1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/ObjectUtils.h" 33 #include "llvm/BinaryFormat/Dwarf.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/GCMetadataPrinter.h" 38 #include "llvm/CodeGen/GCStrategy.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineConstantPool.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBundle.h" 46 #include "llvm/CodeGen/MachineJumpTableInfo.h" 47 #include "llvm/CodeGen/MachineLoopInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfoMetadata.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalAlias.h" 60 #include "llvm/IR/GlobalIFunc.h" 61 #include "llvm/IR/GlobalIndirectSymbol.h" 62 #include "llvm/IR/GlobalObject.h" 63 #include "llvm/IR/GlobalValue.h" 64 #include "llvm/IR/GlobalVariable.h" 65 #include "llvm/IR/Mangler.h" 66 #include "llvm/IR/Metadata.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/MC/MCAsmInfo.h" 71 #include "llvm/MC/MCContext.h" 72 #include "llvm/MC/MCDirectives.h" 73 #include "llvm/MC/MCExpr.h" 74 #include "llvm/MC/MCInst.h" 75 #include "llvm/MC/MCSection.h" 76 #include "llvm/MC/MCSectionELF.h" 77 #include "llvm/MC/MCSectionMachO.h" 78 #include "llvm/MC/MCStreamer.h" 79 #include "llvm/MC/MCSubtargetInfo.h" 80 #include "llvm/MC/MCSymbol.h" 81 #include "llvm/MC/MCTargetOptions.h" 82 #include "llvm/MC/MCValue.h" 83 #include "llvm/MC/SectionKind.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/Casting.h" 86 #include "llvm/Support/Compiler.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/TargetRegistry.h" 91 #include "llvm/Support/Timer.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Target/TargetFrameLowering.h" 94 #include "llvm/Target/TargetInstrInfo.h" 95 #include "llvm/Target/TargetLowering.h" 96 #include "llvm/Target/TargetLoweringObjectFile.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetRegisterInfo.h" 99 #include "llvm/Target/TargetSubtargetInfo.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cinttypes> 103 #include <cstdint> 104 #include <limits> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 #include <vector> 109 110 using namespace llvm; 111 112 #define DEBUG_TYPE "asm-printer" 113 114 static const char *const DWARFGroupName = "dwarf"; 115 static const char *const DWARFGroupDescription = "DWARF Emission"; 116 static const char *const DbgTimerName = "emit"; 117 static const char *const DbgTimerDescription = "Debug Info Emission"; 118 static const char *const EHTimerName = "write_exception"; 119 static const char *const EHTimerDescription = "DWARF Exception Writer"; 120 static const char *const CodeViewLineTablesGroupName = "linetables"; 121 static const char *const CodeViewLineTablesGroupDescription = 122 "CodeView Line Tables"; 123 124 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 125 126 static cl::opt<bool> 127 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 128 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 129 130 char AsmPrinter::ID = 0; 131 132 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 133 static gcp_map_type &getGCMap(void *&P) { 134 if (!P) 135 P = new gcp_map_type(); 136 return *(gcp_map_type*)P; 137 } 138 139 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 140 /// value in log2 form. This rounds up to the preferred alignment if possible 141 /// and legal. 142 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 143 unsigned InBits = 0) { 144 unsigned NumBits = 0; 145 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 146 NumBits = DL.getPreferredAlignmentLog(GVar); 147 148 // If InBits is specified, round it to it. 149 if (InBits > NumBits) 150 NumBits = InBits; 151 152 // If the GV has a specified alignment, take it into account. 153 if (GV->getAlignment() == 0) 154 return NumBits; 155 156 unsigned GVAlign = Log2_32(GV->getAlignment()); 157 158 // If the GVAlign is larger than NumBits, or if we are required to obey 159 // NumBits because the GV has an assigned section, obey it. 160 if (GVAlign > NumBits || GV->hasSection()) 161 NumBits = GVAlign; 162 return NumBits; 163 } 164 165 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 166 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 167 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 168 VerboseAsm = OutStreamer->isVerboseAsm(); 169 } 170 171 AsmPrinter::~AsmPrinter() { 172 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 173 174 if (GCMetadataPrinters) { 175 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 176 177 delete &GCMap; 178 GCMetadataPrinters = nullptr; 179 } 180 } 181 182 bool AsmPrinter::isPositionIndependent() const { 183 return TM.isPositionIndependent(); 184 } 185 186 /// getFunctionNumber - Return a unique ID for the current function. 187 /// 188 unsigned AsmPrinter::getFunctionNumber() const { 189 return MF->getFunctionNumber(); 190 } 191 192 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 193 return *TM.getObjFileLowering(); 194 } 195 196 const DataLayout &AsmPrinter::getDataLayout() const { 197 return MMI->getModule()->getDataLayout(); 198 } 199 200 // Do not use the cached DataLayout because some client use it without a Module 201 // (llvm-dsymutil, llvm-dwarfdump). 202 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 203 204 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 205 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 206 return MF->getSubtarget<MCSubtargetInfo>(); 207 } 208 209 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 210 S.EmitInstruction(Inst, getSubtargetInfo()); 211 } 212 213 /// getCurrentSection() - Return the current section we are emitting to. 214 const MCSection *AsmPrinter::getCurrentSection() const { 215 return OutStreamer->getCurrentSectionOnly(); 216 } 217 218 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 219 AU.setPreservesAll(); 220 MachineFunctionPass::getAnalysisUsage(AU); 221 AU.addRequired<MachineModuleInfo>(); 222 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 223 AU.addRequired<GCModuleInfo>(); 224 if (isVerbose()) 225 AU.addRequired<MachineLoopInfo>(); 226 } 227 228 bool AsmPrinter::doInitialization(Module &M) { 229 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 230 231 // Initialize TargetLoweringObjectFile. 232 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 233 .Initialize(OutContext, TM); 234 235 OutStreamer->InitSections(false); 236 237 // Emit the version-min deplyment target directive if needed. 238 // 239 // FIXME: If we end up with a collection of these sorts of Darwin-specific 240 // or ELF-specific things, it may make sense to have a platform helper class 241 // that will work with the target helper class. For now keep it here, as the 242 // alternative is duplicated code in each of the target asm printers that 243 // use the directive, where it would need the same conditionalization 244 // anyway. 245 const Triple &TT = TM.getTargetTriple(); 246 // If there is a version specified, Major will be non-zero. 247 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 248 unsigned Major, Minor, Update; 249 MCVersionMinType VersionType; 250 if (TT.isWatchOS()) { 251 VersionType = MCVM_WatchOSVersionMin; 252 TT.getWatchOSVersion(Major, Minor, Update); 253 } else if (TT.isTvOS()) { 254 VersionType = MCVM_TvOSVersionMin; 255 TT.getiOSVersion(Major, Minor, Update); 256 } else if (TT.isMacOSX()) { 257 VersionType = MCVM_OSXVersionMin; 258 if (!TT.getMacOSXVersion(Major, Minor, Update)) 259 Major = 0; 260 } else { 261 VersionType = MCVM_IOSVersionMin; 262 TT.getiOSVersion(Major, Minor, Update); 263 } 264 if (Major != 0) 265 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 266 } 267 268 // Allow the target to emit any magic that it wants at the start of the file. 269 EmitStartOfAsmFile(M); 270 271 // Very minimal debug info. It is ignored if we emit actual debug info. If we 272 // don't, this at least helps the user find where a global came from. 273 if (MAI->hasSingleParameterDotFile()) { 274 // .file "foo.c" 275 OutStreamer->EmitFileDirective(M.getSourceFileName()); 276 } 277 278 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 279 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 280 for (auto &I : *MI) 281 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 282 MP->beginAssembly(M, *MI, *this); 283 284 // Emit module-level inline asm if it exists. 285 if (!M.getModuleInlineAsm().empty()) { 286 // We're at the module level. Construct MCSubtarget from the default CPU 287 // and target triple. 288 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 289 TM.getTargetTriple().str(), TM.getTargetCPU(), 290 TM.getTargetFeatureString())); 291 OutStreamer->AddComment("Start of file scope inline assembly"); 292 OutStreamer->AddBlankLine(); 293 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 294 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 295 OutStreamer->AddComment("End of file scope inline assembly"); 296 OutStreamer->AddBlankLine(); 297 } 298 299 if (MAI->doesSupportDebugInformation()) { 300 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 301 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 302 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 303 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 304 DbgTimerName, DbgTimerDescription, 305 CodeViewLineTablesGroupName, 306 CodeViewLineTablesGroupDescription)); 307 } 308 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 309 DD = new DwarfDebug(this, &M); 310 DD->beginModule(); 311 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 312 DWARFGroupName, DWARFGroupDescription)); 313 } 314 } 315 316 switch (MAI->getExceptionHandlingType()) { 317 case ExceptionHandling::SjLj: 318 case ExceptionHandling::DwarfCFI: 319 case ExceptionHandling::ARM: 320 isCFIMoveForDebugging = true; 321 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 322 break; 323 for (auto &F: M.getFunctionList()) { 324 // If the module contains any function with unwind data, 325 // .eh_frame has to be emitted. 326 // Ignore functions that won't get emitted. 327 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 328 isCFIMoveForDebugging = false; 329 break; 330 } 331 } 332 break; 333 default: 334 isCFIMoveForDebugging = false; 335 break; 336 } 337 338 EHStreamer *ES = nullptr; 339 switch (MAI->getExceptionHandlingType()) { 340 case ExceptionHandling::None: 341 break; 342 case ExceptionHandling::SjLj: 343 case ExceptionHandling::DwarfCFI: 344 ES = new DwarfCFIException(this); 345 break; 346 case ExceptionHandling::ARM: 347 ES = new ARMException(this); 348 break; 349 case ExceptionHandling::WinEH: 350 switch (MAI->getWinEHEncodingType()) { 351 default: llvm_unreachable("unsupported unwinding information encoding"); 352 case WinEH::EncodingType::Invalid: 353 break; 354 case WinEH::EncodingType::X86: 355 case WinEH::EncodingType::Itanium: 356 ES = new WinException(this); 357 break; 358 } 359 break; 360 } 361 if (ES) 362 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 363 DWARFGroupName, DWARFGroupDescription)); 364 return false; 365 } 366 367 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 368 if (!MAI.hasWeakDefCanBeHiddenDirective()) 369 return false; 370 371 return canBeOmittedFromSymbolTable(GV); 372 } 373 374 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 375 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 376 switch (Linkage) { 377 case GlobalValue::CommonLinkage: 378 case GlobalValue::LinkOnceAnyLinkage: 379 case GlobalValue::LinkOnceODRLinkage: 380 case GlobalValue::WeakAnyLinkage: 381 case GlobalValue::WeakODRLinkage: 382 if (MAI->hasWeakDefDirective()) { 383 // .globl _foo 384 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 385 386 if (!canBeHidden(GV, *MAI)) 387 // .weak_definition _foo 388 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 389 else 390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 391 } else if (MAI->hasLinkOnceDirective()) { 392 // .globl _foo 393 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 394 //NOTE: linkonce is handled by the section the symbol was assigned to. 395 } else { 396 // .weak _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 398 } 399 return; 400 case GlobalValue::ExternalLinkage: 401 // If external, declare as a global symbol: .globl _foo 402 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 403 return; 404 case GlobalValue::PrivateLinkage: 405 case GlobalValue::InternalLinkage: 406 return; 407 case GlobalValue::AppendingLinkage: 408 case GlobalValue::AvailableExternallyLinkage: 409 case GlobalValue::ExternalWeakLinkage: 410 llvm_unreachable("Should never emit this"); 411 } 412 llvm_unreachable("Unknown linkage type!"); 413 } 414 415 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 416 const GlobalValue *GV) const { 417 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 418 } 419 420 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 421 return TM.getSymbol(GV); 422 } 423 424 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 425 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 426 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 427 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 428 "No emulated TLS variables in the common section"); 429 430 // Never emit TLS variable xyz in emulated TLS model. 431 // The initialization value is in __emutls_t.xyz instead of xyz. 432 if (IsEmuTLSVar) 433 return; 434 435 if (GV->hasInitializer()) { 436 // Check to see if this is a special global used by LLVM, if so, emit it. 437 if (EmitSpecialLLVMGlobal(GV)) 438 return; 439 440 // Skip the emission of global equivalents. The symbol can be emitted later 441 // on by emitGlobalGOTEquivs in case it turns out to be needed. 442 if (GlobalGOTEquivs.count(getSymbol(GV))) 443 return; 444 445 if (isVerbose()) { 446 // When printing the control variable __emutls_v.*, 447 // we don't need to print the original TLS variable name. 448 GV->printAsOperand(OutStreamer->GetCommentOS(), 449 /*PrintType=*/false, GV->getParent()); 450 OutStreamer->GetCommentOS() << '\n'; 451 } 452 } 453 454 MCSymbol *GVSym = getSymbol(GV); 455 MCSymbol *EmittedSym = GVSym; 456 457 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 458 // attributes. 459 // GV's or GVSym's attributes will be used for the EmittedSym. 460 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 461 462 if (!GV->hasInitializer()) // External globals require no extra code. 463 return; 464 465 GVSym->redefineIfPossible(); 466 if (GVSym->isDefined() || GVSym->isVariable()) 467 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 468 "' is already defined"); 469 470 if (MAI->hasDotTypeDotSizeDirective()) 471 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 472 473 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 474 475 const DataLayout &DL = GV->getParent()->getDataLayout(); 476 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 477 478 // If the alignment is specified, we *must* obey it. Overaligning a global 479 // with a specified alignment is a prompt way to break globals emitted to 480 // sections and expected to be contiguous (e.g. ObjC metadata). 481 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 482 483 for (const HandlerInfo &HI : Handlers) { 484 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 485 HI.TimerGroupName, HI.TimerGroupDescription, 486 TimePassesIsEnabled); 487 HI.Handler->setSymbolSize(GVSym, Size); 488 } 489 490 // Handle common symbols 491 if (GVKind.isCommon()) { 492 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 493 unsigned Align = 1 << AlignLog; 494 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 495 Align = 0; 496 497 // .comm _foo, 42, 4 498 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 499 return; 500 } 501 502 // Determine to which section this global should be emitted. 503 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 504 505 // If we have a bss global going to a section that supports the 506 // zerofill directive, do so here. 507 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 508 TheSection->isVirtualSection()) { 509 if (Size == 0) 510 Size = 1; // zerofill of 0 bytes is undefined. 511 unsigned Align = 1 << AlignLog; 512 EmitLinkage(GV, GVSym); 513 // .zerofill __DATA, __bss, _foo, 400, 5 514 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 515 return; 516 } 517 518 // If this is a BSS local symbol and we are emitting in the BSS 519 // section use .lcomm/.comm directive. 520 if (GVKind.isBSSLocal() && 521 getObjFileLowering().getBSSSection() == TheSection) { 522 if (Size == 0) 523 Size = 1; // .comm Foo, 0 is undefined, avoid it. 524 unsigned Align = 1 << AlignLog; 525 526 // Use .lcomm only if it supports user-specified alignment. 527 // Otherwise, while it would still be correct to use .lcomm in some 528 // cases (e.g. when Align == 1), the external assembler might enfore 529 // some -unknown- default alignment behavior, which could cause 530 // spurious differences between external and integrated assembler. 531 // Prefer to simply fall back to .local / .comm in this case. 532 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 533 // .lcomm _foo, 42 534 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 535 return; 536 } 537 538 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 539 Align = 0; 540 541 // .local _foo 542 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 543 // .comm _foo, 42, 4 544 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 545 return; 546 } 547 548 // Handle thread local data for mach-o which requires us to output an 549 // additional structure of data and mangle the original symbol so that we 550 // can reference it later. 551 // 552 // TODO: This should become an "emit thread local global" method on TLOF. 553 // All of this macho specific stuff should be sunk down into TLOFMachO and 554 // stuff like "TLSExtraDataSection" should no longer be part of the parent 555 // TLOF class. This will also make it more obvious that stuff like 556 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 557 // specific code. 558 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 559 // Emit the .tbss symbol 560 MCSymbol *MangSym = 561 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 562 563 if (GVKind.isThreadBSS()) { 564 TheSection = getObjFileLowering().getTLSBSSSection(); 565 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 566 } else if (GVKind.isThreadData()) { 567 OutStreamer->SwitchSection(TheSection); 568 569 EmitAlignment(AlignLog, GV); 570 OutStreamer->EmitLabel(MangSym); 571 572 EmitGlobalConstant(GV->getParent()->getDataLayout(), 573 GV->getInitializer()); 574 } 575 576 OutStreamer->AddBlankLine(); 577 578 // Emit the variable struct for the runtime. 579 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 580 581 OutStreamer->SwitchSection(TLVSect); 582 // Emit the linkage here. 583 EmitLinkage(GV, GVSym); 584 OutStreamer->EmitLabel(GVSym); 585 586 // Three pointers in size: 587 // - __tlv_bootstrap - used to make sure support exists 588 // - spare pointer, used when mapped by the runtime 589 // - pointer to mangled symbol above with initializer 590 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 591 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 592 PtrSize); 593 OutStreamer->EmitIntValue(0, PtrSize); 594 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 595 596 OutStreamer->AddBlankLine(); 597 return; 598 } 599 600 MCSymbol *EmittedInitSym = GVSym; 601 602 OutStreamer->SwitchSection(TheSection); 603 604 EmitLinkage(GV, EmittedInitSym); 605 EmitAlignment(AlignLog, GV); 606 607 OutStreamer->EmitLabel(EmittedInitSym); 608 609 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 610 611 if (MAI->hasDotTypeDotSizeDirective()) 612 // .size foo, 42 613 OutStreamer->emitELFSize(EmittedInitSym, 614 MCConstantExpr::create(Size, OutContext)); 615 616 OutStreamer->AddBlankLine(); 617 } 618 619 /// Emit the directive and value for debug thread local expression 620 /// 621 /// \p Value - The value to emit. 622 /// \p Size - The size of the integer (in bytes) to emit. 623 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 624 unsigned Size) const { 625 OutStreamer->EmitValue(Value, Size); 626 } 627 628 /// EmitFunctionHeader - This method emits the header for the current 629 /// function. 630 void AsmPrinter::EmitFunctionHeader() { 631 const Function *F = MF->getFunction(); 632 633 if (isVerbose()) 634 OutStreamer->GetCommentOS() << "-- Begin function " << F->getName() << '\n'; 635 636 // Print out constants referenced by the function 637 EmitConstantPool(); 638 639 // Print the 'header' of function. 640 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 641 EmitVisibility(CurrentFnSym, F->getVisibility()); 642 643 EmitLinkage(F, CurrentFnSym); 644 if (MAI->hasFunctionAlignment()) 645 EmitAlignment(MF->getAlignment(), F); 646 647 if (MAI->hasDotTypeDotSizeDirective()) 648 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 649 650 if (isVerbose()) { 651 F->printAsOperand(OutStreamer->GetCommentOS(), 652 /*PrintType=*/false, F->getParent()); 653 OutStreamer->GetCommentOS() << '\n'; 654 } 655 656 // Emit the prefix data. 657 if (F->hasPrefixData()) { 658 if (MAI->hasSubsectionsViaSymbols()) { 659 // Preserving prefix data on platforms which use subsections-via-symbols 660 // is a bit tricky. Here we introduce a symbol for the prefix data 661 // and use the .alt_entry attribute to mark the function's real entry point 662 // as an alternative entry point to the prefix-data symbol. 663 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 664 OutStreamer->EmitLabel(PrefixSym); 665 666 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 667 668 // Emit an .alt_entry directive for the actual function symbol. 669 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 670 } else { 671 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 672 } 673 } 674 675 // Emit the CurrentFnSym. This is a virtual function to allow targets to 676 // do their wild and crazy things as required. 677 EmitFunctionEntryLabel(); 678 679 // If the function had address-taken blocks that got deleted, then we have 680 // references to the dangling symbols. Emit them at the start of the function 681 // so that we don't get references to undefined symbols. 682 std::vector<MCSymbol*> DeadBlockSyms; 683 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 684 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 685 OutStreamer->AddComment("Address taken block that was later removed"); 686 OutStreamer->EmitLabel(DeadBlockSyms[i]); 687 } 688 689 if (CurrentFnBegin) { 690 if (MAI->useAssignmentForEHBegin()) { 691 MCSymbol *CurPos = OutContext.createTempSymbol(); 692 OutStreamer->EmitLabel(CurPos); 693 OutStreamer->EmitAssignment(CurrentFnBegin, 694 MCSymbolRefExpr::create(CurPos, OutContext)); 695 } else { 696 OutStreamer->EmitLabel(CurrentFnBegin); 697 } 698 } 699 700 // Emit pre-function debug and/or EH information. 701 for (const HandlerInfo &HI : Handlers) { 702 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 703 HI.TimerGroupDescription, TimePassesIsEnabled); 704 HI.Handler->beginFunction(MF); 705 } 706 707 // Emit the prologue data. 708 if (F->hasPrologueData()) 709 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 710 } 711 712 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 713 /// function. This can be overridden by targets as required to do custom stuff. 714 void AsmPrinter::EmitFunctionEntryLabel() { 715 CurrentFnSym->redefineIfPossible(); 716 717 // The function label could have already been emitted if two symbols end up 718 // conflicting due to asm renaming. Detect this and emit an error. 719 if (CurrentFnSym->isVariable()) 720 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 721 "' is a protected alias"); 722 if (CurrentFnSym->isDefined()) 723 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 724 "' label emitted multiple times to assembly file"); 725 726 return OutStreamer->EmitLabel(CurrentFnSym); 727 } 728 729 /// emitComments - Pretty-print comments for instructions. 730 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 731 AsmPrinter *AP) { 732 const MachineFunction *MF = MI.getParent()->getParent(); 733 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 734 735 // Check for spills and reloads 736 int FI; 737 738 const MachineFrameInfo &MFI = MF->getFrameInfo(); 739 bool Commented = false; 740 741 // We assume a single instruction only has a spill or reload, not 742 // both. 743 const MachineMemOperand *MMO; 744 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 745 if (MFI.isSpillSlotObjectIndex(FI)) { 746 MMO = *MI.memoperands_begin(); 747 CommentOS << MMO->getSize() << "-byte Reload"; 748 Commented = true; 749 } 750 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 751 if (MFI.isSpillSlotObjectIndex(FI)) { 752 CommentOS << MMO->getSize() << "-byte Folded Reload"; 753 Commented = true; 754 } 755 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 756 if (MFI.isSpillSlotObjectIndex(FI)) { 757 MMO = *MI.memoperands_begin(); 758 CommentOS << MMO->getSize() << "-byte Spill"; 759 Commented = true; 760 } 761 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 762 if (MFI.isSpillSlotObjectIndex(FI)) { 763 CommentOS << MMO->getSize() << "-byte Folded Spill"; 764 Commented = true; 765 } 766 } 767 768 // Check for spill-induced copies 769 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 770 Commented = true; 771 CommentOS << " Reload Reuse"; 772 } 773 774 if (Commented && AP->EnablePrintSchedInfo) 775 // If any comment was added above and we need sched info comment then 776 // add this new comment just after the above comment w/o "\n" between them. 777 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 778 else if (Commented) 779 CommentOS << "\n"; 780 } 781 782 /// emitImplicitDef - This method emits the specified machine instruction 783 /// that is an implicit def. 784 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 785 unsigned RegNo = MI->getOperand(0).getReg(); 786 787 SmallString<128> Str; 788 raw_svector_ostream OS(Str); 789 OS << "implicit-def: " 790 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 791 792 OutStreamer->AddComment(OS.str()); 793 OutStreamer->AddBlankLine(); 794 } 795 796 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 797 std::string Str; 798 raw_string_ostream OS(Str); 799 OS << "kill:"; 800 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 801 const MachineOperand &Op = MI->getOperand(i); 802 assert(Op.isReg() && "KILL instruction must have only register operands"); 803 OS << ' ' 804 << PrintReg(Op.getReg(), 805 AP.MF->getSubtarget().getRegisterInfo()) 806 << (Op.isDef() ? "<def>" : "<kill>"); 807 } 808 AP.OutStreamer->AddComment(OS.str()); 809 AP.OutStreamer->AddBlankLine(); 810 } 811 812 /// emitDebugValueComment - This method handles the target-independent form 813 /// of DBG_VALUE, returning true if it was able to do so. A false return 814 /// means the target will need to handle MI in EmitInstruction. 815 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 816 // This code handles only the 4-operand target-independent form. 817 if (MI->getNumOperands() != 4) 818 return false; 819 820 SmallString<128> Str; 821 raw_svector_ostream OS(Str); 822 OS << "DEBUG_VALUE: "; 823 824 const DILocalVariable *V = MI->getDebugVariable(); 825 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 826 StringRef Name = SP->getName(); 827 if (!Name.empty()) 828 OS << Name << ":"; 829 } 830 OS << V->getName(); 831 OS << " <- "; 832 833 // The second operand is only an offset if it's an immediate. 834 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 835 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 836 const DIExpression *Expr = MI->getDebugExpression(); 837 if (Expr->getNumElements()) { 838 OS << '['; 839 bool NeedSep = false; 840 for (auto Op : Expr->expr_ops()) { 841 if (NeedSep) 842 OS << ", "; 843 else 844 NeedSep = true; 845 OS << dwarf::OperationEncodingString(Op.getOp()); 846 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 847 OS << ' ' << Op.getArg(I); 848 } 849 OS << "] "; 850 } 851 852 // Register or immediate value. Register 0 means undef. 853 if (MI->getOperand(0).isFPImm()) { 854 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 855 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 856 OS << (double)APF.convertToFloat(); 857 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 858 OS << APF.convertToDouble(); 859 } else { 860 // There is no good way to print long double. Convert a copy to 861 // double. Ah well, it's only a comment. 862 bool ignored; 863 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 864 &ignored); 865 OS << "(long double) " << APF.convertToDouble(); 866 } 867 } else if (MI->getOperand(0).isImm()) { 868 OS << MI->getOperand(0).getImm(); 869 } else if (MI->getOperand(0).isCImm()) { 870 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 871 } else { 872 unsigned Reg; 873 if (MI->getOperand(0).isReg()) { 874 Reg = MI->getOperand(0).getReg(); 875 } else { 876 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 877 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 878 Offset += TFI->getFrameIndexReference(*AP.MF, 879 MI->getOperand(0).getIndex(), Reg); 880 MemLoc = true; 881 } 882 if (Reg == 0) { 883 // Suppress offset, it is not meaningful here. 884 OS << "undef"; 885 // NOTE: Want this comment at start of line, don't emit with AddComment. 886 AP.OutStreamer->emitRawComment(OS.str()); 887 return true; 888 } 889 if (MemLoc) 890 OS << '['; 891 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 892 } 893 894 if (MemLoc) 895 OS << '+' << Offset << ']'; 896 897 // NOTE: Want this comment at start of line, don't emit with AddComment. 898 AP.OutStreamer->emitRawComment(OS.str()); 899 return true; 900 } 901 902 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 903 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 904 MF->getFunction()->needsUnwindTableEntry()) 905 return CFI_M_EH; 906 907 if (MMI->hasDebugInfo()) 908 return CFI_M_Debug; 909 910 return CFI_M_None; 911 } 912 913 bool AsmPrinter::needsSEHMoves() { 914 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 915 } 916 917 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 918 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 919 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 920 ExceptionHandlingType != ExceptionHandling::ARM) 921 return; 922 923 if (needsCFIMoves() == CFI_M_None) 924 return; 925 926 // If there is no "real" instruction following this CFI instruction, skip 927 // emitting it; it would be beyond the end of the function's FDE range. 928 auto *MBB = MI.getParent(); 929 auto I = std::next(MI.getIterator()); 930 while (I != MBB->end() && I->isTransient()) 931 ++I; 932 if (I == MBB->instr_end() && 933 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 934 return; 935 936 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 937 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 938 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 939 emitCFIInstruction(CFI); 940 } 941 942 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 943 // The operands are the MCSymbol and the frame offset of the allocation. 944 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 945 int FrameOffset = MI.getOperand(1).getImm(); 946 947 // Emit a symbol assignment. 948 OutStreamer->EmitAssignment(FrameAllocSym, 949 MCConstantExpr::create(FrameOffset, OutContext)); 950 } 951 952 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 953 MachineModuleInfo *MMI) { 954 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 955 return true; 956 957 // We might emit an EH table that uses function begin and end labels even if 958 // we don't have any landingpads. 959 if (!MF.getFunction()->hasPersonalityFn()) 960 return false; 961 return !isNoOpWithoutInvoke( 962 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 963 } 964 965 /// EmitFunctionBody - This method emits the body and trailer for a 966 /// function. 967 void AsmPrinter::EmitFunctionBody() { 968 EmitFunctionHeader(); 969 970 // Emit target-specific gunk before the function body. 971 EmitFunctionBodyStart(); 972 973 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 974 975 // Print out code for the function. 976 bool HasAnyRealCode = false; 977 int NumInstsInFunction = 0; 978 for (auto &MBB : *MF) { 979 // Print a label for the basic block. 980 EmitBasicBlockStart(MBB); 981 for (auto &MI : MBB) { 982 983 // Print the assembly for the instruction. 984 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 985 !MI.isDebugValue()) { 986 HasAnyRealCode = true; 987 ++NumInstsInFunction; 988 } 989 990 if (ShouldPrintDebugScopes) { 991 for (const HandlerInfo &HI : Handlers) { 992 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 993 HI.TimerGroupName, HI.TimerGroupDescription, 994 TimePassesIsEnabled); 995 HI.Handler->beginInstruction(&MI); 996 } 997 } 998 999 if (isVerbose()) 1000 emitComments(MI, OutStreamer->GetCommentOS(), this); 1001 1002 switch (MI.getOpcode()) { 1003 case TargetOpcode::CFI_INSTRUCTION: 1004 emitCFIInstruction(MI); 1005 break; 1006 1007 case TargetOpcode::LOCAL_ESCAPE: 1008 emitFrameAlloc(MI); 1009 break; 1010 1011 case TargetOpcode::EH_LABEL: 1012 case TargetOpcode::GC_LABEL: 1013 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1014 break; 1015 case TargetOpcode::INLINEASM: 1016 EmitInlineAsm(&MI); 1017 break; 1018 case TargetOpcode::DBG_VALUE: 1019 if (isVerbose()) { 1020 if (!emitDebugValueComment(&MI, *this)) 1021 EmitInstruction(&MI); 1022 } 1023 break; 1024 case TargetOpcode::IMPLICIT_DEF: 1025 if (isVerbose()) emitImplicitDef(&MI); 1026 break; 1027 case TargetOpcode::KILL: 1028 if (isVerbose()) emitKill(&MI, *this); 1029 break; 1030 default: 1031 EmitInstruction(&MI); 1032 break; 1033 } 1034 1035 if (ShouldPrintDebugScopes) { 1036 for (const HandlerInfo &HI : Handlers) { 1037 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1038 HI.TimerGroupName, HI.TimerGroupDescription, 1039 TimePassesIsEnabled); 1040 HI.Handler->endInstruction(); 1041 } 1042 } 1043 } 1044 1045 EmitBasicBlockEnd(MBB); 1046 } 1047 1048 EmittedInsts += NumInstsInFunction; 1049 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1050 MF->getFunction()->getSubprogram(), 1051 &MF->front()); 1052 R << ore::NV("NumInstructions", NumInstsInFunction) 1053 << " instructions in function"; 1054 ORE->emit(R); 1055 1056 // If the function is empty and the object file uses .subsections_via_symbols, 1057 // then we need to emit *something* to the function body to prevent the 1058 // labels from collapsing together. Just emit a noop. 1059 // Similarly, don't emit empty functions on Windows either. It can lead to 1060 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1061 // after linking, causing the kernel not to load the binary: 1062 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1063 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1064 const Triple &TT = TM.getTargetTriple(); 1065 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1066 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1067 MCInst Noop; 1068 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1069 1070 // Targets can opt-out of emitting the noop here by leaving the opcode 1071 // unspecified. 1072 if (Noop.getOpcode()) { 1073 OutStreamer->AddComment("avoids zero-length function"); 1074 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1075 } 1076 } 1077 1078 const Function *F = MF->getFunction(); 1079 for (const auto &BB : *F) { 1080 if (!BB.hasAddressTaken()) 1081 continue; 1082 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1083 if (Sym->isDefined()) 1084 continue; 1085 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1086 OutStreamer->EmitLabel(Sym); 1087 } 1088 1089 // Emit target-specific gunk after the function body. 1090 EmitFunctionBodyEnd(); 1091 1092 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1093 MAI->hasDotTypeDotSizeDirective()) { 1094 // Create a symbol for the end of function. 1095 CurrentFnEnd = createTempSymbol("func_end"); 1096 OutStreamer->EmitLabel(CurrentFnEnd); 1097 } 1098 1099 // If the target wants a .size directive for the size of the function, emit 1100 // it. 1101 if (MAI->hasDotTypeDotSizeDirective()) { 1102 // We can get the size as difference between the function label and the 1103 // temp label. 1104 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1105 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1106 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1107 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1108 } 1109 1110 for (const HandlerInfo &HI : Handlers) { 1111 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1112 HI.TimerGroupDescription, TimePassesIsEnabled); 1113 HI.Handler->markFunctionEnd(); 1114 } 1115 1116 // Print out jump tables referenced by the function. 1117 EmitJumpTableInfo(); 1118 1119 // Emit post-function debug and/or EH information. 1120 for (const HandlerInfo &HI : Handlers) { 1121 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1122 HI.TimerGroupDescription, TimePassesIsEnabled); 1123 HI.Handler->endFunction(MF); 1124 } 1125 1126 if (isVerbose()) 1127 OutStreamer->GetCommentOS() << "-- End function\n"; 1128 1129 OutStreamer->AddBlankLine(); 1130 } 1131 1132 /// \brief Compute the number of Global Variables that uses a Constant. 1133 static unsigned getNumGlobalVariableUses(const Constant *C) { 1134 if (!C) 1135 return 0; 1136 1137 if (isa<GlobalVariable>(C)) 1138 return 1; 1139 1140 unsigned NumUses = 0; 1141 for (auto *CU : C->users()) 1142 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1143 1144 return NumUses; 1145 } 1146 1147 /// \brief Only consider global GOT equivalents if at least one user is a 1148 /// cstexpr inside an initializer of another global variables. Also, don't 1149 /// handle cstexpr inside instructions. During global variable emission, 1150 /// candidates are skipped and are emitted later in case at least one cstexpr 1151 /// isn't replaced by a PC relative GOT entry access. 1152 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1153 unsigned &NumGOTEquivUsers) { 1154 // Global GOT equivalents are unnamed private globals with a constant 1155 // pointer initializer to another global symbol. They must point to a 1156 // GlobalVariable or Function, i.e., as GlobalValue. 1157 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1158 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1159 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1160 return false; 1161 1162 // To be a got equivalent, at least one of its users need to be a constant 1163 // expression used by another global variable. 1164 for (auto *U : GV->users()) 1165 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1166 1167 return NumGOTEquivUsers > 0; 1168 } 1169 1170 /// \brief Unnamed constant global variables solely contaning a pointer to 1171 /// another globals variable is equivalent to a GOT table entry; it contains the 1172 /// the address of another symbol. Optimize it and replace accesses to these 1173 /// "GOT equivalents" by using the GOT entry for the final global instead. 1174 /// Compute GOT equivalent candidates among all global variables to avoid 1175 /// emitting them if possible later on, after it use is replaced by a GOT entry 1176 /// access. 1177 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1178 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1179 return; 1180 1181 for (const auto &G : M.globals()) { 1182 unsigned NumGOTEquivUsers = 0; 1183 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1184 continue; 1185 1186 const MCSymbol *GOTEquivSym = getSymbol(&G); 1187 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1188 } 1189 } 1190 1191 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1192 /// for PC relative GOT entry conversion, in such cases we need to emit such 1193 /// globals we previously omitted in EmitGlobalVariable. 1194 void AsmPrinter::emitGlobalGOTEquivs() { 1195 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1196 return; 1197 1198 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1199 for (auto &I : GlobalGOTEquivs) { 1200 const GlobalVariable *GV = I.second.first; 1201 unsigned Cnt = I.second.second; 1202 if (Cnt) 1203 FailedCandidates.push_back(GV); 1204 } 1205 GlobalGOTEquivs.clear(); 1206 1207 for (auto *GV : FailedCandidates) 1208 EmitGlobalVariable(GV); 1209 } 1210 1211 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1212 const GlobalIndirectSymbol& GIS) { 1213 MCSymbol *Name = getSymbol(&GIS); 1214 1215 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1216 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1217 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1218 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1219 else 1220 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1221 1222 // Set the symbol type to function if the alias has a function type. 1223 // This affects codegen when the aliasee is not a function. 1224 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1225 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1226 if (isa<GlobalIFunc>(GIS)) 1227 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1228 } 1229 1230 EmitVisibility(Name, GIS.getVisibility()); 1231 1232 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1233 1234 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1235 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1236 1237 // Emit the directives as assignments aka .set: 1238 OutStreamer->EmitAssignment(Name, Expr); 1239 1240 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1241 // If the aliasee does not correspond to a symbol in the output, i.e. the 1242 // alias is not of an object or the aliased object is private, then set the 1243 // size of the alias symbol from the type of the alias. We don't do this in 1244 // other situations as the alias and aliasee having differing types but same 1245 // size may be intentional. 1246 const GlobalObject *BaseObject = GA->getBaseObject(); 1247 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1248 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1249 const DataLayout &DL = M.getDataLayout(); 1250 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1251 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1252 } 1253 } 1254 } 1255 1256 bool AsmPrinter::doFinalization(Module &M) { 1257 // Set the MachineFunction to nullptr so that we can catch attempted 1258 // accesses to MF specific features at the module level and so that 1259 // we can conditionalize accesses based on whether or not it is nullptr. 1260 MF = nullptr; 1261 1262 // Gather all GOT equivalent globals in the module. We really need two 1263 // passes over the globals: one to compute and another to avoid its emission 1264 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1265 // where the got equivalent shows up before its use. 1266 computeGlobalGOTEquivs(M); 1267 1268 // Emit global variables. 1269 for (const auto &G : M.globals()) 1270 EmitGlobalVariable(&G); 1271 1272 // Emit remaining GOT equivalent globals. 1273 emitGlobalGOTEquivs(); 1274 1275 // Emit visibility info for declarations 1276 for (const Function &F : M) { 1277 if (!F.isDeclarationForLinker()) 1278 continue; 1279 GlobalValue::VisibilityTypes V = F.getVisibility(); 1280 if (V == GlobalValue::DefaultVisibility) 1281 continue; 1282 1283 MCSymbol *Name = getSymbol(&F); 1284 EmitVisibility(Name, V, false); 1285 } 1286 1287 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1288 1289 // Emit module flags. 1290 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1291 M.getModuleFlagsMetadata(ModuleFlags); 1292 if (!ModuleFlags.empty()) 1293 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1294 1295 if (TM.getTargetTriple().isOSBinFormatELF()) { 1296 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1297 1298 // Output stubs for external and common global variables. 1299 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1300 if (!Stubs.empty()) { 1301 OutStreamer->SwitchSection(TLOF.getDataSection()); 1302 const DataLayout &DL = M.getDataLayout(); 1303 1304 for (const auto &Stub : Stubs) { 1305 OutStreamer->EmitLabel(Stub.first); 1306 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1307 DL.getPointerSize()); 1308 } 1309 } 1310 } 1311 1312 // Finalize debug and EH information. 1313 for (const HandlerInfo &HI : Handlers) { 1314 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1315 HI.TimerGroupDescription, TimePassesIsEnabled); 1316 HI.Handler->endModule(); 1317 delete HI.Handler; 1318 } 1319 Handlers.clear(); 1320 DD = nullptr; 1321 1322 // If the target wants to know about weak references, print them all. 1323 if (MAI->getWeakRefDirective()) { 1324 // FIXME: This is not lazy, it would be nice to only print weak references 1325 // to stuff that is actually used. Note that doing so would require targets 1326 // to notice uses in operands (due to constant exprs etc). This should 1327 // happen with the MC stuff eventually. 1328 1329 // Print out module-level global objects here. 1330 for (const auto &GO : M.global_objects()) { 1331 if (!GO.hasExternalWeakLinkage()) 1332 continue; 1333 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1334 } 1335 } 1336 1337 OutStreamer->AddBlankLine(); 1338 1339 // Print aliases in topological order, that is, for each alias a = b, 1340 // b must be printed before a. 1341 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1342 // such an order to generate correct TOC information. 1343 SmallVector<const GlobalAlias *, 16> AliasStack; 1344 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1345 for (const auto &Alias : M.aliases()) { 1346 for (const GlobalAlias *Cur = &Alias; Cur; 1347 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1348 if (!AliasVisited.insert(Cur).second) 1349 break; 1350 AliasStack.push_back(Cur); 1351 } 1352 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1353 emitGlobalIndirectSymbol(M, *AncestorAlias); 1354 AliasStack.clear(); 1355 } 1356 for (const auto &IFunc : M.ifuncs()) 1357 emitGlobalIndirectSymbol(M, IFunc); 1358 1359 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1360 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1361 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1362 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1363 MP->finishAssembly(M, *MI, *this); 1364 1365 // Emit llvm.ident metadata in an '.ident' directive. 1366 EmitModuleIdents(M); 1367 1368 // Emit __morestack address if needed for indirect calls. 1369 if (MMI->usesMorestackAddr()) { 1370 unsigned Align = 1; 1371 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1372 getDataLayout(), SectionKind::getReadOnly(), 1373 /*C=*/nullptr, Align); 1374 OutStreamer->SwitchSection(ReadOnlySection); 1375 1376 MCSymbol *AddrSymbol = 1377 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1378 OutStreamer->EmitLabel(AddrSymbol); 1379 1380 unsigned PtrSize = MAI->getCodePointerSize(); 1381 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1382 PtrSize); 1383 } 1384 1385 // If we don't have any trampolines, then we don't require stack memory 1386 // to be executable. Some targets have a directive to declare this. 1387 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1388 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1389 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1390 OutStreamer->SwitchSection(S); 1391 1392 // Allow the target to emit any magic that it wants at the end of the file, 1393 // after everything else has gone out. 1394 EmitEndOfAsmFile(M); 1395 1396 MMI = nullptr; 1397 1398 OutStreamer->Finish(); 1399 OutStreamer->reset(); 1400 1401 return false; 1402 } 1403 1404 MCSymbol *AsmPrinter::getCurExceptionSym() { 1405 if (!CurExceptionSym) 1406 CurExceptionSym = createTempSymbol("exception"); 1407 return CurExceptionSym; 1408 } 1409 1410 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1411 this->MF = &MF; 1412 // Get the function symbol. 1413 CurrentFnSym = getSymbol(MF.getFunction()); 1414 CurrentFnSymForSize = CurrentFnSym; 1415 CurrentFnBegin = nullptr; 1416 CurExceptionSym = nullptr; 1417 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1418 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1419 CurrentFnBegin = createTempSymbol("func_begin"); 1420 if (NeedsLocalForSize) 1421 CurrentFnSymForSize = CurrentFnBegin; 1422 } 1423 1424 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1425 if (isVerbose()) 1426 LI = &getAnalysis<MachineLoopInfo>(); 1427 1428 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1429 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1430 ? PrintSchedule 1431 : STI.supportPrintSchedInfo(); 1432 } 1433 1434 namespace { 1435 1436 // Keep track the alignment, constpool entries per Section. 1437 struct SectionCPs { 1438 MCSection *S; 1439 unsigned Alignment; 1440 SmallVector<unsigned, 4> CPEs; 1441 1442 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1443 }; 1444 1445 } // end anonymous namespace 1446 1447 /// EmitConstantPool - Print to the current output stream assembly 1448 /// representations of the constants in the constant pool MCP. This is 1449 /// used to print out constants which have been "spilled to memory" by 1450 /// the code generator. 1451 /// 1452 void AsmPrinter::EmitConstantPool() { 1453 const MachineConstantPool *MCP = MF->getConstantPool(); 1454 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1455 if (CP.empty()) return; 1456 1457 // Calculate sections for constant pool entries. We collect entries to go into 1458 // the same section together to reduce amount of section switch statements. 1459 SmallVector<SectionCPs, 4> CPSections; 1460 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1461 const MachineConstantPoolEntry &CPE = CP[i]; 1462 unsigned Align = CPE.getAlignment(); 1463 1464 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1465 1466 const Constant *C = nullptr; 1467 if (!CPE.isMachineConstantPoolEntry()) 1468 C = CPE.Val.ConstVal; 1469 1470 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1471 Kind, C, Align); 1472 1473 // The number of sections are small, just do a linear search from the 1474 // last section to the first. 1475 bool Found = false; 1476 unsigned SecIdx = CPSections.size(); 1477 while (SecIdx != 0) { 1478 if (CPSections[--SecIdx].S == S) { 1479 Found = true; 1480 break; 1481 } 1482 } 1483 if (!Found) { 1484 SecIdx = CPSections.size(); 1485 CPSections.push_back(SectionCPs(S, Align)); 1486 } 1487 1488 if (Align > CPSections[SecIdx].Alignment) 1489 CPSections[SecIdx].Alignment = Align; 1490 CPSections[SecIdx].CPEs.push_back(i); 1491 } 1492 1493 // Now print stuff into the calculated sections. 1494 const MCSection *CurSection = nullptr; 1495 unsigned Offset = 0; 1496 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1497 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1498 unsigned CPI = CPSections[i].CPEs[j]; 1499 MCSymbol *Sym = GetCPISymbol(CPI); 1500 if (!Sym->isUndefined()) 1501 continue; 1502 1503 if (CurSection != CPSections[i].S) { 1504 OutStreamer->SwitchSection(CPSections[i].S); 1505 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1506 CurSection = CPSections[i].S; 1507 Offset = 0; 1508 } 1509 1510 MachineConstantPoolEntry CPE = CP[CPI]; 1511 1512 // Emit inter-object padding for alignment. 1513 unsigned AlignMask = CPE.getAlignment() - 1; 1514 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1515 OutStreamer->EmitZeros(NewOffset - Offset); 1516 1517 Type *Ty = CPE.getType(); 1518 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1519 1520 OutStreamer->EmitLabel(Sym); 1521 if (CPE.isMachineConstantPoolEntry()) 1522 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1523 else 1524 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1525 } 1526 } 1527 } 1528 1529 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1530 /// by the current function to the current output stream. 1531 /// 1532 void AsmPrinter::EmitJumpTableInfo() { 1533 const DataLayout &DL = MF->getDataLayout(); 1534 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1535 if (!MJTI) return; 1536 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1537 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1538 if (JT.empty()) return; 1539 1540 // Pick the directive to use to print the jump table entries, and switch to 1541 // the appropriate section. 1542 const Function *F = MF->getFunction(); 1543 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1544 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1545 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1546 *F); 1547 if (JTInDiffSection) { 1548 // Drop it in the readonly section. 1549 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1550 OutStreamer->SwitchSection(ReadOnlySection); 1551 } 1552 1553 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1554 1555 // Jump tables in code sections are marked with a data_region directive 1556 // where that's supported. 1557 if (!JTInDiffSection) 1558 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1559 1560 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1561 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1562 1563 // If this jump table was deleted, ignore it. 1564 if (JTBBs.empty()) continue; 1565 1566 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1567 /// emit a .set directive for each unique entry. 1568 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1569 MAI->doesSetDirectiveSuppressReloc()) { 1570 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1571 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1572 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1573 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1574 const MachineBasicBlock *MBB = JTBBs[ii]; 1575 if (!EmittedSets.insert(MBB).second) 1576 continue; 1577 1578 // .set LJTSet, LBB32-base 1579 const MCExpr *LHS = 1580 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1581 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1582 MCBinaryExpr::createSub(LHS, Base, 1583 OutContext)); 1584 } 1585 } 1586 1587 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1588 // before each jump table. The first label is never referenced, but tells 1589 // the assembler and linker the extents of the jump table object. The 1590 // second label is actually referenced by the code. 1591 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1592 // FIXME: This doesn't have to have any specific name, just any randomly 1593 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1594 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1595 1596 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1597 1598 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1599 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1600 } 1601 if (!JTInDiffSection) 1602 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1603 } 1604 1605 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1606 /// current stream. 1607 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1608 const MachineBasicBlock *MBB, 1609 unsigned UID) const { 1610 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1611 const MCExpr *Value = nullptr; 1612 switch (MJTI->getEntryKind()) { 1613 case MachineJumpTableInfo::EK_Inline: 1614 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1615 case MachineJumpTableInfo::EK_Custom32: 1616 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1617 MJTI, MBB, UID, OutContext); 1618 break; 1619 case MachineJumpTableInfo::EK_BlockAddress: 1620 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1621 // .word LBB123 1622 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1623 break; 1624 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1625 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1626 // with a relocation as gp-relative, e.g.: 1627 // .gprel32 LBB123 1628 MCSymbol *MBBSym = MBB->getSymbol(); 1629 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1630 return; 1631 } 1632 1633 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1634 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1635 // with a relocation as gp-relative, e.g.: 1636 // .gpdword LBB123 1637 MCSymbol *MBBSym = MBB->getSymbol(); 1638 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1639 return; 1640 } 1641 1642 case MachineJumpTableInfo::EK_LabelDifference32: { 1643 // Each entry is the address of the block minus the address of the jump 1644 // table. This is used for PIC jump tables where gprel32 is not supported. 1645 // e.g.: 1646 // .word LBB123 - LJTI1_2 1647 // If the .set directive avoids relocations, this is emitted as: 1648 // .set L4_5_set_123, LBB123 - LJTI1_2 1649 // .word L4_5_set_123 1650 if (MAI->doesSetDirectiveSuppressReloc()) { 1651 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1652 OutContext); 1653 break; 1654 } 1655 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1656 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1657 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1658 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1659 break; 1660 } 1661 } 1662 1663 assert(Value && "Unknown entry kind!"); 1664 1665 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1666 OutStreamer->EmitValue(Value, EntrySize); 1667 } 1668 1669 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1670 /// special global used by LLVM. If so, emit it and return true, otherwise 1671 /// do nothing and return false. 1672 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1673 if (GV->getName() == "llvm.used") { 1674 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1675 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1676 return true; 1677 } 1678 1679 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1680 if (GV->getSection() == "llvm.metadata" || 1681 GV->hasAvailableExternallyLinkage()) 1682 return true; 1683 1684 if (!GV->hasAppendingLinkage()) return false; 1685 1686 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1687 1688 if (GV->getName() == "llvm.global_ctors") { 1689 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1690 /* isCtor */ true); 1691 1692 return true; 1693 } 1694 1695 if (GV->getName() == "llvm.global_dtors") { 1696 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1697 /* isCtor */ false); 1698 1699 return true; 1700 } 1701 1702 report_fatal_error("unknown special variable"); 1703 } 1704 1705 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1706 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1707 /// is true, as being used with this directive. 1708 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1709 // Should be an array of 'i8*'. 1710 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1711 const GlobalValue *GV = 1712 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1713 if (GV) 1714 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1715 } 1716 } 1717 1718 namespace { 1719 1720 struct Structor { 1721 int Priority = 0; 1722 Constant *Func = nullptr; 1723 GlobalValue *ComdatKey = nullptr; 1724 1725 Structor() = default; 1726 }; 1727 1728 } // end anonymous namespace 1729 1730 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1731 /// priority. 1732 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1733 bool isCtor) { 1734 // Should be an array of '{ int, void ()* }' structs. The first value is the 1735 // init priority. 1736 if (!isa<ConstantArray>(List)) return; 1737 1738 // Sanity check the structors list. 1739 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1740 if (!InitList) return; // Not an array! 1741 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1742 // FIXME: Only allow the 3-field form in LLVM 4.0. 1743 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1744 return; // Not an array of two or three elements! 1745 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1746 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1747 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1748 return; // Not (int, ptr, ptr). 1749 1750 // Gather the structors in a form that's convenient for sorting by priority. 1751 SmallVector<Structor, 8> Structors; 1752 for (Value *O : InitList->operands()) { 1753 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1754 if (!CS) continue; // Malformed. 1755 if (CS->getOperand(1)->isNullValue()) 1756 break; // Found a null terminator, skip the rest. 1757 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1758 if (!Priority) continue; // Malformed. 1759 Structors.push_back(Structor()); 1760 Structor &S = Structors.back(); 1761 S.Priority = Priority->getLimitedValue(65535); 1762 S.Func = CS->getOperand(1); 1763 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1764 S.ComdatKey = 1765 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1766 } 1767 1768 // Emit the function pointers in the target-specific order 1769 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1770 std::stable_sort(Structors.begin(), Structors.end(), 1771 [](const Structor &L, 1772 const Structor &R) { return L.Priority < R.Priority; }); 1773 for (Structor &S : Structors) { 1774 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1775 const MCSymbol *KeySym = nullptr; 1776 if (GlobalValue *GV = S.ComdatKey) { 1777 if (GV->isDeclarationForLinker()) 1778 // If the associated variable is not defined in this module 1779 // (it might be available_externally, or have been an 1780 // available_externally definition that was dropped by the 1781 // EliminateAvailableExternally pass), some other TU 1782 // will provide its dynamic initializer. 1783 continue; 1784 1785 KeySym = getSymbol(GV); 1786 } 1787 MCSection *OutputSection = 1788 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1789 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1790 OutStreamer->SwitchSection(OutputSection); 1791 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1792 EmitAlignment(Align); 1793 EmitXXStructor(DL, S.Func); 1794 } 1795 } 1796 1797 void AsmPrinter::EmitModuleIdents(Module &M) { 1798 if (!MAI->hasIdentDirective()) 1799 return; 1800 1801 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1802 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1803 const MDNode *N = NMD->getOperand(i); 1804 assert(N->getNumOperands() == 1 && 1805 "llvm.ident metadata entry can have only one operand"); 1806 const MDString *S = cast<MDString>(N->getOperand(0)); 1807 OutStreamer->EmitIdent(S->getString()); 1808 } 1809 } 1810 } 1811 1812 //===--------------------------------------------------------------------===// 1813 // Emission and print routines 1814 // 1815 1816 /// EmitInt8 - Emit a byte directive and value. 1817 /// 1818 void AsmPrinter::EmitInt8(int Value) const { 1819 OutStreamer->EmitIntValue(Value, 1); 1820 } 1821 1822 /// EmitInt16 - Emit a short directive and value. 1823 /// 1824 void AsmPrinter::EmitInt16(int Value) const { 1825 OutStreamer->EmitIntValue(Value, 2); 1826 } 1827 1828 /// EmitInt32 - Emit a long directive and value. 1829 /// 1830 void AsmPrinter::EmitInt32(int Value) const { 1831 OutStreamer->EmitIntValue(Value, 4); 1832 } 1833 1834 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1835 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1836 /// .set if it avoids relocations. 1837 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1838 unsigned Size) const { 1839 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1840 } 1841 1842 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1843 /// where the size in bytes of the directive is specified by Size and Label 1844 /// specifies the label. This implicitly uses .set if it is available. 1845 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1846 unsigned Size, 1847 bool IsSectionRelative) const { 1848 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1849 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1850 if (Size > 4) 1851 OutStreamer->EmitZeros(Size - 4); 1852 return; 1853 } 1854 1855 // Emit Label+Offset (or just Label if Offset is zero) 1856 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1857 if (Offset) 1858 Expr = MCBinaryExpr::createAdd( 1859 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1860 1861 OutStreamer->EmitValue(Expr, Size); 1862 } 1863 1864 //===----------------------------------------------------------------------===// 1865 1866 // EmitAlignment - Emit an alignment directive to the specified power of 1867 // two boundary. For example, if you pass in 3 here, you will get an 8 1868 // byte alignment. If a global value is specified, and if that global has 1869 // an explicit alignment requested, it will override the alignment request 1870 // if required for correctness. 1871 // 1872 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1873 if (GV) 1874 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1875 1876 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1877 1878 assert(NumBits < 1879 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1880 "undefined behavior"); 1881 if (getCurrentSection()->getKind().isText()) 1882 OutStreamer->EmitCodeAlignment(1u << NumBits); 1883 else 1884 OutStreamer->EmitValueToAlignment(1u << NumBits); 1885 } 1886 1887 //===----------------------------------------------------------------------===// 1888 // Constant emission. 1889 //===----------------------------------------------------------------------===// 1890 1891 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1892 MCContext &Ctx = OutContext; 1893 1894 if (CV->isNullValue() || isa<UndefValue>(CV)) 1895 return MCConstantExpr::create(0, Ctx); 1896 1897 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1898 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1899 1900 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1901 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1902 1903 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1904 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1905 1906 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1907 if (!CE) { 1908 llvm_unreachable("Unknown constant value to lower!"); 1909 } 1910 1911 switch (CE->getOpcode()) { 1912 default: 1913 // If the code isn't optimized, there may be outstanding folding 1914 // opportunities. Attempt to fold the expression using DataLayout as a 1915 // last resort before giving up. 1916 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1917 if (C != CE) 1918 return lowerConstant(C); 1919 1920 // Otherwise report the problem to the user. 1921 { 1922 std::string S; 1923 raw_string_ostream OS(S); 1924 OS << "Unsupported expression in static initializer: "; 1925 CE->printAsOperand(OS, /*PrintType=*/false, 1926 !MF ? nullptr : MF->getFunction()->getParent()); 1927 report_fatal_error(OS.str()); 1928 } 1929 case Instruction::GetElementPtr: { 1930 // Generate a symbolic expression for the byte address 1931 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1932 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1933 1934 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1935 if (!OffsetAI) 1936 return Base; 1937 1938 int64_t Offset = OffsetAI.getSExtValue(); 1939 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1940 Ctx); 1941 } 1942 1943 case Instruction::Trunc: 1944 // We emit the value and depend on the assembler to truncate the generated 1945 // expression properly. This is important for differences between 1946 // blockaddress labels. Since the two labels are in the same function, it 1947 // is reasonable to treat their delta as a 32-bit value. 1948 LLVM_FALLTHROUGH; 1949 case Instruction::BitCast: 1950 return lowerConstant(CE->getOperand(0)); 1951 1952 case Instruction::IntToPtr: { 1953 const DataLayout &DL = getDataLayout(); 1954 1955 // Handle casts to pointers by changing them into casts to the appropriate 1956 // integer type. This promotes constant folding and simplifies this code. 1957 Constant *Op = CE->getOperand(0); 1958 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1959 false/*ZExt*/); 1960 return lowerConstant(Op); 1961 } 1962 1963 case Instruction::PtrToInt: { 1964 const DataLayout &DL = getDataLayout(); 1965 1966 // Support only foldable casts to/from pointers that can be eliminated by 1967 // changing the pointer to the appropriately sized integer type. 1968 Constant *Op = CE->getOperand(0); 1969 Type *Ty = CE->getType(); 1970 1971 const MCExpr *OpExpr = lowerConstant(Op); 1972 1973 // We can emit the pointer value into this slot if the slot is an 1974 // integer slot equal to the size of the pointer. 1975 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1976 return OpExpr; 1977 1978 // Otherwise the pointer is smaller than the resultant integer, mask off 1979 // the high bits so we are sure to get a proper truncation if the input is 1980 // a constant expr. 1981 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1982 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1983 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1984 } 1985 1986 case Instruction::Sub: { 1987 GlobalValue *LHSGV; 1988 APInt LHSOffset; 1989 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1990 getDataLayout())) { 1991 GlobalValue *RHSGV; 1992 APInt RHSOffset; 1993 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1994 getDataLayout())) { 1995 const MCExpr *RelocExpr = 1996 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1997 if (!RelocExpr) 1998 RelocExpr = MCBinaryExpr::createSub( 1999 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2000 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2001 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2002 if (Addend != 0) 2003 RelocExpr = MCBinaryExpr::createAdd( 2004 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2005 return RelocExpr; 2006 } 2007 } 2008 } 2009 // else fallthrough 2010 2011 // The MC library also has a right-shift operator, but it isn't consistently 2012 // signed or unsigned between different targets. 2013 case Instruction::Add: 2014 case Instruction::Mul: 2015 case Instruction::SDiv: 2016 case Instruction::SRem: 2017 case Instruction::Shl: 2018 case Instruction::And: 2019 case Instruction::Or: 2020 case Instruction::Xor: { 2021 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2022 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2023 switch (CE->getOpcode()) { 2024 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2025 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2026 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2027 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2028 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2029 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2030 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2031 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2032 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2033 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2034 } 2035 } 2036 } 2037 } 2038 2039 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2040 AsmPrinter &AP, 2041 const Constant *BaseCV = nullptr, 2042 uint64_t Offset = 0); 2043 2044 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2045 2046 /// isRepeatedByteSequence - Determine whether the given value is 2047 /// composed of a repeated sequence of identical bytes and return the 2048 /// byte value. If it is not a repeated sequence, return -1. 2049 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2050 StringRef Data = V->getRawDataValues(); 2051 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2052 char C = Data[0]; 2053 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2054 if (Data[i] != C) return -1; 2055 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2056 } 2057 2058 /// isRepeatedByteSequence - Determine whether the given value is 2059 /// composed of a repeated sequence of identical bytes and return the 2060 /// byte value. If it is not a repeated sequence, return -1. 2061 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2062 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2063 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2064 assert(Size % 8 == 0); 2065 2066 // Extend the element to take zero padding into account. 2067 APInt Value = CI->getValue().zextOrSelf(Size); 2068 if (!Value.isSplat(8)) 2069 return -1; 2070 2071 return Value.zextOrTrunc(8).getZExtValue(); 2072 } 2073 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2074 // Make sure all array elements are sequences of the same repeated 2075 // byte. 2076 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2077 Constant *Op0 = CA->getOperand(0); 2078 int Byte = isRepeatedByteSequence(Op0, DL); 2079 if (Byte == -1) 2080 return -1; 2081 2082 // All array elements must be equal. 2083 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2084 if (CA->getOperand(i) != Op0) 2085 return -1; 2086 return Byte; 2087 } 2088 2089 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2090 return isRepeatedByteSequence(CDS); 2091 2092 return -1; 2093 } 2094 2095 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2096 const ConstantDataSequential *CDS, 2097 AsmPrinter &AP) { 2098 // See if we can aggregate this into a .fill, if so, emit it as such. 2099 int Value = isRepeatedByteSequence(CDS, DL); 2100 if (Value != -1) { 2101 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2102 // Don't emit a 1-byte object as a .fill. 2103 if (Bytes > 1) 2104 return AP.OutStreamer->emitFill(Bytes, Value); 2105 } 2106 2107 // If this can be emitted with .ascii/.asciz, emit it as such. 2108 if (CDS->isString()) 2109 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2110 2111 // Otherwise, emit the values in successive locations. 2112 unsigned ElementByteSize = CDS->getElementByteSize(); 2113 if (isa<IntegerType>(CDS->getElementType())) { 2114 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2115 if (AP.isVerbose()) 2116 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2117 CDS->getElementAsInteger(i)); 2118 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2119 ElementByteSize); 2120 } 2121 } else { 2122 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2123 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2124 } 2125 2126 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2127 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2128 CDS->getNumElements(); 2129 if (unsigned Padding = Size - EmittedSize) 2130 AP.OutStreamer->EmitZeros(Padding); 2131 } 2132 2133 static void emitGlobalConstantArray(const DataLayout &DL, 2134 const ConstantArray *CA, AsmPrinter &AP, 2135 const Constant *BaseCV, uint64_t Offset) { 2136 // See if we can aggregate some values. Make sure it can be 2137 // represented as a series of bytes of the constant value. 2138 int Value = isRepeatedByteSequence(CA, DL); 2139 2140 if (Value != -1) { 2141 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2142 AP.OutStreamer->emitFill(Bytes, Value); 2143 } 2144 else { 2145 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2146 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2147 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2148 } 2149 } 2150 } 2151 2152 static void emitGlobalConstantVector(const DataLayout &DL, 2153 const ConstantVector *CV, AsmPrinter &AP) { 2154 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2155 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2156 2157 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2158 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2159 CV->getType()->getNumElements(); 2160 if (unsigned Padding = Size - EmittedSize) 2161 AP.OutStreamer->EmitZeros(Padding); 2162 } 2163 2164 static void emitGlobalConstantStruct(const DataLayout &DL, 2165 const ConstantStruct *CS, AsmPrinter &AP, 2166 const Constant *BaseCV, uint64_t Offset) { 2167 // Print the fields in successive locations. Pad to align if needed! 2168 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2169 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2170 uint64_t SizeSoFar = 0; 2171 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2172 const Constant *Field = CS->getOperand(i); 2173 2174 // Print the actual field value. 2175 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2176 2177 // Check if padding is needed and insert one or more 0s. 2178 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2179 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2180 - Layout->getElementOffset(i)) - FieldSize; 2181 SizeSoFar += FieldSize + PadSize; 2182 2183 // Insert padding - this may include padding to increase the size of the 2184 // current field up to the ABI size (if the struct is not packed) as well 2185 // as padding to ensure that the next field starts at the right offset. 2186 AP.OutStreamer->EmitZeros(PadSize); 2187 } 2188 assert(SizeSoFar == Layout->getSizeInBytes() && 2189 "Layout of constant struct may be incorrect!"); 2190 } 2191 2192 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2193 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2194 2195 // First print a comment with what we think the original floating-point value 2196 // should have been. 2197 if (AP.isVerbose()) { 2198 SmallString<8> StrVal; 2199 CFP->getValueAPF().toString(StrVal); 2200 2201 if (CFP->getType()) 2202 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2203 else 2204 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2205 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2206 } 2207 2208 // Now iterate through the APInt chunks, emitting them in endian-correct 2209 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2210 // floats). 2211 unsigned NumBytes = API.getBitWidth() / 8; 2212 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2213 const uint64_t *p = API.getRawData(); 2214 2215 // PPC's long double has odd notions of endianness compared to how LLVM 2216 // handles it: p[0] goes first for *big* endian on PPC. 2217 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2218 int Chunk = API.getNumWords() - 1; 2219 2220 if (TrailingBytes) 2221 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2222 2223 for (; Chunk >= 0; --Chunk) 2224 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2225 } else { 2226 unsigned Chunk; 2227 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2228 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2229 2230 if (TrailingBytes) 2231 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2232 } 2233 2234 // Emit the tail padding for the long double. 2235 const DataLayout &DL = AP.getDataLayout(); 2236 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2237 DL.getTypeStoreSize(CFP->getType())); 2238 } 2239 2240 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2241 const DataLayout &DL = AP.getDataLayout(); 2242 unsigned BitWidth = CI->getBitWidth(); 2243 2244 // Copy the value as we may massage the layout for constants whose bit width 2245 // is not a multiple of 64-bits. 2246 APInt Realigned(CI->getValue()); 2247 uint64_t ExtraBits = 0; 2248 unsigned ExtraBitsSize = BitWidth & 63; 2249 2250 if (ExtraBitsSize) { 2251 // The bit width of the data is not a multiple of 64-bits. 2252 // The extra bits are expected to be at the end of the chunk of the memory. 2253 // Little endian: 2254 // * Nothing to be done, just record the extra bits to emit. 2255 // Big endian: 2256 // * Record the extra bits to emit. 2257 // * Realign the raw data to emit the chunks of 64-bits. 2258 if (DL.isBigEndian()) { 2259 // Basically the structure of the raw data is a chunk of 64-bits cells: 2260 // 0 1 BitWidth / 64 2261 // [chunk1][chunk2] ... [chunkN]. 2262 // The most significant chunk is chunkN and it should be emitted first. 2263 // However, due to the alignment issue chunkN contains useless bits. 2264 // Realign the chunks so that they contain only useless information: 2265 // ExtraBits 0 1 (BitWidth / 64) - 1 2266 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2267 ExtraBits = Realigned.getRawData()[0] & 2268 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2269 Realigned.lshrInPlace(ExtraBitsSize); 2270 } else 2271 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2272 } 2273 2274 // We don't expect assemblers to support integer data directives 2275 // for more than 64 bits, so we emit the data in at most 64-bit 2276 // quantities at a time. 2277 const uint64_t *RawData = Realigned.getRawData(); 2278 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2279 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2280 AP.OutStreamer->EmitIntValue(Val, 8); 2281 } 2282 2283 if (ExtraBitsSize) { 2284 // Emit the extra bits after the 64-bits chunks. 2285 2286 // Emit a directive that fills the expected size. 2287 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2288 Size -= (BitWidth / 64) * 8; 2289 assert(Size && Size * 8 >= ExtraBitsSize && 2290 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2291 == ExtraBits && "Directive too small for extra bits."); 2292 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2293 } 2294 } 2295 2296 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2297 /// equivalent global, by a target specific GOT pc relative access to the 2298 /// final symbol. 2299 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2300 const Constant *BaseCst, 2301 uint64_t Offset) { 2302 // The global @foo below illustrates a global that uses a got equivalent. 2303 // 2304 // @bar = global i32 42 2305 // @gotequiv = private unnamed_addr constant i32* @bar 2306 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2307 // i64 ptrtoint (i32* @foo to i64)) 2308 // to i32) 2309 // 2310 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2311 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2312 // form: 2313 // 2314 // foo = cstexpr, where 2315 // cstexpr := <gotequiv> - "." + <cst> 2316 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2317 // 2318 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2319 // 2320 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2321 // gotpcrelcst := <offset from @foo base> + <cst> 2322 // 2323 MCValue MV; 2324 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2325 return; 2326 const MCSymbolRefExpr *SymA = MV.getSymA(); 2327 if (!SymA) 2328 return; 2329 2330 // Check that GOT equivalent symbol is cached. 2331 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2332 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2333 return; 2334 2335 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2336 if (!BaseGV) 2337 return; 2338 2339 // Check for a valid base symbol 2340 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2341 const MCSymbolRefExpr *SymB = MV.getSymB(); 2342 2343 if (!SymB || BaseSym != &SymB->getSymbol()) 2344 return; 2345 2346 // Make sure to match: 2347 // 2348 // gotpcrelcst := <offset from @foo base> + <cst> 2349 // 2350 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2351 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2352 // if the target knows how to encode it. 2353 // 2354 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2355 if (GOTPCRelCst < 0) 2356 return; 2357 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2358 return; 2359 2360 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2361 // 2362 // bar: 2363 // .long 42 2364 // gotequiv: 2365 // .quad bar 2366 // foo: 2367 // .long gotequiv - "." + <cst> 2368 // 2369 // is replaced by the target specific equivalent to: 2370 // 2371 // bar: 2372 // .long 42 2373 // foo: 2374 // .long bar@GOTPCREL+<gotpcrelcst> 2375 // 2376 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2377 const GlobalVariable *GV = Result.first; 2378 int NumUses = (int)Result.second; 2379 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2380 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2381 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2382 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2383 2384 // Update GOT equivalent usage information 2385 --NumUses; 2386 if (NumUses >= 0) 2387 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2388 } 2389 2390 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2391 AsmPrinter &AP, const Constant *BaseCV, 2392 uint64_t Offset) { 2393 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2394 2395 // Globals with sub-elements such as combinations of arrays and structs 2396 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2397 // constant symbol base and the current position with BaseCV and Offset. 2398 if (!BaseCV && CV->hasOneUse()) 2399 BaseCV = dyn_cast<Constant>(CV->user_back()); 2400 2401 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2402 return AP.OutStreamer->EmitZeros(Size); 2403 2404 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2405 switch (Size) { 2406 case 1: 2407 case 2: 2408 case 4: 2409 case 8: 2410 if (AP.isVerbose()) 2411 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2412 CI->getZExtValue()); 2413 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2414 return; 2415 default: 2416 emitGlobalConstantLargeInt(CI, AP); 2417 return; 2418 } 2419 } 2420 2421 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2422 return emitGlobalConstantFP(CFP, AP); 2423 2424 if (isa<ConstantPointerNull>(CV)) { 2425 AP.OutStreamer->EmitIntValue(0, Size); 2426 return; 2427 } 2428 2429 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2430 return emitGlobalConstantDataSequential(DL, CDS, AP); 2431 2432 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2433 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2434 2435 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2436 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2437 2438 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2439 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2440 // vectors). 2441 if (CE->getOpcode() == Instruction::BitCast) 2442 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2443 2444 if (Size > 8) { 2445 // If the constant expression's size is greater than 64-bits, then we have 2446 // to emit the value in chunks. Try to constant fold the value and emit it 2447 // that way. 2448 Constant *New = ConstantFoldConstant(CE, DL); 2449 if (New && New != CE) 2450 return emitGlobalConstantImpl(DL, New, AP); 2451 } 2452 } 2453 2454 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2455 return emitGlobalConstantVector(DL, V, AP); 2456 2457 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2458 // thread the streamer with EmitValue. 2459 const MCExpr *ME = AP.lowerConstant(CV); 2460 2461 // Since lowerConstant already folded and got rid of all IR pointer and 2462 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2463 // directly. 2464 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2465 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2466 2467 AP.OutStreamer->EmitValue(ME, Size); 2468 } 2469 2470 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2471 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2472 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2473 if (Size) 2474 emitGlobalConstantImpl(DL, CV, *this); 2475 else if (MAI->hasSubsectionsViaSymbols()) { 2476 // If the global has zero size, emit a single byte so that two labels don't 2477 // look like they are at the same location. 2478 OutStreamer->EmitIntValue(0, 1); 2479 } 2480 } 2481 2482 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2483 // Target doesn't support this yet! 2484 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2485 } 2486 2487 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2488 if (Offset > 0) 2489 OS << '+' << Offset; 2490 else if (Offset < 0) 2491 OS << Offset; 2492 } 2493 2494 //===----------------------------------------------------------------------===// 2495 // Symbol Lowering Routines. 2496 //===----------------------------------------------------------------------===// 2497 2498 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2499 return OutContext.createTempSymbol(Name, true); 2500 } 2501 2502 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2503 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2504 } 2505 2506 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2507 return MMI->getAddrLabelSymbol(BB); 2508 } 2509 2510 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2511 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2512 const DataLayout &DL = getDataLayout(); 2513 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2514 "CPI" + Twine(getFunctionNumber()) + "_" + 2515 Twine(CPID)); 2516 } 2517 2518 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2519 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2520 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2521 } 2522 2523 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2524 /// FIXME: privatize to AsmPrinter. 2525 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2526 const DataLayout &DL = getDataLayout(); 2527 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2528 Twine(getFunctionNumber()) + "_" + 2529 Twine(UID) + "_set_" + Twine(MBBID)); 2530 } 2531 2532 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2533 StringRef Suffix) const { 2534 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2535 } 2536 2537 /// Return the MCSymbol for the specified ExternalSymbol. 2538 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2539 SmallString<60> NameStr; 2540 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2541 return OutContext.getOrCreateSymbol(NameStr); 2542 } 2543 2544 /// PrintParentLoopComment - Print comments about parent loops of this one. 2545 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2546 unsigned FunctionNumber) { 2547 if (!Loop) return; 2548 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2549 OS.indent(Loop->getLoopDepth()*2) 2550 << "Parent Loop BB" << FunctionNumber << "_" 2551 << Loop->getHeader()->getNumber() 2552 << " Depth=" << Loop->getLoopDepth() << '\n'; 2553 } 2554 2555 2556 /// PrintChildLoopComment - Print comments about child loops within 2557 /// the loop for this basic block, with nesting. 2558 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2559 unsigned FunctionNumber) { 2560 // Add child loop information 2561 for (const MachineLoop *CL : *Loop) { 2562 OS.indent(CL->getLoopDepth()*2) 2563 << "Child Loop BB" << FunctionNumber << "_" 2564 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2565 << '\n'; 2566 PrintChildLoopComment(OS, CL, FunctionNumber); 2567 } 2568 } 2569 2570 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2571 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2572 const MachineLoopInfo *LI, 2573 const AsmPrinter &AP) { 2574 // Add loop depth information 2575 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2576 if (!Loop) return; 2577 2578 MachineBasicBlock *Header = Loop->getHeader(); 2579 assert(Header && "No header for loop"); 2580 2581 // If this block is not a loop header, just print out what is the loop header 2582 // and return. 2583 if (Header != &MBB) { 2584 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2585 Twine(AP.getFunctionNumber())+"_" + 2586 Twine(Loop->getHeader()->getNumber())+ 2587 " Depth="+Twine(Loop->getLoopDepth())); 2588 return; 2589 } 2590 2591 // Otherwise, it is a loop header. Print out information about child and 2592 // parent loops. 2593 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2594 2595 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2596 2597 OS << "=>"; 2598 OS.indent(Loop->getLoopDepth()*2-2); 2599 2600 OS << "This "; 2601 if (Loop->empty()) 2602 OS << "Inner "; 2603 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2604 2605 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2606 } 2607 2608 /// EmitBasicBlockStart - This method prints the label for the specified 2609 /// MachineBasicBlock, an alignment (if present) and a comment describing 2610 /// it if appropriate. 2611 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2612 // End the previous funclet and start a new one. 2613 if (MBB.isEHFuncletEntry()) { 2614 for (const HandlerInfo &HI : Handlers) { 2615 HI.Handler->endFunclet(); 2616 HI.Handler->beginFunclet(MBB); 2617 } 2618 } 2619 2620 // Emit an alignment directive for this block, if needed. 2621 if (unsigned Align = MBB.getAlignment()) 2622 EmitAlignment(Align); 2623 2624 // If the block has its address taken, emit any labels that were used to 2625 // reference the block. It is possible that there is more than one label 2626 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2627 // the references were generated. 2628 if (MBB.hasAddressTaken()) { 2629 const BasicBlock *BB = MBB.getBasicBlock(); 2630 if (isVerbose()) 2631 OutStreamer->AddComment("Block address taken"); 2632 2633 // MBBs can have their address taken as part of CodeGen without having 2634 // their corresponding BB's address taken in IR 2635 if (BB->hasAddressTaken()) 2636 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2637 OutStreamer->EmitLabel(Sym); 2638 } 2639 2640 // Print some verbose block comments. 2641 if (isVerbose()) { 2642 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2643 if (BB->hasName()) { 2644 BB->printAsOperand(OutStreamer->GetCommentOS(), 2645 /*PrintType=*/false, BB->getModule()); 2646 OutStreamer->GetCommentOS() << '\n'; 2647 } 2648 } 2649 emitBasicBlockLoopComments(MBB, LI, *this); 2650 } 2651 2652 // Print the main label for the block. 2653 if (MBB.pred_empty() || 2654 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2655 if (isVerbose()) { 2656 // NOTE: Want this comment at start of line, don't emit with AddComment. 2657 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2658 } 2659 } else { 2660 OutStreamer->EmitLabel(MBB.getSymbol()); 2661 } 2662 } 2663 2664 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2665 bool IsDefinition) const { 2666 MCSymbolAttr Attr = MCSA_Invalid; 2667 2668 switch (Visibility) { 2669 default: break; 2670 case GlobalValue::HiddenVisibility: 2671 if (IsDefinition) 2672 Attr = MAI->getHiddenVisibilityAttr(); 2673 else 2674 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2675 break; 2676 case GlobalValue::ProtectedVisibility: 2677 Attr = MAI->getProtectedVisibilityAttr(); 2678 break; 2679 } 2680 2681 if (Attr != MCSA_Invalid) 2682 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2683 } 2684 2685 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2686 /// exactly one predecessor and the control transfer mechanism between 2687 /// the predecessor and this block is a fall-through. 2688 bool AsmPrinter:: 2689 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2690 // If this is a landing pad, it isn't a fall through. If it has no preds, 2691 // then nothing falls through to it. 2692 if (MBB->isEHPad() || MBB->pred_empty()) 2693 return false; 2694 2695 // If there isn't exactly one predecessor, it can't be a fall through. 2696 if (MBB->pred_size() > 1) 2697 return false; 2698 2699 // The predecessor has to be immediately before this block. 2700 MachineBasicBlock *Pred = *MBB->pred_begin(); 2701 if (!Pred->isLayoutSuccessor(MBB)) 2702 return false; 2703 2704 // If the block is completely empty, then it definitely does fall through. 2705 if (Pred->empty()) 2706 return true; 2707 2708 // Check the terminators in the previous blocks 2709 for (const auto &MI : Pred->terminators()) { 2710 // If it is not a simple branch, we are in a table somewhere. 2711 if (!MI.isBranch() || MI.isIndirectBranch()) 2712 return false; 2713 2714 // If we are the operands of one of the branches, this is not a fall 2715 // through. Note that targets with delay slots will usually bundle 2716 // terminators with the delay slot instruction. 2717 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2718 if (OP->isJTI()) 2719 return false; 2720 if (OP->isMBB() && OP->getMBB() == MBB) 2721 return false; 2722 } 2723 } 2724 2725 return true; 2726 } 2727 2728 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2729 if (!S.usesMetadata()) 2730 return nullptr; 2731 2732 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2733 " stackmap formats, please see the documentation for a description of" 2734 " the default format. If you really need a custom serialized format," 2735 " please file a bug"); 2736 2737 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2738 gcp_map_type::iterator GCPI = GCMap.find(&S); 2739 if (GCPI != GCMap.end()) 2740 return GCPI->second.get(); 2741 2742 auto Name = S.getName(); 2743 2744 for (GCMetadataPrinterRegistry::iterator 2745 I = GCMetadataPrinterRegistry::begin(), 2746 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2747 if (Name == I->getName()) { 2748 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2749 GMP->S = &S; 2750 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2751 return IterBool.first->second.get(); 2752 } 2753 2754 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2755 } 2756 2757 /// Pin vtable to this file. 2758 AsmPrinterHandler::~AsmPrinterHandler() = default; 2759 2760 void AsmPrinterHandler::markFunctionEnd() {} 2761 2762 // In the binary's "xray_instr_map" section, an array of these function entries 2763 // describes each instrumentation point. When XRay patches your code, the index 2764 // into this table will be given to your handler as a patch point identifier. 2765 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2766 const MCSymbol *CurrentFnSym) const { 2767 Out->EmitSymbolValue(Sled, Bytes); 2768 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2769 auto Kind8 = static_cast<uint8_t>(Kind); 2770 Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2771 Out->EmitBytes( 2772 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2773 Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries 2774 } 2775 2776 void AsmPrinter::emitXRayTable() { 2777 if (Sleds.empty()) 2778 return; 2779 2780 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2781 auto Fn = MF->getFunction(); 2782 MCSection *InstMap = nullptr; 2783 MCSection *FnSledIndex = nullptr; 2784 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2785 if (Fn->hasComdat()) { 2786 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2787 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2788 Fn->getComdat()->getName()); 2789 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 2790 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2791 Fn->getComdat()->getName()); 2792 } else { 2793 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2794 ELF::SHF_ALLOC); 2795 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 2796 ELF::SHF_ALLOC); 2797 } 2798 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2799 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2800 SectionKind::getReadOnlyWithRel()); 2801 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2802 SectionKind::getReadOnlyWithRel()); 2803 } else { 2804 llvm_unreachable("Unsupported target"); 2805 } 2806 2807 // Before we switch over, we force a reference to a label inside the 2808 // xray_instr_map and xray_fn_idx sections. Since this function is always 2809 // called just before the function's end, we assume that this is happening 2810 // after the last return instruction. We also use the synthetic label in the 2811 // xray_inster_map as a delimeter for the range of sleds for this function in 2812 // the index. 2813 auto WordSizeBytes = MAI->getCodePointerSize(); 2814 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_synthetic_", true); 2815 MCSymbol *IdxRef = OutContext.createTempSymbol("xray_fn_idx_synth_", true); 2816 OutStreamer->EmitCodeAlignment(16); 2817 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2818 OutStreamer->EmitSymbolValue(IdxRef, WordSizeBytes, false); 2819 2820 // Now we switch to the instrumentation map section. Because this is done 2821 // per-function, we are able to create an index entry that will represent the 2822 // range of sleds associated with a function. 2823 OutStreamer->SwitchSection(InstMap); 2824 OutStreamer->EmitLabel(SledsStart); 2825 for (const auto &Sled : Sleds) 2826 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2827 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_synthetic_end", true); 2828 OutStreamer->EmitLabel(SledsEnd); 2829 2830 // We then emit a single entry in the index per function. We use the symbols 2831 // that bound the instrumentation map as the range for a specific function. 2832 // Each entry here will be 2 * word size aligned, as we're writing down two 2833 // pointers. This should work for both 32-bit and 64-bit platforms. 2834 OutStreamer->SwitchSection(FnSledIndex); 2835 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2836 OutStreamer->EmitLabel(IdxRef); 2837 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes); 2838 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes); 2839 OutStreamer->SwitchSection(PrevSection); 2840 Sleds.clear(); 2841 } 2842 2843 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2844 SledKind Kind) { 2845 auto Fn = MI.getParent()->getParent()->getFunction(); 2846 auto Attr = Fn->getFnAttribute("function-instrument"); 2847 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2848 bool AlwaysInstrument = 2849 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2850 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2851 Kind = SledKind::LOG_ARGS_ENTER; 2852 Sleds.emplace_back( 2853 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2854 } 2855 2856 uint16_t AsmPrinter::getDwarfVersion() const { 2857 return OutStreamer->getContext().getDwarfVersion(); 2858 } 2859 2860 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2861 OutStreamer->getContext().setDwarfVersion(Version); 2862 } 2863