1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/Config/config.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GCStrategy.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalIFunc.h"
74 #include "llvm/IR/GlobalIndirectSymbol.h"
75 #include "llvm/IR/GlobalObject.h"
76 #include "llvm/IR/GlobalValue.h"
77 #include "llvm/IR/GlobalVariable.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Mangler.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PseudoProbe.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCAsmInfo.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/MC/MCDirectives.h"
89 #include "llvm/MC/MCDwarf.h"
90 #include "llvm/MC/MCExpr.h"
91 #include "llvm/MC/MCInst.h"
92 #include "llvm/MC/MCSection.h"
93 #include "llvm/MC/MCSectionCOFF.h"
94 #include "llvm/MC/MCSectionELF.h"
95 #include "llvm/MC/MCSectionMachO.h"
96 #include "llvm/MC/MCSectionXCOFF.h"
97 #include "llvm/MC/MCStreamer.h"
98 #include "llvm/MC/MCSubtargetInfo.h"
99 #include "llvm/MC/MCSymbol.h"
100 #include "llvm/MC/MCSymbolELF.h"
101 #include "llvm/MC/MCSymbolXCOFF.h"
102 #include "llvm/MC/MCTargetOptions.h"
103 #include "llvm/MC/MCValue.h"
104 #include "llvm/MC/SectionKind.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Remarks/Remark.h"
107 #include "llvm/Remarks/RemarkFormat.h"
108 #include "llvm/Remarks/RemarkStreamer.h"
109 #include "llvm/Remarks/RemarkStringTable.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/FileSystem.h"
115 #include "llvm/Support/Format.h"
116 #include "llvm/Support/MathExtras.h"
117 #include "llvm/Support/Path.h"
118 #include "llvm/Support/TargetRegistry.h"
119 #include "llvm/Support/Timer.h"
120 #include "llvm/Support/raw_ostream.h"
121 #include "llvm/Target/TargetLoweringObjectFile.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Target/TargetOptions.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cinttypes>
127 #include <cstdint>
128 #include <iterator>
129 #include <limits>
130 #include <memory>
131 #include <string>
132 #include <utility>
133 #include <vector>
134 
135 using namespace llvm;
136 
137 #define DEBUG_TYPE "asm-printer"
138 
139 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
140 static cl::opt<bool>
141     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
142                              cl::desc("Disable debug info printing"));
143 
144 const char DWARFGroupName[] = "dwarf";
145 const char DWARFGroupDescription[] = "DWARF Emission";
146 const char DbgTimerName[] = "emit";
147 const char DbgTimerDescription[] = "Debug Info Emission";
148 const char EHTimerName[] = "write_exception";
149 const char EHTimerDescription[] = "DWARF Exception Writer";
150 const char CFGuardName[] = "Control Flow Guard";
151 const char CFGuardDescription[] = "Control Flow Guard";
152 const char CodeViewLineTablesGroupName[] = "linetables";
153 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
154 const char PPTimerName[] = "emit";
155 const char PPTimerDescription[] = "Pseudo Probe Emission";
156 const char PPGroupName[] = "pseudo probe";
157 const char PPGroupDescription[] = "Pseudo Probe Emission";
158 
159 STATISTIC(EmittedInsts, "Number of machine instrs printed");
160 
161 char AsmPrinter::ID = 0;
162 
163 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
164 
165 static gcp_map_type &getGCMap(void *&P) {
166   if (!P)
167     P = new gcp_map_type();
168   return *(gcp_map_type*)P;
169 }
170 
171 /// getGVAlignment - Return the alignment to use for the specified global
172 /// value.  This rounds up to the preferred alignment if possible and legal.
173 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
174                                  Align InAlign) {
175   Align Alignment;
176   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
177     Alignment = DL.getPreferredAlign(GVar);
178 
179   // If InAlign is specified, round it to it.
180   if (InAlign > Alignment)
181     Alignment = InAlign;
182 
183   // If the GV has a specified alignment, take it into account.
184   const MaybeAlign GVAlign(GV->getAlignment());
185   if (!GVAlign)
186     return Alignment;
187 
188   assert(GVAlign && "GVAlign must be set");
189 
190   // If the GVAlign is larger than NumBits, or if we are required to obey
191   // NumBits because the GV has an assigned section, obey it.
192   if (*GVAlign > Alignment || GV->hasSection())
193     Alignment = *GVAlign;
194   return Alignment;
195 }
196 
197 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
198     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
199       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
200   VerboseAsm = OutStreamer->isVerboseAsm();
201 }
202 
203 AsmPrinter::~AsmPrinter() {
204   assert(!DD && Handlers.size() == NumUserHandlers &&
205          "Debug/EH info didn't get finalized");
206 
207   if (GCMetadataPrinters) {
208     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
209 
210     delete &GCMap;
211     GCMetadataPrinters = nullptr;
212   }
213 }
214 
215 bool AsmPrinter::isPositionIndependent() const {
216   return TM.isPositionIndependent();
217 }
218 
219 /// getFunctionNumber - Return a unique ID for the current function.
220 unsigned AsmPrinter::getFunctionNumber() const {
221   return MF->getFunctionNumber();
222 }
223 
224 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
225   return *TM.getObjFileLowering();
226 }
227 
228 const DataLayout &AsmPrinter::getDataLayout() const {
229   return MMI->getModule()->getDataLayout();
230 }
231 
232 // Do not use the cached DataLayout because some client use it without a Module
233 // (dsymutil, llvm-dwarfdump).
234 unsigned AsmPrinter::getPointerSize() const {
235   return TM.getPointerSize(0); // FIXME: Default address space
236 }
237 
238 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
239   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
240   return MF->getSubtarget<MCSubtargetInfo>();
241 }
242 
243 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
244   S.emitInstruction(Inst, getSubtargetInfo());
245 }
246 
247 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
248   if (DD) {
249     assert(OutStreamer->hasRawTextSupport() &&
250            "Expected assembly output mode.");
251     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
252   }
253 }
254 
255 /// getCurrentSection() - Return the current section we are emitting to.
256 const MCSection *AsmPrinter::getCurrentSection() const {
257   return OutStreamer->getCurrentSectionOnly();
258 }
259 
260 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
261   AU.setPreservesAll();
262   MachineFunctionPass::getAnalysisUsage(AU);
263   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
264   AU.addRequired<GCModuleInfo>();
265 }
266 
267 bool AsmPrinter::doInitialization(Module &M) {
268   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
269   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
270 
271   // Initialize TargetLoweringObjectFile.
272   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
273     .Initialize(OutContext, TM);
274 
275   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
276       .getModuleMetadata(M);
277 
278   OutStreamer->InitSections(false);
279 
280   if (DisableDebugInfoPrinting)
281     MMI->setDebugInfoAvailability(false);
282 
283   // Emit the version-min deployment target directive if needed.
284   //
285   // FIXME: If we end up with a collection of these sorts of Darwin-specific
286   // or ELF-specific things, it may make sense to have a platform helper class
287   // that will work with the target helper class. For now keep it here, as the
288   // alternative is duplicated code in each of the target asm printers that
289   // use the directive, where it would need the same conditionalization
290   // anyway.
291   const Triple &Target = TM.getTargetTriple();
292   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
293 
294   // Allow the target to emit any magic that it wants at the start of the file.
295   emitStartOfAsmFile(M);
296 
297   // Very minimal debug info. It is ignored if we emit actual debug info. If we
298   // don't, this at least helps the user find where a global came from.
299   if (MAI->hasSingleParameterDotFile()) {
300     // .file "foo.c"
301 
302     SmallString<128> FileName;
303     if (MAI->hasBasenameOnlyForFileDirective())
304       FileName = llvm::sys::path::filename(M.getSourceFileName());
305     else
306       FileName = M.getSourceFileName();
307     if (MAI->hasFourStringsDotFile()) {
308 #ifdef PACKAGE_VENDOR
309       const char VerStr[] =
310           PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION;
311 #else
312       const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION;
313 #endif
314       // TODO: Add timestamp and description.
315       OutStreamer->emitFileDirective(FileName, VerStr, "", "");
316     } else {
317       OutStreamer->emitFileDirective(FileName);
318     }
319   }
320 
321   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
322   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
323   for (auto &I : *MI)
324     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
325       MP->beginAssembly(M, *MI, *this);
326 
327   // Emit module-level inline asm if it exists.
328   if (!M.getModuleInlineAsm().empty()) {
329     OutStreamer->AddComment("Start of file scope inline assembly");
330     OutStreamer->AddBlankLine();
331     emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
332                   TM.Options.MCOptions);
333     OutStreamer->AddComment("End of file scope inline assembly");
334     OutStreamer->AddBlankLine();
335   }
336 
337   if (MAI->doesSupportDebugInformation()) {
338     bool EmitCodeView = M.getCodeViewFlag();
339     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
340       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
341                             DbgTimerName, DbgTimerDescription,
342                             CodeViewLineTablesGroupName,
343                             CodeViewLineTablesGroupDescription);
344     }
345     if (!EmitCodeView || M.getDwarfVersion()) {
346       if (!DisableDebugInfoPrinting) {
347         DD = new DwarfDebug(this);
348         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
349                               DbgTimerDescription, DWARFGroupName,
350                               DWARFGroupDescription);
351       }
352     }
353   }
354 
355   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
356     PP = new PseudoProbeHandler(this);
357     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
358                           PPTimerDescription, PPGroupName, PPGroupDescription);
359   }
360 
361   switch (MAI->getExceptionHandlingType()) {
362   case ExceptionHandling::None:
363     // We may want to emit CFI for debug.
364     LLVM_FALLTHROUGH;
365   case ExceptionHandling::SjLj:
366   case ExceptionHandling::DwarfCFI:
367   case ExceptionHandling::ARM:
368     for (auto &F : M.getFunctionList()) {
369       if (getFunctionCFISectionType(F) != CFISection::None)
370         ModuleCFISection = getFunctionCFISectionType(F);
371       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
372       // the module needs .eh_frame. If we have found that case, we are done.
373       if (ModuleCFISection == CFISection::EH)
374         break;
375     }
376     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
377            ModuleCFISection != CFISection::EH);
378     break;
379   default:
380     break;
381   }
382 
383   EHStreamer *ES = nullptr;
384   switch (MAI->getExceptionHandlingType()) {
385   case ExceptionHandling::None:
386     if (!needsCFIForDebug())
387       break;
388     LLVM_FALLTHROUGH;
389   case ExceptionHandling::SjLj:
390   case ExceptionHandling::DwarfCFI:
391     ES = new DwarfCFIException(this);
392     break;
393   case ExceptionHandling::ARM:
394     ES = new ARMException(this);
395     break;
396   case ExceptionHandling::WinEH:
397     switch (MAI->getWinEHEncodingType()) {
398     default: llvm_unreachable("unsupported unwinding information encoding");
399     case WinEH::EncodingType::Invalid:
400       break;
401     case WinEH::EncodingType::X86:
402     case WinEH::EncodingType::Itanium:
403       ES = new WinException(this);
404       break;
405     }
406     break;
407   case ExceptionHandling::Wasm:
408     ES = new WasmException(this);
409     break;
410   case ExceptionHandling::AIX:
411     ES = new AIXException(this);
412     break;
413   }
414   if (ES)
415     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
416                           EHTimerDescription, DWARFGroupName,
417                           DWARFGroupDescription);
418 
419   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
420   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
421     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
422                           CFGuardDescription, DWARFGroupName,
423                           DWARFGroupDescription);
424 
425   for (const HandlerInfo &HI : Handlers) {
426     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
427                        HI.TimerGroupDescription, TimePassesIsEnabled);
428     HI.Handler->beginModule(&M);
429   }
430 
431   return false;
432 }
433 
434 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
435   if (!MAI.hasWeakDefCanBeHiddenDirective())
436     return false;
437 
438   return GV->canBeOmittedFromSymbolTable();
439 }
440 
441 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
442   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
443   switch (Linkage) {
444   case GlobalValue::CommonLinkage:
445   case GlobalValue::LinkOnceAnyLinkage:
446   case GlobalValue::LinkOnceODRLinkage:
447   case GlobalValue::WeakAnyLinkage:
448   case GlobalValue::WeakODRLinkage:
449     if (MAI->hasWeakDefDirective()) {
450       // .globl _foo
451       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
452 
453       if (!canBeHidden(GV, *MAI))
454         // .weak_definition _foo
455         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
456       else
457         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
458     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
459       // .globl _foo
460       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
461       //NOTE: linkonce is handled by the section the symbol was assigned to.
462     } else {
463       // .weak _foo
464       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
465     }
466     return;
467   case GlobalValue::ExternalLinkage:
468     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
469     return;
470   case GlobalValue::PrivateLinkage:
471   case GlobalValue::InternalLinkage:
472     return;
473   case GlobalValue::ExternalWeakLinkage:
474   case GlobalValue::AvailableExternallyLinkage:
475   case GlobalValue::AppendingLinkage:
476     llvm_unreachable("Should never emit this");
477   }
478   llvm_unreachable("Unknown linkage type!");
479 }
480 
481 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
482                                    const GlobalValue *GV) const {
483   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
484 }
485 
486 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
487   return TM.getSymbol(GV);
488 }
489 
490 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
491   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
492   // exact definion (intersection of GlobalValue::hasExactDefinition() and
493   // !isInterposable()). These linkages include: external, appending, internal,
494   // private. It may be profitable to use a local alias for external. The
495   // assembler would otherwise be conservative and assume a global default
496   // visibility symbol can be interposable, even if the code generator already
497   // assumed it.
498   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
499     const Module &M = *GV.getParent();
500     if (TM.getRelocationModel() != Reloc::Static &&
501         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
502       return getSymbolWithGlobalValueBase(&GV, "$local");
503   }
504   return TM.getSymbol(&GV);
505 }
506 
507 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
508 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
509   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
510   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
511          "No emulated TLS variables in the common section");
512 
513   // Never emit TLS variable xyz in emulated TLS model.
514   // The initialization value is in __emutls_t.xyz instead of xyz.
515   if (IsEmuTLSVar)
516     return;
517 
518   if (GV->hasInitializer()) {
519     // Check to see if this is a special global used by LLVM, if so, emit it.
520     if (emitSpecialLLVMGlobal(GV))
521       return;
522 
523     // Skip the emission of global equivalents. The symbol can be emitted later
524     // on by emitGlobalGOTEquivs in case it turns out to be needed.
525     if (GlobalGOTEquivs.count(getSymbol(GV)))
526       return;
527 
528     if (isVerbose()) {
529       // When printing the control variable __emutls_v.*,
530       // we don't need to print the original TLS variable name.
531       GV->printAsOperand(OutStreamer->GetCommentOS(),
532                      /*PrintType=*/false, GV->getParent());
533       OutStreamer->GetCommentOS() << '\n';
534     }
535   }
536 
537   MCSymbol *GVSym = getSymbol(GV);
538   MCSymbol *EmittedSym = GVSym;
539 
540   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
541   // attributes.
542   // GV's or GVSym's attributes will be used for the EmittedSym.
543   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
544 
545   if (!GV->hasInitializer())   // External globals require no extra code.
546     return;
547 
548   GVSym->redefineIfPossible();
549   if (GVSym->isDefined() || GVSym->isVariable())
550     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
551                                         "' is already defined");
552 
553   if (MAI->hasDotTypeDotSizeDirective())
554     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
555 
556   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
557 
558   const DataLayout &DL = GV->getParent()->getDataLayout();
559   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
560 
561   // If the alignment is specified, we *must* obey it.  Overaligning a global
562   // with a specified alignment is a prompt way to break globals emitted to
563   // sections and expected to be contiguous (e.g. ObjC metadata).
564   const Align Alignment = getGVAlignment(GV, DL);
565 
566   for (const HandlerInfo &HI : Handlers) {
567     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
568                        HI.TimerGroupName, HI.TimerGroupDescription,
569                        TimePassesIsEnabled);
570     HI.Handler->setSymbolSize(GVSym, Size);
571   }
572 
573   // Handle common symbols
574   if (GVKind.isCommon()) {
575     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
576     // .comm _foo, 42, 4
577     const bool SupportsAlignment =
578         getObjFileLowering().getCommDirectiveSupportsAlignment();
579     OutStreamer->emitCommonSymbol(GVSym, Size,
580                                   SupportsAlignment ? Alignment.value() : 0);
581     return;
582   }
583 
584   // Determine to which section this global should be emitted.
585   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
586 
587   // If we have a bss global going to a section that supports the
588   // zerofill directive, do so here.
589   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
590       TheSection->isVirtualSection()) {
591     if (Size == 0)
592       Size = 1; // zerofill of 0 bytes is undefined.
593     emitLinkage(GV, GVSym);
594     // .zerofill __DATA, __bss, _foo, 400, 5
595     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
596     return;
597   }
598 
599   // If this is a BSS local symbol and we are emitting in the BSS
600   // section use .lcomm/.comm directive.
601   if (GVKind.isBSSLocal() &&
602       getObjFileLowering().getBSSSection() == TheSection) {
603     if (Size == 0)
604       Size = 1; // .comm Foo, 0 is undefined, avoid it.
605 
606     // Use .lcomm only if it supports user-specified alignment.
607     // Otherwise, while it would still be correct to use .lcomm in some
608     // cases (e.g. when Align == 1), the external assembler might enfore
609     // some -unknown- default alignment behavior, which could cause
610     // spurious differences between external and integrated assembler.
611     // Prefer to simply fall back to .local / .comm in this case.
612     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
613       // .lcomm _foo, 42
614       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
615       return;
616     }
617 
618     // .local _foo
619     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
620     // .comm _foo, 42, 4
621     const bool SupportsAlignment =
622         getObjFileLowering().getCommDirectiveSupportsAlignment();
623     OutStreamer->emitCommonSymbol(GVSym, Size,
624                                   SupportsAlignment ? Alignment.value() : 0);
625     return;
626   }
627 
628   // Handle thread local data for mach-o which requires us to output an
629   // additional structure of data and mangle the original symbol so that we
630   // can reference it later.
631   //
632   // TODO: This should become an "emit thread local global" method on TLOF.
633   // All of this macho specific stuff should be sunk down into TLOFMachO and
634   // stuff like "TLSExtraDataSection" should no longer be part of the parent
635   // TLOF class.  This will also make it more obvious that stuff like
636   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
637   // specific code.
638   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
639     // Emit the .tbss symbol
640     MCSymbol *MangSym =
641         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
642 
643     if (GVKind.isThreadBSS()) {
644       TheSection = getObjFileLowering().getTLSBSSSection();
645       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
646     } else if (GVKind.isThreadData()) {
647       OutStreamer->SwitchSection(TheSection);
648 
649       emitAlignment(Alignment, GV);
650       OutStreamer->emitLabel(MangSym);
651 
652       emitGlobalConstant(GV->getParent()->getDataLayout(),
653                          GV->getInitializer());
654     }
655 
656     OutStreamer->AddBlankLine();
657 
658     // Emit the variable struct for the runtime.
659     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
660 
661     OutStreamer->SwitchSection(TLVSect);
662     // Emit the linkage here.
663     emitLinkage(GV, GVSym);
664     OutStreamer->emitLabel(GVSym);
665 
666     // Three pointers in size:
667     //   - __tlv_bootstrap - used to make sure support exists
668     //   - spare pointer, used when mapped by the runtime
669     //   - pointer to mangled symbol above with initializer
670     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
671     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
672                                 PtrSize);
673     OutStreamer->emitIntValue(0, PtrSize);
674     OutStreamer->emitSymbolValue(MangSym, PtrSize);
675 
676     OutStreamer->AddBlankLine();
677     return;
678   }
679 
680   MCSymbol *EmittedInitSym = GVSym;
681 
682   OutStreamer->SwitchSection(TheSection);
683 
684   emitLinkage(GV, EmittedInitSym);
685   emitAlignment(Alignment, GV);
686 
687   OutStreamer->emitLabel(EmittedInitSym);
688   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
689   if (LocalAlias != EmittedInitSym)
690     OutStreamer->emitLabel(LocalAlias);
691 
692   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
693 
694   if (MAI->hasDotTypeDotSizeDirective())
695     // .size foo, 42
696     OutStreamer->emitELFSize(EmittedInitSym,
697                              MCConstantExpr::create(Size, OutContext));
698 
699   OutStreamer->AddBlankLine();
700 }
701 
702 /// Emit the directive and value for debug thread local expression
703 ///
704 /// \p Value - The value to emit.
705 /// \p Size - The size of the integer (in bytes) to emit.
706 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
707   OutStreamer->emitValue(Value, Size);
708 }
709 
710 void AsmPrinter::emitFunctionHeaderComment() {}
711 
712 /// EmitFunctionHeader - This method emits the header for the current
713 /// function.
714 void AsmPrinter::emitFunctionHeader() {
715   const Function &F = MF->getFunction();
716 
717   if (isVerbose())
718     OutStreamer->GetCommentOS()
719         << "-- Begin function "
720         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
721 
722   // Print out constants referenced by the function
723   emitConstantPool();
724 
725   // Print the 'header' of function.
726   // If basic block sections are desired, explicitly request a unique section
727   // for this function's entry block.
728   if (MF->front().isBeginSection())
729     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
730   else
731     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
732   OutStreamer->SwitchSection(MF->getSection());
733 
734   if (!MAI->hasVisibilityOnlyWithLinkage())
735     emitVisibility(CurrentFnSym, F.getVisibility());
736 
737   if (MAI->needsFunctionDescriptors())
738     emitLinkage(&F, CurrentFnDescSym);
739 
740   emitLinkage(&F, CurrentFnSym);
741   if (MAI->hasFunctionAlignment())
742     emitAlignment(MF->getAlignment(), &F);
743 
744   if (MAI->hasDotTypeDotSizeDirective())
745     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
746 
747   if (F.hasFnAttribute(Attribute::Cold))
748     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
749 
750   if (isVerbose()) {
751     F.printAsOperand(OutStreamer->GetCommentOS(),
752                    /*PrintType=*/false, F.getParent());
753     emitFunctionHeaderComment();
754     OutStreamer->GetCommentOS() << '\n';
755   }
756 
757   // Emit the prefix data.
758   if (F.hasPrefixData()) {
759     if (MAI->hasSubsectionsViaSymbols()) {
760       // Preserving prefix data on platforms which use subsections-via-symbols
761       // is a bit tricky. Here we introduce a symbol for the prefix data
762       // and use the .alt_entry attribute to mark the function's real entry point
763       // as an alternative entry point to the prefix-data symbol.
764       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
765       OutStreamer->emitLabel(PrefixSym);
766 
767       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
768 
769       // Emit an .alt_entry directive for the actual function symbol.
770       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
771     } else {
772       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
773     }
774   }
775 
776   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
777   // place prefix data before NOPs.
778   unsigned PatchableFunctionPrefix = 0;
779   unsigned PatchableFunctionEntry = 0;
780   (void)F.getFnAttribute("patchable-function-prefix")
781       .getValueAsString()
782       .getAsInteger(10, PatchableFunctionPrefix);
783   (void)F.getFnAttribute("patchable-function-entry")
784       .getValueAsString()
785       .getAsInteger(10, PatchableFunctionEntry);
786   if (PatchableFunctionPrefix) {
787     CurrentPatchableFunctionEntrySym =
788         OutContext.createLinkerPrivateTempSymbol();
789     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
790     emitNops(PatchableFunctionPrefix);
791   } else if (PatchableFunctionEntry) {
792     // May be reassigned when emitting the body, to reference the label after
793     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
794     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
795   }
796 
797   // Emit the function descriptor. This is a virtual function to allow targets
798   // to emit their specific function descriptor. Right now it is only used by
799   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
800   // descriptors and should be converted to use this hook as well.
801   if (MAI->needsFunctionDescriptors())
802     emitFunctionDescriptor();
803 
804   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
805   // their wild and crazy things as required.
806   emitFunctionEntryLabel();
807 
808   // If the function had address-taken blocks that got deleted, then we have
809   // references to the dangling symbols.  Emit them at the start of the function
810   // so that we don't get references to undefined symbols.
811   std::vector<MCSymbol*> DeadBlockSyms;
812   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
813   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
814     OutStreamer->AddComment("Address taken block that was later removed");
815     OutStreamer->emitLabel(DeadBlockSyms[i]);
816   }
817 
818   if (CurrentFnBegin) {
819     if (MAI->useAssignmentForEHBegin()) {
820       MCSymbol *CurPos = OutContext.createTempSymbol();
821       OutStreamer->emitLabel(CurPos);
822       OutStreamer->emitAssignment(CurrentFnBegin,
823                                  MCSymbolRefExpr::create(CurPos, OutContext));
824     } else {
825       OutStreamer->emitLabel(CurrentFnBegin);
826     }
827   }
828 
829   // Emit pre-function debug and/or EH information.
830   for (const HandlerInfo &HI : Handlers) {
831     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
832                        HI.TimerGroupDescription, TimePassesIsEnabled);
833     HI.Handler->beginFunction(MF);
834   }
835 
836   // Emit the prologue data.
837   if (F.hasPrologueData())
838     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
839 }
840 
841 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
842 /// function.  This can be overridden by targets as required to do custom stuff.
843 void AsmPrinter::emitFunctionEntryLabel() {
844   CurrentFnSym->redefineIfPossible();
845 
846   // The function label could have already been emitted if two symbols end up
847   // conflicting due to asm renaming.  Detect this and emit an error.
848   if (CurrentFnSym->isVariable())
849     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
850                        "' is a protected alias");
851 
852   OutStreamer->emitLabel(CurrentFnSym);
853 
854   if (TM.getTargetTriple().isOSBinFormatELF()) {
855     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
856     if (Sym != CurrentFnSym)
857       OutStreamer->emitLabel(Sym);
858   }
859 }
860 
861 /// emitComments - Pretty-print comments for instructions.
862 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
863   const MachineFunction *MF = MI.getMF();
864   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
865 
866   // Check for spills and reloads
867 
868   // We assume a single instruction only has a spill or reload, not
869   // both.
870   Optional<unsigned> Size;
871   if ((Size = MI.getRestoreSize(TII))) {
872     CommentOS << *Size << "-byte Reload\n";
873   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
874     if (*Size) {
875       if (*Size == unsigned(MemoryLocation::UnknownSize))
876         CommentOS << "Unknown-size Folded Reload\n";
877       else
878         CommentOS << *Size << "-byte Folded Reload\n";
879     }
880   } else if ((Size = MI.getSpillSize(TII))) {
881     CommentOS << *Size << "-byte Spill\n";
882   } else if ((Size = MI.getFoldedSpillSize(TII))) {
883     if (*Size) {
884       if (*Size == unsigned(MemoryLocation::UnknownSize))
885         CommentOS << "Unknown-size Folded Spill\n";
886       else
887         CommentOS << *Size << "-byte Folded Spill\n";
888     }
889   }
890 
891   // Check for spill-induced copies
892   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
893     CommentOS << " Reload Reuse\n";
894 }
895 
896 /// emitImplicitDef - This method emits the specified machine instruction
897 /// that is an implicit def.
898 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
899   Register RegNo = MI->getOperand(0).getReg();
900 
901   SmallString<128> Str;
902   raw_svector_ostream OS(Str);
903   OS << "implicit-def: "
904      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
905 
906   OutStreamer->AddComment(OS.str());
907   OutStreamer->AddBlankLine();
908 }
909 
910 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
911   std::string Str;
912   raw_string_ostream OS(Str);
913   OS << "kill:";
914   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
915     const MachineOperand &Op = MI->getOperand(i);
916     assert(Op.isReg() && "KILL instruction must have only register operands");
917     OS << ' ' << (Op.isDef() ? "def " : "killed ")
918        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
919   }
920   AP.OutStreamer->AddComment(OS.str());
921   AP.OutStreamer->AddBlankLine();
922 }
923 
924 /// emitDebugValueComment - This method handles the target-independent form
925 /// of DBG_VALUE, returning true if it was able to do so.  A false return
926 /// means the target will need to handle MI in EmitInstruction.
927 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
928   // This code handles only the 4-operand target-independent form.
929   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
930     return false;
931 
932   SmallString<128> Str;
933   raw_svector_ostream OS(Str);
934   OS << "DEBUG_VALUE: ";
935 
936   const DILocalVariable *V = MI->getDebugVariable();
937   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
938     StringRef Name = SP->getName();
939     if (!Name.empty())
940       OS << Name << ":";
941   }
942   OS << V->getName();
943   OS << " <- ";
944 
945   const DIExpression *Expr = MI->getDebugExpression();
946   if (Expr->getNumElements()) {
947     OS << '[';
948     ListSeparator LS;
949     for (auto Op : Expr->expr_ops()) {
950       OS << LS << dwarf::OperationEncodingString(Op.getOp());
951       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
952         OS << ' ' << Op.getArg(I);
953     }
954     OS << "] ";
955   }
956 
957   // Register or immediate value. Register 0 means undef.
958   for (const MachineOperand &Op : MI->debug_operands()) {
959     if (&Op != MI->debug_operands().begin())
960       OS << ", ";
961     switch (Op.getType()) {
962     case MachineOperand::MO_FPImmediate: {
963       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
964       Type *ImmTy = Op.getFPImm()->getType();
965       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
966           ImmTy->isDoubleTy()) {
967         OS << APF.convertToDouble();
968       } else {
969         // There is no good way to print long double.  Convert a copy to
970         // double.  Ah well, it's only a comment.
971         bool ignored;
972         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
973                     &ignored);
974         OS << "(long double) " << APF.convertToDouble();
975       }
976       break;
977     }
978     case MachineOperand::MO_Immediate: {
979       OS << Op.getImm();
980       break;
981     }
982     case MachineOperand::MO_CImmediate: {
983       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
984       break;
985     }
986     case MachineOperand::MO_TargetIndex: {
987       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
988       // NOTE: Want this comment at start of line, don't emit with AddComment.
989       AP.OutStreamer->emitRawComment(OS.str());
990       break;
991     }
992     case MachineOperand::MO_Register:
993     case MachineOperand::MO_FrameIndex: {
994       Register Reg;
995       Optional<StackOffset> Offset;
996       if (Op.isReg()) {
997         Reg = Op.getReg();
998       } else {
999         const TargetFrameLowering *TFI =
1000             AP.MF->getSubtarget().getFrameLowering();
1001         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1002       }
1003       if (!Reg) {
1004         // Suppress offset, it is not meaningful here.
1005         OS << "undef";
1006         break;
1007       }
1008       // The second operand is only an offset if it's an immediate.
1009       if (MI->isIndirectDebugValue())
1010         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1011       if (Offset)
1012         OS << '[';
1013       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1014       if (Offset)
1015         OS << '+' << Offset->getFixed() << ']';
1016       break;
1017     }
1018     default:
1019       llvm_unreachable("Unknown operand type");
1020     }
1021   }
1022 
1023   // NOTE: Want this comment at start of line, don't emit with AddComment.
1024   AP.OutStreamer->emitRawComment(OS.str());
1025   return true;
1026 }
1027 
1028 /// This method handles the target-independent form of DBG_LABEL, returning
1029 /// true if it was able to do so.  A false return means the target will need
1030 /// to handle MI in EmitInstruction.
1031 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1032   if (MI->getNumOperands() != 1)
1033     return false;
1034 
1035   SmallString<128> Str;
1036   raw_svector_ostream OS(Str);
1037   OS << "DEBUG_LABEL: ";
1038 
1039   const DILabel *V = MI->getDebugLabel();
1040   if (auto *SP = dyn_cast<DISubprogram>(
1041           V->getScope()->getNonLexicalBlockFileScope())) {
1042     StringRef Name = SP->getName();
1043     if (!Name.empty())
1044       OS << Name << ":";
1045   }
1046   OS << V->getName();
1047 
1048   // NOTE: Want this comment at start of line, don't emit with AddComment.
1049   AP.OutStreamer->emitRawComment(OS.str());
1050   return true;
1051 }
1052 
1053 AsmPrinter::CFISection
1054 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1055   // Ignore functions that won't get emitted.
1056   if (F.isDeclarationForLinker())
1057     return CFISection::None;
1058 
1059   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1060       F.needsUnwindTableEntry())
1061     return CFISection::EH;
1062 
1063   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1064     return CFISection::Debug;
1065 
1066   return CFISection::None;
1067 }
1068 
1069 AsmPrinter::CFISection
1070 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1071   return getFunctionCFISectionType(MF.getFunction());
1072 }
1073 
1074 bool AsmPrinter::needsSEHMoves() {
1075   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1076 }
1077 
1078 bool AsmPrinter::needsCFIForDebug() const {
1079   return MAI->getExceptionHandlingType() == ExceptionHandling::None &&
1080          MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug;
1081 }
1082 
1083 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1084   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1085   if (!needsCFIForDebug() &&
1086       ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1087       ExceptionHandlingType != ExceptionHandling::ARM)
1088     return;
1089 
1090   if (getFunctionCFISectionType(*MF) == CFISection::None)
1091     return;
1092 
1093   // If there is no "real" instruction following this CFI instruction, skip
1094   // emitting it; it would be beyond the end of the function's FDE range.
1095   auto *MBB = MI.getParent();
1096   auto I = std::next(MI.getIterator());
1097   while (I != MBB->end() && I->isTransient())
1098     ++I;
1099   if (I == MBB->instr_end() &&
1100       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1101     return;
1102 
1103   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1104   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1105   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1106   emitCFIInstruction(CFI);
1107 }
1108 
1109 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1110   // The operands are the MCSymbol and the frame offset of the allocation.
1111   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1112   int FrameOffset = MI.getOperand(1).getImm();
1113 
1114   // Emit a symbol assignment.
1115   OutStreamer->emitAssignment(FrameAllocSym,
1116                              MCConstantExpr::create(FrameOffset, OutContext));
1117 }
1118 
1119 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1120 /// given basic block. This can be used to capture more precise profile
1121 /// information. We use the last 4 bits (LSBs) to encode the following
1122 /// information:
1123 ///  * (1): set if return block (ret or tail call).
1124 ///  * (2): set if ends with a tail call.
1125 ///  * (3): set if exception handling (EH) landing pad.
1126 ///  * (4): set if the block can fall through to its next.
1127 /// The remaining bits are zero.
1128 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1129   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1130   return ((unsigned)MBB.isReturnBlock()) |
1131          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1132          (MBB.isEHPad() << 2) |
1133          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1134 }
1135 
1136 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1137   MCSection *BBAddrMapSection =
1138       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1139   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1140 
1141   const MCSymbol *FunctionSymbol = getFunctionBegin();
1142 
1143   OutStreamer->PushSection();
1144   OutStreamer->SwitchSection(BBAddrMapSection);
1145   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1146   // Emit the total number of basic blocks in this function.
1147   OutStreamer->emitULEB128IntValue(MF.size());
1148   // Emit BB Information for each basic block in the funciton.
1149   for (const MachineBasicBlock &MBB : MF) {
1150     const MCSymbol *MBBSymbol =
1151         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1152     // Emit the basic block offset.
1153     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1154     // Emit the basic block size. When BBs have alignments, their size cannot
1155     // always be computed from their offsets.
1156     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1157     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1158   }
1159   OutStreamer->PopSection();
1160 }
1161 
1162 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1163   auto GUID = MI.getOperand(0).getImm();
1164   auto Index = MI.getOperand(1).getImm();
1165   auto Type = MI.getOperand(2).getImm();
1166   auto Attr = MI.getOperand(3).getImm();
1167   DILocation *DebugLoc = MI.getDebugLoc();
1168   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1169 }
1170 
1171 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1172   if (!MF.getTarget().Options.EmitStackSizeSection)
1173     return;
1174 
1175   MCSection *StackSizeSection =
1176       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1177   if (!StackSizeSection)
1178     return;
1179 
1180   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1181   // Don't emit functions with dynamic stack allocations.
1182   if (FrameInfo.hasVarSizedObjects())
1183     return;
1184 
1185   OutStreamer->PushSection();
1186   OutStreamer->SwitchSection(StackSizeSection);
1187 
1188   const MCSymbol *FunctionSymbol = getFunctionBegin();
1189   uint64_t StackSize = FrameInfo.getStackSize();
1190   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1191   OutStreamer->emitULEB128IntValue(StackSize);
1192 
1193   OutStreamer->PopSection();
1194 }
1195 
1196 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1197   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1198 
1199   // OutputFilename empty implies -fstack-usage is not passed.
1200   if (OutputFilename.empty())
1201     return;
1202 
1203   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1204   uint64_t StackSize = FrameInfo.getStackSize();
1205 
1206   if (StackUsageStream == nullptr) {
1207     std::error_code EC;
1208     StackUsageStream =
1209         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1210     if (EC) {
1211       errs() << "Could not open file: " << EC.message();
1212       return;
1213     }
1214   }
1215 
1216   *StackUsageStream << MF.getFunction().getParent()->getName();
1217   if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1218     *StackUsageStream << ':' << DSP->getLine();
1219 
1220   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1221   if (FrameInfo.hasVarSizedObjects())
1222     *StackUsageStream << "dynamic\n";
1223   else
1224     *StackUsageStream << "static\n";
1225 }
1226 
1227 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1228   MachineModuleInfo &MMI = MF.getMMI();
1229   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1230     return true;
1231 
1232   // We might emit an EH table that uses function begin and end labels even if
1233   // we don't have any landingpads.
1234   if (!MF.getFunction().hasPersonalityFn())
1235     return false;
1236   return !isNoOpWithoutInvoke(
1237       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1238 }
1239 
1240 /// EmitFunctionBody - This method emits the body and trailer for a
1241 /// function.
1242 void AsmPrinter::emitFunctionBody() {
1243   emitFunctionHeader();
1244 
1245   // Emit target-specific gunk before the function body.
1246   emitFunctionBodyStart();
1247 
1248   if (isVerbose()) {
1249     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1250     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1251     if (!MDT) {
1252       OwnedMDT = std::make_unique<MachineDominatorTree>();
1253       OwnedMDT->getBase().recalculate(*MF);
1254       MDT = OwnedMDT.get();
1255     }
1256 
1257     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1258     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1259     if (!MLI) {
1260       OwnedMLI = std::make_unique<MachineLoopInfo>();
1261       OwnedMLI->getBase().analyze(MDT->getBase());
1262       MLI = OwnedMLI.get();
1263     }
1264   }
1265 
1266   // Print out code for the function.
1267   bool HasAnyRealCode = false;
1268   int NumInstsInFunction = 0;
1269 
1270   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1271   for (auto &MBB : *MF) {
1272     // Print a label for the basic block.
1273     emitBasicBlockStart(MBB);
1274     DenseMap<StringRef, unsigned> MnemonicCounts;
1275     for (auto &MI : MBB) {
1276       // Print the assembly for the instruction.
1277       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1278           !MI.isDebugInstr()) {
1279         HasAnyRealCode = true;
1280         ++NumInstsInFunction;
1281       }
1282 
1283       // If there is a pre-instruction symbol, emit a label for it here.
1284       if (MCSymbol *S = MI.getPreInstrSymbol())
1285         OutStreamer->emitLabel(S);
1286 
1287       for (const HandlerInfo &HI : Handlers) {
1288         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1289                            HI.TimerGroupDescription, TimePassesIsEnabled);
1290         HI.Handler->beginInstruction(&MI);
1291       }
1292 
1293       if (isVerbose())
1294         emitComments(MI, OutStreamer->GetCommentOS());
1295 
1296       switch (MI.getOpcode()) {
1297       case TargetOpcode::CFI_INSTRUCTION:
1298         emitCFIInstruction(MI);
1299         break;
1300       case TargetOpcode::LOCAL_ESCAPE:
1301         emitFrameAlloc(MI);
1302         break;
1303       case TargetOpcode::ANNOTATION_LABEL:
1304       case TargetOpcode::EH_LABEL:
1305       case TargetOpcode::GC_LABEL:
1306         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1307         break;
1308       case TargetOpcode::INLINEASM:
1309       case TargetOpcode::INLINEASM_BR:
1310         emitInlineAsm(&MI);
1311         break;
1312       case TargetOpcode::DBG_VALUE:
1313       case TargetOpcode::DBG_VALUE_LIST:
1314         if (isVerbose()) {
1315           if (!emitDebugValueComment(&MI, *this))
1316             emitInstruction(&MI);
1317         }
1318         break;
1319       case TargetOpcode::DBG_INSTR_REF:
1320         // This instruction reference will have been resolved to a machine
1321         // location, and a nearby DBG_VALUE created. We can safely ignore
1322         // the instruction reference.
1323         break;
1324       case TargetOpcode::DBG_PHI:
1325         // This instruction is only used to label a program point, it's purely
1326         // meta information.
1327         break;
1328       case TargetOpcode::DBG_LABEL:
1329         if (isVerbose()) {
1330           if (!emitDebugLabelComment(&MI, *this))
1331             emitInstruction(&MI);
1332         }
1333         break;
1334       case TargetOpcode::IMPLICIT_DEF:
1335         if (isVerbose()) emitImplicitDef(&MI);
1336         break;
1337       case TargetOpcode::KILL:
1338         if (isVerbose()) emitKill(&MI, *this);
1339         break;
1340       case TargetOpcode::PSEUDO_PROBE:
1341         emitPseudoProbe(MI);
1342         break;
1343       case TargetOpcode::ARITH_FENCE:
1344         if (isVerbose())
1345           OutStreamer->emitRawComment("ARITH_FENCE");
1346         break;
1347       default:
1348         emitInstruction(&MI);
1349         if (CanDoExtraAnalysis) {
1350           MCInst MCI;
1351           MCI.setOpcode(MI.getOpcode());
1352           auto Name = OutStreamer->getMnemonic(MCI);
1353           auto I = MnemonicCounts.insert({Name, 0u});
1354           I.first->second++;
1355         }
1356         break;
1357       }
1358 
1359       // If there is a post-instruction symbol, emit a label for it here.
1360       if (MCSymbol *S = MI.getPostInstrSymbol())
1361         OutStreamer->emitLabel(S);
1362 
1363       for (const HandlerInfo &HI : Handlers) {
1364         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1365                            HI.TimerGroupDescription, TimePassesIsEnabled);
1366         HI.Handler->endInstruction();
1367       }
1368     }
1369 
1370     // We must emit temporary symbol for the end of this basic block, if either
1371     // we have BBLabels enabled or if this basic blocks marks the end of a
1372     // section.
1373     if (MF->hasBBLabels() ||
1374         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
1375       OutStreamer->emitLabel(MBB.getEndSymbol());
1376 
1377     if (MBB.isEndSection()) {
1378       // The size directive for the section containing the entry block is
1379       // handled separately by the function section.
1380       if (!MBB.sameSection(&MF->front())) {
1381         if (MAI->hasDotTypeDotSizeDirective()) {
1382           // Emit the size directive for the basic block section.
1383           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1384               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1385               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1386               OutContext);
1387           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1388         }
1389         MBBSectionRanges[MBB.getSectionIDNum()] =
1390             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1391       }
1392     }
1393     emitBasicBlockEnd(MBB);
1394 
1395     if (CanDoExtraAnalysis) {
1396       // Skip empty blocks.
1397       if (MBB.empty())
1398         continue;
1399 
1400       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1401                                           MBB.begin()->getDebugLoc(), &MBB);
1402 
1403       // Generate instruction mix remark. First, sort counts in descending order
1404       // by count and name.
1405       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1406       for (auto &KV : MnemonicCounts)
1407         MnemonicVec.emplace_back(KV.first, KV.second);
1408 
1409       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1410                            const std::pair<StringRef, unsigned> &B) {
1411         if (A.second > B.second)
1412           return true;
1413         if (A.second == B.second)
1414           return StringRef(A.first) < StringRef(B.first);
1415         return false;
1416       });
1417       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1418       for (auto &KV : MnemonicVec) {
1419         auto Name = (Twine("INST_") + KV.first.trim()).str();
1420         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1421       }
1422       ORE->emit(R);
1423     }
1424   }
1425 
1426   EmittedInsts += NumInstsInFunction;
1427   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1428                                       MF->getFunction().getSubprogram(),
1429                                       &MF->front());
1430   R << ore::NV("NumInstructions", NumInstsInFunction)
1431     << " instructions in function";
1432   ORE->emit(R);
1433 
1434   // If the function is empty and the object file uses .subsections_via_symbols,
1435   // then we need to emit *something* to the function body to prevent the
1436   // labels from collapsing together.  Just emit a noop.
1437   // Similarly, don't emit empty functions on Windows either. It can lead to
1438   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1439   // after linking, causing the kernel not to load the binary:
1440   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1441   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1442   const Triple &TT = TM.getTargetTriple();
1443   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1444                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1445     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1446 
1447     // Targets can opt-out of emitting the noop here by leaving the opcode
1448     // unspecified.
1449     if (Noop.getOpcode()) {
1450       OutStreamer->AddComment("avoids zero-length function");
1451       emitNops(1);
1452     }
1453   }
1454 
1455   // Switch to the original section in case basic block sections was used.
1456   OutStreamer->SwitchSection(MF->getSection());
1457 
1458   const Function &F = MF->getFunction();
1459   for (const auto &BB : F) {
1460     if (!BB.hasAddressTaken())
1461       continue;
1462     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1463     if (Sym->isDefined())
1464       continue;
1465     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1466     OutStreamer->emitLabel(Sym);
1467   }
1468 
1469   // Emit target-specific gunk after the function body.
1470   emitFunctionBodyEnd();
1471 
1472   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1473       MAI->hasDotTypeDotSizeDirective()) {
1474     // Create a symbol for the end of function.
1475     CurrentFnEnd = createTempSymbol("func_end");
1476     OutStreamer->emitLabel(CurrentFnEnd);
1477   }
1478 
1479   // If the target wants a .size directive for the size of the function, emit
1480   // it.
1481   if (MAI->hasDotTypeDotSizeDirective()) {
1482     // We can get the size as difference between the function label and the
1483     // temp label.
1484     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1485         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1486         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1487     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1488   }
1489 
1490   for (const HandlerInfo &HI : Handlers) {
1491     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1492                        HI.TimerGroupDescription, TimePassesIsEnabled);
1493     HI.Handler->markFunctionEnd();
1494   }
1495 
1496   MBBSectionRanges[MF->front().getSectionIDNum()] =
1497       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1498 
1499   // Print out jump tables referenced by the function.
1500   emitJumpTableInfo();
1501 
1502   // Emit post-function debug and/or EH information.
1503   for (const HandlerInfo &HI : Handlers) {
1504     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1505                        HI.TimerGroupDescription, TimePassesIsEnabled);
1506     HI.Handler->endFunction(MF);
1507   }
1508 
1509   // Emit section containing BB address offsets and their metadata, when
1510   // BB labels are requested for this function. Skip empty functions.
1511   if (MF->hasBBLabels() && HasAnyRealCode)
1512     emitBBAddrMapSection(*MF);
1513 
1514   // Emit section containing stack size metadata.
1515   emitStackSizeSection(*MF);
1516 
1517   // Emit .su file containing function stack size information.
1518   emitStackUsage(*MF);
1519 
1520   emitPatchableFunctionEntries();
1521 
1522   if (isVerbose())
1523     OutStreamer->GetCommentOS() << "-- End function\n";
1524 
1525   OutStreamer->AddBlankLine();
1526 }
1527 
1528 /// Compute the number of Global Variables that uses a Constant.
1529 static unsigned getNumGlobalVariableUses(const Constant *C) {
1530   if (!C)
1531     return 0;
1532 
1533   if (isa<GlobalVariable>(C))
1534     return 1;
1535 
1536   unsigned NumUses = 0;
1537   for (auto *CU : C->users())
1538     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1539 
1540   return NumUses;
1541 }
1542 
1543 /// Only consider global GOT equivalents if at least one user is a
1544 /// cstexpr inside an initializer of another global variables. Also, don't
1545 /// handle cstexpr inside instructions. During global variable emission,
1546 /// candidates are skipped and are emitted later in case at least one cstexpr
1547 /// isn't replaced by a PC relative GOT entry access.
1548 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1549                                      unsigned &NumGOTEquivUsers) {
1550   // Global GOT equivalents are unnamed private globals with a constant
1551   // pointer initializer to another global symbol. They must point to a
1552   // GlobalVariable or Function, i.e., as GlobalValue.
1553   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1554       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1555       !isa<GlobalValue>(GV->getOperand(0)))
1556     return false;
1557 
1558   // To be a got equivalent, at least one of its users need to be a constant
1559   // expression used by another global variable.
1560   for (auto *U : GV->users())
1561     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1562 
1563   return NumGOTEquivUsers > 0;
1564 }
1565 
1566 /// Unnamed constant global variables solely contaning a pointer to
1567 /// another globals variable is equivalent to a GOT table entry; it contains the
1568 /// the address of another symbol. Optimize it and replace accesses to these
1569 /// "GOT equivalents" by using the GOT entry for the final global instead.
1570 /// Compute GOT equivalent candidates among all global variables to avoid
1571 /// emitting them if possible later on, after it use is replaced by a GOT entry
1572 /// access.
1573 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1574   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1575     return;
1576 
1577   for (const auto &G : M.globals()) {
1578     unsigned NumGOTEquivUsers = 0;
1579     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1580       continue;
1581 
1582     const MCSymbol *GOTEquivSym = getSymbol(&G);
1583     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1584   }
1585 }
1586 
1587 /// Constant expressions using GOT equivalent globals may not be eligible
1588 /// for PC relative GOT entry conversion, in such cases we need to emit such
1589 /// globals we previously omitted in EmitGlobalVariable.
1590 void AsmPrinter::emitGlobalGOTEquivs() {
1591   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1592     return;
1593 
1594   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1595   for (auto &I : GlobalGOTEquivs) {
1596     const GlobalVariable *GV = I.second.first;
1597     unsigned Cnt = I.second.second;
1598     if (Cnt)
1599       FailedCandidates.push_back(GV);
1600   }
1601   GlobalGOTEquivs.clear();
1602 
1603   for (auto *GV : FailedCandidates)
1604     emitGlobalVariable(GV);
1605 }
1606 
1607 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1608                                           const GlobalIndirectSymbol& GIS) {
1609   MCSymbol *Name = getSymbol(&GIS);
1610   bool IsFunction = GIS.getValueType()->isFunctionTy();
1611   // Treat bitcasts of functions as functions also. This is important at least
1612   // on WebAssembly where object and function addresses can't alias each other.
1613   if (!IsFunction)
1614     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1615       if (CE->getOpcode() == Instruction::BitCast)
1616         IsFunction =
1617           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1618 
1619   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1620   // so AIX has to use the extra-label-at-definition strategy. At this
1621   // point, all the extra label is emitted, we just have to emit linkage for
1622   // those labels.
1623   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1624     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1625     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1626            "Visibility should be handled with emitLinkage() on AIX.");
1627     emitLinkage(&GIS, Name);
1628     // If it's a function, also emit linkage for aliases of function entry
1629     // point.
1630     if (IsFunction)
1631       emitLinkage(&GIS,
1632                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1633     return;
1634   }
1635 
1636   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1637     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1638   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1639     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1640   else
1641     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1642 
1643   // Set the symbol type to function if the alias has a function type.
1644   // This affects codegen when the aliasee is not a function.
1645   if (IsFunction)
1646     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1647                                                ? MCSA_ELF_TypeIndFunction
1648                                                : MCSA_ELF_TypeFunction);
1649 
1650   emitVisibility(Name, GIS.getVisibility());
1651 
1652   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1653 
1654   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1655     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1656 
1657   // Emit the directives as assignments aka .set:
1658   OutStreamer->emitAssignment(Name, Expr);
1659   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1660   if (LocalAlias != Name)
1661     OutStreamer->emitAssignment(LocalAlias, Expr);
1662 
1663   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1664     // If the aliasee does not correspond to a symbol in the output, i.e. the
1665     // alias is not of an object or the aliased object is private, then set the
1666     // size of the alias symbol from the type of the alias. We don't do this in
1667     // other situations as the alias and aliasee having differing types but same
1668     // size may be intentional.
1669     const GlobalObject *BaseObject = GA->getBaseObject();
1670     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1671         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1672       const DataLayout &DL = M.getDataLayout();
1673       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1674       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1675     }
1676   }
1677 }
1678 
1679 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1680   if (!RS.needsSection())
1681     return;
1682 
1683   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1684 
1685   Optional<SmallString<128>> Filename;
1686   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1687     Filename = *FilenameRef;
1688     sys::fs::make_absolute(*Filename);
1689     assert(!Filename->empty() && "The filename can't be empty.");
1690   }
1691 
1692   std::string Buf;
1693   raw_string_ostream OS(Buf);
1694   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1695       Filename ? RemarkSerializer.metaSerializer(OS, Filename->str())
1696                : RemarkSerializer.metaSerializer(OS);
1697   MetaSerializer->emit();
1698 
1699   // Switch to the remarks section.
1700   MCSection *RemarksSection =
1701       OutContext.getObjectFileInfo()->getRemarksSection();
1702   OutStreamer->SwitchSection(RemarksSection);
1703 
1704   OutStreamer->emitBinaryData(OS.str());
1705 }
1706 
1707 bool AsmPrinter::doFinalization(Module &M) {
1708   // Set the MachineFunction to nullptr so that we can catch attempted
1709   // accesses to MF specific features at the module level and so that
1710   // we can conditionalize accesses based on whether or not it is nullptr.
1711   MF = nullptr;
1712 
1713   // Gather all GOT equivalent globals in the module. We really need two
1714   // passes over the globals: one to compute and another to avoid its emission
1715   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1716   // where the got equivalent shows up before its use.
1717   computeGlobalGOTEquivs(M);
1718 
1719   // Emit global variables.
1720   for (const auto &G : M.globals())
1721     emitGlobalVariable(&G);
1722 
1723   // Emit remaining GOT equivalent globals.
1724   emitGlobalGOTEquivs();
1725 
1726   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1727 
1728   // Emit linkage(XCOFF) and visibility info for declarations
1729   for (const Function &F : M) {
1730     if (!F.isDeclarationForLinker())
1731       continue;
1732 
1733     MCSymbol *Name = getSymbol(&F);
1734     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1735 
1736     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1737       GlobalValue::VisibilityTypes V = F.getVisibility();
1738       if (V == GlobalValue::DefaultVisibility)
1739         continue;
1740 
1741       emitVisibility(Name, V, false);
1742       continue;
1743     }
1744 
1745     if (F.isIntrinsic())
1746       continue;
1747 
1748     // Handle the XCOFF case.
1749     // Variable `Name` is the function descriptor symbol (see above). Get the
1750     // function entry point symbol.
1751     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1752     // Emit linkage for the function entry point.
1753     emitLinkage(&F, FnEntryPointSym);
1754 
1755     // Emit linkage for the function descriptor.
1756     emitLinkage(&F, Name);
1757   }
1758 
1759   // Emit the remarks section contents.
1760   // FIXME: Figure out when is the safest time to emit this section. It should
1761   // not come after debug info.
1762   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1763     emitRemarksSection(*RS);
1764 
1765   TLOF.emitModuleMetadata(*OutStreamer, M);
1766 
1767   if (TM.getTargetTriple().isOSBinFormatELF()) {
1768     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1769 
1770     // Output stubs for external and common global variables.
1771     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1772     if (!Stubs.empty()) {
1773       OutStreamer->SwitchSection(TLOF.getDataSection());
1774       const DataLayout &DL = M.getDataLayout();
1775 
1776       emitAlignment(Align(DL.getPointerSize()));
1777       for (const auto &Stub : Stubs) {
1778         OutStreamer->emitLabel(Stub.first);
1779         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1780                                      DL.getPointerSize());
1781       }
1782     }
1783   }
1784 
1785   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1786     MachineModuleInfoCOFF &MMICOFF =
1787         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1788 
1789     // Output stubs for external and common global variables.
1790     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1791     if (!Stubs.empty()) {
1792       const DataLayout &DL = M.getDataLayout();
1793 
1794       for (const auto &Stub : Stubs) {
1795         SmallString<256> SectionName = StringRef(".rdata$");
1796         SectionName += Stub.first->getName();
1797         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1798             SectionName,
1799             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1800                 COFF::IMAGE_SCN_LNK_COMDAT,
1801             SectionKind::getReadOnly(), Stub.first->getName(),
1802             COFF::IMAGE_COMDAT_SELECT_ANY));
1803         emitAlignment(Align(DL.getPointerSize()));
1804         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1805         OutStreamer->emitLabel(Stub.first);
1806         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1807                                      DL.getPointerSize());
1808       }
1809     }
1810   }
1811 
1812   // This needs to happen before emitting debug information since that can end
1813   // arbitrary sections.
1814   if (auto *TS = OutStreamer->getTargetStreamer())
1815     TS->emitConstantPools();
1816 
1817   // Finalize debug and EH information.
1818   for (const HandlerInfo &HI : Handlers) {
1819     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1820                        HI.TimerGroupDescription, TimePassesIsEnabled);
1821     HI.Handler->endModule();
1822   }
1823 
1824   // This deletes all the ephemeral handlers that AsmPrinter added, while
1825   // keeping all the user-added handlers alive until the AsmPrinter is
1826   // destroyed.
1827   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1828   DD = nullptr;
1829 
1830   // If the target wants to know about weak references, print them all.
1831   if (MAI->getWeakRefDirective()) {
1832     // FIXME: This is not lazy, it would be nice to only print weak references
1833     // to stuff that is actually used.  Note that doing so would require targets
1834     // to notice uses in operands (due to constant exprs etc).  This should
1835     // happen with the MC stuff eventually.
1836 
1837     // Print out module-level global objects here.
1838     for (const auto &GO : M.global_objects()) {
1839       if (!GO.hasExternalWeakLinkage())
1840         continue;
1841       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1842     }
1843   }
1844 
1845   // Print aliases in topological order, that is, for each alias a = b,
1846   // b must be printed before a.
1847   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1848   // such an order to generate correct TOC information.
1849   SmallVector<const GlobalAlias *, 16> AliasStack;
1850   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1851   for (const auto &Alias : M.aliases()) {
1852     for (const GlobalAlias *Cur = &Alias; Cur;
1853          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1854       if (!AliasVisited.insert(Cur).second)
1855         break;
1856       AliasStack.push_back(Cur);
1857     }
1858     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1859       emitGlobalIndirectSymbol(M, *AncestorAlias);
1860     AliasStack.clear();
1861   }
1862   for (const auto &IFunc : M.ifuncs())
1863     emitGlobalIndirectSymbol(M, IFunc);
1864 
1865   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1866   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1867   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1868     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1869       MP->finishAssembly(M, *MI, *this);
1870 
1871   // Emit llvm.ident metadata in an '.ident' directive.
1872   emitModuleIdents(M);
1873 
1874   // Emit bytes for llvm.commandline metadata.
1875   emitModuleCommandLines(M);
1876 
1877   // Emit __morestack address if needed for indirect calls.
1878   if (MMI->usesMorestackAddr()) {
1879     Align Alignment(1);
1880     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1881         getDataLayout(), SectionKind::getReadOnly(),
1882         /*C=*/nullptr, Alignment);
1883     OutStreamer->SwitchSection(ReadOnlySection);
1884 
1885     MCSymbol *AddrSymbol =
1886         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1887     OutStreamer->emitLabel(AddrSymbol);
1888 
1889     unsigned PtrSize = MAI->getCodePointerSize();
1890     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1891                                  PtrSize);
1892   }
1893 
1894   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1895   // split-stack is used.
1896   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1897     OutStreamer->SwitchSection(
1898         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1899     if (MMI->hasNosplitStack())
1900       OutStreamer->SwitchSection(
1901           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1902   }
1903 
1904   // If we don't have any trampolines, then we don't require stack memory
1905   // to be executable. Some targets have a directive to declare this.
1906   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1907   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1908     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1909       OutStreamer->SwitchSection(S);
1910 
1911   if (TM.Options.EmitAddrsig) {
1912     // Emit address-significance attributes for all globals.
1913     OutStreamer->emitAddrsig();
1914     for (const GlobalValue &GV : M.global_values()) {
1915       if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() &&
1916           !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() &&
1917           !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr())
1918         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1919     }
1920   }
1921 
1922   // Emit symbol partition specifications (ELF only).
1923   if (TM.getTargetTriple().isOSBinFormatELF()) {
1924     unsigned UniqueID = 0;
1925     for (const GlobalValue &GV : M.global_values()) {
1926       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1927           GV.getVisibility() != GlobalValue::DefaultVisibility)
1928         continue;
1929 
1930       OutStreamer->SwitchSection(
1931           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1932                                    "", false, ++UniqueID, nullptr));
1933       OutStreamer->emitBytes(GV.getPartition());
1934       OutStreamer->emitZeros(1);
1935       OutStreamer->emitValue(
1936           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1937           MAI->getCodePointerSize());
1938     }
1939   }
1940 
1941   // Allow the target to emit any magic that it wants at the end of the file,
1942   // after everything else has gone out.
1943   emitEndOfAsmFile(M);
1944 
1945   MMI = nullptr;
1946 
1947   OutStreamer->Finish();
1948   OutStreamer->reset();
1949   OwnedMLI.reset();
1950   OwnedMDT.reset();
1951 
1952   return false;
1953 }
1954 
1955 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1956   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1957   if (Res.second)
1958     Res.first->second = createTempSymbol("exception");
1959   return Res.first->second;
1960 }
1961 
1962 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1963   this->MF = &MF;
1964   const Function &F = MF.getFunction();
1965 
1966   // Get the function symbol.
1967   if (!MAI->needsFunctionDescriptors()) {
1968     CurrentFnSym = getSymbol(&MF.getFunction());
1969   } else {
1970     assert(TM.getTargetTriple().isOSAIX() &&
1971            "Only AIX uses the function descriptor hooks.");
1972     // AIX is unique here in that the name of the symbol emitted for the
1973     // function body does not have the same name as the source function's
1974     // C-linkage name.
1975     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1976                                " initalized first.");
1977 
1978     // Get the function entry point symbol.
1979     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1980   }
1981 
1982   CurrentFnSymForSize = CurrentFnSym;
1983   CurrentFnBegin = nullptr;
1984   CurrentSectionBeginSym = nullptr;
1985   MBBSectionRanges.clear();
1986   MBBSectionExceptionSyms.clear();
1987   bool NeedsLocalForSize = MAI->needsLocalForSize();
1988   if (F.hasFnAttribute("patchable-function-entry") ||
1989       F.hasFnAttribute("function-instrument") ||
1990       F.hasFnAttribute("xray-instruction-threshold") ||
1991       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1992       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1993     CurrentFnBegin = createTempSymbol("func_begin");
1994     if (NeedsLocalForSize)
1995       CurrentFnSymForSize = CurrentFnBegin;
1996   }
1997 
1998   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1999 }
2000 
2001 namespace {
2002 
2003 // Keep track the alignment, constpool entries per Section.
2004   struct SectionCPs {
2005     MCSection *S;
2006     Align Alignment;
2007     SmallVector<unsigned, 4> CPEs;
2008 
2009     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
2010   };
2011 
2012 } // end anonymous namespace
2013 
2014 /// EmitConstantPool - Print to the current output stream assembly
2015 /// representations of the constants in the constant pool MCP. This is
2016 /// used to print out constants which have been "spilled to memory" by
2017 /// the code generator.
2018 void AsmPrinter::emitConstantPool() {
2019   const MachineConstantPool *MCP = MF->getConstantPool();
2020   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2021   if (CP.empty()) return;
2022 
2023   // Calculate sections for constant pool entries. We collect entries to go into
2024   // the same section together to reduce amount of section switch statements.
2025   SmallVector<SectionCPs, 4> CPSections;
2026   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2027     const MachineConstantPoolEntry &CPE = CP[i];
2028     Align Alignment = CPE.getAlign();
2029 
2030     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2031 
2032     const Constant *C = nullptr;
2033     if (!CPE.isMachineConstantPoolEntry())
2034       C = CPE.Val.ConstVal;
2035 
2036     MCSection *S = getObjFileLowering().getSectionForConstant(
2037         getDataLayout(), Kind, C, Alignment);
2038 
2039     // The number of sections are small, just do a linear search from the
2040     // last section to the first.
2041     bool Found = false;
2042     unsigned SecIdx = CPSections.size();
2043     while (SecIdx != 0) {
2044       if (CPSections[--SecIdx].S == S) {
2045         Found = true;
2046         break;
2047       }
2048     }
2049     if (!Found) {
2050       SecIdx = CPSections.size();
2051       CPSections.push_back(SectionCPs(S, Alignment));
2052     }
2053 
2054     if (Alignment > CPSections[SecIdx].Alignment)
2055       CPSections[SecIdx].Alignment = Alignment;
2056     CPSections[SecIdx].CPEs.push_back(i);
2057   }
2058 
2059   // Now print stuff into the calculated sections.
2060   const MCSection *CurSection = nullptr;
2061   unsigned Offset = 0;
2062   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2063     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2064       unsigned CPI = CPSections[i].CPEs[j];
2065       MCSymbol *Sym = GetCPISymbol(CPI);
2066       if (!Sym->isUndefined())
2067         continue;
2068 
2069       if (CurSection != CPSections[i].S) {
2070         OutStreamer->SwitchSection(CPSections[i].S);
2071         emitAlignment(Align(CPSections[i].Alignment));
2072         CurSection = CPSections[i].S;
2073         Offset = 0;
2074       }
2075 
2076       MachineConstantPoolEntry CPE = CP[CPI];
2077 
2078       // Emit inter-object padding for alignment.
2079       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2080       OutStreamer->emitZeros(NewOffset - Offset);
2081 
2082       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2083 
2084       OutStreamer->emitLabel(Sym);
2085       if (CPE.isMachineConstantPoolEntry())
2086         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2087       else
2088         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2089     }
2090   }
2091 }
2092 
2093 // Print assembly representations of the jump tables used by the current
2094 // function.
2095 void AsmPrinter::emitJumpTableInfo() {
2096   const DataLayout &DL = MF->getDataLayout();
2097   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2098   if (!MJTI) return;
2099   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2100   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2101   if (JT.empty()) return;
2102 
2103   // Pick the directive to use to print the jump table entries, and switch to
2104   // the appropriate section.
2105   const Function &F = MF->getFunction();
2106   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2107   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2108       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2109       F);
2110   if (JTInDiffSection) {
2111     // Drop it in the readonly section.
2112     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2113     OutStreamer->SwitchSection(ReadOnlySection);
2114   }
2115 
2116   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2117 
2118   // Jump tables in code sections are marked with a data_region directive
2119   // where that's supported.
2120   if (!JTInDiffSection)
2121     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2122 
2123   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2124     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2125 
2126     // If this jump table was deleted, ignore it.
2127     if (JTBBs.empty()) continue;
2128 
2129     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2130     /// emit a .set directive for each unique entry.
2131     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2132         MAI->doesSetDirectiveSuppressReloc()) {
2133       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2134       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2135       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2136       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2137         const MachineBasicBlock *MBB = JTBBs[ii];
2138         if (!EmittedSets.insert(MBB).second)
2139           continue;
2140 
2141         // .set LJTSet, LBB32-base
2142         const MCExpr *LHS =
2143           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2144         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2145                                     MCBinaryExpr::createSub(LHS, Base,
2146                                                             OutContext));
2147       }
2148     }
2149 
2150     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2151     // before each jump table.  The first label is never referenced, but tells
2152     // the assembler and linker the extents of the jump table object.  The
2153     // second label is actually referenced by the code.
2154     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2155       // FIXME: This doesn't have to have any specific name, just any randomly
2156       // named and numbered local label started with 'l' would work.  Simplify
2157       // GetJTISymbol.
2158       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2159 
2160     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2161     OutStreamer->emitLabel(JTISymbol);
2162 
2163     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2164       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2165   }
2166   if (!JTInDiffSection)
2167     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2168 }
2169 
2170 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2171 /// current stream.
2172 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2173                                     const MachineBasicBlock *MBB,
2174                                     unsigned UID) const {
2175   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2176   const MCExpr *Value = nullptr;
2177   switch (MJTI->getEntryKind()) {
2178   case MachineJumpTableInfo::EK_Inline:
2179     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2180   case MachineJumpTableInfo::EK_Custom32:
2181     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2182         MJTI, MBB, UID, OutContext);
2183     break;
2184   case MachineJumpTableInfo::EK_BlockAddress:
2185     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2186     //     .word LBB123
2187     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2188     break;
2189   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2190     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2191     // with a relocation as gp-relative, e.g.:
2192     //     .gprel32 LBB123
2193     MCSymbol *MBBSym = MBB->getSymbol();
2194     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2195     return;
2196   }
2197 
2198   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2199     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2200     // with a relocation as gp-relative, e.g.:
2201     //     .gpdword LBB123
2202     MCSymbol *MBBSym = MBB->getSymbol();
2203     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2204     return;
2205   }
2206 
2207   case MachineJumpTableInfo::EK_LabelDifference32: {
2208     // Each entry is the address of the block minus the address of the jump
2209     // table. This is used for PIC jump tables where gprel32 is not supported.
2210     // e.g.:
2211     //      .word LBB123 - LJTI1_2
2212     // If the .set directive avoids relocations, this is emitted as:
2213     //      .set L4_5_set_123, LBB123 - LJTI1_2
2214     //      .word L4_5_set_123
2215     if (MAI->doesSetDirectiveSuppressReloc()) {
2216       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2217                                       OutContext);
2218       break;
2219     }
2220     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2221     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2222     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2223     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2224     break;
2225   }
2226   }
2227 
2228   assert(Value && "Unknown entry kind!");
2229 
2230   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2231   OutStreamer->emitValue(Value, EntrySize);
2232 }
2233 
2234 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2235 /// special global used by LLVM.  If so, emit it and return true, otherwise
2236 /// do nothing and return false.
2237 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2238   if (GV->getName() == "llvm.used") {
2239     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2240       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2241     return true;
2242   }
2243 
2244   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2245   if (GV->getSection() == "llvm.metadata" ||
2246       GV->hasAvailableExternallyLinkage())
2247     return true;
2248 
2249   if (!GV->hasAppendingLinkage()) return false;
2250 
2251   assert(GV->hasInitializer() && "Not a special LLVM global!");
2252 
2253   if (GV->getName() == "llvm.global_ctors") {
2254     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2255                        /* isCtor */ true);
2256 
2257     return true;
2258   }
2259 
2260   if (GV->getName() == "llvm.global_dtors") {
2261     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2262                        /* isCtor */ false);
2263 
2264     return true;
2265   }
2266 
2267   report_fatal_error("unknown special variable");
2268 }
2269 
2270 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2271 /// global in the specified llvm.used list.
2272 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2273   // Should be an array of 'i8*'.
2274   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2275     const GlobalValue *GV =
2276       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2277     if (GV)
2278       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2279   }
2280 }
2281 
2282 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2283                                           const Constant *List,
2284                                           SmallVector<Structor, 8> &Structors) {
2285   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2286   // the init priority.
2287   if (!isa<ConstantArray>(List))
2288     return;
2289 
2290   // Gather the structors in a form that's convenient for sorting by priority.
2291   for (Value *O : cast<ConstantArray>(List)->operands()) {
2292     auto *CS = cast<ConstantStruct>(O);
2293     if (CS->getOperand(1)->isNullValue())
2294       break; // Found a null terminator, skip the rest.
2295     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2296     if (!Priority)
2297       continue; // Malformed.
2298     Structors.push_back(Structor());
2299     Structor &S = Structors.back();
2300     S.Priority = Priority->getLimitedValue(65535);
2301     S.Func = CS->getOperand(1);
2302     if (!CS->getOperand(2)->isNullValue()) {
2303       if (TM.getTargetTriple().isOSAIX())
2304         llvm::report_fatal_error(
2305             "associated data of XXStructor list is not yet supported on AIX");
2306       S.ComdatKey =
2307           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2308     }
2309   }
2310 
2311   // Emit the function pointers in the target-specific order
2312   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2313     return L.Priority < R.Priority;
2314   });
2315 }
2316 
2317 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2318 /// priority.
2319 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2320                                     bool IsCtor) {
2321   SmallVector<Structor, 8> Structors;
2322   preprocessXXStructorList(DL, List, Structors);
2323   if (Structors.empty())
2324     return;
2325 
2326   // Emit the structors in reverse order if we are using the .ctor/.dtor
2327   // initialization scheme.
2328   if (!TM.Options.UseInitArray)
2329     std::reverse(Structors.begin(), Structors.end());
2330 
2331   const Align Align = DL.getPointerPrefAlignment();
2332   for (Structor &S : Structors) {
2333     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2334     const MCSymbol *KeySym = nullptr;
2335     if (GlobalValue *GV = S.ComdatKey) {
2336       if (GV->isDeclarationForLinker())
2337         // If the associated variable is not defined in this module
2338         // (it might be available_externally, or have been an
2339         // available_externally definition that was dropped by the
2340         // EliminateAvailableExternally pass), some other TU
2341         // will provide its dynamic initializer.
2342         continue;
2343 
2344       KeySym = getSymbol(GV);
2345     }
2346 
2347     MCSection *OutputSection =
2348         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2349                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2350     OutStreamer->SwitchSection(OutputSection);
2351     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2352       emitAlignment(Align);
2353     emitXXStructor(DL, S.Func);
2354   }
2355 }
2356 
2357 void AsmPrinter::emitModuleIdents(Module &M) {
2358   if (!MAI->hasIdentDirective())
2359     return;
2360 
2361   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2362     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2363       const MDNode *N = NMD->getOperand(i);
2364       assert(N->getNumOperands() == 1 &&
2365              "llvm.ident metadata entry can have only one operand");
2366       const MDString *S = cast<MDString>(N->getOperand(0));
2367       OutStreamer->emitIdent(S->getString());
2368     }
2369   }
2370 }
2371 
2372 void AsmPrinter::emitModuleCommandLines(Module &M) {
2373   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2374   if (!CommandLine)
2375     return;
2376 
2377   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2378   if (!NMD || !NMD->getNumOperands())
2379     return;
2380 
2381   OutStreamer->PushSection();
2382   OutStreamer->SwitchSection(CommandLine);
2383   OutStreamer->emitZeros(1);
2384   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2385     const MDNode *N = NMD->getOperand(i);
2386     assert(N->getNumOperands() == 1 &&
2387            "llvm.commandline metadata entry can have only one operand");
2388     const MDString *S = cast<MDString>(N->getOperand(0));
2389     OutStreamer->emitBytes(S->getString());
2390     OutStreamer->emitZeros(1);
2391   }
2392   OutStreamer->PopSection();
2393 }
2394 
2395 //===--------------------------------------------------------------------===//
2396 // Emission and print routines
2397 //
2398 
2399 /// Emit a byte directive and value.
2400 ///
2401 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2402 
2403 /// Emit a short directive and value.
2404 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2405 
2406 /// Emit a long directive and value.
2407 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2408 
2409 /// Emit a long long directive and value.
2410 void AsmPrinter::emitInt64(uint64_t Value) const {
2411   OutStreamer->emitInt64(Value);
2412 }
2413 
2414 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2415 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2416 /// .set if it avoids relocations.
2417 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2418                                      unsigned Size) const {
2419   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2420 }
2421 
2422 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2423 /// where the size in bytes of the directive is specified by Size and Label
2424 /// specifies the label.  This implicitly uses .set if it is available.
2425 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2426                                      unsigned Size,
2427                                      bool IsSectionRelative) const {
2428   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2429     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2430     if (Size > 4)
2431       OutStreamer->emitZeros(Size - 4);
2432     return;
2433   }
2434 
2435   // Emit Label+Offset (or just Label if Offset is zero)
2436   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2437   if (Offset)
2438     Expr = MCBinaryExpr::createAdd(
2439         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2440 
2441   OutStreamer->emitValue(Expr, Size);
2442 }
2443 
2444 //===----------------------------------------------------------------------===//
2445 
2446 // EmitAlignment - Emit an alignment directive to the specified power of
2447 // two boundary.  If a global value is specified, and if that global has
2448 // an explicit alignment requested, it will override the alignment request
2449 // if required for correctness.
2450 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2451   if (GV)
2452     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2453 
2454   if (Alignment == Align(1))
2455     return; // 1-byte aligned: no need to emit alignment.
2456 
2457   if (getCurrentSection()->getKind().isText())
2458     OutStreamer->emitCodeAlignment(Alignment.value());
2459   else
2460     OutStreamer->emitValueToAlignment(Alignment.value());
2461 }
2462 
2463 //===----------------------------------------------------------------------===//
2464 // Constant emission.
2465 //===----------------------------------------------------------------------===//
2466 
2467 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2468   MCContext &Ctx = OutContext;
2469 
2470   if (CV->isNullValue() || isa<UndefValue>(CV))
2471     return MCConstantExpr::create(0, Ctx);
2472 
2473   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2474     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2475 
2476   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2477     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2478 
2479   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2480     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2481 
2482   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2483     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2484 
2485   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2486   if (!CE) {
2487     llvm_unreachable("Unknown constant value to lower!");
2488   }
2489 
2490   switch (CE->getOpcode()) {
2491   case Instruction::AddrSpaceCast: {
2492     const Constant *Op = CE->getOperand(0);
2493     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2494     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2495     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2496       return lowerConstant(Op);
2497 
2498     // Fallthrough to error.
2499     LLVM_FALLTHROUGH;
2500   }
2501   default: {
2502     // If the code isn't optimized, there may be outstanding folding
2503     // opportunities. Attempt to fold the expression using DataLayout as a
2504     // last resort before giving up.
2505     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2506     if (C != CE)
2507       return lowerConstant(C);
2508 
2509     // Otherwise report the problem to the user.
2510     std::string S;
2511     raw_string_ostream OS(S);
2512     OS << "Unsupported expression in static initializer: ";
2513     CE->printAsOperand(OS, /*PrintType=*/false,
2514                    !MF ? nullptr : MF->getFunction().getParent());
2515     report_fatal_error(OS.str());
2516   }
2517   case Instruction::GetElementPtr: {
2518     // Generate a symbolic expression for the byte address
2519     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2520     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2521 
2522     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2523     if (!OffsetAI)
2524       return Base;
2525 
2526     int64_t Offset = OffsetAI.getSExtValue();
2527     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2528                                    Ctx);
2529   }
2530 
2531   case Instruction::Trunc:
2532     // We emit the value and depend on the assembler to truncate the generated
2533     // expression properly.  This is important for differences between
2534     // blockaddress labels.  Since the two labels are in the same function, it
2535     // is reasonable to treat their delta as a 32-bit value.
2536     LLVM_FALLTHROUGH;
2537   case Instruction::BitCast:
2538     return lowerConstant(CE->getOperand(0));
2539 
2540   case Instruction::IntToPtr: {
2541     const DataLayout &DL = getDataLayout();
2542 
2543     // Handle casts to pointers by changing them into casts to the appropriate
2544     // integer type.  This promotes constant folding and simplifies this code.
2545     Constant *Op = CE->getOperand(0);
2546     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2547                                       false/*ZExt*/);
2548     return lowerConstant(Op);
2549   }
2550 
2551   case Instruction::PtrToInt: {
2552     const DataLayout &DL = getDataLayout();
2553 
2554     // Support only foldable casts to/from pointers that can be eliminated by
2555     // changing the pointer to the appropriately sized integer type.
2556     Constant *Op = CE->getOperand(0);
2557     Type *Ty = CE->getType();
2558 
2559     const MCExpr *OpExpr = lowerConstant(Op);
2560 
2561     // We can emit the pointer value into this slot if the slot is an
2562     // integer slot equal to the size of the pointer.
2563     //
2564     // If the pointer is larger than the resultant integer, then
2565     // as with Trunc just depend on the assembler to truncate it.
2566     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2567         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2568       return OpExpr;
2569 
2570     // Otherwise the pointer is smaller than the resultant integer, mask off
2571     // the high bits so we are sure to get a proper truncation if the input is
2572     // a constant expr.
2573     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2574     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2575     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2576   }
2577 
2578   case Instruction::Sub: {
2579     GlobalValue *LHSGV;
2580     APInt LHSOffset;
2581     DSOLocalEquivalent *DSOEquiv;
2582     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2583                                    getDataLayout(), &DSOEquiv)) {
2584       GlobalValue *RHSGV;
2585       APInt RHSOffset;
2586       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2587                                      getDataLayout())) {
2588         const MCExpr *RelocExpr =
2589             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2590         if (!RelocExpr) {
2591           const MCExpr *LHSExpr =
2592               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2593           if (DSOEquiv &&
2594               getObjFileLowering().supportDSOLocalEquivalentLowering())
2595             LHSExpr =
2596                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2597           RelocExpr = MCBinaryExpr::createSub(
2598               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2599         }
2600         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2601         if (Addend != 0)
2602           RelocExpr = MCBinaryExpr::createAdd(
2603               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2604         return RelocExpr;
2605       }
2606     }
2607   }
2608   // else fallthrough
2609   LLVM_FALLTHROUGH;
2610 
2611   // The MC library also has a right-shift operator, but it isn't consistently
2612   // signed or unsigned between different targets.
2613   case Instruction::Add:
2614   case Instruction::Mul:
2615   case Instruction::SDiv:
2616   case Instruction::SRem:
2617   case Instruction::Shl:
2618   case Instruction::And:
2619   case Instruction::Or:
2620   case Instruction::Xor: {
2621     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2622     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2623     switch (CE->getOpcode()) {
2624     default: llvm_unreachable("Unknown binary operator constant cast expr");
2625     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2626     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2627     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2628     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2629     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2630     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2631     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2632     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2633     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2634     }
2635   }
2636   }
2637 }
2638 
2639 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2640                                    AsmPrinter &AP,
2641                                    const Constant *BaseCV = nullptr,
2642                                    uint64_t Offset = 0);
2643 
2644 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2645 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2646 
2647 /// isRepeatedByteSequence - Determine whether the given value is
2648 /// composed of a repeated sequence of identical bytes and return the
2649 /// byte value.  If it is not a repeated sequence, return -1.
2650 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2651   StringRef Data = V->getRawDataValues();
2652   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2653   char C = Data[0];
2654   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2655     if (Data[i] != C) return -1;
2656   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2657 }
2658 
2659 /// isRepeatedByteSequence - Determine whether the given value is
2660 /// composed of a repeated sequence of identical bytes and return the
2661 /// byte value.  If it is not a repeated sequence, return -1.
2662 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2663   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2664     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2665     assert(Size % 8 == 0);
2666 
2667     // Extend the element to take zero padding into account.
2668     APInt Value = CI->getValue().zextOrSelf(Size);
2669     if (!Value.isSplat(8))
2670       return -1;
2671 
2672     return Value.zextOrTrunc(8).getZExtValue();
2673   }
2674   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2675     // Make sure all array elements are sequences of the same repeated
2676     // byte.
2677     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2678     Constant *Op0 = CA->getOperand(0);
2679     int Byte = isRepeatedByteSequence(Op0, DL);
2680     if (Byte == -1)
2681       return -1;
2682 
2683     // All array elements must be equal.
2684     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2685       if (CA->getOperand(i) != Op0)
2686         return -1;
2687     return Byte;
2688   }
2689 
2690   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2691     return isRepeatedByteSequence(CDS);
2692 
2693   return -1;
2694 }
2695 
2696 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2697                                              const ConstantDataSequential *CDS,
2698                                              AsmPrinter &AP) {
2699   // See if we can aggregate this into a .fill, if so, emit it as such.
2700   int Value = isRepeatedByteSequence(CDS, DL);
2701   if (Value != -1) {
2702     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2703     // Don't emit a 1-byte object as a .fill.
2704     if (Bytes > 1)
2705       return AP.OutStreamer->emitFill(Bytes, Value);
2706   }
2707 
2708   // If this can be emitted with .ascii/.asciz, emit it as such.
2709   if (CDS->isString())
2710     return AP.OutStreamer->emitBytes(CDS->getAsString());
2711 
2712   // Otherwise, emit the values in successive locations.
2713   unsigned ElementByteSize = CDS->getElementByteSize();
2714   if (isa<IntegerType>(CDS->getElementType())) {
2715     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2716       if (AP.isVerbose())
2717         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2718                                                  CDS->getElementAsInteger(i));
2719       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2720                                    ElementByteSize);
2721     }
2722   } else {
2723     Type *ET = CDS->getElementType();
2724     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2725       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2726   }
2727 
2728   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2729   unsigned EmittedSize =
2730       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2731   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2732   if (unsigned Padding = Size - EmittedSize)
2733     AP.OutStreamer->emitZeros(Padding);
2734 }
2735 
2736 static void emitGlobalConstantArray(const DataLayout &DL,
2737                                     const ConstantArray *CA, AsmPrinter &AP,
2738                                     const Constant *BaseCV, uint64_t Offset) {
2739   // See if we can aggregate some values.  Make sure it can be
2740   // represented as a series of bytes of the constant value.
2741   int Value = isRepeatedByteSequence(CA, DL);
2742 
2743   if (Value != -1) {
2744     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2745     AP.OutStreamer->emitFill(Bytes, Value);
2746   }
2747   else {
2748     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2749       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2750       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2751     }
2752   }
2753 }
2754 
2755 static void emitGlobalConstantVector(const DataLayout &DL,
2756                                      const ConstantVector *CV, AsmPrinter &AP) {
2757   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2758     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2759 
2760   unsigned Size = DL.getTypeAllocSize(CV->getType());
2761   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2762                          CV->getType()->getNumElements();
2763   if (unsigned Padding = Size - EmittedSize)
2764     AP.OutStreamer->emitZeros(Padding);
2765 }
2766 
2767 static void emitGlobalConstantStruct(const DataLayout &DL,
2768                                      const ConstantStruct *CS, AsmPrinter &AP,
2769                                      const Constant *BaseCV, uint64_t Offset) {
2770   // Print the fields in successive locations. Pad to align if needed!
2771   unsigned Size = DL.getTypeAllocSize(CS->getType());
2772   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2773   uint64_t SizeSoFar = 0;
2774   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2775     const Constant *Field = CS->getOperand(i);
2776 
2777     // Print the actual field value.
2778     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2779 
2780     // Check if padding is needed and insert one or more 0s.
2781     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2782     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2783                         - Layout->getElementOffset(i)) - FieldSize;
2784     SizeSoFar += FieldSize + PadSize;
2785 
2786     // Insert padding - this may include padding to increase the size of the
2787     // current field up to the ABI size (if the struct is not packed) as well
2788     // as padding to ensure that the next field starts at the right offset.
2789     AP.OutStreamer->emitZeros(PadSize);
2790   }
2791   assert(SizeSoFar == Layout->getSizeInBytes() &&
2792          "Layout of constant struct may be incorrect!");
2793 }
2794 
2795 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2796   assert(ET && "Unknown float type");
2797   APInt API = APF.bitcastToAPInt();
2798 
2799   // First print a comment with what we think the original floating-point value
2800   // should have been.
2801   if (AP.isVerbose()) {
2802     SmallString<8> StrVal;
2803     APF.toString(StrVal);
2804     ET->print(AP.OutStreamer->GetCommentOS());
2805     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2806   }
2807 
2808   // Now iterate through the APInt chunks, emitting them in endian-correct
2809   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2810   // floats).
2811   unsigned NumBytes = API.getBitWidth() / 8;
2812   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2813   const uint64_t *p = API.getRawData();
2814 
2815   // PPC's long double has odd notions of endianness compared to how LLVM
2816   // handles it: p[0] goes first for *big* endian on PPC.
2817   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2818     int Chunk = API.getNumWords() - 1;
2819 
2820     if (TrailingBytes)
2821       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2822 
2823     for (; Chunk >= 0; --Chunk)
2824       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2825   } else {
2826     unsigned Chunk;
2827     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2828       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2829 
2830     if (TrailingBytes)
2831       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2832   }
2833 
2834   // Emit the tail padding for the long double.
2835   const DataLayout &DL = AP.getDataLayout();
2836   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2837 }
2838 
2839 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2840   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2841 }
2842 
2843 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2844   const DataLayout &DL = AP.getDataLayout();
2845   unsigned BitWidth = CI->getBitWidth();
2846 
2847   // Copy the value as we may massage the layout for constants whose bit width
2848   // is not a multiple of 64-bits.
2849   APInt Realigned(CI->getValue());
2850   uint64_t ExtraBits = 0;
2851   unsigned ExtraBitsSize = BitWidth & 63;
2852 
2853   if (ExtraBitsSize) {
2854     // The bit width of the data is not a multiple of 64-bits.
2855     // The extra bits are expected to be at the end of the chunk of the memory.
2856     // Little endian:
2857     // * Nothing to be done, just record the extra bits to emit.
2858     // Big endian:
2859     // * Record the extra bits to emit.
2860     // * Realign the raw data to emit the chunks of 64-bits.
2861     if (DL.isBigEndian()) {
2862       // Basically the structure of the raw data is a chunk of 64-bits cells:
2863       //    0        1         BitWidth / 64
2864       // [chunk1][chunk2] ... [chunkN].
2865       // The most significant chunk is chunkN and it should be emitted first.
2866       // However, due to the alignment issue chunkN contains useless bits.
2867       // Realign the chunks so that they contain only useful information:
2868       // ExtraBits     0       1       (BitWidth / 64) - 1
2869       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2870       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2871       ExtraBits = Realigned.getRawData()[0] &
2872         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2873       Realigned.lshrInPlace(ExtraBitsSize);
2874     } else
2875       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2876   }
2877 
2878   // We don't expect assemblers to support integer data directives
2879   // for more than 64 bits, so we emit the data in at most 64-bit
2880   // quantities at a time.
2881   const uint64_t *RawData = Realigned.getRawData();
2882   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2883     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2884     AP.OutStreamer->emitIntValue(Val, 8);
2885   }
2886 
2887   if (ExtraBitsSize) {
2888     // Emit the extra bits after the 64-bits chunks.
2889 
2890     // Emit a directive that fills the expected size.
2891     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2892     Size -= (BitWidth / 64) * 8;
2893     assert(Size && Size * 8 >= ExtraBitsSize &&
2894            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2895            == ExtraBits && "Directive too small for extra bits.");
2896     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2897   }
2898 }
2899 
2900 /// Transform a not absolute MCExpr containing a reference to a GOT
2901 /// equivalent global, by a target specific GOT pc relative access to the
2902 /// final symbol.
2903 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2904                                          const Constant *BaseCst,
2905                                          uint64_t Offset) {
2906   // The global @foo below illustrates a global that uses a got equivalent.
2907   //
2908   //  @bar = global i32 42
2909   //  @gotequiv = private unnamed_addr constant i32* @bar
2910   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2911   //                             i64 ptrtoint (i32* @foo to i64))
2912   //                        to i32)
2913   //
2914   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2915   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2916   // form:
2917   //
2918   //  foo = cstexpr, where
2919   //    cstexpr := <gotequiv> - "." + <cst>
2920   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2921   //
2922   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2923   //
2924   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2925   //    gotpcrelcst := <offset from @foo base> + <cst>
2926   MCValue MV;
2927   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2928     return;
2929   const MCSymbolRefExpr *SymA = MV.getSymA();
2930   if (!SymA)
2931     return;
2932 
2933   // Check that GOT equivalent symbol is cached.
2934   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2935   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2936     return;
2937 
2938   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2939   if (!BaseGV)
2940     return;
2941 
2942   // Check for a valid base symbol
2943   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2944   const MCSymbolRefExpr *SymB = MV.getSymB();
2945 
2946   if (!SymB || BaseSym != &SymB->getSymbol())
2947     return;
2948 
2949   // Make sure to match:
2950   //
2951   //    gotpcrelcst := <offset from @foo base> + <cst>
2952   //
2953   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2954   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2955   // if the target knows how to encode it.
2956   int64_t GOTPCRelCst = Offset + MV.getConstant();
2957   if (GOTPCRelCst < 0)
2958     return;
2959   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2960     return;
2961 
2962   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2963   //
2964   //  bar:
2965   //    .long 42
2966   //  gotequiv:
2967   //    .quad bar
2968   //  foo:
2969   //    .long gotequiv - "." + <cst>
2970   //
2971   // is replaced by the target specific equivalent to:
2972   //
2973   //  bar:
2974   //    .long 42
2975   //  foo:
2976   //    .long bar@GOTPCREL+<gotpcrelcst>
2977   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2978   const GlobalVariable *GV = Result.first;
2979   int NumUses = (int)Result.second;
2980   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2981   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2982   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2983       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2984 
2985   // Update GOT equivalent usage information
2986   --NumUses;
2987   if (NumUses >= 0)
2988     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2989 }
2990 
2991 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2992                                    AsmPrinter &AP, const Constant *BaseCV,
2993                                    uint64_t Offset) {
2994   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2995 
2996   // Globals with sub-elements such as combinations of arrays and structs
2997   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2998   // constant symbol base and the current position with BaseCV and Offset.
2999   if (!BaseCV && CV->hasOneUse())
3000     BaseCV = dyn_cast<Constant>(CV->user_back());
3001 
3002   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
3003     return AP.OutStreamer->emitZeros(Size);
3004 
3005   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
3006     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
3007 
3008     if (StoreSize <= 8) {
3009       if (AP.isVerbose())
3010         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
3011                                                  CI->getZExtValue());
3012       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
3013     } else {
3014       emitGlobalConstantLargeInt(CI, AP);
3015     }
3016 
3017     // Emit tail padding if needed
3018     if (Size != StoreSize)
3019       AP.OutStreamer->emitZeros(Size - StoreSize);
3020 
3021     return;
3022   }
3023 
3024   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
3025     return emitGlobalConstantFP(CFP, AP);
3026 
3027   if (isa<ConstantPointerNull>(CV)) {
3028     AP.OutStreamer->emitIntValue(0, Size);
3029     return;
3030   }
3031 
3032   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
3033     return emitGlobalConstantDataSequential(DL, CDS, AP);
3034 
3035   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
3036     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
3037 
3038   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
3039     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
3040 
3041   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
3042     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3043     // vectors).
3044     if (CE->getOpcode() == Instruction::BitCast)
3045       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
3046 
3047     if (Size > 8) {
3048       // If the constant expression's size is greater than 64-bits, then we have
3049       // to emit the value in chunks. Try to constant fold the value and emit it
3050       // that way.
3051       Constant *New = ConstantFoldConstant(CE, DL);
3052       if (New != CE)
3053         return emitGlobalConstantImpl(DL, New, AP);
3054     }
3055   }
3056 
3057   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
3058     return emitGlobalConstantVector(DL, V, AP);
3059 
3060   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
3061   // thread the streamer with EmitValue.
3062   const MCExpr *ME = AP.lowerConstant(CV);
3063 
3064   // Since lowerConstant already folded and got rid of all IR pointer and
3065   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3066   // directly.
3067   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3068     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3069 
3070   AP.OutStreamer->emitValue(ME, Size);
3071 }
3072 
3073 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3074 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
3075   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3076   if (Size)
3077     emitGlobalConstantImpl(DL, CV, *this);
3078   else if (MAI->hasSubsectionsViaSymbols()) {
3079     // If the global has zero size, emit a single byte so that two labels don't
3080     // look like they are at the same location.
3081     OutStreamer->emitIntValue(0, 1);
3082   }
3083 }
3084 
3085 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3086   // Target doesn't support this yet!
3087   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3088 }
3089 
3090 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3091   if (Offset > 0)
3092     OS << '+' << Offset;
3093   else if (Offset < 0)
3094     OS << Offset;
3095 }
3096 
3097 void AsmPrinter::emitNops(unsigned N) {
3098   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3099   for (; N; --N)
3100     EmitToStreamer(*OutStreamer, Nop);
3101 }
3102 
3103 //===----------------------------------------------------------------------===//
3104 // Symbol Lowering Routines.
3105 //===----------------------------------------------------------------------===//
3106 
3107 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3108   return OutContext.createTempSymbol(Name, true);
3109 }
3110 
3111 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3112   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3113 }
3114 
3115 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3116   return MMI->getAddrLabelSymbol(BB);
3117 }
3118 
3119 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3120 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3121   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3122     const MachineConstantPoolEntry &CPE =
3123         MF->getConstantPool()->getConstants()[CPID];
3124     if (!CPE.isMachineConstantPoolEntry()) {
3125       const DataLayout &DL = MF->getDataLayout();
3126       SectionKind Kind = CPE.getSectionKind(&DL);
3127       const Constant *C = CPE.Val.ConstVal;
3128       Align Alignment = CPE.Alignment;
3129       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3130               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3131                                                          Alignment))) {
3132         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3133           if (Sym->isUndefined())
3134             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3135           return Sym;
3136         }
3137       }
3138     }
3139   }
3140 
3141   const DataLayout &DL = getDataLayout();
3142   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3143                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3144                                       Twine(CPID));
3145 }
3146 
3147 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3148 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3149   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3150 }
3151 
3152 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3153 /// FIXME: privatize to AsmPrinter.
3154 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3155   const DataLayout &DL = getDataLayout();
3156   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3157                                       Twine(getFunctionNumber()) + "_" +
3158                                       Twine(UID) + "_set_" + Twine(MBBID));
3159 }
3160 
3161 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3162                                                    StringRef Suffix) const {
3163   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3164 }
3165 
3166 /// Return the MCSymbol for the specified ExternalSymbol.
3167 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3168   SmallString<60> NameStr;
3169   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3170   return OutContext.getOrCreateSymbol(NameStr);
3171 }
3172 
3173 /// PrintParentLoopComment - Print comments about parent loops of this one.
3174 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3175                                    unsigned FunctionNumber) {
3176   if (!Loop) return;
3177   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3178   OS.indent(Loop->getLoopDepth()*2)
3179     << "Parent Loop BB" << FunctionNumber << "_"
3180     << Loop->getHeader()->getNumber()
3181     << " Depth=" << Loop->getLoopDepth() << '\n';
3182 }
3183 
3184 /// PrintChildLoopComment - Print comments about child loops within
3185 /// the loop for this basic block, with nesting.
3186 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3187                                   unsigned FunctionNumber) {
3188   // Add child loop information
3189   for (const MachineLoop *CL : *Loop) {
3190     OS.indent(CL->getLoopDepth()*2)
3191       << "Child Loop BB" << FunctionNumber << "_"
3192       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3193       << '\n';
3194     PrintChildLoopComment(OS, CL, FunctionNumber);
3195   }
3196 }
3197 
3198 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3199 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3200                                        const MachineLoopInfo *LI,
3201                                        const AsmPrinter &AP) {
3202   // Add loop depth information
3203   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3204   if (!Loop) return;
3205 
3206   MachineBasicBlock *Header = Loop->getHeader();
3207   assert(Header && "No header for loop");
3208 
3209   // If this block is not a loop header, just print out what is the loop header
3210   // and return.
3211   if (Header != &MBB) {
3212     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3213                                Twine(AP.getFunctionNumber())+"_" +
3214                                Twine(Loop->getHeader()->getNumber())+
3215                                " Depth="+Twine(Loop->getLoopDepth()));
3216     return;
3217   }
3218 
3219   // Otherwise, it is a loop header.  Print out information about child and
3220   // parent loops.
3221   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3222 
3223   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3224 
3225   OS << "=>";
3226   OS.indent(Loop->getLoopDepth()*2-2);
3227 
3228   OS << "This ";
3229   if (Loop->isInnermost())
3230     OS << "Inner ";
3231   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3232 
3233   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3234 }
3235 
3236 /// emitBasicBlockStart - This method prints the label for the specified
3237 /// MachineBasicBlock, an alignment (if present) and a comment describing
3238 /// it if appropriate.
3239 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3240   // End the previous funclet and start a new one.
3241   if (MBB.isEHFuncletEntry()) {
3242     for (const HandlerInfo &HI : Handlers) {
3243       HI.Handler->endFunclet();
3244       HI.Handler->beginFunclet(MBB);
3245     }
3246   }
3247 
3248   // Emit an alignment directive for this block, if needed.
3249   const Align Alignment = MBB.getAlignment();
3250   if (Alignment != Align(1))
3251     emitAlignment(Alignment);
3252 
3253   // Switch to a new section if this basic block must begin a section. The
3254   // entry block is always placed in the function section and is handled
3255   // separately.
3256   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3257     OutStreamer->SwitchSection(
3258         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3259                                                             MBB, TM));
3260     CurrentSectionBeginSym = MBB.getSymbol();
3261   }
3262 
3263   // If the block has its address taken, emit any labels that were used to
3264   // reference the block.  It is possible that there is more than one label
3265   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3266   // the references were generated.
3267   const BasicBlock *BB = MBB.getBasicBlock();
3268   if (MBB.hasAddressTaken()) {
3269     if (isVerbose())
3270       OutStreamer->AddComment("Block address taken");
3271 
3272     // MBBs can have their address taken as part of CodeGen without having
3273     // their corresponding BB's address taken in IR
3274     if (BB && BB->hasAddressTaken())
3275       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3276         OutStreamer->emitLabel(Sym);
3277   }
3278 
3279   // Print some verbose block comments.
3280   if (isVerbose()) {
3281     if (BB) {
3282       if (BB->hasName()) {
3283         BB->printAsOperand(OutStreamer->GetCommentOS(),
3284                            /*PrintType=*/false, BB->getModule());
3285         OutStreamer->GetCommentOS() << '\n';
3286       }
3287     }
3288 
3289     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3290     emitBasicBlockLoopComments(MBB, MLI, *this);
3291   }
3292 
3293   // Print the main label for the block.
3294   if (shouldEmitLabelForBasicBlock(MBB)) {
3295     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3296       OutStreamer->AddComment("Label of block must be emitted");
3297     OutStreamer->emitLabel(MBB.getSymbol());
3298   } else {
3299     if (isVerbose()) {
3300       // NOTE: Want this comment at start of line, don't emit with AddComment.
3301       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3302                                   false);
3303     }
3304   }
3305 
3306   if (MBB.isEHCatchretTarget() &&
3307       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3308     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3309   }
3310 
3311   // With BB sections, each basic block must handle CFI information on its own
3312   // if it begins a section (Entry block is handled separately by
3313   // AsmPrinterHandler::beginFunction).
3314   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3315     for (const HandlerInfo &HI : Handlers)
3316       HI.Handler->beginBasicBlock(MBB);
3317 }
3318 
3319 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3320   // Check if CFI information needs to be updated for this MBB with basic block
3321   // sections.
3322   if (MBB.isEndSection())
3323     for (const HandlerInfo &HI : Handlers)
3324       HI.Handler->endBasicBlock(MBB);
3325 }
3326 
3327 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3328                                 bool IsDefinition) const {
3329   MCSymbolAttr Attr = MCSA_Invalid;
3330 
3331   switch (Visibility) {
3332   default: break;
3333   case GlobalValue::HiddenVisibility:
3334     if (IsDefinition)
3335       Attr = MAI->getHiddenVisibilityAttr();
3336     else
3337       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3338     break;
3339   case GlobalValue::ProtectedVisibility:
3340     Attr = MAI->getProtectedVisibilityAttr();
3341     break;
3342   }
3343 
3344   if (Attr != MCSA_Invalid)
3345     OutStreamer->emitSymbolAttribute(Sym, Attr);
3346 }
3347 
3348 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3349     const MachineBasicBlock &MBB) const {
3350   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3351   // in the labels mode (option `=labels`) and every section beginning in the
3352   // sections mode (`=all` and `=list=`).
3353   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3354     return true;
3355   // A label is needed for any block with at least one predecessor (when that
3356   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3357   // entry, or if a label is forced).
3358   return !MBB.pred_empty() &&
3359          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3360           MBB.hasLabelMustBeEmitted());
3361 }
3362 
3363 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3364 /// exactly one predecessor and the control transfer mechanism between
3365 /// the predecessor and this block is a fall-through.
3366 bool AsmPrinter::
3367 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3368   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3369   // then nothing falls through to it.
3370   if (MBB->isEHPad() || MBB->pred_empty())
3371     return false;
3372 
3373   // If there isn't exactly one predecessor, it can't be a fall through.
3374   if (MBB->pred_size() > 1)
3375     return false;
3376 
3377   // The predecessor has to be immediately before this block.
3378   MachineBasicBlock *Pred = *MBB->pred_begin();
3379   if (!Pred->isLayoutSuccessor(MBB))
3380     return false;
3381 
3382   // If the block is completely empty, then it definitely does fall through.
3383   if (Pred->empty())
3384     return true;
3385 
3386   // Check the terminators in the previous blocks
3387   for (const auto &MI : Pred->terminators()) {
3388     // If it is not a simple branch, we are in a table somewhere.
3389     if (!MI.isBranch() || MI.isIndirectBranch())
3390       return false;
3391 
3392     // If we are the operands of one of the branches, this is not a fall
3393     // through. Note that targets with delay slots will usually bundle
3394     // terminators with the delay slot instruction.
3395     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3396       if (OP->isJTI())
3397         return false;
3398       if (OP->isMBB() && OP->getMBB() == MBB)
3399         return false;
3400     }
3401   }
3402 
3403   return true;
3404 }
3405 
3406 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3407   if (!S.usesMetadata())
3408     return nullptr;
3409 
3410   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3411   gcp_map_type::iterator GCPI = GCMap.find(&S);
3412   if (GCPI != GCMap.end())
3413     return GCPI->second.get();
3414 
3415   auto Name = S.getName();
3416 
3417   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3418        GCMetadataPrinterRegistry::entries())
3419     if (Name == GCMetaPrinter.getName()) {
3420       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3421       GMP->S = &S;
3422       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3423       return IterBool.first->second.get();
3424     }
3425 
3426   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3427 }
3428 
3429 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3430   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3431   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3432   bool NeedsDefault = false;
3433   if (MI->begin() == MI->end())
3434     // No GC strategy, use the default format.
3435     NeedsDefault = true;
3436   else
3437     for (auto &I : *MI) {
3438       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3439         if (MP->emitStackMaps(SM, *this))
3440           continue;
3441       // The strategy doesn't have printer or doesn't emit custom stack maps.
3442       // Use the default format.
3443       NeedsDefault = true;
3444     }
3445 
3446   if (NeedsDefault)
3447     SM.serializeToStackMapSection();
3448 }
3449 
3450 /// Pin vtable to this file.
3451 AsmPrinterHandler::~AsmPrinterHandler() = default;
3452 
3453 void AsmPrinterHandler::markFunctionEnd() {}
3454 
3455 // In the binary's "xray_instr_map" section, an array of these function entries
3456 // describes each instrumentation point.  When XRay patches your code, the index
3457 // into this table will be given to your handler as a patch point identifier.
3458 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3459   auto Kind8 = static_cast<uint8_t>(Kind);
3460   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3461   Out->emitBinaryData(
3462       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3463   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3464   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3465   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3466   Out->emitZeros(Padding);
3467 }
3468 
3469 void AsmPrinter::emitXRayTable() {
3470   if (Sleds.empty())
3471     return;
3472 
3473   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3474   const Function &F = MF->getFunction();
3475   MCSection *InstMap = nullptr;
3476   MCSection *FnSledIndex = nullptr;
3477   const Triple &TT = TM.getTargetTriple();
3478   // Use PC-relative addresses on all targets.
3479   if (TT.isOSBinFormatELF()) {
3480     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3481     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3482     StringRef GroupName;
3483     if (F.hasComdat()) {
3484       Flags |= ELF::SHF_GROUP;
3485       GroupName = F.getComdat()->getName();
3486     }
3487     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3488                                        Flags, 0, GroupName, F.hasComdat(),
3489                                        MCSection::NonUniqueID, LinkedToSym);
3490 
3491     if (!TM.Options.XRayOmitFunctionIndex)
3492       FnSledIndex = OutContext.getELFSection(
3493           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3494           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3495   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3496     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3497                                          SectionKind::getReadOnlyWithRel());
3498     if (!TM.Options.XRayOmitFunctionIndex)
3499       FnSledIndex = OutContext.getMachOSection(
3500           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3501   } else {
3502     llvm_unreachable("Unsupported target");
3503   }
3504 
3505   auto WordSizeBytes = MAI->getCodePointerSize();
3506 
3507   // Now we switch to the instrumentation map section. Because this is done
3508   // per-function, we are able to create an index entry that will represent the
3509   // range of sleds associated with a function.
3510   auto &Ctx = OutContext;
3511   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3512   OutStreamer->SwitchSection(InstMap);
3513   OutStreamer->emitLabel(SledsStart);
3514   for (const auto &Sled : Sleds) {
3515     MCSymbol *Dot = Ctx.createTempSymbol();
3516     OutStreamer->emitLabel(Dot);
3517     OutStreamer->emitValueImpl(
3518         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3519                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3520         WordSizeBytes);
3521     OutStreamer->emitValueImpl(
3522         MCBinaryExpr::createSub(
3523             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3524             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3525                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3526                                     Ctx),
3527             Ctx),
3528         WordSizeBytes);
3529     Sled.emit(WordSizeBytes, OutStreamer.get());
3530   }
3531   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3532   OutStreamer->emitLabel(SledsEnd);
3533 
3534   // We then emit a single entry in the index per function. We use the symbols
3535   // that bound the instrumentation map as the range for a specific function.
3536   // Each entry here will be 2 * word size aligned, as we're writing down two
3537   // pointers. This should work for both 32-bit and 64-bit platforms.
3538   if (FnSledIndex) {
3539     OutStreamer->SwitchSection(FnSledIndex);
3540     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3541     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3542     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3543     OutStreamer->SwitchSection(PrevSection);
3544   }
3545   Sleds.clear();
3546 }
3547 
3548 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3549                             SledKind Kind, uint8_t Version) {
3550   const Function &F = MI.getMF()->getFunction();
3551   auto Attr = F.getFnAttribute("function-instrument");
3552   bool LogArgs = F.hasFnAttribute("xray-log-args");
3553   bool AlwaysInstrument =
3554     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3555   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3556     Kind = SledKind::LOG_ARGS_ENTER;
3557   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3558                                        AlwaysInstrument, &F, Version});
3559 }
3560 
3561 void AsmPrinter::emitPatchableFunctionEntries() {
3562   const Function &F = MF->getFunction();
3563   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3564   (void)F.getFnAttribute("patchable-function-prefix")
3565       .getValueAsString()
3566       .getAsInteger(10, PatchableFunctionPrefix);
3567   (void)F.getFnAttribute("patchable-function-entry")
3568       .getValueAsString()
3569       .getAsInteger(10, PatchableFunctionEntry);
3570   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3571     return;
3572   const unsigned PointerSize = getPointerSize();
3573   if (TM.getTargetTriple().isOSBinFormatELF()) {
3574     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3575     const MCSymbolELF *LinkedToSym = nullptr;
3576     StringRef GroupName;
3577 
3578     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3579     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3580     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3581       Flags |= ELF::SHF_LINK_ORDER;
3582       if (F.hasComdat()) {
3583         Flags |= ELF::SHF_GROUP;
3584         GroupName = F.getComdat()->getName();
3585       }
3586       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3587     }
3588     OutStreamer->SwitchSection(OutContext.getELFSection(
3589         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3590         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3591     emitAlignment(Align(PointerSize));
3592     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3593   }
3594 }
3595 
3596 uint16_t AsmPrinter::getDwarfVersion() const {
3597   return OutStreamer->getContext().getDwarfVersion();
3598 }
3599 
3600 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3601   OutStreamer->getContext().setDwarfVersion(Version);
3602 }
3603 
3604 bool AsmPrinter::isDwarf64() const {
3605   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3606 }
3607 
3608 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3609   return dwarf::getDwarfOffsetByteSize(
3610       OutStreamer->getContext().getDwarfFormat());
3611 }
3612 
3613 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3614   return dwarf::getUnitLengthFieldByteSize(
3615       OutStreamer->getContext().getDwarfFormat());
3616 }
3617