1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/MCValue.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 static const char *const DWARFGroupName = "DWARF Emission"; 60 static const char *const DbgTimerName = "Debug Info Emission"; 61 static const char *const EHTimerName = "DWARF Exception Writer"; 62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 63 64 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 65 66 char AsmPrinter::ID = 0; 67 68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 69 static gcp_map_type &getGCMap(void *&P) { 70 if (!P) 71 P = new gcp_map_type(); 72 return *(gcp_map_type*)P; 73 } 74 75 76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 77 /// value in log2 form. This rounds up to the preferred alignment if possible 78 /// and legal. 79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 80 unsigned InBits = 0) { 81 unsigned NumBits = 0; 82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 83 NumBits = DL.getPreferredAlignmentLog(GVar); 84 85 // If InBits is specified, round it to it. 86 if (InBits > NumBits) 87 NumBits = InBits; 88 89 // If the GV has a specified alignment, take it into account. 90 if (GV->getAlignment() == 0) 91 return NumBits; 92 93 unsigned GVAlign = Log2_32(GV->getAlignment()); 94 95 // If the GVAlign is larger than NumBits, or if we are required to obey 96 // NumBits because the GV has an assigned section, obey it. 97 if (GVAlign > NumBits || GV->hasSection()) 98 NumBits = GVAlign; 99 return NumBits; 100 } 101 102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 105 LastMI(nullptr), LastFn(0), Counter(~0U) { 106 DD = nullptr; 107 MMI = nullptr; 108 LI = nullptr; 109 MF = nullptr; 110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 111 CurrentFnBegin = nullptr; 112 CurrentFnEnd = nullptr; 113 GCMetadataPrinters = nullptr; 114 VerboseAsm = OutStreamer->isVerboseAsm(); 115 } 116 117 AsmPrinter::~AsmPrinter() { 118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 119 120 if (GCMetadataPrinters) { 121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 122 123 delete &GCMap; 124 GCMetadataPrinters = nullptr; 125 } 126 } 127 128 /// getFunctionNumber - Return a unique ID for the current function. 129 /// 130 unsigned AsmPrinter::getFunctionNumber() const { 131 return MF->getFunctionNumber(); 132 } 133 134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 135 return *TM.getObjFileLowering(); 136 } 137 138 /// getDataLayout - Return information about data layout. 139 const DataLayout &AsmPrinter::getDataLayout() const { 140 return *TM.getDataLayout(); 141 } 142 143 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 144 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 145 return MF->getSubtarget<MCSubtargetInfo>(); 146 } 147 148 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 149 S.EmitInstruction(Inst, getSubtargetInfo()); 150 } 151 152 StringRef AsmPrinter::getTargetTriple() const { 153 return TM.getTargetTriple().str(); 154 } 155 156 /// getCurrentSection() - Return the current section we are emitting to. 157 const MCSection *AsmPrinter::getCurrentSection() const { 158 return OutStreamer->getCurrentSection().first; 159 } 160 161 162 163 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 164 AU.setPreservesAll(); 165 MachineFunctionPass::getAnalysisUsage(AU); 166 AU.addRequired<MachineModuleInfo>(); 167 AU.addRequired<GCModuleInfo>(); 168 if (isVerbose()) 169 AU.addRequired<MachineLoopInfo>(); 170 } 171 172 bool AsmPrinter::doInitialization(Module &M) { 173 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 174 175 // Initialize TargetLoweringObjectFile. 176 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 177 .Initialize(OutContext, TM); 178 179 OutStreamer->InitSections(false); 180 181 Mang = new Mangler(); 182 183 // Emit the version-min deplyment target directive if needed. 184 // 185 // FIXME: If we end up with a collection of these sorts of Darwin-specific 186 // or ELF-specific things, it may make sense to have a platform helper class 187 // that will work with the target helper class. For now keep it here, as the 188 // alternative is duplicated code in each of the target asm printers that 189 // use the directive, where it would need the same conditionalization 190 // anyway. 191 Triple TT(getTargetTriple()); 192 if (TT.isOSDarwin()) { 193 unsigned Major, Minor, Update; 194 TT.getOSVersion(Major, Minor, Update); 195 // If there is a version specified, Major will be non-zero. 196 if (Major) 197 OutStreamer->EmitVersionMin((TT.isMacOSX() ? 198 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 199 Major, Minor, Update); 200 } 201 202 // Allow the target to emit any magic that it wants at the start of the file. 203 EmitStartOfAsmFile(M); 204 205 // Very minimal debug info. It is ignored if we emit actual debug info. If we 206 // don't, this at least helps the user find where a global came from. 207 if (MAI->hasSingleParameterDotFile()) { 208 // .file "foo.c" 209 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 210 } 211 212 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 213 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 214 for (auto &I : *MI) 215 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 216 MP->beginAssembly(M, *MI, *this); 217 218 // Emit module-level inline asm if it exists. 219 if (!M.getModuleInlineAsm().empty()) { 220 // We're at the module level. Construct MCSubtarget from the default CPU 221 // and target triple. 222 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 223 TM.getTargetTriple().str(), TM.getTargetCPU(), 224 TM.getTargetFeatureString())); 225 OutStreamer->AddComment("Start of file scope inline assembly"); 226 OutStreamer->AddBlankLine(); 227 EmitInlineAsm(M.getModuleInlineAsm()+"\n", *STI, TM.Options.MCOptions); 228 OutStreamer->AddComment("End of file scope inline assembly"); 229 OutStreamer->AddBlankLine(); 230 } 231 232 if (MAI->doesSupportDebugInformation()) { 233 bool skip_dwarf = false; 234 if (TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 235 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 236 DbgTimerName, 237 CodeViewLineTablesGroupName)); 238 // FIXME: Don't emit DWARF debug info if there's at least one function 239 // with AddressSanitizer instrumentation. 240 // This is a band-aid fix for PR22032. 241 for (auto &F : M.functions()) { 242 if (F.hasFnAttribute(Attribute::SanitizeAddress)) { 243 skip_dwarf = true; 244 break; 245 } 246 } 247 } 248 if (!skip_dwarf) { 249 DD = new DwarfDebug(this, &M); 250 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 251 } 252 } 253 254 EHStreamer *ES = nullptr; 255 switch (MAI->getExceptionHandlingType()) { 256 case ExceptionHandling::None: 257 break; 258 case ExceptionHandling::SjLj: 259 case ExceptionHandling::DwarfCFI: 260 ES = new DwarfCFIException(this); 261 break; 262 case ExceptionHandling::ARM: 263 ES = new ARMException(this); 264 break; 265 case ExceptionHandling::WinEH: 266 switch (MAI->getWinEHEncodingType()) { 267 default: llvm_unreachable("unsupported unwinding information encoding"); 268 case WinEH::EncodingType::Invalid: 269 break; 270 case WinEH::EncodingType::X86: 271 case WinEH::EncodingType::Itanium: 272 ES = new WinException(this); 273 break; 274 } 275 break; 276 } 277 if (ES) 278 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 279 return false; 280 } 281 282 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 283 if (!MAI.hasWeakDefCanBeHiddenDirective()) 284 return false; 285 286 return canBeOmittedFromSymbolTable(GV); 287 } 288 289 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 290 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 291 switch (Linkage) { 292 case GlobalValue::CommonLinkage: 293 case GlobalValue::LinkOnceAnyLinkage: 294 case GlobalValue::LinkOnceODRLinkage: 295 case GlobalValue::WeakAnyLinkage: 296 case GlobalValue::WeakODRLinkage: 297 if (MAI->hasWeakDefDirective()) { 298 // .globl _foo 299 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 300 301 if (!canBeHidden(GV, *MAI)) 302 // .weak_definition _foo 303 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 304 else 305 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 306 } else if (MAI->hasLinkOnceDirective()) { 307 // .globl _foo 308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 309 //NOTE: linkonce is handled by the section the symbol was assigned to. 310 } else { 311 // .weak _foo 312 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 313 } 314 return; 315 case GlobalValue::AppendingLinkage: 316 // FIXME: appending linkage variables should go into a section of 317 // their name or something. For now, just emit them as external. 318 case GlobalValue::ExternalLinkage: 319 // If external or appending, declare as a global symbol. 320 // .globl _foo 321 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 322 return; 323 case GlobalValue::PrivateLinkage: 324 case GlobalValue::InternalLinkage: 325 return; 326 case GlobalValue::AvailableExternallyLinkage: 327 llvm_unreachable("Should never emit this"); 328 case GlobalValue::ExternalWeakLinkage: 329 llvm_unreachable("Don't know how to emit these"); 330 } 331 llvm_unreachable("Unknown linkage type!"); 332 } 333 334 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 335 const GlobalValue *GV) const { 336 TM.getNameWithPrefix(Name, GV, *Mang); 337 } 338 339 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 340 return TM.getSymbol(GV, *Mang); 341 } 342 343 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 344 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 345 if (GV->hasInitializer()) { 346 // Check to see if this is a special global used by LLVM, if so, emit it. 347 if (EmitSpecialLLVMGlobal(GV)) 348 return; 349 350 // Skip the emission of global equivalents. The symbol can be emitted later 351 // on by emitGlobalGOTEquivs in case it turns out to be needed. 352 if (GlobalGOTEquivs.count(getSymbol(GV))) 353 return; 354 355 if (isVerbose()) { 356 GV->printAsOperand(OutStreamer->GetCommentOS(), 357 /*PrintType=*/false, GV->getParent()); 358 OutStreamer->GetCommentOS() << '\n'; 359 } 360 } 361 362 MCSymbol *GVSym = getSymbol(GV); 363 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 364 365 if (!GV->hasInitializer()) // External globals require no extra code. 366 return; 367 368 GVSym->redefineIfPossible(); 369 if (GVSym->isDefined() || GVSym->isVariable()) 370 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 371 "' is already defined"); 372 373 if (MAI->hasDotTypeDotSizeDirective()) 374 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 375 376 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 377 378 const DataLayout *DL = TM.getDataLayout(); 379 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 380 381 // If the alignment is specified, we *must* obey it. Overaligning a global 382 // with a specified alignment is a prompt way to break globals emitted to 383 // sections and expected to be contiguous (e.g. ObjC metadata). 384 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 385 386 for (const HandlerInfo &HI : Handlers) { 387 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 388 HI.Handler->setSymbolSize(GVSym, Size); 389 } 390 391 // Handle common and BSS local symbols (.lcomm). 392 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 393 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 394 unsigned Align = 1 << AlignLog; 395 396 // Handle common symbols. 397 if (GVKind.isCommon()) { 398 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 399 Align = 0; 400 401 // .comm _foo, 42, 4 402 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 403 return; 404 } 405 406 // Handle local BSS symbols. 407 if (MAI->hasMachoZeroFillDirective()) { 408 MCSection *TheSection = 409 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 410 // .zerofill __DATA, __bss, _foo, 400, 5 411 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 412 return; 413 } 414 415 // Use .lcomm only if it supports user-specified alignment. 416 // Otherwise, while it would still be correct to use .lcomm in some 417 // cases (e.g. when Align == 1), the external assembler might enfore 418 // some -unknown- default alignment behavior, which could cause 419 // spurious differences between external and integrated assembler. 420 // Prefer to simply fall back to .local / .comm in this case. 421 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 422 // .lcomm _foo, 42 423 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 424 return; 425 } 426 427 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 428 Align = 0; 429 430 // .local _foo 431 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 432 // .comm _foo, 42, 4 433 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 434 return; 435 } 436 437 MCSection *TheSection = 438 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 439 440 // Handle the zerofill directive on darwin, which is a special form of BSS 441 // emission. 442 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 443 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 444 445 // .globl _foo 446 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 447 // .zerofill __DATA, __common, _foo, 400, 5 448 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 449 return; 450 } 451 452 // Handle thread local data for mach-o which requires us to output an 453 // additional structure of data and mangle the original symbol so that we 454 // can reference it later. 455 // 456 // TODO: This should become an "emit thread local global" method on TLOF. 457 // All of this macho specific stuff should be sunk down into TLOFMachO and 458 // stuff like "TLSExtraDataSection" should no longer be part of the parent 459 // TLOF class. This will also make it more obvious that stuff like 460 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 461 // specific code. 462 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 463 // Emit the .tbss symbol 464 MCSymbol *MangSym = 465 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 466 467 if (GVKind.isThreadBSS()) { 468 TheSection = getObjFileLowering().getTLSBSSSection(); 469 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 470 } else if (GVKind.isThreadData()) { 471 OutStreamer->SwitchSection(TheSection); 472 473 EmitAlignment(AlignLog, GV); 474 OutStreamer->EmitLabel(MangSym); 475 476 EmitGlobalConstant(GV->getInitializer()); 477 } 478 479 OutStreamer->AddBlankLine(); 480 481 // Emit the variable struct for the runtime. 482 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 483 484 OutStreamer->SwitchSection(TLVSect); 485 // Emit the linkage here. 486 EmitLinkage(GV, GVSym); 487 OutStreamer->EmitLabel(GVSym); 488 489 // Three pointers in size: 490 // - __tlv_bootstrap - used to make sure support exists 491 // - spare pointer, used when mapped by the runtime 492 // - pointer to mangled symbol above with initializer 493 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 494 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 495 PtrSize); 496 OutStreamer->EmitIntValue(0, PtrSize); 497 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 498 499 OutStreamer->AddBlankLine(); 500 return; 501 } 502 503 OutStreamer->SwitchSection(TheSection); 504 505 EmitLinkage(GV, GVSym); 506 EmitAlignment(AlignLog, GV); 507 508 OutStreamer->EmitLabel(GVSym); 509 510 EmitGlobalConstant(GV->getInitializer()); 511 512 if (MAI->hasDotTypeDotSizeDirective()) 513 // .size foo, 42 514 OutStreamer->emitELFSize(cast<MCSymbolELF>(GVSym), 515 MCConstantExpr::create(Size, OutContext)); 516 517 OutStreamer->AddBlankLine(); 518 } 519 520 /// EmitFunctionHeader - This method emits the header for the current 521 /// function. 522 void AsmPrinter::EmitFunctionHeader() { 523 // Print out constants referenced by the function 524 EmitConstantPool(); 525 526 // Print the 'header' of function. 527 const Function *F = MF->getFunction(); 528 529 OutStreamer->SwitchSection( 530 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 531 EmitVisibility(CurrentFnSym, F->getVisibility()); 532 533 EmitLinkage(F, CurrentFnSym); 534 if (MAI->hasFunctionAlignment()) 535 EmitAlignment(MF->getAlignment(), F); 536 537 if (MAI->hasDotTypeDotSizeDirective()) 538 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 539 540 if (isVerbose()) { 541 F->printAsOperand(OutStreamer->GetCommentOS(), 542 /*PrintType=*/false, F->getParent()); 543 OutStreamer->GetCommentOS() << '\n'; 544 } 545 546 // Emit the prefix data. 547 if (F->hasPrefixData()) 548 EmitGlobalConstant(F->getPrefixData()); 549 550 // Emit the CurrentFnSym. This is a virtual function to allow targets to 551 // do their wild and crazy things as required. 552 EmitFunctionEntryLabel(); 553 554 // If the function had address-taken blocks that got deleted, then we have 555 // references to the dangling symbols. Emit them at the start of the function 556 // so that we don't get references to undefined symbols. 557 std::vector<MCSymbol*> DeadBlockSyms; 558 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 559 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 560 OutStreamer->AddComment("Address taken block that was later removed"); 561 OutStreamer->EmitLabel(DeadBlockSyms[i]); 562 } 563 564 if (CurrentFnBegin) { 565 if (MAI->useAssignmentForEHBegin()) { 566 MCSymbol *CurPos = OutContext.createTempSymbol(); 567 OutStreamer->EmitLabel(CurPos); 568 OutStreamer->EmitAssignment(CurrentFnBegin, 569 MCSymbolRefExpr::create(CurPos, OutContext)); 570 } else { 571 OutStreamer->EmitLabel(CurrentFnBegin); 572 } 573 } 574 575 // Emit pre-function debug and/or EH information. 576 for (const HandlerInfo &HI : Handlers) { 577 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 578 HI.Handler->beginFunction(MF); 579 } 580 581 // Emit the prologue data. 582 if (F->hasPrologueData()) 583 EmitGlobalConstant(F->getPrologueData()); 584 } 585 586 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 587 /// function. This can be overridden by targets as required to do custom stuff. 588 void AsmPrinter::EmitFunctionEntryLabel() { 589 CurrentFnSym->redefineIfPossible(); 590 591 // The function label could have already been emitted if two symbols end up 592 // conflicting due to asm renaming. Detect this and emit an error. 593 if (CurrentFnSym->isVariable()) 594 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 595 "' is a protected alias"); 596 if (CurrentFnSym->isDefined()) 597 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 598 "' label emitted multiple times to assembly file"); 599 600 return OutStreamer->EmitLabel(CurrentFnSym); 601 } 602 603 /// emitComments - Pretty-print comments for instructions. 604 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 605 const MachineFunction *MF = MI.getParent()->getParent(); 606 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 607 608 // Check for spills and reloads 609 int FI; 610 611 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 612 613 // We assume a single instruction only has a spill or reload, not 614 // both. 615 const MachineMemOperand *MMO; 616 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 617 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 618 MMO = *MI.memoperands_begin(); 619 CommentOS << MMO->getSize() << "-byte Reload\n"; 620 } 621 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 622 if (FrameInfo->isSpillSlotObjectIndex(FI)) 623 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 624 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 625 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 626 MMO = *MI.memoperands_begin(); 627 CommentOS << MMO->getSize() << "-byte Spill\n"; 628 } 629 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 630 if (FrameInfo->isSpillSlotObjectIndex(FI)) 631 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 632 } 633 634 // Check for spill-induced copies 635 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 636 CommentOS << " Reload Reuse\n"; 637 } 638 639 /// emitImplicitDef - This method emits the specified machine instruction 640 /// that is an implicit def. 641 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 642 unsigned RegNo = MI->getOperand(0).getReg(); 643 OutStreamer->AddComment(Twine("implicit-def: ") + 644 MMI->getContext().getRegisterInfo()->getName(RegNo)); 645 OutStreamer->AddBlankLine(); 646 } 647 648 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 649 std::string Str = "kill:"; 650 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 651 const MachineOperand &Op = MI->getOperand(i); 652 assert(Op.isReg() && "KILL instruction must have only register operands"); 653 Str += ' '; 654 Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg()); 655 Str += (Op.isDef() ? "<def>" : "<kill>"); 656 } 657 AP.OutStreamer->AddComment(Str); 658 AP.OutStreamer->AddBlankLine(); 659 } 660 661 /// emitDebugValueComment - This method handles the target-independent form 662 /// of DBG_VALUE, returning true if it was able to do so. A false return 663 /// means the target will need to handle MI in EmitInstruction. 664 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 665 // This code handles only the 4-operand target-independent form. 666 if (MI->getNumOperands() != 4) 667 return false; 668 669 SmallString<128> Str; 670 raw_svector_ostream OS(Str); 671 OS << "DEBUG_VALUE: "; 672 673 const DILocalVariable *V = MI->getDebugVariable(); 674 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 675 StringRef Name = SP->getDisplayName(); 676 if (!Name.empty()) 677 OS << Name << ":"; 678 } 679 OS << V->getName(); 680 681 const DIExpression *Expr = MI->getDebugExpression(); 682 if (Expr->isBitPiece()) 683 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 684 << " size=" << Expr->getBitPieceSize() << "]"; 685 OS << " <- "; 686 687 // The second operand is only an offset if it's an immediate. 688 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 689 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 690 691 // Register or immediate value. Register 0 means undef. 692 if (MI->getOperand(0).isFPImm()) { 693 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 694 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 695 OS << (double)APF.convertToFloat(); 696 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 697 OS << APF.convertToDouble(); 698 } else { 699 // There is no good way to print long double. Convert a copy to 700 // double. Ah well, it's only a comment. 701 bool ignored; 702 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 703 &ignored); 704 OS << "(long double) " << APF.convertToDouble(); 705 } 706 } else if (MI->getOperand(0).isImm()) { 707 OS << MI->getOperand(0).getImm(); 708 } else if (MI->getOperand(0).isCImm()) { 709 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 710 } else { 711 unsigned Reg; 712 if (MI->getOperand(0).isReg()) { 713 Reg = MI->getOperand(0).getReg(); 714 } else { 715 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 716 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 717 Offset += TFI->getFrameIndexReference(*AP.MF, 718 MI->getOperand(0).getIndex(), Reg); 719 Deref = true; 720 } 721 if (Reg == 0) { 722 // Suppress offset, it is not meaningful here. 723 OS << "undef"; 724 // NOTE: Want this comment at start of line, don't emit with AddComment. 725 AP.OutStreamer->emitRawComment(OS.str()); 726 return true; 727 } 728 if (Deref) 729 OS << '['; 730 OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg); 731 } 732 733 if (Deref) 734 OS << '+' << Offset << ']'; 735 736 // NOTE: Want this comment at start of line, don't emit with AddComment. 737 AP.OutStreamer->emitRawComment(OS.str()); 738 return true; 739 } 740 741 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 742 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 743 MF->getFunction()->needsUnwindTableEntry()) 744 return CFI_M_EH; 745 746 if (MMI->hasDebugInfo()) 747 return CFI_M_Debug; 748 749 return CFI_M_None; 750 } 751 752 bool AsmPrinter::needsSEHMoves() { 753 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 754 } 755 756 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 757 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 758 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 759 ExceptionHandlingType != ExceptionHandling::ARM) 760 return; 761 762 if (needsCFIMoves() == CFI_M_None) 763 return; 764 765 const MachineModuleInfo &MMI = MF->getMMI(); 766 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 767 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 768 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 769 emitCFIInstruction(CFI); 770 } 771 772 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 773 // The operands are the MCSymbol and the frame offset of the allocation. 774 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 775 int FrameOffset = MI.getOperand(1).getImm(); 776 777 // Emit a symbol assignment. 778 OutStreamer->EmitAssignment(FrameAllocSym, 779 MCConstantExpr::create(FrameOffset, OutContext)); 780 } 781 782 /// EmitFunctionBody - This method emits the body and trailer for a 783 /// function. 784 void AsmPrinter::EmitFunctionBody() { 785 EmitFunctionHeader(); 786 787 // Emit target-specific gunk before the function body. 788 EmitFunctionBodyStart(); 789 790 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 791 792 // Print out code for the function. 793 bool HasAnyRealCode = false; 794 for (auto &MBB : *MF) { 795 // Print a label for the basic block. 796 EmitBasicBlockStart(MBB); 797 for (auto &MI : MBB) { 798 799 // Print the assembly for the instruction. 800 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 801 !MI.isDebugValue()) { 802 HasAnyRealCode = true; 803 ++EmittedInsts; 804 } 805 806 if (ShouldPrintDebugScopes) { 807 for (const HandlerInfo &HI : Handlers) { 808 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 809 TimePassesIsEnabled); 810 HI.Handler->beginInstruction(&MI); 811 } 812 } 813 814 if (isVerbose()) 815 emitComments(MI, OutStreamer->GetCommentOS()); 816 817 switch (MI.getOpcode()) { 818 case TargetOpcode::CFI_INSTRUCTION: 819 emitCFIInstruction(MI); 820 break; 821 822 case TargetOpcode::LOCAL_ESCAPE: 823 emitFrameAlloc(MI); 824 break; 825 826 case TargetOpcode::EH_LABEL: 827 case TargetOpcode::GC_LABEL: 828 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 829 break; 830 case TargetOpcode::INLINEASM: 831 EmitInlineAsm(&MI); 832 break; 833 case TargetOpcode::DBG_VALUE: 834 if (isVerbose()) { 835 if (!emitDebugValueComment(&MI, *this)) 836 EmitInstruction(&MI); 837 } 838 break; 839 case TargetOpcode::IMPLICIT_DEF: 840 if (isVerbose()) emitImplicitDef(&MI); 841 break; 842 case TargetOpcode::KILL: 843 if (isVerbose()) emitKill(&MI, *this); 844 break; 845 default: 846 EmitInstruction(&MI); 847 break; 848 } 849 850 if (ShouldPrintDebugScopes) { 851 for (const HandlerInfo &HI : Handlers) { 852 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 853 TimePassesIsEnabled); 854 HI.Handler->endInstruction(); 855 } 856 } 857 } 858 859 EmitBasicBlockEnd(MBB); 860 } 861 862 // If the function is empty and the object file uses .subsections_via_symbols, 863 // then we need to emit *something* to the function body to prevent the 864 // labels from collapsing together. Just emit a noop. 865 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 866 MCInst Noop; 867 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 868 OutStreamer->AddComment("avoids zero-length function"); 869 870 // Targets can opt-out of emitting the noop here by leaving the opcode 871 // unspecified. 872 if (Noop.getOpcode()) 873 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 874 } 875 876 const Function *F = MF->getFunction(); 877 for (const auto &BB : *F) { 878 if (!BB.hasAddressTaken()) 879 continue; 880 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 881 if (Sym->isDefined()) 882 continue; 883 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 884 OutStreamer->EmitLabel(Sym); 885 } 886 887 // Emit target-specific gunk after the function body. 888 EmitFunctionBodyEnd(); 889 890 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 891 MAI->hasDotTypeDotSizeDirective()) { 892 // Create a symbol for the end of function. 893 CurrentFnEnd = createTempSymbol("func_end"); 894 OutStreamer->EmitLabel(CurrentFnEnd); 895 } 896 897 // If the target wants a .size directive for the size of the function, emit 898 // it. 899 if (MAI->hasDotTypeDotSizeDirective()) { 900 // We can get the size as difference between the function label and the 901 // temp label. 902 const MCExpr *SizeExp = MCBinaryExpr::createSub( 903 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 904 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 905 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 906 OutStreamer->emitELFSize(Sym, SizeExp); 907 } 908 909 for (const HandlerInfo &HI : Handlers) { 910 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 911 HI.Handler->markFunctionEnd(); 912 } 913 914 // Print out jump tables referenced by the function. 915 EmitJumpTableInfo(); 916 917 // Emit post-function debug and/or EH information. 918 for (const HandlerInfo &HI : Handlers) { 919 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 920 HI.Handler->endFunction(MF); 921 } 922 MMI->EndFunction(); 923 924 OutStreamer->AddBlankLine(); 925 } 926 927 /// \brief Compute the number of Global Variables that uses a Constant. 928 static unsigned getNumGlobalVariableUses(const Constant *C) { 929 if (!C) 930 return 0; 931 932 if (isa<GlobalVariable>(C)) 933 return 1; 934 935 unsigned NumUses = 0; 936 for (auto *CU : C->users()) 937 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 938 939 return NumUses; 940 } 941 942 /// \brief Only consider global GOT equivalents if at least one user is a 943 /// cstexpr inside an initializer of another global variables. Also, don't 944 /// handle cstexpr inside instructions. During global variable emission, 945 /// candidates are skipped and are emitted later in case at least one cstexpr 946 /// isn't replaced by a PC relative GOT entry access. 947 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 948 unsigned &NumGOTEquivUsers) { 949 // Global GOT equivalents are unnamed private globals with a constant 950 // pointer initializer to another global symbol. They must point to a 951 // GlobalVariable or Function, i.e., as GlobalValue. 952 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 953 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 954 return false; 955 956 // To be a got equivalent, at least one of its users need to be a constant 957 // expression used by another global variable. 958 for (auto *U : GV->users()) 959 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 960 961 return NumGOTEquivUsers > 0; 962 } 963 964 /// \brief Unnamed constant global variables solely contaning a pointer to 965 /// another globals variable is equivalent to a GOT table entry; it contains the 966 /// the address of another symbol. Optimize it and replace accesses to these 967 /// "GOT equivalents" by using the GOT entry for the final global instead. 968 /// Compute GOT equivalent candidates among all global variables to avoid 969 /// emitting them if possible later on, after it use is replaced by a GOT entry 970 /// access. 971 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 972 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 973 return; 974 975 for (const auto &G : M.globals()) { 976 unsigned NumGOTEquivUsers = 0; 977 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 978 continue; 979 980 const MCSymbol *GOTEquivSym = getSymbol(&G); 981 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 982 } 983 } 984 985 /// \brief Constant expressions using GOT equivalent globals may not be eligible 986 /// for PC relative GOT entry conversion, in such cases we need to emit such 987 /// globals we previously omitted in EmitGlobalVariable. 988 void AsmPrinter::emitGlobalGOTEquivs() { 989 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 990 return; 991 992 SmallVector<const GlobalVariable *, 8> FailedCandidates; 993 for (auto &I : GlobalGOTEquivs) { 994 const GlobalVariable *GV = I.second.first; 995 unsigned Cnt = I.second.second; 996 if (Cnt) 997 FailedCandidates.push_back(GV); 998 } 999 GlobalGOTEquivs.clear(); 1000 1001 for (auto *GV : FailedCandidates) 1002 EmitGlobalVariable(GV); 1003 } 1004 1005 bool AsmPrinter::doFinalization(Module &M) { 1006 // Set the MachineFunction to nullptr so that we can catch attempted 1007 // accesses to MF specific features at the module level and so that 1008 // we can conditionalize accesses based on whether or not it is nullptr. 1009 MF = nullptr; 1010 1011 // Gather all GOT equivalent globals in the module. We really need two 1012 // passes over the globals: one to compute and another to avoid its emission 1013 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1014 // where the got equivalent shows up before its use. 1015 computeGlobalGOTEquivs(M); 1016 1017 // Emit global variables. 1018 for (const auto &G : M.globals()) 1019 EmitGlobalVariable(&G); 1020 1021 // Emit remaining GOT equivalent globals. 1022 emitGlobalGOTEquivs(); 1023 1024 // Emit visibility info for declarations 1025 for (const Function &F : M) { 1026 if (!F.isDeclaration()) 1027 continue; 1028 GlobalValue::VisibilityTypes V = F.getVisibility(); 1029 if (V == GlobalValue::DefaultVisibility) 1030 continue; 1031 1032 MCSymbol *Name = getSymbol(&F); 1033 EmitVisibility(Name, V, false); 1034 } 1035 1036 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1037 1038 // Emit module flags. 1039 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1040 M.getModuleFlagsMetadata(ModuleFlags); 1041 if (!ModuleFlags.empty()) 1042 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1043 1044 if (TM.getTargetTriple().isOSBinFormatELF()) { 1045 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1046 1047 // Output stubs for external and common global variables. 1048 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1049 if (!Stubs.empty()) { 1050 OutStreamer->SwitchSection(TLOF.getDataRelSection()); 1051 const DataLayout *DL = TM.getDataLayout(); 1052 1053 for (const auto &Stub : Stubs) { 1054 OutStreamer->EmitLabel(Stub.first); 1055 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1056 DL->getPointerSize()); 1057 } 1058 } 1059 } 1060 1061 // Make sure we wrote out everything we need. 1062 OutStreamer->Flush(); 1063 1064 // Finalize debug and EH information. 1065 for (const HandlerInfo &HI : Handlers) { 1066 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1067 TimePassesIsEnabled); 1068 HI.Handler->endModule(); 1069 delete HI.Handler; 1070 } 1071 Handlers.clear(); 1072 DD = nullptr; 1073 1074 // If the target wants to know about weak references, print them all. 1075 if (MAI->getWeakRefDirective()) { 1076 // FIXME: This is not lazy, it would be nice to only print weak references 1077 // to stuff that is actually used. Note that doing so would require targets 1078 // to notice uses in operands (due to constant exprs etc). This should 1079 // happen with the MC stuff eventually. 1080 1081 // Print out module-level global variables here. 1082 for (const auto &G : M.globals()) { 1083 if (!G.hasExternalWeakLinkage()) 1084 continue; 1085 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1086 } 1087 1088 for (const auto &F : M) { 1089 if (!F.hasExternalWeakLinkage()) 1090 continue; 1091 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1092 } 1093 } 1094 1095 OutStreamer->AddBlankLine(); 1096 for (const auto &Alias : M.aliases()) { 1097 MCSymbol *Name = getSymbol(&Alias); 1098 1099 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1100 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1101 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1102 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1103 else 1104 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1105 1106 EmitVisibility(Name, Alias.getVisibility()); 1107 1108 // Emit the directives as assignments aka .set: 1109 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1110 } 1111 1112 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1113 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1114 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1115 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1116 MP->finishAssembly(M, *MI, *this); 1117 1118 // Emit llvm.ident metadata in an '.ident' directive. 1119 EmitModuleIdents(M); 1120 1121 // Emit __morestack address if needed for indirect calls. 1122 if (MMI->usesMorestackAddr()) { 1123 MCSection *ReadOnlySection = 1124 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1125 /*C=*/nullptr); 1126 OutStreamer->SwitchSection(ReadOnlySection); 1127 1128 MCSymbol *AddrSymbol = 1129 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1130 OutStreamer->EmitLabel(AddrSymbol); 1131 1132 unsigned PtrSize = TM.getDataLayout()->getPointerSize(0); 1133 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1134 PtrSize); 1135 } 1136 1137 // If we don't have any trampolines, then we don't require stack memory 1138 // to be executable. Some targets have a directive to declare this. 1139 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1140 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1141 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1142 OutStreamer->SwitchSection(S); 1143 1144 // Allow the target to emit any magic that it wants at the end of the file, 1145 // after everything else has gone out. 1146 EmitEndOfAsmFile(M); 1147 1148 delete Mang; Mang = nullptr; 1149 MMI = nullptr; 1150 1151 OutStreamer->Finish(); 1152 OutStreamer->reset(); 1153 1154 return false; 1155 } 1156 1157 MCSymbol *AsmPrinter::getCurExceptionSym() { 1158 if (!CurExceptionSym) 1159 CurExceptionSym = createTempSymbol("exception"); 1160 return CurExceptionSym; 1161 } 1162 1163 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1164 this->MF = &MF; 1165 // Get the function symbol. 1166 CurrentFnSym = getSymbol(MF.getFunction()); 1167 CurrentFnSymForSize = CurrentFnSym; 1168 CurrentFnBegin = nullptr; 1169 CurExceptionSym = nullptr; 1170 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1171 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1172 NeedsLocalForSize) { 1173 CurrentFnBegin = createTempSymbol("func_begin"); 1174 if (NeedsLocalForSize) 1175 CurrentFnSymForSize = CurrentFnBegin; 1176 } 1177 1178 if (isVerbose()) 1179 LI = &getAnalysis<MachineLoopInfo>(); 1180 } 1181 1182 namespace { 1183 // Keep track the alignment, constpool entries per Section. 1184 struct SectionCPs { 1185 MCSection *S; 1186 unsigned Alignment; 1187 SmallVector<unsigned, 4> CPEs; 1188 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1189 }; 1190 } 1191 1192 /// EmitConstantPool - Print to the current output stream assembly 1193 /// representations of the constants in the constant pool MCP. This is 1194 /// used to print out constants which have been "spilled to memory" by 1195 /// the code generator. 1196 /// 1197 void AsmPrinter::EmitConstantPool() { 1198 const MachineConstantPool *MCP = MF->getConstantPool(); 1199 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1200 if (CP.empty()) return; 1201 1202 // Calculate sections for constant pool entries. We collect entries to go into 1203 // the same section together to reduce amount of section switch statements. 1204 SmallVector<SectionCPs, 4> CPSections; 1205 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1206 const MachineConstantPoolEntry &CPE = CP[i]; 1207 unsigned Align = CPE.getAlignment(); 1208 1209 SectionKind Kind = 1210 CPE.getSectionKind(TM.getDataLayout()); 1211 1212 const Constant *C = nullptr; 1213 if (!CPE.isMachineConstantPoolEntry()) 1214 C = CPE.Val.ConstVal; 1215 1216 MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C); 1217 1218 // The number of sections are small, just do a linear search from the 1219 // last section to the first. 1220 bool Found = false; 1221 unsigned SecIdx = CPSections.size(); 1222 while (SecIdx != 0) { 1223 if (CPSections[--SecIdx].S == S) { 1224 Found = true; 1225 break; 1226 } 1227 } 1228 if (!Found) { 1229 SecIdx = CPSections.size(); 1230 CPSections.push_back(SectionCPs(S, Align)); 1231 } 1232 1233 if (Align > CPSections[SecIdx].Alignment) 1234 CPSections[SecIdx].Alignment = Align; 1235 CPSections[SecIdx].CPEs.push_back(i); 1236 } 1237 1238 // Now print stuff into the calculated sections. 1239 const MCSection *CurSection = nullptr; 1240 unsigned Offset = 0; 1241 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1242 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1243 unsigned CPI = CPSections[i].CPEs[j]; 1244 MCSymbol *Sym = GetCPISymbol(CPI); 1245 if (!Sym->isUndefined()) 1246 continue; 1247 1248 if (CurSection != CPSections[i].S) { 1249 OutStreamer->SwitchSection(CPSections[i].S); 1250 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1251 CurSection = CPSections[i].S; 1252 Offset = 0; 1253 } 1254 1255 MachineConstantPoolEntry CPE = CP[CPI]; 1256 1257 // Emit inter-object padding for alignment. 1258 unsigned AlignMask = CPE.getAlignment() - 1; 1259 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1260 OutStreamer->EmitZeros(NewOffset - Offset); 1261 1262 Type *Ty = CPE.getType(); 1263 Offset = NewOffset + 1264 TM.getDataLayout()->getTypeAllocSize(Ty); 1265 1266 OutStreamer->EmitLabel(Sym); 1267 if (CPE.isMachineConstantPoolEntry()) 1268 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1269 else 1270 EmitGlobalConstant(CPE.Val.ConstVal); 1271 } 1272 } 1273 } 1274 1275 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1276 /// by the current function to the current output stream. 1277 /// 1278 void AsmPrinter::EmitJumpTableInfo() { 1279 const DataLayout *DL = MF->getTarget().getDataLayout(); 1280 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1281 if (!MJTI) return; 1282 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1283 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1284 if (JT.empty()) return; 1285 1286 // Pick the directive to use to print the jump table entries, and switch to 1287 // the appropriate section. 1288 const Function *F = MF->getFunction(); 1289 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1290 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1291 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1292 *F); 1293 if (JTInDiffSection) { 1294 // Drop it in the readonly section. 1295 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1296 OutStreamer->SwitchSection(ReadOnlySection); 1297 } 1298 1299 EmitAlignment(Log2_32( 1300 MJTI->getEntryAlignment(*TM.getDataLayout()))); 1301 1302 // Jump tables in code sections are marked with a data_region directive 1303 // where that's supported. 1304 if (!JTInDiffSection) 1305 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1306 1307 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1308 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1309 1310 // If this jump table was deleted, ignore it. 1311 if (JTBBs.empty()) continue; 1312 1313 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1314 /// emit a .set directive for each unique entry. 1315 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1316 MAI->doesSetDirectiveSuppressesReloc()) { 1317 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1318 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1319 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1320 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1321 const MachineBasicBlock *MBB = JTBBs[ii]; 1322 if (!EmittedSets.insert(MBB).second) 1323 continue; 1324 1325 // .set LJTSet, LBB32-base 1326 const MCExpr *LHS = 1327 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1328 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1329 MCBinaryExpr::createSub(LHS, Base, 1330 OutContext)); 1331 } 1332 } 1333 1334 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1335 // before each jump table. The first label is never referenced, but tells 1336 // the assembler and linker the extents of the jump table object. The 1337 // second label is actually referenced by the code. 1338 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1339 // FIXME: This doesn't have to have any specific name, just any randomly 1340 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1341 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1342 1343 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1344 1345 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1346 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1347 } 1348 if (!JTInDiffSection) 1349 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1350 } 1351 1352 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1353 /// current stream. 1354 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1355 const MachineBasicBlock *MBB, 1356 unsigned UID) const { 1357 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1358 const MCExpr *Value = nullptr; 1359 switch (MJTI->getEntryKind()) { 1360 case MachineJumpTableInfo::EK_Inline: 1361 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1362 case MachineJumpTableInfo::EK_Custom32: 1363 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1364 MJTI, MBB, UID, OutContext); 1365 break; 1366 case MachineJumpTableInfo::EK_BlockAddress: 1367 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1368 // .word LBB123 1369 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1370 break; 1371 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1372 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1373 // with a relocation as gp-relative, e.g.: 1374 // .gprel32 LBB123 1375 MCSymbol *MBBSym = MBB->getSymbol(); 1376 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1377 return; 1378 } 1379 1380 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1381 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1382 // with a relocation as gp-relative, e.g.: 1383 // .gpdword LBB123 1384 MCSymbol *MBBSym = MBB->getSymbol(); 1385 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1386 return; 1387 } 1388 1389 case MachineJumpTableInfo::EK_LabelDifference32: { 1390 // Each entry is the address of the block minus the address of the jump 1391 // table. This is used for PIC jump tables where gprel32 is not supported. 1392 // e.g.: 1393 // .word LBB123 - LJTI1_2 1394 // If the .set directive avoids relocations, this is emitted as: 1395 // .set L4_5_set_123, LBB123 - LJTI1_2 1396 // .word L4_5_set_123 1397 if (MAI->doesSetDirectiveSuppressesReloc()) { 1398 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1399 OutContext); 1400 break; 1401 } 1402 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1403 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1404 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1405 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1406 break; 1407 } 1408 } 1409 1410 assert(Value && "Unknown entry kind!"); 1411 1412 unsigned EntrySize = 1413 MJTI->getEntrySize(*TM.getDataLayout()); 1414 OutStreamer->EmitValue(Value, EntrySize); 1415 } 1416 1417 1418 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1419 /// special global used by LLVM. If so, emit it and return true, otherwise 1420 /// do nothing and return false. 1421 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1422 if (GV->getName() == "llvm.used") { 1423 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1424 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1425 return true; 1426 } 1427 1428 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1429 if (StringRef(GV->getSection()) == "llvm.metadata" || 1430 GV->hasAvailableExternallyLinkage()) 1431 return true; 1432 1433 if (!GV->hasAppendingLinkage()) return false; 1434 1435 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1436 1437 if (GV->getName() == "llvm.global_ctors") { 1438 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1439 1440 if (TM.getRelocationModel() == Reloc::Static && 1441 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1442 StringRef Sym(".constructors_used"); 1443 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1444 MCSA_Reference); 1445 } 1446 return true; 1447 } 1448 1449 if (GV->getName() == "llvm.global_dtors") { 1450 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1451 1452 if (TM.getRelocationModel() == Reloc::Static && 1453 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1454 StringRef Sym(".destructors_used"); 1455 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1456 MCSA_Reference); 1457 } 1458 return true; 1459 } 1460 1461 return false; 1462 } 1463 1464 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1465 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1466 /// is true, as being used with this directive. 1467 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1468 // Should be an array of 'i8*'. 1469 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1470 const GlobalValue *GV = 1471 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1472 if (GV) 1473 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1474 } 1475 } 1476 1477 namespace { 1478 struct Structor { 1479 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1480 int Priority; 1481 llvm::Constant *Func; 1482 llvm::GlobalValue *ComdatKey; 1483 }; 1484 } // end namespace 1485 1486 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1487 /// priority. 1488 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1489 // Should be an array of '{ int, void ()* }' structs. The first value is the 1490 // init priority. 1491 if (!isa<ConstantArray>(List)) return; 1492 1493 // Sanity check the structors list. 1494 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1495 if (!InitList) return; // Not an array! 1496 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1497 // FIXME: Only allow the 3-field form in LLVM 4.0. 1498 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1499 return; // Not an array of two or three elements! 1500 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1501 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1502 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1503 return; // Not (int, ptr, ptr). 1504 1505 // Gather the structors in a form that's convenient for sorting by priority. 1506 SmallVector<Structor, 8> Structors; 1507 for (Value *O : InitList->operands()) { 1508 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1509 if (!CS) continue; // Malformed. 1510 if (CS->getOperand(1)->isNullValue()) 1511 break; // Found a null terminator, skip the rest. 1512 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1513 if (!Priority) continue; // Malformed. 1514 Structors.push_back(Structor()); 1515 Structor &S = Structors.back(); 1516 S.Priority = Priority->getLimitedValue(65535); 1517 S.Func = CS->getOperand(1); 1518 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1519 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1520 } 1521 1522 // Emit the function pointers in the target-specific order 1523 const DataLayout *DL = TM.getDataLayout(); 1524 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1525 std::stable_sort(Structors.begin(), Structors.end(), 1526 [](const Structor &L, 1527 const Structor &R) { return L.Priority < R.Priority; }); 1528 for (Structor &S : Structors) { 1529 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1530 const MCSymbol *KeySym = nullptr; 1531 if (GlobalValue *GV = S.ComdatKey) { 1532 if (GV->hasAvailableExternallyLinkage()) 1533 // If the associated variable is available_externally, some other TU 1534 // will provide its dynamic initializer. 1535 continue; 1536 1537 KeySym = getSymbol(GV); 1538 } 1539 MCSection *OutputSection = 1540 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1541 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1542 OutStreamer->SwitchSection(OutputSection); 1543 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1544 EmitAlignment(Align); 1545 EmitXXStructor(S.Func); 1546 } 1547 } 1548 1549 void AsmPrinter::EmitModuleIdents(Module &M) { 1550 if (!MAI->hasIdentDirective()) 1551 return; 1552 1553 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1554 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1555 const MDNode *N = NMD->getOperand(i); 1556 assert(N->getNumOperands() == 1 && 1557 "llvm.ident metadata entry can have only one operand"); 1558 const MDString *S = cast<MDString>(N->getOperand(0)); 1559 OutStreamer->EmitIdent(S->getString()); 1560 } 1561 } 1562 } 1563 1564 //===--------------------------------------------------------------------===// 1565 // Emission and print routines 1566 // 1567 1568 /// EmitInt8 - Emit a byte directive and value. 1569 /// 1570 void AsmPrinter::EmitInt8(int Value) const { 1571 OutStreamer->EmitIntValue(Value, 1); 1572 } 1573 1574 /// EmitInt16 - Emit a short directive and value. 1575 /// 1576 void AsmPrinter::EmitInt16(int Value) const { 1577 OutStreamer->EmitIntValue(Value, 2); 1578 } 1579 1580 /// EmitInt32 - Emit a long directive and value. 1581 /// 1582 void AsmPrinter::EmitInt32(int Value) const { 1583 OutStreamer->EmitIntValue(Value, 4); 1584 } 1585 1586 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1587 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1588 /// .set if it avoids relocations. 1589 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1590 unsigned Size) const { 1591 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1592 } 1593 1594 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1595 /// where the size in bytes of the directive is specified by Size and Label 1596 /// specifies the label. This implicitly uses .set if it is available. 1597 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1598 unsigned Size, 1599 bool IsSectionRelative) const { 1600 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1601 OutStreamer->EmitCOFFSecRel32(Label); 1602 return; 1603 } 1604 1605 // Emit Label+Offset (or just Label if Offset is zero) 1606 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1607 if (Offset) 1608 Expr = MCBinaryExpr::createAdd( 1609 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1610 1611 OutStreamer->EmitValue(Expr, Size); 1612 } 1613 1614 //===----------------------------------------------------------------------===// 1615 1616 // EmitAlignment - Emit an alignment directive to the specified power of 1617 // two boundary. For example, if you pass in 3 here, you will get an 8 1618 // byte alignment. If a global value is specified, and if that global has 1619 // an explicit alignment requested, it will override the alignment request 1620 // if required for correctness. 1621 // 1622 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1623 if (GV) 1624 NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), 1625 NumBits); 1626 1627 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1628 1629 assert(NumBits < 1630 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1631 "undefined behavior"); 1632 if (getCurrentSection()->getKind().isText()) 1633 OutStreamer->EmitCodeAlignment(1u << NumBits); 1634 else 1635 OutStreamer->EmitValueToAlignment(1u << NumBits); 1636 } 1637 1638 //===----------------------------------------------------------------------===// 1639 // Constant emission. 1640 //===----------------------------------------------------------------------===// 1641 1642 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1643 MCContext &Ctx = OutContext; 1644 1645 if (CV->isNullValue() || isa<UndefValue>(CV)) 1646 return MCConstantExpr::create(0, Ctx); 1647 1648 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1649 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1650 1651 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1652 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1653 1654 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1655 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1656 1657 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1658 if (!CE) { 1659 llvm_unreachable("Unknown constant value to lower!"); 1660 } 1661 1662 if (const MCExpr *RelocExpr 1663 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1664 return RelocExpr; 1665 1666 switch (CE->getOpcode()) { 1667 default: 1668 // If the code isn't optimized, there may be outstanding folding 1669 // opportunities. Attempt to fold the expression using DataLayout as a 1670 // last resort before giving up. 1671 if (Constant *C = ConstantFoldConstantExpression(CE, *TM.getDataLayout())) 1672 if (C != CE) 1673 return lowerConstant(C); 1674 1675 // Otherwise report the problem to the user. 1676 { 1677 std::string S; 1678 raw_string_ostream OS(S); 1679 OS << "Unsupported expression in static initializer: "; 1680 CE->printAsOperand(OS, /*PrintType=*/false, 1681 !MF ? nullptr : MF->getFunction()->getParent()); 1682 report_fatal_error(OS.str()); 1683 } 1684 case Instruction::GetElementPtr: { 1685 const DataLayout &DL = *TM.getDataLayout(); 1686 1687 // Generate a symbolic expression for the byte address 1688 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1689 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1690 1691 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1692 if (!OffsetAI) 1693 return Base; 1694 1695 int64_t Offset = OffsetAI.getSExtValue(); 1696 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1697 Ctx); 1698 } 1699 1700 case Instruction::Trunc: 1701 // We emit the value and depend on the assembler to truncate the generated 1702 // expression properly. This is important for differences between 1703 // blockaddress labels. Since the two labels are in the same function, it 1704 // is reasonable to treat their delta as a 32-bit value. 1705 // FALL THROUGH. 1706 case Instruction::BitCast: 1707 return lowerConstant(CE->getOperand(0)); 1708 1709 case Instruction::IntToPtr: { 1710 const DataLayout &DL = *TM.getDataLayout(); 1711 1712 // Handle casts to pointers by changing them into casts to the appropriate 1713 // integer type. This promotes constant folding and simplifies this code. 1714 Constant *Op = CE->getOperand(0); 1715 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1716 false/*ZExt*/); 1717 return lowerConstant(Op); 1718 } 1719 1720 case Instruction::PtrToInt: { 1721 const DataLayout &DL = *TM.getDataLayout(); 1722 1723 // Support only foldable casts to/from pointers that can be eliminated by 1724 // changing the pointer to the appropriately sized integer type. 1725 Constant *Op = CE->getOperand(0); 1726 Type *Ty = CE->getType(); 1727 1728 const MCExpr *OpExpr = lowerConstant(Op); 1729 1730 // We can emit the pointer value into this slot if the slot is an 1731 // integer slot equal to the size of the pointer. 1732 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1733 return OpExpr; 1734 1735 // Otherwise the pointer is smaller than the resultant integer, mask off 1736 // the high bits so we are sure to get a proper truncation if the input is 1737 // a constant expr. 1738 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1739 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1740 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1741 } 1742 1743 // The MC library also has a right-shift operator, but it isn't consistently 1744 // signed or unsigned between different targets. 1745 case Instruction::Add: 1746 case Instruction::Sub: 1747 case Instruction::Mul: 1748 case Instruction::SDiv: 1749 case Instruction::SRem: 1750 case Instruction::Shl: 1751 case Instruction::And: 1752 case Instruction::Or: 1753 case Instruction::Xor: { 1754 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1755 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1756 switch (CE->getOpcode()) { 1757 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1758 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1759 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1760 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1761 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1762 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1763 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1764 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1765 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1766 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1767 } 1768 } 1769 } 1770 } 1771 1772 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP, 1773 const Constant *BaseCV = nullptr, 1774 uint64_t Offset = 0); 1775 1776 /// isRepeatedByteSequence - Determine whether the given value is 1777 /// composed of a repeated sequence of identical bytes and return the 1778 /// byte value. If it is not a repeated sequence, return -1. 1779 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1780 StringRef Data = V->getRawDataValues(); 1781 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1782 char C = Data[0]; 1783 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1784 if (Data[i] != C) return -1; 1785 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1786 } 1787 1788 1789 /// isRepeatedByteSequence - Determine whether the given value is 1790 /// composed of a repeated sequence of identical bytes and return the 1791 /// byte value. If it is not a repeated sequence, return -1. 1792 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1793 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1794 uint64_t Size = TM.getDataLayout()->getTypeAllocSizeInBits(V->getType()); 1795 assert(Size % 8 == 0); 1796 1797 // Extend the element to take zero padding into account. 1798 APInt Value = CI->getValue().zextOrSelf(Size); 1799 if (!Value.isSplat(8)) 1800 return -1; 1801 1802 return Value.zextOrTrunc(8).getZExtValue(); 1803 } 1804 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1805 // Make sure all array elements are sequences of the same repeated 1806 // byte. 1807 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1808 Constant *Op0 = CA->getOperand(0); 1809 int Byte = isRepeatedByteSequence(Op0, TM); 1810 if (Byte == -1) 1811 return -1; 1812 1813 // All array elements must be equal. 1814 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1815 if (CA->getOperand(i) != Op0) 1816 return -1; 1817 return Byte; 1818 } 1819 1820 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1821 return isRepeatedByteSequence(CDS); 1822 1823 return -1; 1824 } 1825 1826 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1827 AsmPrinter &AP){ 1828 1829 // See if we can aggregate this into a .fill, if so, emit it as such. 1830 int Value = isRepeatedByteSequence(CDS, AP.TM); 1831 if (Value != -1) { 1832 uint64_t Bytes = 1833 AP.TM.getDataLayout()->getTypeAllocSize( 1834 CDS->getType()); 1835 // Don't emit a 1-byte object as a .fill. 1836 if (Bytes > 1) 1837 return AP.OutStreamer->EmitFill(Bytes, Value); 1838 } 1839 1840 // If this can be emitted with .ascii/.asciz, emit it as such. 1841 if (CDS->isString()) 1842 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1843 1844 // Otherwise, emit the values in successive locations. 1845 unsigned ElementByteSize = CDS->getElementByteSize(); 1846 if (isa<IntegerType>(CDS->getElementType())) { 1847 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1848 if (AP.isVerbose()) 1849 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1850 CDS->getElementAsInteger(i)); 1851 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1852 ElementByteSize); 1853 } 1854 } else if (ElementByteSize == 4) { 1855 // FP Constants are printed as integer constants to avoid losing 1856 // precision. 1857 assert(CDS->getElementType()->isFloatTy()); 1858 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1859 union { 1860 float F; 1861 uint32_t I; 1862 }; 1863 1864 F = CDS->getElementAsFloat(i); 1865 if (AP.isVerbose()) 1866 AP.OutStreamer->GetCommentOS() << "float " << F << '\n'; 1867 AP.OutStreamer->EmitIntValue(I, 4); 1868 } 1869 } else { 1870 assert(CDS->getElementType()->isDoubleTy()); 1871 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1872 union { 1873 double F; 1874 uint64_t I; 1875 }; 1876 1877 F = CDS->getElementAsDouble(i); 1878 if (AP.isVerbose()) 1879 AP.OutStreamer->GetCommentOS() << "double " << F << '\n'; 1880 AP.OutStreamer->EmitIntValue(I, 8); 1881 } 1882 } 1883 1884 const DataLayout &DL = *AP.TM.getDataLayout(); 1885 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1886 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1887 CDS->getNumElements(); 1888 if (unsigned Padding = Size - EmittedSize) 1889 AP.OutStreamer->EmitZeros(Padding); 1890 1891 } 1892 1893 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP, 1894 const Constant *BaseCV, uint64_t Offset) { 1895 // See if we can aggregate some values. Make sure it can be 1896 // represented as a series of bytes of the constant value. 1897 int Value = isRepeatedByteSequence(CA, AP.TM); 1898 const DataLayout &DL = *AP.TM.getDataLayout(); 1899 1900 if (Value != -1) { 1901 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1902 AP.OutStreamer->EmitFill(Bytes, Value); 1903 } 1904 else { 1905 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1906 emitGlobalConstantImpl(CA->getOperand(i), AP, BaseCV, Offset); 1907 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1908 } 1909 } 1910 } 1911 1912 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1913 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1914 emitGlobalConstantImpl(CV->getOperand(i), AP); 1915 1916 const DataLayout &DL = *AP.TM.getDataLayout(); 1917 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1918 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1919 CV->getType()->getNumElements(); 1920 if (unsigned Padding = Size - EmittedSize) 1921 AP.OutStreamer->EmitZeros(Padding); 1922 } 1923 1924 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP, 1925 const Constant *BaseCV, uint64_t Offset) { 1926 // Print the fields in successive locations. Pad to align if needed! 1927 const DataLayout *DL = AP.TM.getDataLayout(); 1928 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1929 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1930 uint64_t SizeSoFar = 0; 1931 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1932 const Constant *Field = CS->getOperand(i); 1933 1934 // Print the actual field value. 1935 emitGlobalConstantImpl(Field, AP, BaseCV, Offset+SizeSoFar); 1936 1937 // Check if padding is needed and insert one or more 0s. 1938 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1939 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1940 - Layout->getElementOffset(i)) - FieldSize; 1941 SizeSoFar += FieldSize + PadSize; 1942 1943 // Insert padding - this may include padding to increase the size of the 1944 // current field up to the ABI size (if the struct is not packed) as well 1945 // as padding to ensure that the next field starts at the right offset. 1946 AP.OutStreamer->EmitZeros(PadSize); 1947 } 1948 assert(SizeSoFar == Layout->getSizeInBytes() && 1949 "Layout of constant struct may be incorrect!"); 1950 } 1951 1952 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1953 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1954 1955 // First print a comment with what we think the original floating-point value 1956 // should have been. 1957 if (AP.isVerbose()) { 1958 SmallString<8> StrVal; 1959 CFP->getValueAPF().toString(StrVal); 1960 1961 if (CFP->getType()) 1962 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 1963 else 1964 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 1965 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 1966 } 1967 1968 // Now iterate through the APInt chunks, emitting them in endian-correct 1969 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1970 // floats). 1971 unsigned NumBytes = API.getBitWidth() / 8; 1972 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1973 const uint64_t *p = API.getRawData(); 1974 1975 // PPC's long double has odd notions of endianness compared to how LLVM 1976 // handles it: p[0] goes first for *big* endian on PPC. 1977 if (AP.TM.getDataLayout()->isBigEndian() && 1978 !CFP->getType()->isPPC_FP128Ty()) { 1979 int Chunk = API.getNumWords() - 1; 1980 1981 if (TrailingBytes) 1982 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 1983 1984 for (; Chunk >= 0; --Chunk) 1985 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 1986 } else { 1987 unsigned Chunk; 1988 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1989 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 1990 1991 if (TrailingBytes) 1992 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 1993 } 1994 1995 // Emit the tail padding for the long double. 1996 const DataLayout &DL = *AP.TM.getDataLayout(); 1997 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1998 DL.getTypeStoreSize(CFP->getType())); 1999 } 2000 2001 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2002 const DataLayout *DL = AP.TM.getDataLayout(); 2003 unsigned BitWidth = CI->getBitWidth(); 2004 2005 // Copy the value as we may massage the layout for constants whose bit width 2006 // is not a multiple of 64-bits. 2007 APInt Realigned(CI->getValue()); 2008 uint64_t ExtraBits = 0; 2009 unsigned ExtraBitsSize = BitWidth & 63; 2010 2011 if (ExtraBitsSize) { 2012 // The bit width of the data is not a multiple of 64-bits. 2013 // The extra bits are expected to be at the end of the chunk of the memory. 2014 // Little endian: 2015 // * Nothing to be done, just record the extra bits to emit. 2016 // Big endian: 2017 // * Record the extra bits to emit. 2018 // * Realign the raw data to emit the chunks of 64-bits. 2019 if (DL->isBigEndian()) { 2020 // Basically the structure of the raw data is a chunk of 64-bits cells: 2021 // 0 1 BitWidth / 64 2022 // [chunk1][chunk2] ... [chunkN]. 2023 // The most significant chunk is chunkN and it should be emitted first. 2024 // However, due to the alignment issue chunkN contains useless bits. 2025 // Realign the chunks so that they contain only useless information: 2026 // ExtraBits 0 1 (BitWidth / 64) - 1 2027 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2028 ExtraBits = Realigned.getRawData()[0] & 2029 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2030 Realigned = Realigned.lshr(ExtraBitsSize); 2031 } else 2032 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2033 } 2034 2035 // We don't expect assemblers to support integer data directives 2036 // for more than 64 bits, so we emit the data in at most 64-bit 2037 // quantities at a time. 2038 const uint64_t *RawData = Realigned.getRawData(); 2039 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2040 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2041 AP.OutStreamer->EmitIntValue(Val, 8); 2042 } 2043 2044 if (ExtraBitsSize) { 2045 // Emit the extra bits after the 64-bits chunks. 2046 2047 // Emit a directive that fills the expected size. 2048 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize( 2049 CI->getType()); 2050 Size -= (BitWidth / 64) * 8; 2051 assert(Size && Size * 8 >= ExtraBitsSize && 2052 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2053 == ExtraBits && "Directive too small for extra bits."); 2054 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2055 } 2056 } 2057 2058 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2059 /// equivalent global, by a target specific GOT pc relative access to the 2060 /// final symbol. 2061 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2062 const Constant *BaseCst, 2063 uint64_t Offset) { 2064 // The global @foo below illustrates a global that uses a got equivalent. 2065 // 2066 // @bar = global i32 42 2067 // @gotequiv = private unnamed_addr constant i32* @bar 2068 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2069 // i64 ptrtoint (i32* @foo to i64)) 2070 // to i32) 2071 // 2072 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2073 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2074 // form: 2075 // 2076 // foo = cstexpr, where 2077 // cstexpr := <gotequiv> - "." + <cst> 2078 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2079 // 2080 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2081 // 2082 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2083 // gotpcrelcst := <offset from @foo base> + <cst> 2084 // 2085 MCValue MV; 2086 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2087 return; 2088 const MCSymbolRefExpr *SymA = MV.getSymA(); 2089 if (!SymA) 2090 return; 2091 2092 // Check that GOT equivalent symbol is cached. 2093 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2094 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2095 return; 2096 2097 const GlobalValue *BaseGV = dyn_cast<GlobalValue>(BaseCst); 2098 if (!BaseGV) 2099 return; 2100 2101 // Check for a valid base symbol 2102 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2103 const MCSymbolRefExpr *SymB = MV.getSymB(); 2104 2105 if (!SymB || BaseSym != &SymB->getSymbol()) 2106 return; 2107 2108 // Make sure to match: 2109 // 2110 // gotpcrelcst := <offset from @foo base> + <cst> 2111 // 2112 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2113 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2114 // if the target knows how to encode it. 2115 // 2116 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2117 if (GOTPCRelCst < 0) 2118 return; 2119 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2120 return; 2121 2122 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2123 // 2124 // bar: 2125 // .long 42 2126 // gotequiv: 2127 // .quad bar 2128 // foo: 2129 // .long gotequiv - "." + <cst> 2130 // 2131 // is replaced by the target specific equivalent to: 2132 // 2133 // bar: 2134 // .long 42 2135 // foo: 2136 // .long bar@GOTPCREL+<gotpcrelcst> 2137 // 2138 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2139 const GlobalVariable *GV = Result.first; 2140 int NumUses = (int)Result.second; 2141 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2142 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2143 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2144 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2145 2146 // Update GOT equivalent usage information 2147 --NumUses; 2148 if (NumUses >= 0) 2149 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2150 } 2151 2152 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP, 2153 const Constant *BaseCV, uint64_t Offset) { 2154 const DataLayout *DL = AP.TM.getDataLayout(); 2155 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 2156 2157 // Globals with sub-elements such as combinations of arrays and structs 2158 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2159 // constant symbol base and the current position with BaseCV and Offset. 2160 if (!BaseCV && CV->hasOneUse()) 2161 BaseCV = dyn_cast<Constant>(CV->user_back()); 2162 2163 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2164 return AP.OutStreamer->EmitZeros(Size); 2165 2166 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2167 switch (Size) { 2168 case 1: 2169 case 2: 2170 case 4: 2171 case 8: 2172 if (AP.isVerbose()) 2173 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2174 CI->getZExtValue()); 2175 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2176 return; 2177 default: 2178 emitGlobalConstantLargeInt(CI, AP); 2179 return; 2180 } 2181 } 2182 2183 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2184 return emitGlobalConstantFP(CFP, AP); 2185 2186 if (isa<ConstantPointerNull>(CV)) { 2187 AP.OutStreamer->EmitIntValue(0, Size); 2188 return; 2189 } 2190 2191 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2192 return emitGlobalConstantDataSequential(CDS, AP); 2193 2194 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2195 return emitGlobalConstantArray(CVA, AP, BaseCV, Offset); 2196 2197 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2198 return emitGlobalConstantStruct(CVS, AP, BaseCV, Offset); 2199 2200 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2201 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2202 // vectors). 2203 if (CE->getOpcode() == Instruction::BitCast) 2204 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2205 2206 if (Size > 8) { 2207 // If the constant expression's size is greater than 64-bits, then we have 2208 // to emit the value in chunks. Try to constant fold the value and emit it 2209 // that way. 2210 Constant *New = ConstantFoldConstantExpression(CE, *DL); 2211 if (New && New != CE) 2212 return emitGlobalConstantImpl(New, AP); 2213 } 2214 } 2215 2216 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2217 return emitGlobalConstantVector(V, AP); 2218 2219 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2220 // thread the streamer with EmitValue. 2221 const MCExpr *ME = AP.lowerConstant(CV); 2222 2223 // Since lowerConstant already folded and got rid of all IR pointer and 2224 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2225 // directly. 2226 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2227 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2228 2229 AP.OutStreamer->EmitValue(ME, Size); 2230 } 2231 2232 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2233 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2234 uint64_t Size = 2235 TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2236 if (Size) 2237 emitGlobalConstantImpl(CV, *this); 2238 else if (MAI->hasSubsectionsViaSymbols()) { 2239 // If the global has zero size, emit a single byte so that two labels don't 2240 // look like they are at the same location. 2241 OutStreamer->EmitIntValue(0, 1); 2242 } 2243 } 2244 2245 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2246 // Target doesn't support this yet! 2247 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2248 } 2249 2250 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2251 if (Offset > 0) 2252 OS << '+' << Offset; 2253 else if (Offset < 0) 2254 OS << Offset; 2255 } 2256 2257 //===----------------------------------------------------------------------===// 2258 // Symbol Lowering Routines. 2259 //===----------------------------------------------------------------------===// 2260 2261 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2262 return OutContext.createTempSymbol(Name, true); 2263 } 2264 2265 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2266 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2267 } 2268 2269 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2270 return MMI->getAddrLabelSymbol(BB); 2271 } 2272 2273 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2274 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2275 const DataLayout *DL = TM.getDataLayout(); 2276 return OutContext.getOrCreateSymbol 2277 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2278 + "_" + Twine(CPID)); 2279 } 2280 2281 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2282 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2283 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2284 } 2285 2286 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2287 /// FIXME: privatize to AsmPrinter. 2288 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2289 const DataLayout *DL = TM.getDataLayout(); 2290 return OutContext.getOrCreateSymbol 2291 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2292 Twine(UID) + "_set_" + Twine(MBBID)); 2293 } 2294 2295 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2296 StringRef Suffix) const { 2297 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2298 TM); 2299 } 2300 2301 /// Return the MCSymbol for the specified ExternalSymbol. 2302 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2303 SmallString<60> NameStr; 2304 Mangler::getNameWithPrefix(NameStr, Sym, *TM.getDataLayout()); 2305 return OutContext.getOrCreateSymbol(NameStr); 2306 } 2307 2308 2309 2310 /// PrintParentLoopComment - Print comments about parent loops of this one. 2311 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2312 unsigned FunctionNumber) { 2313 if (!Loop) return; 2314 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2315 OS.indent(Loop->getLoopDepth()*2) 2316 << "Parent Loop BB" << FunctionNumber << "_" 2317 << Loop->getHeader()->getNumber() 2318 << " Depth=" << Loop->getLoopDepth() << '\n'; 2319 } 2320 2321 2322 /// PrintChildLoopComment - Print comments about child loops within 2323 /// the loop for this basic block, with nesting. 2324 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2325 unsigned FunctionNumber) { 2326 // Add child loop information 2327 for (const MachineLoop *CL : *Loop) { 2328 OS.indent(CL->getLoopDepth()*2) 2329 << "Child Loop BB" << FunctionNumber << "_" 2330 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2331 << '\n'; 2332 PrintChildLoopComment(OS, CL, FunctionNumber); 2333 } 2334 } 2335 2336 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2337 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2338 const MachineLoopInfo *LI, 2339 const AsmPrinter &AP) { 2340 // Add loop depth information 2341 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2342 if (!Loop) return; 2343 2344 MachineBasicBlock *Header = Loop->getHeader(); 2345 assert(Header && "No header for loop"); 2346 2347 // If this block is not a loop header, just print out what is the loop header 2348 // and return. 2349 if (Header != &MBB) { 2350 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2351 Twine(AP.getFunctionNumber())+"_" + 2352 Twine(Loop->getHeader()->getNumber())+ 2353 " Depth="+Twine(Loop->getLoopDepth())); 2354 return; 2355 } 2356 2357 // Otherwise, it is a loop header. Print out information about child and 2358 // parent loops. 2359 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2360 2361 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2362 2363 OS << "=>"; 2364 OS.indent(Loop->getLoopDepth()*2-2); 2365 2366 OS << "This "; 2367 if (Loop->empty()) 2368 OS << "Inner "; 2369 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2370 2371 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2372 } 2373 2374 2375 /// EmitBasicBlockStart - This method prints the label for the specified 2376 /// MachineBasicBlock, an alignment (if present) and a comment describing 2377 /// it if appropriate. 2378 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2379 // Emit an alignment directive for this block, if needed. 2380 if (unsigned Align = MBB.getAlignment()) 2381 EmitAlignment(Align); 2382 2383 // If the block has its address taken, emit any labels that were used to 2384 // reference the block. It is possible that there is more than one label 2385 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2386 // the references were generated. 2387 if (MBB.hasAddressTaken()) { 2388 const BasicBlock *BB = MBB.getBasicBlock(); 2389 if (isVerbose()) 2390 OutStreamer->AddComment("Block address taken"); 2391 2392 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2393 OutStreamer->EmitLabel(Sym); 2394 } 2395 2396 // Print some verbose block comments. 2397 if (isVerbose()) { 2398 if (const BasicBlock *BB = MBB.getBasicBlock()) 2399 if (BB->hasName()) 2400 OutStreamer->AddComment("%" + BB->getName()); 2401 emitBasicBlockLoopComments(MBB, LI, *this); 2402 } 2403 2404 // Print the main label for the block. 2405 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2406 if (isVerbose()) { 2407 // NOTE: Want this comment at start of line, don't emit with AddComment. 2408 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2409 } 2410 } else { 2411 OutStreamer->EmitLabel(MBB.getSymbol()); 2412 } 2413 } 2414 2415 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2416 bool IsDefinition) const { 2417 MCSymbolAttr Attr = MCSA_Invalid; 2418 2419 switch (Visibility) { 2420 default: break; 2421 case GlobalValue::HiddenVisibility: 2422 if (IsDefinition) 2423 Attr = MAI->getHiddenVisibilityAttr(); 2424 else 2425 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2426 break; 2427 case GlobalValue::ProtectedVisibility: 2428 Attr = MAI->getProtectedVisibilityAttr(); 2429 break; 2430 } 2431 2432 if (Attr != MCSA_Invalid) 2433 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2434 } 2435 2436 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2437 /// exactly one predecessor and the control transfer mechanism between 2438 /// the predecessor and this block is a fall-through. 2439 bool AsmPrinter:: 2440 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2441 // If this is a landing pad, it isn't a fall through. If it has no preds, 2442 // then nothing falls through to it. 2443 if (MBB->isLandingPad() || MBB->pred_empty()) 2444 return false; 2445 2446 // If there isn't exactly one predecessor, it can't be a fall through. 2447 if (MBB->pred_size() > 1) 2448 return false; 2449 2450 // The predecessor has to be immediately before this block. 2451 MachineBasicBlock *Pred = *MBB->pred_begin(); 2452 if (!Pred->isLayoutSuccessor(MBB)) 2453 return false; 2454 2455 // If the block is completely empty, then it definitely does fall through. 2456 if (Pred->empty()) 2457 return true; 2458 2459 // Check the terminators in the previous blocks 2460 for (const auto &MI : Pred->terminators()) { 2461 // If it is not a simple branch, we are in a table somewhere. 2462 if (!MI.isBranch() || MI.isIndirectBranch()) 2463 return false; 2464 2465 // If we are the operands of one of the branches, this is not a fall 2466 // through. Note that targets with delay slots will usually bundle 2467 // terminators with the delay slot instruction. 2468 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2469 if (OP->isJTI()) 2470 return false; 2471 if (OP->isMBB() && OP->getMBB() == MBB) 2472 return false; 2473 } 2474 } 2475 2476 return true; 2477 } 2478 2479 2480 2481 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2482 if (!S.usesMetadata()) 2483 return nullptr; 2484 2485 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2486 " stackmap formats, please see the documentation for a description of" 2487 " the default format. If you really need a custom serialized format," 2488 " please file a bug"); 2489 2490 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2491 gcp_map_type::iterator GCPI = GCMap.find(&S); 2492 if (GCPI != GCMap.end()) 2493 return GCPI->second.get(); 2494 2495 const char *Name = S.getName().c_str(); 2496 2497 for (GCMetadataPrinterRegistry::iterator 2498 I = GCMetadataPrinterRegistry::begin(), 2499 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2500 if (strcmp(Name, I->getName()) == 0) { 2501 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2502 GMP->S = &S; 2503 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2504 return IterBool.first->second.get(); 2505 } 2506 2507 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2508 } 2509 2510 /// Pin vtable to this file. 2511 AsmPrinterHandler::~AsmPrinterHandler() {} 2512 2513 void AsmPrinterHandler::markFunctionEnd() {} 2514