1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/BinaryFormat/COFF.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBundle.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineModuleInfo.h"
55 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/StackMaps.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Comdat.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalIFunc.h"
75 #include "llvm/IR/GlobalIndirectSymbol.h"
76 #include "llvm/IR/GlobalObject.h"
77 #include "llvm/IR/GlobalValue.h"
78 #include "llvm/IR/GlobalVariable.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Mangler.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/RemarkStreamer.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCAsmInfo.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/MC/MCDirectives.h"
90 #include "llvm/MC/MCDwarf.h"
91 #include "llvm/MC/MCExpr.h"
92 #include "llvm/MC/MCInst.h"
93 #include "llvm/MC/MCSection.h"
94 #include "llvm/MC/MCSectionCOFF.h"
95 #include "llvm/MC/MCSectionELF.h"
96 #include "llvm/MC/MCSectionMachO.h"
97 #include "llvm/MC/MCSectionXCOFF.h"
98 #include "llvm/MC/MCStreamer.h"
99 #include "llvm/MC/MCSubtargetInfo.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/MC/MCSymbolELF.h"
102 #include "llvm/MC/MCSymbolXCOFF.h"
103 #include "llvm/MC/MCTargetOptions.h"
104 #include "llvm/MC/MCValue.h"
105 #include "llvm/MC/SectionKind.h"
106 #include "llvm/Pass.h"
107 #include "llvm/Remarks/Remark.h"
108 #include "llvm/Remarks/RemarkFormat.h"
109 #include "llvm/Remarks/RemarkStringTable.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 static const char *const DWARFGroupName = "dwarf";
139 static const char *const DWARFGroupDescription = "DWARF Emission";
140 static const char *const DbgTimerName = "emit";
141 static const char *const DbgTimerDescription = "Debug Info Emission";
142 static const char *const EHTimerName = "write_exception";
143 static const char *const EHTimerDescription = "DWARF Exception Writer";
144 static const char *const CFGuardName = "Control Flow Guard";
145 static const char *const CFGuardDescription = "Control Flow Guard";
146 static const char *const CodeViewLineTablesGroupName = "linetables";
147 static const char *const CodeViewLineTablesGroupDescription =
148   "CodeView Line Tables";
149 
150 STATISTIC(EmittedInsts, "Number of machine instrs printed");
151 
152 char AsmPrinter::ID = 0;
153 
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155 
156 static gcp_map_type &getGCMap(void *&P) {
157   if (!P)
158     P = new gcp_map_type();
159   return *(gcp_map_type*)P;
160 }
161 
162 /// getGVAlignment - Return the alignment to use for the specified global
163 /// value.  This rounds up to the preferred alignment if possible and legal.
164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
165                                  Align InAlign) {
166   Align Alignment;
167   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
168     Alignment = Align(DL.getPreferredAlignment(GVar));
169 
170   // If InAlign is specified, round it to it.
171   if (InAlign > Alignment)
172     Alignment = InAlign;
173 
174   // If the GV has a specified alignment, take it into account.
175   const MaybeAlign GVAlign(GV->getAlignment());
176   if (!GVAlign)
177     return Alignment;
178 
179   assert(GVAlign && "GVAlign must be set");
180 
181   // If the GVAlign is larger than NumBits, or if we are required to obey
182   // NumBits because the GV has an assigned section, obey it.
183   if (*GVAlign > Alignment || GV->hasSection())
184     Alignment = *GVAlign;
185   return Alignment;
186 }
187 
188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191   VerboseAsm = OutStreamer->isVerboseAsm();
192 }
193 
194 AsmPrinter::~AsmPrinter() {
195   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
196 
197   if (GCMetadataPrinters) {
198     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
199 
200     delete &GCMap;
201     GCMetadataPrinters = nullptr;
202   }
203 }
204 
205 bool AsmPrinter::isPositionIndependent() const {
206   return TM.isPositionIndependent();
207 }
208 
209 /// getFunctionNumber - Return a unique ID for the current function.
210 unsigned AsmPrinter::getFunctionNumber() const {
211   return MF->getFunctionNumber();
212 }
213 
214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
215   return *TM.getObjFileLowering();
216 }
217 
218 const DataLayout &AsmPrinter::getDataLayout() const {
219   return MMI->getModule()->getDataLayout();
220 }
221 
222 // Do not use the cached DataLayout because some client use it without a Module
223 // (dsymutil, llvm-dwarfdump).
224 unsigned AsmPrinter::getPointerSize() const {
225   return TM.getPointerSize(0); // FIXME: Default address space
226 }
227 
228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
229   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
230   return MF->getSubtarget<MCSubtargetInfo>();
231 }
232 
233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
234   S.EmitInstruction(Inst, getSubtargetInfo());
235 }
236 
237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
238   assert(DD && "Dwarf debug file is not defined.");
239   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
240   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
241 }
242 
243 /// getCurrentSection() - Return the current section we are emitting to.
244 const MCSection *AsmPrinter::getCurrentSection() const {
245   return OutStreamer->getCurrentSectionOnly();
246 }
247 
248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
249   AU.setPreservesAll();
250   MachineFunctionPass::getAnalysisUsage(AU);
251   AU.addRequired<MachineModuleInfoWrapperPass>();
252   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
253   AU.addRequired<GCModuleInfo>();
254   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
255   AU.addRequired<ProfileSummaryInfoWrapperPass>();
256 }
257 
258 bool AsmPrinter::doInitialization(Module &M) {
259   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
261 
262   // Initialize TargetLoweringObjectFile.
263   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264     .Initialize(OutContext, TM);
265 
266   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267       .getModuleMetadata(M);
268 
269   OutStreamer->InitSections(false);
270 
271   // Emit the version-min deployment target directive if needed.
272   //
273   // FIXME: If we end up with a collection of these sorts of Darwin-specific
274   // or ELF-specific things, it may make sense to have a platform helper class
275   // that will work with the target helper class. For now keep it here, as the
276   // alternative is duplicated code in each of the target asm printers that
277   // use the directive, where it would need the same conditionalization
278   // anyway.
279   const Triple &Target = TM.getTargetTriple();
280   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
281 
282   // Allow the target to emit any magic that it wants at the start of the file.
283   EmitStartOfAsmFile(M);
284 
285   // Very minimal debug info. It is ignored if we emit actual debug info. If we
286   // don't, this at least helps the user find where a global came from.
287   if (MAI->hasSingleParameterDotFile()) {
288     // .file "foo.c"
289     OutStreamer->EmitFileDirective(
290         llvm::sys::path::filename(M.getSourceFileName()));
291   }
292 
293   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
294   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
295   for (auto &I : *MI)
296     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
297       MP->beginAssembly(M, *MI, *this);
298 
299   // Emit module-level inline asm if it exists.
300   if (!M.getModuleInlineAsm().empty()) {
301     // We're at the module level. Construct MCSubtarget from the default CPU
302     // and target triple.
303     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
304         TM.getTargetTriple().str(), TM.getTargetCPU(),
305         TM.getTargetFeatureString()));
306     OutStreamer->AddComment("Start of file scope inline assembly");
307     OutStreamer->AddBlankLine();
308     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
309                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
310     OutStreamer->AddComment("End of file scope inline assembly");
311     OutStreamer->AddBlankLine();
312   }
313 
314   if (MAI->doesSupportDebugInformation()) {
315     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
316     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
317       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
318                             DbgTimerName, DbgTimerDescription,
319                             CodeViewLineTablesGroupName,
320                             CodeViewLineTablesGroupDescription);
321     }
322     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
323       DD = new DwarfDebug(this, &M);
324       DD->beginModule();
325       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
326                             DbgTimerDescription, DWARFGroupName,
327                             DWARFGroupDescription);
328     }
329   }
330 
331   switch (MAI->getExceptionHandlingType()) {
332   case ExceptionHandling::SjLj:
333   case ExceptionHandling::DwarfCFI:
334   case ExceptionHandling::ARM:
335     isCFIMoveForDebugging = true;
336     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
337       break;
338     for (auto &F: M.getFunctionList()) {
339       // If the module contains any function with unwind data,
340       // .eh_frame has to be emitted.
341       // Ignore functions that won't get emitted.
342       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
343         isCFIMoveForDebugging = false;
344         break;
345       }
346     }
347     break;
348   default:
349     isCFIMoveForDebugging = false;
350     break;
351   }
352 
353   EHStreamer *ES = nullptr;
354   switch (MAI->getExceptionHandlingType()) {
355   case ExceptionHandling::None:
356     break;
357   case ExceptionHandling::SjLj:
358   case ExceptionHandling::DwarfCFI:
359     ES = new DwarfCFIException(this);
360     break;
361   case ExceptionHandling::ARM:
362     ES = new ARMException(this);
363     break;
364   case ExceptionHandling::WinEH:
365     switch (MAI->getWinEHEncodingType()) {
366     default: llvm_unreachable("unsupported unwinding information encoding");
367     case WinEH::EncodingType::Invalid:
368       break;
369     case WinEH::EncodingType::X86:
370     case WinEH::EncodingType::Itanium:
371       ES = new WinException(this);
372       break;
373     }
374     break;
375   case ExceptionHandling::Wasm:
376     ES = new WasmException(this);
377     break;
378   }
379   if (ES)
380     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
381                           EHTimerDescription, DWARFGroupName,
382                           DWARFGroupDescription);
383 
384   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
385   if (mdconst::extract_or_null<ConstantInt>(
386           MMI->getModule()->getModuleFlag("cfguard")))
387     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
388                           CFGuardDescription, DWARFGroupName,
389                           DWARFGroupDescription);
390   return false;
391 }
392 
393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
394   if (!MAI.hasWeakDefCanBeHiddenDirective())
395     return false;
396 
397   return GV->canBeOmittedFromSymbolTable();
398 }
399 
400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
401   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
402   switch (Linkage) {
403   case GlobalValue::CommonLinkage:
404   case GlobalValue::LinkOnceAnyLinkage:
405   case GlobalValue::LinkOnceODRLinkage:
406   case GlobalValue::WeakAnyLinkage:
407   case GlobalValue::WeakODRLinkage:
408     if (MAI->hasWeakDefDirective()) {
409       // .globl _foo
410       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
411 
412       if (!canBeHidden(GV, *MAI))
413         // .weak_definition _foo
414         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
415       else
416         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
417     } else if (MAI->hasLinkOnceDirective()) {
418       // .globl _foo
419       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
420       //NOTE: linkonce is handled by the section the symbol was assigned to.
421     } else {
422       // .weak _foo
423       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
424     }
425     return;
426   case GlobalValue::ExternalLinkage:
427     // If external, declare as a global symbol: .globl _foo
428     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
429     return;
430   case GlobalValue::PrivateLinkage:
431     return;
432   case GlobalValue::InternalLinkage:
433     if (MAI->hasDotLGloblDirective())
434       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal);
435     return;
436   case GlobalValue::AppendingLinkage:
437   case GlobalValue::AvailableExternallyLinkage:
438   case GlobalValue::ExternalWeakLinkage:
439     llvm_unreachable("Should never emit this");
440   }
441   llvm_unreachable("Unknown linkage type!");
442 }
443 
444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
445                                    const GlobalValue *GV) const {
446   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
447 }
448 
449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
450   return TM.getSymbol(GV);
451 }
452 
453 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
455   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
456   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
457          "No emulated TLS variables in the common section");
458 
459   // Never emit TLS variable xyz in emulated TLS model.
460   // The initialization value is in __emutls_t.xyz instead of xyz.
461   if (IsEmuTLSVar)
462     return;
463 
464   if (GV->hasInitializer()) {
465     // Check to see if this is a special global used by LLVM, if so, emit it.
466     if (EmitSpecialLLVMGlobal(GV))
467       return;
468 
469     // Skip the emission of global equivalents. The symbol can be emitted later
470     // on by emitGlobalGOTEquivs in case it turns out to be needed.
471     if (GlobalGOTEquivs.count(getSymbol(GV)))
472       return;
473 
474     if (isVerbose()) {
475       // When printing the control variable __emutls_v.*,
476       // we don't need to print the original TLS variable name.
477       GV->printAsOperand(OutStreamer->GetCommentOS(),
478                      /*PrintType=*/false, GV->getParent());
479       OutStreamer->GetCommentOS() << '\n';
480     }
481   }
482 
483   MCSymbol *GVSym = getSymbol(GV);
484   MCSymbol *EmittedSym = GVSym;
485 
486   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
487   // attributes.
488   // GV's or GVSym's attributes will be used for the EmittedSym.
489   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
490 
491   if (!GV->hasInitializer())   // External globals require no extra code.
492     return;
493 
494   GVSym->redefineIfPossible();
495   if (GVSym->isDefined() || GVSym->isVariable())
496     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
497                        "' is already defined");
498 
499   if (MAI->hasDotTypeDotSizeDirective())
500     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
501 
502   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
503 
504   const DataLayout &DL = GV->getParent()->getDataLayout();
505   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
506 
507   // If the alignment is specified, we *must* obey it.  Overaligning a global
508   // with a specified alignment is a prompt way to break globals emitted to
509   // sections and expected to be contiguous (e.g. ObjC metadata).
510   const Align Alignment = getGVAlignment(GV, DL);
511 
512   for (const HandlerInfo &HI : Handlers) {
513     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
514                        HI.TimerGroupName, HI.TimerGroupDescription,
515                        TimePassesIsEnabled);
516     HI.Handler->setSymbolSize(GVSym, Size);
517   }
518 
519   // Handle common symbols
520   if (GVKind.isCommon()) {
521     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
522     // .comm _foo, 42, 4
523     const bool SupportsAlignment =
524         getObjFileLowering().getCommDirectiveSupportsAlignment();
525     OutStreamer->EmitCommonSymbol(GVSym, Size,
526                                   SupportsAlignment ? Alignment.value() : 0);
527     return;
528   }
529 
530   // Determine to which section this global should be emitted.
531   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
532 
533   // If we have a bss global going to a section that supports the
534   // zerofill directive, do so here.
535   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
536       TheSection->isVirtualSection()) {
537     if (Size == 0)
538       Size = 1; // zerofill of 0 bytes is undefined.
539     EmitLinkage(GV, GVSym);
540     // .zerofill __DATA, __bss, _foo, 400, 5
541     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value());
542     return;
543   }
544 
545   // If this is a BSS local symbol and we are emitting in the BSS
546   // section use .lcomm/.comm directive.
547   if (GVKind.isBSSLocal() &&
548       getObjFileLowering().getBSSSection() == TheSection) {
549     if (Size == 0)
550       Size = 1; // .comm Foo, 0 is undefined, avoid it.
551 
552     // Use .lcomm only if it supports user-specified alignment.
553     // Otherwise, while it would still be correct to use .lcomm in some
554     // cases (e.g. when Align == 1), the external assembler might enfore
555     // some -unknown- default alignment behavior, which could cause
556     // spurious differences between external and integrated assembler.
557     // Prefer to simply fall back to .local / .comm in this case.
558     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
559       // .lcomm _foo, 42
560       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value());
561       return;
562     }
563 
564     // .local _foo
565     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566     // .comm _foo, 42, 4
567     const bool SupportsAlignment =
568         getObjFileLowering().getCommDirectiveSupportsAlignment();
569     OutStreamer->EmitCommonSymbol(GVSym, Size,
570                                   SupportsAlignment ? Alignment.value() : 0);
571     return;
572   }
573 
574   // Handle thread local data for mach-o which requires us to output an
575   // additional structure of data and mangle the original symbol so that we
576   // can reference it later.
577   //
578   // TODO: This should become an "emit thread local global" method on TLOF.
579   // All of this macho specific stuff should be sunk down into TLOFMachO and
580   // stuff like "TLSExtraDataSection" should no longer be part of the parent
581   // TLOF class.  This will also make it more obvious that stuff like
582   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
583   // specific code.
584   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
585     // Emit the .tbss symbol
586     MCSymbol *MangSym =
587         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
588 
589     if (GVKind.isThreadBSS()) {
590       TheSection = getObjFileLowering().getTLSBSSSection();
591       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
592     } else if (GVKind.isThreadData()) {
593       OutStreamer->SwitchSection(TheSection);
594 
595       EmitAlignment(Alignment, GV);
596       OutStreamer->EmitLabel(MangSym);
597 
598       EmitGlobalConstant(GV->getParent()->getDataLayout(),
599                          GV->getInitializer());
600     }
601 
602     OutStreamer->AddBlankLine();
603 
604     // Emit the variable struct for the runtime.
605     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
606 
607     OutStreamer->SwitchSection(TLVSect);
608     // Emit the linkage here.
609     EmitLinkage(GV, GVSym);
610     OutStreamer->EmitLabel(GVSym);
611 
612     // Three pointers in size:
613     //   - __tlv_bootstrap - used to make sure support exists
614     //   - spare pointer, used when mapped by the runtime
615     //   - pointer to mangled symbol above with initializer
616     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
617     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
618                                 PtrSize);
619     OutStreamer->EmitIntValue(0, PtrSize);
620     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
621 
622     OutStreamer->AddBlankLine();
623     return;
624   }
625 
626   MCSymbol *EmittedInitSym = GVSym;
627 
628   OutStreamer->SwitchSection(TheSection);
629 
630   EmitLinkage(GV, EmittedInitSym);
631   EmitAlignment(Alignment, GV);
632 
633   OutStreamer->EmitLabel(EmittedInitSym);
634 
635   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
636 
637   if (MAI->hasDotTypeDotSizeDirective())
638     // .size foo, 42
639     OutStreamer->emitELFSize(EmittedInitSym,
640                              MCConstantExpr::create(Size, OutContext));
641 
642   OutStreamer->AddBlankLine();
643 }
644 
645 /// Emit the directive and value for debug thread local expression
646 ///
647 /// \p Value - The value to emit.
648 /// \p Size - The size of the integer (in bytes) to emit.
649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
650   OutStreamer->EmitValue(Value, Size);
651 }
652 
653 /// EmitFunctionHeader - This method emits the header for the current
654 /// function.
655 void AsmPrinter::EmitFunctionHeader() {
656   const Function &F = MF->getFunction();
657 
658   if (isVerbose())
659     OutStreamer->GetCommentOS()
660         << "-- Begin function "
661         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
662 
663   // Print out constants referenced by the function
664   EmitConstantPool();
665 
666   // Print the 'header' of function.
667   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
668   EmitVisibility(CurrentFnSym, F.getVisibility());
669 
670   if (MAI->needsFunctionDescriptors() &&
671       F.getLinkage() != GlobalValue::InternalLinkage)
672     EmitLinkage(&F, CurrentFnDescSym);
673 
674   EmitLinkage(&F, CurrentFnSym);
675   if (MAI->hasFunctionAlignment())
676     EmitAlignment(MF->getAlignment(), &F);
677 
678   if (MAI->hasDotTypeDotSizeDirective())
679     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
680 
681   if (F.hasFnAttribute(Attribute::Cold))
682     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
683 
684   if (isVerbose()) {
685     F.printAsOperand(OutStreamer->GetCommentOS(),
686                    /*PrintType=*/false, F.getParent());
687     OutStreamer->GetCommentOS() << '\n';
688   }
689 
690   // Emit the prefix data.
691   if (F.hasPrefixData()) {
692     if (MAI->hasSubsectionsViaSymbols()) {
693       // Preserving prefix data on platforms which use subsections-via-symbols
694       // is a bit tricky. Here we introduce a symbol for the prefix data
695       // and use the .alt_entry attribute to mark the function's real entry point
696       // as an alternative entry point to the prefix-data symbol.
697       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
698       OutStreamer->EmitLabel(PrefixSym);
699 
700       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
701 
702       // Emit an .alt_entry directive for the actual function symbol.
703       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
704     } else {
705       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
706     }
707   }
708 
709   // Emit the function descriptor. This is a virtual function to allow targets
710   // to emit their specific function descriptor.
711   if (MAI->needsFunctionDescriptors())
712     EmitFunctionDescriptor();
713 
714   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
715   // their wild and crazy things as required.
716   EmitFunctionEntryLabel();
717 
718   // If the function had address-taken blocks that got deleted, then we have
719   // references to the dangling symbols.  Emit them at the start of the function
720   // so that we don't get references to undefined symbols.
721   std::vector<MCSymbol*> DeadBlockSyms;
722   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
723   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
724     OutStreamer->AddComment("Address taken block that was later removed");
725     OutStreamer->EmitLabel(DeadBlockSyms[i]);
726   }
727 
728   if (CurrentFnBegin) {
729     if (MAI->useAssignmentForEHBegin()) {
730       MCSymbol *CurPos = OutContext.createTempSymbol();
731       OutStreamer->EmitLabel(CurPos);
732       OutStreamer->EmitAssignment(CurrentFnBegin,
733                                  MCSymbolRefExpr::create(CurPos, OutContext));
734     } else {
735       OutStreamer->EmitLabel(CurrentFnBegin);
736     }
737   }
738 
739   // Emit pre-function debug and/or EH information.
740   for (const HandlerInfo &HI : Handlers) {
741     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
742                        HI.TimerGroupDescription, TimePassesIsEnabled);
743     HI.Handler->beginFunction(MF);
744   }
745 
746   // Emit the prologue data.
747   if (F.hasPrologueData())
748     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
749 }
750 
751 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
752 /// function.  This can be overridden by targets as required to do custom stuff.
753 void AsmPrinter::EmitFunctionEntryLabel() {
754   CurrentFnSym->redefineIfPossible();
755 
756   // The function label could have already been emitted if two symbols end up
757   // conflicting due to asm renaming.  Detect this and emit an error.
758   if (CurrentFnSym->isVariable())
759     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
760                        "' is a protected alias");
761   if (CurrentFnSym->isDefined())
762     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
763                        "' label emitted multiple times to assembly file");
764 
765   return OutStreamer->EmitLabel(CurrentFnSym);
766 }
767 
768 /// emitComments - Pretty-print comments for instructions.
769 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
770   const MachineFunction *MF = MI.getMF();
771   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
772 
773   // Check for spills and reloads
774 
775   // We assume a single instruction only has a spill or reload, not
776   // both.
777   Optional<unsigned> Size;
778   if ((Size = MI.getRestoreSize(TII))) {
779     CommentOS << *Size << "-byte Reload\n";
780   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
781     if (*Size)
782       CommentOS << *Size << "-byte Folded Reload\n";
783   } else if ((Size = MI.getSpillSize(TII))) {
784     CommentOS << *Size << "-byte Spill\n";
785   } else if ((Size = MI.getFoldedSpillSize(TII))) {
786     if (*Size)
787       CommentOS << *Size << "-byte Folded Spill\n";
788   }
789 
790   // Check for spill-induced copies
791   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
792     CommentOS << " Reload Reuse\n";
793 }
794 
795 /// emitImplicitDef - This method emits the specified machine instruction
796 /// that is an implicit def.
797 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
798   Register RegNo = MI->getOperand(0).getReg();
799 
800   SmallString<128> Str;
801   raw_svector_ostream OS(Str);
802   OS << "implicit-def: "
803      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
804 
805   OutStreamer->AddComment(OS.str());
806   OutStreamer->AddBlankLine();
807 }
808 
809 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
810   std::string Str;
811   raw_string_ostream OS(Str);
812   OS << "kill:";
813   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
814     const MachineOperand &Op = MI->getOperand(i);
815     assert(Op.isReg() && "KILL instruction must have only register operands");
816     OS << ' ' << (Op.isDef() ? "def " : "killed ")
817        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
818   }
819   AP.OutStreamer->AddComment(OS.str());
820   AP.OutStreamer->AddBlankLine();
821 }
822 
823 /// emitDebugValueComment - This method handles the target-independent form
824 /// of DBG_VALUE, returning true if it was able to do so.  A false return
825 /// means the target will need to handle MI in EmitInstruction.
826 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
827   // This code handles only the 4-operand target-independent form.
828   if (MI->getNumOperands() != 4)
829     return false;
830 
831   SmallString<128> Str;
832   raw_svector_ostream OS(Str);
833   OS << "DEBUG_VALUE: ";
834 
835   const DILocalVariable *V = MI->getDebugVariable();
836   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
837     StringRef Name = SP->getName();
838     if (!Name.empty())
839       OS << Name << ":";
840   }
841   OS << V->getName();
842   OS << " <- ";
843 
844   // The second operand is only an offset if it's an immediate.
845   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
846   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
847   const DIExpression *Expr = MI->getDebugExpression();
848   if (Expr->getNumElements()) {
849     OS << '[';
850     bool NeedSep = false;
851     for (auto Op : Expr->expr_ops()) {
852       if (NeedSep)
853         OS << ", ";
854       else
855         NeedSep = true;
856       OS << dwarf::OperationEncodingString(Op.getOp());
857       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
858         OS << ' ' << Op.getArg(I);
859     }
860     OS << "] ";
861   }
862 
863   // Register or immediate value. Register 0 means undef.
864   if (MI->getOperand(0).isFPImm()) {
865     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
866     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
867       OS << (double)APF.convertToFloat();
868     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
869       OS << APF.convertToDouble();
870     } else {
871       // There is no good way to print long double.  Convert a copy to
872       // double.  Ah well, it's only a comment.
873       bool ignored;
874       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
875                   &ignored);
876       OS << "(long double) " << APF.convertToDouble();
877     }
878   } else if (MI->getOperand(0).isImm()) {
879     OS << MI->getOperand(0).getImm();
880   } else if (MI->getOperand(0).isCImm()) {
881     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
882   } else {
883     unsigned Reg;
884     if (MI->getOperand(0).isReg()) {
885       Reg = MI->getOperand(0).getReg();
886     } else {
887       assert(MI->getOperand(0).isFI() && "Unknown operand type");
888       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
889       Offset += TFI->getFrameIndexReference(*AP.MF,
890                                             MI->getOperand(0).getIndex(), Reg);
891       MemLoc = true;
892     }
893     if (Reg == 0) {
894       // Suppress offset, it is not meaningful here.
895       OS << "undef";
896       // NOTE: Want this comment at start of line, don't emit with AddComment.
897       AP.OutStreamer->emitRawComment(OS.str());
898       return true;
899     }
900     if (MemLoc)
901       OS << '[';
902     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
903   }
904 
905   if (MemLoc)
906     OS << '+' << Offset << ']';
907 
908   // NOTE: Want this comment at start of line, don't emit with AddComment.
909   AP.OutStreamer->emitRawComment(OS.str());
910   return true;
911 }
912 
913 /// This method handles the target-independent form of DBG_LABEL, returning
914 /// true if it was able to do so.  A false return means the target will need
915 /// to handle MI in EmitInstruction.
916 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
917   if (MI->getNumOperands() != 1)
918     return false;
919 
920   SmallString<128> Str;
921   raw_svector_ostream OS(Str);
922   OS << "DEBUG_LABEL: ";
923 
924   const DILabel *V = MI->getDebugLabel();
925   if (auto *SP = dyn_cast<DISubprogram>(
926           V->getScope()->getNonLexicalBlockFileScope())) {
927     StringRef Name = SP->getName();
928     if (!Name.empty())
929       OS << Name << ":";
930   }
931   OS << V->getName();
932 
933   // NOTE: Want this comment at start of line, don't emit with AddComment.
934   AP.OutStreamer->emitRawComment(OS.str());
935   return true;
936 }
937 
938 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
939   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
940       MF->getFunction().needsUnwindTableEntry())
941     return CFI_M_EH;
942 
943   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
944     return CFI_M_Debug;
945 
946   return CFI_M_None;
947 }
948 
949 bool AsmPrinter::needsSEHMoves() {
950   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
951 }
952 
953 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
954   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
955   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
956       ExceptionHandlingType != ExceptionHandling::ARM)
957     return;
958 
959   if (needsCFIMoves() == CFI_M_None)
960     return;
961 
962   // If there is no "real" instruction following this CFI instruction, skip
963   // emitting it; it would be beyond the end of the function's FDE range.
964   auto *MBB = MI.getParent();
965   auto I = std::next(MI.getIterator());
966   while (I != MBB->end() && I->isTransient())
967     ++I;
968   if (I == MBB->instr_end() &&
969       MBB->getReverseIterator() == MBB->getParent()->rbegin())
970     return;
971 
972   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
973   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
974   const MCCFIInstruction &CFI = Instrs[CFIIndex];
975   emitCFIInstruction(CFI);
976 }
977 
978 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
979   // The operands are the MCSymbol and the frame offset of the allocation.
980   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
981   int FrameOffset = MI.getOperand(1).getImm();
982 
983   // Emit a symbol assignment.
984   OutStreamer->EmitAssignment(FrameAllocSym,
985                              MCConstantExpr::create(FrameOffset, OutContext));
986 }
987 
988 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
989   if (!MF.getTarget().Options.EmitStackSizeSection)
990     return;
991 
992   MCSection *StackSizeSection =
993       getObjFileLowering().getStackSizesSection(*getCurrentSection());
994   if (!StackSizeSection)
995     return;
996 
997   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
998   // Don't emit functions with dynamic stack allocations.
999   if (FrameInfo.hasVarSizedObjects())
1000     return;
1001 
1002   OutStreamer->PushSection();
1003   OutStreamer->SwitchSection(StackSizeSection);
1004 
1005   const MCSymbol *FunctionSymbol = getFunctionBegin();
1006   uint64_t StackSize = FrameInfo.getStackSize();
1007   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1008   OutStreamer->EmitULEB128IntValue(StackSize);
1009 
1010   OutStreamer->PopSection();
1011 }
1012 
1013 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1014                                            MachineModuleInfo *MMI) {
1015   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1016     return true;
1017 
1018   // We might emit an EH table that uses function begin and end labels even if
1019   // we don't have any landingpads.
1020   if (!MF.getFunction().hasPersonalityFn())
1021     return false;
1022   return !isNoOpWithoutInvoke(
1023       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1024 }
1025 
1026 /// EmitFunctionBody - This method emits the body and trailer for a
1027 /// function.
1028 void AsmPrinter::EmitFunctionBody() {
1029   EmitFunctionHeader();
1030 
1031   // Emit target-specific gunk before the function body.
1032   EmitFunctionBodyStart();
1033 
1034   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1035 
1036   if (isVerbose()) {
1037     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1038     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1039     if (!MDT) {
1040       OwnedMDT = std::make_unique<MachineDominatorTree>();
1041       OwnedMDT->getBase().recalculate(*MF);
1042       MDT = OwnedMDT.get();
1043     }
1044 
1045     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1046     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1047     if (!MLI) {
1048       OwnedMLI = std::make_unique<MachineLoopInfo>();
1049       OwnedMLI->getBase().analyze(MDT->getBase());
1050       MLI = OwnedMLI.get();
1051     }
1052   }
1053 
1054   // Print out code for the function.
1055   bool HasAnyRealCode = false;
1056   int NumInstsInFunction = 0;
1057   for (auto &MBB : *MF) {
1058     // Print a label for the basic block.
1059     EmitBasicBlockStart(MBB);
1060     for (auto &MI : MBB) {
1061       // Print the assembly for the instruction.
1062       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1063           !MI.isDebugInstr()) {
1064         HasAnyRealCode = true;
1065         ++NumInstsInFunction;
1066       }
1067 
1068       // If there is a pre-instruction symbol, emit a label for it here.
1069       if (MCSymbol *S = MI.getPreInstrSymbol())
1070         OutStreamer->EmitLabel(S);
1071 
1072       if (ShouldPrintDebugScopes) {
1073         for (const HandlerInfo &HI : Handlers) {
1074           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1075                              HI.TimerGroupName, HI.TimerGroupDescription,
1076                              TimePassesIsEnabled);
1077           HI.Handler->beginInstruction(&MI);
1078         }
1079       }
1080 
1081       if (isVerbose())
1082         emitComments(MI, OutStreamer->GetCommentOS());
1083 
1084       switch (MI.getOpcode()) {
1085       case TargetOpcode::CFI_INSTRUCTION:
1086         emitCFIInstruction(MI);
1087         break;
1088       case TargetOpcode::LOCAL_ESCAPE:
1089         emitFrameAlloc(MI);
1090         break;
1091       case TargetOpcode::ANNOTATION_LABEL:
1092       case TargetOpcode::EH_LABEL:
1093       case TargetOpcode::GC_LABEL:
1094         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1095         break;
1096       case TargetOpcode::INLINEASM:
1097       case TargetOpcode::INLINEASM_BR:
1098         EmitInlineAsm(&MI);
1099         break;
1100       case TargetOpcode::DBG_VALUE:
1101         if (isVerbose()) {
1102           if (!emitDebugValueComment(&MI, *this))
1103             EmitInstruction(&MI);
1104         }
1105         break;
1106       case TargetOpcode::DBG_LABEL:
1107         if (isVerbose()) {
1108           if (!emitDebugLabelComment(&MI, *this))
1109             EmitInstruction(&MI);
1110         }
1111         break;
1112       case TargetOpcode::IMPLICIT_DEF:
1113         if (isVerbose()) emitImplicitDef(&MI);
1114         break;
1115       case TargetOpcode::KILL:
1116         if (isVerbose()) emitKill(&MI, *this);
1117         break;
1118       default:
1119         EmitInstruction(&MI);
1120         break;
1121       }
1122 
1123       // If there is a post-instruction symbol, emit a label for it here.
1124       if (MCSymbol *S = MI.getPostInstrSymbol())
1125         OutStreamer->EmitLabel(S);
1126 
1127       if (ShouldPrintDebugScopes) {
1128         for (const HandlerInfo &HI : Handlers) {
1129           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1130                              HI.TimerGroupName, HI.TimerGroupDescription,
1131                              TimePassesIsEnabled);
1132           HI.Handler->endInstruction();
1133         }
1134       }
1135     }
1136 
1137     EmitBasicBlockEnd(MBB);
1138   }
1139 
1140   EmittedInsts += NumInstsInFunction;
1141   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1142                                       MF->getFunction().getSubprogram(),
1143                                       &MF->front());
1144   R << ore::NV("NumInstructions", NumInstsInFunction)
1145     << " instructions in function";
1146   ORE->emit(R);
1147 
1148   // If the function is empty and the object file uses .subsections_via_symbols,
1149   // then we need to emit *something* to the function body to prevent the
1150   // labels from collapsing together.  Just emit a noop.
1151   // Similarly, don't emit empty functions on Windows either. It can lead to
1152   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1153   // after linking, causing the kernel not to load the binary:
1154   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1155   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1156   const Triple &TT = TM.getTargetTriple();
1157   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1158                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1159     MCInst Noop;
1160     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1161 
1162     // Targets can opt-out of emitting the noop here by leaving the opcode
1163     // unspecified.
1164     if (Noop.getOpcode()) {
1165       OutStreamer->AddComment("avoids zero-length function");
1166       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1167     }
1168   }
1169 
1170   const Function &F = MF->getFunction();
1171   for (const auto &BB : F) {
1172     if (!BB.hasAddressTaken())
1173       continue;
1174     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1175     if (Sym->isDefined())
1176       continue;
1177     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1178     OutStreamer->EmitLabel(Sym);
1179   }
1180 
1181   // Emit target-specific gunk after the function body.
1182   EmitFunctionBodyEnd();
1183 
1184   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1185       MAI->hasDotTypeDotSizeDirective()) {
1186     // Create a symbol for the end of function.
1187     CurrentFnEnd = createTempSymbol("func_end");
1188     OutStreamer->EmitLabel(CurrentFnEnd);
1189   }
1190 
1191   // If the target wants a .size directive for the size of the function, emit
1192   // it.
1193   if (MAI->hasDotTypeDotSizeDirective()) {
1194     // We can get the size as difference between the function label and the
1195     // temp label.
1196     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1197         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1198         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1199     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1200   }
1201 
1202   for (const HandlerInfo &HI : Handlers) {
1203     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1204                        HI.TimerGroupDescription, TimePassesIsEnabled);
1205     HI.Handler->markFunctionEnd();
1206   }
1207 
1208   // Print out jump tables referenced by the function.
1209   EmitJumpTableInfo();
1210 
1211   // Emit post-function debug and/or EH information.
1212   for (const HandlerInfo &HI : Handlers) {
1213     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1214                        HI.TimerGroupDescription, TimePassesIsEnabled);
1215     HI.Handler->endFunction(MF);
1216   }
1217 
1218   // Emit section containing stack size metadata.
1219   emitStackSizeSection(*MF);
1220 
1221   if (isVerbose())
1222     OutStreamer->GetCommentOS() << "-- End function\n";
1223 
1224   OutStreamer->AddBlankLine();
1225 }
1226 
1227 /// Compute the number of Global Variables that uses a Constant.
1228 static unsigned getNumGlobalVariableUses(const Constant *C) {
1229   if (!C)
1230     return 0;
1231 
1232   if (isa<GlobalVariable>(C))
1233     return 1;
1234 
1235   unsigned NumUses = 0;
1236   for (auto *CU : C->users())
1237     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1238 
1239   return NumUses;
1240 }
1241 
1242 /// Only consider global GOT equivalents if at least one user is a
1243 /// cstexpr inside an initializer of another global variables. Also, don't
1244 /// handle cstexpr inside instructions. During global variable emission,
1245 /// candidates are skipped and are emitted later in case at least one cstexpr
1246 /// isn't replaced by a PC relative GOT entry access.
1247 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1248                                      unsigned &NumGOTEquivUsers) {
1249   // Global GOT equivalents are unnamed private globals with a constant
1250   // pointer initializer to another global symbol. They must point to a
1251   // GlobalVariable or Function, i.e., as GlobalValue.
1252   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1253       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1254       !isa<GlobalValue>(GV->getOperand(0)))
1255     return false;
1256 
1257   // To be a got equivalent, at least one of its users need to be a constant
1258   // expression used by another global variable.
1259   for (auto *U : GV->users())
1260     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1261 
1262   return NumGOTEquivUsers > 0;
1263 }
1264 
1265 /// Unnamed constant global variables solely contaning a pointer to
1266 /// another globals variable is equivalent to a GOT table entry; it contains the
1267 /// the address of another symbol. Optimize it and replace accesses to these
1268 /// "GOT equivalents" by using the GOT entry for the final global instead.
1269 /// Compute GOT equivalent candidates among all global variables to avoid
1270 /// emitting them if possible later on, after it use is replaced by a GOT entry
1271 /// access.
1272 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1273   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1274     return;
1275 
1276   for (const auto &G : M.globals()) {
1277     unsigned NumGOTEquivUsers = 0;
1278     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1279       continue;
1280 
1281     const MCSymbol *GOTEquivSym = getSymbol(&G);
1282     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1283   }
1284 }
1285 
1286 /// Constant expressions using GOT equivalent globals may not be eligible
1287 /// for PC relative GOT entry conversion, in such cases we need to emit such
1288 /// globals we previously omitted in EmitGlobalVariable.
1289 void AsmPrinter::emitGlobalGOTEquivs() {
1290   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1291     return;
1292 
1293   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1294   for (auto &I : GlobalGOTEquivs) {
1295     const GlobalVariable *GV = I.second.first;
1296     unsigned Cnt = I.second.second;
1297     if (Cnt)
1298       FailedCandidates.push_back(GV);
1299   }
1300   GlobalGOTEquivs.clear();
1301 
1302   for (auto *GV : FailedCandidates)
1303     EmitGlobalVariable(GV);
1304 }
1305 
1306 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1307                                           const GlobalIndirectSymbol& GIS) {
1308   MCSymbol *Name = getSymbol(&GIS);
1309 
1310   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1311     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1312   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1313     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1314   else
1315     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1316 
1317   bool IsFunction = GIS.getValueType()->isFunctionTy();
1318 
1319   // Treat bitcasts of functions as functions also. This is important at least
1320   // on WebAssembly where object and function addresses can't alias each other.
1321   if (!IsFunction)
1322     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1323       if (CE->getOpcode() == Instruction::BitCast)
1324         IsFunction =
1325           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1326 
1327   // Set the symbol type to function if the alias has a function type.
1328   // This affects codegen when the aliasee is not a function.
1329   if (IsFunction)
1330     OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1331                                                ? MCSA_ELF_TypeIndFunction
1332                                                : MCSA_ELF_TypeFunction);
1333 
1334   EmitVisibility(Name, GIS.getVisibility());
1335 
1336   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1337 
1338   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1339     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1340 
1341   // Emit the directives as assignments aka .set:
1342   OutStreamer->EmitAssignment(Name, Expr);
1343 
1344   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1345     // If the aliasee does not correspond to a symbol in the output, i.e. the
1346     // alias is not of an object or the aliased object is private, then set the
1347     // size of the alias symbol from the type of the alias. We don't do this in
1348     // other situations as the alias and aliasee having differing types but same
1349     // size may be intentional.
1350     const GlobalObject *BaseObject = GA->getBaseObject();
1351     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1352         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1353       const DataLayout &DL = M.getDataLayout();
1354       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1355       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1356     }
1357   }
1358 }
1359 
1360 void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) {
1361   if (!RS.needsSection())
1362     return;
1363 
1364   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1365 
1366   Optional<SmallString<128>> Filename;
1367   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1368     Filename = *FilenameRef;
1369     sys::fs::make_absolute(*Filename);
1370     assert(!Filename->empty() && "The filename can't be empty.");
1371   }
1372 
1373   std::string Buf;
1374   raw_string_ostream OS(Buf);
1375   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1376       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1377                : RemarkSerializer.metaSerializer(OS);
1378   MetaSerializer->emit();
1379 
1380   // Switch to the remarks section.
1381   MCSection *RemarksSection =
1382       OutContext.getObjectFileInfo()->getRemarksSection();
1383   OutStreamer->SwitchSection(RemarksSection);
1384 
1385   OutStreamer->EmitBinaryData(OS.str());
1386 }
1387 
1388 bool AsmPrinter::doFinalization(Module &M) {
1389   // Set the MachineFunction to nullptr so that we can catch attempted
1390   // accesses to MF specific features at the module level and so that
1391   // we can conditionalize accesses based on whether or not it is nullptr.
1392   MF = nullptr;
1393 
1394   // Gather all GOT equivalent globals in the module. We really need two
1395   // passes over the globals: one to compute and another to avoid its emission
1396   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1397   // where the got equivalent shows up before its use.
1398   computeGlobalGOTEquivs(M);
1399 
1400   // Emit global variables.
1401   for (const auto &G : M.globals())
1402     EmitGlobalVariable(&G);
1403 
1404   // Emit remaining GOT equivalent globals.
1405   emitGlobalGOTEquivs();
1406 
1407   // Emit visibility info for declarations
1408   for (const Function &F : M) {
1409     if (!F.isDeclarationForLinker())
1410       continue;
1411     GlobalValue::VisibilityTypes V = F.getVisibility();
1412     if (V == GlobalValue::DefaultVisibility)
1413       continue;
1414 
1415     MCSymbol *Name = getSymbol(&F);
1416     EmitVisibility(Name, V, false);
1417   }
1418 
1419   // Emit the remarks section contents.
1420   // FIXME: Figure out when is the safest time to emit this section. It should
1421   // not come after debug info.
1422   if (RemarkStreamer *RS = M.getContext().getRemarkStreamer())
1423     emitRemarksSection(*RS);
1424 
1425   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1426 
1427   TLOF.emitModuleMetadata(*OutStreamer, M);
1428 
1429   if (TM.getTargetTriple().isOSBinFormatELF()) {
1430     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1431 
1432     // Output stubs for external and common global variables.
1433     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1434     if (!Stubs.empty()) {
1435       OutStreamer->SwitchSection(TLOF.getDataSection());
1436       const DataLayout &DL = M.getDataLayout();
1437 
1438       EmitAlignment(Align(DL.getPointerSize()));
1439       for (const auto &Stub : Stubs) {
1440         OutStreamer->EmitLabel(Stub.first);
1441         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1442                                      DL.getPointerSize());
1443       }
1444     }
1445   }
1446 
1447   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1448     MachineModuleInfoCOFF &MMICOFF =
1449         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1450 
1451     // Output stubs for external and common global variables.
1452     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1453     if (!Stubs.empty()) {
1454       const DataLayout &DL = M.getDataLayout();
1455 
1456       for (const auto &Stub : Stubs) {
1457         SmallString<256> SectionName = StringRef(".rdata$");
1458         SectionName += Stub.first->getName();
1459         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1460             SectionName,
1461             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1462                 COFF::IMAGE_SCN_LNK_COMDAT,
1463             SectionKind::getReadOnly(), Stub.first->getName(),
1464             COFF::IMAGE_COMDAT_SELECT_ANY));
1465         EmitAlignment(Align(DL.getPointerSize()));
1466         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1467         OutStreamer->EmitLabel(Stub.first);
1468         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1469                                      DL.getPointerSize());
1470       }
1471     }
1472   }
1473 
1474   // Finalize debug and EH information.
1475   for (const HandlerInfo &HI : Handlers) {
1476     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1477                        HI.TimerGroupDescription, TimePassesIsEnabled);
1478     HI.Handler->endModule();
1479   }
1480   Handlers.clear();
1481   DD = nullptr;
1482 
1483   // If the target wants to know about weak references, print them all.
1484   if (MAI->getWeakRefDirective()) {
1485     // FIXME: This is not lazy, it would be nice to only print weak references
1486     // to stuff that is actually used.  Note that doing so would require targets
1487     // to notice uses in operands (due to constant exprs etc).  This should
1488     // happen with the MC stuff eventually.
1489 
1490     // Print out module-level global objects here.
1491     for (const auto &GO : M.global_objects()) {
1492       if (!GO.hasExternalWeakLinkage())
1493         continue;
1494       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1495     }
1496   }
1497 
1498   // Print aliases in topological order, that is, for each alias a = b,
1499   // b must be printed before a.
1500   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1501   // such an order to generate correct TOC information.
1502   SmallVector<const GlobalAlias *, 16> AliasStack;
1503   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1504   for (const auto &Alias : M.aliases()) {
1505     for (const GlobalAlias *Cur = &Alias; Cur;
1506          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1507       if (!AliasVisited.insert(Cur).second)
1508         break;
1509       AliasStack.push_back(Cur);
1510     }
1511     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1512       emitGlobalIndirectSymbol(M, *AncestorAlias);
1513     AliasStack.clear();
1514   }
1515   for (const auto &IFunc : M.ifuncs())
1516     emitGlobalIndirectSymbol(M, IFunc);
1517 
1518   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1519   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1520   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1521     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1522       MP->finishAssembly(M, *MI, *this);
1523 
1524   // Emit llvm.ident metadata in an '.ident' directive.
1525   EmitModuleIdents(M);
1526 
1527   // Emit bytes for llvm.commandline metadata.
1528   EmitModuleCommandLines(M);
1529 
1530   // Emit __morestack address if needed for indirect calls.
1531   if (MMI->usesMorestackAddr()) {
1532     unsigned Align = 1;
1533     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1534         getDataLayout(), SectionKind::getReadOnly(),
1535         /*C=*/nullptr, Align);
1536     OutStreamer->SwitchSection(ReadOnlySection);
1537 
1538     MCSymbol *AddrSymbol =
1539         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1540     OutStreamer->EmitLabel(AddrSymbol);
1541 
1542     unsigned PtrSize = MAI->getCodePointerSize();
1543     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1544                                  PtrSize);
1545   }
1546 
1547   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1548   // split-stack is used.
1549   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1550     OutStreamer->SwitchSection(
1551         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1552     if (MMI->hasNosplitStack())
1553       OutStreamer->SwitchSection(
1554           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1555   }
1556 
1557   // If we don't have any trampolines, then we don't require stack memory
1558   // to be executable. Some targets have a directive to declare this.
1559   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1560   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1561     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1562       OutStreamer->SwitchSection(S);
1563 
1564   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1565     // Emit /EXPORT: flags for each exported global as necessary.
1566     const auto &TLOF = getObjFileLowering();
1567     std::string Flags;
1568 
1569     for (const GlobalValue &GV : M.global_values()) {
1570       raw_string_ostream OS(Flags);
1571       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1572       OS.flush();
1573       if (!Flags.empty()) {
1574         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1575         OutStreamer->EmitBytes(Flags);
1576       }
1577       Flags.clear();
1578     }
1579 
1580     // Emit /INCLUDE: flags for each used global as necessary.
1581     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1582       assert(LU->hasInitializer() &&
1583              "expected llvm.used to have an initializer");
1584       assert(isa<ArrayType>(LU->getValueType()) &&
1585              "expected llvm.used to be an array type");
1586       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1587         for (const Value *Op : A->operands()) {
1588           const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1589           // Global symbols with internal or private linkage are not visible to
1590           // the linker, and thus would cause an error when the linker tried to
1591           // preserve the symbol due to the `/include:` directive.
1592           if (GV->hasLocalLinkage())
1593             continue;
1594 
1595           raw_string_ostream OS(Flags);
1596           TLOF.emitLinkerFlagsForUsed(OS, GV);
1597           OS.flush();
1598 
1599           if (!Flags.empty()) {
1600             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1601             OutStreamer->EmitBytes(Flags);
1602           }
1603           Flags.clear();
1604         }
1605       }
1606     }
1607   }
1608 
1609   if (TM.Options.EmitAddrsig) {
1610     // Emit address-significance attributes for all globals.
1611     OutStreamer->EmitAddrsig();
1612     for (const GlobalValue &GV : M.global_values())
1613       if (!GV.use_empty() && !GV.isThreadLocal() &&
1614           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1615           !GV.hasAtLeastLocalUnnamedAddr())
1616         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1617   }
1618 
1619   // Emit symbol partition specifications (ELF only).
1620   if (TM.getTargetTriple().isOSBinFormatELF()) {
1621     unsigned UniqueID = 0;
1622     for (const GlobalValue &GV : M.global_values()) {
1623       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1624           GV.getVisibility() != GlobalValue::DefaultVisibility)
1625         continue;
1626 
1627       OutStreamer->SwitchSection(OutContext.getELFSection(
1628           ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1629       OutStreamer->EmitBytes(GV.getPartition());
1630       OutStreamer->EmitZeros(1);
1631       OutStreamer->EmitValue(
1632           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1633           MAI->getCodePointerSize());
1634     }
1635   }
1636 
1637   // Allow the target to emit any magic that it wants at the end of the file,
1638   // after everything else has gone out.
1639   EmitEndOfAsmFile(M);
1640 
1641   MMI = nullptr;
1642 
1643   OutStreamer->Finish();
1644   OutStreamer->reset();
1645   OwnedMLI.reset();
1646   OwnedMDT.reset();
1647 
1648   return false;
1649 }
1650 
1651 MCSymbol *AsmPrinter::getCurExceptionSym() {
1652   if (!CurExceptionSym)
1653     CurExceptionSym = createTempSymbol("exception");
1654   return CurExceptionSym;
1655 }
1656 
1657 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1658   this->MF = &MF;
1659 
1660   // Get the function symbol.
1661   if (MAI->needsFunctionDescriptors()) {
1662     assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only"
1663                                              " supported on AIX.");
1664     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1665 		                           " initalized first.");
1666 
1667     // Get the function entry point symbol.
1668     CurrentFnSym =
1669         OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName());
1670 
1671     const Function &F = MF.getFunction();
1672     MCSectionXCOFF *FnEntryPointSec =
1673         cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM));
1674     // Set the containing csect.
1675     cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec);
1676   } else {
1677     CurrentFnSym = getSymbol(&MF.getFunction());
1678   }
1679 
1680   CurrentFnSymForSize = CurrentFnSym;
1681   CurrentFnBegin = nullptr;
1682   CurExceptionSym = nullptr;
1683   bool NeedsLocalForSize = MAI->needsLocalForSize();
1684   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1685       MF.getTarget().Options.EmitStackSizeSection) {
1686     CurrentFnBegin = createTempSymbol("func_begin");
1687     if (NeedsLocalForSize)
1688       CurrentFnSymForSize = CurrentFnBegin;
1689   }
1690 
1691   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1692   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1693   MBFI = (PSI && PSI->hasProfileSummary()) ?
1694          // ORE conditionally computes MBFI. If available, use it, otherwise
1695          // request it.
1696          (ORE->getBFI() ? ORE->getBFI() :
1697           &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) :
1698          nullptr;
1699 }
1700 
1701 namespace {
1702 
1703 // Keep track the alignment, constpool entries per Section.
1704   struct SectionCPs {
1705     MCSection *S;
1706     unsigned Alignment;
1707     SmallVector<unsigned, 4> CPEs;
1708 
1709     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1710   };
1711 
1712 } // end anonymous namespace
1713 
1714 /// EmitConstantPool - Print to the current output stream assembly
1715 /// representations of the constants in the constant pool MCP. This is
1716 /// used to print out constants which have been "spilled to memory" by
1717 /// the code generator.
1718 void AsmPrinter::EmitConstantPool() {
1719   const MachineConstantPool *MCP = MF->getConstantPool();
1720   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1721   if (CP.empty()) return;
1722 
1723   // Calculate sections for constant pool entries. We collect entries to go into
1724   // the same section together to reduce amount of section switch statements.
1725   SmallVector<SectionCPs, 4> CPSections;
1726   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1727     const MachineConstantPoolEntry &CPE = CP[i];
1728     unsigned Align = CPE.getAlignment();
1729 
1730     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1731 
1732     const Constant *C = nullptr;
1733     if (!CPE.isMachineConstantPoolEntry())
1734       C = CPE.Val.ConstVal;
1735 
1736     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1737                                                               Kind, C, Align);
1738 
1739     // The number of sections are small, just do a linear search from the
1740     // last section to the first.
1741     bool Found = false;
1742     unsigned SecIdx = CPSections.size();
1743     while (SecIdx != 0) {
1744       if (CPSections[--SecIdx].S == S) {
1745         Found = true;
1746         break;
1747       }
1748     }
1749     if (!Found) {
1750       SecIdx = CPSections.size();
1751       CPSections.push_back(SectionCPs(S, Align));
1752     }
1753 
1754     if (Align > CPSections[SecIdx].Alignment)
1755       CPSections[SecIdx].Alignment = Align;
1756     CPSections[SecIdx].CPEs.push_back(i);
1757   }
1758 
1759   // Now print stuff into the calculated sections.
1760   const MCSection *CurSection = nullptr;
1761   unsigned Offset = 0;
1762   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1763     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1764       unsigned CPI = CPSections[i].CPEs[j];
1765       MCSymbol *Sym = GetCPISymbol(CPI);
1766       if (!Sym->isUndefined())
1767         continue;
1768 
1769       if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1770         cast<MCSymbolXCOFF>(Sym)->setContainingCsect(
1771             cast<MCSectionXCOFF>(CPSections[i].S));
1772       }
1773 
1774       if (CurSection != CPSections[i].S) {
1775         OutStreamer->SwitchSection(CPSections[i].S);
1776         EmitAlignment(Align(CPSections[i].Alignment));
1777         CurSection = CPSections[i].S;
1778         Offset = 0;
1779       }
1780 
1781       MachineConstantPoolEntry CPE = CP[CPI];
1782 
1783       // Emit inter-object padding for alignment.
1784       unsigned AlignMask = CPE.getAlignment() - 1;
1785       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1786       OutStreamer->EmitZeros(NewOffset - Offset);
1787 
1788       Type *Ty = CPE.getType();
1789       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1790 
1791       OutStreamer->EmitLabel(Sym);
1792       if (CPE.isMachineConstantPoolEntry())
1793         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1794       else
1795         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1796     }
1797   }
1798 }
1799 
1800 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1801 /// by the current function to the current output stream.
1802 void AsmPrinter::EmitJumpTableInfo() {
1803   const DataLayout &DL = MF->getDataLayout();
1804   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1805   if (!MJTI) return;
1806   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1807   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1808   if (JT.empty()) return;
1809 
1810   // Pick the directive to use to print the jump table entries, and switch to
1811   // the appropriate section.
1812   const Function &F = MF->getFunction();
1813   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1814   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1815       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1816       F);
1817   if (JTInDiffSection) {
1818     // Drop it in the readonly section.
1819     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1820     OutStreamer->SwitchSection(ReadOnlySection);
1821   }
1822 
1823   EmitAlignment(Align(MJTI->getEntryAlignment(DL)));
1824 
1825   // Jump tables in code sections are marked with a data_region directive
1826   // where that's supported.
1827   if (!JTInDiffSection)
1828     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1829 
1830   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1831     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1832 
1833     // If this jump table was deleted, ignore it.
1834     if (JTBBs.empty()) continue;
1835 
1836     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1837     /// emit a .set directive for each unique entry.
1838     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1839         MAI->doesSetDirectiveSuppressReloc()) {
1840       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1841       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1842       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1843       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1844         const MachineBasicBlock *MBB = JTBBs[ii];
1845         if (!EmittedSets.insert(MBB).second)
1846           continue;
1847 
1848         // .set LJTSet, LBB32-base
1849         const MCExpr *LHS =
1850           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1851         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1852                                     MCBinaryExpr::createSub(LHS, Base,
1853                                                             OutContext));
1854       }
1855     }
1856 
1857     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1858     // before each jump table.  The first label is never referenced, but tells
1859     // the assembler and linker the extents of the jump table object.  The
1860     // second label is actually referenced by the code.
1861     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1862       // FIXME: This doesn't have to have any specific name, just any randomly
1863       // named and numbered local label started with 'l' would work.  Simplify
1864       // GetJTISymbol.
1865       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1866 
1867     MCSymbol* JTISymbol = GetJTISymbol(JTI);
1868     if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1869       cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect(
1870           cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM)));
1871     }
1872     OutStreamer->EmitLabel(JTISymbol);
1873 
1874     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1875       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1876   }
1877   if (!JTInDiffSection)
1878     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1879 }
1880 
1881 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1882 /// current stream.
1883 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1884                                     const MachineBasicBlock *MBB,
1885                                     unsigned UID) const {
1886   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1887   const MCExpr *Value = nullptr;
1888   switch (MJTI->getEntryKind()) {
1889   case MachineJumpTableInfo::EK_Inline:
1890     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1891   case MachineJumpTableInfo::EK_Custom32:
1892     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1893         MJTI, MBB, UID, OutContext);
1894     break;
1895   case MachineJumpTableInfo::EK_BlockAddress:
1896     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1897     //     .word LBB123
1898     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1899     break;
1900   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1901     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1902     // with a relocation as gp-relative, e.g.:
1903     //     .gprel32 LBB123
1904     MCSymbol *MBBSym = MBB->getSymbol();
1905     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1906     return;
1907   }
1908 
1909   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1910     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1911     // with a relocation as gp-relative, e.g.:
1912     //     .gpdword LBB123
1913     MCSymbol *MBBSym = MBB->getSymbol();
1914     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1915     return;
1916   }
1917 
1918   case MachineJumpTableInfo::EK_LabelDifference32: {
1919     // Each entry is the address of the block minus the address of the jump
1920     // table. This is used for PIC jump tables where gprel32 is not supported.
1921     // e.g.:
1922     //      .word LBB123 - LJTI1_2
1923     // If the .set directive avoids relocations, this is emitted as:
1924     //      .set L4_5_set_123, LBB123 - LJTI1_2
1925     //      .word L4_5_set_123
1926     if (MAI->doesSetDirectiveSuppressReloc()) {
1927       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1928                                       OutContext);
1929       break;
1930     }
1931     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1932     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1933     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1934     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1935     break;
1936   }
1937   }
1938 
1939   assert(Value && "Unknown entry kind!");
1940 
1941   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1942   OutStreamer->EmitValue(Value, EntrySize);
1943 }
1944 
1945 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1946 /// special global used by LLVM.  If so, emit it and return true, otherwise
1947 /// do nothing and return false.
1948 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1949   if (GV->getName() == "llvm.used") {
1950     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1951       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1952     return true;
1953   }
1954 
1955   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1956   if (GV->getSection() == "llvm.metadata" ||
1957       GV->hasAvailableExternallyLinkage())
1958     return true;
1959 
1960   if (!GV->hasAppendingLinkage()) return false;
1961 
1962   assert(GV->hasInitializer() && "Not a special LLVM global!");
1963 
1964   if (GV->getName() == "llvm.global_ctors") {
1965     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1966                        /* isCtor */ true);
1967 
1968     return true;
1969   }
1970 
1971   if (GV->getName() == "llvm.global_dtors") {
1972     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1973                        /* isCtor */ false);
1974 
1975     return true;
1976   }
1977 
1978   report_fatal_error("unknown special variable");
1979 }
1980 
1981 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1982 /// global in the specified llvm.used list.
1983 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1984   // Should be an array of 'i8*'.
1985   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1986     const GlobalValue *GV =
1987       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1988     if (GV)
1989       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1990   }
1991 }
1992 
1993 namespace {
1994 
1995 struct Structor {
1996   int Priority = 0;
1997   Constant *Func = nullptr;
1998   GlobalValue *ComdatKey = nullptr;
1999 
2000   Structor() = default;
2001 };
2002 
2003 } // end anonymous namespace
2004 
2005 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2006 /// priority.
2007 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
2008                                     bool isCtor) {
2009   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
2010   // init priority.
2011   if (!isa<ConstantArray>(List)) return;
2012 
2013   // Sanity check the structors list.
2014   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
2015   if (!InitList) return; // Not an array!
2016   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
2017   if (!ETy || ETy->getNumElements() != 3 ||
2018       !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
2019       !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
2020       !isa<PointerType>(ETy->getTypeAtIndex(2U)))
2021     return; // Not (int, ptr, ptr).
2022 
2023   // Gather the structors in a form that's convenient for sorting by priority.
2024   SmallVector<Structor, 8> Structors;
2025   for (Value *O : InitList->operands()) {
2026     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
2027     if (!CS) continue; // Malformed.
2028     if (CS->getOperand(1)->isNullValue())
2029       break;  // Found a null terminator, skip the rest.
2030     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2031     if (!Priority) continue; // Malformed.
2032     Structors.push_back(Structor());
2033     Structor &S = Structors.back();
2034     S.Priority = Priority->getLimitedValue(65535);
2035     S.Func = CS->getOperand(1);
2036     if (!CS->getOperand(2)->isNullValue())
2037       S.ComdatKey =
2038           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2039   }
2040 
2041   // Emit the function pointers in the target-specific order
2042   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2043     return L.Priority < R.Priority;
2044   });
2045   const Align Align = DL.getPointerPrefAlignment();
2046   for (Structor &S : Structors) {
2047     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2048     const MCSymbol *KeySym = nullptr;
2049     if (GlobalValue *GV = S.ComdatKey) {
2050       if (GV->isDeclarationForLinker())
2051         // If the associated variable is not defined in this module
2052         // (it might be available_externally, or have been an
2053         // available_externally definition that was dropped by the
2054         // EliminateAvailableExternally pass), some other TU
2055         // will provide its dynamic initializer.
2056         continue;
2057 
2058       KeySym = getSymbol(GV);
2059     }
2060     MCSection *OutputSection =
2061         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2062                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2063     OutStreamer->SwitchSection(OutputSection);
2064     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2065       EmitAlignment(Align);
2066     EmitXXStructor(DL, S.Func);
2067   }
2068 }
2069 
2070 void AsmPrinter::EmitModuleIdents(Module &M) {
2071   if (!MAI->hasIdentDirective())
2072     return;
2073 
2074   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2075     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2076       const MDNode *N = NMD->getOperand(i);
2077       assert(N->getNumOperands() == 1 &&
2078              "llvm.ident metadata entry can have only one operand");
2079       const MDString *S = cast<MDString>(N->getOperand(0));
2080       OutStreamer->EmitIdent(S->getString());
2081     }
2082   }
2083 }
2084 
2085 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2086   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2087   if (!CommandLine)
2088     return;
2089 
2090   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2091   if (!NMD || !NMD->getNumOperands())
2092     return;
2093 
2094   OutStreamer->PushSection();
2095   OutStreamer->SwitchSection(CommandLine);
2096   OutStreamer->EmitZeros(1);
2097   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2098     const MDNode *N = NMD->getOperand(i);
2099     assert(N->getNumOperands() == 1 &&
2100            "llvm.commandline metadata entry can have only one operand");
2101     const MDString *S = cast<MDString>(N->getOperand(0));
2102     OutStreamer->EmitBytes(S->getString());
2103     OutStreamer->EmitZeros(1);
2104   }
2105   OutStreamer->PopSection();
2106 }
2107 
2108 //===--------------------------------------------------------------------===//
2109 // Emission and print routines
2110 //
2111 
2112 /// Emit a byte directive and value.
2113 ///
2114 void AsmPrinter::emitInt8(int Value) const {
2115   OutStreamer->EmitIntValue(Value, 1);
2116 }
2117 
2118 /// Emit a short directive and value.
2119 void AsmPrinter::emitInt16(int Value) const {
2120   OutStreamer->EmitIntValue(Value, 2);
2121 }
2122 
2123 /// Emit a long directive and value.
2124 void AsmPrinter::emitInt32(int Value) const {
2125   OutStreamer->EmitIntValue(Value, 4);
2126 }
2127 
2128 /// Emit a long long directive and value.
2129 void AsmPrinter::emitInt64(uint64_t Value) const {
2130   OutStreamer->EmitIntValue(Value, 8);
2131 }
2132 
2133 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2134 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2135 /// .set if it avoids relocations.
2136 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2137                                      unsigned Size) const {
2138   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2139 }
2140 
2141 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2142 /// where the size in bytes of the directive is specified by Size and Label
2143 /// specifies the label.  This implicitly uses .set if it is available.
2144 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2145                                      unsigned Size,
2146                                      bool IsSectionRelative) const {
2147   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2148     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2149     if (Size > 4)
2150       OutStreamer->EmitZeros(Size - 4);
2151     return;
2152   }
2153 
2154   // Emit Label+Offset (or just Label if Offset is zero)
2155   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2156   if (Offset)
2157     Expr = MCBinaryExpr::createAdd(
2158         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2159 
2160   OutStreamer->EmitValue(Expr, Size);
2161 }
2162 
2163 //===----------------------------------------------------------------------===//
2164 
2165 // EmitAlignment - Emit an alignment directive to the specified power of
2166 // two boundary.  If a global value is specified, and if that global has
2167 // an explicit alignment requested, it will override the alignment request
2168 // if required for correctness.
2169 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const {
2170   if (GV)
2171     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2172 
2173   if (Alignment == Align::None())
2174     return; // 1-byte aligned: no need to emit alignment.
2175 
2176   if (getCurrentSection()->getKind().isText())
2177     OutStreamer->EmitCodeAlignment(Alignment.value());
2178   else
2179     OutStreamer->EmitValueToAlignment(Alignment.value());
2180 }
2181 
2182 //===----------------------------------------------------------------------===//
2183 // Constant emission.
2184 //===----------------------------------------------------------------------===//
2185 
2186 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2187   MCContext &Ctx = OutContext;
2188 
2189   if (CV->isNullValue() || isa<UndefValue>(CV))
2190     return MCConstantExpr::create(0, Ctx);
2191 
2192   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2193     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2194 
2195   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2196     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2197 
2198   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2199     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2200 
2201   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2202   if (!CE) {
2203     llvm_unreachable("Unknown constant value to lower!");
2204   }
2205 
2206   switch (CE->getOpcode()) {
2207   default:
2208     // If the code isn't optimized, there may be outstanding folding
2209     // opportunities. Attempt to fold the expression using DataLayout as a
2210     // last resort before giving up.
2211     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2212       if (C != CE)
2213         return lowerConstant(C);
2214 
2215     // Otherwise report the problem to the user.
2216     {
2217       std::string S;
2218       raw_string_ostream OS(S);
2219       OS << "Unsupported expression in static initializer: ";
2220       CE->printAsOperand(OS, /*PrintType=*/false,
2221                      !MF ? nullptr : MF->getFunction().getParent());
2222       report_fatal_error(OS.str());
2223     }
2224   case Instruction::GetElementPtr: {
2225     // Generate a symbolic expression for the byte address
2226     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2227     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2228 
2229     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2230     if (!OffsetAI)
2231       return Base;
2232 
2233     int64_t Offset = OffsetAI.getSExtValue();
2234     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2235                                    Ctx);
2236   }
2237 
2238   case Instruction::Trunc:
2239     // We emit the value and depend on the assembler to truncate the generated
2240     // expression properly.  This is important for differences between
2241     // blockaddress labels.  Since the two labels are in the same function, it
2242     // is reasonable to treat their delta as a 32-bit value.
2243     LLVM_FALLTHROUGH;
2244   case Instruction::BitCast:
2245     return lowerConstant(CE->getOperand(0));
2246 
2247   case Instruction::IntToPtr: {
2248     const DataLayout &DL = getDataLayout();
2249 
2250     // Handle casts to pointers by changing them into casts to the appropriate
2251     // integer type.  This promotes constant folding and simplifies this code.
2252     Constant *Op = CE->getOperand(0);
2253     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2254                                       false/*ZExt*/);
2255     return lowerConstant(Op);
2256   }
2257 
2258   case Instruction::PtrToInt: {
2259     const DataLayout &DL = getDataLayout();
2260 
2261     // Support only foldable casts to/from pointers that can be eliminated by
2262     // changing the pointer to the appropriately sized integer type.
2263     Constant *Op = CE->getOperand(0);
2264     Type *Ty = CE->getType();
2265 
2266     const MCExpr *OpExpr = lowerConstant(Op);
2267 
2268     // We can emit the pointer value into this slot if the slot is an
2269     // integer slot equal to the size of the pointer.
2270     //
2271     // If the pointer is larger than the resultant integer, then
2272     // as with Trunc just depend on the assembler to truncate it.
2273     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2274       return OpExpr;
2275 
2276     // Otherwise the pointer is smaller than the resultant integer, mask off
2277     // the high bits so we are sure to get a proper truncation if the input is
2278     // a constant expr.
2279     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2280     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2281     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2282   }
2283 
2284   case Instruction::Sub: {
2285     GlobalValue *LHSGV;
2286     APInt LHSOffset;
2287     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2288                                    getDataLayout())) {
2289       GlobalValue *RHSGV;
2290       APInt RHSOffset;
2291       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2292                                      getDataLayout())) {
2293         const MCExpr *RelocExpr =
2294             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2295         if (!RelocExpr)
2296           RelocExpr = MCBinaryExpr::createSub(
2297               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2298               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2299         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2300         if (Addend != 0)
2301           RelocExpr = MCBinaryExpr::createAdd(
2302               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2303         return RelocExpr;
2304       }
2305     }
2306   }
2307   // else fallthrough
2308   LLVM_FALLTHROUGH;
2309 
2310   // The MC library also has a right-shift operator, but it isn't consistently
2311   // signed or unsigned between different targets.
2312   case Instruction::Add:
2313   case Instruction::Mul:
2314   case Instruction::SDiv:
2315   case Instruction::SRem:
2316   case Instruction::Shl:
2317   case Instruction::And:
2318   case Instruction::Or:
2319   case Instruction::Xor: {
2320     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2321     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2322     switch (CE->getOpcode()) {
2323     default: llvm_unreachable("Unknown binary operator constant cast expr");
2324     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2325     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2326     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2327     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2328     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2329     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2330     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2331     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2332     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2333     }
2334   }
2335   }
2336 }
2337 
2338 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2339                                    AsmPrinter &AP,
2340                                    const Constant *BaseCV = nullptr,
2341                                    uint64_t Offset = 0);
2342 
2343 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2344 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2345 
2346 /// isRepeatedByteSequence - Determine whether the given value is
2347 /// composed of a repeated sequence of identical bytes and return the
2348 /// byte value.  If it is not a repeated sequence, return -1.
2349 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2350   StringRef Data = V->getRawDataValues();
2351   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2352   char C = Data[0];
2353   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2354     if (Data[i] != C) return -1;
2355   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2356 }
2357 
2358 /// isRepeatedByteSequence - Determine whether the given value is
2359 /// composed of a repeated sequence of identical bytes and return the
2360 /// byte value.  If it is not a repeated sequence, return -1.
2361 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2362   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2363     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2364     assert(Size % 8 == 0);
2365 
2366     // Extend the element to take zero padding into account.
2367     APInt Value = CI->getValue().zextOrSelf(Size);
2368     if (!Value.isSplat(8))
2369       return -1;
2370 
2371     return Value.zextOrTrunc(8).getZExtValue();
2372   }
2373   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2374     // Make sure all array elements are sequences of the same repeated
2375     // byte.
2376     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2377     Constant *Op0 = CA->getOperand(0);
2378     int Byte = isRepeatedByteSequence(Op0, DL);
2379     if (Byte == -1)
2380       return -1;
2381 
2382     // All array elements must be equal.
2383     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2384       if (CA->getOperand(i) != Op0)
2385         return -1;
2386     return Byte;
2387   }
2388 
2389   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2390     return isRepeatedByteSequence(CDS);
2391 
2392   return -1;
2393 }
2394 
2395 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2396                                              const ConstantDataSequential *CDS,
2397                                              AsmPrinter &AP) {
2398   // See if we can aggregate this into a .fill, if so, emit it as such.
2399   int Value = isRepeatedByteSequence(CDS, DL);
2400   if (Value != -1) {
2401     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2402     // Don't emit a 1-byte object as a .fill.
2403     if (Bytes > 1)
2404       return AP.OutStreamer->emitFill(Bytes, Value);
2405   }
2406 
2407   // If this can be emitted with .ascii/.asciz, emit it as such.
2408   if (CDS->isString())
2409     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2410 
2411   // Otherwise, emit the values in successive locations.
2412   unsigned ElementByteSize = CDS->getElementByteSize();
2413   if (isa<IntegerType>(CDS->getElementType())) {
2414     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2415       if (AP.isVerbose())
2416         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2417                                                  CDS->getElementAsInteger(i));
2418       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2419                                    ElementByteSize);
2420     }
2421   } else {
2422     Type *ET = CDS->getElementType();
2423     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2424       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2425   }
2426 
2427   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2428   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2429                         CDS->getNumElements();
2430   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2431   if (unsigned Padding = Size - EmittedSize)
2432     AP.OutStreamer->EmitZeros(Padding);
2433 }
2434 
2435 static void emitGlobalConstantArray(const DataLayout &DL,
2436                                     const ConstantArray *CA, AsmPrinter &AP,
2437                                     const Constant *BaseCV, uint64_t Offset) {
2438   // See if we can aggregate some values.  Make sure it can be
2439   // represented as a series of bytes of the constant value.
2440   int Value = isRepeatedByteSequence(CA, DL);
2441 
2442   if (Value != -1) {
2443     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2444     AP.OutStreamer->emitFill(Bytes, Value);
2445   }
2446   else {
2447     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2448       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2449       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2450     }
2451   }
2452 }
2453 
2454 static void emitGlobalConstantVector(const DataLayout &DL,
2455                                      const ConstantVector *CV, AsmPrinter &AP) {
2456   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2457     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2458 
2459   unsigned Size = DL.getTypeAllocSize(CV->getType());
2460   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2461                          CV->getType()->getNumElements();
2462   if (unsigned Padding = Size - EmittedSize)
2463     AP.OutStreamer->EmitZeros(Padding);
2464 }
2465 
2466 static void emitGlobalConstantStruct(const DataLayout &DL,
2467                                      const ConstantStruct *CS, AsmPrinter &AP,
2468                                      const Constant *BaseCV, uint64_t Offset) {
2469   // Print the fields in successive locations. Pad to align if needed!
2470   unsigned Size = DL.getTypeAllocSize(CS->getType());
2471   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2472   uint64_t SizeSoFar = 0;
2473   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2474     const Constant *Field = CS->getOperand(i);
2475 
2476     // Print the actual field value.
2477     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2478 
2479     // Check if padding is needed and insert one or more 0s.
2480     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2481     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2482                         - Layout->getElementOffset(i)) - FieldSize;
2483     SizeSoFar += FieldSize + PadSize;
2484 
2485     // Insert padding - this may include padding to increase the size of the
2486     // current field up to the ABI size (if the struct is not packed) as well
2487     // as padding to ensure that the next field starts at the right offset.
2488     AP.OutStreamer->EmitZeros(PadSize);
2489   }
2490   assert(SizeSoFar == Layout->getSizeInBytes() &&
2491          "Layout of constant struct may be incorrect!");
2492 }
2493 
2494 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2495   assert(ET && "Unknown float type");
2496   APInt API = APF.bitcastToAPInt();
2497 
2498   // First print a comment with what we think the original floating-point value
2499   // should have been.
2500   if (AP.isVerbose()) {
2501     SmallString<8> StrVal;
2502     APF.toString(StrVal);
2503     ET->print(AP.OutStreamer->GetCommentOS());
2504     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2505   }
2506 
2507   // Now iterate through the APInt chunks, emitting them in endian-correct
2508   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2509   // floats).
2510   unsigned NumBytes = API.getBitWidth() / 8;
2511   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2512   const uint64_t *p = API.getRawData();
2513 
2514   // PPC's long double has odd notions of endianness compared to how LLVM
2515   // handles it: p[0] goes first for *big* endian on PPC.
2516   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2517     int Chunk = API.getNumWords() - 1;
2518 
2519     if (TrailingBytes)
2520       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2521 
2522     for (; Chunk >= 0; --Chunk)
2523       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2524   } else {
2525     unsigned Chunk;
2526     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2527       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2528 
2529     if (TrailingBytes)
2530       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2531   }
2532 
2533   // Emit the tail padding for the long double.
2534   const DataLayout &DL = AP.getDataLayout();
2535   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2536 }
2537 
2538 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2539   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2540 }
2541 
2542 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2543   const DataLayout &DL = AP.getDataLayout();
2544   unsigned BitWidth = CI->getBitWidth();
2545 
2546   // Copy the value as we may massage the layout for constants whose bit width
2547   // is not a multiple of 64-bits.
2548   APInt Realigned(CI->getValue());
2549   uint64_t ExtraBits = 0;
2550   unsigned ExtraBitsSize = BitWidth & 63;
2551 
2552   if (ExtraBitsSize) {
2553     // The bit width of the data is not a multiple of 64-bits.
2554     // The extra bits are expected to be at the end of the chunk of the memory.
2555     // Little endian:
2556     // * Nothing to be done, just record the extra bits to emit.
2557     // Big endian:
2558     // * Record the extra bits to emit.
2559     // * Realign the raw data to emit the chunks of 64-bits.
2560     if (DL.isBigEndian()) {
2561       // Basically the structure of the raw data is a chunk of 64-bits cells:
2562       //    0        1         BitWidth / 64
2563       // [chunk1][chunk2] ... [chunkN].
2564       // The most significant chunk is chunkN and it should be emitted first.
2565       // However, due to the alignment issue chunkN contains useless bits.
2566       // Realign the chunks so that they contain only useless information:
2567       // ExtraBits     0       1       (BitWidth / 64) - 1
2568       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2569       ExtraBits = Realigned.getRawData()[0] &
2570         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2571       Realigned.lshrInPlace(ExtraBitsSize);
2572     } else
2573       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2574   }
2575 
2576   // We don't expect assemblers to support integer data directives
2577   // for more than 64 bits, so we emit the data in at most 64-bit
2578   // quantities at a time.
2579   const uint64_t *RawData = Realigned.getRawData();
2580   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2581     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2582     AP.OutStreamer->EmitIntValue(Val, 8);
2583   }
2584 
2585   if (ExtraBitsSize) {
2586     // Emit the extra bits after the 64-bits chunks.
2587 
2588     // Emit a directive that fills the expected size.
2589     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2590     Size -= (BitWidth / 64) * 8;
2591     assert(Size && Size * 8 >= ExtraBitsSize &&
2592            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2593            == ExtraBits && "Directive too small for extra bits.");
2594     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2595   }
2596 }
2597 
2598 /// Transform a not absolute MCExpr containing a reference to a GOT
2599 /// equivalent global, by a target specific GOT pc relative access to the
2600 /// final symbol.
2601 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2602                                          const Constant *BaseCst,
2603                                          uint64_t Offset) {
2604   // The global @foo below illustrates a global that uses a got equivalent.
2605   //
2606   //  @bar = global i32 42
2607   //  @gotequiv = private unnamed_addr constant i32* @bar
2608   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2609   //                             i64 ptrtoint (i32* @foo to i64))
2610   //                        to i32)
2611   //
2612   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2613   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2614   // form:
2615   //
2616   //  foo = cstexpr, where
2617   //    cstexpr := <gotequiv> - "." + <cst>
2618   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2619   //
2620   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2621   //
2622   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2623   //    gotpcrelcst := <offset from @foo base> + <cst>
2624   MCValue MV;
2625   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2626     return;
2627   const MCSymbolRefExpr *SymA = MV.getSymA();
2628   if (!SymA)
2629     return;
2630 
2631   // Check that GOT equivalent symbol is cached.
2632   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2633   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2634     return;
2635 
2636   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2637   if (!BaseGV)
2638     return;
2639 
2640   // Check for a valid base symbol
2641   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2642   const MCSymbolRefExpr *SymB = MV.getSymB();
2643 
2644   if (!SymB || BaseSym != &SymB->getSymbol())
2645     return;
2646 
2647   // Make sure to match:
2648   //
2649   //    gotpcrelcst := <offset from @foo base> + <cst>
2650   //
2651   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2652   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2653   // if the target knows how to encode it.
2654   int64_t GOTPCRelCst = Offset + MV.getConstant();
2655   if (GOTPCRelCst < 0)
2656     return;
2657   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2658     return;
2659 
2660   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2661   //
2662   //  bar:
2663   //    .long 42
2664   //  gotequiv:
2665   //    .quad bar
2666   //  foo:
2667   //    .long gotequiv - "." + <cst>
2668   //
2669   // is replaced by the target specific equivalent to:
2670   //
2671   //  bar:
2672   //    .long 42
2673   //  foo:
2674   //    .long bar@GOTPCREL+<gotpcrelcst>
2675   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2676   const GlobalVariable *GV = Result.first;
2677   int NumUses = (int)Result.second;
2678   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2679   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2680   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2681       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2682 
2683   // Update GOT equivalent usage information
2684   --NumUses;
2685   if (NumUses >= 0)
2686     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2687 }
2688 
2689 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2690                                    AsmPrinter &AP, const Constant *BaseCV,
2691                                    uint64_t Offset) {
2692   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2693 
2694   // Globals with sub-elements such as combinations of arrays and structs
2695   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2696   // constant symbol base and the current position with BaseCV and Offset.
2697   if (!BaseCV && CV->hasOneUse())
2698     BaseCV = dyn_cast<Constant>(CV->user_back());
2699 
2700   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2701     return AP.OutStreamer->EmitZeros(Size);
2702 
2703   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2704     switch (Size) {
2705     case 1:
2706     case 2:
2707     case 4:
2708     case 8:
2709       if (AP.isVerbose())
2710         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2711                                                  CI->getZExtValue());
2712       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2713       return;
2714     default:
2715       emitGlobalConstantLargeInt(CI, AP);
2716       return;
2717     }
2718   }
2719 
2720   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2721     return emitGlobalConstantFP(CFP, AP);
2722 
2723   if (isa<ConstantPointerNull>(CV)) {
2724     AP.OutStreamer->EmitIntValue(0, Size);
2725     return;
2726   }
2727 
2728   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2729     return emitGlobalConstantDataSequential(DL, CDS, AP);
2730 
2731   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2732     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2733 
2734   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2735     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2736 
2737   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2738     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2739     // vectors).
2740     if (CE->getOpcode() == Instruction::BitCast)
2741       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2742 
2743     if (Size > 8) {
2744       // If the constant expression's size is greater than 64-bits, then we have
2745       // to emit the value in chunks. Try to constant fold the value and emit it
2746       // that way.
2747       Constant *New = ConstantFoldConstant(CE, DL);
2748       if (New && New != CE)
2749         return emitGlobalConstantImpl(DL, New, AP);
2750     }
2751   }
2752 
2753   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2754     return emitGlobalConstantVector(DL, V, AP);
2755 
2756   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2757   // thread the streamer with EmitValue.
2758   const MCExpr *ME = AP.lowerConstant(CV);
2759 
2760   // Since lowerConstant already folded and got rid of all IR pointer and
2761   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2762   // directly.
2763   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2764     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2765 
2766   AP.OutStreamer->EmitValue(ME, Size);
2767 }
2768 
2769 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2770 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2771   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2772   if (Size)
2773     emitGlobalConstantImpl(DL, CV, *this);
2774   else if (MAI->hasSubsectionsViaSymbols()) {
2775     // If the global has zero size, emit a single byte so that two labels don't
2776     // look like they are at the same location.
2777     OutStreamer->EmitIntValue(0, 1);
2778   }
2779 }
2780 
2781 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2782   // Target doesn't support this yet!
2783   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2784 }
2785 
2786 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2787   if (Offset > 0)
2788     OS << '+' << Offset;
2789   else if (Offset < 0)
2790     OS << Offset;
2791 }
2792 
2793 //===----------------------------------------------------------------------===//
2794 // Symbol Lowering Routines.
2795 //===----------------------------------------------------------------------===//
2796 
2797 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2798   return OutContext.createTempSymbol(Name, true);
2799 }
2800 
2801 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2802   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2803 }
2804 
2805 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2806   return MMI->getAddrLabelSymbol(BB);
2807 }
2808 
2809 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2810 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2811   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2812     const MachineConstantPoolEntry &CPE =
2813         MF->getConstantPool()->getConstants()[CPID];
2814     if (!CPE.isMachineConstantPoolEntry()) {
2815       const DataLayout &DL = MF->getDataLayout();
2816       SectionKind Kind = CPE.getSectionKind(&DL);
2817       const Constant *C = CPE.Val.ConstVal;
2818       unsigned Align = CPE.Alignment;
2819       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2820               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2821         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2822           if (Sym->isUndefined())
2823             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2824           return Sym;
2825         }
2826       }
2827     }
2828   }
2829 
2830   const DataLayout &DL = getDataLayout();
2831   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2832                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2833                                       Twine(CPID));
2834 }
2835 
2836 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2837 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2838   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2839 }
2840 
2841 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2842 /// FIXME: privatize to AsmPrinter.
2843 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2844   const DataLayout &DL = getDataLayout();
2845   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2846                                       Twine(getFunctionNumber()) + "_" +
2847                                       Twine(UID) + "_set_" + Twine(MBBID));
2848 }
2849 
2850 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2851                                                    StringRef Suffix) const {
2852   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2853 }
2854 
2855 /// Return the MCSymbol for the specified ExternalSymbol.
2856 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2857   SmallString<60> NameStr;
2858   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2859   return OutContext.getOrCreateSymbol(NameStr);
2860 }
2861 
2862 /// PrintParentLoopComment - Print comments about parent loops of this one.
2863 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2864                                    unsigned FunctionNumber) {
2865   if (!Loop) return;
2866   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2867   OS.indent(Loop->getLoopDepth()*2)
2868     << "Parent Loop BB" << FunctionNumber << "_"
2869     << Loop->getHeader()->getNumber()
2870     << " Depth=" << Loop->getLoopDepth() << '\n';
2871 }
2872 
2873 /// PrintChildLoopComment - Print comments about child loops within
2874 /// the loop for this basic block, with nesting.
2875 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2876                                   unsigned FunctionNumber) {
2877   // Add child loop information
2878   for (const MachineLoop *CL : *Loop) {
2879     OS.indent(CL->getLoopDepth()*2)
2880       << "Child Loop BB" << FunctionNumber << "_"
2881       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2882       << '\n';
2883     PrintChildLoopComment(OS, CL, FunctionNumber);
2884   }
2885 }
2886 
2887 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2888 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2889                                        const MachineLoopInfo *LI,
2890                                        const AsmPrinter &AP) {
2891   // Add loop depth information
2892   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2893   if (!Loop) return;
2894 
2895   MachineBasicBlock *Header = Loop->getHeader();
2896   assert(Header && "No header for loop");
2897 
2898   // If this block is not a loop header, just print out what is the loop header
2899   // and return.
2900   if (Header != &MBB) {
2901     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2902                                Twine(AP.getFunctionNumber())+"_" +
2903                                Twine(Loop->getHeader()->getNumber())+
2904                                " Depth="+Twine(Loop->getLoopDepth()));
2905     return;
2906   }
2907 
2908   // Otherwise, it is a loop header.  Print out information about child and
2909   // parent loops.
2910   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2911 
2912   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2913 
2914   OS << "=>";
2915   OS.indent(Loop->getLoopDepth()*2-2);
2916 
2917   OS << "This ";
2918   if (Loop->empty())
2919     OS << "Inner ";
2920   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2921 
2922   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2923 }
2924 
2925 /// EmitBasicBlockStart - This method prints the label for the specified
2926 /// MachineBasicBlock, an alignment (if present) and a comment describing
2927 /// it if appropriate.
2928 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) {
2929   // End the previous funclet and start a new one.
2930   if (MBB.isEHFuncletEntry()) {
2931     for (const HandlerInfo &HI : Handlers) {
2932       HI.Handler->endFunclet();
2933       HI.Handler->beginFunclet(MBB);
2934     }
2935   }
2936 
2937   // Emit an alignment directive for this block, if needed.
2938   const Align Alignment = MBB.getAlignment();
2939   if (Alignment != Align::None())
2940     EmitAlignment(Alignment);
2941 
2942   // If the block has its address taken, emit any labels that were used to
2943   // reference the block.  It is possible that there is more than one label
2944   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2945   // the references were generated.
2946   if (MBB.hasAddressTaken()) {
2947     const BasicBlock *BB = MBB.getBasicBlock();
2948     if (isVerbose())
2949       OutStreamer->AddComment("Block address taken");
2950 
2951     // MBBs can have their address taken as part of CodeGen without having
2952     // their corresponding BB's address taken in IR
2953     if (BB->hasAddressTaken())
2954       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2955         OutStreamer->EmitLabel(Sym);
2956   }
2957 
2958   // Print some verbose block comments.
2959   if (isVerbose()) {
2960     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2961       if (BB->hasName()) {
2962         BB->printAsOperand(OutStreamer->GetCommentOS(),
2963                            /*PrintType=*/false, BB->getModule());
2964         OutStreamer->GetCommentOS() << '\n';
2965       }
2966     }
2967 
2968     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2969     emitBasicBlockLoopComments(MBB, MLI, *this);
2970   }
2971 
2972   // Print the main label for the block.
2973   if (MBB.pred_empty() ||
2974       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2975        !MBB.hasLabelMustBeEmitted())) {
2976     if (isVerbose()) {
2977       // NOTE: Want this comment at start of line, don't emit with AddComment.
2978       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2979                                   false);
2980     }
2981   } else {
2982     if (isVerbose() && MBB.hasLabelMustBeEmitted())
2983       OutStreamer->AddComment("Label of block must be emitted");
2984     OutStreamer->EmitLabel(MBB.getSymbol());
2985   }
2986 }
2987 
2988 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {}
2989 
2990 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2991                                 bool IsDefinition) const {
2992   MCSymbolAttr Attr = MCSA_Invalid;
2993 
2994   switch (Visibility) {
2995   default: break;
2996   case GlobalValue::HiddenVisibility:
2997     if (IsDefinition)
2998       Attr = MAI->getHiddenVisibilityAttr();
2999     else
3000       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3001     break;
3002   case GlobalValue::ProtectedVisibility:
3003     Attr = MAI->getProtectedVisibilityAttr();
3004     break;
3005   }
3006 
3007   if (Attr != MCSA_Invalid)
3008     OutStreamer->EmitSymbolAttribute(Sym, Attr);
3009 }
3010 
3011 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3012 /// exactly one predecessor and the control transfer mechanism between
3013 /// the predecessor and this block is a fall-through.
3014 bool AsmPrinter::
3015 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3016   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3017   // then nothing falls through to it.
3018   if (MBB->isEHPad() || MBB->pred_empty())
3019     return false;
3020 
3021   // If there isn't exactly one predecessor, it can't be a fall through.
3022   if (MBB->pred_size() > 1)
3023     return false;
3024 
3025   // The predecessor has to be immediately before this block.
3026   MachineBasicBlock *Pred = *MBB->pred_begin();
3027   if (!Pred->isLayoutSuccessor(MBB))
3028     return false;
3029 
3030   // If the block is completely empty, then it definitely does fall through.
3031   if (Pred->empty())
3032     return true;
3033 
3034   // Check the terminators in the previous blocks
3035   for (const auto &MI : Pred->terminators()) {
3036     // If it is not a simple branch, we are in a table somewhere.
3037     if (!MI.isBranch() || MI.isIndirectBranch())
3038       return false;
3039 
3040     // If we are the operands of one of the branches, this is not a fall
3041     // through. Note that targets with delay slots will usually bundle
3042     // terminators with the delay slot instruction.
3043     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3044       if (OP->isJTI())
3045         return false;
3046       if (OP->isMBB() && OP->getMBB() == MBB)
3047         return false;
3048     }
3049   }
3050 
3051   return true;
3052 }
3053 
3054 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3055   if (!S.usesMetadata())
3056     return nullptr;
3057 
3058   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3059   gcp_map_type::iterator GCPI = GCMap.find(&S);
3060   if (GCPI != GCMap.end())
3061     return GCPI->second.get();
3062 
3063   auto Name = S.getName();
3064 
3065   for (GCMetadataPrinterRegistry::iterator
3066          I = GCMetadataPrinterRegistry::begin(),
3067          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3068     if (Name == I->getName()) {
3069       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3070       GMP->S = &S;
3071       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3072       return IterBool.first->second.get();
3073     }
3074 
3075   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3076 }
3077 
3078 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3079   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3080   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3081   bool NeedsDefault = false;
3082   if (MI->begin() == MI->end())
3083     // No GC strategy, use the default format.
3084     NeedsDefault = true;
3085   else
3086     for (auto &I : *MI) {
3087       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3088         if (MP->emitStackMaps(SM, *this))
3089           continue;
3090       // The strategy doesn't have printer or doesn't emit custom stack maps.
3091       // Use the default format.
3092       NeedsDefault = true;
3093     }
3094 
3095   if (NeedsDefault)
3096     SM.serializeToStackMapSection();
3097 }
3098 
3099 /// Pin vtable to this file.
3100 AsmPrinterHandler::~AsmPrinterHandler() = default;
3101 
3102 void AsmPrinterHandler::markFunctionEnd() {}
3103 
3104 // In the binary's "xray_instr_map" section, an array of these function entries
3105 // describes each instrumentation point.  When XRay patches your code, the index
3106 // into this table will be given to your handler as a patch point identifier.
3107 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3108                                          const MCSymbol *CurrentFnSym) const {
3109   Out->EmitSymbolValue(Sled, Bytes);
3110   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3111   auto Kind8 = static_cast<uint8_t>(Kind);
3112   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3113   Out->EmitBinaryData(
3114       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3115   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3116   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3117   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3118   Out->EmitZeros(Padding);
3119 }
3120 
3121 void AsmPrinter::emitXRayTable() {
3122   if (Sleds.empty())
3123     return;
3124 
3125   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3126   const Function &F = MF->getFunction();
3127   MCSection *InstMap = nullptr;
3128   MCSection *FnSledIndex = nullptr;
3129   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3130     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3131     assert(Associated != nullptr);
3132     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3133     std::string GroupName;
3134     if (F.hasComdat()) {
3135       Flags |= ELF::SHF_GROUP;
3136       GroupName = F.getComdat()->getName();
3137     }
3138 
3139     auto UniqueID = ++XRayFnUniqueID;
3140     InstMap =
3141         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3142                                  GroupName, UniqueID, Associated);
3143     FnSledIndex =
3144         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3145                                  GroupName, UniqueID, Associated);
3146   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3147     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3148                                          SectionKind::getReadOnlyWithRel());
3149     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3150                                              SectionKind::getReadOnlyWithRel());
3151   } else {
3152     llvm_unreachable("Unsupported target");
3153   }
3154 
3155   auto WordSizeBytes = MAI->getCodePointerSize();
3156 
3157   // Now we switch to the instrumentation map section. Because this is done
3158   // per-function, we are able to create an index entry that will represent the
3159   // range of sleds associated with a function.
3160   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3161   OutStreamer->SwitchSection(InstMap);
3162   OutStreamer->EmitLabel(SledsStart);
3163   for (const auto &Sled : Sleds)
3164     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3165   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3166   OutStreamer->EmitLabel(SledsEnd);
3167 
3168   // We then emit a single entry in the index per function. We use the symbols
3169   // that bound the instrumentation map as the range for a specific function.
3170   // Each entry here will be 2 * word size aligned, as we're writing down two
3171   // pointers. This should work for both 32-bit and 64-bit platforms.
3172   OutStreamer->SwitchSection(FnSledIndex);
3173   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3174   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3175   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3176   OutStreamer->SwitchSection(PrevSection);
3177   Sleds.clear();
3178 }
3179 
3180 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3181                             SledKind Kind, uint8_t Version) {
3182   const Function &F = MI.getMF()->getFunction();
3183   auto Attr = F.getFnAttribute("function-instrument");
3184   bool LogArgs = F.hasFnAttribute("xray-log-args");
3185   bool AlwaysInstrument =
3186     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3187   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3188     Kind = SledKind::LOG_ARGS_ENTER;
3189   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3190                                        AlwaysInstrument, &F, Version});
3191 }
3192 
3193 uint16_t AsmPrinter::getDwarfVersion() const {
3194   return OutStreamer->getContext().getDwarfVersion();
3195 }
3196 
3197 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3198   OutStreamer->getContext().setDwarfVersion(Version);
3199 }
3200