing so would require targets 1701 // to notice uses in operands (due to constant exprs etc). This should 1702 // happen with the MC stuff eventually. 1703 1704 // Print out module-level global objects here. 1705 for (const auto &GO : M.global_objects()) { 1706 if (!GO.hasExternalWeakLinkage()) 1707 continue; 1708 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1709 } 1710 } 1711 1712 // Print aliases in topological order, that is, for each alias a = b, 1713 // b must be printed before a. 1714 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1715 // such an order to generate correct TOC information. 1716 SmallVector<const GlobalAlias *, 16> AliasStack; 1717 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1718 for (const auto &Alias : M.aliases()) { 1719 for (const GlobalAlias *Cur = &Alias; Cur; 1720 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1721 if (!AliasVisited.insert(Cur).second) 1722 break; 1723 AliasStack.push_back(Cur); 1724 } 1725 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1726 emitGlobalIndirectSymbol(M, *AncestorAlias); 1727 AliasStack.clear(); 1728 } 1729 for (const auto &IFunc : M.ifuncs()) 1730 emitGlobalIndirectSymbol(M, IFunc); 1731 1732 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1733 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1734 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1735 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1736 MP->finishAssembly(M, *MI, *this); 1737 1738 // Emit llvm.ident metadata in an '.ident' directive. 1739 emitModuleIdents(M); 1740 1741 // Emit bytes for llvm.commandline metadata. 1742 emitModuleCommandLines(M); 1743 1744 // Emit __morestack address if needed for indirect calls. 1745 if (MMI->usesMorestackAddr()) { 1746 Align Alignment(1); 1747 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1748 getDataLayout(), SectionKind::getReadOnly(), 1749 /*C=*/nullptr, Alignment); 1750 OutStreamer->SwitchSection(ReadOnlySection); 1751 1752 MCSymbol *AddrSymbol = 1753 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1754 OutStreamer->emitLabel(AddrSymbol); 1755 1756 unsigned PtrSize = MAI->getCodePointerSize(); 1757 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1758 PtrSize); 1759 } 1760 1761 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1762 // split-stack is used. 1763 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1764 OutStreamer->SwitchSection( 1765 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1766 if (MMI->hasNosplitStack()) 1767 OutStreamer->SwitchSection( 1768 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1769 } 1770 1771 // If we don't have any trampolines, then we don't require stack memory 1772 // to be executable. Some targets have a directive to declare this. 1773 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1774 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1775 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1776 OutStreamer->SwitchSection(S); 1777 1778 if (TM.Options.EmitAddrsig) { 1779 // Emit address-significance attributes for all globals. 1780 OutStreamer->emitAddrsig(); 1781 for (const GlobalValue &GV : M.global_values()) 1782 if (!GV.use_empty() && !GV.isThreadLocal() && 1783 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1784 !GV.hasAtLeastLocalUnnamedAddr()) 1785 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1786 } 1787 1788 // Emit symbol partition specifications (ELF only). 1789 if (TM.getTargetTriple().isOSBinFormatELF()) { 1790 unsigned UniqueID = 0; 1791 for (const GlobalValue &GV : M.global_values()) { 1792 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1793 GV.getVisibility() != GlobalValue::DefaultVisibility) 1794 continue; 1795 1796 OutStreamer->SwitchSection( 1797 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1798 "", ++UniqueID, nullptr)); 1799 OutStreamer->emitBytes(GV.getPartition()); 1800 OutStreamer->emitZeros(1); 1801 OutStreamer->emitValue( 1802 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1803 MAI->getCodePointerSize()); 1804 } 1805 } 1806 1807 // Allow the target to emit any magic that it wants at the end of the file, 1808 // after everything else has gone out. 1809 emitEndOfAsmFile(M); 1810 1811 MMI = nullptr; 1812 1813 OutStreamer->Finish(); 1814 OutStreamer->reset(); 1815 OwnedMLI.reset(); 1816 OwnedMDT.reset(); 1817 1818 return false; 1819 } 1820 1821 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1822 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1823 if (Res.second) 1824 Res.first->second = createTempSymbol("exception"); 1825 return Res.first->second; 1826 } 1827 1828 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1829 this->MF = &MF; 1830 const Function &F = MF.getFunction(); 1831 1832 // Get the function symbol. 1833 if (!MAI->needsFunctionDescriptors()) { 1834 CurrentFnSym = getSymbol(&MF.getFunction()); 1835 } else { 1836 assert(TM.getTargetTriple().isOSAIX() && 1837 "Only AIX uses the function descriptor hooks."); 1838 // AIX is unique here in that the name of the symbol emitted for the 1839 // function body does not have the same name as the source function's 1840 // C-linkage name. 1841 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1842 " initalized first."); 1843 1844 // Get the function entry point symbol. 1845 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1846 } 1847 1848 CurrentFnSymForSize = CurrentFnSym; 1849 CurrentFnBegin = nullptr; 1850 CurrentSectionBeginSym = nullptr; 1851 MBBSectionRanges.clear(); 1852 MBBSectionExceptionSyms.clear(); 1853 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1854 if (F.hasFnAttribute("patchable-function-entry") || 1855 F.hasFnAttribute("function-instrument") || 1856 F.hasFnAttribute("xray-instruction-threshold") || 1857 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1858 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1859 CurrentFnBegin = createTempSymbol("func_begin"); 1860 if (NeedsLocalForSize) 1861 CurrentFnSymForSize = CurrentFnBegin; 1862 } 1863 1864 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1865 } 1866 1867 namespace { 1868 1869 // Keep track the alignment, constpool entries per Section. 1870 struct SectionCPs { 1871 MCSection *S; 1872 Align Alignment; 1873 SmallVector<unsigned, 4> CPEs; 1874 1875 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1876 }; 1877 1878 } // end anonymous namespace 1879 1880 /// EmitConstantPool - Print to the current output stream assembly 1881 /// representations of the constants in the constant pool MCP. This is 1882 /// used to print out constants which have been "spilled to memory" by 1883 /// the code generator. 1884 void AsmPrinter::emitConstantPool() { 1885 const MachineConstantPool *MCP = MF->getConstantPool(); 1886 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1887 if (CP.empty()) return; 1888 1889 // Calculate sections for constant pool entries. We collect entries to go into 1890 // the same section together to reduce amount of section switch statements. 1891 SmallVector<SectionCPs, 4> CPSections; 1892 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1893 const MachineConstantPoolEntry &CPE = CP[i]; 1894 Align Alignment = CPE.getAlign(); 1895 1896 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1897 1898 const Constant *C = nullptr; 1899 if (!CPE.isMachineConstantPoolEntry()) 1900 C = CPE.Val.ConstVal; 1901 1902 MCSection *S = getObjFileLowering().getSectionForConstant( 1903 getDataLayout(), Kind, C, Alignment); 1904 1905 // The number of sections are small, just do a linear search from the 1906 // last section to the first. 1907 bool Found = false; 1908 unsigned SecIdx = CPSections.size(); 1909 while (SecIdx != 0) { 1910 if (CPSections[--SecIdx].S == S) { 1911 Found = true; 1912 break; 1913 } 1914 } 1915 if (!Found) { 1916 SecIdx = CPSections.size(); 1917 CPSections.push_back(SectionCPs(S, Alignment)); 1918 } 1919 1920 if (Alignment > CPSections[SecIdx].Alignment) 1921 CPSections[SecIdx].Alignment = Alignment; 1922 CPSections[SecIdx].CPEs.push_back(i); 1923 } 1924 1925 // Now print stuff into the calculated sections. 1926 const MCSection *CurSection = nullptr; 1927 unsigned Offset = 0; 1928 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1929 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1930 unsigned CPI = CPSections[i].CPEs[j]; 1931 MCSymbol *Sym = GetCPISymbol(CPI); 1932 if (!Sym->isUndefined()) 1933 continue; 1934 1935 if (CurSection != CPSections[i].S) { 1936 OutStreamer->SwitchSection(CPSections[i].S); 1937 emitAlignment(Align(CPSections[i].Alignment)); 1938 CurSection = CPSections[i].S; 1939 Offset = 0; 1940 } 1941 1942 MachineConstantPoolEntry CPE = CP[CPI]; 1943 1944 // Emit inter-object padding for alignment. 1945 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1946 OutStreamer->emitZeros(NewOffset - Offset); 1947 1948 Type *Ty = CPE.getType(); 1949 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1950 1951 OutStreamer->emitLabel(Sym); 1952 if (CPE.isMachineConstantPoolEntry()) 1953 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1954 else 1955 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1956 } 1957 } 1958 } 1959 1960 // Print assembly representations of the jump tables used by the current 1961 // function. 1962 void AsmPrinter::emitJumpTableInfo() { 1963 const DataLayout &DL = MF->getDataLayout(); 1964 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1965 if (!MJTI) return; 1966 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1967 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1968 if (JT.empty()) return; 1969 1970 // Pick the directive to use to print the jump table entries, and switch to 1971 // the appropriate section. 1972 const Function &F = MF->getFunction(); 1973 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1974 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1975 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1976 F); 1977 if (JTInDiffSection) { 1978 // Drop it in the readonly section. 1979 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1980 OutStreamer->SwitchSection(ReadOnlySection); 1981 } 1982 1983 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1984 1985 // Jump tables in code sections are marked with a data_region directive 1986 // where that's supported. 1987 if (!JTInDiffSection) 1988 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1989 1990 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1991 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1992 1993 // If this jump table was deleted, ignore it. 1994 if (JTBBs.empty()) continue; 1995 1996 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1997 /// emit a .set directive for each unique entry. 1998 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1999 MAI->doesSetDirectiveSuppressReloc()) { 2000 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2001 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2002 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2003 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2004 const MachineBasicBlock *MBB = JTBBs[ii]; 2005 if (!EmittedSets.insert(MBB).second) 2006 continue; 2007 2008 // .set LJTSet, LBB32-base 2009 const MCExpr *LHS = 2010 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2011 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2012 MCBinaryExpr::createSub(LHS, Base, 2013 OutContext)); 2014 } 2015 } 2016 2017 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2018 // before each jump table. The first label is never referenced, but tells 2019 // the assembler and linker the extents of the jump table object. The 2020 // second label is actually referenced by the code. 2021 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2022 // FIXME: This doesn't have to have any specific name, just any randomly 2023 // named and numbered local label started with 'l' would work. Simplify 2024 // GetJTISymbol. 2025 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2026 2027 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2028 OutStreamer->emitLabel(JTISymbol); 2029 2030 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2031 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2032 } 2033 if (!JTInDiffSection) 2034 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2035 } 2036 2037 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2038 /// current stream. 2039 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2040 const MachineBasicBlock *MBB, 2041 unsigned UID) const { 2042 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2043 const MCExpr *Value = nullptr; 2044 switch (MJTI->getEntryKind()) { 2045 case MachineJumpTableInfo::EK_Inline: 2046 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2047 case MachineJumpTableInfo::EK_Custom32: 2048 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2049 MJTI, MBB, UID, OutContext); 2050 break; 2051 case MachineJumpTableInfo::EK_BlockAddress: 2052 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2053 // .word LBB123 2054 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2055 break; 2056 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2057 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2058 // with a relocation as gp-relative, e.g.: 2059 // .gprel32 LBB123 2060 MCSymbol *MBBSym = MBB->getSymbol(); 2061 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2062 return; 2063 } 2064 2065 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2066 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2067 // with a relocation as gp-relative, e.g.: 2068 // .gpdword LBB123 2069 MCSymbol *MBBSym = MBB->getSymbol(); 2070 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2071 return; 2072 } 2073 2074 case MachineJumpTableInfo::EK_LabelDifference32: { 2075 // Each entry is the address of the block minus the address of the jump 2076 // table. This is used for PIC jump tables where gprel32 is not supported. 2077 // e.g.: 2078 // .word LBB123 - LJTI1_2 2079 // If the .set directive avoids relocations, this is emitted as: 2080 // .set L4_5_set_123, LBB123 - LJTI1_2 2081 // .word L4_5_set_123 2082 if (MAI->doesSetDirectiveSuppressReloc()) { 2083 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2084 OutContext); 2085 break; 2086 } 2087 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2088 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2089 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2090 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2091 break; 2092 } 2093 } 2094 2095 assert(Value && "Unknown entry kind!"); 2096 2097 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2098 OutStreamer->emitValue(Value, EntrySize); 2099 } 2100 2101 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2102 /// special global used by LLVM. If so, emit it and return true, otherwise 2103 /// do nothing and return false. 2104 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2105 if (GV->getName() == "llvm.used") { 2106 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2107 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2108 return true; 2109 } 2110 2111 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2112 if (GV->getSection() == "llvm.metadata" || 2113 GV->hasAvailableExternallyLinkage()) 2114 return true; 2115 2116 if (!GV->hasAppendingLinkage()) return false; 2117 2118 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2119 2120 if (GV->getName() == "llvm.global_ctors") { 2121 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2122 /* isCtor */ true); 2123 2124 return true; 2125 } 2126 2127 if (GV->getName() == "llvm.global_dtors") { 2128 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2129 /* isCtor */ false); 2130 2131 return true; 2132 } 2133 2134 report_fatal_error("unknown special variable"); 2135 } 2136 2137 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2138 /// global in the specified llvm.used list. 2139 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2140 // Should be an array of 'i8*'. 2141 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2142 const GlobalValue *GV = 2143 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2144 if (GV) 2145 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2146 } 2147 } 2148 2149 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2150 const Constant *List, 2151 SmallVector<Structor, 8> &Structors) { 2152 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2153 // the init priority. 2154 if (!isa<ConstantArray>(List)) 2155 return; 2156 2157 // Gather the structors in a form that's convenient for sorting by priority. 2158 for (Value *O : cast<ConstantArray>(List)->operands()) { 2159 auto *CS = cast<ConstantStruct>(O); 2160 if (CS->getOperand(1)->isNullValue()) 2161 break; // Found a null terminator, skip the rest. 2162 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2163 if (!Priority) 2164 continue; // Malformed. 2165 Structors.push_back(Structor()); 2166 Structor &S = Structors.back(); 2167 S.Priority = Priority->getLimitedValue(65535); 2168 S.Func = CS->getOperand(1); 2169 if (!CS->getOperand(2)->isNullValue()) { 2170 if (TM.getTargetTriple().isOSAIX()) 2171 llvm::report_fatal_error( 2172 "associated data of XXStructor list is not yet supported on AIX"); 2173 S.ComdatKey = 2174 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2175 } 2176 } 2177 2178 // Emit the function pointers in the target-specific order 2179 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2180 return L.Priority < R.Priority; 2181 }); 2182 } 2183 2184 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2185 /// priority. 2186 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2187 bool IsCtor) { 2188 SmallVector<Structor, 8> Structors; 2189 preprocessXXStructorList(DL, List, Structors); 2190 if (Structors.empty()) 2191 return; 2192 2193 const Align Align = DL.getPointerPrefAlignment(); 2194 for (Structor &S : Structors) { 2195 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2196 const MCSymbol *KeySym = nullptr; 2197 if (GlobalValue *GV = S.ComdatKey) { 2198 if (GV->isDeclarationForLinker()) 2199 // If the associated variable is not defined in this module 2200 // (it might be available_externally, or have been an 2201 // available_externally definition that was dropped by the 2202 // EliminateAvailableExternally pass), some other TU 2203 // will provide its dynamic initializer. 2204 continue; 2205 2206 KeySym = getSymbol(GV); 2207 } 2208 2209 MCSection *OutputSection = 2210 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2211 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2212 OutStreamer->SwitchSection(OutputSection); 2213 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2214 emitAlignment(Align); 2215 emitXXStructor(DL, S.Func); 2216 } 2217 } 2218 2219 void AsmPrinter::emitModuleIdents(Module &M) { 2220 if (!MAI->hasIdentDirective()) 2221 return; 2222 2223 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2224 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2225 const MDNode *N = NMD->getOperand(i); 2226 assert(N->getNumOperands() == 1 && 2227 "llvm.ident metadata entry can have only one operand"); 2228 const MDString *S = cast<MDString>(N->getOperand(0)); 2229 OutStreamer->emitIdent(S->getString()); 2230 } 2231 } 2232 } 2233 2234 void AsmPrinter::emitModuleCommandLines(Module &M) { 2235 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2236 if (!CommandLine) 2237 return; 2238 2239 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2240 if (!NMD || !NMD->getNumOperands()) 2241 return; 2242 2243 OutStreamer->PushSection(); 2244 OutStreamer->SwitchSection(CommandLine); 2245 OutStreamer->emitZeros(1); 2246 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2247 const MDNode *N = NMD->getOperand(i); 2248 assert(N->getNumOperands() == 1 && 2249 "llvm.commandline metadata entry can have only one operand"); 2250 const MDString *S = cast<MDString>(N->getOperand(0)); 2251 OutStreamer->emitBytes(S->getString()); 2252 OutStreamer->emitZeros(1); 2253 } 2254 OutStreamer->PopSection(); 2255 } 2256 2257 //===--------------------------------------------------------------------===// 2258 // Emission and print routines 2259 // 2260 2261 /// Emit a byte directive and value. 2262 /// 2263 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2264 2265 /// Emit a short directive and value. 2266 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2267 2268 /// Emit a long directive and value. 2269 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2270 2271 /// Emit a long long directive and value. 2272 void AsmPrinter::emitInt64(uint64_t Value) const { 2273 OutStreamer->emitInt64(Value); 2274 } 2275 2276 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2277 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2278 /// .set if it avoids relocations. 2279 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2280 unsigned Size) const { 2281 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2282 } 2283 2284 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2285 /// where the size in bytes of the directive is specified by Size and Label 2286 /// specifies the label. This implicitly uses .set if it is available. 2287 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2288 unsigned Size, 2289 bool IsSectionRelative) const { 2290 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2291 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2292 if (Size > 4) 2293 OutStreamer->emitZeros(Size - 4); 2294 return; 2295 } 2296 2297 // Emit Label+Offset (or just Label if Offset is zero) 2298 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2299 if (Offset) 2300 Expr = MCBinaryExpr::createAdd( 2301 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2302 2303 OutStreamer->emitValue(Expr, Size); 2304 } 2305 2306 //===----------------------------------------------------------------------===// 2307 2308 // EmitAlignment - Emit an alignment directive to the specified power of 2309 // two boundary. If a global value is specified, and if that global has 2310 // an explicit alignment requested, it will override the alignment request 2311 // if required for correctness. 2312 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2313 if (GV) 2314 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2315 2316 if (Alignment == Align(1)) 2317 return; // 1-byte aligned: no need to emit alignment. 2318 2319 if (getCurrentSection()->getKind().isText()) 2320 OutStreamer->emitCodeAlignment(Alignment.value()); 2321 else 2322 OutStreamer->emitValueToAlignment(Alignment.value()); 2323 } 2324 2325 //===----------------------------------------------------------------------===// 2326 // Constant emission. 2327 //===----------------------------------------------------------------------===// 2328 2329 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2330 MCContext &Ctx = OutContext; 2331 2332 if (CV->isNullValue() || isa<UndefValue>(CV)) 2333 return MCConstantExpr::create(0, Ctx); 2334 2335 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2336 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2337 2338 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2339 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2340 2341 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2342 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2343 2344 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2345 if (!CE) { 2346 llvm_unreachable("Unknown constant value to lower!"); 2347 } 2348 2349 switch (CE->getOpcode()) { 2350 case Instruction::AddrSpaceCast: { 2351 const Constant *Op = CE->getOperand(0); 2352 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2353 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2354 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2355 return lowerConstant(Op); 2356 2357 // Fallthrough to error. 2358 LLVM_FALLTHROUGH; 2359 } 2360 default: { 2361 // If the code isn't optimized, there may be outstanding folding 2362 // opportunities. Attempt to fold the expression using DataLayout as a 2363 // last resort before giving up. 2364 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2365 if (C != CE) 2366 return lowerConstant(C); 2367 2368 // Otherwise report the problem to the user. 2369 std::string S; 2370 raw_string_ostream OS(S); 2371 OS << "Unsupported expression in static initializer: "; 2372 CE->printAsOperand(OS, /*PrintType=*/false, 2373 !MF ? nullptr : MF->getFunction().getParent()); 2374 report_fatal_error(OS.str()); 2375 } 2376 case Instruction::GetElementPtr: { 2377 // Generate a symbolic expression for the byte address 2378 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2379 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2380 2381 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2382 if (!OffsetAI) 2383 return Base; 2384 2385 int64_t Offset = OffsetAI.getSExtValue(); 2386 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2387 Ctx); 2388 } 2389 2390 case Instruction::Trunc: 2391 // We emit the value and depend on the assembler to truncate the generated 2392 // expression properly. This is important for differences between 2393 // blockaddress labels. Since the two labels are in the same function, it 2394 // is reasonable to treat their delta as a 32-bit value. 2395 LLVM_FALLTHROUGH; 2396 case Instruction::BitCast: 2397 return lowerConstant(CE->getOperand(0)); 2398 2399 case Instruction::IntToPtr: { 2400 const DataLayout &DL = getDataLayout(); 2401 2402 // Handle casts to pointers by changing them into casts to the appropriate 2403 // integer type. This promotes constant folding and simplifies this code. 2404 Constant *Op = CE->getOperand(0); 2405 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2406 false/*ZExt*/); 2407 return lowerConstant(Op); 2408 } 2409 2410 case Instruction::PtrToInt: { 2411 const DataLayout &DL = getDataLayout(); 2412 2413 // Support only foldable casts to/from pointers that can be eliminated by 2414 // changing the pointer to the appropriately sized integer type. 2415 Constant *Op = CE->getOperand(0); 2416 Type *Ty = CE->getType(); 2417 2418 const MCExpr *OpExpr = lowerConstant(Op); 2419 2420 // We can emit the pointer value into this slot if the slot is an 2421 // integer slot equal to the size of the pointer. 2422 // 2423 // If the pointer is larger than the resultant integer, then 2424 // as with Trunc just depend on the assembler to truncate it. 2425 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2426 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2427 return OpExpr; 2428 2429 // Otherwise the pointer is smaller than the resultant integer, mask off 2430 // the high bits so we are sure to get a proper truncation if the input is 2431 // a constant expr. 2432 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2433 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2434 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2435 } 2436 2437 case Instruction::Sub: { 2438 GlobalValue *LHSGV; 2439 APInt LHSOffset; 2440 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2441 getDataLayout())) { 2442 GlobalValue *RHSGV; 2443 APInt RHSOffset; 2444 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2445 getDataLayout())) { 2446 const MCExpr *RelocExpr = 2447 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2448 if (!RelocExpr) 2449 RelocExpr = MCBinaryExpr::createSub( 2450 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2451 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2452 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2453 if (Addend != 0) 2454 RelocExpr = MCBinaryExpr::createAdd( 2455 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2456 return RelocExpr; 2457 } 2458 } 2459 } 2460 // else fallthrough 2461 LLVM_FALLTHROUGH; 2462 2463 // The MC library also has a right-shift operator, but it isn't consistently 2464 // signed or unsigned between different targets. 2465 case Instruction::Add: 2466 case Instruction::Mul: 2467 case Instruction::SDiv: 2468 case Instruction::SRem: 2469 case Instruction::Shl: 2470 case Instruction::And: 2471 case Instruction::Or: 2472 case Instruction::Xor: { 2473 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2474 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2475 switch (CE->getOpcode()) { 2476 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2477 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2478 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2479 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2480 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2481 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2482 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2483 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2484 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2485 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2486 } 2487 } 2488 } 2489 } 2490 2491 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2492 AsmPrinter &AP, 2493 const Constant *BaseCV = nullptr, 2494 uint64_t Offset = 0); 2495 2496 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2497 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2498 2499 /// isRepeatedByteSequence - Determine whether the given value is 2500 /// composed of a repeated sequence of identical bytes and return the 2501 /// byte value. If it is not a repeated sequence, return -1. 2502 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2503 StringRef Data = V->getRawDataValues(); 2504 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2505 char C = Data[0]; 2506 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2507 if (Data[i] != C) return -1; 2508 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2509 } 2510 2511 /// isRepeatedByteSequence - Determine whether the given value is 2512 /// composed of a repeated sequence of identical bytes and return the 2513 /// byte value. If it is not a repeated sequence, return -1. 2514 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2515 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2516 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2517 assert(Size % 8 == 0); 2518 2519 // Extend the element to take zero padding into account. 2520 APInt Value = CI->getValue().zextOrSelf(Size); 2521 if (!Value.isSplat(8)) 2522 return -1; 2523 2524 return Value.zextOrTrunc(8).getZExtValue(); 2525 } 2526 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2527 // Make sure all array elements are sequences of the same repeated 2528 // byte. 2529 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2530 Constant *Op0 = CA->getOperand(0); 2531 int Byte = isRepeatedByteSequence(Op0, DL); 2532 if (Byte == -1) 2533 return -1; 2534 2535 // All array elements must be equal. 2536 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2537 if (CA->getOperand(i) != Op0) 2538 return -1; 2539 return Byte; 2540 } 2541 2542 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2543 return isRepeatedByteSequence(CDS); 2544 2545 return -1; 2546 } 2547 2548 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2549 const ConstantDataSequential *CDS, 2550 AsmPrinter &AP) { 2551 // See if we can aggregate this into a .fill, if so, emit it as such. 2552 int Value = isRepeatedByteSequence(CDS, DL); 2553 if (Value != -1) { 2554 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2555 // Don't emit a 1-byte object as a .fill. 2556 if (Bytes > 1) 2557 return AP.OutStreamer->emitFill(Bytes, Value); 2558 } 2559 2560 // If this can be emitted with .ascii/.asciz, emit it as such. 2561 if (CDS->isString()) 2562 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2563 2564 // Otherwise, emit the values in successive locations. 2565 unsigned ElementByteSize = CDS->getElementByteSize(); 2566 if (isa<IntegerType>(CDS->getElementType())) { 2567 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2568 if (AP.isVerbose()) 2569 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2570 CDS->getElementAsInteger(i)); 2571 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2572 ElementByteSize); 2573 } 2574 } else { 2575 Type *ET = CDS->getElementType(); 2576 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2577 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2578 } 2579 2580 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2581 unsigned EmittedSize = 2582 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2583 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2584 if (unsigned Padding = Size - EmittedSize) 2585 AP.OutStreamer->emitZeros(Padding); 2586 } 2587 2588 static void emitGlobalConstantArray(const DataLayout &DL, 2589 const ConstantArray *CA, AsmPrinter &AP, 2590 const Constant *BaseCV, uint64_t Offset) { 2591 // See if we can aggregate some values. Make sure it can be 2592 // represented as a series of bytes of the constant value. 2593 int Value = isRepeatedByteSequence(CA, DL); 2594 2595 if (Value != -1) { 2596 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2597 AP.OutStreamer->emitFill(Bytes, Value); 2598 } 2599 else { 2600 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2601 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2602 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2603 } 2604 } 2605 } 2606 2607 static void emitGlobalConstantVector(const DataLayout &DL, 2608 const ConstantVector *CV, AsmPrinter &AP) { 2609 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2610 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2611 2612 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2613 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2614 CV->getType()->getNumElements(); 2615 if (unsigned Padding = Size - EmittedSize) 2616 AP.OutStreamer->emitZeros(Padding); 2617 } 2618 2619 static void emitGlobalConstantStruct(const DataLayout &DL, 2620 const ConstantStruct *CS, AsmPrinter &AP, 2621 const Constant *BaseCV, uint64_t Offset) { 2622 // Print the fields in successive locations. Pad to align if needed! 2623 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2624 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2625 uint64_t SizeSoFar = 0; 2626 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2627 const Constant *Field = CS->getOperand(i); 2628 2629 // Print the actual field value. 2630 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2631 2632 // Check if padding is needed and insert one or more 0s. 2633 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2634 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2635 - Layout->getElementOffset(i)) - FieldSize; 2636 SizeSoFar += FieldSize + PadSize; 2637 2638 // Insert padding - this may include padding to increase the size of the 2639 // current field up to the ABI size (if the struct is not packed) as well 2640 // as padding to ensure that the next field starts at the right offset. 2641 AP.OutStreamer->emitZeros(PadSize); 2642 } 2643 assert(SizeSoFar == Layout->getSizeInBytes() && 2644 "Layout of constant struct may be incorrect!"); 2645 } 2646 2647 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2648 assert(ET && "Unknown float type"); 2649 APInt API = APF.bitcastToAPInt(); 2650 2651 // First print a comment with what we think the original floating-point value 2652 // should have been. 2653 if (AP.isVerbose()) { 2654 SmallString<8> StrVal; 2655 APF.toString(StrVal); 2656 ET->print(AP.OutStreamer->GetCommentOS()); 2657 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2658 } 2659 2660 // Now iterate through the APInt chunks, emitting them in endian-correct 2661 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2662 // floats). 2663 unsigned NumBytes = API.getBitWidth() / 8; 2664 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2665 const uint64_t *p = API.getRawData(); 2666 2667 // PPC's long double has odd notions of endianness compared to how LLVM 2668 // handles it: p[0] goes first for *big* endian on PPC. 2669 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2670 int Chunk = API.getNumWords() - 1; 2671 2672 if (TrailingBytes) 2673 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2674 2675 for (; Chunk >= 0; --Chunk) 2676 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2677 } else { 2678 unsigned Chunk; 2679 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2680 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2681 2682 if (TrailingBytes) 2683 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2684 } 2685 2686 // Emit the tail padding for the long double. 2687 const DataLayout &DL = AP.getDataLayout(); 2688 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2689 } 2690 2691 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2692 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2693 } 2694 2695 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2696 const DataLayout &DL = AP.getDataLayout(); 2697 unsigned BitWidth = CI->getBitWidth(); 2698 2699 // Copy the value as we may massage the layout for constants whose bit width 2700 // is not a multiple of 64-bits. 2701 APInt Realigned(CI->getValue()); 2702 uint64_t ExtraBits = 0; 2703 unsigned ExtraBitsSize = BitWidth & 63; 2704 2705 if (ExtraBitsSize) { 2706 // The bit width of the data is not a multiple of 64-bits. 2707 // The extra bits are expected to be at the end of the chunk of the memory. 2708 // Little endian: 2709 // * Nothing to be done, just record the extra bits to emit. 2710 // Big endian: 2711 // * Record the extra bits to emit. 2712 // * Realign the raw data to emit the chunks of 64-bits. 2713 if (DL.isBigEndian()) { 2714 // Basically the structure of the raw data is a chunk of 64-bits cells: 2715 // 0 1 BitWidth / 64 2716 // [chunk1][chunk2] ... [chunkN]. 2717 // The most significant chunk is chunkN and it should be emitted first. 2718 // However, due to the alignment issue chunkN contains useless bits. 2719 // Realign the chunks so that they contain only useful information: 2720 // ExtraBits 0 1 (BitWidth / 64) - 1 2721 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2722 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2723 ExtraBits = Realigned.getRawData()[0] & 2724 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2725 Realigned.lshrInPlace(ExtraBitsSize); 2726 } else 2727 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2728 } 2729 2730 // We don't expect assemblers to support integer data directives 2731 // for more than 64 bits, so we emit the data in at most 64-bit 2732 // quantities at a time. 2733 const uint64_t *RawData = Realigned.getRawData(); 2734 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2735 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2736 AP.OutStreamer->emitIntValue(Val, 8); 2737 } 2738 2739 if (ExtraBitsSize) { 2740 // Emit the extra bits after the 64-bits chunks. 2741 2742 // Emit a directive that fills the expected size. 2743 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2744 Size -= (BitWidth / 64) * 8; 2745 assert(Size && Size * 8 >= ExtraBitsSize && 2746 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2747 == ExtraBits && "Directive too small for extra bits."); 2748 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2749 } 2750 } 2751 2752 /// Transform a not absolute MCExpr containing a reference to a GOT 2753 /// equivalent global, by a target specific GOT pc relative access to the 2754 /// final symbol. 2755 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2756 const Constant *BaseCst, 2757 uint64_t Offset) { 2758 // The global @foo below illustrates a global that uses a got equivalent. 2759 // 2760 // @bar = global i32 42 2761 // @gotequiv = private unnamed_addr constant i32* @bar 2762 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2763 // i64 ptrtoint (i32* @foo to i64)) 2764 // to i32) 2765 // 2766 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2767 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2768 // form: 2769 // 2770 // foo = cstexpr, where 2771 // cstexpr := <gotequiv> - "." + <cst> 2772 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2773 // 2774 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2775 // 2776 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2777 // gotpcrelcst := <offset from @foo base> + <cst> 2778 MCValue MV; 2779 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2780 return; 2781 const MCSymbolRefExpr *SymA = MV.getSymA(); 2782 if (!SymA) 2783 return; 2784 2785 // Check that GOT equivalent symbol is cached. 2786 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2787 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2788 return; 2789 2790 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2791 if (!BaseGV) 2792 return; 2793 2794 // Check for a valid base symbol 2795 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2796 const MCSymbolRefExpr *SymB = MV.getSymB(); 2797 2798 if (!SymB || BaseSym != &SymB->getSymbol()) 2799 return; 2800 2801 // Make sure to match: 2802 // 2803 // gotpcrelcst := <offset from @foo base> + <cst> 2804 // 2805 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2806 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2807 // if the target knows how to encode it. 2808 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2809 if (GOTPCRelCst < 0) 2810 return; 2811 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2812 return; 2813 2814 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2815 // 2816 // bar: 2817 // .long 42 2818 // gotequiv: 2819 // .quad bar 2820 // foo: 2821 // .long gotequiv - "." + <cst> 2822 // 2823 // is replaced by the target specific equivalent to: 2824 // 2825 // bar: 2826 // .long 42 2827 // foo: 2828 // .long bar@GOTPCREL+<gotpcrelcst> 2829 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2830 const GlobalVariable *GV = Result.first; 2831 int NumUses = (int)Result.second; 2832 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2833 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2834 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2835 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2836 2837 // Update GOT equivalent usage information 2838 --NumUses; 2839 if (NumUses >= 0) 2840 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2841 } 2842 2843 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2844 AsmPrinter &AP, const Constant *BaseCV, 2845 uint64_t Offset) { 2846 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2847 2848 // Globals with sub-elements such as combinations of arrays and structs 2849 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2850 // constant symbol base and the current position with BaseCV and Offset. 2851 if (!BaseCV && CV->hasOneUse()) 2852 BaseCV = dyn_cast<Constant>(CV->user_back()); 2853 2854 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2855 return AP.OutStreamer->emitZeros(Size); 2856 2857 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2858 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2859 2860 if (StoreSize <= 8) { 2861 if (AP.isVerbose()) 2862 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2863 CI->getZExtValue()); 2864 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2865 } else { 2866 emitGlobalConstantLargeInt(CI, AP); 2867 } 2868 2869 // Emit tail padding if needed 2870 if (Size != StoreSize) 2871 AP.OutStreamer->emitZeros(Size - StoreSize); 2872 2873 return; 2874 } 2875 2876 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2877 return emitGlobalConstantFP(CFP, AP); 2878 2879 if (isa<ConstantPointerNull>(CV)) { 2880 AP.OutStreamer->emitIntValue(0, Size); 2881 return; 2882 } 2883 2884 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2885 return emitGlobalConstantDataSequential(DL, CDS, AP); 2886 2887 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2888 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2889 2890 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2891 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2892 2893 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2894 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2895 // vectors). 2896 if (CE->getOpcode() == Instruction::BitCast) 2897 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2898 2899 if (Size > 8) { 2900 // If the constant expression's size is greater than 64-bits, then we have 2901 // to emit the value in chunks. Try to constant fold the value and emit it 2902 // that way. 2903 Constant *New = ConstantFoldConstant(CE, DL); 2904 if (New != CE) 2905 return emitGlobalConstantImpl(DL, New, AP); 2906 } 2907 } 2908 2909 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2910 return emitGlobalConstantVector(DL, V, AP); 2911 2912 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2913 // thread the streamer with EmitValue. 2914 const MCExpr *ME = AP.lowerConstant(CV); 2915 2916 // Since lowerConstant already folded and got rid of all IR pointer and 2917 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2918 // directly. 2919 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2920 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2921 2922 AP.OutStreamer->emitValue(ME, Size); 2923 } 2924 2925 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2926 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2927 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2928 if (Size) 2929 emitGlobalConstantImpl(DL, CV, *this); 2930 else if (MAI->hasSubsectionsViaSymbols()) { 2931 // If the global has zero size, emit a single byte so that two labels don't 2932 // look like they are at the same location. 2933 OutStreamer->emitIntValue(0, 1); 2934 } 2935 } 2936 2937 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2938 // Target doesn't support this yet! 2939 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2940 } 2941 2942 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2943 if (Offset > 0) 2944 OS << '+' << Offset; 2945 else if (Offset < 0) 2946 OS << Offset; 2947 } 2948 2949 void AsmPrinter::emitNops(unsigned N) { 2950 MCInst Nop; 2951 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2952 for (; N; --N) 2953 EmitToStreamer(*OutStreamer, Nop); 2954 } 2955 2956 //===----------------------------------------------------------------------===// 2957 // Symbol Lowering Routines. 2958 //===----------------------------------------------------------------------===// 2959 2960 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2961 return OutContext.createTempSymbol(Name, true); 2962 } 2963 2964 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2965 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2966 } 2967 2968 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2969 return MMI->getAddrLabelSymbol(BB); 2970 } 2971 2972 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2973 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2974 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2975 const MachineConstantPoolEntry &CPE = 2976 MF->getConstantPool()->getConstants()[CPID]; 2977 if (!CPE.isMachineConstantPoolEntry()) { 2978 const DataLayout &DL = MF->getDataLayout(); 2979 SectionKind Kind = CPE.getSectionKind(&DL); 2980 const Constant *C = CPE.Val.ConstVal; 2981 Align Alignment = CPE.Alignment; 2982 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2983 getObjFileLowering().getSectionForConstant(DL, Kind, C, 2984 Alignment))) { 2985 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2986 if (Sym->isUndefined()) 2987 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2988 return Sym; 2989 } 2990 } 2991 } 2992 } 2993 2994 const DataLayout &DL = getDataLayout(); 2995 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2996 "CPI" + Twine(getFunctionNumber()) + "_" + 2997 Twine(CPID)); 2998 } 2999 3000 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3001 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3002 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3003 } 3004 3005 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3006 /// FIXME: privatize to AsmPrinter. 3007 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3008 const DataLayout &DL = getDataLayout(); 3009 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3010 Twine(getFunctionNumber()) + "_" + 3011 Twine(UID) + "_set_" + Twine(MBBID)); 3012 } 3013 3014 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3015 StringRef Suffix) const { 3016 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3017 } 3018 3019 /// Return the MCSymbol for the specified ExternalSymbol. 3020 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3021 SmallString<60> NameStr; 3022 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3023 return OutContext.getOrCreateSymbol(NameStr); 3024 } 3025 3026 /// PrintParentLoopComment - Print comments about parent loops of this one. 3027 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3028 unsigned FunctionNumber) { 3029 if (!Loop) return; 3030 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3031 OS.indent(Loop->getLoopDepth()*2) 3032 << "Parent Loop BB" << FunctionNumber << "_" 3033 << Loop->getHeader()->getNumber() 3034 << " Depth=" << Loop->getLoopDepth() << '\n'; 3035 } 3036 3037 /// PrintChildLoopComment - Print comments about child loops within 3038 /// the loop for this basic block, with nesting. 3039 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3040 unsigned FunctionNumber) { 3041 // Add child loop information 3042 for (const MachineLoop *CL : *Loop) { 3043 OS.indent(CL->getLoopDepth()*2) 3044 << "Child Loop BB" << FunctionNumber << "_" 3045 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3046 << '\n'; 3047 PrintChildLoopComment(OS, CL, FunctionNumber); 3048 } 3049 } 3050 3051 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3052 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3053 const MachineLoopInfo *LI, 3054 const AsmPrinter &AP) { 3055 // Add loop depth information 3056 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3057 if (!Loop) return; 3058 3059 MachineBasicBlock *Header = Loop->getHeader(); 3060 assert(Header && "No header for loop"); 3061 3062 // If this block is not a loop header, just print out what is the loop header 3063 // and return. 3064 if (Header != &MBB) { 3065 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3066 Twine(AP.getFunctionNumber())+"_" + 3067 Twine(Loop->getHeader()->getNumber())+ 3068 " Depth="+Twine(Loop->getLoopDepth())); 3069 return; 3070 } 3071 3072 // Otherwise, it is a loop header. Print out information about child and 3073 // parent loops. 3074 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3075 3076 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3077 3078 OS << "=>"; 3079 OS.indent(Loop->getLoopDepth()*2-2); 3080 3081 OS << "This "; 3082 if (Loop->isInnermost()) 3083 OS << "Inner "; 3084 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3085 3086 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3087 } 3088 3089 /// emitBasicBlockStart - This method prints the label for the specified 3090 /// MachineBasicBlock, an alignment (if present) and a comment describing 3091 /// it if appropriate. 3092 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3093 // End the previous funclet and start a new one. 3094 if (MBB.isEHFuncletEntry()) { 3095 for (const HandlerInfo &HI : Handlers) { 3096 HI.Handler->endFunclet(); 3097 HI.Handler->beginFunclet(MBB); 3098 } 3099 } 3100 3101 // Emit an alignment directive for this block, if needed. 3102 const Align Alignment = MBB.getAlignment(); 3103 if (Alignment != Align(1)) 3104 emitAlignment(Alignment); 3105 3106 // Switch to a new section if this basic block must begin a section. The 3107 // entry block is always placed in the function section and is handled 3108 // separately. 3109 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3110 OutStreamer->SwitchSection( 3111 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3112 MBB, TM)); 3113 CurrentSectionBeginSym = MBB.getSymbol(); 3114 } 3115 3116 // If the block has its address taken, emit any labels that were used to 3117 // reference the block. It is possible that there is more than one label 3118 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3119 // the references were generated. 3120 if (MBB.hasAddressTaken()) { 3121 const BasicBlock *BB = MBB.getBasicBlock(); 3122 if (isVerbose()) 3123 OutStreamer->AddComment("Block address taken"); 3124 3125 // MBBs can have their address taken as part of CodeGen without having 3126 // their corresponding BB's address taken in IR 3127 if (BB->hasAddressTaken()) 3128 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3129 OutStreamer->emitLabel(Sym); 3130 } 3131 3132 // Print some verbose block comments. 3133 if (isVerbose()) { 3134 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3135 if (BB->hasName()) { 3136 BB->printAsOperand(OutStreamer->GetCommentOS(), 3137 /*PrintType=*/false, BB->getModule()); 3138 OutStreamer->GetCommentOS() << '\n'; 3139 } 3140 } 3141 3142 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3143 emitBasicBlockLoopComments(MBB, MLI, *this); 3144 } 3145 3146 // Print the main label for the block. 3147 if (shouldEmitLabelForBasicBlock(MBB)) { 3148 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3149 OutStreamer->AddComment("Label of block must be emitted"); 3150 OutStreamer->emitLabel(MBB.getSymbol()); 3151 } else { 3152 if (isVerbose()) { 3153 // NOTE: Want this comment at start of line, don't emit with AddComment. 3154 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3155 false); 3156 } 3157 } 3158 3159 // With BB sections, each basic block must handle CFI information on its own 3160 // if it begins a section (Entry block is handled separately by 3161 // AsmPrinterHandler::beginFunction). 3162 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3163 for (const HandlerInfo &HI : Handlers) 3164 HI.Handler->beginBasicBlock(MBB); 3165 } 3166 3167 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3168 // Check if CFI information needs to be updated for this MBB with basic block 3169 // sections. 3170 if (MBB.isEndSection()) 3171 for (const HandlerInfo &HI : Handlers) 3172 HI.Handler->endBasicBlock(MBB); 3173 } 3174 3175 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3176 bool IsDefinition) const { 3177 MCSymbolAttr Attr = MCSA_Invalid; 3178 3179 switch (Visibility) { 3180 default: break; 3181 case GlobalValue::HiddenVisibility: 3182 if (IsDefinition) 3183 Attr = MAI->getHiddenVisibilityAttr(); 3184 else 3185 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3186 break; 3187 case GlobalValue::ProtectedVisibility: 3188 Attr = MAI->getProtectedVisibilityAttr(); 3189 break; 3190 } 3191 3192 if (Attr != MCSA_Invalid) 3193 OutStreamer->emitSymbolAttribute(Sym, Attr); 3194 } 3195 3196 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3197 const MachineBasicBlock &MBB) const { 3198 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3199 // in the labels mode (option `=labels`) and every section beginning in the 3200 // sections mode (`=all` and `=list=`). 3201 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3202 return true; 3203 // A label is needed for any block with at least one predecessor (when that 3204 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3205 // entry, or if a label is forced). 3206 return !MBB.pred_empty() && 3207 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3208 MBB.hasLabelMustBeEmitted()); 3209 } 3210 3211 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3212 /// exactly one predecessor and the control transfer mechanism between 3213 /// the predecessor and this block is a fall-through. 3214 bool AsmPrinter:: 3215 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3216 // If this is a landing pad, it isn't a fall through. If it has no preds, 3217 // then nothing falls through to it. 3218 if (MBB->isEHPad() || MBB->pred_empty()) 3219 return false; 3220 3221 // If there isn't exactly one predecessor, it can't be a fall through. 3222 if (MBB->pred_size() > 1) 3223 return false; 3224 3225 // The predecessor has to be immediately before this block. 3226 MachineBasicBlock *Pred = *MBB->pred_begin(); 3227 if (!Pred->isLayoutSuccessor(MBB)) 3228 return false; 3229 3230 // If the block is completely empty, then it definitely does fall through. 3231 if (Pred->empty()) 3232 return true; 3233 3234 // Check the terminators in the previous blocks 3235 for (const auto &MI : Pred->terminators()) { 3236 // If it is not a simple branch, we are in a table somewhere. 3237 if (!MI.isBranch() || MI.isIndirectBranch()) 3238 return false; 3239 3240 // If we are the operands of one of the branches, this is not a fall 3241 // through. Note that targets with delay slots will usually bundle 3242 // terminators with the delay slot instruction. 3243 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3244 if (OP->isJTI()) 3245 return false; 3246 if (OP->isMBB() && OP->getMBB() == MBB) 3247 return false; 3248 } 3249 } 3250 3251 return true; 3252 } 3253 3254 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3255 if (!S.usesMetadata()) 3256 return nullptr; 3257 3258 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3259 gcp_map_type::iterator GCPI = GCMap.find(&S); 3260 if (GCPI != GCMap.end()) 3261 return GCPI->second.get(); 3262 3263 auto Name = S.getName(); 3264 3265 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3266 GCMetadataPrinterRegistry::entries()) 3267 if (Name == GCMetaPrinter.getName()) { 3268 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3269 GMP->S = &S; 3270 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3271 return IterBool.first->second.get(); 3272 } 3273 3274 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3275 } 3276 3277 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3278 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3279 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3280 bool NeedsDefault = false; 3281 if (MI->begin() == MI->end()) 3282 // No GC strategy, use the default format. 3283 NeedsDefault = true; 3284 else 3285 for (auto &I : *MI) { 3286 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3287 if (MP->emitStackMaps(SM, *this)) 3288 continue; 3289 // The strategy doesn't have printer or doesn't emit custom stack maps. 3290 // Use the default format. 3291 NeedsDefault = true; 3292 } 3293 3294 if (NeedsDefault) 3295 SM.serializeToStackMapSection(); 3296 } 3297 3298 /// Pin vtable to this file. 3299 AsmPrinterHandler::~AsmPrinterHandler() = default; 3300 3301 void AsmPrinterHandler::markFunctionEnd() {} 3302 3303 // In the binary's "xray_instr_map" section, an array of these function entries 3304 // describes each instrumentation point. When XRay patches your code, the index 3305 // into this table will be given to your handler as a patch point identifier. 3306 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3307 auto Kind8 = static_cast<uint8_t>(Kind); 3308 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3309 Out->emitBinaryData( 3310 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3311 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3312 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3313 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3314 Out->emitZeros(Padding); 3315 } 3316 3317 void AsmPrinter::emitXRayTable() { 3318 if (Sleds.empty()) 3319 return; 3320 3321 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3322 const Function &F = MF->getFunction(); 3323 MCSection *InstMap = nullptr; 3324 MCSection *FnSledIndex = nullptr; 3325 const Triple &TT = TM.getTargetTriple(); 3326 // Use PC-relative addresses on all targets. 3327 if (TT.isOSBinFormatELF()) { 3328 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3329 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3330 StringRef GroupName; 3331 if (F.hasComdat()) { 3332 Flags |= ELF::SHF_GROUP; 3333 GroupName = F.getComdat()->getName(); 3334 } 3335 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3336 Flags, 0, GroupName, 3337 MCSection::NonUniqueID, LinkedToSym); 3338 3339 if (!TM.Options.XRayOmitFunctionIndex) 3340 FnSledIndex = OutContext.getELFSection( 3341 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3342 GroupName, MCSection::NonUniqueID, LinkedToSym); 3343 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3344 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3345 SectionKind::getReadOnlyWithRel()); 3346 if (!TM.Options.XRayOmitFunctionIndex) 3347 FnSledIndex = OutContext.getMachOSection( 3348 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3349 } else { 3350 llvm_unreachable("Unsupported target"); 3351 } 3352 3353 auto WordSizeBytes = MAI->getCodePointerSize(); 3354 3355 // Now we switch to the instrumentation map section. Because this is done 3356 // per-function, we are able to create an index entry that will represent the 3357 // range of sleds associated with a function. 3358 auto &Ctx = OutContext; 3359 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3360 OutStreamer->SwitchSection(InstMap); 3361 OutStreamer->emitLabel(SledsStart); 3362 for (const auto &Sled : Sleds) { 3363 MCSymbol *Dot = Ctx.createTempSymbol(); 3364 OutStreamer->emitLabel(Dot); 3365 OutStreamer->emitValueImpl( 3366 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3367 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3368 WordSizeBytes); 3369 OutStreamer->emitValueImpl( 3370 MCBinaryExpr::createSub( 3371 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3372 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3373 MCConstantExpr::create(WordSizeBytes, Ctx), 3374 Ctx), 3375 Ctx), 3376 WordSizeBytes); 3377 Sled.emit(WordSizeBytes, OutStreamer.get()); 3378 } 3379 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3380 OutStreamer->emitLabel(SledsEnd); 3381 3382 // We then emit a single entry in the index per function. We use the symbols 3383 // that bound the instrumentation map as the range for a specific function. 3384 // Each entry here will be 2 * word size aligned, as we're writing down two 3385 // pointers. This should work for both 32-bit and 64-bit platforms. 3386 if (FnSledIndex) { 3387 OutStreamer->SwitchSection(FnSledIndex); 3388 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3389 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3390 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3391 OutStreamer->SwitchSection(PrevSection); 3392 } 3393 Sleds.clear(); 3394 } 3395 3396 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3397 SledKind Kind, uint8_t Version) { 3398 const Function &F = MI.getMF()->getFunction(); 3399 auto Attr = F.getFnAttribute("function-instrument"); 3400 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3401 bool AlwaysInstrument = 3402 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3403 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3404 Kind = SledKind::LOG_ARGS_ENTER; 3405 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3406 AlwaysInstrument, &F, Version}); 3407 } 3408 3409 void AsmPrinter::emitPatchableFunctionEntries() { 3410 const Function &F = MF->getFunction(); 3411 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3412 (void)F.getFnAttribute("patchable-function-prefix") 3413 .getValueAsString() 3414 .getAsInteger(10, PatchableFunctionPrefix); 3415 (void)F.getFnAttribute("patchable-function-entry") 3416 .getValueAsString() 3417 .getAsInteger(10, PatchableFunctionEntry); 3418 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3419 return; 3420 const unsigned PointerSize = getPointerSize(); 3421 if (TM.getTargetTriple().isOSBinFormatELF()) { 3422 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3423 const MCSymbolELF *LinkedToSym = nullptr; 3424 StringRef GroupName; 3425 3426 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3427 // if we are using the integrated assembler. 3428 if (MAI->useIntegratedAssembler()) { 3429 Flags |= ELF::SHF_LINK_ORDER; 3430 if (F.hasComdat()) { 3431 Flags |= ELF::SHF_GROUP; 3432 GroupName = F.getComdat()->getName(); 3433 } 3434 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3435 } 3436 OutStreamer->SwitchSection(OutContext.getELFSection( 3437 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3438 MCSection::NonUniqueID, LinkedToSym)); 3439 emitAlignment(Align(PointerSize)); 3440 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3441 } 3442 } 3443 3444 uint16_t AsmPrinter::getDwarfVersion() const { 3445 return OutStreamer->getContext().getDwarfVersion(); 3446 } 3447 3448 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3449 OutStreamer->getContext().setDwarfVersion(Version); 3450 } 3451 3452 bool AsmPrinter::isDwarf64() const { 3453 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3454 } 3455 3456 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3457 return dwarf::getDwarfOffsetByteSize( 3458 OutStreamer->getContext().getDwarfFormat()); 3459 } 3460 3461 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3462 return dwarf::getUnitLengthFieldByteSize( 3463 OutStreamer->getContext().getDwarfFormat()); 3464 } 3465