1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSymbolELF.h" 42 #include "llvm/MC/MCValue.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/Format.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "asm-printer" 57 58 static const char *const DWARFGroupName = "dwarf"; 59 static const char *const DWARFGroupDescription = "DWARF Emission"; 60 static const char *const DbgTimerName = "emit"; 61 static const char *const DbgTimerDescription = "Debug Info Emission"; 62 static const char *const EHTimerName = "write_exception"; 63 static const char *const EHTimerDescription = "DWARF Exception Writer"; 64 static const char *const CodeViewLineTablesGroupName = "linetables"; 65 static const char *const CodeViewLineTablesGroupDescription = 66 "CodeView Line Tables"; 67 68 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 69 70 char AsmPrinter::ID = 0; 71 72 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 73 static gcp_map_type &getGCMap(void *&P) { 74 if (!P) 75 P = new gcp_map_type(); 76 return *(gcp_map_type*)P; 77 } 78 79 80 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 81 /// value in log2 form. This rounds up to the preferred alignment if possible 82 /// and legal. 83 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 84 unsigned InBits = 0) { 85 unsigned NumBits = 0; 86 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 87 NumBits = DL.getPreferredAlignmentLog(GVar); 88 89 // If InBits is specified, round it to it. 90 if (InBits > NumBits) 91 NumBits = InBits; 92 93 // If the GV has a specified alignment, take it into account. 94 if (GV->getAlignment() == 0) 95 return NumBits; 96 97 unsigned GVAlign = Log2_32(GV->getAlignment()); 98 99 // If the GVAlign is larger than NumBits, or if we are required to obey 100 // NumBits because the GV has an assigned section, obey it. 101 if (GVAlign > NumBits || GV->hasSection()) 102 NumBits = GVAlign; 103 return NumBits; 104 } 105 106 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 107 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 108 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 109 LastMI(nullptr), LastFn(0), Counter(~0U) { 110 DD = nullptr; 111 MMI = nullptr; 112 LI = nullptr; 113 MF = nullptr; 114 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 115 CurrentFnBegin = nullptr; 116 CurrentFnEnd = nullptr; 117 GCMetadataPrinters = nullptr; 118 VerboseAsm = OutStreamer->isVerboseAsm(); 119 } 120 121 AsmPrinter::~AsmPrinter() { 122 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 123 124 if (GCMetadataPrinters) { 125 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 126 127 delete &GCMap; 128 GCMetadataPrinters = nullptr; 129 } 130 } 131 132 bool AsmPrinter::isPositionIndependent() const { 133 return TM.isPositionIndependent(); 134 } 135 136 /// getFunctionNumber - Return a unique ID for the current function. 137 /// 138 unsigned AsmPrinter::getFunctionNumber() const { 139 return MF->getFunctionNumber(); 140 } 141 142 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 143 return *TM.getObjFileLowering(); 144 } 145 146 const DataLayout &AsmPrinter::getDataLayout() const { 147 return MMI->getModule()->getDataLayout(); 148 } 149 150 // Do not use the cached DataLayout because some client use it without a Module 151 // (llvm-dsymutil, llvm-dwarfdump). 152 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 153 154 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 155 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 156 return MF->getSubtarget<MCSubtargetInfo>(); 157 } 158 159 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 160 S.EmitInstruction(Inst, getSubtargetInfo()); 161 } 162 163 /// getCurrentSection() - Return the current section we are emitting to. 164 const MCSection *AsmPrinter::getCurrentSection() const { 165 return OutStreamer->getCurrentSectionOnly(); 166 } 167 168 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 169 AU.setPreservesAll(); 170 MachineFunctionPass::getAnalysisUsage(AU); 171 AU.addRequired<MachineModuleInfo>(); 172 AU.addRequired<GCModuleInfo>(); 173 if (isVerbose()) 174 AU.addRequired<MachineLoopInfo>(); 175 } 176 177 bool AsmPrinter::doInitialization(Module &M) { 178 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 179 180 // Initialize TargetLoweringObjectFile. 181 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 182 .Initialize(OutContext, TM); 183 184 OutStreamer->InitSections(false); 185 186 // Emit the version-min deplyment target directive if needed. 187 // 188 // FIXME: If we end up with a collection of these sorts of Darwin-specific 189 // or ELF-specific things, it may make sense to have a platform helper class 190 // that will work with the target helper class. For now keep it here, as the 191 // alternative is duplicated code in each of the target asm printers that 192 // use the directive, where it would need the same conditionalization 193 // anyway. 194 const Triple &TT = TM.getTargetTriple(); 195 // If there is a version specified, Major will be non-zero. 196 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 197 unsigned Major, Minor, Update; 198 MCVersionMinType VersionType; 199 if (TT.isWatchOS()) { 200 VersionType = MCVM_WatchOSVersionMin; 201 TT.getWatchOSVersion(Major, Minor, Update); 202 } else if (TT.isTvOS()) { 203 VersionType = MCVM_TvOSVersionMin; 204 TT.getiOSVersion(Major, Minor, Update); 205 } else if (TT.isMacOSX()) { 206 VersionType = MCVM_OSXVersionMin; 207 if (!TT.getMacOSXVersion(Major, Minor, Update)) 208 Major = 0; 209 } else { 210 VersionType = MCVM_IOSVersionMin; 211 TT.getiOSVersion(Major, Minor, Update); 212 } 213 if (Major != 0) 214 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 215 } 216 217 // Allow the target to emit any magic that it wants at the start of the file. 218 EmitStartOfAsmFile(M); 219 220 // Very minimal debug info. It is ignored if we emit actual debug info. If we 221 // don't, this at least helps the user find where a global came from. 222 if (MAI->hasSingleParameterDotFile()) { 223 // .file "foo.c" 224 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 225 } 226 227 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 228 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 229 for (auto &I : *MI) 230 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 231 MP->beginAssembly(M, *MI, *this); 232 233 // Emit module-level inline asm if it exists. 234 if (!M.getModuleInlineAsm().empty()) { 235 // We're at the module level. Construct MCSubtarget from the default CPU 236 // and target triple. 237 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 238 TM.getTargetTriple().str(), TM.getTargetCPU(), 239 TM.getTargetFeatureString())); 240 OutStreamer->AddComment("Start of file scope inline assembly"); 241 OutStreamer->AddBlankLine(); 242 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 243 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 244 OutStreamer->AddComment("End of file scope inline assembly"); 245 OutStreamer->AddBlankLine(); 246 } 247 248 if (MAI->doesSupportDebugInformation()) { 249 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 250 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 251 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 252 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 253 DbgTimerName, DbgTimerDescription, 254 CodeViewLineTablesGroupName, 255 CodeViewLineTablesGroupDescription)); 256 } 257 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 258 DD = new DwarfDebug(this, &M); 259 DD->beginModule(); 260 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 261 DWARFGroupName, DWARFGroupDescription)); 262 } 263 } 264 265 EHStreamer *ES = nullptr; 266 switch (MAI->getExceptionHandlingType()) { 267 case ExceptionHandling::None: 268 break; 269 case ExceptionHandling::SjLj: 270 case ExceptionHandling::DwarfCFI: 271 ES = new DwarfCFIException(this); 272 break; 273 case ExceptionHandling::ARM: 274 ES = new ARMException(this); 275 break; 276 case ExceptionHandling::WinEH: 277 switch (MAI->getWinEHEncodingType()) { 278 default: llvm_unreachable("unsupported unwinding information encoding"); 279 case WinEH::EncodingType::Invalid: 280 break; 281 case WinEH::EncodingType::X86: 282 case WinEH::EncodingType::Itanium: 283 ES = new WinException(this); 284 break; 285 } 286 break; 287 } 288 if (ES) 289 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 290 DWARFGroupName, DWARFGroupDescription)); 291 return false; 292 } 293 294 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 295 if (!MAI.hasWeakDefCanBeHiddenDirective()) 296 return false; 297 298 return canBeOmittedFromSymbolTable(GV); 299 } 300 301 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 302 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 303 switch (Linkage) { 304 case GlobalValue::CommonLinkage: 305 case GlobalValue::LinkOnceAnyLinkage: 306 case GlobalValue::LinkOnceODRLinkage: 307 case GlobalValue::WeakAnyLinkage: 308 case GlobalValue::WeakODRLinkage: 309 if (MAI->hasWeakDefDirective()) { 310 // .globl _foo 311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 312 313 if (!canBeHidden(GV, *MAI)) 314 // .weak_definition _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 316 else 317 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 318 } else if (MAI->hasLinkOnceDirective()) { 319 // .globl _foo 320 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 321 //NOTE: linkonce is handled by the section the symbol was assigned to. 322 } else { 323 // .weak _foo 324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 325 } 326 return; 327 case GlobalValue::ExternalLinkage: 328 // If external, declare as a global symbol: .globl _foo 329 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 330 return; 331 case GlobalValue::PrivateLinkage: 332 case GlobalValue::InternalLinkage: 333 return; 334 case GlobalValue::AppendingLinkage: 335 case GlobalValue::AvailableExternallyLinkage: 336 case GlobalValue::ExternalWeakLinkage: 337 llvm_unreachable("Should never emit this"); 338 } 339 llvm_unreachable("Unknown linkage type!"); 340 } 341 342 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 343 const GlobalValue *GV) const { 344 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 345 } 346 347 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 348 return TM.getSymbol(GV); 349 } 350 351 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 352 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 353 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 354 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 355 "No emulated TLS variables in the common section"); 356 357 // Never emit TLS variable xyz in emulated TLS model. 358 // The initialization value is in __emutls_t.xyz instead of xyz. 359 if (IsEmuTLSVar) 360 return; 361 362 if (GV->hasInitializer()) { 363 // Check to see if this is a special global used by LLVM, if so, emit it. 364 if (EmitSpecialLLVMGlobal(GV)) 365 return; 366 367 // Skip the emission of global equivalents. The symbol can be emitted later 368 // on by emitGlobalGOTEquivs in case it turns out to be needed. 369 if (GlobalGOTEquivs.count(getSymbol(GV))) 370 return; 371 372 if (isVerbose()) { 373 // When printing the control variable __emutls_v.*, 374 // we don't need to print the original TLS variable name. 375 GV->printAsOperand(OutStreamer->GetCommentOS(), 376 /*PrintType=*/false, GV->getParent()); 377 OutStreamer->GetCommentOS() << '\n'; 378 } 379 } 380 381 MCSymbol *GVSym = getSymbol(GV); 382 MCSymbol *EmittedSym = GVSym; 383 384 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 385 // attributes. 386 // GV's or GVSym's attributes will be used for the EmittedSym. 387 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 388 389 if (!GV->hasInitializer()) // External globals require no extra code. 390 return; 391 392 GVSym->redefineIfPossible(); 393 if (GVSym->isDefined() || GVSym->isVariable()) 394 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 395 "' is already defined"); 396 397 if (MAI->hasDotTypeDotSizeDirective()) 398 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 399 400 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 401 402 const DataLayout &DL = GV->getParent()->getDataLayout(); 403 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 404 405 // If the alignment is specified, we *must* obey it. Overaligning a global 406 // with a specified alignment is a prompt way to break globals emitted to 407 // sections and expected to be contiguous (e.g. ObjC metadata). 408 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 409 410 for (const HandlerInfo &HI : Handlers) { 411 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 412 HI.TimerGroupName, HI.TimerGroupDescription, 413 TimePassesIsEnabled); 414 HI.Handler->setSymbolSize(GVSym, Size); 415 } 416 417 // Handle common symbols 418 if (GVKind.isCommon()) { 419 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 420 unsigned Align = 1 << AlignLog; 421 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 422 Align = 0; 423 424 // .comm _foo, 42, 4 425 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 426 return; 427 } 428 429 // Determine to which section this global should be emitted. 430 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 431 432 // If we have a bss global going to a section that supports the 433 // zerofill directive, do so here. 434 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 435 TheSection->isVirtualSection()) { 436 if (Size == 0) 437 Size = 1; // zerofill of 0 bytes is undefined. 438 unsigned Align = 1 << AlignLog; 439 EmitLinkage(GV, GVSym); 440 // .zerofill __DATA, __bss, _foo, 400, 5 441 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 442 return; 443 } 444 445 // If this is a BSS local symbol and we are emitting in the BSS 446 // section use .lcomm/.comm directive. 447 if (GVKind.isBSSLocal() && 448 getObjFileLowering().getBSSSection() == TheSection) { 449 if (Size == 0) 450 Size = 1; // .comm Foo, 0 is undefined, avoid it. 451 unsigned Align = 1 << AlignLog; 452 453 // Use .lcomm only if it supports user-specified alignment. 454 // Otherwise, while it would still be correct to use .lcomm in some 455 // cases (e.g. when Align == 1), the external assembler might enfore 456 // some -unknown- default alignment behavior, which could cause 457 // spurious differences between external and integrated assembler. 458 // Prefer to simply fall back to .local / .comm in this case. 459 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 460 // .lcomm _foo, 42 461 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 462 return; 463 } 464 465 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 466 Align = 0; 467 468 // .local _foo 469 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 470 // .comm _foo, 42, 4 471 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 472 return; 473 } 474 475 // Handle thread local data for mach-o which requires us to output an 476 // additional structure of data and mangle the original symbol so that we 477 // can reference it later. 478 // 479 // TODO: This should become an "emit thread local global" method on TLOF. 480 // All of this macho specific stuff should be sunk down into TLOFMachO and 481 // stuff like "TLSExtraDataSection" should no longer be part of the parent 482 // TLOF class. This will also make it more obvious that stuff like 483 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 484 // specific code. 485 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 486 // Emit the .tbss symbol 487 MCSymbol *MangSym = 488 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 489 490 if (GVKind.isThreadBSS()) { 491 TheSection = getObjFileLowering().getTLSBSSSection(); 492 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 493 } else if (GVKind.isThreadData()) { 494 OutStreamer->SwitchSection(TheSection); 495 496 EmitAlignment(AlignLog, GV); 497 OutStreamer->EmitLabel(MangSym); 498 499 EmitGlobalConstant(GV->getParent()->getDataLayout(), 500 GV->getInitializer()); 501 } 502 503 OutStreamer->AddBlankLine(); 504 505 // Emit the variable struct for the runtime. 506 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 507 508 OutStreamer->SwitchSection(TLVSect); 509 // Emit the linkage here. 510 EmitLinkage(GV, GVSym); 511 OutStreamer->EmitLabel(GVSym); 512 513 // Three pointers in size: 514 // - __tlv_bootstrap - used to make sure support exists 515 // - spare pointer, used when mapped by the runtime 516 // - pointer to mangled symbol above with initializer 517 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 518 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 519 PtrSize); 520 OutStreamer->EmitIntValue(0, PtrSize); 521 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 522 523 OutStreamer->AddBlankLine(); 524 return; 525 } 526 527 MCSymbol *EmittedInitSym = GVSym; 528 529 OutStreamer->SwitchSection(TheSection); 530 531 EmitLinkage(GV, EmittedInitSym); 532 EmitAlignment(AlignLog, GV); 533 534 OutStreamer->EmitLabel(EmittedInitSym); 535 536 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 537 538 if (MAI->hasDotTypeDotSizeDirective()) 539 // .size foo, 42 540 OutStreamer->emitELFSize(EmittedInitSym, 541 MCConstantExpr::create(Size, OutContext)); 542 543 OutStreamer->AddBlankLine(); 544 } 545 546 /// EmitFunctionHeader - This method emits the header for the current 547 /// function. 548 void AsmPrinter::EmitFunctionHeader() { 549 // Print out constants referenced by the function 550 EmitConstantPool(); 551 552 // Print the 'header' of function. 553 const Function *F = MF->getFunction(); 554 555 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 556 EmitVisibility(CurrentFnSym, F->getVisibility()); 557 558 EmitLinkage(F, CurrentFnSym); 559 if (MAI->hasFunctionAlignment()) 560 EmitAlignment(MF->getAlignment(), F); 561 562 if (MAI->hasDotTypeDotSizeDirective()) 563 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 564 565 if (isVerbose()) { 566 F->printAsOperand(OutStreamer->GetCommentOS(), 567 /*PrintType=*/false, F->getParent()); 568 OutStreamer->GetCommentOS() << '\n'; 569 } 570 571 // Emit the prefix data. 572 if (F->hasPrefixData()) 573 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 574 575 // Emit the CurrentFnSym. This is a virtual function to allow targets to 576 // do their wild and crazy things as required. 577 EmitFunctionEntryLabel(); 578 579 // If the function had address-taken blocks that got deleted, then we have 580 // references to the dangling symbols. Emit them at the start of the function 581 // so that we don't get references to undefined symbols. 582 std::vector<MCSymbol*> DeadBlockSyms; 583 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 584 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 585 OutStreamer->AddComment("Address taken block that was later removed"); 586 OutStreamer->EmitLabel(DeadBlockSyms[i]); 587 } 588 589 if (CurrentFnBegin) { 590 if (MAI->useAssignmentForEHBegin()) { 591 MCSymbol *CurPos = OutContext.createTempSymbol(); 592 OutStreamer->EmitLabel(CurPos); 593 OutStreamer->EmitAssignment(CurrentFnBegin, 594 MCSymbolRefExpr::create(CurPos, OutContext)); 595 } else { 596 OutStreamer->EmitLabel(CurrentFnBegin); 597 } 598 } 599 600 // Emit pre-function debug and/or EH information. 601 for (const HandlerInfo &HI : Handlers) { 602 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 603 HI.TimerGroupDescription, TimePassesIsEnabled); 604 HI.Handler->beginFunction(MF); 605 } 606 607 // Emit the prologue data. 608 if (F->hasPrologueData()) 609 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 610 } 611 612 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 613 /// function. This can be overridden by targets as required to do custom stuff. 614 void AsmPrinter::EmitFunctionEntryLabel() { 615 CurrentFnSym->redefineIfPossible(); 616 617 // The function label could have already been emitted if two symbols end up 618 // conflicting due to asm renaming. Detect this and emit an error. 619 if (CurrentFnSym->isVariable()) 620 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 621 "' is a protected alias"); 622 if (CurrentFnSym->isDefined()) 623 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 624 "' label emitted multiple times to assembly file"); 625 626 return OutStreamer->EmitLabel(CurrentFnSym); 627 } 628 629 /// emitComments - Pretty-print comments for instructions. 630 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 631 const MachineFunction *MF = MI.getParent()->getParent(); 632 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 633 634 // Check for spills and reloads 635 int FI; 636 637 const MachineFrameInfo &MFI = MF->getFrameInfo(); 638 639 // We assume a single instruction only has a spill or reload, not 640 // both. 641 const MachineMemOperand *MMO; 642 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 643 if (MFI.isSpillSlotObjectIndex(FI)) { 644 MMO = *MI.memoperands_begin(); 645 CommentOS << MMO->getSize() << "-byte Reload\n"; 646 } 647 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 648 if (MFI.isSpillSlotObjectIndex(FI)) 649 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 650 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 651 if (MFI.isSpillSlotObjectIndex(FI)) { 652 MMO = *MI.memoperands_begin(); 653 CommentOS << MMO->getSize() << "-byte Spill\n"; 654 } 655 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 656 if (MFI.isSpillSlotObjectIndex(FI)) 657 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 658 } 659 660 // Check for spill-induced copies 661 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 662 CommentOS << " Reload Reuse\n"; 663 } 664 665 /// emitImplicitDef - This method emits the specified machine instruction 666 /// that is an implicit def. 667 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 668 unsigned RegNo = MI->getOperand(0).getReg(); 669 670 SmallString<128> Str; 671 raw_svector_ostream OS(Str); 672 OS << "implicit-def: " 673 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 674 675 OutStreamer->AddComment(OS.str()); 676 OutStreamer->AddBlankLine(); 677 } 678 679 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 680 std::string Str; 681 raw_string_ostream OS(Str); 682 OS << "kill:"; 683 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 684 const MachineOperand &Op = MI->getOperand(i); 685 assert(Op.isReg() && "KILL instruction must have only register operands"); 686 OS << ' ' 687 << PrintReg(Op.getReg(), 688 AP.MF->getSubtarget().getRegisterInfo()) 689 << (Op.isDef() ? "<def>" : "<kill>"); 690 } 691 AP.OutStreamer->AddComment(OS.str()); 692 AP.OutStreamer->AddBlankLine(); 693 } 694 695 /// emitDebugValueComment - This method handles the target-independent form 696 /// of DBG_VALUE, returning true if it was able to do so. A false return 697 /// means the target will need to handle MI in EmitInstruction. 698 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 699 // This code handles only the 4-operand target-independent form. 700 if (MI->getNumOperands() != 4) 701 return false; 702 703 SmallString<128> Str; 704 raw_svector_ostream OS(Str); 705 OS << "DEBUG_VALUE: "; 706 707 const DILocalVariable *V = MI->getDebugVariable(); 708 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 709 StringRef Name = SP->getDisplayName(); 710 if (!Name.empty()) 711 OS << Name << ":"; 712 } 713 OS << V->getName(); 714 715 const DIExpression *Expr = MI->getDebugExpression(); 716 if (Expr->isFragment()) 717 OS << " [fragment offset=" << Expr->getFragmentOffsetInBits() 718 << " size=" << Expr->getFragmentSizeInBits() << "]"; 719 OS << " <- "; 720 721 // The second operand is only an offset if it's an immediate. 722 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 723 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 724 725 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 726 uint64_t Op = Expr->getElement(i); 727 if (Op == dwarf::DW_OP_LLVM_fragment) { 728 // There can't be any operands after this in a valid expression 729 break; 730 } else if (Deref) { 731 // We currently don't support extra Offsets or derefs after the first 732 // one. Bail out early instead of emitting an incorrect comment 733 OS << " [complex expression]"; 734 AP.OutStreamer->emitRawComment(OS.str()); 735 return true; 736 } else if (Op == dwarf::DW_OP_deref) { 737 Deref = true; 738 continue; 739 } 740 741 uint64_t ExtraOffset = Expr->getElement(i++); 742 if (Op == dwarf::DW_OP_plus) 743 Offset += ExtraOffset; 744 else { 745 assert(Op == dwarf::DW_OP_minus); 746 Offset -= ExtraOffset; 747 } 748 } 749 750 // Register or immediate value. Register 0 means undef. 751 if (MI->getOperand(0).isFPImm()) { 752 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 753 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 754 OS << (double)APF.convertToFloat(); 755 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 756 OS << APF.convertToDouble(); 757 } else { 758 // There is no good way to print long double. Convert a copy to 759 // double. Ah well, it's only a comment. 760 bool ignored; 761 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 762 &ignored); 763 OS << "(long double) " << APF.convertToDouble(); 764 } 765 } else if (MI->getOperand(0).isImm()) { 766 OS << MI->getOperand(0).getImm(); 767 } else if (MI->getOperand(0).isCImm()) { 768 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 769 } else { 770 unsigned Reg; 771 if (MI->getOperand(0).isReg()) { 772 Reg = MI->getOperand(0).getReg(); 773 } else { 774 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 775 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 776 Offset += TFI->getFrameIndexReference(*AP.MF, 777 MI->getOperand(0).getIndex(), Reg); 778 Deref = true; 779 } 780 if (Reg == 0) { 781 // Suppress offset, it is not meaningful here. 782 OS << "undef"; 783 // NOTE: Want this comment at start of line, don't emit with AddComment. 784 AP.OutStreamer->emitRawComment(OS.str()); 785 return true; 786 } 787 if (Deref) 788 OS << '['; 789 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 790 } 791 792 if (Deref) 793 OS << '+' << Offset << ']'; 794 795 // NOTE: Want this comment at start of line, don't emit with AddComment. 796 AP.OutStreamer->emitRawComment(OS.str()); 797 return true; 798 } 799 800 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 801 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 802 MF->getFunction()->needsUnwindTableEntry()) 803 return CFI_M_EH; 804 805 if (MMI->hasDebugInfo()) 806 return CFI_M_Debug; 807 808 return CFI_M_None; 809 } 810 811 bool AsmPrinter::needsSEHMoves() { 812 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 813 } 814 815 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 816 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 817 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 818 ExceptionHandlingType != ExceptionHandling::ARM) 819 return; 820 821 if (needsCFIMoves() == CFI_M_None) 822 return; 823 824 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 825 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 826 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 827 emitCFIInstruction(CFI); 828 } 829 830 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 831 // The operands are the MCSymbol and the frame offset of the allocation. 832 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 833 int FrameOffset = MI.getOperand(1).getImm(); 834 835 // Emit a symbol assignment. 836 OutStreamer->EmitAssignment(FrameAllocSym, 837 MCConstantExpr::create(FrameOffset, OutContext)); 838 } 839 840 /// EmitFunctionBody - This method emits the body and trailer for a 841 /// function. 842 void AsmPrinter::EmitFunctionBody() { 843 EmitFunctionHeader(); 844 845 // Emit target-specific gunk before the function body. 846 EmitFunctionBodyStart(); 847 848 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 849 850 // Print out code for the function. 851 bool HasAnyRealCode = false; 852 for (auto &MBB : *MF) { 853 // Print a label for the basic block. 854 EmitBasicBlockStart(MBB); 855 for (auto &MI : MBB) { 856 857 // Print the assembly for the instruction. 858 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 859 !MI.isDebugValue()) { 860 HasAnyRealCode = true; 861 ++EmittedInsts; 862 } 863 864 if (ShouldPrintDebugScopes) { 865 for (const HandlerInfo &HI : Handlers) { 866 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 867 HI.TimerGroupName, HI.TimerGroupDescription, 868 TimePassesIsEnabled); 869 HI.Handler->beginInstruction(&MI); 870 } 871 } 872 873 if (isVerbose()) 874 emitComments(MI, OutStreamer->GetCommentOS()); 875 876 switch (MI.getOpcode()) { 877 case TargetOpcode::CFI_INSTRUCTION: 878 emitCFIInstruction(MI); 879 break; 880 881 case TargetOpcode::LOCAL_ESCAPE: 882 emitFrameAlloc(MI); 883 break; 884 885 case TargetOpcode::EH_LABEL: 886 case TargetOpcode::GC_LABEL: 887 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 888 break; 889 case TargetOpcode::INLINEASM: 890 EmitInlineAsm(&MI); 891 break; 892 case TargetOpcode::DBG_VALUE: 893 if (isVerbose()) { 894 if (!emitDebugValueComment(&MI, *this)) 895 EmitInstruction(&MI); 896 } 897 break; 898 case TargetOpcode::IMPLICIT_DEF: 899 if (isVerbose()) emitImplicitDef(&MI); 900 break; 901 case TargetOpcode::KILL: 902 if (isVerbose()) emitKill(&MI, *this); 903 break; 904 default: 905 EmitInstruction(&MI); 906 break; 907 } 908 909 if (ShouldPrintDebugScopes) { 910 for (const HandlerInfo &HI : Handlers) { 911 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 912 HI.TimerGroupName, HI.TimerGroupDescription, 913 TimePassesIsEnabled); 914 HI.Handler->endInstruction(); 915 } 916 } 917 } 918 919 EmitBasicBlockEnd(MBB); 920 } 921 922 // If the function is empty and the object file uses .subsections_via_symbols, 923 // then we need to emit *something* to the function body to prevent the 924 // labels from collapsing together. Just emit a noop. 925 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 926 MCInst Noop; 927 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 928 OutStreamer->AddComment("avoids zero-length function"); 929 930 // Targets can opt-out of emitting the noop here by leaving the opcode 931 // unspecified. 932 if (Noop.getOpcode()) 933 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 934 } 935 936 const Function *F = MF->getFunction(); 937 for (const auto &BB : *F) { 938 if (!BB.hasAddressTaken()) 939 continue; 940 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 941 if (Sym->isDefined()) 942 continue; 943 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 944 OutStreamer->EmitLabel(Sym); 945 } 946 947 // Emit target-specific gunk after the function body. 948 EmitFunctionBodyEnd(); 949 950 if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() || 951 MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 952 // Create a symbol for the end of function. 953 CurrentFnEnd = createTempSymbol("func_end"); 954 OutStreamer->EmitLabel(CurrentFnEnd); 955 } 956 957 // If the target wants a .size directive for the size of the function, emit 958 // it. 959 if (MAI->hasDotTypeDotSizeDirective()) { 960 // We can get the size as difference between the function label and the 961 // temp label. 962 const MCExpr *SizeExp = MCBinaryExpr::createSub( 963 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 964 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 965 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 966 } 967 968 for (const HandlerInfo &HI : Handlers) { 969 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 970 HI.TimerGroupDescription, TimePassesIsEnabled); 971 HI.Handler->markFunctionEnd(); 972 } 973 974 // Print out jump tables referenced by the function. 975 EmitJumpTableInfo(); 976 977 // Emit post-function debug and/or EH information. 978 for (const HandlerInfo &HI : Handlers) { 979 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 980 HI.TimerGroupDescription, TimePassesIsEnabled); 981 HI.Handler->endFunction(MF); 982 } 983 984 OutStreamer->AddBlankLine(); 985 } 986 987 /// \brief Compute the number of Global Variables that uses a Constant. 988 static unsigned getNumGlobalVariableUses(const Constant *C) { 989 if (!C) 990 return 0; 991 992 if (isa<GlobalVariable>(C)) 993 return 1; 994 995 unsigned NumUses = 0; 996 for (auto *CU : C->users()) 997 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 998 999 return NumUses; 1000 } 1001 1002 /// \brief Only consider global GOT equivalents if at least one user is a 1003 /// cstexpr inside an initializer of another global variables. Also, don't 1004 /// handle cstexpr inside instructions. During global variable emission, 1005 /// candidates are skipped and are emitted later in case at least one cstexpr 1006 /// isn't replaced by a PC relative GOT entry access. 1007 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1008 unsigned &NumGOTEquivUsers) { 1009 // Global GOT equivalents are unnamed private globals with a constant 1010 // pointer initializer to another global symbol. They must point to a 1011 // GlobalVariable or Function, i.e., as GlobalValue. 1012 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1013 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1014 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1015 return false; 1016 1017 // To be a got equivalent, at least one of its users need to be a constant 1018 // expression used by another global variable. 1019 for (auto *U : GV->users()) 1020 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1021 1022 return NumGOTEquivUsers > 0; 1023 } 1024 1025 /// \brief Unnamed constant global variables solely contaning a pointer to 1026 /// another globals variable is equivalent to a GOT table entry; it contains the 1027 /// the address of another symbol. Optimize it and replace accesses to these 1028 /// "GOT equivalents" by using the GOT entry for the final global instead. 1029 /// Compute GOT equivalent candidates among all global variables to avoid 1030 /// emitting them if possible later on, after it use is replaced by a GOT entry 1031 /// access. 1032 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1033 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1034 return; 1035 1036 for (const auto &G : M.globals()) { 1037 unsigned NumGOTEquivUsers = 0; 1038 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1039 continue; 1040 1041 const MCSymbol *GOTEquivSym = getSymbol(&G); 1042 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1043 } 1044 } 1045 1046 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1047 /// for PC relative GOT entry conversion, in such cases we need to emit such 1048 /// globals we previously omitted in EmitGlobalVariable. 1049 void AsmPrinter::emitGlobalGOTEquivs() { 1050 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1051 return; 1052 1053 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1054 for (auto &I : GlobalGOTEquivs) { 1055 const GlobalVariable *GV = I.second.first; 1056 unsigned Cnt = I.second.second; 1057 if (Cnt) 1058 FailedCandidates.push_back(GV); 1059 } 1060 GlobalGOTEquivs.clear(); 1061 1062 for (auto *GV : FailedCandidates) 1063 EmitGlobalVariable(GV); 1064 } 1065 1066 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1067 const GlobalIndirectSymbol& GIS) { 1068 MCSymbol *Name = getSymbol(&GIS); 1069 1070 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1071 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1072 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1073 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1074 else 1075 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1076 1077 // Set the symbol type to function if the alias has a function type. 1078 // This affects codegen when the aliasee is not a function. 1079 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1080 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1081 if (isa<GlobalIFunc>(GIS)) 1082 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1083 } 1084 1085 EmitVisibility(Name, GIS.getVisibility()); 1086 1087 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1088 1089 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1090 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1091 1092 // Emit the directives as assignments aka .set: 1093 OutStreamer->EmitAssignment(Name, Expr); 1094 1095 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1096 // If the aliasee does not correspond to a symbol in the output, i.e. the 1097 // alias is not of an object or the aliased object is private, then set the 1098 // size of the alias symbol from the type of the alias. We don't do this in 1099 // other situations as the alias and aliasee having differing types but same 1100 // size may be intentional. 1101 const GlobalObject *BaseObject = GA->getBaseObject(); 1102 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1103 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1104 const DataLayout &DL = M.getDataLayout(); 1105 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1106 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1107 } 1108 } 1109 } 1110 1111 bool AsmPrinter::doFinalization(Module &M) { 1112 // Set the MachineFunction to nullptr so that we can catch attempted 1113 // accesses to MF specific features at the module level and so that 1114 // we can conditionalize accesses based on whether or not it is nullptr. 1115 MF = nullptr; 1116 1117 // Gather all GOT equivalent globals in the module. We really need two 1118 // passes over the globals: one to compute and another to avoid its emission 1119 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1120 // where the got equivalent shows up before its use. 1121 computeGlobalGOTEquivs(M); 1122 1123 // Emit global variables. 1124 for (const auto &G : M.globals()) 1125 EmitGlobalVariable(&G); 1126 1127 // Emit remaining GOT equivalent globals. 1128 emitGlobalGOTEquivs(); 1129 1130 // Emit visibility info for declarations 1131 for (const Function &F : M) { 1132 if (!F.isDeclarationForLinker()) 1133 continue; 1134 GlobalValue::VisibilityTypes V = F.getVisibility(); 1135 if (V == GlobalValue::DefaultVisibility) 1136 continue; 1137 1138 MCSymbol *Name = getSymbol(&F); 1139 EmitVisibility(Name, V, false); 1140 } 1141 1142 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1143 1144 // Emit module flags. 1145 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1146 M.getModuleFlagsMetadata(ModuleFlags); 1147 if (!ModuleFlags.empty()) 1148 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1149 1150 if (TM.getTargetTriple().isOSBinFormatELF()) { 1151 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1152 1153 // Output stubs for external and common global variables. 1154 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1155 if (!Stubs.empty()) { 1156 OutStreamer->SwitchSection(TLOF.getDataSection()); 1157 const DataLayout &DL = M.getDataLayout(); 1158 1159 for (const auto &Stub : Stubs) { 1160 OutStreamer->EmitLabel(Stub.first); 1161 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1162 DL.getPointerSize()); 1163 } 1164 } 1165 } 1166 1167 // Finalize debug and EH information. 1168 for (const HandlerInfo &HI : Handlers) { 1169 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1170 HI.TimerGroupDescription, TimePassesIsEnabled); 1171 HI.Handler->endModule(); 1172 delete HI.Handler; 1173 } 1174 Handlers.clear(); 1175 DD = nullptr; 1176 1177 // If the target wants to know about weak references, print them all. 1178 if (MAI->getWeakRefDirective()) { 1179 // FIXME: This is not lazy, it would be nice to only print weak references 1180 // to stuff that is actually used. Note that doing so would require targets 1181 // to notice uses in operands (due to constant exprs etc). This should 1182 // happen with the MC stuff eventually. 1183 1184 // Print out module-level global objects here. 1185 for (const auto &GO : M.global_objects()) { 1186 if (!GO.hasExternalWeakLinkage()) 1187 continue; 1188 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1189 } 1190 } 1191 1192 OutStreamer->AddBlankLine(); 1193 1194 // Print aliases in topological order, that is, for each alias a = b, 1195 // b must be printed before a. 1196 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1197 // such an order to generate correct TOC information. 1198 SmallVector<const GlobalAlias *, 16> AliasStack; 1199 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1200 for (const auto &Alias : M.aliases()) { 1201 for (const GlobalAlias *Cur = &Alias; Cur; 1202 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1203 if (!AliasVisited.insert(Cur).second) 1204 break; 1205 AliasStack.push_back(Cur); 1206 } 1207 for (const GlobalAlias *AncestorAlias : reverse(AliasStack)) 1208 emitGlobalIndirectSymbol(M, *AncestorAlias); 1209 AliasStack.clear(); 1210 } 1211 for (const auto &IFunc : M.ifuncs()) 1212 emitGlobalIndirectSymbol(M, IFunc); 1213 1214 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1215 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1216 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1217 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1218 MP->finishAssembly(M, *MI, *this); 1219 1220 // Emit llvm.ident metadata in an '.ident' directive. 1221 EmitModuleIdents(M); 1222 1223 // Emit __morestack address if needed for indirect calls. 1224 if (MMI->usesMorestackAddr()) { 1225 unsigned Align = 1; 1226 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1227 getDataLayout(), SectionKind::getReadOnly(), 1228 /*C=*/nullptr, Align); 1229 OutStreamer->SwitchSection(ReadOnlySection); 1230 1231 MCSymbol *AddrSymbol = 1232 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1233 OutStreamer->EmitLabel(AddrSymbol); 1234 1235 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1236 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1237 PtrSize); 1238 } 1239 1240 // If we don't have any trampolines, then we don't require stack memory 1241 // to be executable. Some targets have a directive to declare this. 1242 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1243 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1244 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1245 OutStreamer->SwitchSection(S); 1246 1247 // Allow the target to emit any magic that it wants at the end of the file, 1248 // after everything else has gone out. 1249 EmitEndOfAsmFile(M); 1250 1251 MMI = nullptr; 1252 1253 OutStreamer->Finish(); 1254 OutStreamer->reset(); 1255 1256 return false; 1257 } 1258 1259 MCSymbol *AsmPrinter::getCurExceptionSym() { 1260 if (!CurExceptionSym) 1261 CurExceptionSym = createTempSymbol("exception"); 1262 return CurExceptionSym; 1263 } 1264 1265 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1266 this->MF = &MF; 1267 // Get the function symbol. 1268 CurrentFnSym = getSymbol(MF.getFunction()); 1269 CurrentFnSymForSize = CurrentFnSym; 1270 CurrentFnBegin = nullptr; 1271 CurExceptionSym = nullptr; 1272 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1273 if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() || 1274 MF.hasEHFunclets() || NeedsLocalForSize) { 1275 CurrentFnBegin = createTempSymbol("func_begin"); 1276 if (NeedsLocalForSize) 1277 CurrentFnSymForSize = CurrentFnBegin; 1278 } 1279 1280 if (isVerbose()) 1281 LI = &getAnalysis<MachineLoopInfo>(); 1282 } 1283 1284 namespace { 1285 // Keep track the alignment, constpool entries per Section. 1286 struct SectionCPs { 1287 MCSection *S; 1288 unsigned Alignment; 1289 SmallVector<unsigned, 4> CPEs; 1290 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1291 }; 1292 } 1293 1294 /// EmitConstantPool - Print to the current output stream assembly 1295 /// representations of the constants in the constant pool MCP. This is 1296 /// used to print out constants which have been "spilled to memory" by 1297 /// the code generator. 1298 /// 1299 void AsmPrinter::EmitConstantPool() { 1300 const MachineConstantPool *MCP = MF->getConstantPool(); 1301 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1302 if (CP.empty()) return; 1303 1304 // Calculate sections for constant pool entries. We collect entries to go into 1305 // the same section together to reduce amount of section switch statements. 1306 SmallVector<SectionCPs, 4> CPSections; 1307 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1308 const MachineConstantPoolEntry &CPE = CP[i]; 1309 unsigned Align = CPE.getAlignment(); 1310 1311 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1312 1313 const Constant *C = nullptr; 1314 if (!CPE.isMachineConstantPoolEntry()) 1315 C = CPE.Val.ConstVal; 1316 1317 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1318 Kind, C, Align); 1319 1320 // The number of sections are small, just do a linear search from the 1321 // last section to the first. 1322 bool Found = false; 1323 unsigned SecIdx = CPSections.size(); 1324 while (SecIdx != 0) { 1325 if (CPSections[--SecIdx].S == S) { 1326 Found = true; 1327 break; 1328 } 1329 } 1330 if (!Found) { 1331 SecIdx = CPSections.size(); 1332 CPSections.push_back(SectionCPs(S, Align)); 1333 } 1334 1335 if (Align > CPSections[SecIdx].Alignment) 1336 CPSections[SecIdx].Alignment = Align; 1337 CPSections[SecIdx].CPEs.push_back(i); 1338 } 1339 1340 // Now print stuff into the calculated sections. 1341 const MCSection *CurSection = nullptr; 1342 unsigned Offset = 0; 1343 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1344 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1345 unsigned CPI = CPSections[i].CPEs[j]; 1346 MCSymbol *Sym = GetCPISymbol(CPI); 1347 if (!Sym->isUndefined()) 1348 continue; 1349 1350 if (CurSection != CPSections[i].S) { 1351 OutStreamer->SwitchSection(CPSections[i].S); 1352 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1353 CurSection = CPSections[i].S; 1354 Offset = 0; 1355 } 1356 1357 MachineConstantPoolEntry CPE = CP[CPI]; 1358 1359 // Emit inter-object padding for alignment. 1360 unsigned AlignMask = CPE.getAlignment() - 1; 1361 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1362 OutStreamer->EmitZeros(NewOffset - Offset); 1363 1364 Type *Ty = CPE.getType(); 1365 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1366 1367 OutStreamer->EmitLabel(Sym); 1368 if (CPE.isMachineConstantPoolEntry()) 1369 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1370 else 1371 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1372 } 1373 } 1374 } 1375 1376 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1377 /// by the current function to the current output stream. 1378 /// 1379 void AsmPrinter::EmitJumpTableInfo() { 1380 const DataLayout &DL = MF->getDataLayout(); 1381 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1382 if (!MJTI) return; 1383 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1384 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1385 if (JT.empty()) return; 1386 1387 // Pick the directive to use to print the jump table entries, and switch to 1388 // the appropriate section. 1389 const Function *F = MF->getFunction(); 1390 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1391 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1392 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1393 *F); 1394 if (JTInDiffSection) { 1395 // Drop it in the readonly section. 1396 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1397 OutStreamer->SwitchSection(ReadOnlySection); 1398 } 1399 1400 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1401 1402 // Jump tables in code sections are marked with a data_region directive 1403 // where that's supported. 1404 if (!JTInDiffSection) 1405 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1406 1407 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1408 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1409 1410 // If this jump table was deleted, ignore it. 1411 if (JTBBs.empty()) continue; 1412 1413 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1414 /// emit a .set directive for each unique entry. 1415 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1416 MAI->doesSetDirectiveSuppressReloc()) { 1417 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1418 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1419 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1420 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1421 const MachineBasicBlock *MBB = JTBBs[ii]; 1422 if (!EmittedSets.insert(MBB).second) 1423 continue; 1424 1425 // .set LJTSet, LBB32-base 1426 const MCExpr *LHS = 1427 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1428 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1429 MCBinaryExpr::createSub(LHS, Base, 1430 OutContext)); 1431 } 1432 } 1433 1434 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1435 // before each jump table. The first label is never referenced, but tells 1436 // the assembler and linker the extents of the jump table object. The 1437 // second label is actually referenced by the code. 1438 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1439 // FIXME: This doesn't have to have any specific name, just any randomly 1440 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1441 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1442 1443 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1444 1445 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1446 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1447 } 1448 if (!JTInDiffSection) 1449 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1450 } 1451 1452 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1453 /// current stream. 1454 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1455 const MachineBasicBlock *MBB, 1456 unsigned UID) const { 1457 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1458 const MCExpr *Value = nullptr; 1459 switch (MJTI->getEntryKind()) { 1460 case MachineJumpTableInfo::EK_Inline: 1461 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1462 case MachineJumpTableInfo::EK_Custom32: 1463 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1464 MJTI, MBB, UID, OutContext); 1465 break; 1466 case MachineJumpTableInfo::EK_BlockAddress: 1467 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1468 // .word LBB123 1469 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1470 break; 1471 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1472 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1473 // with a relocation as gp-relative, e.g.: 1474 // .gprel32 LBB123 1475 MCSymbol *MBBSym = MBB->getSymbol(); 1476 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1477 return; 1478 } 1479 1480 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1481 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1482 // with a relocation as gp-relative, e.g.: 1483 // .gpdword LBB123 1484 MCSymbol *MBBSym = MBB->getSymbol(); 1485 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1486 return; 1487 } 1488 1489 case MachineJumpTableInfo::EK_LabelDifference32: { 1490 // Each entry is the address of the block minus the address of the jump 1491 // table. This is used for PIC jump tables where gprel32 is not supported. 1492 // e.g.: 1493 // .word LBB123 - LJTI1_2 1494 // If the .set directive avoids relocations, this is emitted as: 1495 // .set L4_5_set_123, LBB123 - LJTI1_2 1496 // .word L4_5_set_123 1497 if (MAI->doesSetDirectiveSuppressReloc()) { 1498 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1499 OutContext); 1500 break; 1501 } 1502 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1503 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1504 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1505 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1506 break; 1507 } 1508 } 1509 1510 assert(Value && "Unknown entry kind!"); 1511 1512 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1513 OutStreamer->EmitValue(Value, EntrySize); 1514 } 1515 1516 1517 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1518 /// special global used by LLVM. If so, emit it and return true, otherwise 1519 /// do nothing and return false. 1520 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1521 if (GV->getName() == "llvm.used") { 1522 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1523 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1524 return true; 1525 } 1526 1527 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1528 if (GV->getSection() == "llvm.metadata" || 1529 GV->hasAvailableExternallyLinkage()) 1530 return true; 1531 1532 if (!GV->hasAppendingLinkage()) return false; 1533 1534 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1535 1536 if (GV->getName() == "llvm.global_ctors") { 1537 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1538 /* isCtor */ true); 1539 1540 return true; 1541 } 1542 1543 if (GV->getName() == "llvm.global_dtors") { 1544 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1545 /* isCtor */ false); 1546 1547 return true; 1548 } 1549 1550 report_fatal_error("unknown special variable"); 1551 } 1552 1553 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1554 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1555 /// is true, as being used with this directive. 1556 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1557 // Should be an array of 'i8*'. 1558 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1559 const GlobalValue *GV = 1560 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1561 if (GV) 1562 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1563 } 1564 } 1565 1566 namespace { 1567 struct Structor { 1568 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1569 int Priority; 1570 llvm::Constant *Func; 1571 llvm::GlobalValue *ComdatKey; 1572 }; 1573 } // end namespace 1574 1575 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1576 /// priority. 1577 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1578 bool isCtor) { 1579 // Should be an array of '{ int, void ()* }' structs. The first value is the 1580 // init priority. 1581 if (!isa<ConstantArray>(List)) return; 1582 1583 // Sanity check the structors list. 1584 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1585 if (!InitList) return; // Not an array! 1586 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1587 // FIXME: Only allow the 3-field form in LLVM 4.0. 1588 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1589 return; // Not an array of two or three elements! 1590 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1591 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1592 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1593 return; // Not (int, ptr, ptr). 1594 1595 // Gather the structors in a form that's convenient for sorting by priority. 1596 SmallVector<Structor, 8> Structors; 1597 for (Value *O : InitList->operands()) { 1598 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1599 if (!CS) continue; // Malformed. 1600 if (CS->getOperand(1)->isNullValue()) 1601 break; // Found a null terminator, skip the rest. 1602 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1603 if (!Priority) continue; // Malformed. 1604 Structors.push_back(Structor()); 1605 Structor &S = Structors.back(); 1606 S.Priority = Priority->getLimitedValue(65535); 1607 S.Func = CS->getOperand(1); 1608 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1609 S.ComdatKey = 1610 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1611 } 1612 1613 // Emit the function pointers in the target-specific order 1614 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1615 std::stable_sort(Structors.begin(), Structors.end(), 1616 [](const Structor &L, 1617 const Structor &R) { return L.Priority < R.Priority; }); 1618 for (Structor &S : Structors) { 1619 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1620 const MCSymbol *KeySym = nullptr; 1621 if (GlobalValue *GV = S.ComdatKey) { 1622 if (GV->hasAvailableExternallyLinkage()) 1623 // If the associated variable is available_externally, some other TU 1624 // will provide its dynamic initializer. 1625 continue; 1626 1627 KeySym = getSymbol(GV); 1628 } 1629 MCSection *OutputSection = 1630 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1631 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1632 OutStreamer->SwitchSection(OutputSection); 1633 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1634 EmitAlignment(Align); 1635 EmitXXStructor(DL, S.Func); 1636 } 1637 } 1638 1639 void AsmPrinter::EmitModuleIdents(Module &M) { 1640 if (!MAI->hasIdentDirective()) 1641 return; 1642 1643 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1644 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1645 const MDNode *N = NMD->getOperand(i); 1646 assert(N->getNumOperands() == 1 && 1647 "llvm.ident metadata entry can have only one operand"); 1648 const MDString *S = cast<MDString>(N->getOperand(0)); 1649 OutStreamer->EmitIdent(S->getString()); 1650 } 1651 } 1652 } 1653 1654 //===--------------------------------------------------------------------===// 1655 // Emission and print routines 1656 // 1657 1658 /// EmitInt8 - Emit a byte directive and value. 1659 /// 1660 void AsmPrinter::EmitInt8(int Value) const { 1661 OutStreamer->EmitIntValue(Value, 1); 1662 } 1663 1664 /// EmitInt16 - Emit a short directive and value. 1665 /// 1666 void AsmPrinter::EmitInt16(int Value) const { 1667 OutStreamer->EmitIntValue(Value, 2); 1668 } 1669 1670 /// EmitInt32 - Emit a long directive and value. 1671 /// 1672 void AsmPrinter::EmitInt32(int Value) const { 1673 OutStreamer->EmitIntValue(Value, 4); 1674 } 1675 1676 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1677 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1678 /// .set if it avoids relocations. 1679 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1680 unsigned Size) const { 1681 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1682 } 1683 1684 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1685 /// where the size in bytes of the directive is specified by Size and Label 1686 /// specifies the label. This implicitly uses .set if it is available. 1687 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1688 unsigned Size, 1689 bool IsSectionRelative) const { 1690 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1691 OutStreamer->EmitCOFFSecRel32(Label); 1692 return; 1693 } 1694 1695 // Emit Label+Offset (or just Label if Offset is zero) 1696 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1697 if (Offset) 1698 Expr = MCBinaryExpr::createAdd( 1699 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1700 1701 OutStreamer->EmitValue(Expr, Size); 1702 } 1703 1704 //===----------------------------------------------------------------------===// 1705 1706 // EmitAlignment - Emit an alignment directive to the specified power of 1707 // two boundary. For example, if you pass in 3 here, you will get an 8 1708 // byte alignment. If a global value is specified, and if that global has 1709 // an explicit alignment requested, it will override the alignment request 1710 // if required for correctness. 1711 // 1712 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1713 if (GV) 1714 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1715 1716 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1717 1718 assert(NumBits < 1719 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1720 "undefined behavior"); 1721 if (getCurrentSection()->getKind().isText()) 1722 OutStreamer->EmitCodeAlignment(1u << NumBits); 1723 else 1724 OutStreamer->EmitValueToAlignment(1u << NumBits); 1725 } 1726 1727 //===----------------------------------------------------------------------===// 1728 // Constant emission. 1729 //===----------------------------------------------------------------------===// 1730 1731 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1732 MCContext &Ctx = OutContext; 1733 1734 if (CV->isNullValue() || isa<UndefValue>(CV)) 1735 return MCConstantExpr::create(0, Ctx); 1736 1737 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1738 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1739 1740 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1741 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1742 1743 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1744 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1745 1746 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1747 if (!CE) { 1748 llvm_unreachable("Unknown constant value to lower!"); 1749 } 1750 1751 switch (CE->getOpcode()) { 1752 default: 1753 // If the code isn't optimized, there may be outstanding folding 1754 // opportunities. Attempt to fold the expression using DataLayout as a 1755 // last resort before giving up. 1756 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1757 if (C != CE) 1758 return lowerConstant(C); 1759 1760 // Otherwise report the problem to the user. 1761 { 1762 std::string S; 1763 raw_string_ostream OS(S); 1764 OS << "Unsupported expression in static initializer: "; 1765 CE->printAsOperand(OS, /*PrintType=*/false, 1766 !MF ? nullptr : MF->getFunction()->getParent()); 1767 report_fatal_error(OS.str()); 1768 } 1769 case Instruction::GetElementPtr: { 1770 // Generate a symbolic expression for the byte address 1771 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1772 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1773 1774 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1775 if (!OffsetAI) 1776 return Base; 1777 1778 int64_t Offset = OffsetAI.getSExtValue(); 1779 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1780 Ctx); 1781 } 1782 1783 case Instruction::Trunc: 1784 // We emit the value and depend on the assembler to truncate the generated 1785 // expression properly. This is important for differences between 1786 // blockaddress labels. Since the two labels are in the same function, it 1787 // is reasonable to treat their delta as a 32-bit value. 1788 LLVM_FALLTHROUGH; 1789 case Instruction::BitCast: 1790 return lowerConstant(CE->getOperand(0)); 1791 1792 case Instruction::IntToPtr: { 1793 const DataLayout &DL = getDataLayout(); 1794 1795 // Handle casts to pointers by changing them into casts to the appropriate 1796 // integer type. This promotes constant folding and simplifies this code. 1797 Constant *Op = CE->getOperand(0); 1798 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1799 false/*ZExt*/); 1800 return lowerConstant(Op); 1801 } 1802 1803 case Instruction::PtrToInt: { 1804 const DataLayout &DL = getDataLayout(); 1805 1806 // Support only foldable casts to/from pointers that can be eliminated by 1807 // changing the pointer to the appropriately sized integer type. 1808 Constant *Op = CE->getOperand(0); 1809 Type *Ty = CE->getType(); 1810 1811 const MCExpr *OpExpr = lowerConstant(Op); 1812 1813 // We can emit the pointer value into this slot if the slot is an 1814 // integer slot equal to the size of the pointer. 1815 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1816 return OpExpr; 1817 1818 // Otherwise the pointer is smaller than the resultant integer, mask off 1819 // the high bits so we are sure to get a proper truncation if the input is 1820 // a constant expr. 1821 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1822 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1823 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1824 } 1825 1826 case Instruction::Sub: { 1827 GlobalValue *LHSGV; 1828 APInt LHSOffset; 1829 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1830 getDataLayout())) { 1831 GlobalValue *RHSGV; 1832 APInt RHSOffset; 1833 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1834 getDataLayout())) { 1835 const MCExpr *RelocExpr = 1836 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1837 if (!RelocExpr) 1838 RelocExpr = MCBinaryExpr::createSub( 1839 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1840 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1841 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1842 if (Addend != 0) 1843 RelocExpr = MCBinaryExpr::createAdd( 1844 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1845 return RelocExpr; 1846 } 1847 } 1848 } 1849 // else fallthrough 1850 1851 // The MC library also has a right-shift operator, but it isn't consistently 1852 // signed or unsigned between different targets. 1853 case Instruction::Add: 1854 case Instruction::Mul: 1855 case Instruction::SDiv: 1856 case Instruction::SRem: 1857 case Instruction::Shl: 1858 case Instruction::And: 1859 case Instruction::Or: 1860 case Instruction::Xor: { 1861 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1862 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1863 switch (CE->getOpcode()) { 1864 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1865 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1866 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1867 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1868 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1869 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1870 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1871 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1872 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1873 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1874 } 1875 } 1876 } 1877 } 1878 1879 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1880 AsmPrinter &AP, 1881 const Constant *BaseCV = nullptr, 1882 uint64_t Offset = 0); 1883 1884 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1885 1886 /// isRepeatedByteSequence - Determine whether the given value is 1887 /// composed of a repeated sequence of identical bytes and return the 1888 /// byte value. If it is not a repeated sequence, return -1. 1889 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1890 StringRef Data = V->getRawDataValues(); 1891 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1892 char C = Data[0]; 1893 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1894 if (Data[i] != C) return -1; 1895 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1896 } 1897 1898 1899 /// isRepeatedByteSequence - Determine whether the given value is 1900 /// composed of a repeated sequence of identical bytes and return the 1901 /// byte value. If it is not a repeated sequence, return -1. 1902 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1903 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1904 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1905 assert(Size % 8 == 0); 1906 1907 // Extend the element to take zero padding into account. 1908 APInt Value = CI->getValue().zextOrSelf(Size); 1909 if (!Value.isSplat(8)) 1910 return -1; 1911 1912 return Value.zextOrTrunc(8).getZExtValue(); 1913 } 1914 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1915 // Make sure all array elements are sequences of the same repeated 1916 // byte. 1917 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1918 Constant *Op0 = CA->getOperand(0); 1919 int Byte = isRepeatedByteSequence(Op0, DL); 1920 if (Byte == -1) 1921 return -1; 1922 1923 // All array elements must be equal. 1924 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1925 if (CA->getOperand(i) != Op0) 1926 return -1; 1927 return Byte; 1928 } 1929 1930 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1931 return isRepeatedByteSequence(CDS); 1932 1933 return -1; 1934 } 1935 1936 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1937 const ConstantDataSequential *CDS, 1938 AsmPrinter &AP) { 1939 1940 // See if we can aggregate this into a .fill, if so, emit it as such. 1941 int Value = isRepeatedByteSequence(CDS, DL); 1942 if (Value != -1) { 1943 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1944 // Don't emit a 1-byte object as a .fill. 1945 if (Bytes > 1) 1946 return AP.OutStreamer->emitFill(Bytes, Value); 1947 } 1948 1949 // If this can be emitted with .ascii/.asciz, emit it as such. 1950 if (CDS->isString()) 1951 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1952 1953 // Otherwise, emit the values in successive locations. 1954 unsigned ElementByteSize = CDS->getElementByteSize(); 1955 if (isa<IntegerType>(CDS->getElementType())) { 1956 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1957 if (AP.isVerbose()) 1958 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1959 CDS->getElementAsInteger(i)); 1960 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1961 ElementByteSize); 1962 } 1963 } else { 1964 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 1965 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 1966 } 1967 1968 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1969 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1970 CDS->getNumElements(); 1971 if (unsigned Padding = Size - EmittedSize) 1972 AP.OutStreamer->EmitZeros(Padding); 1973 1974 } 1975 1976 static void emitGlobalConstantArray(const DataLayout &DL, 1977 const ConstantArray *CA, AsmPrinter &AP, 1978 const Constant *BaseCV, uint64_t Offset) { 1979 // See if we can aggregate some values. Make sure it can be 1980 // represented as a series of bytes of the constant value. 1981 int Value = isRepeatedByteSequence(CA, DL); 1982 1983 if (Value != -1) { 1984 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1985 AP.OutStreamer->emitFill(Bytes, Value); 1986 } 1987 else { 1988 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1989 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 1990 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1991 } 1992 } 1993 } 1994 1995 static void emitGlobalConstantVector(const DataLayout &DL, 1996 const ConstantVector *CV, AsmPrinter &AP) { 1997 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1998 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 1999 2000 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2001 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2002 CV->getType()->getNumElements(); 2003 if (unsigned Padding = Size - EmittedSize) 2004 AP.OutStreamer->EmitZeros(Padding); 2005 } 2006 2007 static void emitGlobalConstantStruct(const DataLayout &DL, 2008 const ConstantStruct *CS, AsmPrinter &AP, 2009 const Constant *BaseCV, uint64_t Offset) { 2010 // Print the fields in successive locations. Pad to align if needed! 2011 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2012 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2013 uint64_t SizeSoFar = 0; 2014 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2015 const Constant *Field = CS->getOperand(i); 2016 2017 // Print the actual field value. 2018 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2019 2020 // Check if padding is needed and insert one or more 0s. 2021 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2022 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2023 - Layout->getElementOffset(i)) - FieldSize; 2024 SizeSoFar += FieldSize + PadSize; 2025 2026 // Insert padding - this may include padding to increase the size of the 2027 // current field up to the ABI size (if the struct is not packed) as well 2028 // as padding to ensure that the next field starts at the right offset. 2029 AP.OutStreamer->EmitZeros(PadSize); 2030 } 2031 assert(SizeSoFar == Layout->getSizeInBytes() && 2032 "Layout of constant struct may be incorrect!"); 2033 } 2034 2035 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2036 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2037 2038 // First print a comment with what we think the original floating-point value 2039 // should have been. 2040 if (AP.isVerbose()) { 2041 SmallString<8> StrVal; 2042 CFP->getValueAPF().toString(StrVal); 2043 2044 if (CFP->getType()) 2045 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2046 else 2047 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2048 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2049 } 2050 2051 // Now iterate through the APInt chunks, emitting them in endian-correct 2052 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2053 // floats). 2054 unsigned NumBytes = API.getBitWidth() / 8; 2055 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2056 const uint64_t *p = API.getRawData(); 2057 2058 // PPC's long double has odd notions of endianness compared to how LLVM 2059 // handles it: p[0] goes first for *big* endian on PPC. 2060 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2061 int Chunk = API.getNumWords() - 1; 2062 2063 if (TrailingBytes) 2064 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2065 2066 for (; Chunk >= 0; --Chunk) 2067 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2068 } else { 2069 unsigned Chunk; 2070 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2071 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2072 2073 if (TrailingBytes) 2074 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2075 } 2076 2077 // Emit the tail padding for the long double. 2078 const DataLayout &DL = AP.getDataLayout(); 2079 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2080 DL.getTypeStoreSize(CFP->getType())); 2081 } 2082 2083 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2084 const DataLayout &DL = AP.getDataLayout(); 2085 unsigned BitWidth = CI->getBitWidth(); 2086 2087 // Copy the value as we may massage the layout for constants whose bit width 2088 // is not a multiple of 64-bits. 2089 APInt Realigned(CI->getValue()); 2090 uint64_t ExtraBits = 0; 2091 unsigned ExtraBitsSize = BitWidth & 63; 2092 2093 if (ExtraBitsSize) { 2094 // The bit width of the data is not a multiple of 64-bits. 2095 // The extra bits are expected to be at the end of the chunk of the memory. 2096 // Little endian: 2097 // * Nothing to be done, just record the extra bits to emit. 2098 // Big endian: 2099 // * Record the extra bits to emit. 2100 // * Realign the raw data to emit the chunks of 64-bits. 2101 if (DL.isBigEndian()) { 2102 // Basically the structure of the raw data is a chunk of 64-bits cells: 2103 // 0 1 BitWidth / 64 2104 // [chunk1][chunk2] ... [chunkN]. 2105 // The most significant chunk is chunkN and it should be emitted first. 2106 // However, due to the alignment issue chunkN contains useless bits. 2107 // Realign the chunks so that they contain only useless information: 2108 // ExtraBits 0 1 (BitWidth / 64) - 1 2109 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2110 ExtraBits = Realigned.getRawData()[0] & 2111 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2112 Realigned = Realigned.lshr(ExtraBitsSize); 2113 } else 2114 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2115 } 2116 2117 // We don't expect assemblers to support integer data directives 2118 // for more than 64 bits, so we emit the data in at most 64-bit 2119 // quantities at a time. 2120 const uint64_t *RawData = Realigned.getRawData(); 2121 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2122 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2123 AP.OutStreamer->EmitIntValue(Val, 8); 2124 } 2125 2126 if (ExtraBitsSize) { 2127 // Emit the extra bits after the 64-bits chunks. 2128 2129 // Emit a directive that fills the expected size. 2130 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2131 Size -= (BitWidth / 64) * 8; 2132 assert(Size && Size * 8 >= ExtraBitsSize && 2133 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2134 == ExtraBits && "Directive too small for extra bits."); 2135 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2136 } 2137 } 2138 2139 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2140 /// equivalent global, by a target specific GOT pc relative access to the 2141 /// final symbol. 2142 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2143 const Constant *BaseCst, 2144 uint64_t Offset) { 2145 // The global @foo below illustrates a global that uses a got equivalent. 2146 // 2147 // @bar = global i32 42 2148 // @gotequiv = private unnamed_addr constant i32* @bar 2149 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2150 // i64 ptrtoint (i32* @foo to i64)) 2151 // to i32) 2152 // 2153 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2154 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2155 // form: 2156 // 2157 // foo = cstexpr, where 2158 // cstexpr := <gotequiv> - "." + <cst> 2159 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2160 // 2161 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2162 // 2163 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2164 // gotpcrelcst := <offset from @foo base> + <cst> 2165 // 2166 MCValue MV; 2167 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2168 return; 2169 const MCSymbolRefExpr *SymA = MV.getSymA(); 2170 if (!SymA) 2171 return; 2172 2173 // Check that GOT equivalent symbol is cached. 2174 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2175 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2176 return; 2177 2178 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2179 if (!BaseGV) 2180 return; 2181 2182 // Check for a valid base symbol 2183 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2184 const MCSymbolRefExpr *SymB = MV.getSymB(); 2185 2186 if (!SymB || BaseSym != &SymB->getSymbol()) 2187 return; 2188 2189 // Make sure to match: 2190 // 2191 // gotpcrelcst := <offset from @foo base> + <cst> 2192 // 2193 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2194 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2195 // if the target knows how to encode it. 2196 // 2197 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2198 if (GOTPCRelCst < 0) 2199 return; 2200 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2201 return; 2202 2203 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2204 // 2205 // bar: 2206 // .long 42 2207 // gotequiv: 2208 // .quad bar 2209 // foo: 2210 // .long gotequiv - "." + <cst> 2211 // 2212 // is replaced by the target specific equivalent to: 2213 // 2214 // bar: 2215 // .long 42 2216 // foo: 2217 // .long bar@GOTPCREL+<gotpcrelcst> 2218 // 2219 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2220 const GlobalVariable *GV = Result.first; 2221 int NumUses = (int)Result.second; 2222 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2223 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2224 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2225 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2226 2227 // Update GOT equivalent usage information 2228 --NumUses; 2229 if (NumUses >= 0) 2230 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2231 } 2232 2233 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2234 AsmPrinter &AP, const Constant *BaseCV, 2235 uint64_t Offset) { 2236 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2237 2238 // Globals with sub-elements such as combinations of arrays and structs 2239 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2240 // constant symbol base and the current position with BaseCV and Offset. 2241 if (!BaseCV && CV->hasOneUse()) 2242 BaseCV = dyn_cast<Constant>(CV->user_back()); 2243 2244 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2245 return AP.OutStreamer->EmitZeros(Size); 2246 2247 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2248 switch (Size) { 2249 case 1: 2250 case 2: 2251 case 4: 2252 case 8: 2253 if (AP.isVerbose()) 2254 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2255 CI->getZExtValue()); 2256 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2257 return; 2258 default: 2259 emitGlobalConstantLargeInt(CI, AP); 2260 return; 2261 } 2262 } 2263 2264 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2265 return emitGlobalConstantFP(CFP, AP); 2266 2267 if (isa<ConstantPointerNull>(CV)) { 2268 AP.OutStreamer->EmitIntValue(0, Size); 2269 return; 2270 } 2271 2272 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2273 return emitGlobalConstantDataSequential(DL, CDS, AP); 2274 2275 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2276 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2277 2278 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2279 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2280 2281 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2282 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2283 // vectors). 2284 if (CE->getOpcode() == Instruction::BitCast) 2285 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2286 2287 if (Size > 8) { 2288 // If the constant expression's size is greater than 64-bits, then we have 2289 // to emit the value in chunks. Try to constant fold the value and emit it 2290 // that way. 2291 Constant *New = ConstantFoldConstant(CE, DL); 2292 if (New && New != CE) 2293 return emitGlobalConstantImpl(DL, New, AP); 2294 } 2295 } 2296 2297 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2298 return emitGlobalConstantVector(DL, V, AP); 2299 2300 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2301 // thread the streamer with EmitValue. 2302 const MCExpr *ME = AP.lowerConstant(CV); 2303 2304 // Since lowerConstant already folded and got rid of all IR pointer and 2305 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2306 // directly. 2307 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2308 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2309 2310 AP.OutStreamer->EmitValue(ME, Size); 2311 } 2312 2313 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2314 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2315 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2316 if (Size) 2317 emitGlobalConstantImpl(DL, CV, *this); 2318 else if (MAI->hasSubsectionsViaSymbols()) { 2319 // If the global has zero size, emit a single byte so that two labels don't 2320 // look like they are at the same location. 2321 OutStreamer->EmitIntValue(0, 1); 2322 } 2323 } 2324 2325 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2326 // Target doesn't support this yet! 2327 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2328 } 2329 2330 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2331 if (Offset > 0) 2332 OS << '+' << Offset; 2333 else if (Offset < 0) 2334 OS << Offset; 2335 } 2336 2337 //===----------------------------------------------------------------------===// 2338 // Symbol Lowering Routines. 2339 //===----------------------------------------------------------------------===// 2340 2341 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2342 return OutContext.createTempSymbol(Name, true); 2343 } 2344 2345 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2346 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2347 } 2348 2349 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2350 return MMI->getAddrLabelSymbol(BB); 2351 } 2352 2353 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2354 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2355 const DataLayout &DL = getDataLayout(); 2356 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2357 "CPI" + Twine(getFunctionNumber()) + "_" + 2358 Twine(CPID)); 2359 } 2360 2361 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2362 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2363 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2364 } 2365 2366 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2367 /// FIXME: privatize to AsmPrinter. 2368 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2369 const DataLayout &DL = getDataLayout(); 2370 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2371 Twine(getFunctionNumber()) + "_" + 2372 Twine(UID) + "_set_" + Twine(MBBID)); 2373 } 2374 2375 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2376 StringRef Suffix) const { 2377 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2378 } 2379 2380 /// Return the MCSymbol for the specified ExternalSymbol. 2381 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2382 SmallString<60> NameStr; 2383 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2384 return OutContext.getOrCreateSymbol(NameStr); 2385 } 2386 2387 2388 2389 /// PrintParentLoopComment - Print comments about parent loops of this one. 2390 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2391 unsigned FunctionNumber) { 2392 if (!Loop) return; 2393 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2394 OS.indent(Loop->getLoopDepth()*2) 2395 << "Parent Loop BB" << FunctionNumber << "_" 2396 << Loop->getHeader()->getNumber() 2397 << " Depth=" << Loop->getLoopDepth() << '\n'; 2398 } 2399 2400 2401 /// PrintChildLoopComment - Print comments about child loops within 2402 /// the loop for this basic block, with nesting. 2403 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2404 unsigned FunctionNumber) { 2405 // Add child loop information 2406 for (const MachineLoop *CL : *Loop) { 2407 OS.indent(CL->getLoopDepth()*2) 2408 << "Child Loop BB" << FunctionNumber << "_" 2409 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2410 << '\n'; 2411 PrintChildLoopComment(OS, CL, FunctionNumber); 2412 } 2413 } 2414 2415 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2416 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2417 const MachineLoopInfo *LI, 2418 const AsmPrinter &AP) { 2419 // Add loop depth information 2420 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2421 if (!Loop) return; 2422 2423 MachineBasicBlock *Header = Loop->getHeader(); 2424 assert(Header && "No header for loop"); 2425 2426 // If this block is not a loop header, just print out what is the loop header 2427 // and return. 2428 if (Header != &MBB) { 2429 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2430 Twine(AP.getFunctionNumber())+"_" + 2431 Twine(Loop->getHeader()->getNumber())+ 2432 " Depth="+Twine(Loop->getLoopDepth())); 2433 return; 2434 } 2435 2436 // Otherwise, it is a loop header. Print out information about child and 2437 // parent loops. 2438 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2439 2440 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2441 2442 OS << "=>"; 2443 OS.indent(Loop->getLoopDepth()*2-2); 2444 2445 OS << "This "; 2446 if (Loop->empty()) 2447 OS << "Inner "; 2448 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2449 2450 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2451 } 2452 2453 2454 /// EmitBasicBlockStart - This method prints the label for the specified 2455 /// MachineBasicBlock, an alignment (if present) and a comment describing 2456 /// it if appropriate. 2457 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2458 // End the previous funclet and start a new one. 2459 if (MBB.isEHFuncletEntry()) { 2460 for (const HandlerInfo &HI : Handlers) { 2461 HI.Handler->endFunclet(); 2462 HI.Handler->beginFunclet(MBB); 2463 } 2464 } 2465 2466 // Emit an alignment directive for this block, if needed. 2467 if (unsigned Align = MBB.getAlignment()) 2468 EmitAlignment(Align); 2469 2470 // If the block has its address taken, emit any labels that were used to 2471 // reference the block. It is possible that there is more than one label 2472 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2473 // the references were generated. 2474 if (MBB.hasAddressTaken()) { 2475 const BasicBlock *BB = MBB.getBasicBlock(); 2476 if (isVerbose()) 2477 OutStreamer->AddComment("Block address taken"); 2478 2479 // MBBs can have their address taken as part of CodeGen without having 2480 // their corresponding BB's address taken in IR 2481 if (BB->hasAddressTaken()) 2482 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2483 OutStreamer->EmitLabel(Sym); 2484 } 2485 2486 // Print some verbose block comments. 2487 if (isVerbose()) { 2488 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2489 if (BB->hasName()) { 2490 BB->printAsOperand(OutStreamer->GetCommentOS(), 2491 /*PrintType=*/false, BB->getModule()); 2492 OutStreamer->GetCommentOS() << '\n'; 2493 } 2494 } 2495 emitBasicBlockLoopComments(MBB, LI, *this); 2496 } 2497 2498 // Print the main label for the block. 2499 if (MBB.pred_empty() || 2500 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2501 if (isVerbose()) { 2502 // NOTE: Want this comment at start of line, don't emit with AddComment. 2503 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2504 } 2505 } else { 2506 OutStreamer->EmitLabel(MBB.getSymbol()); 2507 } 2508 } 2509 2510 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2511 bool IsDefinition) const { 2512 MCSymbolAttr Attr = MCSA_Invalid; 2513 2514 switch (Visibility) { 2515 default: break; 2516 case GlobalValue::HiddenVisibility: 2517 if (IsDefinition) 2518 Attr = MAI->getHiddenVisibilityAttr(); 2519 else 2520 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2521 break; 2522 case GlobalValue::ProtectedVisibility: 2523 Attr = MAI->getProtectedVisibilityAttr(); 2524 break; 2525 } 2526 2527 if (Attr != MCSA_Invalid) 2528 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2529 } 2530 2531 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2532 /// exactly one predecessor and the control transfer mechanism between 2533 /// the predecessor and this block is a fall-through. 2534 bool AsmPrinter:: 2535 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2536 // If this is a landing pad, it isn't a fall through. If it has no preds, 2537 // then nothing falls through to it. 2538 if (MBB->isEHPad() || MBB->pred_empty()) 2539 return false; 2540 2541 // If there isn't exactly one predecessor, it can't be a fall through. 2542 if (MBB->pred_size() > 1) 2543 return false; 2544 2545 // The predecessor has to be immediately before this block. 2546 MachineBasicBlock *Pred = *MBB->pred_begin(); 2547 if (!Pred->isLayoutSuccessor(MBB)) 2548 return false; 2549 2550 // If the block is completely empty, then it definitely does fall through. 2551 if (Pred->empty()) 2552 return true; 2553 2554 // Check the terminators in the previous blocks 2555 for (const auto &MI : Pred->terminators()) { 2556 // If it is not a simple branch, we are in a table somewhere. 2557 if (!MI.isBranch() || MI.isIndirectBranch()) 2558 return false; 2559 2560 // If we are the operands of one of the branches, this is not a fall 2561 // through. Note that targets with delay slots will usually bundle 2562 // terminators with the delay slot instruction. 2563 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2564 if (OP->isJTI()) 2565 return false; 2566 if (OP->isMBB() && OP->getMBB() == MBB) 2567 return false; 2568 } 2569 } 2570 2571 return true; 2572 } 2573 2574 2575 2576 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2577 if (!S.usesMetadata()) 2578 return nullptr; 2579 2580 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2581 " stackmap formats, please see the documentation for a description of" 2582 " the default format. If you really need a custom serialized format," 2583 " please file a bug"); 2584 2585 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2586 gcp_map_type::iterator GCPI = GCMap.find(&S); 2587 if (GCPI != GCMap.end()) 2588 return GCPI->second.get(); 2589 2590 auto Name = S.getName(); 2591 2592 for (GCMetadataPrinterRegistry::iterator 2593 I = GCMetadataPrinterRegistry::begin(), 2594 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2595 if (Name == I->getName()) { 2596 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2597 GMP->S = &S; 2598 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2599 return IterBool.first->second.get(); 2600 } 2601 2602 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2603 } 2604 2605 /// Pin vtable to this file. 2606 AsmPrinterHandler::~AsmPrinterHandler() {} 2607 2608 void AsmPrinterHandler::markFunctionEnd() {} 2609 2610 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2611 SledKind Kind) { 2612 auto Fn = MI.getParent()->getParent()->getFunction(); 2613 auto Attr = Fn->getFnAttribute("function-instrument"); 2614 bool AlwaysInstrument = 2615 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2616 Sleds.emplace_back( 2617 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2618 } 2619 2620 uint16_t AsmPrinter::getDwarfVersion() const { 2621 return OutStreamer->getContext().getDwarfVersion(); 2622 } 2623 2624 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2625 OutStreamer->getContext().setDwarfVersion(Version); 2626 } 2627