1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/AsmPrinterHandler.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/MC/MCAsmInfo.h"
85 #include "llvm/MC/MCCodePadder.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCTargetOptions.h"
100 #include "llvm/MC/MCValue.h"
101 #include "llvm/MC/SectionKind.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/Format.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/Path.h"
110 #include "llvm/Support/TargetRegistry.h"
111 #include "llvm/Support/Timer.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetLoweringObjectFile.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cinttypes>
119 #include <cstdint>
120 #include <iterator>
121 #include <limits>
122 #include <memory>
123 #include <string>
124 #include <utility>
125 #include <vector>
126 
127 using namespace llvm;
128 
129 #define DEBUG_TYPE "asm-printer"
130 
131 static const char *const DWARFGroupName = "dwarf";
132 static const char *const DWARFGroupDescription = "DWARF Emission";
133 static const char *const DbgTimerName = "emit";
134 static const char *const DbgTimerDescription = "Debug Info Emission";
135 static const char *const EHTimerName = "write_exception";
136 static const char *const EHTimerDescription = "DWARF Exception Writer";
137 static const char *const CFGuardName = "Control Flow Guard";
138 static const char *const CFGuardDescription = "Control Flow Guard Tables";
139 static const char *const CodeViewLineTablesGroupName = "linetables";
140 static const char *const CodeViewLineTablesGroupDescription =
141   "CodeView Line Tables";
142 
143 STATISTIC(EmittedInsts, "Number of machine instrs printed");
144 
145 static cl::opt<bool>
146     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
147                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
148 
149 char AsmPrinter::ID = 0;
150 
151 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
152 
153 static gcp_map_type &getGCMap(void *&P) {
154   if (!P)
155     P = new gcp_map_type();
156   return *(gcp_map_type*)P;
157 }
158 
159 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
160 /// value in log2 form.  This rounds up to the preferred alignment if possible
161 /// and legal.
162 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
163                                    unsigned InBits = 0) {
164   unsigned NumBits = 0;
165   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
166     NumBits = DL.getPreferredAlignmentLog(GVar);
167 
168   // If InBits is specified, round it to it.
169   if (InBits > NumBits)
170     NumBits = InBits;
171 
172   // If the GV has a specified alignment, take it into account.
173   if (GV->getAlignment() == 0)
174     return NumBits;
175 
176   unsigned GVAlign = Log2_32(GV->getAlignment());
177 
178   // If the GVAlign is larger than NumBits, or if we are required to obey
179   // NumBits because the GV has an assigned section, obey it.
180   if (GVAlign > NumBits || GV->hasSection())
181     NumBits = GVAlign;
182   return NumBits;
183 }
184 
185 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
186     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
187       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
188   VerboseAsm = OutStreamer->isVerboseAsm();
189 }
190 
191 AsmPrinter::~AsmPrinter() {
192   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
193 
194   if (GCMetadataPrinters) {
195     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
196 
197     delete &GCMap;
198     GCMetadataPrinters = nullptr;
199   }
200 }
201 
202 bool AsmPrinter::isPositionIndependent() const {
203   return TM.isPositionIndependent();
204 }
205 
206 /// getFunctionNumber - Return a unique ID for the current function.
207 unsigned AsmPrinter::getFunctionNumber() const {
208   return MF->getFunctionNumber();
209 }
210 
211 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
212   return *TM.getObjFileLowering();
213 }
214 
215 const DataLayout &AsmPrinter::getDataLayout() const {
216   return MMI->getModule()->getDataLayout();
217 }
218 
219 // Do not use the cached DataLayout because some client use it without a Module
220 // (dsymutil, llvm-dwarfdump).
221 unsigned AsmPrinter::getPointerSize() const {
222   return TM.getPointerSize(0); // FIXME: Default address space
223 }
224 
225 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
226   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
227   return MF->getSubtarget<MCSubtargetInfo>();
228 }
229 
230 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
231   S.EmitInstruction(Inst, getSubtargetInfo());
232 }
233 
234 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
235   assert(DD && "Dwarf debug file is not defined.");
236   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
237   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
238 }
239 
240 /// getCurrentSection() - Return the current section we are emitting to.
241 const MCSection *AsmPrinter::getCurrentSection() const {
242   return OutStreamer->getCurrentSectionOnly();
243 }
244 
245 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
246   AU.setPreservesAll();
247   MachineFunctionPass::getAnalysisUsage(AU);
248   AU.addRequired<MachineModuleInfo>();
249   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
250   AU.addRequired<GCModuleInfo>();
251 }
252 
253 bool AsmPrinter::doInitialization(Module &M) {
254   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
255 
256   // Initialize TargetLoweringObjectFile.
257   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
258     .Initialize(OutContext, TM);
259 
260   OutStreamer->InitSections(false);
261 
262   // Emit the version-min deployment target directive if needed.
263   //
264   // FIXME: If we end up with a collection of these sorts of Darwin-specific
265   // or ELF-specific things, it may make sense to have a platform helper class
266   // that will work with the target helper class. For now keep it here, as the
267   // alternative is duplicated code in each of the target asm printers that
268   // use the directive, where it would need the same conditionalization
269   // anyway.
270   const Triple &Target = TM.getTargetTriple();
271   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
272 
273   // Allow the target to emit any magic that it wants at the start of the file.
274   EmitStartOfAsmFile(M);
275 
276   // Very minimal debug info. It is ignored if we emit actual debug info. If we
277   // don't, this at least helps the user find where a global came from.
278   if (MAI->hasSingleParameterDotFile()) {
279     // .file "foo.c"
280     OutStreamer->EmitFileDirective(
281         llvm::sys::path::filename(M.getSourceFileName()));
282   }
283 
284   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
285   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
286   for (auto &I : *MI)
287     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
288       MP->beginAssembly(M, *MI, *this);
289 
290   // Emit module-level inline asm if it exists.
291   if (!M.getModuleInlineAsm().empty()) {
292     // We're at the module level. Construct MCSubtarget from the default CPU
293     // and target triple.
294     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
295         TM.getTargetTriple().str(), TM.getTargetCPU(),
296         TM.getTargetFeatureString()));
297     OutStreamer->AddComment("Start of file scope inline assembly");
298     OutStreamer->AddBlankLine();
299     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
300                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
301     OutStreamer->AddComment("End of file scope inline assembly");
302     OutStreamer->AddBlankLine();
303   }
304 
305   if (MAI->doesSupportDebugInformation()) {
306     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
307     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
308       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
309                                      DbgTimerName, DbgTimerDescription,
310                                      CodeViewLineTablesGroupName,
311                                      CodeViewLineTablesGroupDescription));
312     }
313     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
314       DD = new DwarfDebug(this, &M);
315       DD->beginModule();
316       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
317                                      DWARFGroupName, DWARFGroupDescription));
318     }
319   }
320 
321   switch (MAI->getExceptionHandlingType()) {
322   case ExceptionHandling::SjLj:
323   case ExceptionHandling::DwarfCFI:
324   case ExceptionHandling::ARM:
325     isCFIMoveForDebugging = true;
326     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
327       break;
328     for (auto &F: M.getFunctionList()) {
329       // If the module contains any function with unwind data,
330       // .eh_frame has to be emitted.
331       // Ignore functions that won't get emitted.
332       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
333         isCFIMoveForDebugging = false;
334         break;
335       }
336     }
337     break;
338   default:
339     isCFIMoveForDebugging = false;
340     break;
341   }
342 
343   EHStreamer *ES = nullptr;
344   switch (MAI->getExceptionHandlingType()) {
345   case ExceptionHandling::None:
346     break;
347   case ExceptionHandling::SjLj:
348   case ExceptionHandling::DwarfCFI:
349     ES = new DwarfCFIException(this);
350     break;
351   case ExceptionHandling::ARM:
352     ES = new ARMException(this);
353     break;
354   case ExceptionHandling::WinEH:
355     switch (MAI->getWinEHEncodingType()) {
356     default: llvm_unreachable("unsupported unwinding information encoding");
357     case WinEH::EncodingType::Invalid:
358       break;
359     case WinEH::EncodingType::X86:
360     case WinEH::EncodingType::Itanium:
361       ES = new WinException(this);
362       break;
363     }
364     break;
365   case ExceptionHandling::Wasm:
366     ES = new WasmException(this);
367     break;
368   }
369   if (ES)
370     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
371                                    DWARFGroupName, DWARFGroupDescription));
372 
373   if (mdconst::extract_or_null<ConstantInt>(
374           MMI->getModule()->getModuleFlag("cfguardtable")))
375     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
376                                    CFGuardDescription, DWARFGroupName,
377                                    DWARFGroupDescription));
378 
379   return false;
380 }
381 
382 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
383   if (!MAI.hasWeakDefCanBeHiddenDirective())
384     return false;
385 
386   return GV->canBeOmittedFromSymbolTable();
387 }
388 
389 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
390   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
391   switch (Linkage) {
392   case GlobalValue::CommonLinkage:
393   case GlobalValue::LinkOnceAnyLinkage:
394   case GlobalValue::LinkOnceODRLinkage:
395   case GlobalValue::WeakAnyLinkage:
396   case GlobalValue::WeakODRLinkage:
397     if (MAI->hasWeakDefDirective()) {
398       // .globl _foo
399       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
400 
401       if (!canBeHidden(GV, *MAI))
402         // .weak_definition _foo
403         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
404       else
405         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
406     } else if (MAI->hasLinkOnceDirective()) {
407       // .globl _foo
408       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
409       //NOTE: linkonce is handled by the section the symbol was assigned to.
410     } else {
411       // .weak _foo
412       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
413     }
414     return;
415   case GlobalValue::ExternalLinkage:
416     // If external, declare as a global symbol: .globl _foo
417     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
418     return;
419   case GlobalValue::PrivateLinkage:
420   case GlobalValue::InternalLinkage:
421     return;
422   case GlobalValue::AppendingLinkage:
423   case GlobalValue::AvailableExternallyLinkage:
424   case GlobalValue::ExternalWeakLinkage:
425     llvm_unreachable("Should never emit this");
426   }
427   llvm_unreachable("Unknown linkage type!");
428 }
429 
430 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
431                                    const GlobalValue *GV) const {
432   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
433 }
434 
435 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
436   return TM.getSymbol(GV);
437 }
438 
439 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
440 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
441   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
442   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
443          "No emulated TLS variables in the common section");
444 
445   // Never emit TLS variable xyz in emulated TLS model.
446   // The initialization value is in __emutls_t.xyz instead of xyz.
447   if (IsEmuTLSVar)
448     return;
449 
450   if (GV->hasInitializer()) {
451     // Check to see if this is a special global used by LLVM, if so, emit it.
452     if (EmitSpecialLLVMGlobal(GV))
453       return;
454 
455     // Skip the emission of global equivalents. The symbol can be emitted later
456     // on by emitGlobalGOTEquivs in case it turns out to be needed.
457     if (GlobalGOTEquivs.count(getSymbol(GV)))
458       return;
459 
460     if (isVerbose()) {
461       // When printing the control variable __emutls_v.*,
462       // we don't need to print the original TLS variable name.
463       GV->printAsOperand(OutStreamer->GetCommentOS(),
464                      /*PrintType=*/false, GV->getParent());
465       OutStreamer->GetCommentOS() << '\n';
466     }
467   }
468 
469   MCSymbol *GVSym = getSymbol(GV);
470   MCSymbol *EmittedSym = GVSym;
471 
472   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
473   // attributes.
474   // GV's or GVSym's attributes will be used for the EmittedSym.
475   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
476 
477   if (!GV->hasInitializer())   // External globals require no extra code.
478     return;
479 
480   GVSym->redefineIfPossible();
481   if (GVSym->isDefined() || GVSym->isVariable())
482     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
483                        "' is already defined");
484 
485   if (MAI->hasDotTypeDotSizeDirective())
486     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
487 
488   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
489 
490   const DataLayout &DL = GV->getParent()->getDataLayout();
491   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
492 
493   // If the alignment is specified, we *must* obey it.  Overaligning a global
494   // with a specified alignment is a prompt way to break globals emitted to
495   // sections and expected to be contiguous (e.g. ObjC metadata).
496   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
497 
498   for (const HandlerInfo &HI : Handlers) {
499     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
500                        HI.TimerGroupName, HI.TimerGroupDescription,
501                        TimePassesIsEnabled);
502     HI.Handler->setSymbolSize(GVSym, Size);
503   }
504 
505   // Handle common symbols
506   if (GVKind.isCommon()) {
507     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
508     unsigned Align = 1 << AlignLog;
509     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
510       Align = 0;
511 
512     // .comm _foo, 42, 4
513     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
514     return;
515   }
516 
517   // Determine to which section this global should be emitted.
518   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
519 
520   // If we have a bss global going to a section that supports the
521   // zerofill directive, do so here.
522   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
523       TheSection->isVirtualSection()) {
524     if (Size == 0)
525       Size = 1; // zerofill of 0 bytes is undefined.
526     unsigned Align = 1 << AlignLog;
527     EmitLinkage(GV, GVSym);
528     // .zerofill __DATA, __bss, _foo, 400, 5
529     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
530     return;
531   }
532 
533   // If this is a BSS local symbol and we are emitting in the BSS
534   // section use .lcomm/.comm directive.
535   if (GVKind.isBSSLocal() &&
536       getObjFileLowering().getBSSSection() == TheSection) {
537     if (Size == 0)
538       Size = 1; // .comm Foo, 0 is undefined, avoid it.
539     unsigned Align = 1 << AlignLog;
540 
541     // Use .lcomm only if it supports user-specified alignment.
542     // Otherwise, while it would still be correct to use .lcomm in some
543     // cases (e.g. when Align == 1), the external assembler might enfore
544     // some -unknown- default alignment behavior, which could cause
545     // spurious differences between external and integrated assembler.
546     // Prefer to simply fall back to .local / .comm in this case.
547     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
548       // .lcomm _foo, 42
549       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
550       return;
551     }
552 
553     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
554       Align = 0;
555 
556     // .local _foo
557     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
558     // .comm _foo, 42, 4
559     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
560     return;
561   }
562 
563   // Handle thread local data for mach-o which requires us to output an
564   // additional structure of data and mangle the original symbol so that we
565   // can reference it later.
566   //
567   // TODO: This should become an "emit thread local global" method on TLOF.
568   // All of this macho specific stuff should be sunk down into TLOFMachO and
569   // stuff like "TLSExtraDataSection" should no longer be part of the parent
570   // TLOF class.  This will also make it more obvious that stuff like
571   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
572   // specific code.
573   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
574     // Emit the .tbss symbol
575     MCSymbol *MangSym =
576         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
577 
578     if (GVKind.isThreadBSS()) {
579       TheSection = getObjFileLowering().getTLSBSSSection();
580       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
581     } else if (GVKind.isThreadData()) {
582       OutStreamer->SwitchSection(TheSection);
583 
584       EmitAlignment(AlignLog, GV);
585       OutStreamer->EmitLabel(MangSym);
586 
587       EmitGlobalConstant(GV->getParent()->getDataLayout(),
588                          GV->getInitializer());
589     }
590 
591     OutStreamer->AddBlankLine();
592 
593     // Emit the variable struct for the runtime.
594     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
595 
596     OutStreamer->SwitchSection(TLVSect);
597     // Emit the linkage here.
598     EmitLinkage(GV, GVSym);
599     OutStreamer->EmitLabel(GVSym);
600 
601     // Three pointers in size:
602     //   - __tlv_bootstrap - used to make sure support exists
603     //   - spare pointer, used when mapped by the runtime
604     //   - pointer to mangled symbol above with initializer
605     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
606     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
607                                 PtrSize);
608     OutStreamer->EmitIntValue(0, PtrSize);
609     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
610 
611     OutStreamer->AddBlankLine();
612     return;
613   }
614 
615   MCSymbol *EmittedInitSym = GVSym;
616 
617   OutStreamer->SwitchSection(TheSection);
618 
619   EmitLinkage(GV, EmittedInitSym);
620   EmitAlignment(AlignLog, GV);
621 
622   OutStreamer->EmitLabel(EmittedInitSym);
623 
624   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
625 
626   if (MAI->hasDotTypeDotSizeDirective())
627     // .size foo, 42
628     OutStreamer->emitELFSize(EmittedInitSym,
629                              MCConstantExpr::create(Size, OutContext));
630 
631   OutStreamer->AddBlankLine();
632 }
633 
634 /// Emit the directive and value for debug thread local expression
635 ///
636 /// \p Value - The value to emit.
637 /// \p Size - The size of the integer (in bytes) to emit.
638 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
639   OutStreamer->EmitValue(Value, Size);
640 }
641 
642 /// EmitFunctionHeader - This method emits the header for the current
643 /// function.
644 void AsmPrinter::EmitFunctionHeader() {
645   const Function &F = MF->getFunction();
646 
647   if (isVerbose())
648     OutStreamer->GetCommentOS()
649         << "-- Begin function "
650         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
651 
652   // Print out constants referenced by the function
653   EmitConstantPool();
654 
655   // Print the 'header' of function.
656   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
657   EmitVisibility(CurrentFnSym, F.getVisibility());
658 
659   EmitLinkage(&F, CurrentFnSym);
660   if (MAI->hasFunctionAlignment())
661     EmitAlignment(MF->getAlignment(), &F);
662 
663   if (MAI->hasDotTypeDotSizeDirective())
664     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
665 
666   if (F.hasFnAttribute(Attribute::Cold))
667     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
668 
669   if (isVerbose()) {
670     F.printAsOperand(OutStreamer->GetCommentOS(),
671                    /*PrintType=*/false, F.getParent());
672     OutStreamer->GetCommentOS() << '\n';
673   }
674 
675   // Emit the prefix data.
676   if (F.hasPrefixData()) {
677     if (MAI->hasSubsectionsViaSymbols()) {
678       // Preserving prefix data on platforms which use subsections-via-symbols
679       // is a bit tricky. Here we introduce a symbol for the prefix data
680       // and use the .alt_entry attribute to mark the function's real entry point
681       // as an alternative entry point to the prefix-data symbol.
682       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
683       OutStreamer->EmitLabel(PrefixSym);
684 
685       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
686 
687       // Emit an .alt_entry directive for the actual function symbol.
688       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
689     } else {
690       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
691     }
692   }
693 
694   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
695   // do their wild and crazy things as required.
696   EmitFunctionEntryLabel();
697 
698   // If the function had address-taken blocks that got deleted, then we have
699   // references to the dangling symbols.  Emit them at the start of the function
700   // so that we don't get references to undefined symbols.
701   std::vector<MCSymbol*> DeadBlockSyms;
702   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
703   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
704     OutStreamer->AddComment("Address taken block that was later removed");
705     OutStreamer->EmitLabel(DeadBlockSyms[i]);
706   }
707 
708   if (CurrentFnBegin) {
709     if (MAI->useAssignmentForEHBegin()) {
710       MCSymbol *CurPos = OutContext.createTempSymbol();
711       OutStreamer->EmitLabel(CurPos);
712       OutStreamer->EmitAssignment(CurrentFnBegin,
713                                  MCSymbolRefExpr::create(CurPos, OutContext));
714     } else {
715       OutStreamer->EmitLabel(CurrentFnBegin);
716     }
717   }
718 
719   // Emit pre-function debug and/or EH information.
720   for (const HandlerInfo &HI : Handlers) {
721     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
722                        HI.TimerGroupDescription, TimePassesIsEnabled);
723     HI.Handler->beginFunction(MF);
724   }
725 
726   // Emit the prologue data.
727   if (F.hasPrologueData())
728     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
729 }
730 
731 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
732 /// function.  This can be overridden by targets as required to do custom stuff.
733 void AsmPrinter::EmitFunctionEntryLabel() {
734   CurrentFnSym->redefineIfPossible();
735 
736   // The function label could have already been emitted if two symbols end up
737   // conflicting due to asm renaming.  Detect this and emit an error.
738   if (CurrentFnSym->isVariable())
739     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
740                        "' is a protected alias");
741   if (CurrentFnSym->isDefined())
742     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
743                        "' label emitted multiple times to assembly file");
744 
745   return OutStreamer->EmitLabel(CurrentFnSym);
746 }
747 
748 /// emitComments - Pretty-print comments for instructions.
749 /// It returns true iff the sched comment was emitted.
750 ///   Otherwise it returns false.
751 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
752                          AsmPrinter *AP) {
753   const MachineFunction *MF = MI.getMF();
754   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
755 
756   // Check for spills and reloads
757   int FI;
758 
759   const MachineFrameInfo &MFI = MF->getFrameInfo();
760   bool Commented = false;
761 
762   auto getSize =
763       [&MFI](const SmallVectorImpl<const MachineMemOperand *> &Accesses) {
764         unsigned Size = 0;
765         for (auto A : Accesses)
766           if (MFI.isSpillSlotObjectIndex(
767                   cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
768                       ->getFrameIndex()))
769             Size += A->getSize();
770         return Size;
771       };
772 
773   // We assume a single instruction only has a spill or reload, not
774   // both.
775   const MachineMemOperand *MMO;
776   SmallVector<const MachineMemOperand *, 2> Accesses;
777   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
778     if (MFI.isSpillSlotObjectIndex(FI)) {
779       MMO = *MI.memoperands_begin();
780       CommentOS << MMO->getSize() << "-byte Reload";
781       Commented = true;
782     }
783   } else if (TII->hasLoadFromStackSlot(MI, Accesses)) {
784     if (auto Size = getSize(Accesses)) {
785       CommentOS << Size << "-byte Folded Reload";
786       Commented = true;
787     }
788   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
789     if (MFI.isSpillSlotObjectIndex(FI)) {
790       MMO = *MI.memoperands_begin();
791       CommentOS << MMO->getSize() << "-byte Spill";
792       Commented = true;
793     }
794   } else if (TII->hasStoreToStackSlot(MI, Accesses)) {
795     if (auto Size = getSize(Accesses)) {
796       CommentOS << Size << "-byte Folded Spill";
797       Commented = true;
798     }
799   }
800 
801   // Check for spill-induced copies
802   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
803     Commented = true;
804     CommentOS << " Reload Reuse";
805   }
806 
807   if (Commented) {
808     if (AP->EnablePrintSchedInfo) {
809       // If any comment was added above and we need sched info comment then add
810       // this new comment just after the above comment w/o "\n" between them.
811       CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
812       return true;
813     }
814     CommentOS << "\n";
815   }
816   return false;
817 }
818 
819 /// emitImplicitDef - This method emits the specified machine instruction
820 /// that is an implicit def.
821 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
822   unsigned RegNo = MI->getOperand(0).getReg();
823 
824   SmallString<128> Str;
825   raw_svector_ostream OS(Str);
826   OS << "implicit-def: "
827      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
828 
829   OutStreamer->AddComment(OS.str());
830   OutStreamer->AddBlankLine();
831 }
832 
833 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
834   std::string Str;
835   raw_string_ostream OS(Str);
836   OS << "kill:";
837   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
838     const MachineOperand &Op = MI->getOperand(i);
839     assert(Op.isReg() && "KILL instruction must have only register operands");
840     OS << ' ' << (Op.isDef() ? "def " : "killed ")
841        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
842   }
843   AP.OutStreamer->AddComment(OS.str());
844   AP.OutStreamer->AddBlankLine();
845 }
846 
847 /// emitDebugValueComment - This method handles the target-independent form
848 /// of DBG_VALUE, returning true if it was able to do so.  A false return
849 /// means the target will need to handle MI in EmitInstruction.
850 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
851   // This code handles only the 4-operand target-independent form.
852   if (MI->getNumOperands() != 4)
853     return false;
854 
855   SmallString<128> Str;
856   raw_svector_ostream OS(Str);
857   OS << "DEBUG_VALUE: ";
858 
859   const DILocalVariable *V = MI->getDebugVariable();
860   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
861     StringRef Name = SP->getName();
862     if (!Name.empty())
863       OS << Name << ":";
864   }
865   OS << V->getName();
866   OS << " <- ";
867 
868   // The second operand is only an offset if it's an immediate.
869   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
870   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
871   const DIExpression *Expr = MI->getDebugExpression();
872   if (Expr->getNumElements()) {
873     OS << '[';
874     bool NeedSep = false;
875     for (auto Op : Expr->expr_ops()) {
876       if (NeedSep)
877         OS << ", ";
878       else
879         NeedSep = true;
880       OS << dwarf::OperationEncodingString(Op.getOp());
881       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
882         OS << ' ' << Op.getArg(I);
883     }
884     OS << "] ";
885   }
886 
887   // Register or immediate value. Register 0 means undef.
888   if (MI->getOperand(0).isFPImm()) {
889     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
890     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
891       OS << (double)APF.convertToFloat();
892     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
893       OS << APF.convertToDouble();
894     } else {
895       // There is no good way to print long double.  Convert a copy to
896       // double.  Ah well, it's only a comment.
897       bool ignored;
898       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
899                   &ignored);
900       OS << "(long double) " << APF.convertToDouble();
901     }
902   } else if (MI->getOperand(0).isImm()) {
903     OS << MI->getOperand(0).getImm();
904   } else if (MI->getOperand(0).isCImm()) {
905     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
906   } else {
907     unsigned Reg;
908     if (MI->getOperand(0).isReg()) {
909       Reg = MI->getOperand(0).getReg();
910     } else {
911       assert(MI->getOperand(0).isFI() && "Unknown operand type");
912       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
913       Offset += TFI->getFrameIndexReference(*AP.MF,
914                                             MI->getOperand(0).getIndex(), Reg);
915       MemLoc = true;
916     }
917     if (Reg == 0) {
918       // Suppress offset, it is not meaningful here.
919       OS << "undef";
920       // NOTE: Want this comment at start of line, don't emit with AddComment.
921       AP.OutStreamer->emitRawComment(OS.str());
922       return true;
923     }
924     if (MemLoc)
925       OS << '[';
926     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
927   }
928 
929   if (MemLoc)
930     OS << '+' << Offset << ']';
931 
932   // NOTE: Want this comment at start of line, don't emit with AddComment.
933   AP.OutStreamer->emitRawComment(OS.str());
934   return true;
935 }
936 
937 /// This method handles the target-independent form of DBG_LABEL, returning
938 /// true if it was able to do so.  A false return means the target will need
939 /// to handle MI in EmitInstruction.
940 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
941   if (MI->getNumOperands() != 1)
942     return false;
943 
944   SmallString<128> Str;
945   raw_svector_ostream OS(Str);
946   OS << "DEBUG_LABEL: ";
947 
948   const DILabel *V = MI->getDebugLabel();
949   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
950     StringRef Name = SP->getName();
951     if (!Name.empty())
952       OS << Name << ":";
953   }
954   OS << V->getName();
955 
956   // NOTE: Want this comment at start of line, don't emit with AddComment.
957   AP.OutStreamer->emitRawComment(OS.str());
958   return true;
959 }
960 
961 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
962   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
963       MF->getFunction().needsUnwindTableEntry())
964     return CFI_M_EH;
965 
966   if (MMI->hasDebugInfo())
967     return CFI_M_Debug;
968 
969   return CFI_M_None;
970 }
971 
972 bool AsmPrinter::needsSEHMoves() {
973   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
974 }
975 
976 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
977   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
978   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
979       ExceptionHandlingType != ExceptionHandling::ARM)
980     return;
981 
982   if (needsCFIMoves() == CFI_M_None)
983     return;
984 
985   // If there is no "real" instruction following this CFI instruction, skip
986   // emitting it; it would be beyond the end of the function's FDE range.
987   auto *MBB = MI.getParent();
988   auto I = std::next(MI.getIterator());
989   while (I != MBB->end() && I->isTransient())
990     ++I;
991   if (I == MBB->instr_end() &&
992       MBB->getReverseIterator() == MBB->getParent()->rbegin())
993     return;
994 
995   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
996   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
997   const MCCFIInstruction &CFI = Instrs[CFIIndex];
998   emitCFIInstruction(CFI);
999 }
1000 
1001 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1002   // The operands are the MCSymbol and the frame offset of the allocation.
1003   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1004   int FrameOffset = MI.getOperand(1).getImm();
1005 
1006   // Emit a symbol assignment.
1007   OutStreamer->EmitAssignment(FrameAllocSym,
1008                              MCConstantExpr::create(FrameOffset, OutContext));
1009 }
1010 
1011 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1012   if (!MF.getTarget().Options.EmitStackSizeSection)
1013     return;
1014 
1015   MCSection *StackSizeSection =
1016       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1017   if (!StackSizeSection)
1018     return;
1019 
1020   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1021   // Don't emit functions with dynamic stack allocations.
1022   if (FrameInfo.hasVarSizedObjects())
1023     return;
1024 
1025   OutStreamer->PushSection();
1026   OutStreamer->SwitchSection(StackSizeSection);
1027 
1028   const MCSymbol *FunctionSymbol = getFunctionBegin();
1029   uint64_t StackSize = FrameInfo.getStackSize();
1030   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1031   OutStreamer->EmitULEB128IntValue(StackSize);
1032 
1033   OutStreamer->PopSection();
1034 }
1035 
1036 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1037                                            MachineModuleInfo *MMI) {
1038   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1039     return true;
1040 
1041   // We might emit an EH table that uses function begin and end labels even if
1042   // we don't have any landingpads.
1043   if (!MF.getFunction().hasPersonalityFn())
1044     return false;
1045   return !isNoOpWithoutInvoke(
1046       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1047 }
1048 
1049 /// EmitFunctionBody - This method emits the body and trailer for a
1050 /// function.
1051 void AsmPrinter::EmitFunctionBody() {
1052   EmitFunctionHeader();
1053 
1054   // Emit target-specific gunk before the function body.
1055   EmitFunctionBodyStart();
1056 
1057   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1058 
1059   if (isVerbose()) {
1060     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1061     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1062     if (!MDT) {
1063       OwnedMDT = make_unique<MachineDominatorTree>();
1064       OwnedMDT->getBase().recalculate(*MF);
1065       MDT = OwnedMDT.get();
1066     }
1067 
1068     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1069     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1070     if (!MLI) {
1071       OwnedMLI = make_unique<MachineLoopInfo>();
1072       OwnedMLI->getBase().analyze(MDT->getBase());
1073       MLI = OwnedMLI.get();
1074     }
1075   }
1076 
1077   // Print out code for the function.
1078   bool HasAnyRealCode = false;
1079   int NumInstsInFunction = 0;
1080   for (auto &MBB : *MF) {
1081     // Print a label for the basic block.
1082     EmitBasicBlockStart(MBB);
1083     for (auto &MI : MBB) {
1084       // Print the assembly for the instruction.
1085       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1086           !MI.isDebugInstr()) {
1087         HasAnyRealCode = true;
1088         ++NumInstsInFunction;
1089       }
1090 
1091       // If there is a pre-instruction symbol, emit a label for it here.
1092       if (MCSymbol *S = MI.getPreInstrSymbol())
1093         OutStreamer->EmitLabel(S);
1094 
1095       if (ShouldPrintDebugScopes) {
1096         for (const HandlerInfo &HI : Handlers) {
1097           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1098                              HI.TimerGroupName, HI.TimerGroupDescription,
1099                              TimePassesIsEnabled);
1100           HI.Handler->beginInstruction(&MI);
1101         }
1102       }
1103 
1104       if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) {
1105         MachineInstr *MIP = const_cast<MachineInstr *>(&MI);
1106         MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment);
1107       }
1108 
1109       switch (MI.getOpcode()) {
1110       case TargetOpcode::CFI_INSTRUCTION:
1111         emitCFIInstruction(MI);
1112         break;
1113       case TargetOpcode::LOCAL_ESCAPE:
1114         emitFrameAlloc(MI);
1115         break;
1116       case TargetOpcode::EH_LABEL:
1117       case TargetOpcode::GC_LABEL:
1118         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1119         break;
1120       case TargetOpcode::INLINEASM:
1121         EmitInlineAsm(&MI);
1122         break;
1123       case TargetOpcode::DBG_VALUE:
1124         if (isVerbose()) {
1125           if (!emitDebugValueComment(&MI, *this))
1126             EmitInstruction(&MI);
1127         }
1128         break;
1129       case TargetOpcode::DBG_LABEL:
1130         if (isVerbose()) {
1131           if (!emitDebugLabelComment(&MI, *this))
1132             EmitInstruction(&MI);
1133         }
1134         break;
1135       case TargetOpcode::IMPLICIT_DEF:
1136         if (isVerbose()) emitImplicitDef(&MI);
1137         break;
1138       case TargetOpcode::KILL:
1139         if (isVerbose()) emitKill(&MI, *this);
1140         break;
1141       default:
1142         EmitInstruction(&MI);
1143         break;
1144       }
1145 
1146       // If there is a post-instruction symbol, emit a label for it here.
1147       if (MCSymbol *S = MI.getPostInstrSymbol())
1148         OutStreamer->EmitLabel(S);
1149 
1150       if (ShouldPrintDebugScopes) {
1151         for (const HandlerInfo &HI : Handlers) {
1152           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1153                              HI.TimerGroupName, HI.TimerGroupDescription,
1154                              TimePassesIsEnabled);
1155           HI.Handler->endInstruction();
1156         }
1157       }
1158     }
1159 
1160     EmitBasicBlockEnd(MBB);
1161   }
1162 
1163   EmittedInsts += NumInstsInFunction;
1164   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1165                                       MF->getFunction().getSubprogram(),
1166                                       &MF->front());
1167   R << ore::NV("NumInstructions", NumInstsInFunction)
1168     << " instructions in function";
1169   ORE->emit(R);
1170 
1171   // If the function is empty and the object file uses .subsections_via_symbols,
1172   // then we need to emit *something* to the function body to prevent the
1173   // labels from collapsing together.  Just emit a noop.
1174   // Similarly, don't emit empty functions on Windows either. It can lead to
1175   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1176   // after linking, causing the kernel not to load the binary:
1177   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1178   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1179   const Triple &TT = TM.getTargetTriple();
1180   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1181                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1182     MCInst Noop;
1183     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1184 
1185     // Targets can opt-out of emitting the noop here by leaving the opcode
1186     // unspecified.
1187     if (Noop.getOpcode()) {
1188       OutStreamer->AddComment("avoids zero-length function");
1189       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1190     }
1191   }
1192 
1193   const Function &F = MF->getFunction();
1194   for (const auto &BB : F) {
1195     if (!BB.hasAddressTaken())
1196       continue;
1197     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1198     if (Sym->isDefined())
1199       continue;
1200     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1201     OutStreamer->EmitLabel(Sym);
1202   }
1203 
1204   // Emit target-specific gunk after the function body.
1205   EmitFunctionBodyEnd();
1206 
1207   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1208       MAI->hasDotTypeDotSizeDirective()) {
1209     // Create a symbol for the end of function.
1210     CurrentFnEnd = createTempSymbol("func_end");
1211     OutStreamer->EmitLabel(CurrentFnEnd);
1212   }
1213 
1214   // If the target wants a .size directive for the size of the function, emit
1215   // it.
1216   if (MAI->hasDotTypeDotSizeDirective()) {
1217     // We can get the size as difference between the function label and the
1218     // temp label.
1219     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1220         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1221         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1222     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1223   }
1224 
1225   for (const HandlerInfo &HI : Handlers) {
1226     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1227                        HI.TimerGroupDescription, TimePassesIsEnabled);
1228     HI.Handler->markFunctionEnd();
1229   }
1230 
1231   // Print out jump tables referenced by the function.
1232   EmitJumpTableInfo();
1233 
1234   // Emit post-function debug and/or EH information.
1235   for (const HandlerInfo &HI : Handlers) {
1236     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1237                        HI.TimerGroupDescription, TimePassesIsEnabled);
1238     HI.Handler->endFunction(MF);
1239   }
1240 
1241   // Emit section containing stack size metadata.
1242   emitStackSizeSection(*MF);
1243 
1244   if (isVerbose())
1245     OutStreamer->GetCommentOS() << "-- End function\n";
1246 
1247   OutStreamer->AddBlankLine();
1248 }
1249 
1250 /// Compute the number of Global Variables that uses a Constant.
1251 static unsigned getNumGlobalVariableUses(const Constant *C) {
1252   if (!C)
1253     return 0;
1254 
1255   if (isa<GlobalVariable>(C))
1256     return 1;
1257 
1258   unsigned NumUses = 0;
1259   for (auto *CU : C->users())
1260     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1261 
1262   return NumUses;
1263 }
1264 
1265 /// Only consider global GOT equivalents if at least one user is a
1266 /// cstexpr inside an initializer of another global variables. Also, don't
1267 /// handle cstexpr inside instructions. During global variable emission,
1268 /// candidates are skipped and are emitted later in case at least one cstexpr
1269 /// isn't replaced by a PC relative GOT entry access.
1270 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1271                                      unsigned &NumGOTEquivUsers) {
1272   // Global GOT equivalents are unnamed private globals with a constant
1273   // pointer initializer to another global symbol. They must point to a
1274   // GlobalVariable or Function, i.e., as GlobalValue.
1275   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1276       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1277       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1278     return false;
1279 
1280   // To be a got equivalent, at least one of its users need to be a constant
1281   // expression used by another global variable.
1282   for (auto *U : GV->users())
1283     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1284 
1285   return NumGOTEquivUsers > 0;
1286 }
1287 
1288 /// Unnamed constant global variables solely contaning a pointer to
1289 /// another globals variable is equivalent to a GOT table entry; it contains the
1290 /// the address of another symbol. Optimize it and replace accesses to these
1291 /// "GOT equivalents" by using the GOT entry for the final global instead.
1292 /// Compute GOT equivalent candidates among all global variables to avoid
1293 /// emitting them if possible later on, after it use is replaced by a GOT entry
1294 /// access.
1295 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1296   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1297     return;
1298 
1299   for (const auto &G : M.globals()) {
1300     unsigned NumGOTEquivUsers = 0;
1301     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1302       continue;
1303 
1304     const MCSymbol *GOTEquivSym = getSymbol(&G);
1305     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1306   }
1307 }
1308 
1309 /// Constant expressions using GOT equivalent globals may not be eligible
1310 /// for PC relative GOT entry conversion, in such cases we need to emit such
1311 /// globals we previously omitted in EmitGlobalVariable.
1312 void AsmPrinter::emitGlobalGOTEquivs() {
1313   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1314     return;
1315 
1316   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1317   for (auto &I : GlobalGOTEquivs) {
1318     const GlobalVariable *GV = I.second.first;
1319     unsigned Cnt = I.second.second;
1320     if (Cnt)
1321       FailedCandidates.push_back(GV);
1322   }
1323   GlobalGOTEquivs.clear();
1324 
1325   for (auto *GV : FailedCandidates)
1326     EmitGlobalVariable(GV);
1327 }
1328 
1329 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1330                                           const GlobalIndirectSymbol& GIS) {
1331   MCSymbol *Name = getSymbol(&GIS);
1332 
1333   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1334     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1335   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1336     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1337   else
1338     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1339 
1340   // Set the symbol type to function if the alias has a function type.
1341   // This affects codegen when the aliasee is not a function.
1342   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1343     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1344     if (isa<GlobalIFunc>(GIS))
1345       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1346   }
1347 
1348   EmitVisibility(Name, GIS.getVisibility());
1349 
1350   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1351 
1352   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1353     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1354 
1355   // Emit the directives as assignments aka .set:
1356   OutStreamer->EmitAssignment(Name, Expr);
1357 
1358   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1359     // If the aliasee does not correspond to a symbol in the output, i.e. the
1360     // alias is not of an object or the aliased object is private, then set the
1361     // size of the alias symbol from the type of the alias. We don't do this in
1362     // other situations as the alias and aliasee having differing types but same
1363     // size may be intentional.
1364     const GlobalObject *BaseObject = GA->getBaseObject();
1365     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1366         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1367       const DataLayout &DL = M.getDataLayout();
1368       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1369       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1370     }
1371   }
1372 }
1373 
1374 bool AsmPrinter::doFinalization(Module &M) {
1375   // Set the MachineFunction to nullptr so that we can catch attempted
1376   // accesses to MF specific features at the module level and so that
1377   // we can conditionalize accesses based on whether or not it is nullptr.
1378   MF = nullptr;
1379 
1380   // Gather all GOT equivalent globals in the module. We really need two
1381   // passes over the globals: one to compute and another to avoid its emission
1382   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1383   // where the got equivalent shows up before its use.
1384   computeGlobalGOTEquivs(M);
1385 
1386   // Emit global variables.
1387   for (const auto &G : M.globals())
1388     EmitGlobalVariable(&G);
1389 
1390   // Emit remaining GOT equivalent globals.
1391   emitGlobalGOTEquivs();
1392 
1393   // Emit visibility info for declarations
1394   for (const Function &F : M) {
1395     if (!F.isDeclarationForLinker())
1396       continue;
1397     GlobalValue::VisibilityTypes V = F.getVisibility();
1398     if (V == GlobalValue::DefaultVisibility)
1399       continue;
1400 
1401     MCSymbol *Name = getSymbol(&F);
1402     EmitVisibility(Name, V, false);
1403   }
1404 
1405   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1406 
1407   TLOF.emitModuleMetadata(*OutStreamer, M);
1408 
1409   if (TM.getTargetTriple().isOSBinFormatELF()) {
1410     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1411 
1412     // Output stubs for external and common global variables.
1413     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1414     if (!Stubs.empty()) {
1415       OutStreamer->SwitchSection(TLOF.getDataSection());
1416       const DataLayout &DL = M.getDataLayout();
1417 
1418       EmitAlignment(Log2_32(DL.getPointerSize()));
1419       for (const auto &Stub : Stubs) {
1420         OutStreamer->EmitLabel(Stub.first);
1421         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1422                                      DL.getPointerSize());
1423       }
1424     }
1425   }
1426 
1427   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1428     MachineModuleInfoCOFF &MMICOFF =
1429         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1430 
1431     // Output stubs for external and common global variables.
1432     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1433     if (!Stubs.empty()) {
1434       const DataLayout &DL = M.getDataLayout();
1435 
1436       for (const auto &Stub : Stubs) {
1437         SmallString<256> SectionName = StringRef(".rdata$");
1438         SectionName += Stub.first->getName();
1439         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1440             SectionName,
1441             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1442                 COFF::IMAGE_SCN_LNK_COMDAT,
1443             SectionKind::getReadOnly(), Stub.first->getName(),
1444             COFF::IMAGE_COMDAT_SELECT_ANY));
1445         EmitAlignment(Log2_32(DL.getPointerSize()));
1446         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1447         OutStreamer->EmitLabel(Stub.first);
1448         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1449                                      DL.getPointerSize());
1450       }
1451     }
1452   }
1453 
1454   // Finalize debug and EH information.
1455   for (const HandlerInfo &HI : Handlers) {
1456     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1457                        HI.TimerGroupDescription, TimePassesIsEnabled);
1458     HI.Handler->endModule();
1459     delete HI.Handler;
1460   }
1461   Handlers.clear();
1462   DD = nullptr;
1463 
1464   // If the target wants to know about weak references, print them all.
1465   if (MAI->getWeakRefDirective()) {
1466     // FIXME: This is not lazy, it would be nice to only print weak references
1467     // to stuff that is actually used.  Note that doing so would require targets
1468     // to notice uses in operands (due to constant exprs etc).  This should
1469     // happen with the MC stuff eventually.
1470 
1471     // Print out module-level global objects here.
1472     for (const auto &GO : M.global_objects()) {
1473       if (!GO.hasExternalWeakLinkage())
1474         continue;
1475       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1476     }
1477   }
1478 
1479   OutStreamer->AddBlankLine();
1480 
1481   // Print aliases in topological order, that is, for each alias a = b,
1482   // b must be printed before a.
1483   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1484   // such an order to generate correct TOC information.
1485   SmallVector<const GlobalAlias *, 16> AliasStack;
1486   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1487   for (const auto &Alias : M.aliases()) {
1488     for (const GlobalAlias *Cur = &Alias; Cur;
1489          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1490       if (!AliasVisited.insert(Cur).second)
1491         break;
1492       AliasStack.push_back(Cur);
1493     }
1494     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1495       emitGlobalIndirectSymbol(M, *AncestorAlias);
1496     AliasStack.clear();
1497   }
1498   for (const auto &IFunc : M.ifuncs())
1499     emitGlobalIndirectSymbol(M, IFunc);
1500 
1501   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1502   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1503   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1504     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1505       MP->finishAssembly(M, *MI, *this);
1506 
1507   // Emit llvm.ident metadata in an '.ident' directive.
1508   EmitModuleIdents(M);
1509 
1510   // Emit bytes for llvm.commandline metadata.
1511   EmitModuleCommandLines(M);
1512 
1513   // Emit __morestack address if needed for indirect calls.
1514   if (MMI->usesMorestackAddr()) {
1515     unsigned Align = 1;
1516     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1517         getDataLayout(), SectionKind::getReadOnly(),
1518         /*C=*/nullptr, Align);
1519     OutStreamer->SwitchSection(ReadOnlySection);
1520 
1521     MCSymbol *AddrSymbol =
1522         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1523     OutStreamer->EmitLabel(AddrSymbol);
1524 
1525     unsigned PtrSize = MAI->getCodePointerSize();
1526     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1527                                  PtrSize);
1528   }
1529 
1530   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1531   // split-stack is used.
1532   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1533     OutStreamer->SwitchSection(
1534         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1535     if (MMI->hasNosplitStack())
1536       OutStreamer->SwitchSection(
1537           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1538   }
1539 
1540   // If we don't have any trampolines, then we don't require stack memory
1541   // to be executable. Some targets have a directive to declare this.
1542   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1543   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1544     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1545       OutStreamer->SwitchSection(S);
1546 
1547   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1548     // Emit /EXPORT: flags for each exported global as necessary.
1549     const auto &TLOF = getObjFileLowering();
1550     std::string Flags;
1551 
1552     for (const GlobalValue &GV : M.global_values()) {
1553       raw_string_ostream OS(Flags);
1554       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1555       OS.flush();
1556       if (!Flags.empty()) {
1557         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1558         OutStreamer->EmitBytes(Flags);
1559       }
1560       Flags.clear();
1561     }
1562 
1563     // Emit /INCLUDE: flags for each used global as necessary.
1564     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1565       assert(LU->hasInitializer() &&
1566              "expected llvm.used to have an initializer");
1567       assert(isa<ArrayType>(LU->getValueType()) &&
1568              "expected llvm.used to be an array type");
1569       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1570         for (const Value *Op : A->operands()) {
1571           const auto *GV =
1572               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1573           // Global symbols with internal or private linkage are not visible to
1574           // the linker, and thus would cause an error when the linker tried to
1575           // preserve the symbol due to the `/include:` directive.
1576           if (GV->hasLocalLinkage())
1577             continue;
1578 
1579           raw_string_ostream OS(Flags);
1580           TLOF.emitLinkerFlagsForUsed(OS, GV);
1581           OS.flush();
1582 
1583           if (!Flags.empty()) {
1584             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1585             OutStreamer->EmitBytes(Flags);
1586           }
1587           Flags.clear();
1588         }
1589       }
1590     }
1591   }
1592 
1593   if (TM.Options.EmitAddrsig) {
1594     // Emit address-significance attributes for all globals.
1595     OutStreamer->EmitAddrsig();
1596     for (const GlobalValue &GV : M.global_values())
1597       if (!GV.use_empty() && !GV.isThreadLocal() &&
1598           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1599           !GV.hasAtLeastLocalUnnamedAddr())
1600         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1601   }
1602 
1603   // Allow the target to emit any magic that it wants at the end of the file,
1604   // after everything else has gone out.
1605   EmitEndOfAsmFile(M);
1606 
1607   MMI = nullptr;
1608 
1609   OutStreamer->Finish();
1610   OutStreamer->reset();
1611   OwnedMLI.reset();
1612   OwnedMDT.reset();
1613 
1614   return false;
1615 }
1616 
1617 MCSymbol *AsmPrinter::getCurExceptionSym() {
1618   if (!CurExceptionSym)
1619     CurExceptionSym = createTempSymbol("exception");
1620   return CurExceptionSym;
1621 }
1622 
1623 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1624   this->MF = &MF;
1625   // Get the function symbol.
1626   CurrentFnSym = getSymbol(&MF.getFunction());
1627   CurrentFnSymForSize = CurrentFnSym;
1628   CurrentFnBegin = nullptr;
1629   CurExceptionSym = nullptr;
1630   bool NeedsLocalForSize = MAI->needsLocalForSize();
1631   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1632       MF.getTarget().Options.EmitStackSizeSection) {
1633     CurrentFnBegin = createTempSymbol("func_begin");
1634     if (NeedsLocalForSize)
1635       CurrentFnSymForSize = CurrentFnBegin;
1636   }
1637 
1638   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1639 
1640   const TargetSubtargetInfo &STI = MF.getSubtarget();
1641   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1642                              ? PrintSchedule
1643                              : STI.supportPrintSchedInfo();
1644 }
1645 
1646 namespace {
1647 
1648 // Keep track the alignment, constpool entries per Section.
1649   struct SectionCPs {
1650     MCSection *S;
1651     unsigned Alignment;
1652     SmallVector<unsigned, 4> CPEs;
1653 
1654     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1655   };
1656 
1657 } // end anonymous namespace
1658 
1659 /// EmitConstantPool - Print to the current output stream assembly
1660 /// representations of the constants in the constant pool MCP. This is
1661 /// used to print out constants which have been "spilled to memory" by
1662 /// the code generator.
1663 void AsmPrinter::EmitConstantPool() {
1664   const MachineConstantPool *MCP = MF->getConstantPool();
1665   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1666   if (CP.empty()) return;
1667 
1668   // Calculate sections for constant pool entries. We collect entries to go into
1669   // the same section together to reduce amount of section switch statements.
1670   SmallVector<SectionCPs, 4> CPSections;
1671   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1672     const MachineConstantPoolEntry &CPE = CP[i];
1673     unsigned Align = CPE.getAlignment();
1674 
1675     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1676 
1677     const Constant *C = nullptr;
1678     if (!CPE.isMachineConstantPoolEntry())
1679       C = CPE.Val.ConstVal;
1680 
1681     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1682                                                               Kind, C, Align);
1683 
1684     // The number of sections are small, just do a linear search from the
1685     // last section to the first.
1686     bool Found = false;
1687     unsigned SecIdx = CPSections.size();
1688     while (SecIdx != 0) {
1689       if (CPSections[--SecIdx].S == S) {
1690         Found = true;
1691         break;
1692       }
1693     }
1694     if (!Found) {
1695       SecIdx = CPSections.size();
1696       CPSections.push_back(SectionCPs(S, Align));
1697     }
1698 
1699     if (Align > CPSections[SecIdx].Alignment)
1700       CPSections[SecIdx].Alignment = Align;
1701     CPSections[SecIdx].CPEs.push_back(i);
1702   }
1703 
1704   // Now print stuff into the calculated sections.
1705   const MCSection *CurSection = nullptr;
1706   unsigned Offset = 0;
1707   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1708     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1709       unsigned CPI = CPSections[i].CPEs[j];
1710       MCSymbol *Sym = GetCPISymbol(CPI);
1711       if (!Sym->isUndefined())
1712         continue;
1713 
1714       if (CurSection != CPSections[i].S) {
1715         OutStreamer->SwitchSection(CPSections[i].S);
1716         EmitAlignment(Log2_32(CPSections[i].Alignment));
1717         CurSection = CPSections[i].S;
1718         Offset = 0;
1719       }
1720 
1721       MachineConstantPoolEntry CPE = CP[CPI];
1722 
1723       // Emit inter-object padding for alignment.
1724       unsigned AlignMask = CPE.getAlignment() - 1;
1725       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1726       OutStreamer->EmitZeros(NewOffset - Offset);
1727 
1728       Type *Ty = CPE.getType();
1729       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1730 
1731       OutStreamer->EmitLabel(Sym);
1732       if (CPE.isMachineConstantPoolEntry())
1733         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1734       else
1735         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1736     }
1737   }
1738 }
1739 
1740 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1741 /// by the current function to the current output stream.
1742 void AsmPrinter::EmitJumpTableInfo() {
1743   const DataLayout &DL = MF->getDataLayout();
1744   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1745   if (!MJTI) return;
1746   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1747   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1748   if (JT.empty()) return;
1749 
1750   // Pick the directive to use to print the jump table entries, and switch to
1751   // the appropriate section.
1752   const Function &F = MF->getFunction();
1753   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1754   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1755       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1756       F);
1757   if (JTInDiffSection) {
1758     // Drop it in the readonly section.
1759     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1760     OutStreamer->SwitchSection(ReadOnlySection);
1761   }
1762 
1763   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1764 
1765   // Jump tables in code sections are marked with a data_region directive
1766   // where that's supported.
1767   if (!JTInDiffSection)
1768     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1769 
1770   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1771     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1772 
1773     // If this jump table was deleted, ignore it.
1774     if (JTBBs.empty()) continue;
1775 
1776     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1777     /// emit a .set directive for each unique entry.
1778     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1779         MAI->doesSetDirectiveSuppressReloc()) {
1780       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1781       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1782       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1783       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1784         const MachineBasicBlock *MBB = JTBBs[ii];
1785         if (!EmittedSets.insert(MBB).second)
1786           continue;
1787 
1788         // .set LJTSet, LBB32-base
1789         const MCExpr *LHS =
1790           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1791         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1792                                     MCBinaryExpr::createSub(LHS, Base,
1793                                                             OutContext));
1794       }
1795     }
1796 
1797     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1798     // before each jump table.  The first label is never referenced, but tells
1799     // the assembler and linker the extents of the jump table object.  The
1800     // second label is actually referenced by the code.
1801     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1802       // FIXME: This doesn't have to have any specific name, just any randomly
1803       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1804       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1805 
1806     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1807 
1808     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1809       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1810   }
1811   if (!JTInDiffSection)
1812     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1813 }
1814 
1815 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1816 /// current stream.
1817 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1818                                     const MachineBasicBlock *MBB,
1819                                     unsigned UID) const {
1820   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1821   const MCExpr *Value = nullptr;
1822   switch (MJTI->getEntryKind()) {
1823   case MachineJumpTableInfo::EK_Inline:
1824     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1825   case MachineJumpTableInfo::EK_Custom32:
1826     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1827         MJTI, MBB, UID, OutContext);
1828     break;
1829   case MachineJumpTableInfo::EK_BlockAddress:
1830     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1831     //     .word LBB123
1832     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1833     break;
1834   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1835     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1836     // with a relocation as gp-relative, e.g.:
1837     //     .gprel32 LBB123
1838     MCSymbol *MBBSym = MBB->getSymbol();
1839     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1840     return;
1841   }
1842 
1843   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1844     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1845     // with a relocation as gp-relative, e.g.:
1846     //     .gpdword LBB123
1847     MCSymbol *MBBSym = MBB->getSymbol();
1848     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1849     return;
1850   }
1851 
1852   case MachineJumpTableInfo::EK_LabelDifference32: {
1853     // Each entry is the address of the block minus the address of the jump
1854     // table. This is used for PIC jump tables where gprel32 is not supported.
1855     // e.g.:
1856     //      .word LBB123 - LJTI1_2
1857     // If the .set directive avoids relocations, this is emitted as:
1858     //      .set L4_5_set_123, LBB123 - LJTI1_2
1859     //      .word L4_5_set_123
1860     if (MAI->doesSetDirectiveSuppressReloc()) {
1861       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1862                                       OutContext);
1863       break;
1864     }
1865     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1866     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1867     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1868     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1869     break;
1870   }
1871   }
1872 
1873   assert(Value && "Unknown entry kind!");
1874 
1875   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1876   OutStreamer->EmitValue(Value, EntrySize);
1877 }
1878 
1879 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1880 /// special global used by LLVM.  If so, emit it and return true, otherwise
1881 /// do nothing and return false.
1882 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1883   if (GV->getName() == "llvm.used") {
1884     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1885       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1886     return true;
1887   }
1888 
1889   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1890   if (GV->getSection() == "llvm.metadata" ||
1891       GV->hasAvailableExternallyLinkage())
1892     return true;
1893 
1894   if (!GV->hasAppendingLinkage()) return false;
1895 
1896   assert(GV->hasInitializer() && "Not a special LLVM global!");
1897 
1898   if (GV->getName() == "llvm.global_ctors") {
1899     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1900                        /* isCtor */ true);
1901 
1902     return true;
1903   }
1904 
1905   if (GV->getName() == "llvm.global_dtors") {
1906     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1907                        /* isCtor */ false);
1908 
1909     return true;
1910   }
1911 
1912   report_fatal_error("unknown special variable");
1913 }
1914 
1915 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1916 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1917 /// is true, as being used with this directive.
1918 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1919   // Should be an array of 'i8*'.
1920   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1921     const GlobalValue *GV =
1922       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1923     if (GV)
1924       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1925   }
1926 }
1927 
1928 namespace {
1929 
1930 struct Structor {
1931   int Priority = 0;
1932   Constant *Func = nullptr;
1933   GlobalValue *ComdatKey = nullptr;
1934 
1935   Structor() = default;
1936 };
1937 
1938 } // end anonymous namespace
1939 
1940 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1941 /// priority.
1942 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1943                                     bool isCtor) {
1944   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1945   // init priority.
1946   if (!isa<ConstantArray>(List)) return;
1947 
1948   // Sanity check the structors list.
1949   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1950   if (!InitList) return; // Not an array!
1951   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1952   // FIXME: Only allow the 3-field form in LLVM 4.0.
1953   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1954     return; // Not an array of two or three elements!
1955   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1956       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1957   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1958     return; // Not (int, ptr, ptr).
1959 
1960   // Gather the structors in a form that's convenient for sorting by priority.
1961   SmallVector<Structor, 8> Structors;
1962   for (Value *O : InitList->operands()) {
1963     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1964     if (!CS) continue; // Malformed.
1965     if (CS->getOperand(1)->isNullValue())
1966       break;  // Found a null terminator, skip the rest.
1967     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1968     if (!Priority) continue; // Malformed.
1969     Structors.push_back(Structor());
1970     Structor &S = Structors.back();
1971     S.Priority = Priority->getLimitedValue(65535);
1972     S.Func = CS->getOperand(1);
1973     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1974       S.ComdatKey =
1975           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1976   }
1977 
1978   // Emit the function pointers in the target-specific order
1979   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1980   std::stable_sort(Structors.begin(), Structors.end(),
1981                    [](const Structor &L,
1982                       const Structor &R) { return L.Priority < R.Priority; });
1983   for (Structor &S : Structors) {
1984     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1985     const MCSymbol *KeySym = nullptr;
1986     if (GlobalValue *GV = S.ComdatKey) {
1987       if (GV->isDeclarationForLinker())
1988         // If the associated variable is not defined in this module
1989         // (it might be available_externally, or have been an
1990         // available_externally definition that was dropped by the
1991         // EliminateAvailableExternally pass), some other TU
1992         // will provide its dynamic initializer.
1993         continue;
1994 
1995       KeySym = getSymbol(GV);
1996     }
1997     MCSection *OutputSection =
1998         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1999                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2000     OutStreamer->SwitchSection(OutputSection);
2001     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2002       EmitAlignment(Align);
2003     EmitXXStructor(DL, S.Func);
2004   }
2005 }
2006 
2007 void AsmPrinter::EmitModuleIdents(Module &M) {
2008   if (!MAI->hasIdentDirective())
2009     return;
2010 
2011   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2012     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2013       const MDNode *N = NMD->getOperand(i);
2014       assert(N->getNumOperands() == 1 &&
2015              "llvm.ident metadata entry can have only one operand");
2016       const MDString *S = cast<MDString>(N->getOperand(0));
2017       OutStreamer->EmitIdent(S->getString());
2018     }
2019   }
2020 }
2021 
2022 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2023   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2024   if (!CommandLine)
2025     return;
2026 
2027   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2028   if (!NMD || !NMD->getNumOperands())
2029     return;
2030 
2031   OutStreamer->PushSection();
2032   OutStreamer->SwitchSection(CommandLine);
2033   OutStreamer->EmitZeros(1);
2034   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2035     const MDNode *N = NMD->getOperand(i);
2036     assert(N->getNumOperands() == 1 &&
2037            "llvm.commandline metadata entry can have only one operand");
2038     const MDString *S = cast<MDString>(N->getOperand(0));
2039     OutStreamer->EmitBytes(S->getString());
2040     OutStreamer->EmitZeros(1);
2041   }
2042   OutStreamer->PopSection();
2043 }
2044 
2045 //===--------------------------------------------------------------------===//
2046 // Emission and print routines
2047 //
2048 
2049 /// Emit a byte directive and value.
2050 ///
2051 void AsmPrinter::emitInt8(int Value) const {
2052   OutStreamer->EmitIntValue(Value, 1);
2053 }
2054 
2055 /// Emit a short directive and value.
2056 void AsmPrinter::emitInt16(int Value) const {
2057   OutStreamer->EmitIntValue(Value, 2);
2058 }
2059 
2060 /// Emit a long directive and value.
2061 void AsmPrinter::emitInt32(int Value) const {
2062   OutStreamer->EmitIntValue(Value, 4);
2063 }
2064 
2065 /// Emit a long long directive and value.
2066 void AsmPrinter::emitInt64(uint64_t Value) const {
2067   OutStreamer->EmitIntValue(Value, 8);
2068 }
2069 
2070 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2071 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2072 /// .set if it avoids relocations.
2073 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2074                                      unsigned Size) const {
2075   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2076 }
2077 
2078 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2079 /// where the size in bytes of the directive is specified by Size and Label
2080 /// specifies the label.  This implicitly uses .set if it is available.
2081 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2082                                      unsigned Size,
2083                                      bool IsSectionRelative) const {
2084   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2085     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2086     if (Size > 4)
2087       OutStreamer->EmitZeros(Size - 4);
2088     return;
2089   }
2090 
2091   // Emit Label+Offset (or just Label if Offset is zero)
2092   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2093   if (Offset)
2094     Expr = MCBinaryExpr::createAdd(
2095         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2096 
2097   OutStreamer->EmitValue(Expr, Size);
2098 }
2099 
2100 //===----------------------------------------------------------------------===//
2101 
2102 // EmitAlignment - Emit an alignment directive to the specified power of
2103 // two boundary.  For example, if you pass in 3 here, you will get an 8
2104 // byte alignment.  If a global value is specified, and if that global has
2105 // an explicit alignment requested, it will override the alignment request
2106 // if required for correctness.
2107 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2108   if (GV)
2109     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2110 
2111   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2112 
2113   assert(NumBits <
2114              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2115          "undefined behavior");
2116   if (getCurrentSection()->getKind().isText())
2117     OutStreamer->EmitCodeAlignment(1u << NumBits);
2118   else
2119     OutStreamer->EmitValueToAlignment(1u << NumBits);
2120 }
2121 
2122 //===----------------------------------------------------------------------===//
2123 // Constant emission.
2124 //===----------------------------------------------------------------------===//
2125 
2126 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2127   MCContext &Ctx = OutContext;
2128 
2129   if (CV->isNullValue() || isa<UndefValue>(CV))
2130     return MCConstantExpr::create(0, Ctx);
2131 
2132   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2133     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2134 
2135   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2136     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2137 
2138   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2139     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2140 
2141   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2142   if (!CE) {
2143     llvm_unreachable("Unknown constant value to lower!");
2144   }
2145 
2146   switch (CE->getOpcode()) {
2147   default:
2148     // If the code isn't optimized, there may be outstanding folding
2149     // opportunities. Attempt to fold the expression using DataLayout as a
2150     // last resort before giving up.
2151     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2152       if (C != CE)
2153         return lowerConstant(C);
2154 
2155     // Otherwise report the problem to the user.
2156     {
2157       std::string S;
2158       raw_string_ostream OS(S);
2159       OS << "Unsupported expression in static initializer: ";
2160       CE->printAsOperand(OS, /*PrintType=*/false,
2161                      !MF ? nullptr : MF->getFunction().getParent());
2162       report_fatal_error(OS.str());
2163     }
2164   case Instruction::GetElementPtr: {
2165     // Generate a symbolic expression for the byte address
2166     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2167     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2168 
2169     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2170     if (!OffsetAI)
2171       return Base;
2172 
2173     int64_t Offset = OffsetAI.getSExtValue();
2174     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2175                                    Ctx);
2176   }
2177 
2178   case Instruction::Trunc:
2179     // We emit the value and depend on the assembler to truncate the generated
2180     // expression properly.  This is important for differences between
2181     // blockaddress labels.  Since the two labels are in the same function, it
2182     // is reasonable to treat their delta as a 32-bit value.
2183     LLVM_FALLTHROUGH;
2184   case Instruction::BitCast:
2185     return lowerConstant(CE->getOperand(0));
2186 
2187   case Instruction::IntToPtr: {
2188     const DataLayout &DL = getDataLayout();
2189 
2190     // Handle casts to pointers by changing them into casts to the appropriate
2191     // integer type.  This promotes constant folding and simplifies this code.
2192     Constant *Op = CE->getOperand(0);
2193     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2194                                       false/*ZExt*/);
2195     return lowerConstant(Op);
2196   }
2197 
2198   case Instruction::PtrToInt: {
2199     const DataLayout &DL = getDataLayout();
2200 
2201     // Support only foldable casts to/from pointers that can be eliminated by
2202     // changing the pointer to the appropriately sized integer type.
2203     Constant *Op = CE->getOperand(0);
2204     Type *Ty = CE->getType();
2205 
2206     const MCExpr *OpExpr = lowerConstant(Op);
2207 
2208     // We can emit the pointer value into this slot if the slot is an
2209     // integer slot equal to the size of the pointer.
2210     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2211       return OpExpr;
2212 
2213     // Otherwise the pointer is smaller than the resultant integer, mask off
2214     // the high bits so we are sure to get a proper truncation if the input is
2215     // a constant expr.
2216     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2217     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2218     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2219   }
2220 
2221   case Instruction::Sub: {
2222     GlobalValue *LHSGV;
2223     APInt LHSOffset;
2224     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2225                                    getDataLayout())) {
2226       GlobalValue *RHSGV;
2227       APInt RHSOffset;
2228       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2229                                      getDataLayout())) {
2230         const MCExpr *RelocExpr =
2231             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2232         if (!RelocExpr)
2233           RelocExpr = MCBinaryExpr::createSub(
2234               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2235               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2236         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2237         if (Addend != 0)
2238           RelocExpr = MCBinaryExpr::createAdd(
2239               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2240         return RelocExpr;
2241       }
2242     }
2243   }
2244   // else fallthrough
2245   LLVM_FALLTHROUGH;
2246 
2247   // The MC library also has a right-shift operator, but it isn't consistently
2248   // signed or unsigned between different targets.
2249   case Instruction::Add:
2250   case Instruction::Mul:
2251   case Instruction::SDiv:
2252   case Instruction::SRem:
2253   case Instruction::Shl:
2254   case Instruction::And:
2255   case Instruction::Or:
2256   case Instruction::Xor: {
2257     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2258     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2259     switch (CE->getOpcode()) {
2260     default: llvm_unreachable("Unknown binary operator constant cast expr");
2261     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2262     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2263     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2264     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2265     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2266     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2267     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2268     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2269     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2270     }
2271   }
2272   }
2273 }
2274 
2275 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2276                                    AsmPrinter &AP,
2277                                    const Constant *BaseCV = nullptr,
2278                                    uint64_t Offset = 0);
2279 
2280 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2281 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2282 
2283 /// isRepeatedByteSequence - Determine whether the given value is
2284 /// composed of a repeated sequence of identical bytes and return the
2285 /// byte value.  If it is not a repeated sequence, return -1.
2286 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2287   StringRef Data = V->getRawDataValues();
2288   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2289   char C = Data[0];
2290   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2291     if (Data[i] != C) return -1;
2292   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2293 }
2294 
2295 /// isRepeatedByteSequence - Determine whether the given value is
2296 /// composed of a repeated sequence of identical bytes and return the
2297 /// byte value.  If it is not a repeated sequence, return -1.
2298 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2299   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2300     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2301     assert(Size % 8 == 0);
2302 
2303     // Extend the element to take zero padding into account.
2304     APInt Value = CI->getValue().zextOrSelf(Size);
2305     if (!Value.isSplat(8))
2306       return -1;
2307 
2308     return Value.zextOrTrunc(8).getZExtValue();
2309   }
2310   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2311     // Make sure all array elements are sequences of the same repeated
2312     // byte.
2313     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2314     Constant *Op0 = CA->getOperand(0);
2315     int Byte = isRepeatedByteSequence(Op0, DL);
2316     if (Byte == -1)
2317       return -1;
2318 
2319     // All array elements must be equal.
2320     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2321       if (CA->getOperand(i) != Op0)
2322         return -1;
2323     return Byte;
2324   }
2325 
2326   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2327     return isRepeatedByteSequence(CDS);
2328 
2329   return -1;
2330 }
2331 
2332 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2333                                              const ConstantDataSequential *CDS,
2334                                              AsmPrinter &AP) {
2335   // See if we can aggregate this into a .fill, if so, emit it as such.
2336   int Value = isRepeatedByteSequence(CDS, DL);
2337   if (Value != -1) {
2338     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2339     // Don't emit a 1-byte object as a .fill.
2340     if (Bytes > 1)
2341       return AP.OutStreamer->emitFill(Bytes, Value);
2342   }
2343 
2344   // If this can be emitted with .ascii/.asciz, emit it as such.
2345   if (CDS->isString())
2346     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2347 
2348   // Otherwise, emit the values in successive locations.
2349   unsigned ElementByteSize = CDS->getElementByteSize();
2350   if (isa<IntegerType>(CDS->getElementType())) {
2351     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2352       if (AP.isVerbose())
2353         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2354                                                  CDS->getElementAsInteger(i));
2355       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2356                                    ElementByteSize);
2357     }
2358   } else {
2359     Type *ET = CDS->getElementType();
2360     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2361       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2362   }
2363 
2364   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2365   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2366                         CDS->getNumElements();
2367   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2368   if (unsigned Padding = Size - EmittedSize)
2369     AP.OutStreamer->EmitZeros(Padding);
2370 }
2371 
2372 static void emitGlobalConstantArray(const DataLayout &DL,
2373                                     const ConstantArray *CA, AsmPrinter &AP,
2374                                     const Constant *BaseCV, uint64_t Offset) {
2375   // See if we can aggregate some values.  Make sure it can be
2376   // represented as a series of bytes of the constant value.
2377   int Value = isRepeatedByteSequence(CA, DL);
2378 
2379   if (Value != -1) {
2380     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2381     AP.OutStreamer->emitFill(Bytes, Value);
2382   }
2383   else {
2384     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2385       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2386       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2387     }
2388   }
2389 }
2390 
2391 static void emitGlobalConstantVector(const DataLayout &DL,
2392                                      const ConstantVector *CV, AsmPrinter &AP) {
2393   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2394     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2395 
2396   unsigned Size = DL.getTypeAllocSize(CV->getType());
2397   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2398                          CV->getType()->getNumElements();
2399   if (unsigned Padding = Size - EmittedSize)
2400     AP.OutStreamer->EmitZeros(Padding);
2401 }
2402 
2403 static void emitGlobalConstantStruct(const DataLayout &DL,
2404                                      const ConstantStruct *CS, AsmPrinter &AP,
2405                                      const Constant *BaseCV, uint64_t Offset) {
2406   // Print the fields in successive locations. Pad to align if needed!
2407   unsigned Size = DL.getTypeAllocSize(CS->getType());
2408   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2409   uint64_t SizeSoFar = 0;
2410   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2411     const Constant *Field = CS->getOperand(i);
2412 
2413     // Print the actual field value.
2414     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2415 
2416     // Check if padding is needed and insert one or more 0s.
2417     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2418     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2419                         - Layout->getElementOffset(i)) - FieldSize;
2420     SizeSoFar += FieldSize + PadSize;
2421 
2422     // Insert padding - this may include padding to increase the size of the
2423     // current field up to the ABI size (if the struct is not packed) as well
2424     // as padding to ensure that the next field starts at the right offset.
2425     AP.OutStreamer->EmitZeros(PadSize);
2426   }
2427   assert(SizeSoFar == Layout->getSizeInBytes() &&
2428          "Layout of constant struct may be incorrect!");
2429 }
2430 
2431 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2432   APInt API = APF.bitcastToAPInt();
2433 
2434   // First print a comment with what we think the original floating-point value
2435   // should have been.
2436   if (AP.isVerbose()) {
2437     SmallString<8> StrVal;
2438     APF.toString(StrVal);
2439 
2440     if (ET)
2441       ET->print(AP.OutStreamer->GetCommentOS());
2442     else
2443       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2444     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2445   }
2446 
2447   // Now iterate through the APInt chunks, emitting them in endian-correct
2448   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2449   // floats).
2450   unsigned NumBytes = API.getBitWidth() / 8;
2451   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2452   const uint64_t *p = API.getRawData();
2453 
2454   // PPC's long double has odd notions of endianness compared to how LLVM
2455   // handles it: p[0] goes first for *big* endian on PPC.
2456   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2457     int Chunk = API.getNumWords() - 1;
2458 
2459     if (TrailingBytes)
2460       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2461 
2462     for (; Chunk >= 0; --Chunk)
2463       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2464   } else {
2465     unsigned Chunk;
2466     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2467       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2468 
2469     if (TrailingBytes)
2470       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2471   }
2472 
2473   // Emit the tail padding for the long double.
2474   const DataLayout &DL = AP.getDataLayout();
2475   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2476 }
2477 
2478 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2479   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2480 }
2481 
2482 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2483   const DataLayout &DL = AP.getDataLayout();
2484   unsigned BitWidth = CI->getBitWidth();
2485 
2486   // Copy the value as we may massage the layout for constants whose bit width
2487   // is not a multiple of 64-bits.
2488   APInt Realigned(CI->getValue());
2489   uint64_t ExtraBits = 0;
2490   unsigned ExtraBitsSize = BitWidth & 63;
2491 
2492   if (ExtraBitsSize) {
2493     // The bit width of the data is not a multiple of 64-bits.
2494     // The extra bits are expected to be at the end of the chunk of the memory.
2495     // Little endian:
2496     // * Nothing to be done, just record the extra bits to emit.
2497     // Big endian:
2498     // * Record the extra bits to emit.
2499     // * Realign the raw data to emit the chunks of 64-bits.
2500     if (DL.isBigEndian()) {
2501       // Basically the structure of the raw data is a chunk of 64-bits cells:
2502       //    0        1         BitWidth / 64
2503       // [chunk1][chunk2] ... [chunkN].
2504       // The most significant chunk is chunkN and it should be emitted first.
2505       // However, due to the alignment issue chunkN contains useless bits.
2506       // Realign the chunks so that they contain only useless information:
2507       // ExtraBits     0       1       (BitWidth / 64) - 1
2508       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2509       ExtraBits = Realigned.getRawData()[0] &
2510         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2511       Realigned.lshrInPlace(ExtraBitsSize);
2512     } else
2513       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2514   }
2515 
2516   // We don't expect assemblers to support integer data directives
2517   // for more than 64 bits, so we emit the data in at most 64-bit
2518   // quantities at a time.
2519   const uint64_t *RawData = Realigned.getRawData();
2520   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2521     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2522     AP.OutStreamer->EmitIntValue(Val, 8);
2523   }
2524 
2525   if (ExtraBitsSize) {
2526     // Emit the extra bits after the 64-bits chunks.
2527 
2528     // Emit a directive that fills the expected size.
2529     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2530     Size -= (BitWidth / 64) * 8;
2531     assert(Size && Size * 8 >= ExtraBitsSize &&
2532            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2533            == ExtraBits && "Directive too small for extra bits.");
2534     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2535   }
2536 }
2537 
2538 /// Transform a not absolute MCExpr containing a reference to a GOT
2539 /// equivalent global, by a target specific GOT pc relative access to the
2540 /// final symbol.
2541 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2542                                          const Constant *BaseCst,
2543                                          uint64_t Offset) {
2544   // The global @foo below illustrates a global that uses a got equivalent.
2545   //
2546   //  @bar = global i32 42
2547   //  @gotequiv = private unnamed_addr constant i32* @bar
2548   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2549   //                             i64 ptrtoint (i32* @foo to i64))
2550   //                        to i32)
2551   //
2552   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2553   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2554   // form:
2555   //
2556   //  foo = cstexpr, where
2557   //    cstexpr := <gotequiv> - "." + <cst>
2558   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2559   //
2560   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2561   //
2562   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2563   //    gotpcrelcst := <offset from @foo base> + <cst>
2564   MCValue MV;
2565   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2566     return;
2567   const MCSymbolRefExpr *SymA = MV.getSymA();
2568   if (!SymA)
2569     return;
2570 
2571   // Check that GOT equivalent symbol is cached.
2572   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2573   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2574     return;
2575 
2576   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2577   if (!BaseGV)
2578     return;
2579 
2580   // Check for a valid base symbol
2581   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2582   const MCSymbolRefExpr *SymB = MV.getSymB();
2583 
2584   if (!SymB || BaseSym != &SymB->getSymbol())
2585     return;
2586 
2587   // Make sure to match:
2588   //
2589   //    gotpcrelcst := <offset from @foo base> + <cst>
2590   //
2591   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2592   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2593   // if the target knows how to encode it.
2594   int64_t GOTPCRelCst = Offset + MV.getConstant();
2595   if (GOTPCRelCst < 0)
2596     return;
2597   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2598     return;
2599 
2600   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2601   //
2602   //  bar:
2603   //    .long 42
2604   //  gotequiv:
2605   //    .quad bar
2606   //  foo:
2607   //    .long gotequiv - "." + <cst>
2608   //
2609   // is replaced by the target specific equivalent to:
2610   //
2611   //  bar:
2612   //    .long 42
2613   //  foo:
2614   //    .long bar@GOTPCREL+<gotpcrelcst>
2615   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2616   const GlobalVariable *GV = Result.first;
2617   int NumUses = (int)Result.second;
2618   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2619   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2620   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2621       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2622 
2623   // Update GOT equivalent usage information
2624   --NumUses;
2625   if (NumUses >= 0)
2626     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2627 }
2628 
2629 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2630                                    AsmPrinter &AP, const Constant *BaseCV,
2631                                    uint64_t Offset) {
2632   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2633 
2634   // Globals with sub-elements such as combinations of arrays and structs
2635   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2636   // constant symbol base and the current position with BaseCV and Offset.
2637   if (!BaseCV && CV->hasOneUse())
2638     BaseCV = dyn_cast<Constant>(CV->user_back());
2639 
2640   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2641     return AP.OutStreamer->EmitZeros(Size);
2642 
2643   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2644     switch (Size) {
2645     case 1:
2646     case 2:
2647     case 4:
2648     case 8:
2649       if (AP.isVerbose())
2650         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2651                                                  CI->getZExtValue());
2652       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2653       return;
2654     default:
2655       emitGlobalConstantLargeInt(CI, AP);
2656       return;
2657     }
2658   }
2659 
2660   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2661     return emitGlobalConstantFP(CFP, AP);
2662 
2663   if (isa<ConstantPointerNull>(CV)) {
2664     AP.OutStreamer->EmitIntValue(0, Size);
2665     return;
2666   }
2667 
2668   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2669     return emitGlobalConstantDataSequential(DL, CDS, AP);
2670 
2671   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2672     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2673 
2674   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2675     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2676 
2677   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2678     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2679     // vectors).
2680     if (CE->getOpcode() == Instruction::BitCast)
2681       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2682 
2683     if (Size > 8) {
2684       // If the constant expression's size is greater than 64-bits, then we have
2685       // to emit the value in chunks. Try to constant fold the value and emit it
2686       // that way.
2687       Constant *New = ConstantFoldConstant(CE, DL);
2688       if (New && New != CE)
2689         return emitGlobalConstantImpl(DL, New, AP);
2690     }
2691   }
2692 
2693   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2694     return emitGlobalConstantVector(DL, V, AP);
2695 
2696   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2697   // thread the streamer with EmitValue.
2698   const MCExpr *ME = AP.lowerConstant(CV);
2699 
2700   // Since lowerConstant already folded and got rid of all IR pointer and
2701   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2702   // directly.
2703   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2704     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2705 
2706   AP.OutStreamer->EmitValue(ME, Size);
2707 }
2708 
2709 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2710 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2711   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2712   if (Size)
2713     emitGlobalConstantImpl(DL, CV, *this);
2714   else if (MAI->hasSubsectionsViaSymbols()) {
2715     // If the global has zero size, emit a single byte so that two labels don't
2716     // look like they are at the same location.
2717     OutStreamer->EmitIntValue(0, 1);
2718   }
2719 }
2720 
2721 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2722   // Target doesn't support this yet!
2723   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2724 }
2725 
2726 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2727   if (Offset > 0)
2728     OS << '+' << Offset;
2729   else if (Offset < 0)
2730     OS << Offset;
2731 }
2732 
2733 //===----------------------------------------------------------------------===//
2734 // Symbol Lowering Routines.
2735 //===----------------------------------------------------------------------===//
2736 
2737 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2738   return OutContext.createTempSymbol(Name, true);
2739 }
2740 
2741 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2742   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2743 }
2744 
2745 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2746   return MMI->getAddrLabelSymbol(BB);
2747 }
2748 
2749 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2750 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2751   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2752     const MachineConstantPoolEntry &CPE =
2753         MF->getConstantPool()->getConstants()[CPID];
2754     if (!CPE.isMachineConstantPoolEntry()) {
2755       const DataLayout &DL = MF->getDataLayout();
2756       SectionKind Kind = CPE.getSectionKind(&DL);
2757       const Constant *C = CPE.Val.ConstVal;
2758       unsigned Align = CPE.Alignment;
2759       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2760               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2761         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2762           if (Sym->isUndefined())
2763             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2764           return Sym;
2765         }
2766       }
2767     }
2768   }
2769 
2770   const DataLayout &DL = getDataLayout();
2771   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2772                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2773                                       Twine(CPID));
2774 }
2775 
2776 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2777 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2778   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2779 }
2780 
2781 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2782 /// FIXME: privatize to AsmPrinter.
2783 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2784   const DataLayout &DL = getDataLayout();
2785   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2786                                       Twine(getFunctionNumber()) + "_" +
2787                                       Twine(UID) + "_set_" + Twine(MBBID));
2788 }
2789 
2790 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2791                                                    StringRef Suffix) const {
2792   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2793 }
2794 
2795 /// Return the MCSymbol for the specified ExternalSymbol.
2796 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2797   SmallString<60> NameStr;
2798   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2799   return OutContext.getOrCreateSymbol(NameStr);
2800 }
2801 
2802 /// PrintParentLoopComment - Print comments about parent loops of this one.
2803 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2804                                    unsigned FunctionNumber) {
2805   if (!Loop) return;
2806   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2807   OS.indent(Loop->getLoopDepth()*2)
2808     << "Parent Loop BB" << FunctionNumber << "_"
2809     << Loop->getHeader()->getNumber()
2810     << " Depth=" << Loop->getLoopDepth() << '\n';
2811 }
2812 
2813 /// PrintChildLoopComment - Print comments about child loops within
2814 /// the loop for this basic block, with nesting.
2815 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2816                                   unsigned FunctionNumber) {
2817   // Add child loop information
2818   for (const MachineLoop *CL : *Loop) {
2819     OS.indent(CL->getLoopDepth()*2)
2820       << "Child Loop BB" << FunctionNumber << "_"
2821       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2822       << '\n';
2823     PrintChildLoopComment(OS, CL, FunctionNumber);
2824   }
2825 }
2826 
2827 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2828 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2829                                        const MachineLoopInfo *LI,
2830                                        const AsmPrinter &AP) {
2831   // Add loop depth information
2832   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2833   if (!Loop) return;
2834 
2835   MachineBasicBlock *Header = Loop->getHeader();
2836   assert(Header && "No header for loop");
2837 
2838   // If this block is not a loop header, just print out what is the loop header
2839   // and return.
2840   if (Header != &MBB) {
2841     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2842                                Twine(AP.getFunctionNumber())+"_" +
2843                                Twine(Loop->getHeader()->getNumber())+
2844                                " Depth="+Twine(Loop->getLoopDepth()));
2845     return;
2846   }
2847 
2848   // Otherwise, it is a loop header.  Print out information about child and
2849   // parent loops.
2850   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2851 
2852   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2853 
2854   OS << "=>";
2855   OS.indent(Loop->getLoopDepth()*2-2);
2856 
2857   OS << "This ";
2858   if (Loop->empty())
2859     OS << "Inner ";
2860   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2861 
2862   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2863 }
2864 
2865 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2866                                          MCCodePaddingContext &Context) const {
2867   assert(MF != nullptr && "Machine function must be valid");
2868   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2869                             !MF->getFunction().optForSize() &&
2870                             TM.getOptLevel() != CodeGenOpt::None;
2871   Context.IsBasicBlockReachableViaFallthrough =
2872       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2873       MBB.pred_end();
2874   Context.IsBasicBlockReachableViaBranch =
2875       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2876 }
2877 
2878 /// EmitBasicBlockStart - This method prints the label for the specified
2879 /// MachineBasicBlock, an alignment (if present) and a comment describing
2880 /// it if appropriate.
2881 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2882   // End the previous funclet and start a new one.
2883   if (MBB.isEHFuncletEntry()) {
2884     for (const HandlerInfo &HI : Handlers) {
2885       HI.Handler->endFunclet();
2886       HI.Handler->beginFunclet(MBB);
2887     }
2888   }
2889 
2890   // Emit an alignment directive for this block, if needed.
2891   if (unsigned Align = MBB.getAlignment())
2892     EmitAlignment(Align);
2893   MCCodePaddingContext Context;
2894   setupCodePaddingContext(MBB, Context);
2895   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2896 
2897   // If the block has its address taken, emit any labels that were used to
2898   // reference the block.  It is possible that there is more than one label
2899   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2900   // the references were generated.
2901   if (MBB.hasAddressTaken()) {
2902     const BasicBlock *BB = MBB.getBasicBlock();
2903     if (isVerbose())
2904       OutStreamer->AddComment("Block address taken");
2905 
2906     // MBBs can have their address taken as part of CodeGen without having
2907     // their corresponding BB's address taken in IR
2908     if (BB->hasAddressTaken())
2909       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2910         OutStreamer->EmitLabel(Sym);
2911   }
2912 
2913   // Print some verbose block comments.
2914   if (isVerbose()) {
2915     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2916       if (BB->hasName()) {
2917         BB->printAsOperand(OutStreamer->GetCommentOS(),
2918                            /*PrintType=*/false, BB->getModule());
2919         OutStreamer->GetCommentOS() << '\n';
2920       }
2921     }
2922 
2923     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2924     emitBasicBlockLoopComments(MBB, MLI, *this);
2925   }
2926 
2927   // Print the main label for the block.
2928   if (MBB.pred_empty() ||
2929       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2930     if (isVerbose()) {
2931       // NOTE: Want this comment at start of line, don't emit with AddComment.
2932       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2933                                   false);
2934     }
2935   } else {
2936     OutStreamer->EmitLabel(MBB.getSymbol());
2937   }
2938 }
2939 
2940 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2941   MCCodePaddingContext Context;
2942   setupCodePaddingContext(MBB, Context);
2943   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2944 }
2945 
2946 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2947                                 bool IsDefinition) const {
2948   MCSymbolAttr Attr = MCSA_Invalid;
2949 
2950   switch (Visibility) {
2951   default: break;
2952   case GlobalValue::HiddenVisibility:
2953     if (IsDefinition)
2954       Attr = MAI->getHiddenVisibilityAttr();
2955     else
2956       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2957     break;
2958   case GlobalValue::ProtectedVisibility:
2959     Attr = MAI->getProtectedVisibilityAttr();
2960     break;
2961   }
2962 
2963   if (Attr != MCSA_Invalid)
2964     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2965 }
2966 
2967 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2968 /// exactly one predecessor and the control transfer mechanism between
2969 /// the predecessor and this block is a fall-through.
2970 bool AsmPrinter::
2971 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2972   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2973   // then nothing falls through to it.
2974   if (MBB->isEHPad() || MBB->pred_empty())
2975     return false;
2976 
2977   // If there isn't exactly one predecessor, it can't be a fall through.
2978   if (MBB->pred_size() > 1)
2979     return false;
2980 
2981   // The predecessor has to be immediately before this block.
2982   MachineBasicBlock *Pred = *MBB->pred_begin();
2983   if (!Pred->isLayoutSuccessor(MBB))
2984     return false;
2985 
2986   // If the block is completely empty, then it definitely does fall through.
2987   if (Pred->empty())
2988     return true;
2989 
2990   // Check the terminators in the previous blocks
2991   for (const auto &MI : Pred->terminators()) {
2992     // If it is not a simple branch, we are in a table somewhere.
2993     if (!MI.isBranch() || MI.isIndirectBranch())
2994       return false;
2995 
2996     // If we are the operands of one of the branches, this is not a fall
2997     // through. Note that targets with delay slots will usually bundle
2998     // terminators with the delay slot instruction.
2999     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3000       if (OP->isJTI())
3001         return false;
3002       if (OP->isMBB() && OP->getMBB() == MBB)
3003         return false;
3004     }
3005   }
3006 
3007   return true;
3008 }
3009 
3010 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3011   if (!S.usesMetadata())
3012     return nullptr;
3013 
3014   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3015   gcp_map_type::iterator GCPI = GCMap.find(&S);
3016   if (GCPI != GCMap.end())
3017     return GCPI->second.get();
3018 
3019   auto Name = S.getName();
3020 
3021   for (GCMetadataPrinterRegistry::iterator
3022          I = GCMetadataPrinterRegistry::begin(),
3023          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3024     if (Name == I->getName()) {
3025       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3026       GMP->S = &S;
3027       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3028       return IterBool.first->second.get();
3029     }
3030 
3031   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3032 }
3033 
3034 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3035   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3036   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3037   bool NeedsDefault = false;
3038   if (MI->begin() == MI->end())
3039     // No GC strategy, use the default format.
3040     NeedsDefault = true;
3041   else
3042     for (auto &I : *MI) {
3043       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3044         if (MP->emitStackMaps(SM, *this))
3045           continue;
3046       // The strategy doesn't have printer or doesn't emit custom stack maps.
3047       // Use the default format.
3048       NeedsDefault = true;
3049     }
3050 
3051   if (NeedsDefault)
3052     SM.serializeToStackMapSection();
3053 }
3054 
3055 /// Pin vtable to this file.
3056 AsmPrinterHandler::~AsmPrinterHandler() = default;
3057 
3058 void AsmPrinterHandler::markFunctionEnd() {}
3059 
3060 // In the binary's "xray_instr_map" section, an array of these function entries
3061 // describes each instrumentation point.  When XRay patches your code, the index
3062 // into this table will be given to your handler as a patch point identifier.
3063 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3064                                          const MCSymbol *CurrentFnSym) const {
3065   Out->EmitSymbolValue(Sled, Bytes);
3066   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3067   auto Kind8 = static_cast<uint8_t>(Kind);
3068   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3069   Out->EmitBinaryData(
3070       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3071   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3072   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3073   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3074   Out->EmitZeros(Padding);
3075 }
3076 
3077 void AsmPrinter::emitXRayTable() {
3078   if (Sleds.empty())
3079     return;
3080 
3081   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3082   const Function &F = MF->getFunction();
3083   MCSection *InstMap = nullptr;
3084   MCSection *FnSledIndex = nullptr;
3085   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3086     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3087     assert(Associated != nullptr);
3088     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3089     std::string GroupName;
3090     if (F.hasComdat()) {
3091       Flags |= ELF::SHF_GROUP;
3092       GroupName = F.getComdat()->getName();
3093     }
3094 
3095     auto UniqueID = ++XRayFnUniqueID;
3096     InstMap =
3097         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3098                                  GroupName, UniqueID, Associated);
3099     FnSledIndex =
3100         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3101                                  GroupName, UniqueID, Associated);
3102   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3103     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3104                                          SectionKind::getReadOnlyWithRel());
3105     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3106                                              SectionKind::getReadOnlyWithRel());
3107   } else {
3108     llvm_unreachable("Unsupported target");
3109   }
3110 
3111   auto WordSizeBytes = MAI->getCodePointerSize();
3112 
3113   // Now we switch to the instrumentation map section. Because this is done
3114   // per-function, we are able to create an index entry that will represent the
3115   // range of sleds associated with a function.
3116   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3117   OutStreamer->SwitchSection(InstMap);
3118   OutStreamer->EmitLabel(SledsStart);
3119   for (const auto &Sled : Sleds)
3120     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3121   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3122   OutStreamer->EmitLabel(SledsEnd);
3123 
3124   // We then emit a single entry in the index per function. We use the symbols
3125   // that bound the instrumentation map as the range for a specific function.
3126   // Each entry here will be 2 * word size aligned, as we're writing down two
3127   // pointers. This should work for both 32-bit and 64-bit platforms.
3128   OutStreamer->SwitchSection(FnSledIndex);
3129   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3130   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3131   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3132   OutStreamer->SwitchSection(PrevSection);
3133   Sleds.clear();
3134 }
3135 
3136 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3137                             SledKind Kind, uint8_t Version) {
3138   const Function &F = MI.getMF()->getFunction();
3139   auto Attr = F.getFnAttribute("function-instrument");
3140   bool LogArgs = F.hasFnAttribute("xray-log-args");
3141   bool AlwaysInstrument =
3142     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3143   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3144     Kind = SledKind::LOG_ARGS_ENTER;
3145   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3146                                        AlwaysInstrument, &F, Version});
3147 }
3148 
3149 uint16_t AsmPrinter::getDwarfVersion() const {
3150   return OutStreamer->getContext().getDwarfVersion();
3151 }
3152 
3153 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3154   OutStreamer->getContext().setDwarfVersion(Version);
3155 }
3156