1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/AsmPrinterHandler.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCStreamer.h" 95 #include "llvm/MC/MCSubtargetInfo.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/MC/MCSymbolELF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/Casting.h" 103 #include "llvm/Support/CommandLine.h" 104 #include "llvm/Support/Compiler.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/Format.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/Path.h" 109 #include "llvm/Support/TargetRegistry.h" 110 #include "llvm/Support/Timer.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetLoweringObjectFile.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include <algorithm> 116 #include <cassert> 117 #include <cinttypes> 118 #include <cstdint> 119 #include <iterator> 120 #include <limits> 121 #include <memory> 122 #include <string> 123 #include <utility> 124 #include <vector> 125 126 using namespace llvm; 127 128 #define DEBUG_TYPE "asm-printer" 129 130 static const char *const DWARFGroupName = "dwarf"; 131 static const char *const DWARFGroupDescription = "DWARF Emission"; 132 static const char *const DbgTimerName = "emit"; 133 static const char *const DbgTimerDescription = "Debug Info Emission"; 134 static const char *const EHTimerName = "write_exception"; 135 static const char *const EHTimerDescription = "DWARF Exception Writer"; 136 static const char *const CFGuardName = "Control Flow Guard"; 137 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 138 static const char *const CodeViewLineTablesGroupName = "linetables"; 139 static const char *const CodeViewLineTablesGroupDescription = 140 "CodeView Line Tables"; 141 142 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 143 144 char AsmPrinter::ID = 0; 145 146 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 147 148 static gcp_map_type &getGCMap(void *&P) { 149 if (!P) 150 P = new gcp_map_type(); 151 return *(gcp_map_type*)P; 152 } 153 154 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 155 /// value in log2 form. This rounds up to the preferred alignment if possible 156 /// and legal. 157 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 158 unsigned InBits = 0) { 159 unsigned NumBits = 0; 160 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 161 NumBits = DL.getPreferredAlignmentLog(GVar); 162 163 // If InBits is specified, round it to it. 164 if (InBits > NumBits) 165 NumBits = InBits; 166 167 // If the GV has a specified alignment, take it into account. 168 if (GV->getAlignment() == 0) 169 return NumBits; 170 171 unsigned GVAlign = Log2_32(GV->getAlignment()); 172 173 // If the GVAlign is larger than NumBits, or if we are required to obey 174 // NumBits because the GV has an assigned section, obey it. 175 if (GVAlign > NumBits || GV->hasSection()) 176 NumBits = GVAlign; 177 return NumBits; 178 } 179 180 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 181 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 182 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 183 VerboseAsm = OutStreamer->isVerboseAsm(); 184 } 185 186 AsmPrinter::~AsmPrinter() { 187 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 188 189 if (GCMetadataPrinters) { 190 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 191 192 delete &GCMap; 193 GCMetadataPrinters = nullptr; 194 } 195 } 196 197 bool AsmPrinter::isPositionIndependent() const { 198 return TM.isPositionIndependent(); 199 } 200 201 /// getFunctionNumber - Return a unique ID for the current function. 202 unsigned AsmPrinter::getFunctionNumber() const { 203 return MF->getFunctionNumber(); 204 } 205 206 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 207 return *TM.getObjFileLowering(); 208 } 209 210 const DataLayout &AsmPrinter::getDataLayout() const { 211 return MMI->getModule()->getDataLayout(); 212 } 213 214 // Do not use the cached DataLayout because some client use it without a Module 215 // (dsymutil, llvm-dwarfdump). 216 unsigned AsmPrinter::getPointerSize() const { 217 return TM.getPointerSize(0); // FIXME: Default address space 218 } 219 220 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 221 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 222 return MF->getSubtarget<MCSubtargetInfo>(); 223 } 224 225 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 226 S.EmitInstruction(Inst, getSubtargetInfo()); 227 } 228 229 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 230 assert(DD && "Dwarf debug file is not defined."); 231 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 232 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 233 } 234 235 /// getCurrentSection() - Return the current section we are emitting to. 236 const MCSection *AsmPrinter::getCurrentSection() const { 237 return OutStreamer->getCurrentSectionOnly(); 238 } 239 240 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 241 AU.setPreservesAll(); 242 MachineFunctionPass::getAnalysisUsage(AU); 243 AU.addRequired<MachineModuleInfo>(); 244 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 245 AU.addRequired<GCModuleInfo>(); 246 } 247 248 bool AsmPrinter::doInitialization(Module &M) { 249 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 250 251 // Initialize TargetLoweringObjectFile. 252 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 253 .Initialize(OutContext, TM); 254 255 OutStreamer->InitSections(false); 256 257 // Emit the version-min deployment target directive if needed. 258 // 259 // FIXME: If we end up with a collection of these sorts of Darwin-specific 260 // or ELF-specific things, it may make sense to have a platform helper class 261 // that will work with the target helper class. For now keep it here, as the 262 // alternative is duplicated code in each of the target asm printers that 263 // use the directive, where it would need the same conditionalization 264 // anyway. 265 const Triple &Target = TM.getTargetTriple(); 266 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 267 268 // Allow the target to emit any magic that it wants at the start of the file. 269 EmitStartOfAsmFile(M); 270 271 // Very minimal debug info. It is ignored if we emit actual debug info. If we 272 // don't, this at least helps the user find where a global came from. 273 if (MAI->hasSingleParameterDotFile()) { 274 // .file "foo.c" 275 OutStreamer->EmitFileDirective( 276 llvm::sys::path::filename(M.getSourceFileName())); 277 } 278 279 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 280 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 281 for (auto &I : *MI) 282 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 283 MP->beginAssembly(M, *MI, *this); 284 285 // Emit module-level inline asm if it exists. 286 if (!M.getModuleInlineAsm().empty()) { 287 // We're at the module level. Construct MCSubtarget from the default CPU 288 // and target triple. 289 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 290 TM.getTargetTriple().str(), TM.getTargetCPU(), 291 TM.getTargetFeatureString())); 292 OutStreamer->AddComment("Start of file scope inline assembly"); 293 OutStreamer->AddBlankLine(); 294 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 295 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 296 OutStreamer->AddComment("End of file scope inline assembly"); 297 OutStreamer->AddBlankLine(); 298 } 299 300 if (MAI->doesSupportDebugInformation()) { 301 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 302 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 303 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 304 DbgTimerName, DbgTimerDescription, 305 CodeViewLineTablesGroupName, 306 CodeViewLineTablesGroupDescription)); 307 } 308 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 309 DD = new DwarfDebug(this, &M); 310 DD->beginModule(); 311 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 312 DWARFGroupName, DWARFGroupDescription)); 313 } 314 } 315 316 switch (MAI->getExceptionHandlingType()) { 317 case ExceptionHandling::SjLj: 318 case ExceptionHandling::DwarfCFI: 319 case ExceptionHandling::ARM: 320 isCFIMoveForDebugging = true; 321 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 322 break; 323 for (auto &F: M.getFunctionList()) { 324 // If the module contains any function with unwind data, 325 // .eh_frame has to be emitted. 326 // Ignore functions that won't get emitted. 327 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 328 isCFIMoveForDebugging = false; 329 break; 330 } 331 } 332 break; 333 default: 334 isCFIMoveForDebugging = false; 335 break; 336 } 337 338 EHStreamer *ES = nullptr; 339 switch (MAI->getExceptionHandlingType()) { 340 case ExceptionHandling::None: 341 break; 342 case ExceptionHandling::SjLj: 343 case ExceptionHandling::DwarfCFI: 344 ES = new DwarfCFIException(this); 345 break; 346 case ExceptionHandling::ARM: 347 ES = new ARMException(this); 348 break; 349 case ExceptionHandling::WinEH: 350 switch (MAI->getWinEHEncodingType()) { 351 default: llvm_unreachable("unsupported unwinding information encoding"); 352 case WinEH::EncodingType::Invalid: 353 break; 354 case WinEH::EncodingType::X86: 355 case WinEH::EncodingType::Itanium: 356 ES = new WinException(this); 357 break; 358 } 359 break; 360 case ExceptionHandling::Wasm: 361 ES = new WasmException(this); 362 break; 363 } 364 if (ES) 365 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 366 DWARFGroupName, DWARFGroupDescription)); 367 368 if (mdconst::extract_or_null<ConstantInt>( 369 MMI->getModule()->getModuleFlag("cfguardtable"))) 370 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 371 CFGuardDescription, DWARFGroupName, 372 DWARFGroupDescription)); 373 374 return false; 375 } 376 377 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 378 if (!MAI.hasWeakDefCanBeHiddenDirective()) 379 return false; 380 381 return GV->canBeOmittedFromSymbolTable(); 382 } 383 384 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 385 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 386 switch (Linkage) { 387 case GlobalValue::CommonLinkage: 388 case GlobalValue::LinkOnceAnyLinkage: 389 case GlobalValue::LinkOnceODRLinkage: 390 case GlobalValue::WeakAnyLinkage: 391 case GlobalValue::WeakODRLinkage: 392 if (MAI->hasWeakDefDirective()) { 393 // .globl _foo 394 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 395 396 if (!canBeHidden(GV, *MAI)) 397 // .weak_definition _foo 398 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 399 else 400 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 401 } else if (MAI->hasLinkOnceDirective()) { 402 // .globl _foo 403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 404 //NOTE: linkonce is handled by the section the symbol was assigned to. 405 } else { 406 // .weak _foo 407 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 408 } 409 return; 410 case GlobalValue::ExternalLinkage: 411 // If external, declare as a global symbol: .globl _foo 412 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 413 return; 414 case GlobalValue::PrivateLinkage: 415 case GlobalValue::InternalLinkage: 416 return; 417 case GlobalValue::AppendingLinkage: 418 case GlobalValue::AvailableExternallyLinkage: 419 case GlobalValue::ExternalWeakLinkage: 420 llvm_unreachable("Should never emit this"); 421 } 422 llvm_unreachable("Unknown linkage type!"); 423 } 424 425 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 426 const GlobalValue *GV) const { 427 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 428 } 429 430 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 431 return TM.getSymbol(GV); 432 } 433 434 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 435 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 436 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 437 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 438 "No emulated TLS variables in the common section"); 439 440 // Never emit TLS variable xyz in emulated TLS model. 441 // The initialization value is in __emutls_t.xyz instead of xyz. 442 if (IsEmuTLSVar) 443 return; 444 445 if (GV->hasInitializer()) { 446 // Check to see if this is a special global used by LLVM, if so, emit it. 447 if (EmitSpecialLLVMGlobal(GV)) 448 return; 449 450 // Skip the emission of global equivalents. The symbol can be emitted later 451 // on by emitGlobalGOTEquivs in case it turns out to be needed. 452 if (GlobalGOTEquivs.count(getSymbol(GV))) 453 return; 454 455 if (isVerbose()) { 456 // When printing the control variable __emutls_v.*, 457 // we don't need to print the original TLS variable name. 458 GV->printAsOperand(OutStreamer->GetCommentOS(), 459 /*PrintType=*/false, GV->getParent()); 460 OutStreamer->GetCommentOS() << '\n'; 461 } 462 } 463 464 MCSymbol *GVSym = getSymbol(GV); 465 MCSymbol *EmittedSym = GVSym; 466 467 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 468 // attributes. 469 // GV's or GVSym's attributes will be used for the EmittedSym. 470 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 471 472 if (!GV->hasInitializer()) // External globals require no extra code. 473 return; 474 475 GVSym->redefineIfPossible(); 476 if (GVSym->isDefined() || GVSym->isVariable()) 477 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 478 "' is already defined"); 479 480 if (MAI->hasDotTypeDotSizeDirective()) 481 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 482 483 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 484 485 const DataLayout &DL = GV->getParent()->getDataLayout(); 486 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 487 488 // If the alignment is specified, we *must* obey it. Overaligning a global 489 // with a specified alignment is a prompt way to break globals emitted to 490 // sections and expected to be contiguous (e.g. ObjC metadata). 491 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 492 493 for (const HandlerInfo &HI : Handlers) { 494 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 495 HI.TimerGroupName, HI.TimerGroupDescription, 496 TimePassesIsEnabled); 497 HI.Handler->setSymbolSize(GVSym, Size); 498 } 499 500 // Handle common symbols 501 if (GVKind.isCommon()) { 502 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 503 unsigned Align = 1 << AlignLog; 504 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 505 Align = 0; 506 507 // .comm _foo, 42, 4 508 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 509 return; 510 } 511 512 // Determine to which section this global should be emitted. 513 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 514 515 // If we have a bss global going to a section that supports the 516 // zerofill directive, do so here. 517 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 518 TheSection->isVirtualSection()) { 519 if (Size == 0) 520 Size = 1; // zerofill of 0 bytes is undefined. 521 unsigned Align = 1 << AlignLog; 522 EmitLinkage(GV, GVSym); 523 // .zerofill __DATA, __bss, _foo, 400, 5 524 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 525 return; 526 } 527 528 // If this is a BSS local symbol and we are emitting in the BSS 529 // section use .lcomm/.comm directive. 530 if (GVKind.isBSSLocal() && 531 getObjFileLowering().getBSSSection() == TheSection) { 532 if (Size == 0) 533 Size = 1; // .comm Foo, 0 is undefined, avoid it. 534 unsigned Align = 1 << AlignLog; 535 536 // Use .lcomm only if it supports user-specified alignment. 537 // Otherwise, while it would still be correct to use .lcomm in some 538 // cases (e.g. when Align == 1), the external assembler might enfore 539 // some -unknown- default alignment behavior, which could cause 540 // spurious differences between external and integrated assembler. 541 // Prefer to simply fall back to .local / .comm in this case. 542 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 543 // .lcomm _foo, 42 544 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 545 return; 546 } 547 548 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 549 Align = 0; 550 551 // .local _foo 552 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 553 // .comm _foo, 42, 4 554 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 555 return; 556 } 557 558 // Handle thread local data for mach-o which requires us to output an 559 // additional structure of data and mangle the original symbol so that we 560 // can reference it later. 561 // 562 // TODO: This should become an "emit thread local global" method on TLOF. 563 // All of this macho specific stuff should be sunk down into TLOFMachO and 564 // stuff like "TLSExtraDataSection" should no longer be part of the parent 565 // TLOF class. This will also make it more obvious that stuff like 566 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 567 // specific code. 568 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 569 // Emit the .tbss symbol 570 MCSymbol *MangSym = 571 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 572 573 if (GVKind.isThreadBSS()) { 574 TheSection = getObjFileLowering().getTLSBSSSection(); 575 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 576 } else if (GVKind.isThreadData()) { 577 OutStreamer->SwitchSection(TheSection); 578 579 EmitAlignment(AlignLog, GV); 580 OutStreamer->EmitLabel(MangSym); 581 582 EmitGlobalConstant(GV->getParent()->getDataLayout(), 583 GV->getInitializer()); 584 } 585 586 OutStreamer->AddBlankLine(); 587 588 // Emit the variable struct for the runtime. 589 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 590 591 OutStreamer->SwitchSection(TLVSect); 592 // Emit the linkage here. 593 EmitLinkage(GV, GVSym); 594 OutStreamer->EmitLabel(GVSym); 595 596 // Three pointers in size: 597 // - __tlv_bootstrap - used to make sure support exists 598 // - spare pointer, used when mapped by the runtime 599 // - pointer to mangled symbol above with initializer 600 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 601 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 602 PtrSize); 603 OutStreamer->EmitIntValue(0, PtrSize); 604 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 605 606 OutStreamer->AddBlankLine(); 607 return; 608 } 609 610 MCSymbol *EmittedInitSym = GVSym; 611 612 OutStreamer->SwitchSection(TheSection); 613 614 EmitLinkage(GV, EmittedInitSym); 615 EmitAlignment(AlignLog, GV); 616 617 OutStreamer->EmitLabel(EmittedInitSym); 618 619 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 620 621 if (MAI->hasDotTypeDotSizeDirective()) 622 // .size foo, 42 623 OutStreamer->emitELFSize(EmittedInitSym, 624 MCConstantExpr::create(Size, OutContext)); 625 626 OutStreamer->AddBlankLine(); 627 } 628 629 /// Emit the directive and value for debug thread local expression 630 /// 631 /// \p Value - The value to emit. 632 /// \p Size - The size of the integer (in bytes) to emit. 633 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 634 OutStreamer->EmitValue(Value, Size); 635 } 636 637 /// EmitFunctionHeader - This method emits the header for the current 638 /// function. 639 void AsmPrinter::EmitFunctionHeader() { 640 const Function &F = MF->getFunction(); 641 642 if (isVerbose()) 643 OutStreamer->GetCommentOS() 644 << "-- Begin function " 645 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 646 647 // Print out constants referenced by the function 648 EmitConstantPool(); 649 650 // Print the 'header' of function. 651 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 652 EmitVisibility(CurrentFnSym, F.getVisibility()); 653 654 EmitLinkage(&F, CurrentFnSym); 655 if (MAI->hasFunctionAlignment()) 656 EmitAlignment(MF->getAlignment(), &F); 657 658 if (MAI->hasDotTypeDotSizeDirective()) 659 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 660 661 if (F.hasFnAttribute(Attribute::Cold)) 662 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 663 664 if (isVerbose()) { 665 F.printAsOperand(OutStreamer->GetCommentOS(), 666 /*PrintType=*/false, F.getParent()); 667 OutStreamer->GetCommentOS() << '\n'; 668 } 669 670 // Emit the prefix data. 671 if (F.hasPrefixData()) { 672 if (MAI->hasSubsectionsViaSymbols()) { 673 // Preserving prefix data on platforms which use subsections-via-symbols 674 // is a bit tricky. Here we introduce a symbol for the prefix data 675 // and use the .alt_entry attribute to mark the function's real entry point 676 // as an alternative entry point to the prefix-data symbol. 677 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 678 OutStreamer->EmitLabel(PrefixSym); 679 680 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 681 682 // Emit an .alt_entry directive for the actual function symbol. 683 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 684 } else { 685 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 686 } 687 } 688 689 // Emit the CurrentFnSym. This is a virtual function to allow targets to 690 // do their wild and crazy things as required. 691 EmitFunctionEntryLabel(); 692 693 // If the function had address-taken blocks that got deleted, then we have 694 // references to the dangling symbols. Emit them at the start of the function 695 // so that we don't get references to undefined symbols. 696 std::vector<MCSymbol*> DeadBlockSyms; 697 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 698 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 699 OutStreamer->AddComment("Address taken block that was later removed"); 700 OutStreamer->EmitLabel(DeadBlockSyms[i]); 701 } 702 703 if (CurrentFnBegin) { 704 if (MAI->useAssignmentForEHBegin()) { 705 MCSymbol *CurPos = OutContext.createTempSymbol(); 706 OutStreamer->EmitLabel(CurPos); 707 OutStreamer->EmitAssignment(CurrentFnBegin, 708 MCSymbolRefExpr::create(CurPos, OutContext)); 709 } else { 710 OutStreamer->EmitLabel(CurrentFnBegin); 711 } 712 } 713 714 // Emit pre-function debug and/or EH information. 715 for (const HandlerInfo &HI : Handlers) { 716 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 717 HI.TimerGroupDescription, TimePassesIsEnabled); 718 HI.Handler->beginFunction(MF); 719 } 720 721 // Emit the prologue data. 722 if (F.hasPrologueData()) 723 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 724 } 725 726 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 727 /// function. This can be overridden by targets as required to do custom stuff. 728 void AsmPrinter::EmitFunctionEntryLabel() { 729 CurrentFnSym->redefineIfPossible(); 730 731 // The function label could have already been emitted if two symbols end up 732 // conflicting due to asm renaming. Detect this and emit an error. 733 if (CurrentFnSym->isVariable()) 734 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 735 "' is a protected alias"); 736 if (CurrentFnSym->isDefined()) 737 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 738 "' label emitted multiple times to assembly file"); 739 740 return OutStreamer->EmitLabel(CurrentFnSym); 741 } 742 743 /// emitComments - Pretty-print comments for instructions. 744 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 745 const MachineFunction *MF = MI.getMF(); 746 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 747 748 // Check for spills and reloads 749 750 // We assume a single instruction only has a spill or reload, not 751 // both. 752 Optional<unsigned> Size; 753 if ((Size = MI.getRestoreSize(TII))) { 754 CommentOS << *Size << "-byte Reload\n"; 755 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 756 if (*Size) 757 CommentOS << *Size << "-byte Folded Reload\n"; 758 } else if ((Size = MI.getSpillSize(TII))) { 759 CommentOS << *Size << "-byte Spill\n"; 760 } else if ((Size = MI.getFoldedSpillSize(TII))) { 761 if (*Size) 762 CommentOS << *Size << "-byte Folded Spill\n"; 763 } 764 765 // Check for spill-induced copies 766 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 767 CommentOS << " Reload Reuse\n"; 768 } 769 770 /// emitImplicitDef - This method emits the specified machine instruction 771 /// that is an implicit def. 772 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 773 unsigned RegNo = MI->getOperand(0).getReg(); 774 775 SmallString<128> Str; 776 raw_svector_ostream OS(Str); 777 OS << "implicit-def: " 778 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 779 780 OutStreamer->AddComment(OS.str()); 781 OutStreamer->AddBlankLine(); 782 } 783 784 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 785 std::string Str; 786 raw_string_ostream OS(Str); 787 OS << "kill:"; 788 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 789 const MachineOperand &Op = MI->getOperand(i); 790 assert(Op.isReg() && "KILL instruction must have only register operands"); 791 OS << ' ' << (Op.isDef() ? "def " : "killed ") 792 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 793 } 794 AP.OutStreamer->AddComment(OS.str()); 795 AP.OutStreamer->AddBlankLine(); 796 } 797 798 /// emitDebugValueComment - This method handles the target-independent form 799 /// of DBG_VALUE, returning true if it was able to do so. A false return 800 /// means the target will need to handle MI in EmitInstruction. 801 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 802 // This code handles only the 4-operand target-independent form. 803 if (MI->getNumOperands() != 4) 804 return false; 805 806 SmallString<128> Str; 807 raw_svector_ostream OS(Str); 808 OS << "DEBUG_VALUE: "; 809 810 const DILocalVariable *V = MI->getDebugVariable(); 811 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 812 StringRef Name = SP->getName(); 813 if (!Name.empty()) 814 OS << Name << ":"; 815 } 816 OS << V->getName(); 817 OS << " <- "; 818 819 // The second operand is only an offset if it's an immediate. 820 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 821 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 822 const DIExpression *Expr = MI->getDebugExpression(); 823 if (Expr->getNumElements()) { 824 OS << '['; 825 bool NeedSep = false; 826 for (auto Op : Expr->expr_ops()) { 827 if (NeedSep) 828 OS << ", "; 829 else 830 NeedSep = true; 831 OS << dwarf::OperationEncodingString(Op.getOp()); 832 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 833 OS << ' ' << Op.getArg(I); 834 } 835 OS << "] "; 836 } 837 838 // Register or immediate value. Register 0 means undef. 839 if (MI->getOperand(0).isFPImm()) { 840 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 841 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 842 OS << (double)APF.convertToFloat(); 843 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 844 OS << APF.convertToDouble(); 845 } else { 846 // There is no good way to print long double. Convert a copy to 847 // double. Ah well, it's only a comment. 848 bool ignored; 849 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 850 &ignored); 851 OS << "(long double) " << APF.convertToDouble(); 852 } 853 } else if (MI->getOperand(0).isImm()) { 854 OS << MI->getOperand(0).getImm(); 855 } else if (MI->getOperand(0).isCImm()) { 856 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 857 } else { 858 unsigned Reg; 859 if (MI->getOperand(0).isReg()) { 860 Reg = MI->getOperand(0).getReg(); 861 } else { 862 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 863 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 864 Offset += TFI->getFrameIndexReference(*AP.MF, 865 MI->getOperand(0).getIndex(), Reg); 866 MemLoc = true; 867 } 868 if (Reg == 0) { 869 // Suppress offset, it is not meaningful here. 870 OS << "undef"; 871 // NOTE: Want this comment at start of line, don't emit with AddComment. 872 AP.OutStreamer->emitRawComment(OS.str()); 873 return true; 874 } 875 if (MemLoc) 876 OS << '['; 877 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 878 } 879 880 if (MemLoc) 881 OS << '+' << Offset << ']'; 882 883 // NOTE: Want this comment at start of line, don't emit with AddComment. 884 AP.OutStreamer->emitRawComment(OS.str()); 885 return true; 886 } 887 888 /// This method handles the target-independent form of DBG_LABEL, returning 889 /// true if it was able to do so. A false return means the target will need 890 /// to handle MI in EmitInstruction. 891 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 892 if (MI->getNumOperands() != 1) 893 return false; 894 895 SmallString<128> Str; 896 raw_svector_ostream OS(Str); 897 OS << "DEBUG_LABEL: "; 898 899 const DILabel *V = MI->getDebugLabel(); 900 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 901 StringRef Name = SP->getName(); 902 if (!Name.empty()) 903 OS << Name << ":"; 904 } 905 OS << V->getName(); 906 907 // NOTE: Want this comment at start of line, don't emit with AddComment. 908 AP.OutStreamer->emitRawComment(OS.str()); 909 return true; 910 } 911 912 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 913 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 914 MF->getFunction().needsUnwindTableEntry()) 915 return CFI_M_EH; 916 917 if (MMI->hasDebugInfo()) 918 return CFI_M_Debug; 919 920 return CFI_M_None; 921 } 922 923 bool AsmPrinter::needsSEHMoves() { 924 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 925 } 926 927 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 928 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 929 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 930 ExceptionHandlingType != ExceptionHandling::ARM) 931 return; 932 933 if (needsCFIMoves() == CFI_M_None) 934 return; 935 936 // If there is no "real" instruction following this CFI instruction, skip 937 // emitting it; it would be beyond the end of the function's FDE range. 938 auto *MBB = MI.getParent(); 939 auto I = std::next(MI.getIterator()); 940 while (I != MBB->end() && I->isTransient()) 941 ++I; 942 if (I == MBB->instr_end() && 943 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 944 return; 945 946 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 947 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 948 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 949 emitCFIInstruction(CFI); 950 } 951 952 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 953 // The operands are the MCSymbol and the frame offset of the allocation. 954 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 955 int FrameOffset = MI.getOperand(1).getImm(); 956 957 // Emit a symbol assignment. 958 OutStreamer->EmitAssignment(FrameAllocSym, 959 MCConstantExpr::create(FrameOffset, OutContext)); 960 } 961 962 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 963 if (!MF.getTarget().Options.EmitStackSizeSection) 964 return; 965 966 MCSection *StackSizeSection = 967 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 968 if (!StackSizeSection) 969 return; 970 971 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 972 // Don't emit functions with dynamic stack allocations. 973 if (FrameInfo.hasVarSizedObjects()) 974 return; 975 976 OutStreamer->PushSection(); 977 OutStreamer->SwitchSection(StackSizeSection); 978 979 const MCSymbol *FunctionSymbol = getFunctionBegin(); 980 uint64_t StackSize = FrameInfo.getStackSize(); 981 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 982 OutStreamer->EmitULEB128IntValue(StackSize); 983 984 OutStreamer->PopSection(); 985 } 986 987 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 988 MachineModuleInfo *MMI) { 989 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 990 return true; 991 992 // We might emit an EH table that uses function begin and end labels even if 993 // we don't have any landingpads. 994 if (!MF.getFunction().hasPersonalityFn()) 995 return false; 996 return !isNoOpWithoutInvoke( 997 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 998 } 999 1000 /// EmitFunctionBody - This method emits the body and trailer for a 1001 /// function. 1002 void AsmPrinter::EmitFunctionBody() { 1003 EmitFunctionHeader(); 1004 1005 // Emit target-specific gunk before the function body. 1006 EmitFunctionBodyStart(); 1007 1008 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1009 1010 if (isVerbose()) { 1011 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1012 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1013 if (!MDT) { 1014 OwnedMDT = make_unique<MachineDominatorTree>(); 1015 OwnedMDT->getBase().recalculate(*MF); 1016 MDT = OwnedMDT.get(); 1017 } 1018 1019 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1020 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1021 if (!MLI) { 1022 OwnedMLI = make_unique<MachineLoopInfo>(); 1023 OwnedMLI->getBase().analyze(MDT->getBase()); 1024 MLI = OwnedMLI.get(); 1025 } 1026 } 1027 1028 // Print out code for the function. 1029 bool HasAnyRealCode = false; 1030 int NumInstsInFunction = 0; 1031 for (auto &MBB : *MF) { 1032 // Print a label for the basic block. 1033 EmitBasicBlockStart(MBB); 1034 for (auto &MI : MBB) { 1035 // Print the assembly for the instruction. 1036 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1037 !MI.isDebugInstr()) { 1038 HasAnyRealCode = true; 1039 ++NumInstsInFunction; 1040 } 1041 1042 // If there is a pre-instruction symbol, emit a label for it here. 1043 if (MCSymbol *S = MI.getPreInstrSymbol()) 1044 OutStreamer->EmitLabel(S); 1045 1046 if (ShouldPrintDebugScopes) { 1047 for (const HandlerInfo &HI : Handlers) { 1048 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1049 HI.TimerGroupName, HI.TimerGroupDescription, 1050 TimePassesIsEnabled); 1051 HI.Handler->beginInstruction(&MI); 1052 } 1053 } 1054 1055 if (isVerbose()) 1056 emitComments(MI, OutStreamer->GetCommentOS()); 1057 1058 switch (MI.getOpcode()) { 1059 case TargetOpcode::CFI_INSTRUCTION: 1060 emitCFIInstruction(MI); 1061 break; 1062 case TargetOpcode::LOCAL_ESCAPE: 1063 emitFrameAlloc(MI); 1064 break; 1065 case TargetOpcode::EH_LABEL: 1066 case TargetOpcode::GC_LABEL: 1067 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1068 break; 1069 case TargetOpcode::INLINEASM: 1070 case TargetOpcode::INLINEASM_BR: 1071 EmitInlineAsm(&MI); 1072 break; 1073 case TargetOpcode::DBG_VALUE: 1074 if (isVerbose()) { 1075 if (!emitDebugValueComment(&MI, *this)) 1076 EmitInstruction(&MI); 1077 } 1078 break; 1079 case TargetOpcode::DBG_LABEL: 1080 if (isVerbose()) { 1081 if (!emitDebugLabelComment(&MI, *this)) 1082 EmitInstruction(&MI); 1083 } 1084 break; 1085 case TargetOpcode::IMPLICIT_DEF: 1086 if (isVerbose()) emitImplicitDef(&MI); 1087 break; 1088 case TargetOpcode::KILL: 1089 if (isVerbose()) emitKill(&MI, *this); 1090 break; 1091 default: 1092 EmitInstruction(&MI); 1093 break; 1094 } 1095 1096 // If there is a post-instruction symbol, emit a label for it here. 1097 if (MCSymbol *S = MI.getPostInstrSymbol()) 1098 OutStreamer->EmitLabel(S); 1099 1100 if (ShouldPrintDebugScopes) { 1101 for (const HandlerInfo &HI : Handlers) { 1102 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1103 HI.TimerGroupName, HI.TimerGroupDescription, 1104 TimePassesIsEnabled); 1105 HI.Handler->endInstruction(); 1106 } 1107 } 1108 } 1109 1110 EmitBasicBlockEnd(MBB); 1111 } 1112 1113 EmittedInsts += NumInstsInFunction; 1114 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1115 MF->getFunction().getSubprogram(), 1116 &MF->front()); 1117 R << ore::NV("NumInstructions", NumInstsInFunction) 1118 << " instructions in function"; 1119 ORE->emit(R); 1120 1121 // If the function is empty and the object file uses .subsections_via_symbols, 1122 // then we need to emit *something* to the function body to prevent the 1123 // labels from collapsing together. Just emit a noop. 1124 // Similarly, don't emit empty functions on Windows either. It can lead to 1125 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1126 // after linking, causing the kernel not to load the binary: 1127 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1128 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1129 const Triple &TT = TM.getTargetTriple(); 1130 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1131 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1132 MCInst Noop; 1133 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1134 1135 // Targets can opt-out of emitting the noop here by leaving the opcode 1136 // unspecified. 1137 if (Noop.getOpcode()) { 1138 OutStreamer->AddComment("avoids zero-length function"); 1139 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1140 } 1141 } 1142 1143 const Function &F = MF->getFunction(); 1144 for (const auto &BB : F) { 1145 if (!BB.hasAddressTaken()) 1146 continue; 1147 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1148 if (Sym->isDefined()) 1149 continue; 1150 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1151 OutStreamer->EmitLabel(Sym); 1152 } 1153 1154 // Emit target-specific gunk after the function body. 1155 EmitFunctionBodyEnd(); 1156 1157 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1158 MAI->hasDotTypeDotSizeDirective()) { 1159 // Create a symbol for the end of function. 1160 CurrentFnEnd = createTempSymbol("func_end"); 1161 OutStreamer->EmitLabel(CurrentFnEnd); 1162 } 1163 1164 // If the target wants a .size directive for the size of the function, emit 1165 // it. 1166 if (MAI->hasDotTypeDotSizeDirective()) { 1167 // We can get the size as difference between the function label and the 1168 // temp label. 1169 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1170 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1171 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1172 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1173 } 1174 1175 for (const HandlerInfo &HI : Handlers) { 1176 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1177 HI.TimerGroupDescription, TimePassesIsEnabled); 1178 HI.Handler->markFunctionEnd(); 1179 } 1180 1181 // Print out jump tables referenced by the function. 1182 EmitJumpTableInfo(); 1183 1184 // Emit post-function debug and/or EH information. 1185 for (const HandlerInfo &HI : Handlers) { 1186 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1187 HI.TimerGroupDescription, TimePassesIsEnabled); 1188 HI.Handler->endFunction(MF); 1189 } 1190 1191 // Emit section containing stack size metadata. 1192 emitStackSizeSection(*MF); 1193 1194 if (isVerbose()) 1195 OutStreamer->GetCommentOS() << "-- End function\n"; 1196 1197 OutStreamer->AddBlankLine(); 1198 } 1199 1200 /// Compute the number of Global Variables that uses a Constant. 1201 static unsigned getNumGlobalVariableUses(const Constant *C) { 1202 if (!C) 1203 return 0; 1204 1205 if (isa<GlobalVariable>(C)) 1206 return 1; 1207 1208 unsigned NumUses = 0; 1209 for (auto *CU : C->users()) 1210 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1211 1212 return NumUses; 1213 } 1214 1215 /// Only consider global GOT equivalents if at least one user is a 1216 /// cstexpr inside an initializer of another global variables. Also, don't 1217 /// handle cstexpr inside instructions. During global variable emission, 1218 /// candidates are skipped and are emitted later in case at least one cstexpr 1219 /// isn't replaced by a PC relative GOT entry access. 1220 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1221 unsigned &NumGOTEquivUsers) { 1222 // Global GOT equivalents are unnamed private globals with a constant 1223 // pointer initializer to another global symbol. They must point to a 1224 // GlobalVariable or Function, i.e., as GlobalValue. 1225 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1226 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1227 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1228 return false; 1229 1230 // To be a got equivalent, at least one of its users need to be a constant 1231 // expression used by another global variable. 1232 for (auto *U : GV->users()) 1233 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1234 1235 return NumGOTEquivUsers > 0; 1236 } 1237 1238 /// Unnamed constant global variables solely contaning a pointer to 1239 /// another globals variable is equivalent to a GOT table entry; it contains the 1240 /// the address of another symbol. Optimize it and replace accesses to these 1241 /// "GOT equivalents" by using the GOT entry for the final global instead. 1242 /// Compute GOT equivalent candidates among all global variables to avoid 1243 /// emitting them if possible later on, after it use is replaced by a GOT entry 1244 /// access. 1245 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1246 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1247 return; 1248 1249 for (const auto &G : M.globals()) { 1250 unsigned NumGOTEquivUsers = 0; 1251 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1252 continue; 1253 1254 const MCSymbol *GOTEquivSym = getSymbol(&G); 1255 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1256 } 1257 } 1258 1259 /// Constant expressions using GOT equivalent globals may not be eligible 1260 /// for PC relative GOT entry conversion, in such cases we need to emit such 1261 /// globals we previously omitted in EmitGlobalVariable. 1262 void AsmPrinter::emitGlobalGOTEquivs() { 1263 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1264 return; 1265 1266 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1267 for (auto &I : GlobalGOTEquivs) { 1268 const GlobalVariable *GV = I.second.first; 1269 unsigned Cnt = I.second.second; 1270 if (Cnt) 1271 FailedCandidates.push_back(GV); 1272 } 1273 GlobalGOTEquivs.clear(); 1274 1275 for (auto *GV : FailedCandidates) 1276 EmitGlobalVariable(GV); 1277 } 1278 1279 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1280 const GlobalIndirectSymbol& GIS) { 1281 MCSymbol *Name = getSymbol(&GIS); 1282 1283 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1284 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1285 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1286 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1287 else 1288 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1289 1290 bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy(); 1291 1292 // Treat bitcasts of functions as functions also. This is important at least 1293 // on WebAssembly where object and function addresses can't alias each other. 1294 if (!IsFunction) 1295 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1296 if (CE->getOpcode() == Instruction::BitCast) 1297 IsFunction = 1298 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1299 1300 // Set the symbol type to function if the alias has a function type. 1301 // This affects codegen when the aliasee is not a function. 1302 if (IsFunction) { 1303 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1304 if (isa<GlobalIFunc>(GIS)) 1305 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1306 } 1307 1308 EmitVisibility(Name, GIS.getVisibility()); 1309 1310 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1311 1312 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1313 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1314 1315 // Emit the directives as assignments aka .set: 1316 OutStreamer->EmitAssignment(Name, Expr); 1317 1318 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1319 // If the aliasee does not correspond to a symbol in the output, i.e. the 1320 // alias is not of an object or the aliased object is private, then set the 1321 // size of the alias symbol from the type of the alias. We don't do this in 1322 // other situations as the alias and aliasee having differing types but same 1323 // size may be intentional. 1324 const GlobalObject *BaseObject = GA->getBaseObject(); 1325 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1326 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1327 const DataLayout &DL = M.getDataLayout(); 1328 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1329 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1330 } 1331 } 1332 } 1333 1334 bool AsmPrinter::doFinalization(Module &M) { 1335 // Set the MachineFunction to nullptr so that we can catch attempted 1336 // accesses to MF specific features at the module level and so that 1337 // we can conditionalize accesses based on whether or not it is nullptr. 1338 MF = nullptr; 1339 1340 // Gather all GOT equivalent globals in the module. We really need two 1341 // passes over the globals: one to compute and another to avoid its emission 1342 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1343 // where the got equivalent shows up before its use. 1344 computeGlobalGOTEquivs(M); 1345 1346 // Emit global variables. 1347 for (const auto &G : M.globals()) 1348 EmitGlobalVariable(&G); 1349 1350 // Emit remaining GOT equivalent globals. 1351 emitGlobalGOTEquivs(); 1352 1353 // Emit visibility info for declarations 1354 for (const Function &F : M) { 1355 if (!F.isDeclarationForLinker()) 1356 continue; 1357 GlobalValue::VisibilityTypes V = F.getVisibility(); 1358 if (V == GlobalValue::DefaultVisibility) 1359 continue; 1360 1361 MCSymbol *Name = getSymbol(&F); 1362 EmitVisibility(Name, V, false); 1363 } 1364 1365 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1366 1367 TLOF.emitModuleMetadata(*OutStreamer, M); 1368 1369 if (TM.getTargetTriple().isOSBinFormatELF()) { 1370 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1371 1372 // Output stubs for external and common global variables. 1373 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1374 if (!Stubs.empty()) { 1375 OutStreamer->SwitchSection(TLOF.getDataSection()); 1376 const DataLayout &DL = M.getDataLayout(); 1377 1378 EmitAlignment(Log2_32(DL.getPointerSize())); 1379 for (const auto &Stub : Stubs) { 1380 OutStreamer->EmitLabel(Stub.first); 1381 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1382 DL.getPointerSize()); 1383 } 1384 } 1385 } 1386 1387 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1388 MachineModuleInfoCOFF &MMICOFF = 1389 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1390 1391 // Output stubs for external and common global variables. 1392 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1393 if (!Stubs.empty()) { 1394 const DataLayout &DL = M.getDataLayout(); 1395 1396 for (const auto &Stub : Stubs) { 1397 SmallString<256> SectionName = StringRef(".rdata$"); 1398 SectionName += Stub.first->getName(); 1399 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1400 SectionName, 1401 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1402 COFF::IMAGE_SCN_LNK_COMDAT, 1403 SectionKind::getReadOnly(), Stub.first->getName(), 1404 COFF::IMAGE_COMDAT_SELECT_ANY)); 1405 EmitAlignment(Log2_32(DL.getPointerSize())); 1406 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1407 OutStreamer->EmitLabel(Stub.first); 1408 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1409 DL.getPointerSize()); 1410 } 1411 } 1412 } 1413 1414 // Finalize debug and EH information. 1415 for (const HandlerInfo &HI : Handlers) { 1416 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1417 HI.TimerGroupDescription, TimePassesIsEnabled); 1418 HI.Handler->endModule(); 1419 delete HI.Handler; 1420 } 1421 Handlers.clear(); 1422 DD = nullptr; 1423 1424 // If the target wants to know about weak references, print them all. 1425 if (MAI->getWeakRefDirective()) { 1426 // FIXME: This is not lazy, it would be nice to only print weak references 1427 // to stuff that is actually used. Note that doing so would require targets 1428 // to notice uses in operands (due to constant exprs etc). This should 1429 // happen with the MC stuff eventually. 1430 1431 // Print out module-level global objects here. 1432 for (const auto &GO : M.global_objects()) { 1433 if (!GO.hasExternalWeakLinkage()) 1434 continue; 1435 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1436 } 1437 } 1438 1439 OutStreamer->AddBlankLine(); 1440 1441 // Print aliases in topological order, that is, for each alias a = b, 1442 // b must be printed before a. 1443 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1444 // such an order to generate correct TOC information. 1445 SmallVector<const GlobalAlias *, 16> AliasStack; 1446 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1447 for (const auto &Alias : M.aliases()) { 1448 for (const GlobalAlias *Cur = &Alias; Cur; 1449 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1450 if (!AliasVisited.insert(Cur).second) 1451 break; 1452 AliasStack.push_back(Cur); 1453 } 1454 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1455 emitGlobalIndirectSymbol(M, *AncestorAlias); 1456 AliasStack.clear(); 1457 } 1458 for (const auto &IFunc : M.ifuncs()) 1459 emitGlobalIndirectSymbol(M, IFunc); 1460 1461 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1462 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1463 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1464 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1465 MP->finishAssembly(M, *MI, *this); 1466 1467 // Emit llvm.ident metadata in an '.ident' directive. 1468 EmitModuleIdents(M); 1469 1470 // Emit bytes for llvm.commandline metadata. 1471 EmitModuleCommandLines(M); 1472 1473 // Emit __morestack address if needed for indirect calls. 1474 if (MMI->usesMorestackAddr()) { 1475 unsigned Align = 1; 1476 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1477 getDataLayout(), SectionKind::getReadOnly(), 1478 /*C=*/nullptr, Align); 1479 OutStreamer->SwitchSection(ReadOnlySection); 1480 1481 MCSymbol *AddrSymbol = 1482 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1483 OutStreamer->EmitLabel(AddrSymbol); 1484 1485 unsigned PtrSize = MAI->getCodePointerSize(); 1486 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1487 PtrSize); 1488 } 1489 1490 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1491 // split-stack is used. 1492 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1493 OutStreamer->SwitchSection( 1494 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1495 if (MMI->hasNosplitStack()) 1496 OutStreamer->SwitchSection( 1497 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1498 } 1499 1500 // If we don't have any trampolines, then we don't require stack memory 1501 // to be executable. Some targets have a directive to declare this. 1502 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1503 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1504 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1505 OutStreamer->SwitchSection(S); 1506 1507 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1508 // Emit /EXPORT: flags for each exported global as necessary. 1509 const auto &TLOF = getObjFileLowering(); 1510 std::string Flags; 1511 1512 for (const GlobalValue &GV : M.global_values()) { 1513 raw_string_ostream OS(Flags); 1514 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1515 OS.flush(); 1516 if (!Flags.empty()) { 1517 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1518 OutStreamer->EmitBytes(Flags); 1519 } 1520 Flags.clear(); 1521 } 1522 1523 // Emit /INCLUDE: flags for each used global as necessary. 1524 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1525 assert(LU->hasInitializer() && 1526 "expected llvm.used to have an initializer"); 1527 assert(isa<ArrayType>(LU->getValueType()) && 1528 "expected llvm.used to be an array type"); 1529 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1530 for (const Value *Op : A->operands()) { 1531 const auto *GV = 1532 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1533 // Global symbols with internal or private linkage are not visible to 1534 // the linker, and thus would cause an error when the linker tried to 1535 // preserve the symbol due to the `/include:` directive. 1536 if (GV->hasLocalLinkage()) 1537 continue; 1538 1539 raw_string_ostream OS(Flags); 1540 TLOF.emitLinkerFlagsForUsed(OS, GV); 1541 OS.flush(); 1542 1543 if (!Flags.empty()) { 1544 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1545 OutStreamer->EmitBytes(Flags); 1546 } 1547 Flags.clear(); 1548 } 1549 } 1550 } 1551 } 1552 1553 if (TM.Options.EmitAddrsig) { 1554 // Emit address-significance attributes for all globals. 1555 OutStreamer->EmitAddrsig(); 1556 for (const GlobalValue &GV : M.global_values()) 1557 if (!GV.use_empty() && !GV.isThreadLocal() && 1558 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1559 !GV.hasAtLeastLocalUnnamedAddr()) 1560 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1561 } 1562 1563 // Allow the target to emit any magic that it wants at the end of the file, 1564 // after everything else has gone out. 1565 EmitEndOfAsmFile(M); 1566 1567 MMI = nullptr; 1568 1569 OutStreamer->Finish(); 1570 OutStreamer->reset(); 1571 OwnedMLI.reset(); 1572 OwnedMDT.reset(); 1573 1574 return false; 1575 } 1576 1577 MCSymbol *AsmPrinter::getCurExceptionSym() { 1578 if (!CurExceptionSym) 1579 CurExceptionSym = createTempSymbol("exception"); 1580 return CurExceptionSym; 1581 } 1582 1583 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1584 this->MF = &MF; 1585 // Get the function symbol. 1586 CurrentFnSym = getSymbol(&MF.getFunction()); 1587 CurrentFnSymForSize = CurrentFnSym; 1588 CurrentFnBegin = nullptr; 1589 CurExceptionSym = nullptr; 1590 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1591 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1592 MF.getTarget().Options.EmitStackSizeSection) { 1593 CurrentFnBegin = createTempSymbol("func_begin"); 1594 if (NeedsLocalForSize) 1595 CurrentFnSymForSize = CurrentFnBegin; 1596 } 1597 1598 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1599 } 1600 1601 namespace { 1602 1603 // Keep track the alignment, constpool entries per Section. 1604 struct SectionCPs { 1605 MCSection *S; 1606 unsigned Alignment; 1607 SmallVector<unsigned, 4> CPEs; 1608 1609 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1610 }; 1611 1612 } // end anonymous namespace 1613 1614 /// EmitConstantPool - Print to the current output stream assembly 1615 /// representations of the constants in the constant pool MCP. This is 1616 /// used to print out constants which have been "spilled to memory" by 1617 /// the code generator. 1618 void AsmPrinter::EmitConstantPool() { 1619 const MachineConstantPool *MCP = MF->getConstantPool(); 1620 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1621 if (CP.empty()) return; 1622 1623 // Calculate sections for constant pool entries. We collect entries to go into 1624 // the same section together to reduce amount of section switch statements. 1625 SmallVector<SectionCPs, 4> CPSections; 1626 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1627 const MachineConstantPoolEntry &CPE = CP[i]; 1628 unsigned Align = CPE.getAlignment(); 1629 1630 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1631 1632 const Constant *C = nullptr; 1633 if (!CPE.isMachineConstantPoolEntry()) 1634 C = CPE.Val.ConstVal; 1635 1636 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1637 Kind, C, Align); 1638 1639 // The number of sections are small, just do a linear search from the 1640 // last section to the first. 1641 bool Found = false; 1642 unsigned SecIdx = CPSections.size(); 1643 while (SecIdx != 0) { 1644 if (CPSections[--SecIdx].S == S) { 1645 Found = true; 1646 break; 1647 } 1648 } 1649 if (!Found) { 1650 SecIdx = CPSections.size(); 1651 CPSections.push_back(SectionCPs(S, Align)); 1652 } 1653 1654 if (Align > CPSections[SecIdx].Alignment) 1655 CPSections[SecIdx].Alignment = Align; 1656 CPSections[SecIdx].CPEs.push_back(i); 1657 } 1658 1659 // Now print stuff into the calculated sections. 1660 const MCSection *CurSection = nullptr; 1661 unsigned Offset = 0; 1662 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1663 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1664 unsigned CPI = CPSections[i].CPEs[j]; 1665 MCSymbol *Sym = GetCPISymbol(CPI); 1666 if (!Sym->isUndefined()) 1667 continue; 1668 1669 if (CurSection != CPSections[i].S) { 1670 OutStreamer->SwitchSection(CPSections[i].S); 1671 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1672 CurSection = CPSections[i].S; 1673 Offset = 0; 1674 } 1675 1676 MachineConstantPoolEntry CPE = CP[CPI]; 1677 1678 // Emit inter-object padding for alignment. 1679 unsigned AlignMask = CPE.getAlignment() - 1; 1680 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1681 OutStreamer->EmitZeros(NewOffset - Offset); 1682 1683 Type *Ty = CPE.getType(); 1684 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1685 1686 OutStreamer->EmitLabel(Sym); 1687 if (CPE.isMachineConstantPoolEntry()) 1688 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1689 else 1690 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1691 } 1692 } 1693 } 1694 1695 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1696 /// by the current function to the current output stream. 1697 void AsmPrinter::EmitJumpTableInfo() { 1698 const DataLayout &DL = MF->getDataLayout(); 1699 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1700 if (!MJTI) return; 1701 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1702 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1703 if (JT.empty()) return; 1704 1705 // Pick the directive to use to print the jump table entries, and switch to 1706 // the appropriate section. 1707 const Function &F = MF->getFunction(); 1708 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1709 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1710 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1711 F); 1712 if (JTInDiffSection) { 1713 // Drop it in the readonly section. 1714 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1715 OutStreamer->SwitchSection(ReadOnlySection); 1716 } 1717 1718 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1719 1720 // Jump tables in code sections are marked with a data_region directive 1721 // where that's supported. 1722 if (!JTInDiffSection) 1723 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1724 1725 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1726 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1727 1728 // If this jump table was deleted, ignore it. 1729 if (JTBBs.empty()) continue; 1730 1731 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1732 /// emit a .set directive for each unique entry. 1733 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1734 MAI->doesSetDirectiveSuppressReloc()) { 1735 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1736 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1737 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1738 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1739 const MachineBasicBlock *MBB = JTBBs[ii]; 1740 if (!EmittedSets.insert(MBB).second) 1741 continue; 1742 1743 // .set LJTSet, LBB32-base 1744 const MCExpr *LHS = 1745 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1746 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1747 MCBinaryExpr::createSub(LHS, Base, 1748 OutContext)); 1749 } 1750 } 1751 1752 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1753 // before each jump table. The first label is never referenced, but tells 1754 // the assembler and linker the extents of the jump table object. The 1755 // second label is actually referenced by the code. 1756 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1757 // FIXME: This doesn't have to have any specific name, just any randomly 1758 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1759 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1760 1761 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1762 1763 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1764 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1765 } 1766 if (!JTInDiffSection) 1767 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1768 } 1769 1770 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1771 /// current stream. 1772 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1773 const MachineBasicBlock *MBB, 1774 unsigned UID) const { 1775 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1776 const MCExpr *Value = nullptr; 1777 switch (MJTI->getEntryKind()) { 1778 case MachineJumpTableInfo::EK_Inline: 1779 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1780 case MachineJumpTableInfo::EK_Custom32: 1781 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1782 MJTI, MBB, UID, OutContext); 1783 break; 1784 case MachineJumpTableInfo::EK_BlockAddress: 1785 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1786 // .word LBB123 1787 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1788 break; 1789 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1790 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1791 // with a relocation as gp-relative, e.g.: 1792 // .gprel32 LBB123 1793 MCSymbol *MBBSym = MBB->getSymbol(); 1794 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1795 return; 1796 } 1797 1798 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1799 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1800 // with a relocation as gp-relative, e.g.: 1801 // .gpdword LBB123 1802 MCSymbol *MBBSym = MBB->getSymbol(); 1803 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1804 return; 1805 } 1806 1807 case MachineJumpTableInfo::EK_LabelDifference32: { 1808 // Each entry is the address of the block minus the address of the jump 1809 // table. This is used for PIC jump tables where gprel32 is not supported. 1810 // e.g.: 1811 // .word LBB123 - LJTI1_2 1812 // If the .set directive avoids relocations, this is emitted as: 1813 // .set L4_5_set_123, LBB123 - LJTI1_2 1814 // .word L4_5_set_123 1815 if (MAI->doesSetDirectiveSuppressReloc()) { 1816 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1817 OutContext); 1818 break; 1819 } 1820 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1821 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1822 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1823 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1824 break; 1825 } 1826 } 1827 1828 assert(Value && "Unknown entry kind!"); 1829 1830 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1831 OutStreamer->EmitValue(Value, EntrySize); 1832 } 1833 1834 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1835 /// special global used by LLVM. If so, emit it and return true, otherwise 1836 /// do nothing and return false. 1837 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1838 if (GV->getName() == "llvm.used") { 1839 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1840 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1841 return true; 1842 } 1843 1844 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1845 if (GV->getSection() == "llvm.metadata" || 1846 GV->hasAvailableExternallyLinkage()) 1847 return true; 1848 1849 if (!GV->hasAppendingLinkage()) return false; 1850 1851 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1852 1853 if (GV->getName() == "llvm.global_ctors") { 1854 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1855 /* isCtor */ true); 1856 1857 return true; 1858 } 1859 1860 if (GV->getName() == "llvm.global_dtors") { 1861 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1862 /* isCtor */ false); 1863 1864 return true; 1865 } 1866 1867 report_fatal_error("unknown special variable"); 1868 } 1869 1870 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1871 /// global in the specified llvm.used list. 1872 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1873 // Should be an array of 'i8*'. 1874 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1875 const GlobalValue *GV = 1876 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1877 if (GV) 1878 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1879 } 1880 } 1881 1882 namespace { 1883 1884 struct Structor { 1885 int Priority = 0; 1886 Constant *Func = nullptr; 1887 GlobalValue *ComdatKey = nullptr; 1888 1889 Structor() = default; 1890 }; 1891 1892 } // end anonymous namespace 1893 1894 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1895 /// priority. 1896 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1897 bool isCtor) { 1898 // Should be an array of '{ int, void ()* }' structs. The first value is the 1899 // init priority. 1900 if (!isa<ConstantArray>(List)) return; 1901 1902 // Sanity check the structors list. 1903 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1904 if (!InitList) return; // Not an array! 1905 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1906 // FIXME: Only allow the 3-field form in LLVM 4.0. 1907 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1908 return; // Not an array of two or three elements! 1909 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1910 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1911 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1912 return; // Not (int, ptr, ptr). 1913 1914 // Gather the structors in a form that's convenient for sorting by priority. 1915 SmallVector<Structor, 8> Structors; 1916 for (Value *O : InitList->operands()) { 1917 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1918 if (!CS) continue; // Malformed. 1919 if (CS->getOperand(1)->isNullValue()) 1920 break; // Found a null terminator, skip the rest. 1921 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1922 if (!Priority) continue; // Malformed. 1923 Structors.push_back(Structor()); 1924 Structor &S = Structors.back(); 1925 S.Priority = Priority->getLimitedValue(65535); 1926 S.Func = CS->getOperand(1); 1927 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1928 S.ComdatKey = 1929 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1930 } 1931 1932 // Emit the function pointers in the target-specific order 1933 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1934 std::stable_sort(Structors.begin(), Structors.end(), 1935 [](const Structor &L, 1936 const Structor &R) { return L.Priority < R.Priority; }); 1937 for (Structor &S : Structors) { 1938 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1939 const MCSymbol *KeySym = nullptr; 1940 if (GlobalValue *GV = S.ComdatKey) { 1941 if (GV->isDeclarationForLinker()) 1942 // If the associated variable is not defined in this module 1943 // (it might be available_externally, or have been an 1944 // available_externally definition that was dropped by the 1945 // EliminateAvailableExternally pass), some other TU 1946 // will provide its dynamic initializer. 1947 continue; 1948 1949 KeySym = getSymbol(GV); 1950 } 1951 MCSection *OutputSection = 1952 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1953 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1954 OutStreamer->SwitchSection(OutputSection); 1955 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1956 EmitAlignment(Align); 1957 EmitXXStructor(DL, S.Func); 1958 } 1959 } 1960 1961 void AsmPrinter::EmitModuleIdents(Module &M) { 1962 if (!MAI->hasIdentDirective()) 1963 return; 1964 1965 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1966 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1967 const MDNode *N = NMD->getOperand(i); 1968 assert(N->getNumOperands() == 1 && 1969 "llvm.ident metadata entry can have only one operand"); 1970 const MDString *S = cast<MDString>(N->getOperand(0)); 1971 OutStreamer->EmitIdent(S->getString()); 1972 } 1973 } 1974 } 1975 1976 void AsmPrinter::EmitModuleCommandLines(Module &M) { 1977 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 1978 if (!CommandLine) 1979 return; 1980 1981 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 1982 if (!NMD || !NMD->getNumOperands()) 1983 return; 1984 1985 OutStreamer->PushSection(); 1986 OutStreamer->SwitchSection(CommandLine); 1987 OutStreamer->EmitZeros(1); 1988 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1989 const MDNode *N = NMD->getOperand(i); 1990 assert(N->getNumOperands() == 1 && 1991 "llvm.commandline metadata entry can have only one operand"); 1992 const MDString *S = cast<MDString>(N->getOperand(0)); 1993 OutStreamer->EmitBytes(S->getString()); 1994 OutStreamer->EmitZeros(1); 1995 } 1996 OutStreamer->PopSection(); 1997 } 1998 1999 //===--------------------------------------------------------------------===// 2000 // Emission and print routines 2001 // 2002 2003 /// Emit a byte directive and value. 2004 /// 2005 void AsmPrinter::emitInt8(int Value) const { 2006 OutStreamer->EmitIntValue(Value, 1); 2007 } 2008 2009 /// Emit a short directive and value. 2010 void AsmPrinter::emitInt16(int Value) const { 2011 OutStreamer->EmitIntValue(Value, 2); 2012 } 2013 2014 /// Emit a long directive and value. 2015 void AsmPrinter::emitInt32(int Value) const { 2016 OutStreamer->EmitIntValue(Value, 4); 2017 } 2018 2019 /// Emit a long long directive and value. 2020 void AsmPrinter::emitInt64(uint64_t Value) const { 2021 OutStreamer->EmitIntValue(Value, 8); 2022 } 2023 2024 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2025 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2026 /// .set if it avoids relocations. 2027 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2028 unsigned Size) const { 2029 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2030 } 2031 2032 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2033 /// where the size in bytes of the directive is specified by Size and Label 2034 /// specifies the label. This implicitly uses .set if it is available. 2035 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2036 unsigned Size, 2037 bool IsSectionRelative) const { 2038 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2039 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2040 if (Size > 4) 2041 OutStreamer->EmitZeros(Size - 4); 2042 return; 2043 } 2044 2045 // Emit Label+Offset (or just Label if Offset is zero) 2046 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2047 if (Offset) 2048 Expr = MCBinaryExpr::createAdd( 2049 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2050 2051 OutStreamer->EmitValue(Expr, Size); 2052 } 2053 2054 //===----------------------------------------------------------------------===// 2055 2056 // EmitAlignment - Emit an alignment directive to the specified power of 2057 // two boundary. For example, if you pass in 3 here, you will get an 8 2058 // byte alignment. If a global value is specified, and if that global has 2059 // an explicit alignment requested, it will override the alignment request 2060 // if required for correctness. 2061 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2062 if (GV) 2063 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2064 2065 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2066 2067 assert(NumBits < 2068 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2069 "undefined behavior"); 2070 if (getCurrentSection()->getKind().isText()) 2071 OutStreamer->EmitCodeAlignment(1u << NumBits); 2072 else 2073 OutStreamer->EmitValueToAlignment(1u << NumBits); 2074 } 2075 2076 //===----------------------------------------------------------------------===// 2077 // Constant emission. 2078 //===----------------------------------------------------------------------===// 2079 2080 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2081 MCContext &Ctx = OutContext; 2082 2083 if (CV->isNullValue() || isa<UndefValue>(CV)) 2084 return MCConstantExpr::create(0, Ctx); 2085 2086 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2087 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2088 2089 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2090 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2091 2092 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2093 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2094 2095 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2096 if (!CE) { 2097 llvm_unreachable("Unknown constant value to lower!"); 2098 } 2099 2100 switch (CE->getOpcode()) { 2101 default: 2102 // If the code isn't optimized, there may be outstanding folding 2103 // opportunities. Attempt to fold the expression using DataLayout as a 2104 // last resort before giving up. 2105 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2106 if (C != CE) 2107 return lowerConstant(C); 2108 2109 // Otherwise report the problem to the user. 2110 { 2111 std::string S; 2112 raw_string_ostream OS(S); 2113 OS << "Unsupported expression in static initializer: "; 2114 CE->printAsOperand(OS, /*PrintType=*/false, 2115 !MF ? nullptr : MF->getFunction().getParent()); 2116 report_fatal_error(OS.str()); 2117 } 2118 case Instruction::GetElementPtr: { 2119 // Generate a symbolic expression for the byte address 2120 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2121 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2122 2123 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2124 if (!OffsetAI) 2125 return Base; 2126 2127 int64_t Offset = OffsetAI.getSExtValue(); 2128 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2129 Ctx); 2130 } 2131 2132 case Instruction::Trunc: 2133 // We emit the value and depend on the assembler to truncate the generated 2134 // expression properly. This is important for differences between 2135 // blockaddress labels. Since the two labels are in the same function, it 2136 // is reasonable to treat their delta as a 32-bit value. 2137 LLVM_FALLTHROUGH; 2138 case Instruction::BitCast: 2139 return lowerConstant(CE->getOperand(0)); 2140 2141 case Instruction::IntToPtr: { 2142 const DataLayout &DL = getDataLayout(); 2143 2144 // Handle casts to pointers by changing them into casts to the appropriate 2145 // integer type. This promotes constant folding and simplifies this code. 2146 Constant *Op = CE->getOperand(0); 2147 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2148 false/*ZExt*/); 2149 return lowerConstant(Op); 2150 } 2151 2152 case Instruction::PtrToInt: { 2153 const DataLayout &DL = getDataLayout(); 2154 2155 // Support only foldable casts to/from pointers that can be eliminated by 2156 // changing the pointer to the appropriately sized integer type. 2157 Constant *Op = CE->getOperand(0); 2158 Type *Ty = CE->getType(); 2159 2160 const MCExpr *OpExpr = lowerConstant(Op); 2161 2162 // We can emit the pointer value into this slot if the slot is an 2163 // integer slot equal to the size of the pointer. 2164 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2165 return OpExpr; 2166 2167 // Otherwise the pointer is smaller than the resultant integer, mask off 2168 // the high bits so we are sure to get a proper truncation if the input is 2169 // a constant expr. 2170 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2171 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2172 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2173 } 2174 2175 case Instruction::Sub: { 2176 GlobalValue *LHSGV; 2177 APInt LHSOffset; 2178 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2179 getDataLayout())) { 2180 GlobalValue *RHSGV; 2181 APInt RHSOffset; 2182 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2183 getDataLayout())) { 2184 const MCExpr *RelocExpr = 2185 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2186 if (!RelocExpr) 2187 RelocExpr = MCBinaryExpr::createSub( 2188 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2189 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2190 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2191 if (Addend != 0) 2192 RelocExpr = MCBinaryExpr::createAdd( 2193 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2194 return RelocExpr; 2195 } 2196 } 2197 } 2198 // else fallthrough 2199 LLVM_FALLTHROUGH; 2200 2201 // The MC library also has a right-shift operator, but it isn't consistently 2202 // signed or unsigned between different targets. 2203 case Instruction::Add: 2204 case Instruction::Mul: 2205 case Instruction::SDiv: 2206 case Instruction::SRem: 2207 case Instruction::Shl: 2208 case Instruction::And: 2209 case Instruction::Or: 2210 case Instruction::Xor: { 2211 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2212 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2213 switch (CE->getOpcode()) { 2214 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2215 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2216 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2217 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2218 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2219 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2220 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2221 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2222 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2223 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2224 } 2225 } 2226 } 2227 } 2228 2229 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2230 AsmPrinter &AP, 2231 const Constant *BaseCV = nullptr, 2232 uint64_t Offset = 0); 2233 2234 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2235 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2236 2237 /// isRepeatedByteSequence - Determine whether the given value is 2238 /// composed of a repeated sequence of identical bytes and return the 2239 /// byte value. If it is not a repeated sequence, return -1. 2240 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2241 StringRef Data = V->getRawDataValues(); 2242 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2243 char C = Data[0]; 2244 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2245 if (Data[i] != C) return -1; 2246 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2247 } 2248 2249 /// isRepeatedByteSequence - Determine whether the given value is 2250 /// composed of a repeated sequence of identical bytes and return the 2251 /// byte value. If it is not a repeated sequence, return -1. 2252 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2253 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2254 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2255 assert(Size % 8 == 0); 2256 2257 // Extend the element to take zero padding into account. 2258 APInt Value = CI->getValue().zextOrSelf(Size); 2259 if (!Value.isSplat(8)) 2260 return -1; 2261 2262 return Value.zextOrTrunc(8).getZExtValue(); 2263 } 2264 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2265 // Make sure all array elements are sequences of the same repeated 2266 // byte. 2267 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2268 Constant *Op0 = CA->getOperand(0); 2269 int Byte = isRepeatedByteSequence(Op0, DL); 2270 if (Byte == -1) 2271 return -1; 2272 2273 // All array elements must be equal. 2274 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2275 if (CA->getOperand(i) != Op0) 2276 return -1; 2277 return Byte; 2278 } 2279 2280 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2281 return isRepeatedByteSequence(CDS); 2282 2283 return -1; 2284 } 2285 2286 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2287 const ConstantDataSequential *CDS, 2288 AsmPrinter &AP) { 2289 // See if we can aggregate this into a .fill, if so, emit it as such. 2290 int Value = isRepeatedByteSequence(CDS, DL); 2291 if (Value != -1) { 2292 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2293 // Don't emit a 1-byte object as a .fill. 2294 if (Bytes > 1) 2295 return AP.OutStreamer->emitFill(Bytes, Value); 2296 } 2297 2298 // If this can be emitted with .ascii/.asciz, emit it as such. 2299 if (CDS->isString()) 2300 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2301 2302 // Otherwise, emit the values in successive locations. 2303 unsigned ElementByteSize = CDS->getElementByteSize(); 2304 if (isa<IntegerType>(CDS->getElementType())) { 2305 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2306 if (AP.isVerbose()) 2307 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2308 CDS->getElementAsInteger(i)); 2309 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2310 ElementByteSize); 2311 } 2312 } else { 2313 Type *ET = CDS->getElementType(); 2314 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2315 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2316 } 2317 2318 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2319 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2320 CDS->getNumElements(); 2321 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2322 if (unsigned Padding = Size - EmittedSize) 2323 AP.OutStreamer->EmitZeros(Padding); 2324 } 2325 2326 static void emitGlobalConstantArray(const DataLayout &DL, 2327 const ConstantArray *CA, AsmPrinter &AP, 2328 const Constant *BaseCV, uint64_t Offset) { 2329 // See if we can aggregate some values. Make sure it can be 2330 // represented as a series of bytes of the constant value. 2331 int Value = isRepeatedByteSequence(CA, DL); 2332 2333 if (Value != -1) { 2334 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2335 AP.OutStreamer->emitFill(Bytes, Value); 2336 } 2337 else { 2338 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2339 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2340 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2341 } 2342 } 2343 } 2344 2345 static void emitGlobalConstantVector(const DataLayout &DL, 2346 const ConstantVector *CV, AsmPrinter &AP) { 2347 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2348 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2349 2350 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2351 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2352 CV->getType()->getNumElements(); 2353 if (unsigned Padding = Size - EmittedSize) 2354 AP.OutStreamer->EmitZeros(Padding); 2355 } 2356 2357 static void emitGlobalConstantStruct(const DataLayout &DL, 2358 const ConstantStruct *CS, AsmPrinter &AP, 2359 const Constant *BaseCV, uint64_t Offset) { 2360 // Print the fields in successive locations. Pad to align if needed! 2361 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2362 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2363 uint64_t SizeSoFar = 0; 2364 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2365 const Constant *Field = CS->getOperand(i); 2366 2367 // Print the actual field value. 2368 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2369 2370 // Check if padding is needed and insert one or more 0s. 2371 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2372 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2373 - Layout->getElementOffset(i)) - FieldSize; 2374 SizeSoFar += FieldSize + PadSize; 2375 2376 // Insert padding - this may include padding to increase the size of the 2377 // current field up to the ABI size (if the struct is not packed) as well 2378 // as padding to ensure that the next field starts at the right offset. 2379 AP.OutStreamer->EmitZeros(PadSize); 2380 } 2381 assert(SizeSoFar == Layout->getSizeInBytes() && 2382 "Layout of constant struct may be incorrect!"); 2383 } 2384 2385 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2386 APInt API = APF.bitcastToAPInt(); 2387 2388 // First print a comment with what we think the original floating-point value 2389 // should have been. 2390 if (AP.isVerbose()) { 2391 SmallString<8> StrVal; 2392 APF.toString(StrVal); 2393 2394 if (ET) 2395 ET->print(AP.OutStreamer->GetCommentOS()); 2396 else 2397 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2398 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2399 } 2400 2401 // Now iterate through the APInt chunks, emitting them in endian-correct 2402 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2403 // floats). 2404 unsigned NumBytes = API.getBitWidth() / 8; 2405 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2406 const uint64_t *p = API.getRawData(); 2407 2408 // PPC's long double has odd notions of endianness compared to how LLVM 2409 // handles it: p[0] goes first for *big* endian on PPC. 2410 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2411 int Chunk = API.getNumWords() - 1; 2412 2413 if (TrailingBytes) 2414 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2415 2416 for (; Chunk >= 0; --Chunk) 2417 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2418 } else { 2419 unsigned Chunk; 2420 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2421 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2422 2423 if (TrailingBytes) 2424 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2425 } 2426 2427 // Emit the tail padding for the long double. 2428 const DataLayout &DL = AP.getDataLayout(); 2429 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2430 } 2431 2432 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2433 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2434 } 2435 2436 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2437 const DataLayout &DL = AP.getDataLayout(); 2438 unsigned BitWidth = CI->getBitWidth(); 2439 2440 // Copy the value as we may massage the layout for constants whose bit width 2441 // is not a multiple of 64-bits. 2442 APInt Realigned(CI->getValue()); 2443 uint64_t ExtraBits = 0; 2444 unsigned ExtraBitsSize = BitWidth & 63; 2445 2446 if (ExtraBitsSize) { 2447 // The bit width of the data is not a multiple of 64-bits. 2448 // The extra bits are expected to be at the end of the chunk of the memory. 2449 // Little endian: 2450 // * Nothing to be done, just record the extra bits to emit. 2451 // Big endian: 2452 // * Record the extra bits to emit. 2453 // * Realign the raw data to emit the chunks of 64-bits. 2454 if (DL.isBigEndian()) { 2455 // Basically the structure of the raw data is a chunk of 64-bits cells: 2456 // 0 1 BitWidth / 64 2457 // [chunk1][chunk2] ... [chunkN]. 2458 // The most significant chunk is chunkN and it should be emitted first. 2459 // However, due to the alignment issue chunkN contains useless bits. 2460 // Realign the chunks so that they contain only useless information: 2461 // ExtraBits 0 1 (BitWidth / 64) - 1 2462 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2463 ExtraBits = Realigned.getRawData()[0] & 2464 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2465 Realigned.lshrInPlace(ExtraBitsSize); 2466 } else 2467 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2468 } 2469 2470 // We don't expect assemblers to support integer data directives 2471 // for more than 64 bits, so we emit the data in at most 64-bit 2472 // quantities at a time. 2473 const uint64_t *RawData = Realigned.getRawData(); 2474 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2475 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2476 AP.OutStreamer->EmitIntValue(Val, 8); 2477 } 2478 2479 if (ExtraBitsSize) { 2480 // Emit the extra bits after the 64-bits chunks. 2481 2482 // Emit a directive that fills the expected size. 2483 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2484 Size -= (BitWidth / 64) * 8; 2485 assert(Size && Size * 8 >= ExtraBitsSize && 2486 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2487 == ExtraBits && "Directive too small for extra bits."); 2488 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2489 } 2490 } 2491 2492 /// Transform a not absolute MCExpr containing a reference to a GOT 2493 /// equivalent global, by a target specific GOT pc relative access to the 2494 /// final symbol. 2495 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2496 const Constant *BaseCst, 2497 uint64_t Offset) { 2498 // The global @foo below illustrates a global that uses a got equivalent. 2499 // 2500 // @bar = global i32 42 2501 // @gotequiv = private unnamed_addr constant i32* @bar 2502 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2503 // i64 ptrtoint (i32* @foo to i64)) 2504 // to i32) 2505 // 2506 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2507 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2508 // form: 2509 // 2510 // foo = cstexpr, where 2511 // cstexpr := <gotequiv> - "." + <cst> 2512 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2513 // 2514 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2515 // 2516 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2517 // gotpcrelcst := <offset from @foo base> + <cst> 2518 MCValue MV; 2519 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2520 return; 2521 const MCSymbolRefExpr *SymA = MV.getSymA(); 2522 if (!SymA) 2523 return; 2524 2525 // Check that GOT equivalent symbol is cached. 2526 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2527 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2528 return; 2529 2530 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2531 if (!BaseGV) 2532 return; 2533 2534 // Check for a valid base symbol 2535 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2536 const MCSymbolRefExpr *SymB = MV.getSymB(); 2537 2538 if (!SymB || BaseSym != &SymB->getSymbol()) 2539 return; 2540 2541 // Make sure to match: 2542 // 2543 // gotpcrelcst := <offset from @foo base> + <cst> 2544 // 2545 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2546 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2547 // if the target knows how to encode it. 2548 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2549 if (GOTPCRelCst < 0) 2550 return; 2551 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2552 return; 2553 2554 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2555 // 2556 // bar: 2557 // .long 42 2558 // gotequiv: 2559 // .quad bar 2560 // foo: 2561 // .long gotequiv - "." + <cst> 2562 // 2563 // is replaced by the target specific equivalent to: 2564 // 2565 // bar: 2566 // .long 42 2567 // foo: 2568 // .long bar@GOTPCREL+<gotpcrelcst> 2569 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2570 const GlobalVariable *GV = Result.first; 2571 int NumUses = (int)Result.second; 2572 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2573 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2574 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2575 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2576 2577 // Update GOT equivalent usage information 2578 --NumUses; 2579 if (NumUses >= 0) 2580 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2581 } 2582 2583 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2584 AsmPrinter &AP, const Constant *BaseCV, 2585 uint64_t Offset) { 2586 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2587 2588 // Globals with sub-elements such as combinations of arrays and structs 2589 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2590 // constant symbol base and the current position with BaseCV and Offset. 2591 if (!BaseCV && CV->hasOneUse()) 2592 BaseCV = dyn_cast<Constant>(CV->user_back()); 2593 2594 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2595 return AP.OutStreamer->EmitZeros(Size); 2596 2597 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2598 switch (Size) { 2599 case 1: 2600 case 2: 2601 case 4: 2602 case 8: 2603 if (AP.isVerbose()) 2604 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2605 CI->getZExtValue()); 2606 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2607 return; 2608 default: 2609 emitGlobalConstantLargeInt(CI, AP); 2610 return; 2611 } 2612 } 2613 2614 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2615 return emitGlobalConstantFP(CFP, AP); 2616 2617 if (isa<ConstantPointerNull>(CV)) { 2618 AP.OutStreamer->EmitIntValue(0, Size); 2619 return; 2620 } 2621 2622 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2623 return emitGlobalConstantDataSequential(DL, CDS, AP); 2624 2625 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2626 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2627 2628 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2629 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2630 2631 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2632 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2633 // vectors). 2634 if (CE->getOpcode() == Instruction::BitCast) 2635 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2636 2637 if (Size > 8) { 2638 // If the constant expression's size is greater than 64-bits, then we have 2639 // to emit the value in chunks. Try to constant fold the value and emit it 2640 // that way. 2641 Constant *New = ConstantFoldConstant(CE, DL); 2642 if (New && New != CE) 2643 return emitGlobalConstantImpl(DL, New, AP); 2644 } 2645 } 2646 2647 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2648 return emitGlobalConstantVector(DL, V, AP); 2649 2650 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2651 // thread the streamer with EmitValue. 2652 const MCExpr *ME = AP.lowerConstant(CV); 2653 2654 // Since lowerConstant already folded and got rid of all IR pointer and 2655 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2656 // directly. 2657 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2658 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2659 2660 AP.OutStreamer->EmitValue(ME, Size); 2661 } 2662 2663 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2664 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2665 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2666 if (Size) 2667 emitGlobalConstantImpl(DL, CV, *this); 2668 else if (MAI->hasSubsectionsViaSymbols()) { 2669 // If the global has zero size, emit a single byte so that two labels don't 2670 // look like they are at the same location. 2671 OutStreamer->EmitIntValue(0, 1); 2672 } 2673 } 2674 2675 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2676 // Target doesn't support this yet! 2677 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2678 } 2679 2680 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2681 if (Offset > 0) 2682 OS << '+' << Offset; 2683 else if (Offset < 0) 2684 OS << Offset; 2685 } 2686 2687 //===----------------------------------------------------------------------===// 2688 // Symbol Lowering Routines. 2689 //===----------------------------------------------------------------------===// 2690 2691 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2692 return OutContext.createTempSymbol(Name, true); 2693 } 2694 2695 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2696 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2697 } 2698 2699 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2700 return MMI->getAddrLabelSymbol(BB); 2701 } 2702 2703 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2704 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2705 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2706 const MachineConstantPoolEntry &CPE = 2707 MF->getConstantPool()->getConstants()[CPID]; 2708 if (!CPE.isMachineConstantPoolEntry()) { 2709 const DataLayout &DL = MF->getDataLayout(); 2710 SectionKind Kind = CPE.getSectionKind(&DL); 2711 const Constant *C = CPE.Val.ConstVal; 2712 unsigned Align = CPE.Alignment; 2713 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2714 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2715 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2716 if (Sym->isUndefined()) 2717 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2718 return Sym; 2719 } 2720 } 2721 } 2722 } 2723 2724 const DataLayout &DL = getDataLayout(); 2725 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2726 "CPI" + Twine(getFunctionNumber()) + "_" + 2727 Twine(CPID)); 2728 } 2729 2730 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2731 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2732 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2733 } 2734 2735 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2736 /// FIXME: privatize to AsmPrinter. 2737 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2738 const DataLayout &DL = getDataLayout(); 2739 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2740 Twine(getFunctionNumber()) + "_" + 2741 Twine(UID) + "_set_" + Twine(MBBID)); 2742 } 2743 2744 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2745 StringRef Suffix) const { 2746 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2747 } 2748 2749 /// Return the MCSymbol for the specified ExternalSymbol. 2750 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2751 SmallString<60> NameStr; 2752 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2753 return OutContext.getOrCreateSymbol(NameStr); 2754 } 2755 2756 /// PrintParentLoopComment - Print comments about parent loops of this one. 2757 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2758 unsigned FunctionNumber) { 2759 if (!Loop) return; 2760 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2761 OS.indent(Loop->getLoopDepth()*2) 2762 << "Parent Loop BB" << FunctionNumber << "_" 2763 << Loop->getHeader()->getNumber() 2764 << " Depth=" << Loop->getLoopDepth() << '\n'; 2765 } 2766 2767 /// PrintChildLoopComment - Print comments about child loops within 2768 /// the loop for this basic block, with nesting. 2769 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2770 unsigned FunctionNumber) { 2771 // Add child loop information 2772 for (const MachineLoop *CL : *Loop) { 2773 OS.indent(CL->getLoopDepth()*2) 2774 << "Child Loop BB" << FunctionNumber << "_" 2775 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2776 << '\n'; 2777 PrintChildLoopComment(OS, CL, FunctionNumber); 2778 } 2779 } 2780 2781 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2782 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2783 const MachineLoopInfo *LI, 2784 const AsmPrinter &AP) { 2785 // Add loop depth information 2786 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2787 if (!Loop) return; 2788 2789 MachineBasicBlock *Header = Loop->getHeader(); 2790 assert(Header && "No header for loop"); 2791 2792 // If this block is not a loop header, just print out what is the loop header 2793 // and return. 2794 if (Header != &MBB) { 2795 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2796 Twine(AP.getFunctionNumber())+"_" + 2797 Twine(Loop->getHeader()->getNumber())+ 2798 " Depth="+Twine(Loop->getLoopDepth())); 2799 return; 2800 } 2801 2802 // Otherwise, it is a loop header. Print out information about child and 2803 // parent loops. 2804 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2805 2806 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2807 2808 OS << "=>"; 2809 OS.indent(Loop->getLoopDepth()*2-2); 2810 2811 OS << "This "; 2812 if (Loop->empty()) 2813 OS << "Inner "; 2814 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2815 2816 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2817 } 2818 2819 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2820 MCCodePaddingContext &Context) const { 2821 assert(MF != nullptr && "Machine function must be valid"); 2822 Context.IsPaddingActive = !MF->hasInlineAsm() && 2823 !MF->getFunction().optForSize() && 2824 TM.getOptLevel() != CodeGenOpt::None; 2825 Context.IsBasicBlockReachableViaFallthrough = 2826 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2827 MBB.pred_end(); 2828 Context.IsBasicBlockReachableViaBranch = 2829 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2830 } 2831 2832 /// EmitBasicBlockStart - This method prints the label for the specified 2833 /// MachineBasicBlock, an alignment (if present) and a comment describing 2834 /// it if appropriate. 2835 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2836 // End the previous funclet and start a new one. 2837 if (MBB.isEHFuncletEntry()) { 2838 for (const HandlerInfo &HI : Handlers) { 2839 HI.Handler->endFunclet(); 2840 HI.Handler->beginFunclet(MBB); 2841 } 2842 } 2843 2844 // Emit an alignment directive for this block, if needed. 2845 if (unsigned Align = MBB.getAlignment()) 2846 EmitAlignment(Align); 2847 MCCodePaddingContext Context; 2848 setupCodePaddingContext(MBB, Context); 2849 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2850 2851 // If the block has its address taken, emit any labels that were used to 2852 // reference the block. It is possible that there is more than one label 2853 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2854 // the references were generated. 2855 if (MBB.hasAddressTaken()) { 2856 const BasicBlock *BB = MBB.getBasicBlock(); 2857 if (isVerbose()) 2858 OutStreamer->AddComment("Block address taken"); 2859 2860 // MBBs can have their address taken as part of CodeGen without having 2861 // their corresponding BB's address taken in IR 2862 if (BB->hasAddressTaken()) 2863 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2864 OutStreamer->EmitLabel(Sym); 2865 } 2866 2867 // Print some verbose block comments. 2868 if (isVerbose()) { 2869 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2870 if (BB->hasName()) { 2871 BB->printAsOperand(OutStreamer->GetCommentOS(), 2872 /*PrintType=*/false, BB->getModule()); 2873 OutStreamer->GetCommentOS() << '\n'; 2874 } 2875 } 2876 2877 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2878 emitBasicBlockLoopComments(MBB, MLI, *this); 2879 } 2880 2881 // Print the main label for the block. 2882 if (MBB.pred_empty() || 2883 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2884 if (isVerbose()) { 2885 // NOTE: Want this comment at start of line, don't emit with AddComment. 2886 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2887 false); 2888 } 2889 } else { 2890 OutStreamer->EmitLabel(MBB.getSymbol()); 2891 } 2892 } 2893 2894 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2895 MCCodePaddingContext Context; 2896 setupCodePaddingContext(MBB, Context); 2897 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2898 } 2899 2900 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2901 bool IsDefinition) const { 2902 MCSymbolAttr Attr = MCSA_Invalid; 2903 2904 switch (Visibility) { 2905 default: break; 2906 case GlobalValue::HiddenVisibility: 2907 if (IsDefinition) 2908 Attr = MAI->getHiddenVisibilityAttr(); 2909 else 2910 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2911 break; 2912 case GlobalValue::ProtectedVisibility: 2913 Attr = MAI->getProtectedVisibilityAttr(); 2914 break; 2915 } 2916 2917 if (Attr != MCSA_Invalid) 2918 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2919 } 2920 2921 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2922 /// exactly one predecessor and the control transfer mechanism between 2923 /// the predecessor and this block is a fall-through. 2924 bool AsmPrinter:: 2925 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2926 // If this is a landing pad, it isn't a fall through. If it has no preds, 2927 // then nothing falls through to it. 2928 if (MBB->isEHPad() || MBB->pred_empty()) 2929 return false; 2930 2931 // If there isn't exactly one predecessor, it can't be a fall through. 2932 if (MBB->pred_size() > 1) 2933 return false; 2934 2935 // The predecessor has to be immediately before this block. 2936 MachineBasicBlock *Pred = *MBB->pred_begin(); 2937 if (!Pred->isLayoutSuccessor(MBB)) 2938 return false; 2939 2940 // If the block is completely empty, then it definitely does fall through. 2941 if (Pred->empty()) 2942 return true; 2943 2944 // Check the terminators in the previous blocks 2945 for (const auto &MI : Pred->terminators()) { 2946 // If it is not a simple branch, we are in a table somewhere. 2947 if (!MI.isBranch() || MI.isIndirectBranch()) 2948 return false; 2949 2950 // If we are the operands of one of the branches, this is not a fall 2951 // through. Note that targets with delay slots will usually bundle 2952 // terminators with the delay slot instruction. 2953 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2954 if (OP->isJTI()) 2955 return false; 2956 if (OP->isMBB() && OP->getMBB() == MBB) 2957 return false; 2958 } 2959 } 2960 2961 return true; 2962 } 2963 2964 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2965 if (!S.usesMetadata()) 2966 return nullptr; 2967 2968 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2969 gcp_map_type::iterator GCPI = GCMap.find(&S); 2970 if (GCPI != GCMap.end()) 2971 return GCPI->second.get(); 2972 2973 auto Name = S.getName(); 2974 2975 for (GCMetadataPrinterRegistry::iterator 2976 I = GCMetadataPrinterRegistry::begin(), 2977 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2978 if (Name == I->getName()) { 2979 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2980 GMP->S = &S; 2981 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2982 return IterBool.first->second.get(); 2983 } 2984 2985 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2986 } 2987 2988 void AsmPrinter::emitStackMaps(StackMaps &SM) { 2989 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 2990 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 2991 bool NeedsDefault = false; 2992 if (MI->begin() == MI->end()) 2993 // No GC strategy, use the default format. 2994 NeedsDefault = true; 2995 else 2996 for (auto &I : *MI) { 2997 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 2998 if (MP->emitStackMaps(SM, *this)) 2999 continue; 3000 // The strategy doesn't have printer or doesn't emit custom stack maps. 3001 // Use the default format. 3002 NeedsDefault = true; 3003 } 3004 3005 if (NeedsDefault) 3006 SM.serializeToStackMapSection(); 3007 } 3008 3009 /// Pin vtable to this file. 3010 AsmPrinterHandler::~AsmPrinterHandler() = default; 3011 3012 void AsmPrinterHandler::markFunctionEnd() {} 3013 3014 // In the binary's "xray_instr_map" section, an array of these function entries 3015 // describes each instrumentation point. When XRay patches your code, the index 3016 // into this table will be given to your handler as a patch point identifier. 3017 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3018 const MCSymbol *CurrentFnSym) const { 3019 Out->EmitSymbolValue(Sled, Bytes); 3020 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3021 auto Kind8 = static_cast<uint8_t>(Kind); 3022 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3023 Out->EmitBinaryData( 3024 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3025 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3026 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3027 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3028 Out->EmitZeros(Padding); 3029 } 3030 3031 void AsmPrinter::emitXRayTable() { 3032 if (Sleds.empty()) 3033 return; 3034 3035 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3036 const Function &F = MF->getFunction(); 3037 MCSection *InstMap = nullptr; 3038 MCSection *FnSledIndex = nullptr; 3039 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3040 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3041 assert(Associated != nullptr); 3042 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3043 std::string GroupName; 3044 if (F.hasComdat()) { 3045 Flags |= ELF::SHF_GROUP; 3046 GroupName = F.getComdat()->getName(); 3047 } 3048 3049 auto UniqueID = ++XRayFnUniqueID; 3050 InstMap = 3051 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3052 GroupName, UniqueID, Associated); 3053 FnSledIndex = 3054 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3055 GroupName, UniqueID, Associated); 3056 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3057 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3058 SectionKind::getReadOnlyWithRel()); 3059 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3060 SectionKind::getReadOnlyWithRel()); 3061 } else { 3062 llvm_unreachable("Unsupported target"); 3063 } 3064 3065 auto WordSizeBytes = MAI->getCodePointerSize(); 3066 3067 // Now we switch to the instrumentation map section. Because this is done 3068 // per-function, we are able to create an index entry that will represent the 3069 // range of sleds associated with a function. 3070 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3071 OutStreamer->SwitchSection(InstMap); 3072 OutStreamer->EmitLabel(SledsStart); 3073 for (const auto &Sled : Sleds) 3074 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3075 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3076 OutStreamer->EmitLabel(SledsEnd); 3077 3078 // We then emit a single entry in the index per function. We use the symbols 3079 // that bound the instrumentation map as the range for a specific function. 3080 // Each entry here will be 2 * word size aligned, as we're writing down two 3081 // pointers. This should work for both 32-bit and 64-bit platforms. 3082 OutStreamer->SwitchSection(FnSledIndex); 3083 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3084 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3085 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3086 OutStreamer->SwitchSection(PrevSection); 3087 Sleds.clear(); 3088 } 3089 3090 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3091 SledKind Kind, uint8_t Version) { 3092 const Function &F = MI.getMF()->getFunction(); 3093 auto Attr = F.getFnAttribute("function-instrument"); 3094 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3095 bool AlwaysInstrument = 3096 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3097 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3098 Kind = SledKind::LOG_ARGS_ENTER; 3099 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3100 AlwaysInstrument, &F, Version}); 3101 } 3102 3103 uint16_t AsmPrinter::getDwarfVersion() const { 3104 return OutStreamer->getContext().getDwarfVersion(); 3105 } 3106 3107 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3108 OutStreamer->getContext().setDwarfVersion(Version); 3109 } 3110