1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/AsmPrinterHandler.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalIFunc.h"
72 #include "llvm/IR/GlobalIndirectSymbol.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Compiler.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/Format.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/Path.h"
109 #include "llvm/Support/TargetRegistry.h"
110 #include "llvm/Support/Timer.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetLoweringObjectFile.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include <algorithm>
116 #include <cassert>
117 #include <cinttypes>
118 #include <cstdint>
119 #include <iterator>
120 #include <limits>
121 #include <memory>
122 #include <string>
123 #include <utility>
124 #include <vector>
125 
126 using namespace llvm;
127 
128 #define DEBUG_TYPE "asm-printer"
129 
130 static const char *const DWARFGroupName = "dwarf";
131 static const char *const DWARFGroupDescription = "DWARF Emission";
132 static const char *const DbgTimerName = "emit";
133 static const char *const DbgTimerDescription = "Debug Info Emission";
134 static const char *const EHTimerName = "write_exception";
135 static const char *const EHTimerDescription = "DWARF Exception Writer";
136 static const char *const CFGuardName = "Control Flow Guard";
137 static const char *const CFGuardDescription = "Control Flow Guard Tables";
138 static const char *const CodeViewLineTablesGroupName = "linetables";
139 static const char *const CodeViewLineTablesGroupDescription =
140   "CodeView Line Tables";
141 
142 STATISTIC(EmittedInsts, "Number of machine instrs printed");
143 
144 char AsmPrinter::ID = 0;
145 
146 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
147 
148 static gcp_map_type &getGCMap(void *&P) {
149   if (!P)
150     P = new gcp_map_type();
151   return *(gcp_map_type*)P;
152 }
153 
154 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
155 /// value in log2 form.  This rounds up to the preferred alignment if possible
156 /// and legal.
157 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
158                                    unsigned InBits = 0) {
159   unsigned NumBits = 0;
160   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
161     NumBits = DL.getPreferredAlignmentLog(GVar);
162 
163   // If InBits is specified, round it to it.
164   if (InBits > NumBits)
165     NumBits = InBits;
166 
167   // If the GV has a specified alignment, take it into account.
168   if (GV->getAlignment() == 0)
169     return NumBits;
170 
171   unsigned GVAlign = Log2_32(GV->getAlignment());
172 
173   // If the GVAlign is larger than NumBits, or if we are required to obey
174   // NumBits because the GV has an assigned section, obey it.
175   if (GVAlign > NumBits || GV->hasSection())
176     NumBits = GVAlign;
177   return NumBits;
178 }
179 
180 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
181     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
182       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
183   VerboseAsm = OutStreamer->isVerboseAsm();
184 }
185 
186 AsmPrinter::~AsmPrinter() {
187   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
188 
189   if (GCMetadataPrinters) {
190     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
191 
192     delete &GCMap;
193     GCMetadataPrinters = nullptr;
194   }
195 }
196 
197 bool AsmPrinter::isPositionIndependent() const {
198   return TM.isPositionIndependent();
199 }
200 
201 /// getFunctionNumber - Return a unique ID for the current function.
202 unsigned AsmPrinter::getFunctionNumber() const {
203   return MF->getFunctionNumber();
204 }
205 
206 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
207   return *TM.getObjFileLowering();
208 }
209 
210 const DataLayout &AsmPrinter::getDataLayout() const {
211   return MMI->getModule()->getDataLayout();
212 }
213 
214 // Do not use the cached DataLayout because some client use it without a Module
215 // (dsymutil, llvm-dwarfdump).
216 unsigned AsmPrinter::getPointerSize() const {
217   return TM.getPointerSize(0); // FIXME: Default address space
218 }
219 
220 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
221   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
222   return MF->getSubtarget<MCSubtargetInfo>();
223 }
224 
225 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
226   S.EmitInstruction(Inst, getSubtargetInfo());
227 }
228 
229 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
230   assert(DD && "Dwarf debug file is not defined.");
231   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
232   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
233 }
234 
235 /// getCurrentSection() - Return the current section we are emitting to.
236 const MCSection *AsmPrinter::getCurrentSection() const {
237   return OutStreamer->getCurrentSectionOnly();
238 }
239 
240 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
241   AU.setPreservesAll();
242   MachineFunctionPass::getAnalysisUsage(AU);
243   AU.addRequired<MachineModuleInfo>();
244   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
245   AU.addRequired<GCModuleInfo>();
246 }
247 
248 bool AsmPrinter::doInitialization(Module &M) {
249   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
250 
251   // Initialize TargetLoweringObjectFile.
252   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
253     .Initialize(OutContext, TM);
254 
255   OutStreamer->InitSections(false);
256 
257   // Emit the version-min deployment target directive if needed.
258   //
259   // FIXME: If we end up with a collection of these sorts of Darwin-specific
260   // or ELF-specific things, it may make sense to have a platform helper class
261   // that will work with the target helper class. For now keep it here, as the
262   // alternative is duplicated code in each of the target asm printers that
263   // use the directive, where it would need the same conditionalization
264   // anyway.
265   const Triple &Target = TM.getTargetTriple();
266   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
267 
268   // Allow the target to emit any magic that it wants at the start of the file.
269   EmitStartOfAsmFile(M);
270 
271   // Very minimal debug info. It is ignored if we emit actual debug info. If we
272   // don't, this at least helps the user find where a global came from.
273   if (MAI->hasSingleParameterDotFile()) {
274     // .file "foo.c"
275     OutStreamer->EmitFileDirective(
276         llvm::sys::path::filename(M.getSourceFileName()));
277   }
278 
279   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
280   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
281   for (auto &I : *MI)
282     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
283       MP->beginAssembly(M, *MI, *this);
284 
285   // Emit module-level inline asm if it exists.
286   if (!M.getModuleInlineAsm().empty()) {
287     // We're at the module level. Construct MCSubtarget from the default CPU
288     // and target triple.
289     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
290         TM.getTargetTriple().str(), TM.getTargetCPU(),
291         TM.getTargetFeatureString()));
292     OutStreamer->AddComment("Start of file scope inline assembly");
293     OutStreamer->AddBlankLine();
294     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
295                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
296     OutStreamer->AddComment("End of file scope inline assembly");
297     OutStreamer->AddBlankLine();
298   }
299 
300   if (MAI->doesSupportDebugInformation()) {
301     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
302     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
303       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
304                                      DbgTimerName, DbgTimerDescription,
305                                      CodeViewLineTablesGroupName,
306                                      CodeViewLineTablesGroupDescription));
307     }
308     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
309       DD = new DwarfDebug(this, &M);
310       DD->beginModule();
311       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
312                                      DWARFGroupName, DWARFGroupDescription));
313     }
314   }
315 
316   switch (MAI->getExceptionHandlingType()) {
317   case ExceptionHandling::SjLj:
318   case ExceptionHandling::DwarfCFI:
319   case ExceptionHandling::ARM:
320     isCFIMoveForDebugging = true;
321     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
322       break;
323     for (auto &F: M.getFunctionList()) {
324       // If the module contains any function with unwind data,
325       // .eh_frame has to be emitted.
326       // Ignore functions that won't get emitted.
327       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
328         isCFIMoveForDebugging = false;
329         break;
330       }
331     }
332     break;
333   default:
334     isCFIMoveForDebugging = false;
335     break;
336   }
337 
338   EHStreamer *ES = nullptr;
339   switch (MAI->getExceptionHandlingType()) {
340   case ExceptionHandling::None:
341     break;
342   case ExceptionHandling::SjLj:
343   case ExceptionHandling::DwarfCFI:
344     ES = new DwarfCFIException(this);
345     break;
346   case ExceptionHandling::ARM:
347     ES = new ARMException(this);
348     break;
349   case ExceptionHandling::WinEH:
350     switch (MAI->getWinEHEncodingType()) {
351     default: llvm_unreachable("unsupported unwinding information encoding");
352     case WinEH::EncodingType::Invalid:
353       break;
354     case WinEH::EncodingType::X86:
355     case WinEH::EncodingType::Itanium:
356       ES = new WinException(this);
357       break;
358     }
359     break;
360   case ExceptionHandling::Wasm:
361     ES = new WasmException(this);
362     break;
363   }
364   if (ES)
365     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
366                                    DWARFGroupName, DWARFGroupDescription));
367 
368   if (mdconst::extract_or_null<ConstantInt>(
369           MMI->getModule()->getModuleFlag("cfguardtable")))
370     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
371                                    CFGuardDescription, DWARFGroupName,
372                                    DWARFGroupDescription));
373 
374   return false;
375 }
376 
377 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
378   if (!MAI.hasWeakDefCanBeHiddenDirective())
379     return false;
380 
381   return GV->canBeOmittedFromSymbolTable();
382 }
383 
384 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
385   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
386   switch (Linkage) {
387   case GlobalValue::CommonLinkage:
388   case GlobalValue::LinkOnceAnyLinkage:
389   case GlobalValue::LinkOnceODRLinkage:
390   case GlobalValue::WeakAnyLinkage:
391   case GlobalValue::WeakODRLinkage:
392     if (MAI->hasWeakDefDirective()) {
393       // .globl _foo
394       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
395 
396       if (!canBeHidden(GV, *MAI))
397         // .weak_definition _foo
398         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
399       else
400         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
401     } else if (MAI->hasLinkOnceDirective()) {
402       // .globl _foo
403       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
404       //NOTE: linkonce is handled by the section the symbol was assigned to.
405     } else {
406       // .weak _foo
407       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
408     }
409     return;
410   case GlobalValue::ExternalLinkage:
411     // If external, declare as a global symbol: .globl _foo
412     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
413     return;
414   case GlobalValue::PrivateLinkage:
415   case GlobalValue::InternalLinkage:
416     return;
417   case GlobalValue::AppendingLinkage:
418   case GlobalValue::AvailableExternallyLinkage:
419   case GlobalValue::ExternalWeakLinkage:
420     llvm_unreachable("Should never emit this");
421   }
422   llvm_unreachable("Unknown linkage type!");
423 }
424 
425 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
426                                    const GlobalValue *GV) const {
427   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
428 }
429 
430 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
431   return TM.getSymbol(GV);
432 }
433 
434 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
435 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
436   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
437   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
438          "No emulated TLS variables in the common section");
439 
440   // Never emit TLS variable xyz in emulated TLS model.
441   // The initialization value is in __emutls_t.xyz instead of xyz.
442   if (IsEmuTLSVar)
443     return;
444 
445   if (GV->hasInitializer()) {
446     // Check to see if this is a special global used by LLVM, if so, emit it.
447     if (EmitSpecialLLVMGlobal(GV))
448       return;
449 
450     // Skip the emission of global equivalents. The symbol can be emitted later
451     // on by emitGlobalGOTEquivs in case it turns out to be needed.
452     if (GlobalGOTEquivs.count(getSymbol(GV)))
453       return;
454 
455     if (isVerbose()) {
456       // When printing the control variable __emutls_v.*,
457       // we don't need to print the original TLS variable name.
458       GV->printAsOperand(OutStreamer->GetCommentOS(),
459                      /*PrintType=*/false, GV->getParent());
460       OutStreamer->GetCommentOS() << '\n';
461     }
462   }
463 
464   MCSymbol *GVSym = getSymbol(GV);
465   MCSymbol *EmittedSym = GVSym;
466 
467   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
468   // attributes.
469   // GV's or GVSym's attributes will be used for the EmittedSym.
470   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
471 
472   if (!GV->hasInitializer())   // External globals require no extra code.
473     return;
474 
475   GVSym->redefineIfPossible();
476   if (GVSym->isDefined() || GVSym->isVariable())
477     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
478                        "' is already defined");
479 
480   if (MAI->hasDotTypeDotSizeDirective())
481     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
482 
483   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
484 
485   const DataLayout &DL = GV->getParent()->getDataLayout();
486   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
487 
488   // If the alignment is specified, we *must* obey it.  Overaligning a global
489   // with a specified alignment is a prompt way to break globals emitted to
490   // sections and expected to be contiguous (e.g. ObjC metadata).
491   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
492 
493   for (const HandlerInfo &HI : Handlers) {
494     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
495                        HI.TimerGroupName, HI.TimerGroupDescription,
496                        TimePassesIsEnabled);
497     HI.Handler->setSymbolSize(GVSym, Size);
498   }
499 
500   // Handle common symbols
501   if (GVKind.isCommon()) {
502     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
503     unsigned Align = 1 << AlignLog;
504     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
505       Align = 0;
506 
507     // .comm _foo, 42, 4
508     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
509     return;
510   }
511 
512   // Determine to which section this global should be emitted.
513   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
514 
515   // If we have a bss global going to a section that supports the
516   // zerofill directive, do so here.
517   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
518       TheSection->isVirtualSection()) {
519     if (Size == 0)
520       Size = 1; // zerofill of 0 bytes is undefined.
521     unsigned Align = 1 << AlignLog;
522     EmitLinkage(GV, GVSym);
523     // .zerofill __DATA, __bss, _foo, 400, 5
524     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
525     return;
526   }
527 
528   // If this is a BSS local symbol and we are emitting in the BSS
529   // section use .lcomm/.comm directive.
530   if (GVKind.isBSSLocal() &&
531       getObjFileLowering().getBSSSection() == TheSection) {
532     if (Size == 0)
533       Size = 1; // .comm Foo, 0 is undefined, avoid it.
534     unsigned Align = 1 << AlignLog;
535 
536     // Use .lcomm only if it supports user-specified alignment.
537     // Otherwise, while it would still be correct to use .lcomm in some
538     // cases (e.g. when Align == 1), the external assembler might enfore
539     // some -unknown- default alignment behavior, which could cause
540     // spurious differences between external and integrated assembler.
541     // Prefer to simply fall back to .local / .comm in this case.
542     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
543       // .lcomm _foo, 42
544       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
545       return;
546     }
547 
548     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
549       Align = 0;
550 
551     // .local _foo
552     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
553     // .comm _foo, 42, 4
554     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
555     return;
556   }
557 
558   // Handle thread local data for mach-o which requires us to output an
559   // additional structure of data and mangle the original symbol so that we
560   // can reference it later.
561   //
562   // TODO: This should become an "emit thread local global" method on TLOF.
563   // All of this macho specific stuff should be sunk down into TLOFMachO and
564   // stuff like "TLSExtraDataSection" should no longer be part of the parent
565   // TLOF class.  This will also make it more obvious that stuff like
566   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
567   // specific code.
568   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
569     // Emit the .tbss symbol
570     MCSymbol *MangSym =
571         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
572 
573     if (GVKind.isThreadBSS()) {
574       TheSection = getObjFileLowering().getTLSBSSSection();
575       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
576     } else if (GVKind.isThreadData()) {
577       OutStreamer->SwitchSection(TheSection);
578 
579       EmitAlignment(AlignLog, GV);
580       OutStreamer->EmitLabel(MangSym);
581 
582       EmitGlobalConstant(GV->getParent()->getDataLayout(),
583                          GV->getInitializer());
584     }
585 
586     OutStreamer->AddBlankLine();
587 
588     // Emit the variable struct for the runtime.
589     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
590 
591     OutStreamer->SwitchSection(TLVSect);
592     // Emit the linkage here.
593     EmitLinkage(GV, GVSym);
594     OutStreamer->EmitLabel(GVSym);
595 
596     // Three pointers in size:
597     //   - __tlv_bootstrap - used to make sure support exists
598     //   - spare pointer, used when mapped by the runtime
599     //   - pointer to mangled symbol above with initializer
600     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
601     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
602                                 PtrSize);
603     OutStreamer->EmitIntValue(0, PtrSize);
604     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
605 
606     OutStreamer->AddBlankLine();
607     return;
608   }
609 
610   MCSymbol *EmittedInitSym = GVSym;
611 
612   OutStreamer->SwitchSection(TheSection);
613 
614   EmitLinkage(GV, EmittedInitSym);
615   EmitAlignment(AlignLog, GV);
616 
617   OutStreamer->EmitLabel(EmittedInitSym);
618 
619   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
620 
621   if (MAI->hasDotTypeDotSizeDirective())
622     // .size foo, 42
623     OutStreamer->emitELFSize(EmittedInitSym,
624                              MCConstantExpr::create(Size, OutContext));
625 
626   OutStreamer->AddBlankLine();
627 }
628 
629 /// Emit the directive and value for debug thread local expression
630 ///
631 /// \p Value - The value to emit.
632 /// \p Size - The size of the integer (in bytes) to emit.
633 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
634   OutStreamer->EmitValue(Value, Size);
635 }
636 
637 /// EmitFunctionHeader - This method emits the header for the current
638 /// function.
639 void AsmPrinter::EmitFunctionHeader() {
640   const Function &F = MF->getFunction();
641 
642   if (isVerbose())
643     OutStreamer->GetCommentOS()
644         << "-- Begin function "
645         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
646 
647   // Print out constants referenced by the function
648   EmitConstantPool();
649 
650   // Print the 'header' of function.
651   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
652   EmitVisibility(CurrentFnSym, F.getVisibility());
653 
654   EmitLinkage(&F, CurrentFnSym);
655   if (MAI->hasFunctionAlignment())
656     EmitAlignment(MF->getAlignment(), &F);
657 
658   if (MAI->hasDotTypeDotSizeDirective())
659     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
660 
661   if (F.hasFnAttribute(Attribute::Cold))
662     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
663 
664   if (isVerbose()) {
665     F.printAsOperand(OutStreamer->GetCommentOS(),
666                    /*PrintType=*/false, F.getParent());
667     OutStreamer->GetCommentOS() << '\n';
668   }
669 
670   // Emit the prefix data.
671   if (F.hasPrefixData()) {
672     if (MAI->hasSubsectionsViaSymbols()) {
673       // Preserving prefix data on platforms which use subsections-via-symbols
674       // is a bit tricky. Here we introduce a symbol for the prefix data
675       // and use the .alt_entry attribute to mark the function's real entry point
676       // as an alternative entry point to the prefix-data symbol.
677       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
678       OutStreamer->EmitLabel(PrefixSym);
679 
680       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
681 
682       // Emit an .alt_entry directive for the actual function symbol.
683       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
684     } else {
685       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
686     }
687   }
688 
689   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
690   // do their wild and crazy things as required.
691   EmitFunctionEntryLabel();
692 
693   // If the function had address-taken blocks that got deleted, then we have
694   // references to the dangling symbols.  Emit them at the start of the function
695   // so that we don't get references to undefined symbols.
696   std::vector<MCSymbol*> DeadBlockSyms;
697   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
698   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
699     OutStreamer->AddComment("Address taken block that was later removed");
700     OutStreamer->EmitLabel(DeadBlockSyms[i]);
701   }
702 
703   if (CurrentFnBegin) {
704     if (MAI->useAssignmentForEHBegin()) {
705       MCSymbol *CurPos = OutContext.createTempSymbol();
706       OutStreamer->EmitLabel(CurPos);
707       OutStreamer->EmitAssignment(CurrentFnBegin,
708                                  MCSymbolRefExpr::create(CurPos, OutContext));
709     } else {
710       OutStreamer->EmitLabel(CurrentFnBegin);
711     }
712   }
713 
714   // Emit pre-function debug and/or EH information.
715   for (const HandlerInfo &HI : Handlers) {
716     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
717                        HI.TimerGroupDescription, TimePassesIsEnabled);
718     HI.Handler->beginFunction(MF);
719   }
720 
721   // Emit the prologue data.
722   if (F.hasPrologueData())
723     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
724 }
725 
726 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
727 /// function.  This can be overridden by targets as required to do custom stuff.
728 void AsmPrinter::EmitFunctionEntryLabel() {
729   CurrentFnSym->redefineIfPossible();
730 
731   // The function label could have already been emitted if two symbols end up
732   // conflicting due to asm renaming.  Detect this and emit an error.
733   if (CurrentFnSym->isVariable())
734     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
735                        "' is a protected alias");
736   if (CurrentFnSym->isDefined())
737     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
738                        "' label emitted multiple times to assembly file");
739 
740   return OutStreamer->EmitLabel(CurrentFnSym);
741 }
742 
743 /// emitComments - Pretty-print comments for instructions.
744 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
745   const MachineFunction *MF = MI.getMF();
746   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
747 
748   // Check for spills and reloads
749 
750   // We assume a single instruction only has a spill or reload, not
751   // both.
752   Optional<unsigned> Size;
753   if ((Size = MI.getRestoreSize(TII))) {
754     CommentOS << *Size << "-byte Reload\n";
755   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
756     if (*Size)
757       CommentOS << *Size << "-byte Folded Reload\n";
758   } else if ((Size = MI.getSpillSize(TII))) {
759     CommentOS << *Size << "-byte Spill\n";
760   } else if ((Size = MI.getFoldedSpillSize(TII))) {
761     if (*Size)
762       CommentOS << *Size << "-byte Folded Spill\n";
763   }
764 
765   // Check for spill-induced copies
766   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
767     CommentOS << " Reload Reuse\n";
768 }
769 
770 /// emitImplicitDef - This method emits the specified machine instruction
771 /// that is an implicit def.
772 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
773   unsigned RegNo = MI->getOperand(0).getReg();
774 
775   SmallString<128> Str;
776   raw_svector_ostream OS(Str);
777   OS << "implicit-def: "
778      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
779 
780   OutStreamer->AddComment(OS.str());
781   OutStreamer->AddBlankLine();
782 }
783 
784 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
785   std::string Str;
786   raw_string_ostream OS(Str);
787   OS << "kill:";
788   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
789     const MachineOperand &Op = MI->getOperand(i);
790     assert(Op.isReg() && "KILL instruction must have only register operands");
791     OS << ' ' << (Op.isDef() ? "def " : "killed ")
792        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
793   }
794   AP.OutStreamer->AddComment(OS.str());
795   AP.OutStreamer->AddBlankLine();
796 }
797 
798 /// emitDebugValueComment - This method handles the target-independent form
799 /// of DBG_VALUE, returning true if it was able to do so.  A false return
800 /// means the target will need to handle MI in EmitInstruction.
801 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
802   // This code handles only the 4-operand target-independent form.
803   if (MI->getNumOperands() != 4)
804     return false;
805 
806   SmallString<128> Str;
807   raw_svector_ostream OS(Str);
808   OS << "DEBUG_VALUE: ";
809 
810   const DILocalVariable *V = MI->getDebugVariable();
811   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
812     StringRef Name = SP->getName();
813     if (!Name.empty())
814       OS << Name << ":";
815   }
816   OS << V->getName();
817   OS << " <- ";
818 
819   // The second operand is only an offset if it's an immediate.
820   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
821   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
822   const DIExpression *Expr = MI->getDebugExpression();
823   if (Expr->getNumElements()) {
824     OS << '[';
825     bool NeedSep = false;
826     for (auto Op : Expr->expr_ops()) {
827       if (NeedSep)
828         OS << ", ";
829       else
830         NeedSep = true;
831       OS << dwarf::OperationEncodingString(Op.getOp());
832       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
833         OS << ' ' << Op.getArg(I);
834     }
835     OS << "] ";
836   }
837 
838   // Register or immediate value. Register 0 means undef.
839   if (MI->getOperand(0).isFPImm()) {
840     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
841     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
842       OS << (double)APF.convertToFloat();
843     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
844       OS << APF.convertToDouble();
845     } else {
846       // There is no good way to print long double.  Convert a copy to
847       // double.  Ah well, it's only a comment.
848       bool ignored;
849       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
850                   &ignored);
851       OS << "(long double) " << APF.convertToDouble();
852     }
853   } else if (MI->getOperand(0).isImm()) {
854     OS << MI->getOperand(0).getImm();
855   } else if (MI->getOperand(0).isCImm()) {
856     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
857   } else {
858     unsigned Reg;
859     if (MI->getOperand(0).isReg()) {
860       Reg = MI->getOperand(0).getReg();
861     } else {
862       assert(MI->getOperand(0).isFI() && "Unknown operand type");
863       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
864       Offset += TFI->getFrameIndexReference(*AP.MF,
865                                             MI->getOperand(0).getIndex(), Reg);
866       MemLoc = true;
867     }
868     if (Reg == 0) {
869       // Suppress offset, it is not meaningful here.
870       OS << "undef";
871       // NOTE: Want this comment at start of line, don't emit with AddComment.
872       AP.OutStreamer->emitRawComment(OS.str());
873       return true;
874     }
875     if (MemLoc)
876       OS << '[';
877     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
878   }
879 
880   if (MemLoc)
881     OS << '+' << Offset << ']';
882 
883   // NOTE: Want this comment at start of line, don't emit with AddComment.
884   AP.OutStreamer->emitRawComment(OS.str());
885   return true;
886 }
887 
888 /// This method handles the target-independent form of DBG_LABEL, returning
889 /// true if it was able to do so.  A false return means the target will need
890 /// to handle MI in EmitInstruction.
891 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
892   if (MI->getNumOperands() != 1)
893     return false;
894 
895   SmallString<128> Str;
896   raw_svector_ostream OS(Str);
897   OS << "DEBUG_LABEL: ";
898 
899   const DILabel *V = MI->getDebugLabel();
900   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
901     StringRef Name = SP->getName();
902     if (!Name.empty())
903       OS << Name << ":";
904   }
905   OS << V->getName();
906 
907   // NOTE: Want this comment at start of line, don't emit with AddComment.
908   AP.OutStreamer->emitRawComment(OS.str());
909   return true;
910 }
911 
912 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
913   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
914       MF->getFunction().needsUnwindTableEntry())
915     return CFI_M_EH;
916 
917   if (MMI->hasDebugInfo())
918     return CFI_M_Debug;
919 
920   return CFI_M_None;
921 }
922 
923 bool AsmPrinter::needsSEHMoves() {
924   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
925 }
926 
927 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
928   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
929   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
930       ExceptionHandlingType != ExceptionHandling::ARM)
931     return;
932 
933   if (needsCFIMoves() == CFI_M_None)
934     return;
935 
936   // If there is no "real" instruction following this CFI instruction, skip
937   // emitting it; it would be beyond the end of the function's FDE range.
938   auto *MBB = MI.getParent();
939   auto I = std::next(MI.getIterator());
940   while (I != MBB->end() && I->isTransient())
941     ++I;
942   if (I == MBB->instr_end() &&
943       MBB->getReverseIterator() == MBB->getParent()->rbegin())
944     return;
945 
946   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
947   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
948   const MCCFIInstruction &CFI = Instrs[CFIIndex];
949   emitCFIInstruction(CFI);
950 }
951 
952 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
953   // The operands are the MCSymbol and the frame offset of the allocation.
954   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
955   int FrameOffset = MI.getOperand(1).getImm();
956 
957   // Emit a symbol assignment.
958   OutStreamer->EmitAssignment(FrameAllocSym,
959                              MCConstantExpr::create(FrameOffset, OutContext));
960 }
961 
962 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
963   if (!MF.getTarget().Options.EmitStackSizeSection)
964     return;
965 
966   MCSection *StackSizeSection =
967       getObjFileLowering().getStackSizesSection(*getCurrentSection());
968   if (!StackSizeSection)
969     return;
970 
971   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
972   // Don't emit functions with dynamic stack allocations.
973   if (FrameInfo.hasVarSizedObjects())
974     return;
975 
976   OutStreamer->PushSection();
977   OutStreamer->SwitchSection(StackSizeSection);
978 
979   const MCSymbol *FunctionSymbol = getFunctionBegin();
980   uint64_t StackSize = FrameInfo.getStackSize();
981   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
982   OutStreamer->EmitULEB128IntValue(StackSize);
983 
984   OutStreamer->PopSection();
985 }
986 
987 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
988                                            MachineModuleInfo *MMI) {
989   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
990     return true;
991 
992   // We might emit an EH table that uses function begin and end labels even if
993   // we don't have any landingpads.
994   if (!MF.getFunction().hasPersonalityFn())
995     return false;
996   return !isNoOpWithoutInvoke(
997       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
998 }
999 
1000 /// EmitFunctionBody - This method emits the body and trailer for a
1001 /// function.
1002 void AsmPrinter::EmitFunctionBody() {
1003   EmitFunctionHeader();
1004 
1005   // Emit target-specific gunk before the function body.
1006   EmitFunctionBodyStart();
1007 
1008   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1009 
1010   if (isVerbose()) {
1011     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1012     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1013     if (!MDT) {
1014       OwnedMDT = make_unique<MachineDominatorTree>();
1015       OwnedMDT->getBase().recalculate(*MF);
1016       MDT = OwnedMDT.get();
1017     }
1018 
1019     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1020     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1021     if (!MLI) {
1022       OwnedMLI = make_unique<MachineLoopInfo>();
1023       OwnedMLI->getBase().analyze(MDT->getBase());
1024       MLI = OwnedMLI.get();
1025     }
1026   }
1027 
1028   // Print out code for the function.
1029   bool HasAnyRealCode = false;
1030   int NumInstsInFunction = 0;
1031   for (auto &MBB : *MF) {
1032     // Print a label for the basic block.
1033     EmitBasicBlockStart(MBB);
1034     for (auto &MI : MBB) {
1035       // Print the assembly for the instruction.
1036       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1037           !MI.isDebugInstr()) {
1038         HasAnyRealCode = true;
1039         ++NumInstsInFunction;
1040       }
1041 
1042       // If there is a pre-instruction symbol, emit a label for it here.
1043       if (MCSymbol *S = MI.getPreInstrSymbol())
1044         OutStreamer->EmitLabel(S);
1045 
1046       if (ShouldPrintDebugScopes) {
1047         for (const HandlerInfo &HI : Handlers) {
1048           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1049                              HI.TimerGroupName, HI.TimerGroupDescription,
1050                              TimePassesIsEnabled);
1051           HI.Handler->beginInstruction(&MI);
1052         }
1053       }
1054 
1055       if (isVerbose())
1056         emitComments(MI, OutStreamer->GetCommentOS());
1057 
1058       switch (MI.getOpcode()) {
1059       case TargetOpcode::CFI_INSTRUCTION:
1060         emitCFIInstruction(MI);
1061         break;
1062       case TargetOpcode::LOCAL_ESCAPE:
1063         emitFrameAlloc(MI);
1064         break;
1065       case TargetOpcode::EH_LABEL:
1066       case TargetOpcode::GC_LABEL:
1067         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1068         break;
1069       case TargetOpcode::INLINEASM:
1070       case TargetOpcode::INLINEASM_BR:
1071         EmitInlineAsm(&MI);
1072         break;
1073       case TargetOpcode::DBG_VALUE:
1074         if (isVerbose()) {
1075           if (!emitDebugValueComment(&MI, *this))
1076             EmitInstruction(&MI);
1077         }
1078         break;
1079       case TargetOpcode::DBG_LABEL:
1080         if (isVerbose()) {
1081           if (!emitDebugLabelComment(&MI, *this))
1082             EmitInstruction(&MI);
1083         }
1084         break;
1085       case TargetOpcode::IMPLICIT_DEF:
1086         if (isVerbose()) emitImplicitDef(&MI);
1087         break;
1088       case TargetOpcode::KILL:
1089         if (isVerbose()) emitKill(&MI, *this);
1090         break;
1091       default:
1092         EmitInstruction(&MI);
1093         break;
1094       }
1095 
1096       // If there is a post-instruction symbol, emit a label for it here.
1097       if (MCSymbol *S = MI.getPostInstrSymbol())
1098         OutStreamer->EmitLabel(S);
1099 
1100       if (ShouldPrintDebugScopes) {
1101         for (const HandlerInfo &HI : Handlers) {
1102           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1103                              HI.TimerGroupName, HI.TimerGroupDescription,
1104                              TimePassesIsEnabled);
1105           HI.Handler->endInstruction();
1106         }
1107       }
1108     }
1109 
1110     EmitBasicBlockEnd(MBB);
1111   }
1112 
1113   EmittedInsts += NumInstsInFunction;
1114   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1115                                       MF->getFunction().getSubprogram(),
1116                                       &MF->front());
1117   R << ore::NV("NumInstructions", NumInstsInFunction)
1118     << " instructions in function";
1119   ORE->emit(R);
1120 
1121   // If the function is empty and the object file uses .subsections_via_symbols,
1122   // then we need to emit *something* to the function body to prevent the
1123   // labels from collapsing together.  Just emit a noop.
1124   // Similarly, don't emit empty functions on Windows either. It can lead to
1125   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1126   // after linking, causing the kernel not to load the binary:
1127   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1128   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1129   const Triple &TT = TM.getTargetTriple();
1130   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1131                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1132     MCInst Noop;
1133     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1134 
1135     // Targets can opt-out of emitting the noop here by leaving the opcode
1136     // unspecified.
1137     if (Noop.getOpcode()) {
1138       OutStreamer->AddComment("avoids zero-length function");
1139       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1140     }
1141   }
1142 
1143   const Function &F = MF->getFunction();
1144   for (const auto &BB : F) {
1145     if (!BB.hasAddressTaken())
1146       continue;
1147     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1148     if (Sym->isDefined())
1149       continue;
1150     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1151     OutStreamer->EmitLabel(Sym);
1152   }
1153 
1154   // Emit target-specific gunk after the function body.
1155   EmitFunctionBodyEnd();
1156 
1157   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1158       MAI->hasDotTypeDotSizeDirective()) {
1159     // Create a symbol for the end of function.
1160     CurrentFnEnd = createTempSymbol("func_end");
1161     OutStreamer->EmitLabel(CurrentFnEnd);
1162   }
1163 
1164   // If the target wants a .size directive for the size of the function, emit
1165   // it.
1166   if (MAI->hasDotTypeDotSizeDirective()) {
1167     // We can get the size as difference between the function label and the
1168     // temp label.
1169     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1170         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1171         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1172     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1173   }
1174 
1175   for (const HandlerInfo &HI : Handlers) {
1176     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1177                        HI.TimerGroupDescription, TimePassesIsEnabled);
1178     HI.Handler->markFunctionEnd();
1179   }
1180 
1181   // Print out jump tables referenced by the function.
1182   EmitJumpTableInfo();
1183 
1184   // Emit post-function debug and/or EH information.
1185   for (const HandlerInfo &HI : Handlers) {
1186     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1187                        HI.TimerGroupDescription, TimePassesIsEnabled);
1188     HI.Handler->endFunction(MF);
1189   }
1190 
1191   // Emit section containing stack size metadata.
1192   emitStackSizeSection(*MF);
1193 
1194   if (isVerbose())
1195     OutStreamer->GetCommentOS() << "-- End function\n";
1196 
1197   OutStreamer->AddBlankLine();
1198 }
1199 
1200 /// Compute the number of Global Variables that uses a Constant.
1201 static unsigned getNumGlobalVariableUses(const Constant *C) {
1202   if (!C)
1203     return 0;
1204 
1205   if (isa<GlobalVariable>(C))
1206     return 1;
1207 
1208   unsigned NumUses = 0;
1209   for (auto *CU : C->users())
1210     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1211 
1212   return NumUses;
1213 }
1214 
1215 /// Only consider global GOT equivalents if at least one user is a
1216 /// cstexpr inside an initializer of another global variables. Also, don't
1217 /// handle cstexpr inside instructions. During global variable emission,
1218 /// candidates are skipped and are emitted later in case at least one cstexpr
1219 /// isn't replaced by a PC relative GOT entry access.
1220 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1221                                      unsigned &NumGOTEquivUsers) {
1222   // Global GOT equivalents are unnamed private globals with a constant
1223   // pointer initializer to another global symbol. They must point to a
1224   // GlobalVariable or Function, i.e., as GlobalValue.
1225   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1226       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1227       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1228     return false;
1229 
1230   // To be a got equivalent, at least one of its users need to be a constant
1231   // expression used by another global variable.
1232   for (auto *U : GV->users())
1233     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1234 
1235   return NumGOTEquivUsers > 0;
1236 }
1237 
1238 /// Unnamed constant global variables solely contaning a pointer to
1239 /// another globals variable is equivalent to a GOT table entry; it contains the
1240 /// the address of another symbol. Optimize it and replace accesses to these
1241 /// "GOT equivalents" by using the GOT entry for the final global instead.
1242 /// Compute GOT equivalent candidates among all global variables to avoid
1243 /// emitting them if possible later on, after it use is replaced by a GOT entry
1244 /// access.
1245 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1246   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1247     return;
1248 
1249   for (const auto &G : M.globals()) {
1250     unsigned NumGOTEquivUsers = 0;
1251     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1252       continue;
1253 
1254     const MCSymbol *GOTEquivSym = getSymbol(&G);
1255     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1256   }
1257 }
1258 
1259 /// Constant expressions using GOT equivalent globals may not be eligible
1260 /// for PC relative GOT entry conversion, in such cases we need to emit such
1261 /// globals we previously omitted in EmitGlobalVariable.
1262 void AsmPrinter::emitGlobalGOTEquivs() {
1263   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1264     return;
1265 
1266   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1267   for (auto &I : GlobalGOTEquivs) {
1268     const GlobalVariable *GV = I.second.first;
1269     unsigned Cnt = I.second.second;
1270     if (Cnt)
1271       FailedCandidates.push_back(GV);
1272   }
1273   GlobalGOTEquivs.clear();
1274 
1275   for (auto *GV : FailedCandidates)
1276     EmitGlobalVariable(GV);
1277 }
1278 
1279 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1280                                           const GlobalIndirectSymbol& GIS) {
1281   MCSymbol *Name = getSymbol(&GIS);
1282 
1283   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1284     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1285   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1286     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1287   else
1288     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1289 
1290   bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy();
1291 
1292   // Treat bitcasts of functions as functions also. This is important at least
1293   // on WebAssembly where object and function addresses can't alias each other.
1294   if (!IsFunction)
1295     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1296       if (CE->getOpcode() == Instruction::BitCast)
1297         IsFunction =
1298           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1299 
1300   // Set the symbol type to function if the alias has a function type.
1301   // This affects codegen when the aliasee is not a function.
1302   if (IsFunction) {
1303     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1304     if (isa<GlobalIFunc>(GIS))
1305       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1306   }
1307 
1308   EmitVisibility(Name, GIS.getVisibility());
1309 
1310   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1311 
1312   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1313     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1314 
1315   // Emit the directives as assignments aka .set:
1316   OutStreamer->EmitAssignment(Name, Expr);
1317 
1318   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1319     // If the aliasee does not correspond to a symbol in the output, i.e. the
1320     // alias is not of an object or the aliased object is private, then set the
1321     // size of the alias symbol from the type of the alias. We don't do this in
1322     // other situations as the alias and aliasee having differing types but same
1323     // size may be intentional.
1324     const GlobalObject *BaseObject = GA->getBaseObject();
1325     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1326         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1327       const DataLayout &DL = M.getDataLayout();
1328       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1329       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1330     }
1331   }
1332 }
1333 
1334 bool AsmPrinter::doFinalization(Module &M) {
1335   // Set the MachineFunction to nullptr so that we can catch attempted
1336   // accesses to MF specific features at the module level and so that
1337   // we can conditionalize accesses based on whether or not it is nullptr.
1338   MF = nullptr;
1339 
1340   // Gather all GOT equivalent globals in the module. We really need two
1341   // passes over the globals: one to compute and another to avoid its emission
1342   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1343   // where the got equivalent shows up before its use.
1344   computeGlobalGOTEquivs(M);
1345 
1346   // Emit global variables.
1347   for (const auto &G : M.globals())
1348     EmitGlobalVariable(&G);
1349 
1350   // Emit remaining GOT equivalent globals.
1351   emitGlobalGOTEquivs();
1352 
1353   // Emit visibility info for declarations
1354   for (const Function &F : M) {
1355     if (!F.isDeclarationForLinker())
1356       continue;
1357     GlobalValue::VisibilityTypes V = F.getVisibility();
1358     if (V == GlobalValue::DefaultVisibility)
1359       continue;
1360 
1361     MCSymbol *Name = getSymbol(&F);
1362     EmitVisibility(Name, V, false);
1363   }
1364 
1365   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1366 
1367   TLOF.emitModuleMetadata(*OutStreamer, M);
1368 
1369   if (TM.getTargetTriple().isOSBinFormatELF()) {
1370     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1371 
1372     // Output stubs for external and common global variables.
1373     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1374     if (!Stubs.empty()) {
1375       OutStreamer->SwitchSection(TLOF.getDataSection());
1376       const DataLayout &DL = M.getDataLayout();
1377 
1378       EmitAlignment(Log2_32(DL.getPointerSize()));
1379       for (const auto &Stub : Stubs) {
1380         OutStreamer->EmitLabel(Stub.first);
1381         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1382                                      DL.getPointerSize());
1383       }
1384     }
1385   }
1386 
1387   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1388     MachineModuleInfoCOFF &MMICOFF =
1389         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1390 
1391     // Output stubs for external and common global variables.
1392     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1393     if (!Stubs.empty()) {
1394       const DataLayout &DL = M.getDataLayout();
1395 
1396       for (const auto &Stub : Stubs) {
1397         SmallString<256> SectionName = StringRef(".rdata$");
1398         SectionName += Stub.first->getName();
1399         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1400             SectionName,
1401             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1402                 COFF::IMAGE_SCN_LNK_COMDAT,
1403             SectionKind::getReadOnly(), Stub.first->getName(),
1404             COFF::IMAGE_COMDAT_SELECT_ANY));
1405         EmitAlignment(Log2_32(DL.getPointerSize()));
1406         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1407         OutStreamer->EmitLabel(Stub.first);
1408         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1409                                      DL.getPointerSize());
1410       }
1411     }
1412   }
1413 
1414   // Finalize debug and EH information.
1415   for (const HandlerInfo &HI : Handlers) {
1416     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1417                        HI.TimerGroupDescription, TimePassesIsEnabled);
1418     HI.Handler->endModule();
1419     delete HI.Handler;
1420   }
1421   Handlers.clear();
1422   DD = nullptr;
1423 
1424   // If the target wants to know about weak references, print them all.
1425   if (MAI->getWeakRefDirective()) {
1426     // FIXME: This is not lazy, it would be nice to only print weak references
1427     // to stuff that is actually used.  Note that doing so would require targets
1428     // to notice uses in operands (due to constant exprs etc).  This should
1429     // happen with the MC stuff eventually.
1430 
1431     // Print out module-level global objects here.
1432     for (const auto &GO : M.global_objects()) {
1433       if (!GO.hasExternalWeakLinkage())
1434         continue;
1435       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1436     }
1437   }
1438 
1439   OutStreamer->AddBlankLine();
1440 
1441   // Print aliases in topological order, that is, for each alias a = b,
1442   // b must be printed before a.
1443   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1444   // such an order to generate correct TOC information.
1445   SmallVector<const GlobalAlias *, 16> AliasStack;
1446   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1447   for (const auto &Alias : M.aliases()) {
1448     for (const GlobalAlias *Cur = &Alias; Cur;
1449          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1450       if (!AliasVisited.insert(Cur).second)
1451         break;
1452       AliasStack.push_back(Cur);
1453     }
1454     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1455       emitGlobalIndirectSymbol(M, *AncestorAlias);
1456     AliasStack.clear();
1457   }
1458   for (const auto &IFunc : M.ifuncs())
1459     emitGlobalIndirectSymbol(M, IFunc);
1460 
1461   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1462   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1463   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1464     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1465       MP->finishAssembly(M, *MI, *this);
1466 
1467   // Emit llvm.ident metadata in an '.ident' directive.
1468   EmitModuleIdents(M);
1469 
1470   // Emit bytes for llvm.commandline metadata.
1471   EmitModuleCommandLines(M);
1472 
1473   // Emit __morestack address if needed for indirect calls.
1474   if (MMI->usesMorestackAddr()) {
1475     unsigned Align = 1;
1476     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1477         getDataLayout(), SectionKind::getReadOnly(),
1478         /*C=*/nullptr, Align);
1479     OutStreamer->SwitchSection(ReadOnlySection);
1480 
1481     MCSymbol *AddrSymbol =
1482         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1483     OutStreamer->EmitLabel(AddrSymbol);
1484 
1485     unsigned PtrSize = MAI->getCodePointerSize();
1486     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1487                                  PtrSize);
1488   }
1489 
1490   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1491   // split-stack is used.
1492   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1493     OutStreamer->SwitchSection(
1494         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1495     if (MMI->hasNosplitStack())
1496       OutStreamer->SwitchSection(
1497           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1498   }
1499 
1500   // If we don't have any trampolines, then we don't require stack memory
1501   // to be executable. Some targets have a directive to declare this.
1502   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1503   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1504     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1505       OutStreamer->SwitchSection(S);
1506 
1507   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1508     // Emit /EXPORT: flags for each exported global as necessary.
1509     const auto &TLOF = getObjFileLowering();
1510     std::string Flags;
1511 
1512     for (const GlobalValue &GV : M.global_values()) {
1513       raw_string_ostream OS(Flags);
1514       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1515       OS.flush();
1516       if (!Flags.empty()) {
1517         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1518         OutStreamer->EmitBytes(Flags);
1519       }
1520       Flags.clear();
1521     }
1522 
1523     // Emit /INCLUDE: flags for each used global as necessary.
1524     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1525       assert(LU->hasInitializer() &&
1526              "expected llvm.used to have an initializer");
1527       assert(isa<ArrayType>(LU->getValueType()) &&
1528              "expected llvm.used to be an array type");
1529       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1530         for (const Value *Op : A->operands()) {
1531           const auto *GV =
1532               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1533           // Global symbols with internal or private linkage are not visible to
1534           // the linker, and thus would cause an error when the linker tried to
1535           // preserve the symbol due to the `/include:` directive.
1536           if (GV->hasLocalLinkage())
1537             continue;
1538 
1539           raw_string_ostream OS(Flags);
1540           TLOF.emitLinkerFlagsForUsed(OS, GV);
1541           OS.flush();
1542 
1543           if (!Flags.empty()) {
1544             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1545             OutStreamer->EmitBytes(Flags);
1546           }
1547           Flags.clear();
1548         }
1549       }
1550     }
1551   }
1552 
1553   if (TM.Options.EmitAddrsig) {
1554     // Emit address-significance attributes for all globals.
1555     OutStreamer->EmitAddrsig();
1556     for (const GlobalValue &GV : M.global_values())
1557       if (!GV.use_empty() && !GV.isThreadLocal() &&
1558           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1559           !GV.hasAtLeastLocalUnnamedAddr())
1560         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1561   }
1562 
1563   // Allow the target to emit any magic that it wants at the end of the file,
1564   // after everything else has gone out.
1565   EmitEndOfAsmFile(M);
1566 
1567   MMI = nullptr;
1568 
1569   OutStreamer->Finish();
1570   OutStreamer->reset();
1571   OwnedMLI.reset();
1572   OwnedMDT.reset();
1573 
1574   return false;
1575 }
1576 
1577 MCSymbol *AsmPrinter::getCurExceptionSym() {
1578   if (!CurExceptionSym)
1579     CurExceptionSym = createTempSymbol("exception");
1580   return CurExceptionSym;
1581 }
1582 
1583 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1584   this->MF = &MF;
1585   // Get the function symbol.
1586   CurrentFnSym = getSymbol(&MF.getFunction());
1587   CurrentFnSymForSize = CurrentFnSym;
1588   CurrentFnBegin = nullptr;
1589   CurExceptionSym = nullptr;
1590   bool NeedsLocalForSize = MAI->needsLocalForSize();
1591   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1592       MF.getTarget().Options.EmitStackSizeSection) {
1593     CurrentFnBegin = createTempSymbol("func_begin");
1594     if (NeedsLocalForSize)
1595       CurrentFnSymForSize = CurrentFnBegin;
1596   }
1597 
1598   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1599 }
1600 
1601 namespace {
1602 
1603 // Keep track the alignment, constpool entries per Section.
1604   struct SectionCPs {
1605     MCSection *S;
1606     unsigned Alignment;
1607     SmallVector<unsigned, 4> CPEs;
1608 
1609     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1610   };
1611 
1612 } // end anonymous namespace
1613 
1614 /// EmitConstantPool - Print to the current output stream assembly
1615 /// representations of the constants in the constant pool MCP. This is
1616 /// used to print out constants which have been "spilled to memory" by
1617 /// the code generator.
1618 void AsmPrinter::EmitConstantPool() {
1619   const MachineConstantPool *MCP = MF->getConstantPool();
1620   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1621   if (CP.empty()) return;
1622 
1623   // Calculate sections for constant pool entries. We collect entries to go into
1624   // the same section together to reduce amount of section switch statements.
1625   SmallVector<SectionCPs, 4> CPSections;
1626   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1627     const MachineConstantPoolEntry &CPE = CP[i];
1628     unsigned Align = CPE.getAlignment();
1629 
1630     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1631 
1632     const Constant *C = nullptr;
1633     if (!CPE.isMachineConstantPoolEntry())
1634       C = CPE.Val.ConstVal;
1635 
1636     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1637                                                               Kind, C, Align);
1638 
1639     // The number of sections are small, just do a linear search from the
1640     // last section to the first.
1641     bool Found = false;
1642     unsigned SecIdx = CPSections.size();
1643     while (SecIdx != 0) {
1644       if (CPSections[--SecIdx].S == S) {
1645         Found = true;
1646         break;
1647       }
1648     }
1649     if (!Found) {
1650       SecIdx = CPSections.size();
1651       CPSections.push_back(SectionCPs(S, Align));
1652     }
1653 
1654     if (Align > CPSections[SecIdx].Alignment)
1655       CPSections[SecIdx].Alignment = Align;
1656     CPSections[SecIdx].CPEs.push_back(i);
1657   }
1658 
1659   // Now print stuff into the calculated sections.
1660   const MCSection *CurSection = nullptr;
1661   unsigned Offset = 0;
1662   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1663     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1664       unsigned CPI = CPSections[i].CPEs[j];
1665       MCSymbol *Sym = GetCPISymbol(CPI);
1666       if (!Sym->isUndefined())
1667         continue;
1668 
1669       if (CurSection != CPSections[i].S) {
1670         OutStreamer->SwitchSection(CPSections[i].S);
1671         EmitAlignment(Log2_32(CPSections[i].Alignment));
1672         CurSection = CPSections[i].S;
1673         Offset = 0;
1674       }
1675 
1676       MachineConstantPoolEntry CPE = CP[CPI];
1677 
1678       // Emit inter-object padding for alignment.
1679       unsigned AlignMask = CPE.getAlignment() - 1;
1680       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1681       OutStreamer->EmitZeros(NewOffset - Offset);
1682 
1683       Type *Ty = CPE.getType();
1684       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1685 
1686       OutStreamer->EmitLabel(Sym);
1687       if (CPE.isMachineConstantPoolEntry())
1688         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1689       else
1690         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1691     }
1692   }
1693 }
1694 
1695 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1696 /// by the current function to the current output stream.
1697 void AsmPrinter::EmitJumpTableInfo() {
1698   const DataLayout &DL = MF->getDataLayout();
1699   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1700   if (!MJTI) return;
1701   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1702   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1703   if (JT.empty()) return;
1704 
1705   // Pick the directive to use to print the jump table entries, and switch to
1706   // the appropriate section.
1707   const Function &F = MF->getFunction();
1708   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1709   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1710       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1711       F);
1712   if (JTInDiffSection) {
1713     // Drop it in the readonly section.
1714     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1715     OutStreamer->SwitchSection(ReadOnlySection);
1716   }
1717 
1718   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1719 
1720   // Jump tables in code sections are marked with a data_region directive
1721   // where that's supported.
1722   if (!JTInDiffSection)
1723     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1724 
1725   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1726     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1727 
1728     // If this jump table was deleted, ignore it.
1729     if (JTBBs.empty()) continue;
1730 
1731     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1732     /// emit a .set directive for each unique entry.
1733     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1734         MAI->doesSetDirectiveSuppressReloc()) {
1735       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1736       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1737       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1738       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1739         const MachineBasicBlock *MBB = JTBBs[ii];
1740         if (!EmittedSets.insert(MBB).second)
1741           continue;
1742 
1743         // .set LJTSet, LBB32-base
1744         const MCExpr *LHS =
1745           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1746         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1747                                     MCBinaryExpr::createSub(LHS, Base,
1748                                                             OutContext));
1749       }
1750     }
1751 
1752     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1753     // before each jump table.  The first label is never referenced, but tells
1754     // the assembler and linker the extents of the jump table object.  The
1755     // second label is actually referenced by the code.
1756     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1757       // FIXME: This doesn't have to have any specific name, just any randomly
1758       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1759       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1760 
1761     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1762 
1763     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1764       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1765   }
1766   if (!JTInDiffSection)
1767     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1768 }
1769 
1770 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1771 /// current stream.
1772 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1773                                     const MachineBasicBlock *MBB,
1774                                     unsigned UID) const {
1775   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1776   const MCExpr *Value = nullptr;
1777   switch (MJTI->getEntryKind()) {
1778   case MachineJumpTableInfo::EK_Inline:
1779     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1780   case MachineJumpTableInfo::EK_Custom32:
1781     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1782         MJTI, MBB, UID, OutContext);
1783     break;
1784   case MachineJumpTableInfo::EK_BlockAddress:
1785     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1786     //     .word LBB123
1787     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1788     break;
1789   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1790     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1791     // with a relocation as gp-relative, e.g.:
1792     //     .gprel32 LBB123
1793     MCSymbol *MBBSym = MBB->getSymbol();
1794     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1795     return;
1796   }
1797 
1798   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1799     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1800     // with a relocation as gp-relative, e.g.:
1801     //     .gpdword LBB123
1802     MCSymbol *MBBSym = MBB->getSymbol();
1803     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1804     return;
1805   }
1806 
1807   case MachineJumpTableInfo::EK_LabelDifference32: {
1808     // Each entry is the address of the block minus the address of the jump
1809     // table. This is used for PIC jump tables where gprel32 is not supported.
1810     // e.g.:
1811     //      .word LBB123 - LJTI1_2
1812     // If the .set directive avoids relocations, this is emitted as:
1813     //      .set L4_5_set_123, LBB123 - LJTI1_2
1814     //      .word L4_5_set_123
1815     if (MAI->doesSetDirectiveSuppressReloc()) {
1816       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1817                                       OutContext);
1818       break;
1819     }
1820     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1821     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1822     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1823     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1824     break;
1825   }
1826   }
1827 
1828   assert(Value && "Unknown entry kind!");
1829 
1830   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1831   OutStreamer->EmitValue(Value, EntrySize);
1832 }
1833 
1834 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1835 /// special global used by LLVM.  If so, emit it and return true, otherwise
1836 /// do nothing and return false.
1837 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1838   if (GV->getName() == "llvm.used") {
1839     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1840       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1841     return true;
1842   }
1843 
1844   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1845   if (GV->getSection() == "llvm.metadata" ||
1846       GV->hasAvailableExternallyLinkage())
1847     return true;
1848 
1849   if (!GV->hasAppendingLinkage()) return false;
1850 
1851   assert(GV->hasInitializer() && "Not a special LLVM global!");
1852 
1853   if (GV->getName() == "llvm.global_ctors") {
1854     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1855                        /* isCtor */ true);
1856 
1857     return true;
1858   }
1859 
1860   if (GV->getName() == "llvm.global_dtors") {
1861     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1862                        /* isCtor */ false);
1863 
1864     return true;
1865   }
1866 
1867   report_fatal_error("unknown special variable");
1868 }
1869 
1870 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1871 /// global in the specified llvm.used list.
1872 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1873   // Should be an array of 'i8*'.
1874   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1875     const GlobalValue *GV =
1876       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1877     if (GV)
1878       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1879   }
1880 }
1881 
1882 namespace {
1883 
1884 struct Structor {
1885   int Priority = 0;
1886   Constant *Func = nullptr;
1887   GlobalValue *ComdatKey = nullptr;
1888 
1889   Structor() = default;
1890 };
1891 
1892 } // end anonymous namespace
1893 
1894 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1895 /// priority.
1896 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1897                                     bool isCtor) {
1898   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1899   // init priority.
1900   if (!isa<ConstantArray>(List)) return;
1901 
1902   // Sanity check the structors list.
1903   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1904   if (!InitList) return; // Not an array!
1905   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1906   // FIXME: Only allow the 3-field form in LLVM 4.0.
1907   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1908     return; // Not an array of two or three elements!
1909   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1910       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1911   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1912     return; // Not (int, ptr, ptr).
1913 
1914   // Gather the structors in a form that's convenient for sorting by priority.
1915   SmallVector<Structor, 8> Structors;
1916   for (Value *O : InitList->operands()) {
1917     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1918     if (!CS) continue; // Malformed.
1919     if (CS->getOperand(1)->isNullValue())
1920       break;  // Found a null terminator, skip the rest.
1921     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1922     if (!Priority) continue; // Malformed.
1923     Structors.push_back(Structor());
1924     Structor &S = Structors.back();
1925     S.Priority = Priority->getLimitedValue(65535);
1926     S.Func = CS->getOperand(1);
1927     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1928       S.ComdatKey =
1929           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1930   }
1931 
1932   // Emit the function pointers in the target-specific order
1933   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1934   std::stable_sort(Structors.begin(), Structors.end(),
1935                    [](const Structor &L,
1936                       const Structor &R) { return L.Priority < R.Priority; });
1937   for (Structor &S : Structors) {
1938     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1939     const MCSymbol *KeySym = nullptr;
1940     if (GlobalValue *GV = S.ComdatKey) {
1941       if (GV->isDeclarationForLinker())
1942         // If the associated variable is not defined in this module
1943         // (it might be available_externally, or have been an
1944         // available_externally definition that was dropped by the
1945         // EliminateAvailableExternally pass), some other TU
1946         // will provide its dynamic initializer.
1947         continue;
1948 
1949       KeySym = getSymbol(GV);
1950     }
1951     MCSection *OutputSection =
1952         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1953                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1954     OutStreamer->SwitchSection(OutputSection);
1955     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1956       EmitAlignment(Align);
1957     EmitXXStructor(DL, S.Func);
1958   }
1959 }
1960 
1961 void AsmPrinter::EmitModuleIdents(Module &M) {
1962   if (!MAI->hasIdentDirective())
1963     return;
1964 
1965   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1966     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1967       const MDNode *N = NMD->getOperand(i);
1968       assert(N->getNumOperands() == 1 &&
1969              "llvm.ident metadata entry can have only one operand");
1970       const MDString *S = cast<MDString>(N->getOperand(0));
1971       OutStreamer->EmitIdent(S->getString());
1972     }
1973   }
1974 }
1975 
1976 void AsmPrinter::EmitModuleCommandLines(Module &M) {
1977   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
1978   if (!CommandLine)
1979     return;
1980 
1981   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
1982   if (!NMD || !NMD->getNumOperands())
1983     return;
1984 
1985   OutStreamer->PushSection();
1986   OutStreamer->SwitchSection(CommandLine);
1987   OutStreamer->EmitZeros(1);
1988   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1989     const MDNode *N = NMD->getOperand(i);
1990     assert(N->getNumOperands() == 1 &&
1991            "llvm.commandline metadata entry can have only one operand");
1992     const MDString *S = cast<MDString>(N->getOperand(0));
1993     OutStreamer->EmitBytes(S->getString());
1994     OutStreamer->EmitZeros(1);
1995   }
1996   OutStreamer->PopSection();
1997 }
1998 
1999 //===--------------------------------------------------------------------===//
2000 // Emission and print routines
2001 //
2002 
2003 /// Emit a byte directive and value.
2004 ///
2005 void AsmPrinter::emitInt8(int Value) const {
2006   OutStreamer->EmitIntValue(Value, 1);
2007 }
2008 
2009 /// Emit a short directive and value.
2010 void AsmPrinter::emitInt16(int Value) const {
2011   OutStreamer->EmitIntValue(Value, 2);
2012 }
2013 
2014 /// Emit a long directive and value.
2015 void AsmPrinter::emitInt32(int Value) const {
2016   OutStreamer->EmitIntValue(Value, 4);
2017 }
2018 
2019 /// Emit a long long directive and value.
2020 void AsmPrinter::emitInt64(uint64_t Value) const {
2021   OutStreamer->EmitIntValue(Value, 8);
2022 }
2023 
2024 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2025 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2026 /// .set if it avoids relocations.
2027 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2028                                      unsigned Size) const {
2029   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2030 }
2031 
2032 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2033 /// where the size in bytes of the directive is specified by Size and Label
2034 /// specifies the label.  This implicitly uses .set if it is available.
2035 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2036                                      unsigned Size,
2037                                      bool IsSectionRelative) const {
2038   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2039     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2040     if (Size > 4)
2041       OutStreamer->EmitZeros(Size - 4);
2042     return;
2043   }
2044 
2045   // Emit Label+Offset (or just Label if Offset is zero)
2046   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2047   if (Offset)
2048     Expr = MCBinaryExpr::createAdd(
2049         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2050 
2051   OutStreamer->EmitValue(Expr, Size);
2052 }
2053 
2054 //===----------------------------------------------------------------------===//
2055 
2056 // EmitAlignment - Emit an alignment directive to the specified power of
2057 // two boundary.  For example, if you pass in 3 here, you will get an 8
2058 // byte alignment.  If a global value is specified, and if that global has
2059 // an explicit alignment requested, it will override the alignment request
2060 // if required for correctness.
2061 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2062   if (GV)
2063     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2064 
2065   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2066 
2067   assert(NumBits <
2068              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2069          "undefined behavior");
2070   if (getCurrentSection()->getKind().isText())
2071     OutStreamer->EmitCodeAlignment(1u << NumBits);
2072   else
2073     OutStreamer->EmitValueToAlignment(1u << NumBits);
2074 }
2075 
2076 //===----------------------------------------------------------------------===//
2077 // Constant emission.
2078 //===----------------------------------------------------------------------===//
2079 
2080 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2081   MCContext &Ctx = OutContext;
2082 
2083   if (CV->isNullValue() || isa<UndefValue>(CV))
2084     return MCConstantExpr::create(0, Ctx);
2085 
2086   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2087     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2088 
2089   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2090     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2091 
2092   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2093     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2094 
2095   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2096   if (!CE) {
2097     llvm_unreachable("Unknown constant value to lower!");
2098   }
2099 
2100   switch (CE->getOpcode()) {
2101   default:
2102     // If the code isn't optimized, there may be outstanding folding
2103     // opportunities. Attempt to fold the expression using DataLayout as a
2104     // last resort before giving up.
2105     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2106       if (C != CE)
2107         return lowerConstant(C);
2108 
2109     // Otherwise report the problem to the user.
2110     {
2111       std::string S;
2112       raw_string_ostream OS(S);
2113       OS << "Unsupported expression in static initializer: ";
2114       CE->printAsOperand(OS, /*PrintType=*/false,
2115                      !MF ? nullptr : MF->getFunction().getParent());
2116       report_fatal_error(OS.str());
2117     }
2118   case Instruction::GetElementPtr: {
2119     // Generate a symbolic expression for the byte address
2120     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2121     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2122 
2123     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2124     if (!OffsetAI)
2125       return Base;
2126 
2127     int64_t Offset = OffsetAI.getSExtValue();
2128     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2129                                    Ctx);
2130   }
2131 
2132   case Instruction::Trunc:
2133     // We emit the value and depend on the assembler to truncate the generated
2134     // expression properly.  This is important for differences between
2135     // blockaddress labels.  Since the two labels are in the same function, it
2136     // is reasonable to treat their delta as a 32-bit value.
2137     LLVM_FALLTHROUGH;
2138   case Instruction::BitCast:
2139     return lowerConstant(CE->getOperand(0));
2140 
2141   case Instruction::IntToPtr: {
2142     const DataLayout &DL = getDataLayout();
2143 
2144     // Handle casts to pointers by changing them into casts to the appropriate
2145     // integer type.  This promotes constant folding and simplifies this code.
2146     Constant *Op = CE->getOperand(0);
2147     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2148                                       false/*ZExt*/);
2149     return lowerConstant(Op);
2150   }
2151 
2152   case Instruction::PtrToInt: {
2153     const DataLayout &DL = getDataLayout();
2154 
2155     // Support only foldable casts to/from pointers that can be eliminated by
2156     // changing the pointer to the appropriately sized integer type.
2157     Constant *Op = CE->getOperand(0);
2158     Type *Ty = CE->getType();
2159 
2160     const MCExpr *OpExpr = lowerConstant(Op);
2161 
2162     // We can emit the pointer value into this slot if the slot is an
2163     // integer slot equal to the size of the pointer.
2164     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2165       return OpExpr;
2166 
2167     // Otherwise the pointer is smaller than the resultant integer, mask off
2168     // the high bits so we are sure to get a proper truncation if the input is
2169     // a constant expr.
2170     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2171     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2172     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2173   }
2174 
2175   case Instruction::Sub: {
2176     GlobalValue *LHSGV;
2177     APInt LHSOffset;
2178     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2179                                    getDataLayout())) {
2180       GlobalValue *RHSGV;
2181       APInt RHSOffset;
2182       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2183                                      getDataLayout())) {
2184         const MCExpr *RelocExpr =
2185             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2186         if (!RelocExpr)
2187           RelocExpr = MCBinaryExpr::createSub(
2188               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2189               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2190         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2191         if (Addend != 0)
2192           RelocExpr = MCBinaryExpr::createAdd(
2193               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2194         return RelocExpr;
2195       }
2196     }
2197   }
2198   // else fallthrough
2199   LLVM_FALLTHROUGH;
2200 
2201   // The MC library also has a right-shift operator, but it isn't consistently
2202   // signed or unsigned between different targets.
2203   case Instruction::Add:
2204   case Instruction::Mul:
2205   case Instruction::SDiv:
2206   case Instruction::SRem:
2207   case Instruction::Shl:
2208   case Instruction::And:
2209   case Instruction::Or:
2210   case Instruction::Xor: {
2211     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2212     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2213     switch (CE->getOpcode()) {
2214     default: llvm_unreachable("Unknown binary operator constant cast expr");
2215     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2216     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2217     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2218     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2219     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2220     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2221     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2222     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2223     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2224     }
2225   }
2226   }
2227 }
2228 
2229 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2230                                    AsmPrinter &AP,
2231                                    const Constant *BaseCV = nullptr,
2232                                    uint64_t Offset = 0);
2233 
2234 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2235 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2236 
2237 /// isRepeatedByteSequence - Determine whether the given value is
2238 /// composed of a repeated sequence of identical bytes and return the
2239 /// byte value.  If it is not a repeated sequence, return -1.
2240 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2241   StringRef Data = V->getRawDataValues();
2242   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2243   char C = Data[0];
2244   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2245     if (Data[i] != C) return -1;
2246   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2247 }
2248 
2249 /// isRepeatedByteSequence - Determine whether the given value is
2250 /// composed of a repeated sequence of identical bytes and return the
2251 /// byte value.  If it is not a repeated sequence, return -1.
2252 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2253   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2254     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2255     assert(Size % 8 == 0);
2256 
2257     // Extend the element to take zero padding into account.
2258     APInt Value = CI->getValue().zextOrSelf(Size);
2259     if (!Value.isSplat(8))
2260       return -1;
2261 
2262     return Value.zextOrTrunc(8).getZExtValue();
2263   }
2264   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2265     // Make sure all array elements are sequences of the same repeated
2266     // byte.
2267     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2268     Constant *Op0 = CA->getOperand(0);
2269     int Byte = isRepeatedByteSequence(Op0, DL);
2270     if (Byte == -1)
2271       return -1;
2272 
2273     // All array elements must be equal.
2274     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2275       if (CA->getOperand(i) != Op0)
2276         return -1;
2277     return Byte;
2278   }
2279 
2280   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2281     return isRepeatedByteSequence(CDS);
2282 
2283   return -1;
2284 }
2285 
2286 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2287                                              const ConstantDataSequential *CDS,
2288                                              AsmPrinter &AP) {
2289   // See if we can aggregate this into a .fill, if so, emit it as such.
2290   int Value = isRepeatedByteSequence(CDS, DL);
2291   if (Value != -1) {
2292     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2293     // Don't emit a 1-byte object as a .fill.
2294     if (Bytes > 1)
2295       return AP.OutStreamer->emitFill(Bytes, Value);
2296   }
2297 
2298   // If this can be emitted with .ascii/.asciz, emit it as such.
2299   if (CDS->isString())
2300     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2301 
2302   // Otherwise, emit the values in successive locations.
2303   unsigned ElementByteSize = CDS->getElementByteSize();
2304   if (isa<IntegerType>(CDS->getElementType())) {
2305     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2306       if (AP.isVerbose())
2307         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2308                                                  CDS->getElementAsInteger(i));
2309       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2310                                    ElementByteSize);
2311     }
2312   } else {
2313     Type *ET = CDS->getElementType();
2314     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2315       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2316   }
2317 
2318   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2319   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2320                         CDS->getNumElements();
2321   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2322   if (unsigned Padding = Size - EmittedSize)
2323     AP.OutStreamer->EmitZeros(Padding);
2324 }
2325 
2326 static void emitGlobalConstantArray(const DataLayout &DL,
2327                                     const ConstantArray *CA, AsmPrinter &AP,
2328                                     const Constant *BaseCV, uint64_t Offset) {
2329   // See if we can aggregate some values.  Make sure it can be
2330   // represented as a series of bytes of the constant value.
2331   int Value = isRepeatedByteSequence(CA, DL);
2332 
2333   if (Value != -1) {
2334     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2335     AP.OutStreamer->emitFill(Bytes, Value);
2336   }
2337   else {
2338     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2339       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2340       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2341     }
2342   }
2343 }
2344 
2345 static void emitGlobalConstantVector(const DataLayout &DL,
2346                                      const ConstantVector *CV, AsmPrinter &AP) {
2347   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2348     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2349 
2350   unsigned Size = DL.getTypeAllocSize(CV->getType());
2351   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2352                          CV->getType()->getNumElements();
2353   if (unsigned Padding = Size - EmittedSize)
2354     AP.OutStreamer->EmitZeros(Padding);
2355 }
2356 
2357 static void emitGlobalConstantStruct(const DataLayout &DL,
2358                                      const ConstantStruct *CS, AsmPrinter &AP,
2359                                      const Constant *BaseCV, uint64_t Offset) {
2360   // Print the fields in successive locations. Pad to align if needed!
2361   unsigned Size = DL.getTypeAllocSize(CS->getType());
2362   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2363   uint64_t SizeSoFar = 0;
2364   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2365     const Constant *Field = CS->getOperand(i);
2366 
2367     // Print the actual field value.
2368     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2369 
2370     // Check if padding is needed and insert one or more 0s.
2371     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2372     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2373                         - Layout->getElementOffset(i)) - FieldSize;
2374     SizeSoFar += FieldSize + PadSize;
2375 
2376     // Insert padding - this may include padding to increase the size of the
2377     // current field up to the ABI size (if the struct is not packed) as well
2378     // as padding to ensure that the next field starts at the right offset.
2379     AP.OutStreamer->EmitZeros(PadSize);
2380   }
2381   assert(SizeSoFar == Layout->getSizeInBytes() &&
2382          "Layout of constant struct may be incorrect!");
2383 }
2384 
2385 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2386   APInt API = APF.bitcastToAPInt();
2387 
2388   // First print a comment with what we think the original floating-point value
2389   // should have been.
2390   if (AP.isVerbose()) {
2391     SmallString<8> StrVal;
2392     APF.toString(StrVal);
2393 
2394     if (ET)
2395       ET->print(AP.OutStreamer->GetCommentOS());
2396     else
2397       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2398     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2399   }
2400 
2401   // Now iterate through the APInt chunks, emitting them in endian-correct
2402   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2403   // floats).
2404   unsigned NumBytes = API.getBitWidth() / 8;
2405   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2406   const uint64_t *p = API.getRawData();
2407 
2408   // PPC's long double has odd notions of endianness compared to how LLVM
2409   // handles it: p[0] goes first for *big* endian on PPC.
2410   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2411     int Chunk = API.getNumWords() - 1;
2412 
2413     if (TrailingBytes)
2414       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2415 
2416     for (; Chunk >= 0; --Chunk)
2417       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2418   } else {
2419     unsigned Chunk;
2420     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2421       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2422 
2423     if (TrailingBytes)
2424       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2425   }
2426 
2427   // Emit the tail padding for the long double.
2428   const DataLayout &DL = AP.getDataLayout();
2429   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2430 }
2431 
2432 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2433   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2434 }
2435 
2436 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2437   const DataLayout &DL = AP.getDataLayout();
2438   unsigned BitWidth = CI->getBitWidth();
2439 
2440   // Copy the value as we may massage the layout for constants whose bit width
2441   // is not a multiple of 64-bits.
2442   APInt Realigned(CI->getValue());
2443   uint64_t ExtraBits = 0;
2444   unsigned ExtraBitsSize = BitWidth & 63;
2445 
2446   if (ExtraBitsSize) {
2447     // The bit width of the data is not a multiple of 64-bits.
2448     // The extra bits are expected to be at the end of the chunk of the memory.
2449     // Little endian:
2450     // * Nothing to be done, just record the extra bits to emit.
2451     // Big endian:
2452     // * Record the extra bits to emit.
2453     // * Realign the raw data to emit the chunks of 64-bits.
2454     if (DL.isBigEndian()) {
2455       // Basically the structure of the raw data is a chunk of 64-bits cells:
2456       //    0        1         BitWidth / 64
2457       // [chunk1][chunk2] ... [chunkN].
2458       // The most significant chunk is chunkN and it should be emitted first.
2459       // However, due to the alignment issue chunkN contains useless bits.
2460       // Realign the chunks so that they contain only useless information:
2461       // ExtraBits     0       1       (BitWidth / 64) - 1
2462       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2463       ExtraBits = Realigned.getRawData()[0] &
2464         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2465       Realigned.lshrInPlace(ExtraBitsSize);
2466     } else
2467       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2468   }
2469 
2470   // We don't expect assemblers to support integer data directives
2471   // for more than 64 bits, so we emit the data in at most 64-bit
2472   // quantities at a time.
2473   const uint64_t *RawData = Realigned.getRawData();
2474   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2475     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2476     AP.OutStreamer->EmitIntValue(Val, 8);
2477   }
2478 
2479   if (ExtraBitsSize) {
2480     // Emit the extra bits after the 64-bits chunks.
2481 
2482     // Emit a directive that fills the expected size.
2483     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2484     Size -= (BitWidth / 64) * 8;
2485     assert(Size && Size * 8 >= ExtraBitsSize &&
2486            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2487            == ExtraBits && "Directive too small for extra bits.");
2488     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2489   }
2490 }
2491 
2492 /// Transform a not absolute MCExpr containing a reference to a GOT
2493 /// equivalent global, by a target specific GOT pc relative access to the
2494 /// final symbol.
2495 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2496                                          const Constant *BaseCst,
2497                                          uint64_t Offset) {
2498   // The global @foo below illustrates a global that uses a got equivalent.
2499   //
2500   //  @bar = global i32 42
2501   //  @gotequiv = private unnamed_addr constant i32* @bar
2502   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2503   //                             i64 ptrtoint (i32* @foo to i64))
2504   //                        to i32)
2505   //
2506   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2507   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2508   // form:
2509   //
2510   //  foo = cstexpr, where
2511   //    cstexpr := <gotequiv> - "." + <cst>
2512   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2513   //
2514   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2515   //
2516   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2517   //    gotpcrelcst := <offset from @foo base> + <cst>
2518   MCValue MV;
2519   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2520     return;
2521   const MCSymbolRefExpr *SymA = MV.getSymA();
2522   if (!SymA)
2523     return;
2524 
2525   // Check that GOT equivalent symbol is cached.
2526   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2527   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2528     return;
2529 
2530   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2531   if (!BaseGV)
2532     return;
2533 
2534   // Check for a valid base symbol
2535   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2536   const MCSymbolRefExpr *SymB = MV.getSymB();
2537 
2538   if (!SymB || BaseSym != &SymB->getSymbol())
2539     return;
2540 
2541   // Make sure to match:
2542   //
2543   //    gotpcrelcst := <offset from @foo base> + <cst>
2544   //
2545   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2546   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2547   // if the target knows how to encode it.
2548   int64_t GOTPCRelCst = Offset + MV.getConstant();
2549   if (GOTPCRelCst < 0)
2550     return;
2551   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2552     return;
2553 
2554   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2555   //
2556   //  bar:
2557   //    .long 42
2558   //  gotequiv:
2559   //    .quad bar
2560   //  foo:
2561   //    .long gotequiv - "." + <cst>
2562   //
2563   // is replaced by the target specific equivalent to:
2564   //
2565   //  bar:
2566   //    .long 42
2567   //  foo:
2568   //    .long bar@GOTPCREL+<gotpcrelcst>
2569   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2570   const GlobalVariable *GV = Result.first;
2571   int NumUses = (int)Result.second;
2572   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2573   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2574   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2575       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2576 
2577   // Update GOT equivalent usage information
2578   --NumUses;
2579   if (NumUses >= 0)
2580     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2581 }
2582 
2583 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2584                                    AsmPrinter &AP, const Constant *BaseCV,
2585                                    uint64_t Offset) {
2586   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2587 
2588   // Globals with sub-elements such as combinations of arrays and structs
2589   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2590   // constant symbol base and the current position with BaseCV and Offset.
2591   if (!BaseCV && CV->hasOneUse())
2592     BaseCV = dyn_cast<Constant>(CV->user_back());
2593 
2594   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2595     return AP.OutStreamer->EmitZeros(Size);
2596 
2597   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2598     switch (Size) {
2599     case 1:
2600     case 2:
2601     case 4:
2602     case 8:
2603       if (AP.isVerbose())
2604         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2605                                                  CI->getZExtValue());
2606       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2607       return;
2608     default:
2609       emitGlobalConstantLargeInt(CI, AP);
2610       return;
2611     }
2612   }
2613 
2614   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2615     return emitGlobalConstantFP(CFP, AP);
2616 
2617   if (isa<ConstantPointerNull>(CV)) {
2618     AP.OutStreamer->EmitIntValue(0, Size);
2619     return;
2620   }
2621 
2622   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2623     return emitGlobalConstantDataSequential(DL, CDS, AP);
2624 
2625   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2626     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2627 
2628   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2629     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2630 
2631   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2632     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2633     // vectors).
2634     if (CE->getOpcode() == Instruction::BitCast)
2635       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2636 
2637     if (Size > 8) {
2638       // If the constant expression's size is greater than 64-bits, then we have
2639       // to emit the value in chunks. Try to constant fold the value and emit it
2640       // that way.
2641       Constant *New = ConstantFoldConstant(CE, DL);
2642       if (New && New != CE)
2643         return emitGlobalConstantImpl(DL, New, AP);
2644     }
2645   }
2646 
2647   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2648     return emitGlobalConstantVector(DL, V, AP);
2649 
2650   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2651   // thread the streamer with EmitValue.
2652   const MCExpr *ME = AP.lowerConstant(CV);
2653 
2654   // Since lowerConstant already folded and got rid of all IR pointer and
2655   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2656   // directly.
2657   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2658     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2659 
2660   AP.OutStreamer->EmitValue(ME, Size);
2661 }
2662 
2663 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2664 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2665   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2666   if (Size)
2667     emitGlobalConstantImpl(DL, CV, *this);
2668   else if (MAI->hasSubsectionsViaSymbols()) {
2669     // If the global has zero size, emit a single byte so that two labels don't
2670     // look like they are at the same location.
2671     OutStreamer->EmitIntValue(0, 1);
2672   }
2673 }
2674 
2675 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2676   // Target doesn't support this yet!
2677   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2678 }
2679 
2680 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2681   if (Offset > 0)
2682     OS << '+' << Offset;
2683   else if (Offset < 0)
2684     OS << Offset;
2685 }
2686 
2687 //===----------------------------------------------------------------------===//
2688 // Symbol Lowering Routines.
2689 //===----------------------------------------------------------------------===//
2690 
2691 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2692   return OutContext.createTempSymbol(Name, true);
2693 }
2694 
2695 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2696   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2697 }
2698 
2699 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2700   return MMI->getAddrLabelSymbol(BB);
2701 }
2702 
2703 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2704 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2705   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2706     const MachineConstantPoolEntry &CPE =
2707         MF->getConstantPool()->getConstants()[CPID];
2708     if (!CPE.isMachineConstantPoolEntry()) {
2709       const DataLayout &DL = MF->getDataLayout();
2710       SectionKind Kind = CPE.getSectionKind(&DL);
2711       const Constant *C = CPE.Val.ConstVal;
2712       unsigned Align = CPE.Alignment;
2713       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2714               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2715         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2716           if (Sym->isUndefined())
2717             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2718           return Sym;
2719         }
2720       }
2721     }
2722   }
2723 
2724   const DataLayout &DL = getDataLayout();
2725   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2726                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2727                                       Twine(CPID));
2728 }
2729 
2730 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2731 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2732   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2733 }
2734 
2735 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2736 /// FIXME: privatize to AsmPrinter.
2737 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2738   const DataLayout &DL = getDataLayout();
2739   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2740                                       Twine(getFunctionNumber()) + "_" +
2741                                       Twine(UID) + "_set_" + Twine(MBBID));
2742 }
2743 
2744 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2745                                                    StringRef Suffix) const {
2746   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2747 }
2748 
2749 /// Return the MCSymbol for the specified ExternalSymbol.
2750 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2751   SmallString<60> NameStr;
2752   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2753   return OutContext.getOrCreateSymbol(NameStr);
2754 }
2755 
2756 /// PrintParentLoopComment - Print comments about parent loops of this one.
2757 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2758                                    unsigned FunctionNumber) {
2759   if (!Loop) return;
2760   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2761   OS.indent(Loop->getLoopDepth()*2)
2762     << "Parent Loop BB" << FunctionNumber << "_"
2763     << Loop->getHeader()->getNumber()
2764     << " Depth=" << Loop->getLoopDepth() << '\n';
2765 }
2766 
2767 /// PrintChildLoopComment - Print comments about child loops within
2768 /// the loop for this basic block, with nesting.
2769 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2770                                   unsigned FunctionNumber) {
2771   // Add child loop information
2772   for (const MachineLoop *CL : *Loop) {
2773     OS.indent(CL->getLoopDepth()*2)
2774       << "Child Loop BB" << FunctionNumber << "_"
2775       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2776       << '\n';
2777     PrintChildLoopComment(OS, CL, FunctionNumber);
2778   }
2779 }
2780 
2781 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2782 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2783                                        const MachineLoopInfo *LI,
2784                                        const AsmPrinter &AP) {
2785   // Add loop depth information
2786   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2787   if (!Loop) return;
2788 
2789   MachineBasicBlock *Header = Loop->getHeader();
2790   assert(Header && "No header for loop");
2791 
2792   // If this block is not a loop header, just print out what is the loop header
2793   // and return.
2794   if (Header != &MBB) {
2795     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2796                                Twine(AP.getFunctionNumber())+"_" +
2797                                Twine(Loop->getHeader()->getNumber())+
2798                                " Depth="+Twine(Loop->getLoopDepth()));
2799     return;
2800   }
2801 
2802   // Otherwise, it is a loop header.  Print out information about child and
2803   // parent loops.
2804   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2805 
2806   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2807 
2808   OS << "=>";
2809   OS.indent(Loop->getLoopDepth()*2-2);
2810 
2811   OS << "This ";
2812   if (Loop->empty())
2813     OS << "Inner ";
2814   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2815 
2816   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2817 }
2818 
2819 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2820                                          MCCodePaddingContext &Context) const {
2821   assert(MF != nullptr && "Machine function must be valid");
2822   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2823                             !MF->getFunction().optForSize() &&
2824                             TM.getOptLevel() != CodeGenOpt::None;
2825   Context.IsBasicBlockReachableViaFallthrough =
2826       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2827       MBB.pred_end();
2828   Context.IsBasicBlockReachableViaBranch =
2829       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2830 }
2831 
2832 /// EmitBasicBlockStart - This method prints the label for the specified
2833 /// MachineBasicBlock, an alignment (if present) and a comment describing
2834 /// it if appropriate.
2835 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2836   // End the previous funclet and start a new one.
2837   if (MBB.isEHFuncletEntry()) {
2838     for (const HandlerInfo &HI : Handlers) {
2839       HI.Handler->endFunclet();
2840       HI.Handler->beginFunclet(MBB);
2841     }
2842   }
2843 
2844   // Emit an alignment directive for this block, if needed.
2845   if (unsigned Align = MBB.getAlignment())
2846     EmitAlignment(Align);
2847   MCCodePaddingContext Context;
2848   setupCodePaddingContext(MBB, Context);
2849   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2850 
2851   // If the block has its address taken, emit any labels that were used to
2852   // reference the block.  It is possible that there is more than one label
2853   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2854   // the references were generated.
2855   if (MBB.hasAddressTaken()) {
2856     const BasicBlock *BB = MBB.getBasicBlock();
2857     if (isVerbose())
2858       OutStreamer->AddComment("Block address taken");
2859 
2860     // MBBs can have their address taken as part of CodeGen without having
2861     // their corresponding BB's address taken in IR
2862     if (BB->hasAddressTaken())
2863       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2864         OutStreamer->EmitLabel(Sym);
2865   }
2866 
2867   // Print some verbose block comments.
2868   if (isVerbose()) {
2869     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2870       if (BB->hasName()) {
2871         BB->printAsOperand(OutStreamer->GetCommentOS(),
2872                            /*PrintType=*/false, BB->getModule());
2873         OutStreamer->GetCommentOS() << '\n';
2874       }
2875     }
2876 
2877     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2878     emitBasicBlockLoopComments(MBB, MLI, *this);
2879   }
2880 
2881   // Print the main label for the block.
2882   if (MBB.pred_empty() ||
2883       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2884     if (isVerbose()) {
2885       // NOTE: Want this comment at start of line, don't emit with AddComment.
2886       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2887                                   false);
2888     }
2889   } else {
2890     OutStreamer->EmitLabel(MBB.getSymbol());
2891   }
2892 }
2893 
2894 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2895   MCCodePaddingContext Context;
2896   setupCodePaddingContext(MBB, Context);
2897   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2898 }
2899 
2900 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2901                                 bool IsDefinition) const {
2902   MCSymbolAttr Attr = MCSA_Invalid;
2903 
2904   switch (Visibility) {
2905   default: break;
2906   case GlobalValue::HiddenVisibility:
2907     if (IsDefinition)
2908       Attr = MAI->getHiddenVisibilityAttr();
2909     else
2910       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2911     break;
2912   case GlobalValue::ProtectedVisibility:
2913     Attr = MAI->getProtectedVisibilityAttr();
2914     break;
2915   }
2916 
2917   if (Attr != MCSA_Invalid)
2918     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2919 }
2920 
2921 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2922 /// exactly one predecessor and the control transfer mechanism between
2923 /// the predecessor and this block is a fall-through.
2924 bool AsmPrinter::
2925 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2926   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2927   // then nothing falls through to it.
2928   if (MBB->isEHPad() || MBB->pred_empty())
2929     return false;
2930 
2931   // If there isn't exactly one predecessor, it can't be a fall through.
2932   if (MBB->pred_size() > 1)
2933     return false;
2934 
2935   // The predecessor has to be immediately before this block.
2936   MachineBasicBlock *Pred = *MBB->pred_begin();
2937   if (!Pred->isLayoutSuccessor(MBB))
2938     return false;
2939 
2940   // If the block is completely empty, then it definitely does fall through.
2941   if (Pred->empty())
2942     return true;
2943 
2944   // Check the terminators in the previous blocks
2945   for (const auto &MI : Pred->terminators()) {
2946     // If it is not a simple branch, we are in a table somewhere.
2947     if (!MI.isBranch() || MI.isIndirectBranch())
2948       return false;
2949 
2950     // If we are the operands of one of the branches, this is not a fall
2951     // through. Note that targets with delay slots will usually bundle
2952     // terminators with the delay slot instruction.
2953     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2954       if (OP->isJTI())
2955         return false;
2956       if (OP->isMBB() && OP->getMBB() == MBB)
2957         return false;
2958     }
2959   }
2960 
2961   return true;
2962 }
2963 
2964 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2965   if (!S.usesMetadata())
2966     return nullptr;
2967 
2968   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2969   gcp_map_type::iterator GCPI = GCMap.find(&S);
2970   if (GCPI != GCMap.end())
2971     return GCPI->second.get();
2972 
2973   auto Name = S.getName();
2974 
2975   for (GCMetadataPrinterRegistry::iterator
2976          I = GCMetadataPrinterRegistry::begin(),
2977          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2978     if (Name == I->getName()) {
2979       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2980       GMP->S = &S;
2981       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2982       return IterBool.first->second.get();
2983     }
2984 
2985   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2986 }
2987 
2988 void AsmPrinter::emitStackMaps(StackMaps &SM) {
2989   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
2990   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2991   bool NeedsDefault = false;
2992   if (MI->begin() == MI->end())
2993     // No GC strategy, use the default format.
2994     NeedsDefault = true;
2995   else
2996     for (auto &I : *MI) {
2997       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
2998         if (MP->emitStackMaps(SM, *this))
2999           continue;
3000       // The strategy doesn't have printer or doesn't emit custom stack maps.
3001       // Use the default format.
3002       NeedsDefault = true;
3003     }
3004 
3005   if (NeedsDefault)
3006     SM.serializeToStackMapSection();
3007 }
3008 
3009 /// Pin vtable to this file.
3010 AsmPrinterHandler::~AsmPrinterHandler() = default;
3011 
3012 void AsmPrinterHandler::markFunctionEnd() {}
3013 
3014 // In the binary's "xray_instr_map" section, an array of these function entries
3015 // describes each instrumentation point.  When XRay patches your code, the index
3016 // into this table will be given to your handler as a patch point identifier.
3017 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3018                                          const MCSymbol *CurrentFnSym) const {
3019   Out->EmitSymbolValue(Sled, Bytes);
3020   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3021   auto Kind8 = static_cast<uint8_t>(Kind);
3022   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3023   Out->EmitBinaryData(
3024       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3025   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3026   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3027   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3028   Out->EmitZeros(Padding);
3029 }
3030 
3031 void AsmPrinter::emitXRayTable() {
3032   if (Sleds.empty())
3033     return;
3034 
3035   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3036   const Function &F = MF->getFunction();
3037   MCSection *InstMap = nullptr;
3038   MCSection *FnSledIndex = nullptr;
3039   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3040     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3041     assert(Associated != nullptr);
3042     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3043     std::string GroupName;
3044     if (F.hasComdat()) {
3045       Flags |= ELF::SHF_GROUP;
3046       GroupName = F.getComdat()->getName();
3047     }
3048 
3049     auto UniqueID = ++XRayFnUniqueID;
3050     InstMap =
3051         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3052                                  GroupName, UniqueID, Associated);
3053     FnSledIndex =
3054         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3055                                  GroupName, UniqueID, Associated);
3056   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3057     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3058                                          SectionKind::getReadOnlyWithRel());
3059     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3060                                              SectionKind::getReadOnlyWithRel());
3061   } else {
3062     llvm_unreachable("Unsupported target");
3063   }
3064 
3065   auto WordSizeBytes = MAI->getCodePointerSize();
3066 
3067   // Now we switch to the instrumentation map section. Because this is done
3068   // per-function, we are able to create an index entry that will represent the
3069   // range of sleds associated with a function.
3070   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3071   OutStreamer->SwitchSection(InstMap);
3072   OutStreamer->EmitLabel(SledsStart);
3073   for (const auto &Sled : Sleds)
3074     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3075   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3076   OutStreamer->EmitLabel(SledsEnd);
3077 
3078   // We then emit a single entry in the index per function. We use the symbols
3079   // that bound the instrumentation map as the range for a specific function.
3080   // Each entry here will be 2 * word size aligned, as we're writing down two
3081   // pointers. This should work for both 32-bit and 64-bit platforms.
3082   OutStreamer->SwitchSection(FnSledIndex);
3083   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3084   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3085   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3086   OutStreamer->SwitchSection(PrevSection);
3087   Sleds.clear();
3088 }
3089 
3090 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3091                             SledKind Kind, uint8_t Version) {
3092   const Function &F = MI.getMF()->getFunction();
3093   auto Attr = F.getFnAttribute("function-instrument");
3094   bool LogArgs = F.hasFnAttribute("xray-log-args");
3095   bool AlwaysInstrument =
3096     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3097   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3098     Kind = SledKind::LOG_ARGS_ENTER;
3099   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3100                                        AlwaysInstrument, &F, Version});
3101 }
3102 
3103 uint16_t AsmPrinter::getDwarfVersion() const {
3104   return OutStreamer->getContext().getDwarfVersion();
3105 }
3106 
3107 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3108   OutStreamer->getContext().setDwarfVersion(Version);
3109 }
3110