1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/RemarkStreamer.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCSectionXCOFF.h" 95 #include "llvm/MC/MCStreamer.h" 96 #include "llvm/MC/MCSubtargetInfo.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/MC/MCSymbolELF.h" 99 #include "llvm/MC/MCSymbolXCOFF.h" 100 #include "llvm/MC/MCTargetOptions.h" 101 #include "llvm/MC/MCValue.h" 102 #include "llvm/MC/SectionKind.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Remarks/Remark.h" 105 #include "llvm/Remarks/RemarkFormat.h" 106 #include "llvm/Remarks/RemarkStringTable.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/Format.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/Path.h" 114 #include "llvm/Support/TargetRegistry.h" 115 #include "llvm/Support/Timer.h" 116 #include "llvm/Support/raw_ostream.h" 117 #include "llvm/Target/TargetLoweringObjectFile.h" 118 #include "llvm/Target/TargetMachine.h" 119 #include "llvm/Target/TargetOptions.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cinttypes> 123 #include <cstdint> 124 #include <iterator> 125 #include <limits> 126 #include <memory> 127 #include <string> 128 #include <utility> 129 #include <vector> 130 131 using namespace llvm; 132 133 #define DEBUG_TYPE "asm-printer" 134 135 static const char *const DWARFGroupName = "dwarf"; 136 static const char *const DWARFGroupDescription = "DWARF Emission"; 137 static const char *const DbgTimerName = "emit"; 138 static const char *const DbgTimerDescription = "Debug Info Emission"; 139 static const char *const EHTimerName = "write_exception"; 140 static const char *const EHTimerDescription = "DWARF Exception Writer"; 141 static const char *const CFGuardName = "Control Flow Guard"; 142 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 143 static const char *const CodeViewLineTablesGroupName = "linetables"; 144 static const char *const CodeViewLineTablesGroupDescription = 145 "CodeView Line Tables"; 146 147 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 148 149 static cl::opt<bool> EnableRemarksSection( 150 "remarks-section", 151 cl::desc("Emit a section containing remark diagnostics metadata"), 152 cl::init(false)); 153 154 char AsmPrinter::ID = 0; 155 156 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 157 158 static gcp_map_type &getGCMap(void *&P) { 159 if (!P) 160 P = new gcp_map_type(); 161 return *(gcp_map_type*)P; 162 } 163 164 /// getGVAlignment - Return the alignment to use for the specified global 165 /// value. This rounds up to the preferred alignment if possible and legal. 166 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 167 Align InAlign) { 168 Align Alignment; 169 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 170 Alignment = Align(DL.getPreferredAlignment(GVar)); 171 172 // If InAlign is specified, round it to it. 173 if (InAlign > Alignment) 174 Alignment = InAlign; 175 176 // If the GV has a specified alignment, take it into account. 177 const MaybeAlign GVAlign(GV->getAlignment()); 178 if (!GVAlign) 179 return Alignment; 180 181 assert(GVAlign && "GVAlign must be set"); 182 183 // If the GVAlign is larger than NumBits, or if we are required to obey 184 // NumBits because the GV has an assigned section, obey it. 185 if (*GVAlign > Alignment || GV->hasSection()) 186 Alignment = *GVAlign; 187 return Alignment; 188 } 189 190 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 191 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 192 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 193 VerboseAsm = OutStreamer->isVerboseAsm(); 194 } 195 196 AsmPrinter::~AsmPrinter() { 197 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 198 199 if (GCMetadataPrinters) { 200 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 201 202 delete &GCMap; 203 GCMetadataPrinters = nullptr; 204 } 205 } 206 207 bool AsmPrinter::isPositionIndependent() const { 208 return TM.isPositionIndependent(); 209 } 210 211 /// getFunctionNumber - Return a unique ID for the current function. 212 unsigned AsmPrinter::getFunctionNumber() const { 213 return MF->getFunctionNumber(); 214 } 215 216 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 217 return *TM.getObjFileLowering(); 218 } 219 220 const DataLayout &AsmPrinter::getDataLayout() const { 221 return MMI->getModule()->getDataLayout(); 222 } 223 224 // Do not use the cached DataLayout because some client use it without a Module 225 // (dsymutil, llvm-dwarfdump). 226 unsigned AsmPrinter::getPointerSize() const { 227 return TM.getPointerSize(0); // FIXME: Default address space 228 } 229 230 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 231 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 232 return MF->getSubtarget<MCSubtargetInfo>(); 233 } 234 235 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 236 S.EmitInstruction(Inst, getSubtargetInfo()); 237 } 238 239 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 240 assert(DD && "Dwarf debug file is not defined."); 241 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 242 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 243 } 244 245 /// getCurrentSection() - Return the current section we are emitting to. 246 const MCSection *AsmPrinter::getCurrentSection() const { 247 return OutStreamer->getCurrentSectionOnly(); 248 } 249 250 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 251 AU.setPreservesAll(); 252 MachineFunctionPass::getAnalysisUsage(AU); 253 AU.addRequired<MachineModuleInfo>(); 254 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 255 AU.addRequired<GCModuleInfo>(); 256 } 257 258 bool AsmPrinter::doInitialization(Module &M) { 259 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 260 261 // Initialize TargetLoweringObjectFile. 262 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 263 .Initialize(OutContext, TM); 264 265 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 266 .getModuleMetadata(M); 267 268 OutStreamer->InitSections(false); 269 270 // Emit the version-min deployment target directive if needed. 271 // 272 // FIXME: If we end up with a collection of these sorts of Darwin-specific 273 // or ELF-specific things, it may make sense to have a platform helper class 274 // that will work with the target helper class. For now keep it here, as the 275 // alternative is duplicated code in each of the target asm printers that 276 // use the directive, where it would need the same conditionalization 277 // anyway. 278 const Triple &Target = TM.getTargetTriple(); 279 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 280 281 // Allow the target to emit any magic that it wants at the start of the file. 282 EmitStartOfAsmFile(M); 283 284 // Very minimal debug info. It is ignored if we emit actual debug info. If we 285 // don't, this at least helps the user find where a global came from. 286 if (MAI->hasSingleParameterDotFile()) { 287 // .file "foo.c" 288 OutStreamer->EmitFileDirective( 289 llvm::sys::path::filename(M.getSourceFileName())); 290 } 291 292 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 293 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 294 for (auto &I : *MI) 295 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 296 MP->beginAssembly(M, *MI, *this); 297 298 // Emit module-level inline asm if it exists. 299 if (!M.getModuleInlineAsm().empty()) { 300 // We're at the module level. Construct MCSubtarget from the default CPU 301 // and target triple. 302 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 303 TM.getTargetTriple().str(), TM.getTargetCPU(), 304 TM.getTargetFeatureString())); 305 OutStreamer->AddComment("Start of file scope inline assembly"); 306 OutStreamer->AddBlankLine(); 307 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 308 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 309 OutStreamer->AddComment("End of file scope inline assembly"); 310 OutStreamer->AddBlankLine(); 311 } 312 313 if (MAI->doesSupportDebugInformation()) { 314 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 315 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 316 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 317 DbgTimerName, DbgTimerDescription, 318 CodeViewLineTablesGroupName, 319 CodeViewLineTablesGroupDescription); 320 } 321 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 322 DD = new DwarfDebug(this, &M); 323 DD->beginModule(); 324 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 325 DbgTimerDescription, DWARFGroupName, 326 DWARFGroupDescription); 327 } 328 } 329 330 switch (MAI->getExceptionHandlingType()) { 331 case ExceptionHandling::SjLj: 332 case ExceptionHandling::DwarfCFI: 333 case ExceptionHandling::ARM: 334 isCFIMoveForDebugging = true; 335 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 336 break; 337 for (auto &F: M.getFunctionList()) { 338 // If the module contains any function with unwind data, 339 // .eh_frame has to be emitted. 340 // Ignore functions that won't get emitted. 341 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 342 isCFIMoveForDebugging = false; 343 break; 344 } 345 } 346 break; 347 default: 348 isCFIMoveForDebugging = false; 349 break; 350 } 351 352 EHStreamer *ES = nullptr; 353 switch (MAI->getExceptionHandlingType()) { 354 case ExceptionHandling::None: 355 break; 356 case ExceptionHandling::SjLj: 357 case ExceptionHandling::DwarfCFI: 358 ES = new DwarfCFIException(this); 359 break; 360 case ExceptionHandling::ARM: 361 ES = new ARMException(this); 362 break; 363 case ExceptionHandling::WinEH: 364 switch (MAI->getWinEHEncodingType()) { 365 default: llvm_unreachable("unsupported unwinding information encoding"); 366 case WinEH::EncodingType::Invalid: 367 break; 368 case WinEH::EncodingType::X86: 369 case WinEH::EncodingType::Itanium: 370 ES = new WinException(this); 371 break; 372 } 373 break; 374 case ExceptionHandling::Wasm: 375 ES = new WasmException(this); 376 break; 377 } 378 if (ES) 379 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 380 EHTimerDescription, DWARFGroupName, 381 DWARFGroupDescription); 382 383 if (mdconst::extract_or_null<ConstantInt>( 384 MMI->getModule()->getModuleFlag("cfguardtable"))) 385 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 386 CFGuardDescription, DWARFGroupName, 387 DWARFGroupDescription); 388 389 return false; 390 } 391 392 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 393 if (!MAI.hasWeakDefCanBeHiddenDirective()) 394 return false; 395 396 return GV->canBeOmittedFromSymbolTable(); 397 } 398 399 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 400 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 401 switch (Linkage) { 402 case GlobalValue::CommonLinkage: 403 case GlobalValue::LinkOnceAnyLinkage: 404 case GlobalValue::LinkOnceODRLinkage: 405 case GlobalValue::WeakAnyLinkage: 406 case GlobalValue::WeakODRLinkage: 407 if (MAI->hasWeakDefDirective()) { 408 // .globl _foo 409 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 410 411 if (!canBeHidden(GV, *MAI)) 412 // .weak_definition _foo 413 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 414 else 415 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 416 } else if (MAI->hasLinkOnceDirective()) { 417 // .globl _foo 418 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 419 //NOTE: linkonce is handled by the section the symbol was assigned to. 420 } else { 421 // .weak _foo 422 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 423 } 424 return; 425 case GlobalValue::ExternalLinkage: 426 // If external, declare as a global symbol: .globl _foo 427 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 428 return; 429 case GlobalValue::PrivateLinkage: 430 return; 431 case GlobalValue::InternalLinkage: 432 if (MAI->hasDotLGloblDirective()) 433 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal); 434 return; 435 case GlobalValue::AppendingLinkage: 436 case GlobalValue::AvailableExternallyLinkage: 437 case GlobalValue::ExternalWeakLinkage: 438 llvm_unreachable("Should never emit this"); 439 } 440 llvm_unreachable("Unknown linkage type!"); 441 } 442 443 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 444 const GlobalValue *GV) const { 445 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 446 } 447 448 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 449 return TM.getSymbol(GV); 450 } 451 452 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 453 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 454 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 455 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 456 "No emulated TLS variables in the common section"); 457 458 // Never emit TLS variable xyz in emulated TLS model. 459 // The initialization value is in __emutls_t.xyz instead of xyz. 460 if (IsEmuTLSVar) 461 return; 462 463 if (GV->hasInitializer()) { 464 // Check to see if this is a special global used by LLVM, if so, emit it. 465 if (EmitSpecialLLVMGlobal(GV)) 466 return; 467 468 // Skip the emission of global equivalents. The symbol can be emitted later 469 // on by emitGlobalGOTEquivs in case it turns out to be needed. 470 if (GlobalGOTEquivs.count(getSymbol(GV))) 471 return; 472 473 if (isVerbose()) { 474 // When printing the control variable __emutls_v.*, 475 // we don't need to print the original TLS variable name. 476 GV->printAsOperand(OutStreamer->GetCommentOS(), 477 /*PrintType=*/false, GV->getParent()); 478 OutStreamer->GetCommentOS() << '\n'; 479 } 480 } 481 482 MCSymbol *GVSym = getSymbol(GV); 483 MCSymbol *EmittedSym = GVSym; 484 485 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 486 // attributes. 487 // GV's or GVSym's attributes will be used for the EmittedSym. 488 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 489 490 if (!GV->hasInitializer()) // External globals require no extra code. 491 return; 492 493 GVSym->redefineIfPossible(); 494 if (GVSym->isDefined() || GVSym->isVariable()) 495 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 496 "' is already defined"); 497 498 if (MAI->hasDotTypeDotSizeDirective()) 499 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 500 501 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 502 503 const DataLayout &DL = GV->getParent()->getDataLayout(); 504 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 505 506 // If the alignment is specified, we *must* obey it. Overaligning a global 507 // with a specified alignment is a prompt way to break globals emitted to 508 // sections and expected to be contiguous (e.g. ObjC metadata). 509 const Align Alignment = getGVAlignment(GV, DL); 510 511 for (const HandlerInfo &HI : Handlers) { 512 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 513 HI.TimerGroupName, HI.TimerGroupDescription, 514 TimePassesIsEnabled); 515 HI.Handler->setSymbolSize(GVSym, Size); 516 } 517 518 // Handle common symbols 519 if (GVKind.isCommon()) { 520 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 521 // .comm _foo, 42, 4 522 const bool SupportsAlignment = 523 getObjFileLowering().getCommDirectiveSupportsAlignment(); 524 OutStreamer->EmitCommonSymbol(GVSym, Size, 525 SupportsAlignment ? Alignment.value() : 0); 526 return; 527 } 528 529 // Determine to which section this global should be emitted. 530 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 531 532 // If we have a bss global going to a section that supports the 533 // zerofill directive, do so here. 534 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 535 TheSection->isVirtualSection()) { 536 if (Size == 0) 537 Size = 1; // zerofill of 0 bytes is undefined. 538 EmitLinkage(GV, GVSym); 539 // .zerofill __DATA, __bss, _foo, 400, 5 540 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value()); 541 return; 542 } 543 544 // If this is a BSS local symbol and we are emitting in the BSS 545 // section use .lcomm/.comm directive. 546 if (GVKind.isBSSLocal() && 547 getObjFileLowering().getBSSSection() == TheSection) { 548 if (Size == 0) 549 Size = 1; // .comm Foo, 0 is undefined, avoid it. 550 551 // Use .lcomm only if it supports user-specified alignment. 552 // Otherwise, while it would still be correct to use .lcomm in some 553 // cases (e.g. when Align == 1), the external assembler might enfore 554 // some -unknown- default alignment behavior, which could cause 555 // spurious differences between external and integrated assembler. 556 // Prefer to simply fall back to .local / .comm in this case. 557 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 558 // .lcomm _foo, 42 559 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value()); 560 return; 561 } 562 563 // .local _foo 564 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 565 // .comm _foo, 42, 4 566 const bool SupportsAlignment = 567 getObjFileLowering().getCommDirectiveSupportsAlignment(); 568 OutStreamer->EmitCommonSymbol(GVSym, Size, 569 SupportsAlignment ? Alignment.value() : 0); 570 return; 571 } 572 573 // Handle thread local data for mach-o which requires us to output an 574 // additional structure of data and mangle the original symbol so that we 575 // can reference it later. 576 // 577 // TODO: This should become an "emit thread local global" method on TLOF. 578 // All of this macho specific stuff should be sunk down into TLOFMachO and 579 // stuff like "TLSExtraDataSection" should no longer be part of the parent 580 // TLOF class. This will also make it more obvious that stuff like 581 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 582 // specific code. 583 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 584 // Emit the .tbss symbol 585 MCSymbol *MangSym = 586 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 587 588 if (GVKind.isThreadBSS()) { 589 TheSection = getObjFileLowering().getTLSBSSSection(); 590 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 591 } else if (GVKind.isThreadData()) { 592 OutStreamer->SwitchSection(TheSection); 593 594 EmitAlignment(Alignment, GV); 595 OutStreamer->EmitLabel(MangSym); 596 597 EmitGlobalConstant(GV->getParent()->getDataLayout(), 598 GV->getInitializer()); 599 } 600 601 OutStreamer->AddBlankLine(); 602 603 // Emit the variable struct for the runtime. 604 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 605 606 OutStreamer->SwitchSection(TLVSect); 607 // Emit the linkage here. 608 EmitLinkage(GV, GVSym); 609 OutStreamer->EmitLabel(GVSym); 610 611 // Three pointers in size: 612 // - __tlv_bootstrap - used to make sure support exists 613 // - spare pointer, used when mapped by the runtime 614 // - pointer to mangled symbol above with initializer 615 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 616 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 617 PtrSize); 618 OutStreamer->EmitIntValue(0, PtrSize); 619 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 620 621 OutStreamer->AddBlankLine(); 622 return; 623 } 624 625 MCSymbol *EmittedInitSym = GVSym; 626 627 OutStreamer->SwitchSection(TheSection); 628 629 EmitLinkage(GV, EmittedInitSym); 630 EmitAlignment(Alignment, GV); 631 632 OutStreamer->EmitLabel(EmittedInitSym); 633 634 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 635 636 if (MAI->hasDotTypeDotSizeDirective()) 637 // .size foo, 42 638 OutStreamer->emitELFSize(EmittedInitSym, 639 MCConstantExpr::create(Size, OutContext)); 640 641 OutStreamer->AddBlankLine(); 642 } 643 644 /// Emit the directive and value for debug thread local expression 645 /// 646 /// \p Value - The value to emit. 647 /// \p Size - The size of the integer (in bytes) to emit. 648 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 649 OutStreamer->EmitValue(Value, Size); 650 } 651 652 /// EmitFunctionHeader - This method emits the header for the current 653 /// function. 654 void AsmPrinter::EmitFunctionHeader() { 655 const Function &F = MF->getFunction(); 656 657 if (isVerbose()) 658 OutStreamer->GetCommentOS() 659 << "-- Begin function " 660 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 661 662 // Print out constants referenced by the function 663 EmitConstantPool(); 664 665 // Print the 'header' of function. 666 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 667 EmitVisibility(CurrentFnSym, F.getVisibility()); 668 669 if (MAI->needsFunctionDescriptors() && 670 F.getLinkage() != GlobalValue::InternalLinkage) 671 EmitLinkage(&F, CurrentFnDescSym); 672 673 EmitLinkage(&F, CurrentFnSym); 674 if (MAI->hasFunctionAlignment()) 675 EmitAlignment(MF->getAlignment(), &F); 676 677 if (MAI->hasDotTypeDotSizeDirective()) 678 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 679 680 if (F.hasFnAttribute(Attribute::Cold)) 681 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 682 683 if (isVerbose()) { 684 F.printAsOperand(OutStreamer->GetCommentOS(), 685 /*PrintType=*/false, F.getParent()); 686 OutStreamer->GetCommentOS() << '\n'; 687 } 688 689 // Emit the prefix data. 690 if (F.hasPrefixData()) { 691 if (MAI->hasSubsectionsViaSymbols()) { 692 // Preserving prefix data on platforms which use subsections-via-symbols 693 // is a bit tricky. Here we introduce a symbol for the prefix data 694 // and use the .alt_entry attribute to mark the function's real entry point 695 // as an alternative entry point to the prefix-data symbol. 696 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 697 OutStreamer->EmitLabel(PrefixSym); 698 699 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 700 701 // Emit an .alt_entry directive for the actual function symbol. 702 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 703 } else { 704 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 705 } 706 } 707 708 // Emit the function descriptor. This is a virtual function to allow targets 709 // to emit their specific function descriptor. 710 if (MAI->needsFunctionDescriptors()) 711 EmitFunctionDescriptor(); 712 713 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 714 // their wild and crazy things as required. 715 EmitFunctionEntryLabel(); 716 717 // If the function had address-taken blocks that got deleted, then we have 718 // references to the dangling symbols. Emit them at the start of the function 719 // so that we don't get references to undefined symbols. 720 std::vector<MCSymbol*> DeadBlockSyms; 721 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 722 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 723 OutStreamer->AddComment("Address taken block that was later removed"); 724 OutStreamer->EmitLabel(DeadBlockSyms[i]); 725 } 726 727 if (CurrentFnBegin) { 728 if (MAI->useAssignmentForEHBegin()) { 729 MCSymbol *CurPos = OutContext.createTempSymbol(); 730 OutStreamer->EmitLabel(CurPos); 731 OutStreamer->EmitAssignment(CurrentFnBegin, 732 MCSymbolRefExpr::create(CurPos, OutContext)); 733 } else { 734 OutStreamer->EmitLabel(CurrentFnBegin); 735 } 736 } 737 738 // Emit pre-function debug and/or EH information. 739 for (const HandlerInfo &HI : Handlers) { 740 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 741 HI.TimerGroupDescription, TimePassesIsEnabled); 742 HI.Handler->beginFunction(MF); 743 } 744 745 // Emit the prologue data. 746 if (F.hasPrologueData()) 747 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 748 } 749 750 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 751 /// function. This can be overridden by targets as required to do custom stuff. 752 void AsmPrinter::EmitFunctionEntryLabel() { 753 CurrentFnSym->redefineIfPossible(); 754 755 // The function label could have already been emitted if two symbols end up 756 // conflicting due to asm renaming. Detect this and emit an error. 757 if (CurrentFnSym->isVariable()) 758 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 759 "' is a protected alias"); 760 if (CurrentFnSym->isDefined()) 761 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 762 "' label emitted multiple times to assembly file"); 763 764 return OutStreamer->EmitLabel(CurrentFnSym); 765 } 766 767 /// emitComments - Pretty-print comments for instructions. 768 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 769 const MachineFunction *MF = MI.getMF(); 770 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 771 772 // Check for spills and reloads 773 774 // We assume a single instruction only has a spill or reload, not 775 // both. 776 Optional<unsigned> Size; 777 if ((Size = MI.getRestoreSize(TII))) { 778 CommentOS << *Size << "-byte Reload\n"; 779 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 780 if (*Size) 781 CommentOS << *Size << "-byte Folded Reload\n"; 782 } else if ((Size = MI.getSpillSize(TII))) { 783 CommentOS << *Size << "-byte Spill\n"; 784 } else if ((Size = MI.getFoldedSpillSize(TII))) { 785 if (*Size) 786 CommentOS << *Size << "-byte Folded Spill\n"; 787 } 788 789 // Check for spill-induced copies 790 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 791 CommentOS << " Reload Reuse\n"; 792 } 793 794 /// emitImplicitDef - This method emits the specified machine instruction 795 /// that is an implicit def. 796 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 797 Register RegNo = MI->getOperand(0).getReg(); 798 799 SmallString<128> Str; 800 raw_svector_ostream OS(Str); 801 OS << "implicit-def: " 802 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 803 804 OutStreamer->AddComment(OS.str()); 805 OutStreamer->AddBlankLine(); 806 } 807 808 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 809 std::string Str; 810 raw_string_ostream OS(Str); 811 OS << "kill:"; 812 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 813 const MachineOperand &Op = MI->getOperand(i); 814 assert(Op.isReg() && "KILL instruction must have only register operands"); 815 OS << ' ' << (Op.isDef() ? "def " : "killed ") 816 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 817 } 818 AP.OutStreamer->AddComment(OS.str()); 819 AP.OutStreamer->AddBlankLine(); 820 } 821 822 /// emitDebugValueComment - This method handles the target-independent form 823 /// of DBG_VALUE, returning true if it was able to do so. A false return 824 /// means the target will need to handle MI in EmitInstruction. 825 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 826 // This code handles only the 4-operand target-independent form. 827 if (MI->getNumOperands() != 4) 828 return false; 829 830 SmallString<128> Str; 831 raw_svector_ostream OS(Str); 832 OS << "DEBUG_VALUE: "; 833 834 const DILocalVariable *V = MI->getDebugVariable(); 835 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 836 StringRef Name = SP->getName(); 837 if (!Name.empty()) 838 OS << Name << ":"; 839 } 840 OS << V->getName(); 841 OS << " <- "; 842 843 // The second operand is only an offset if it's an immediate. 844 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 845 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 846 const DIExpression *Expr = MI->getDebugExpression(); 847 if (Expr->getNumElements()) { 848 OS << '['; 849 bool NeedSep = false; 850 for (auto Op : Expr->expr_ops()) { 851 if (NeedSep) 852 OS << ", "; 853 else 854 NeedSep = true; 855 OS << dwarf::OperationEncodingString(Op.getOp()); 856 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 857 OS << ' ' << Op.getArg(I); 858 } 859 OS << "] "; 860 } 861 862 // Register or immediate value. Register 0 means undef. 863 if (MI->getOperand(0).isFPImm()) { 864 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 865 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 866 OS << (double)APF.convertToFloat(); 867 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 868 OS << APF.convertToDouble(); 869 } else { 870 // There is no good way to print long double. Convert a copy to 871 // double. Ah well, it's only a comment. 872 bool ignored; 873 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 874 &ignored); 875 OS << "(long double) " << APF.convertToDouble(); 876 } 877 } else if (MI->getOperand(0).isImm()) { 878 OS << MI->getOperand(0).getImm(); 879 } else if (MI->getOperand(0).isCImm()) { 880 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 881 } else { 882 unsigned Reg; 883 if (MI->getOperand(0).isReg()) { 884 Reg = MI->getOperand(0).getReg(); 885 } else { 886 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 887 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 888 Offset += TFI->getFrameIndexReference(*AP.MF, 889 MI->getOperand(0).getIndex(), Reg); 890 MemLoc = true; 891 } 892 if (Reg == 0) { 893 // Suppress offset, it is not meaningful here. 894 OS << "undef"; 895 // NOTE: Want this comment at start of line, don't emit with AddComment. 896 AP.OutStreamer->emitRawComment(OS.str()); 897 return true; 898 } 899 if (MemLoc) 900 OS << '['; 901 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 902 } 903 904 if (MemLoc) 905 OS << '+' << Offset << ']'; 906 907 // NOTE: Want this comment at start of line, don't emit with AddComment. 908 AP.OutStreamer->emitRawComment(OS.str()); 909 return true; 910 } 911 912 /// This method handles the target-independent form of DBG_LABEL, returning 913 /// true if it was able to do so. A false return means the target will need 914 /// to handle MI in EmitInstruction. 915 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 916 if (MI->getNumOperands() != 1) 917 return false; 918 919 SmallString<128> Str; 920 raw_svector_ostream OS(Str); 921 OS << "DEBUG_LABEL: "; 922 923 const DILabel *V = MI->getDebugLabel(); 924 if (auto *SP = dyn_cast<DISubprogram>( 925 V->getScope()->getNonLexicalBlockFileScope())) { 926 StringRef Name = SP->getName(); 927 if (!Name.empty()) 928 OS << Name << ":"; 929 } 930 OS << V->getName(); 931 932 // NOTE: Want this comment at start of line, don't emit with AddComment. 933 AP.OutStreamer->emitRawComment(OS.str()); 934 return true; 935 } 936 937 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 938 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 939 MF->getFunction().needsUnwindTableEntry()) 940 return CFI_M_EH; 941 942 if (MMI->hasDebugInfo()) 943 return CFI_M_Debug; 944 945 return CFI_M_None; 946 } 947 948 bool AsmPrinter::needsSEHMoves() { 949 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 950 } 951 952 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 953 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 954 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 955 ExceptionHandlingType != ExceptionHandling::ARM) 956 return; 957 958 if (needsCFIMoves() == CFI_M_None) 959 return; 960 961 // If there is no "real" instruction following this CFI instruction, skip 962 // emitting it; it would be beyond the end of the function's FDE range. 963 auto *MBB = MI.getParent(); 964 auto I = std::next(MI.getIterator()); 965 while (I != MBB->end() && I->isTransient()) 966 ++I; 967 if (I == MBB->instr_end() && 968 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 969 return; 970 971 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 972 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 973 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 974 emitCFIInstruction(CFI); 975 } 976 977 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 978 // The operands are the MCSymbol and the frame offset of the allocation. 979 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 980 int FrameOffset = MI.getOperand(1).getImm(); 981 982 // Emit a symbol assignment. 983 OutStreamer->EmitAssignment(FrameAllocSym, 984 MCConstantExpr::create(FrameOffset, OutContext)); 985 } 986 987 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 988 if (!MF.getTarget().Options.EmitStackSizeSection) 989 return; 990 991 MCSection *StackSizeSection = 992 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 993 if (!StackSizeSection) 994 return; 995 996 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 997 // Don't emit functions with dynamic stack allocations. 998 if (FrameInfo.hasVarSizedObjects()) 999 return; 1000 1001 OutStreamer->PushSection(); 1002 OutStreamer->SwitchSection(StackSizeSection); 1003 1004 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1005 uint64_t StackSize = FrameInfo.getStackSize(); 1006 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1007 OutStreamer->EmitULEB128IntValue(StackSize); 1008 1009 OutStreamer->PopSection(); 1010 } 1011 1012 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1013 MachineModuleInfo *MMI) { 1014 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1015 return true; 1016 1017 // We might emit an EH table that uses function begin and end labels even if 1018 // we don't have any landingpads. 1019 if (!MF.getFunction().hasPersonalityFn()) 1020 return false; 1021 return !isNoOpWithoutInvoke( 1022 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1023 } 1024 1025 /// EmitFunctionBody - This method emits the body and trailer for a 1026 /// function. 1027 void AsmPrinter::EmitFunctionBody() { 1028 EmitFunctionHeader(); 1029 1030 // Emit target-specific gunk before the function body. 1031 EmitFunctionBodyStart(); 1032 1033 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1034 1035 if (isVerbose()) { 1036 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1037 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1038 if (!MDT) { 1039 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1040 OwnedMDT->getBase().recalculate(*MF); 1041 MDT = OwnedMDT.get(); 1042 } 1043 1044 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1045 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1046 if (!MLI) { 1047 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1048 OwnedMLI->getBase().analyze(MDT->getBase()); 1049 MLI = OwnedMLI.get(); 1050 } 1051 } 1052 1053 // Print out code for the function. 1054 bool HasAnyRealCode = false; 1055 int NumInstsInFunction = 0; 1056 for (auto &MBB : *MF) { 1057 // Print a label for the basic block. 1058 EmitBasicBlockStart(MBB); 1059 for (auto &MI : MBB) { 1060 // Print the assembly for the instruction. 1061 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1062 !MI.isDebugInstr()) { 1063 HasAnyRealCode = true; 1064 ++NumInstsInFunction; 1065 } 1066 1067 // If there is a pre-instruction symbol, emit a label for it here. 1068 if (MCSymbol *S = MI.getPreInstrSymbol()) 1069 OutStreamer->EmitLabel(S); 1070 1071 if (ShouldPrintDebugScopes) { 1072 for (const HandlerInfo &HI : Handlers) { 1073 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1074 HI.TimerGroupName, HI.TimerGroupDescription, 1075 TimePassesIsEnabled); 1076 HI.Handler->beginInstruction(&MI); 1077 } 1078 } 1079 1080 if (isVerbose()) 1081 emitComments(MI, OutStreamer->GetCommentOS()); 1082 1083 switch (MI.getOpcode()) { 1084 case TargetOpcode::CFI_INSTRUCTION: 1085 emitCFIInstruction(MI); 1086 break; 1087 case TargetOpcode::LOCAL_ESCAPE: 1088 emitFrameAlloc(MI); 1089 break; 1090 case TargetOpcode::ANNOTATION_LABEL: 1091 case TargetOpcode::EH_LABEL: 1092 case TargetOpcode::GC_LABEL: 1093 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1094 break; 1095 case TargetOpcode::INLINEASM: 1096 case TargetOpcode::INLINEASM_BR: 1097 EmitInlineAsm(&MI); 1098 break; 1099 case TargetOpcode::DBG_VALUE: 1100 if (isVerbose()) { 1101 if (!emitDebugValueComment(&MI, *this)) 1102 EmitInstruction(&MI); 1103 } 1104 break; 1105 case TargetOpcode::DBG_LABEL: 1106 if (isVerbose()) { 1107 if (!emitDebugLabelComment(&MI, *this)) 1108 EmitInstruction(&MI); 1109 } 1110 break; 1111 case TargetOpcode::IMPLICIT_DEF: 1112 if (isVerbose()) emitImplicitDef(&MI); 1113 break; 1114 case TargetOpcode::KILL: 1115 if (isVerbose()) emitKill(&MI, *this); 1116 break; 1117 default: 1118 EmitInstruction(&MI); 1119 break; 1120 } 1121 1122 // If there is a post-instruction symbol, emit a label for it here. 1123 if (MCSymbol *S = MI.getPostInstrSymbol()) 1124 OutStreamer->EmitLabel(S); 1125 1126 if (ShouldPrintDebugScopes) { 1127 for (const HandlerInfo &HI : Handlers) { 1128 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1129 HI.TimerGroupName, HI.TimerGroupDescription, 1130 TimePassesIsEnabled); 1131 HI.Handler->endInstruction(); 1132 } 1133 } 1134 } 1135 1136 EmitBasicBlockEnd(MBB); 1137 } 1138 1139 EmittedInsts += NumInstsInFunction; 1140 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1141 MF->getFunction().getSubprogram(), 1142 &MF->front()); 1143 R << ore::NV("NumInstructions", NumInstsInFunction) 1144 << " instructions in function"; 1145 ORE->emit(R); 1146 1147 // If the function is empty and the object file uses .subsections_via_symbols, 1148 // then we need to emit *something* to the function body to prevent the 1149 // labels from collapsing together. Just emit a noop. 1150 // Similarly, don't emit empty functions on Windows either. It can lead to 1151 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1152 // after linking, causing the kernel not to load the binary: 1153 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1154 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1155 const Triple &TT = TM.getTargetTriple(); 1156 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1157 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1158 MCInst Noop; 1159 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1160 1161 // Targets can opt-out of emitting the noop here by leaving the opcode 1162 // unspecified. 1163 if (Noop.getOpcode()) { 1164 OutStreamer->AddComment("avoids zero-length function"); 1165 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1166 } 1167 } 1168 1169 const Function &F = MF->getFunction(); 1170 for (const auto &BB : F) { 1171 if (!BB.hasAddressTaken()) 1172 continue; 1173 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1174 if (Sym->isDefined()) 1175 continue; 1176 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1177 OutStreamer->EmitLabel(Sym); 1178 } 1179 1180 // Emit target-specific gunk after the function body. 1181 EmitFunctionBodyEnd(); 1182 1183 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1184 MAI->hasDotTypeDotSizeDirective()) { 1185 // Create a symbol for the end of function. 1186 CurrentFnEnd = createTempSymbol("func_end"); 1187 OutStreamer->EmitLabel(CurrentFnEnd); 1188 } 1189 1190 // If the target wants a .size directive for the size of the function, emit 1191 // it. 1192 if (MAI->hasDotTypeDotSizeDirective()) { 1193 // We can get the size as difference between the function label and the 1194 // temp label. 1195 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1196 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1197 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1198 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1199 } 1200 1201 for (const HandlerInfo &HI : Handlers) { 1202 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1203 HI.TimerGroupDescription, TimePassesIsEnabled); 1204 HI.Handler->markFunctionEnd(); 1205 } 1206 1207 // Print out jump tables referenced by the function. 1208 EmitJumpTableInfo(); 1209 1210 // Emit post-function debug and/or EH information. 1211 for (const HandlerInfo &HI : Handlers) { 1212 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1213 HI.TimerGroupDescription, TimePassesIsEnabled); 1214 HI.Handler->endFunction(MF); 1215 } 1216 1217 // Emit section containing stack size metadata. 1218 emitStackSizeSection(*MF); 1219 1220 if (isVerbose()) 1221 OutStreamer->GetCommentOS() << "-- End function\n"; 1222 1223 OutStreamer->AddBlankLine(); 1224 } 1225 1226 /// Compute the number of Global Variables that uses a Constant. 1227 static unsigned getNumGlobalVariableUses(const Constant *C) { 1228 if (!C) 1229 return 0; 1230 1231 if (isa<GlobalVariable>(C)) 1232 return 1; 1233 1234 unsigned NumUses = 0; 1235 for (auto *CU : C->users()) 1236 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1237 1238 return NumUses; 1239 } 1240 1241 /// Only consider global GOT equivalents if at least one user is a 1242 /// cstexpr inside an initializer of another global variables. Also, don't 1243 /// handle cstexpr inside instructions. During global variable emission, 1244 /// candidates are skipped and are emitted later in case at least one cstexpr 1245 /// isn't replaced by a PC relative GOT entry access. 1246 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1247 unsigned &NumGOTEquivUsers) { 1248 // Global GOT equivalents are unnamed private globals with a constant 1249 // pointer initializer to another global symbol. They must point to a 1250 // GlobalVariable or Function, i.e., as GlobalValue. 1251 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1252 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1253 !isa<GlobalValue>(GV->getOperand(0))) 1254 return false; 1255 1256 // To be a got equivalent, at least one of its users need to be a constant 1257 // expression used by another global variable. 1258 for (auto *U : GV->users()) 1259 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1260 1261 return NumGOTEquivUsers > 0; 1262 } 1263 1264 /// Unnamed constant global variables solely contaning a pointer to 1265 /// another globals variable is equivalent to a GOT table entry; it contains the 1266 /// the address of another symbol. Optimize it and replace accesses to these 1267 /// "GOT equivalents" by using the GOT entry for the final global instead. 1268 /// Compute GOT equivalent candidates among all global variables to avoid 1269 /// emitting them if possible later on, after it use is replaced by a GOT entry 1270 /// access. 1271 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1272 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1273 return; 1274 1275 for (const auto &G : M.globals()) { 1276 unsigned NumGOTEquivUsers = 0; 1277 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1278 continue; 1279 1280 const MCSymbol *GOTEquivSym = getSymbol(&G); 1281 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1282 } 1283 } 1284 1285 /// Constant expressions using GOT equivalent globals may not be eligible 1286 /// for PC relative GOT entry conversion, in such cases we need to emit such 1287 /// globals we previously omitted in EmitGlobalVariable. 1288 void AsmPrinter::emitGlobalGOTEquivs() { 1289 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1290 return; 1291 1292 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1293 for (auto &I : GlobalGOTEquivs) { 1294 const GlobalVariable *GV = I.second.first; 1295 unsigned Cnt = I.second.second; 1296 if (Cnt) 1297 FailedCandidates.push_back(GV); 1298 } 1299 GlobalGOTEquivs.clear(); 1300 1301 for (auto *GV : FailedCandidates) 1302 EmitGlobalVariable(GV); 1303 } 1304 1305 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1306 const GlobalIndirectSymbol& GIS) { 1307 MCSymbol *Name = getSymbol(&GIS); 1308 1309 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1310 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1311 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1312 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1313 else 1314 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1315 1316 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1317 1318 // Treat bitcasts of functions as functions also. This is important at least 1319 // on WebAssembly where object and function addresses can't alias each other. 1320 if (!IsFunction) 1321 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1322 if (CE->getOpcode() == Instruction::BitCast) 1323 IsFunction = 1324 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1325 1326 // Set the symbol type to function if the alias has a function type. 1327 // This affects codegen when the aliasee is not a function. 1328 if (IsFunction) 1329 OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1330 ? MCSA_ELF_TypeIndFunction 1331 : MCSA_ELF_TypeFunction); 1332 1333 EmitVisibility(Name, GIS.getVisibility()); 1334 1335 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1336 1337 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1338 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1339 1340 // Emit the directives as assignments aka .set: 1341 OutStreamer->EmitAssignment(Name, Expr); 1342 1343 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1344 // If the aliasee does not correspond to a symbol in the output, i.e. the 1345 // alias is not of an object or the aliased object is private, then set the 1346 // size of the alias symbol from the type of the alias. We don't do this in 1347 // other situations as the alias and aliasee having differing types but same 1348 // size may be intentional. 1349 const GlobalObject *BaseObject = GA->getBaseObject(); 1350 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1351 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1352 const DataLayout &DL = M.getDataLayout(); 1353 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1354 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1355 } 1356 } 1357 } 1358 1359 void AsmPrinter::emitRemarksSection(Module &M) { 1360 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1361 if (!RS) 1362 return; 1363 remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer(); 1364 1365 Optional<SmallString<128>> Filename; 1366 if (Optional<StringRef> FilenameRef = RS->getFilename()) { 1367 Filename = *FilenameRef; 1368 sys::fs::make_absolute(*Filename); 1369 assert(!Filename->empty() && "The filename can't be empty."); 1370 } 1371 1372 std::string Buf; 1373 raw_string_ostream OS(Buf); 1374 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1375 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1376 : RemarkSerializer.metaSerializer(OS); 1377 MetaSerializer->emit(); 1378 1379 // Switch to the right section: .remarks/__remarks. 1380 MCSection *RemarksSection = 1381 OutContext.getObjectFileInfo()->getRemarksSection(); 1382 OutStreamer->SwitchSection(RemarksSection); 1383 1384 OutStreamer->EmitBinaryData(OS.str()); 1385 } 1386 1387 bool AsmPrinter::doFinalization(Module &M) { 1388 // Set the MachineFunction to nullptr so that we can catch attempted 1389 // accesses to MF specific features at the module level and so that 1390 // we can conditionalize accesses based on whether or not it is nullptr. 1391 MF = nullptr; 1392 1393 // Gather all GOT equivalent globals in the module. We really need two 1394 // passes over the globals: one to compute and another to avoid its emission 1395 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1396 // where the got equivalent shows up before its use. 1397 computeGlobalGOTEquivs(M); 1398 1399 // Emit global variables. 1400 for (const auto &G : M.globals()) 1401 EmitGlobalVariable(&G); 1402 1403 // Emit remaining GOT equivalent globals. 1404 emitGlobalGOTEquivs(); 1405 1406 // Emit visibility info for declarations 1407 for (const Function &F : M) { 1408 if (!F.isDeclarationForLinker()) 1409 continue; 1410 GlobalValue::VisibilityTypes V = F.getVisibility(); 1411 if (V == GlobalValue::DefaultVisibility) 1412 continue; 1413 1414 MCSymbol *Name = getSymbol(&F); 1415 EmitVisibility(Name, V, false); 1416 } 1417 1418 // Emit the remarks section contents. 1419 // FIXME: Figure out when is the safest time to emit this section. It should 1420 // not come after debug info. 1421 if (EnableRemarksSection) 1422 emitRemarksSection(M); 1423 1424 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1425 1426 TLOF.emitModuleMetadata(*OutStreamer, M); 1427 1428 if (TM.getTargetTriple().isOSBinFormatELF()) { 1429 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1430 1431 // Output stubs for external and common global variables. 1432 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1433 if (!Stubs.empty()) { 1434 OutStreamer->SwitchSection(TLOF.getDataSection()); 1435 const DataLayout &DL = M.getDataLayout(); 1436 1437 EmitAlignment(Align(DL.getPointerSize())); 1438 for (const auto &Stub : Stubs) { 1439 OutStreamer->EmitLabel(Stub.first); 1440 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1441 DL.getPointerSize()); 1442 } 1443 } 1444 } 1445 1446 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1447 MachineModuleInfoCOFF &MMICOFF = 1448 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1449 1450 // Output stubs for external and common global variables. 1451 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1452 if (!Stubs.empty()) { 1453 const DataLayout &DL = M.getDataLayout(); 1454 1455 for (const auto &Stub : Stubs) { 1456 SmallString<256> SectionName = StringRef(".rdata$"); 1457 SectionName += Stub.first->getName(); 1458 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1459 SectionName, 1460 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1461 COFF::IMAGE_SCN_LNK_COMDAT, 1462 SectionKind::getReadOnly(), Stub.first->getName(), 1463 COFF::IMAGE_COMDAT_SELECT_ANY)); 1464 EmitAlignment(Align(DL.getPointerSize())); 1465 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1466 OutStreamer->EmitLabel(Stub.first); 1467 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1468 DL.getPointerSize()); 1469 } 1470 } 1471 } 1472 1473 // Finalize debug and EH information. 1474 for (const HandlerInfo &HI : Handlers) { 1475 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1476 HI.TimerGroupDescription, TimePassesIsEnabled); 1477 HI.Handler->endModule(); 1478 } 1479 Handlers.clear(); 1480 DD = nullptr; 1481 1482 // If the target wants to know about weak references, print them all. 1483 if (MAI->getWeakRefDirective()) { 1484 // FIXME: This is not lazy, it would be nice to only print weak references 1485 // to stuff that is actually used. Note that doing so would require targets 1486 // to notice uses in operands (due to constant exprs etc). This should 1487 // happen with the MC stuff eventually. 1488 1489 // Print out module-level global objects here. 1490 for (const auto &GO : M.global_objects()) { 1491 if (!GO.hasExternalWeakLinkage()) 1492 continue; 1493 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1494 } 1495 } 1496 1497 OutStreamer->AddBlankLine(); 1498 1499 // Print aliases in topological order, that is, for each alias a = b, 1500 // b must be printed before a. 1501 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1502 // such an order to generate correct TOC information. 1503 SmallVector<const GlobalAlias *, 16> AliasStack; 1504 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1505 for (const auto &Alias : M.aliases()) { 1506 for (const GlobalAlias *Cur = &Alias; Cur; 1507 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1508 if (!AliasVisited.insert(Cur).second) 1509 break; 1510 AliasStack.push_back(Cur); 1511 } 1512 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1513 emitGlobalIndirectSymbol(M, *AncestorAlias); 1514 AliasStack.clear(); 1515 } 1516 for (const auto &IFunc : M.ifuncs()) 1517 emitGlobalIndirectSymbol(M, IFunc); 1518 1519 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1520 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1521 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1522 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1523 MP->finishAssembly(M, *MI, *this); 1524 1525 // Emit llvm.ident metadata in an '.ident' directive. 1526 EmitModuleIdents(M); 1527 1528 // Emit bytes for llvm.commandline metadata. 1529 EmitModuleCommandLines(M); 1530 1531 // Emit __morestack address if needed for indirect calls. 1532 if (MMI->usesMorestackAddr()) { 1533 unsigned Align = 1; 1534 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1535 getDataLayout(), SectionKind::getReadOnly(), 1536 /*C=*/nullptr, Align); 1537 OutStreamer->SwitchSection(ReadOnlySection); 1538 1539 MCSymbol *AddrSymbol = 1540 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1541 OutStreamer->EmitLabel(AddrSymbol); 1542 1543 unsigned PtrSize = MAI->getCodePointerSize(); 1544 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1545 PtrSize); 1546 } 1547 1548 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1549 // split-stack is used. 1550 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1551 OutStreamer->SwitchSection( 1552 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1553 if (MMI->hasNosplitStack()) 1554 OutStreamer->SwitchSection( 1555 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1556 } 1557 1558 // If we don't have any trampolines, then we don't require stack memory 1559 // to be executable. Some targets have a directive to declare this. 1560 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1561 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1562 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1563 OutStreamer->SwitchSection(S); 1564 1565 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1566 // Emit /EXPORT: flags for each exported global as necessary. 1567 const auto &TLOF = getObjFileLowering(); 1568 std::string Flags; 1569 1570 for (const GlobalValue &GV : M.global_values()) { 1571 raw_string_ostream OS(Flags); 1572 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1573 OS.flush(); 1574 if (!Flags.empty()) { 1575 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1576 OutStreamer->EmitBytes(Flags); 1577 } 1578 Flags.clear(); 1579 } 1580 1581 // Emit /INCLUDE: flags for each used global as necessary. 1582 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1583 assert(LU->hasInitializer() && 1584 "expected llvm.used to have an initializer"); 1585 assert(isa<ArrayType>(LU->getValueType()) && 1586 "expected llvm.used to be an array type"); 1587 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1588 for (const Value *Op : A->operands()) { 1589 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1590 // Global symbols with internal or private linkage are not visible to 1591 // the linker, and thus would cause an error when the linker tried to 1592 // preserve the symbol due to the `/include:` directive. 1593 if (GV->hasLocalLinkage()) 1594 continue; 1595 1596 raw_string_ostream OS(Flags); 1597 TLOF.emitLinkerFlagsForUsed(OS, GV); 1598 OS.flush(); 1599 1600 if (!Flags.empty()) { 1601 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1602 OutStreamer->EmitBytes(Flags); 1603 } 1604 Flags.clear(); 1605 } 1606 } 1607 } 1608 } 1609 1610 if (TM.Options.EmitAddrsig) { 1611 // Emit address-significance attributes for all globals. 1612 OutStreamer->EmitAddrsig(); 1613 for (const GlobalValue &GV : M.global_values()) 1614 if (!GV.use_empty() && !GV.isThreadLocal() && 1615 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1616 !GV.hasAtLeastLocalUnnamedAddr()) 1617 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1618 } 1619 1620 // Emit symbol partition specifications (ELF only). 1621 if (TM.getTargetTriple().isOSBinFormatELF()) { 1622 unsigned UniqueID = 0; 1623 for (const GlobalValue &GV : M.global_values()) { 1624 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1625 GV.getVisibility() != GlobalValue::DefaultVisibility) 1626 continue; 1627 1628 OutStreamer->SwitchSection(OutContext.getELFSection( 1629 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1630 OutStreamer->EmitBytes(GV.getPartition()); 1631 OutStreamer->EmitZeros(1); 1632 OutStreamer->EmitValue( 1633 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1634 MAI->getCodePointerSize()); 1635 } 1636 } 1637 1638 // Allow the target to emit any magic that it wants at the end of the file, 1639 // after everything else has gone out. 1640 EmitEndOfAsmFile(M); 1641 1642 MMI = nullptr; 1643 1644 OutStreamer->Finish(); 1645 OutStreamer->reset(); 1646 OwnedMLI.reset(); 1647 OwnedMDT.reset(); 1648 1649 return false; 1650 } 1651 1652 MCSymbol *AsmPrinter::getCurExceptionSym() { 1653 if (!CurExceptionSym) 1654 CurExceptionSym = createTempSymbol("exception"); 1655 return CurExceptionSym; 1656 } 1657 1658 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1659 this->MF = &MF; 1660 1661 // Get the function symbol. 1662 if (MAI->needsFunctionDescriptors()) { 1663 assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only" 1664 " supported on AIX."); 1665 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1666 " initalized first."); 1667 1668 // Get the function entry point symbol. 1669 CurrentFnSym = 1670 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); 1671 1672 const Function &F = MF.getFunction(); 1673 MCSectionXCOFF *FnEntryPointSec = 1674 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); 1675 // Set the containing csect. 1676 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); 1677 } else { 1678 CurrentFnSym = getSymbol(&MF.getFunction()); 1679 } 1680 1681 CurrentFnSymForSize = CurrentFnSym; 1682 CurrentFnBegin = nullptr; 1683 CurExceptionSym = nullptr; 1684 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1685 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1686 MF.getTarget().Options.EmitStackSizeSection) { 1687 CurrentFnBegin = createTempSymbol("func_begin"); 1688 if (NeedsLocalForSize) 1689 CurrentFnSymForSize = CurrentFnBegin; 1690 } 1691 1692 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1693 } 1694 1695 namespace { 1696 1697 // Keep track the alignment, constpool entries per Section. 1698 struct SectionCPs { 1699 MCSection *S; 1700 unsigned Alignment; 1701 SmallVector<unsigned, 4> CPEs; 1702 1703 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1704 }; 1705 1706 } // end anonymous namespace 1707 1708 /// EmitConstantPool - Print to the current output stream assembly 1709 /// representations of the constants in the constant pool MCP. This is 1710 /// used to print out constants which have been "spilled to memory" by 1711 /// the code generator. 1712 void AsmPrinter::EmitConstantPool() { 1713 const MachineConstantPool *MCP = MF->getConstantPool(); 1714 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1715 if (CP.empty()) return; 1716 1717 // Calculate sections for constant pool entries. We collect entries to go into 1718 // the same section together to reduce amount of section switch statements. 1719 SmallVector<SectionCPs, 4> CPSections; 1720 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1721 const MachineConstantPoolEntry &CPE = CP[i]; 1722 unsigned Align = CPE.getAlignment(); 1723 1724 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1725 1726 const Constant *C = nullptr; 1727 if (!CPE.isMachineConstantPoolEntry()) 1728 C = CPE.Val.ConstVal; 1729 1730 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1731 Kind, C, Align); 1732 1733 // The number of sections are small, just do a linear search from the 1734 // last section to the first. 1735 bool Found = false; 1736 unsigned SecIdx = CPSections.size(); 1737 while (SecIdx != 0) { 1738 if (CPSections[--SecIdx].S == S) { 1739 Found = true; 1740 break; 1741 } 1742 } 1743 if (!Found) { 1744 SecIdx = CPSections.size(); 1745 CPSections.push_back(SectionCPs(S, Align)); 1746 } 1747 1748 if (Align > CPSections[SecIdx].Alignment) 1749 CPSections[SecIdx].Alignment = Align; 1750 CPSections[SecIdx].CPEs.push_back(i); 1751 } 1752 1753 // Now print stuff into the calculated sections. 1754 const MCSection *CurSection = nullptr; 1755 unsigned Offset = 0; 1756 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1757 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1758 unsigned CPI = CPSections[i].CPEs[j]; 1759 MCSymbol *Sym = GetCPISymbol(CPI); 1760 if (!Sym->isUndefined()) 1761 continue; 1762 1763 if (CurSection != CPSections[i].S) { 1764 OutStreamer->SwitchSection(CPSections[i].S); 1765 EmitAlignment(Align(CPSections[i].Alignment)); 1766 CurSection = CPSections[i].S; 1767 Offset = 0; 1768 } 1769 1770 MachineConstantPoolEntry CPE = CP[CPI]; 1771 1772 // Emit inter-object padding for alignment. 1773 unsigned AlignMask = CPE.getAlignment() - 1; 1774 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1775 OutStreamer->EmitZeros(NewOffset - Offset); 1776 1777 Type *Ty = CPE.getType(); 1778 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1779 1780 OutStreamer->EmitLabel(Sym); 1781 if (CPE.isMachineConstantPoolEntry()) 1782 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1783 else 1784 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1785 } 1786 } 1787 } 1788 1789 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1790 /// by the current function to the current output stream. 1791 void AsmPrinter::EmitJumpTableInfo() { 1792 const DataLayout &DL = MF->getDataLayout(); 1793 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1794 if (!MJTI) return; 1795 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1796 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1797 if (JT.empty()) return; 1798 1799 // Pick the directive to use to print the jump table entries, and switch to 1800 // the appropriate section. 1801 const Function &F = MF->getFunction(); 1802 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1803 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1804 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1805 F); 1806 if (JTInDiffSection) { 1807 // Drop it in the readonly section. 1808 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1809 OutStreamer->SwitchSection(ReadOnlySection); 1810 } 1811 1812 EmitAlignment(Align(MJTI->getEntryAlignment(DL))); 1813 1814 // Jump tables in code sections are marked with a data_region directive 1815 // where that's supported. 1816 if (!JTInDiffSection) 1817 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1818 1819 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1820 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1821 1822 // If this jump table was deleted, ignore it. 1823 if (JTBBs.empty()) continue; 1824 1825 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1826 /// emit a .set directive for each unique entry. 1827 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1828 MAI->doesSetDirectiveSuppressReloc()) { 1829 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1830 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1831 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1832 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1833 const MachineBasicBlock *MBB = JTBBs[ii]; 1834 if (!EmittedSets.insert(MBB).second) 1835 continue; 1836 1837 // .set LJTSet, LBB32-base 1838 const MCExpr *LHS = 1839 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1840 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1841 MCBinaryExpr::createSub(LHS, Base, 1842 OutContext)); 1843 } 1844 } 1845 1846 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1847 // before each jump table. The first label is never referenced, but tells 1848 // the assembler and linker the extents of the jump table object. The 1849 // second label is actually referenced by the code. 1850 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1851 // FIXME: This doesn't have to have any specific name, just any randomly 1852 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1853 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1854 1855 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1856 1857 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1858 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1859 } 1860 if (!JTInDiffSection) 1861 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1862 } 1863 1864 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1865 /// current stream. 1866 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1867 const MachineBasicBlock *MBB, 1868 unsigned UID) const { 1869 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1870 const MCExpr *Value = nullptr; 1871 switch (MJTI->getEntryKind()) { 1872 case MachineJumpTableInfo::EK_Inline: 1873 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1874 case MachineJumpTableInfo::EK_Custom32: 1875 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1876 MJTI, MBB, UID, OutContext); 1877 break; 1878 case MachineJumpTableInfo::EK_BlockAddress: 1879 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1880 // .word LBB123 1881 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1882 break; 1883 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1884 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1885 // with a relocation as gp-relative, e.g.: 1886 // .gprel32 LBB123 1887 MCSymbol *MBBSym = MBB->getSymbol(); 1888 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1889 return; 1890 } 1891 1892 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1893 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1894 // with a relocation as gp-relative, e.g.: 1895 // .gpdword LBB123 1896 MCSymbol *MBBSym = MBB->getSymbol(); 1897 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1898 return; 1899 } 1900 1901 case MachineJumpTableInfo::EK_LabelDifference32: { 1902 // Each entry is the address of the block minus the address of the jump 1903 // table. This is used for PIC jump tables where gprel32 is not supported. 1904 // e.g.: 1905 // .word LBB123 - LJTI1_2 1906 // If the .set directive avoids relocations, this is emitted as: 1907 // .set L4_5_set_123, LBB123 - LJTI1_2 1908 // .word L4_5_set_123 1909 if (MAI->doesSetDirectiveSuppressReloc()) { 1910 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1911 OutContext); 1912 break; 1913 } 1914 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1915 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1916 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1917 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1918 break; 1919 } 1920 } 1921 1922 assert(Value && "Unknown entry kind!"); 1923 1924 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1925 OutStreamer->EmitValue(Value, EntrySize); 1926 } 1927 1928 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1929 /// special global used by LLVM. If so, emit it and return true, otherwise 1930 /// do nothing and return false. 1931 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1932 if (GV->getName() == "llvm.used") { 1933 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1934 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1935 return true; 1936 } 1937 1938 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1939 if (GV->getSection() == "llvm.metadata" || 1940 GV->hasAvailableExternallyLinkage()) 1941 return true; 1942 1943 if (!GV->hasAppendingLinkage()) return false; 1944 1945 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1946 1947 if (GV->getName() == "llvm.global_ctors") { 1948 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1949 /* isCtor */ true); 1950 1951 return true; 1952 } 1953 1954 if (GV->getName() == "llvm.global_dtors") { 1955 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1956 /* isCtor */ false); 1957 1958 return true; 1959 } 1960 1961 report_fatal_error("unknown special variable"); 1962 } 1963 1964 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1965 /// global in the specified llvm.used list. 1966 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1967 // Should be an array of 'i8*'. 1968 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1969 const GlobalValue *GV = 1970 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1971 if (GV) 1972 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1973 } 1974 } 1975 1976 namespace { 1977 1978 struct Structor { 1979 int Priority = 0; 1980 Constant *Func = nullptr; 1981 GlobalValue *ComdatKey = nullptr; 1982 1983 Structor() = default; 1984 }; 1985 1986 } // end anonymous namespace 1987 1988 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1989 /// priority. 1990 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1991 bool isCtor) { 1992 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 1993 // init priority. 1994 if (!isa<ConstantArray>(List)) return; 1995 1996 // Sanity check the structors list. 1997 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1998 if (!InitList) return; // Not an array! 1999 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2000 if (!ETy || ETy->getNumElements() != 3 || 2001 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2002 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2003 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2004 return; // Not (int, ptr, ptr). 2005 2006 // Gather the structors in a form that's convenient for sorting by priority. 2007 SmallVector<Structor, 8> Structors; 2008 for (Value *O : InitList->operands()) { 2009 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2010 if (!CS) continue; // Malformed. 2011 if (CS->getOperand(1)->isNullValue()) 2012 break; // Found a null terminator, skip the rest. 2013 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2014 if (!Priority) continue; // Malformed. 2015 Structors.push_back(Structor()); 2016 Structor &S = Structors.back(); 2017 S.Priority = Priority->getLimitedValue(65535); 2018 S.Func = CS->getOperand(1); 2019 if (!CS->getOperand(2)->isNullValue()) 2020 S.ComdatKey = 2021 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2022 } 2023 2024 // Emit the function pointers in the target-specific order 2025 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2026 return L.Priority < R.Priority; 2027 }); 2028 const Align Align = DL.getPointerPrefAlignment(); 2029 for (Structor &S : Structors) { 2030 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2031 const MCSymbol *KeySym = nullptr; 2032 if (GlobalValue *GV = S.ComdatKey) { 2033 if (GV->isDeclarationForLinker()) 2034 // If the associated variable is not defined in this module 2035 // (it might be available_externally, or have been an 2036 // available_externally definition that was dropped by the 2037 // EliminateAvailableExternally pass), some other TU 2038 // will provide its dynamic initializer. 2039 continue; 2040 2041 KeySym = getSymbol(GV); 2042 } 2043 MCSection *OutputSection = 2044 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2045 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2046 OutStreamer->SwitchSection(OutputSection); 2047 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2048 EmitAlignment(Align); 2049 EmitXXStructor(DL, S.Func); 2050 } 2051 } 2052 2053 void AsmPrinter::EmitModuleIdents(Module &M) { 2054 if (!MAI->hasIdentDirective()) 2055 return; 2056 2057 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2058 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2059 const MDNode *N = NMD->getOperand(i); 2060 assert(N->getNumOperands() == 1 && 2061 "llvm.ident metadata entry can have only one operand"); 2062 const MDString *S = cast<MDString>(N->getOperand(0)); 2063 OutStreamer->EmitIdent(S->getString()); 2064 } 2065 } 2066 } 2067 2068 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2069 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2070 if (!CommandLine) 2071 return; 2072 2073 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2074 if (!NMD || !NMD->getNumOperands()) 2075 return; 2076 2077 OutStreamer->PushSection(); 2078 OutStreamer->SwitchSection(CommandLine); 2079 OutStreamer->EmitZeros(1); 2080 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2081 const MDNode *N = NMD->getOperand(i); 2082 assert(N->getNumOperands() == 1 && 2083 "llvm.commandline metadata entry can have only one operand"); 2084 const MDString *S = cast<MDString>(N->getOperand(0)); 2085 OutStreamer->EmitBytes(S->getString()); 2086 OutStreamer->EmitZeros(1); 2087 } 2088 OutStreamer->PopSection(); 2089 } 2090 2091 //===--------------------------------------------------------------------===// 2092 // Emission and print routines 2093 // 2094 2095 /// Emit a byte directive and value. 2096 /// 2097 void AsmPrinter::emitInt8(int Value) const { 2098 OutStreamer->EmitIntValue(Value, 1); 2099 } 2100 2101 /// Emit a short directive and value. 2102 void AsmPrinter::emitInt16(int Value) const { 2103 OutStreamer->EmitIntValue(Value, 2); 2104 } 2105 2106 /// Emit a long directive and value. 2107 void AsmPrinter::emitInt32(int Value) const { 2108 OutStreamer->EmitIntValue(Value, 4); 2109 } 2110 2111 /// Emit a long long directive and value. 2112 void AsmPrinter::emitInt64(uint64_t Value) const { 2113 OutStreamer->EmitIntValue(Value, 8); 2114 } 2115 2116 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2117 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2118 /// .set if it avoids relocations. 2119 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2120 unsigned Size) const { 2121 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2122 } 2123 2124 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2125 /// where the size in bytes of the directive is specified by Size and Label 2126 /// specifies the label. This implicitly uses .set if it is available. 2127 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2128 unsigned Size, 2129 bool IsSectionRelative) const { 2130 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2131 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2132 if (Size > 4) 2133 OutStreamer->EmitZeros(Size - 4); 2134 return; 2135 } 2136 2137 // Emit Label+Offset (or just Label if Offset is zero) 2138 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2139 if (Offset) 2140 Expr = MCBinaryExpr::createAdd( 2141 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2142 2143 OutStreamer->EmitValue(Expr, Size); 2144 } 2145 2146 //===----------------------------------------------------------------------===// 2147 2148 // EmitAlignment - Emit an alignment directive to the specified power of 2149 // two boundary. If a global value is specified, and if that global has 2150 // an explicit alignment requested, it will override the alignment request 2151 // if required for correctness. 2152 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const { 2153 if (GV) 2154 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2155 2156 if (Alignment == Align::None()) 2157 return; // 1-byte aligned: no need to emit alignment. 2158 2159 if (getCurrentSection()->getKind().isText()) 2160 OutStreamer->EmitCodeAlignment(Alignment.value()); 2161 else 2162 OutStreamer->EmitValueToAlignment(Alignment.value()); 2163 } 2164 2165 //===----------------------------------------------------------------------===// 2166 // Constant emission. 2167 //===----------------------------------------------------------------------===// 2168 2169 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2170 MCContext &Ctx = OutContext; 2171 2172 if (CV->isNullValue() || isa<UndefValue>(CV)) 2173 return MCConstantExpr::create(0, Ctx); 2174 2175 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2176 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2177 2178 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2179 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2180 2181 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2182 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2183 2184 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2185 if (!CE) { 2186 llvm_unreachable("Unknown constant value to lower!"); 2187 } 2188 2189 switch (CE->getOpcode()) { 2190 default: 2191 // If the code isn't optimized, there may be outstanding folding 2192 // opportunities. Attempt to fold the expression using DataLayout as a 2193 // last resort before giving up. 2194 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2195 if (C != CE) 2196 return lowerConstant(C); 2197 2198 // Otherwise report the problem to the user. 2199 { 2200 std::string S; 2201 raw_string_ostream OS(S); 2202 OS << "Unsupported expression in static initializer: "; 2203 CE->printAsOperand(OS, /*PrintType=*/false, 2204 !MF ? nullptr : MF->getFunction().getParent()); 2205 report_fatal_error(OS.str()); 2206 } 2207 case Instruction::GetElementPtr: { 2208 // Generate a symbolic expression for the byte address 2209 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2210 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2211 2212 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2213 if (!OffsetAI) 2214 return Base; 2215 2216 int64_t Offset = OffsetAI.getSExtValue(); 2217 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2218 Ctx); 2219 } 2220 2221 case Instruction::Trunc: 2222 // We emit the value and depend on the assembler to truncate the generated 2223 // expression properly. This is important for differences between 2224 // blockaddress labels. Since the two labels are in the same function, it 2225 // is reasonable to treat their delta as a 32-bit value. 2226 LLVM_FALLTHROUGH; 2227 case Instruction::BitCast: 2228 return lowerConstant(CE->getOperand(0)); 2229 2230 case Instruction::IntToPtr: { 2231 const DataLayout &DL = getDataLayout(); 2232 2233 // Handle casts to pointers by changing them into casts to the appropriate 2234 // integer type. This promotes constant folding and simplifies this code. 2235 Constant *Op = CE->getOperand(0); 2236 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2237 false/*ZExt*/); 2238 return lowerConstant(Op); 2239 } 2240 2241 case Instruction::PtrToInt: { 2242 const DataLayout &DL = getDataLayout(); 2243 2244 // Support only foldable casts to/from pointers that can be eliminated by 2245 // changing the pointer to the appropriately sized integer type. 2246 Constant *Op = CE->getOperand(0); 2247 Type *Ty = CE->getType(); 2248 2249 const MCExpr *OpExpr = lowerConstant(Op); 2250 2251 // We can emit the pointer value into this slot if the slot is an 2252 // integer slot equal to the size of the pointer. 2253 // 2254 // If the pointer is larger than the resultant integer, then 2255 // as with Trunc just depend on the assembler to truncate it. 2256 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2257 return OpExpr; 2258 2259 // Otherwise the pointer is smaller than the resultant integer, mask off 2260 // the high bits so we are sure to get a proper truncation if the input is 2261 // a constant expr. 2262 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2263 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2264 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2265 } 2266 2267 case Instruction::Sub: { 2268 GlobalValue *LHSGV; 2269 APInt LHSOffset; 2270 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2271 getDataLayout())) { 2272 GlobalValue *RHSGV; 2273 APInt RHSOffset; 2274 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2275 getDataLayout())) { 2276 const MCExpr *RelocExpr = 2277 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2278 if (!RelocExpr) 2279 RelocExpr = MCBinaryExpr::createSub( 2280 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2281 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2282 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2283 if (Addend != 0) 2284 RelocExpr = MCBinaryExpr::createAdd( 2285 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2286 return RelocExpr; 2287 } 2288 } 2289 } 2290 // else fallthrough 2291 LLVM_FALLTHROUGH; 2292 2293 // The MC library also has a right-shift operator, but it isn't consistently 2294 // signed or unsigned between different targets. 2295 case Instruction::Add: 2296 case Instruction::Mul: 2297 case Instruction::SDiv: 2298 case Instruction::SRem: 2299 case Instruction::Shl: 2300 case Instruction::And: 2301 case Instruction::Or: 2302 case Instruction::Xor: { 2303 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2304 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2305 switch (CE->getOpcode()) { 2306 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2307 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2308 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2309 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2310 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2311 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2312 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2313 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2314 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2315 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2316 } 2317 } 2318 } 2319 } 2320 2321 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2322 AsmPrinter &AP, 2323 const Constant *BaseCV = nullptr, 2324 uint64_t Offset = 0); 2325 2326 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2327 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2328 2329 /// isRepeatedByteSequence - Determine whether the given value is 2330 /// composed of a repeated sequence of identical bytes and return the 2331 /// byte value. If it is not a repeated sequence, return -1. 2332 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2333 StringRef Data = V->getRawDataValues(); 2334 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2335 char C = Data[0]; 2336 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2337 if (Data[i] != C) return -1; 2338 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2339 } 2340 2341 /// isRepeatedByteSequence - Determine whether the given value is 2342 /// composed of a repeated sequence of identical bytes and return the 2343 /// byte value. If it is not a repeated sequence, return -1. 2344 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2345 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2346 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2347 assert(Size % 8 == 0); 2348 2349 // Extend the element to take zero padding into account. 2350 APInt Value = CI->getValue().zextOrSelf(Size); 2351 if (!Value.isSplat(8)) 2352 return -1; 2353 2354 return Value.zextOrTrunc(8).getZExtValue(); 2355 } 2356 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2357 // Make sure all array elements are sequences of the same repeated 2358 // byte. 2359 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2360 Constant *Op0 = CA->getOperand(0); 2361 int Byte = isRepeatedByteSequence(Op0, DL); 2362 if (Byte == -1) 2363 return -1; 2364 2365 // All array elements must be equal. 2366 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2367 if (CA->getOperand(i) != Op0) 2368 return -1; 2369 return Byte; 2370 } 2371 2372 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2373 return isRepeatedByteSequence(CDS); 2374 2375 return -1; 2376 } 2377 2378 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2379 const ConstantDataSequential *CDS, 2380 AsmPrinter &AP) { 2381 // See if we can aggregate this into a .fill, if so, emit it as such. 2382 int Value = isRepeatedByteSequence(CDS, DL); 2383 if (Value != -1) { 2384 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2385 // Don't emit a 1-byte object as a .fill. 2386 if (Bytes > 1) 2387 return AP.OutStreamer->emitFill(Bytes, Value); 2388 } 2389 2390 // If this can be emitted with .ascii/.asciz, emit it as such. 2391 if (CDS->isString()) 2392 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2393 2394 // Otherwise, emit the values in successive locations. 2395 unsigned ElementByteSize = CDS->getElementByteSize(); 2396 if (isa<IntegerType>(CDS->getElementType())) { 2397 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2398 if (AP.isVerbose()) 2399 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2400 CDS->getElementAsInteger(i)); 2401 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2402 ElementByteSize); 2403 } 2404 } else { 2405 Type *ET = CDS->getElementType(); 2406 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2407 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2408 } 2409 2410 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2411 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2412 CDS->getNumElements(); 2413 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2414 if (unsigned Padding = Size - EmittedSize) 2415 AP.OutStreamer->EmitZeros(Padding); 2416 } 2417 2418 static void emitGlobalConstantArray(const DataLayout &DL, 2419 const ConstantArray *CA, AsmPrinter &AP, 2420 const Constant *BaseCV, uint64_t Offset) { 2421 // See if we can aggregate some values. Make sure it can be 2422 // represented as a series of bytes of the constant value. 2423 int Value = isRepeatedByteSequence(CA, DL); 2424 2425 if (Value != -1) { 2426 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2427 AP.OutStreamer->emitFill(Bytes, Value); 2428 } 2429 else { 2430 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2431 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2432 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2433 } 2434 } 2435 } 2436 2437 static void emitGlobalConstantVector(const DataLayout &DL, 2438 const ConstantVector *CV, AsmPrinter &AP) { 2439 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2440 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2441 2442 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2443 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2444 CV->getType()->getNumElements(); 2445 if (unsigned Padding = Size - EmittedSize) 2446 AP.OutStreamer->EmitZeros(Padding); 2447 } 2448 2449 static void emitGlobalConstantStruct(const DataLayout &DL, 2450 const ConstantStruct *CS, AsmPrinter &AP, 2451 const Constant *BaseCV, uint64_t Offset) { 2452 // Print the fields in successive locations. Pad to align if needed! 2453 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2454 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2455 uint64_t SizeSoFar = 0; 2456 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2457 const Constant *Field = CS->getOperand(i); 2458 2459 // Print the actual field value. 2460 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2461 2462 // Check if padding is needed and insert one or more 0s. 2463 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2464 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2465 - Layout->getElementOffset(i)) - FieldSize; 2466 SizeSoFar += FieldSize + PadSize; 2467 2468 // Insert padding - this may include padding to increase the size of the 2469 // current field up to the ABI size (if the struct is not packed) as well 2470 // as padding to ensure that the next field starts at the right offset. 2471 AP.OutStreamer->EmitZeros(PadSize); 2472 } 2473 assert(SizeSoFar == Layout->getSizeInBytes() && 2474 "Layout of constant struct may be incorrect!"); 2475 } 2476 2477 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2478 APInt API = APF.bitcastToAPInt(); 2479 2480 // First print a comment with what we think the original floating-point value 2481 // should have been. 2482 if (AP.isVerbose()) { 2483 SmallString<8> StrVal; 2484 APF.toString(StrVal); 2485 2486 if (ET) 2487 ET->print(AP.OutStreamer->GetCommentOS()); 2488 else 2489 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2490 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2491 } 2492 2493 // Now iterate through the APInt chunks, emitting them in endian-correct 2494 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2495 // floats). 2496 unsigned NumBytes = API.getBitWidth() / 8; 2497 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2498 const uint64_t *p = API.getRawData(); 2499 2500 // PPC's long double has odd notions of endianness compared to how LLVM 2501 // handles it: p[0] goes first for *big* endian on PPC. 2502 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2503 int Chunk = API.getNumWords() - 1; 2504 2505 if (TrailingBytes) 2506 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2507 2508 for (; Chunk >= 0; --Chunk) 2509 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2510 } else { 2511 unsigned Chunk; 2512 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2513 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2514 2515 if (TrailingBytes) 2516 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2517 } 2518 2519 // Emit the tail padding for the long double. 2520 const DataLayout &DL = AP.getDataLayout(); 2521 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2522 } 2523 2524 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2525 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2526 } 2527 2528 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2529 const DataLayout &DL = AP.getDataLayout(); 2530 unsigned BitWidth = CI->getBitWidth(); 2531 2532 // Copy the value as we may massage the layout for constants whose bit width 2533 // is not a multiple of 64-bits. 2534 APInt Realigned(CI->getValue()); 2535 uint64_t ExtraBits = 0; 2536 unsigned ExtraBitsSize = BitWidth & 63; 2537 2538 if (ExtraBitsSize) { 2539 // The bit width of the data is not a multiple of 64-bits. 2540 // The extra bits are expected to be at the end of the chunk of the memory. 2541 // Little endian: 2542 // * Nothing to be done, just record the extra bits to emit. 2543 // Big endian: 2544 // * Record the extra bits to emit. 2545 // * Realign the raw data to emit the chunks of 64-bits. 2546 if (DL.isBigEndian()) { 2547 // Basically the structure of the raw data is a chunk of 64-bits cells: 2548 // 0 1 BitWidth / 64 2549 // [chunk1][chunk2] ... [chunkN]. 2550 // The most significant chunk is chunkN and it should be emitted first. 2551 // However, due to the alignment issue chunkN contains useless bits. 2552 // Realign the chunks so that they contain only useless information: 2553 // ExtraBits 0 1 (BitWidth / 64) - 1 2554 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2555 ExtraBits = Realigned.getRawData()[0] & 2556 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2557 Realigned.lshrInPlace(ExtraBitsSize); 2558 } else 2559 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2560 } 2561 2562 // We don't expect assemblers to support integer data directives 2563 // for more than 64 bits, so we emit the data in at most 64-bit 2564 // quantities at a time. 2565 const uint64_t *RawData = Realigned.getRawData(); 2566 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2567 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2568 AP.OutStreamer->EmitIntValue(Val, 8); 2569 } 2570 2571 if (ExtraBitsSize) { 2572 // Emit the extra bits after the 64-bits chunks. 2573 2574 // Emit a directive that fills the expected size. 2575 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2576 Size -= (BitWidth / 64) * 8; 2577 assert(Size && Size * 8 >= ExtraBitsSize && 2578 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2579 == ExtraBits && "Directive too small for extra bits."); 2580 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2581 } 2582 } 2583 2584 /// Transform a not absolute MCExpr containing a reference to a GOT 2585 /// equivalent global, by a target specific GOT pc relative access to the 2586 /// final symbol. 2587 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2588 const Constant *BaseCst, 2589 uint64_t Offset) { 2590 // The global @foo below illustrates a global that uses a got equivalent. 2591 // 2592 // @bar = global i32 42 2593 // @gotequiv = private unnamed_addr constant i32* @bar 2594 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2595 // i64 ptrtoint (i32* @foo to i64)) 2596 // to i32) 2597 // 2598 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2599 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2600 // form: 2601 // 2602 // foo = cstexpr, where 2603 // cstexpr := <gotequiv> - "." + <cst> 2604 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2605 // 2606 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2607 // 2608 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2609 // gotpcrelcst := <offset from @foo base> + <cst> 2610 MCValue MV; 2611 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2612 return; 2613 const MCSymbolRefExpr *SymA = MV.getSymA(); 2614 if (!SymA) 2615 return; 2616 2617 // Check that GOT equivalent symbol is cached. 2618 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2619 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2620 return; 2621 2622 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2623 if (!BaseGV) 2624 return; 2625 2626 // Check for a valid base symbol 2627 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2628 const MCSymbolRefExpr *SymB = MV.getSymB(); 2629 2630 if (!SymB || BaseSym != &SymB->getSymbol()) 2631 return; 2632 2633 // Make sure to match: 2634 // 2635 // gotpcrelcst := <offset from @foo base> + <cst> 2636 // 2637 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2638 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2639 // if the target knows how to encode it. 2640 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2641 if (GOTPCRelCst < 0) 2642 return; 2643 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2644 return; 2645 2646 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2647 // 2648 // bar: 2649 // .long 42 2650 // gotequiv: 2651 // .quad bar 2652 // foo: 2653 // .long gotequiv - "." + <cst> 2654 // 2655 // is replaced by the target specific equivalent to: 2656 // 2657 // bar: 2658 // .long 42 2659 // foo: 2660 // .long bar@GOTPCREL+<gotpcrelcst> 2661 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2662 const GlobalVariable *GV = Result.first; 2663 int NumUses = (int)Result.second; 2664 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2665 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2666 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2667 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2668 2669 // Update GOT equivalent usage information 2670 --NumUses; 2671 if (NumUses >= 0) 2672 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2673 } 2674 2675 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2676 AsmPrinter &AP, const Constant *BaseCV, 2677 uint64_t Offset) { 2678 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2679 2680 // Globals with sub-elements such as combinations of arrays and structs 2681 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2682 // constant symbol base and the current position with BaseCV and Offset. 2683 if (!BaseCV && CV->hasOneUse()) 2684 BaseCV = dyn_cast<Constant>(CV->user_back()); 2685 2686 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2687 return AP.OutStreamer->EmitZeros(Size); 2688 2689 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2690 switch (Size) { 2691 case 1: 2692 case 2: 2693 case 4: 2694 case 8: 2695 if (AP.isVerbose()) 2696 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2697 CI->getZExtValue()); 2698 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2699 return; 2700 default: 2701 emitGlobalConstantLargeInt(CI, AP); 2702 return; 2703 } 2704 } 2705 2706 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2707 return emitGlobalConstantFP(CFP, AP); 2708 2709 if (isa<ConstantPointerNull>(CV)) { 2710 AP.OutStreamer->EmitIntValue(0, Size); 2711 return; 2712 } 2713 2714 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2715 return emitGlobalConstantDataSequential(DL, CDS, AP); 2716 2717 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2718 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2719 2720 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2721 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2722 2723 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2724 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2725 // vectors). 2726 if (CE->getOpcode() == Instruction::BitCast) 2727 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2728 2729 if (Size > 8) { 2730 // If the constant expression's size is greater than 64-bits, then we have 2731 // to emit the value in chunks. Try to constant fold the value and emit it 2732 // that way. 2733 Constant *New = ConstantFoldConstant(CE, DL); 2734 if (New && New != CE) 2735 return emitGlobalConstantImpl(DL, New, AP); 2736 } 2737 } 2738 2739 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2740 return emitGlobalConstantVector(DL, V, AP); 2741 2742 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2743 // thread the streamer with EmitValue. 2744 const MCExpr *ME = AP.lowerConstant(CV); 2745 2746 // Since lowerConstant already folded and got rid of all IR pointer and 2747 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2748 // directly. 2749 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2750 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2751 2752 AP.OutStreamer->EmitValue(ME, Size); 2753 } 2754 2755 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2756 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2757 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2758 if (Size) 2759 emitGlobalConstantImpl(DL, CV, *this); 2760 else if (MAI->hasSubsectionsViaSymbols()) { 2761 // If the global has zero size, emit a single byte so that two labels don't 2762 // look like they are at the same location. 2763 OutStreamer->EmitIntValue(0, 1); 2764 } 2765 } 2766 2767 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2768 // Target doesn't support this yet! 2769 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2770 } 2771 2772 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2773 if (Offset > 0) 2774 OS << '+' << Offset; 2775 else if (Offset < 0) 2776 OS << Offset; 2777 } 2778 2779 //===----------------------------------------------------------------------===// 2780 // Symbol Lowering Routines. 2781 //===----------------------------------------------------------------------===// 2782 2783 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2784 return OutContext.createTempSymbol(Name, true); 2785 } 2786 2787 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2788 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2789 } 2790 2791 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2792 return MMI->getAddrLabelSymbol(BB); 2793 } 2794 2795 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2796 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2797 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2798 const MachineConstantPoolEntry &CPE = 2799 MF->getConstantPool()->getConstants()[CPID]; 2800 if (!CPE.isMachineConstantPoolEntry()) { 2801 const DataLayout &DL = MF->getDataLayout(); 2802 SectionKind Kind = CPE.getSectionKind(&DL); 2803 const Constant *C = CPE.Val.ConstVal; 2804 unsigned Align = CPE.Alignment; 2805 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2806 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2807 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2808 if (Sym->isUndefined()) 2809 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2810 return Sym; 2811 } 2812 } 2813 } 2814 } 2815 2816 const DataLayout &DL = getDataLayout(); 2817 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2818 "CPI" + Twine(getFunctionNumber()) + "_" + 2819 Twine(CPID)); 2820 } 2821 2822 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2823 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2824 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2825 } 2826 2827 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2828 /// FIXME: privatize to AsmPrinter. 2829 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2830 const DataLayout &DL = getDataLayout(); 2831 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2832 Twine(getFunctionNumber()) + "_" + 2833 Twine(UID) + "_set_" + Twine(MBBID)); 2834 } 2835 2836 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2837 StringRef Suffix) const { 2838 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2839 } 2840 2841 /// Return the MCSymbol for the specified ExternalSymbol. 2842 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2843 SmallString<60> NameStr; 2844 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2845 return OutContext.getOrCreateSymbol(NameStr); 2846 } 2847 2848 /// PrintParentLoopComment - Print comments about parent loops of this one. 2849 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2850 unsigned FunctionNumber) { 2851 if (!Loop) return; 2852 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2853 OS.indent(Loop->getLoopDepth()*2) 2854 << "Parent Loop BB" << FunctionNumber << "_" 2855 << Loop->getHeader()->getNumber() 2856 << " Depth=" << Loop->getLoopDepth() << '\n'; 2857 } 2858 2859 /// PrintChildLoopComment - Print comments about child loops within 2860 /// the loop for this basic block, with nesting. 2861 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2862 unsigned FunctionNumber) { 2863 // Add child loop information 2864 for (const MachineLoop *CL : *Loop) { 2865 OS.indent(CL->getLoopDepth()*2) 2866 << "Child Loop BB" << FunctionNumber << "_" 2867 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2868 << '\n'; 2869 PrintChildLoopComment(OS, CL, FunctionNumber); 2870 } 2871 } 2872 2873 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2874 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2875 const MachineLoopInfo *LI, 2876 const AsmPrinter &AP) { 2877 // Add loop depth information 2878 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2879 if (!Loop) return; 2880 2881 MachineBasicBlock *Header = Loop->getHeader(); 2882 assert(Header && "No header for loop"); 2883 2884 // If this block is not a loop header, just print out what is the loop header 2885 // and return. 2886 if (Header != &MBB) { 2887 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2888 Twine(AP.getFunctionNumber())+"_" + 2889 Twine(Loop->getHeader()->getNumber())+ 2890 " Depth="+Twine(Loop->getLoopDepth())); 2891 return; 2892 } 2893 2894 // Otherwise, it is a loop header. Print out information about child and 2895 // parent loops. 2896 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2897 2898 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2899 2900 OS << "=>"; 2901 OS.indent(Loop->getLoopDepth()*2-2); 2902 2903 OS << "This "; 2904 if (Loop->empty()) 2905 OS << "Inner "; 2906 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2907 2908 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2909 } 2910 2911 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2912 MCCodePaddingContext &Context) const { 2913 assert(MF != nullptr && "Machine function must be valid"); 2914 Context.IsPaddingActive = !MF->hasInlineAsm() && 2915 !MF->getFunction().hasOptSize() && 2916 TM.getOptLevel() != CodeGenOpt::None; 2917 Context.IsBasicBlockReachableViaFallthrough = 2918 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2919 MBB.pred_end(); 2920 Context.IsBasicBlockReachableViaBranch = 2921 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2922 } 2923 2924 /// EmitBasicBlockStart - This method prints the label for the specified 2925 /// MachineBasicBlock, an alignment (if present) and a comment describing 2926 /// it if appropriate. 2927 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) { 2928 // End the previous funclet and start a new one. 2929 if (MBB.isEHFuncletEntry()) { 2930 for (const HandlerInfo &HI : Handlers) { 2931 HI.Handler->endFunclet(); 2932 HI.Handler->beginFunclet(MBB); 2933 } 2934 } 2935 2936 // Emit an alignment directive for this block, if needed. 2937 const Align Alignment = MBB.getAlignment(); 2938 if (Alignment != Align::None()) 2939 EmitAlignment(Alignment); 2940 MCCodePaddingContext Context; 2941 setupCodePaddingContext(MBB, Context); 2942 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2943 2944 // If the block has its address taken, emit any labels that were used to 2945 // reference the block. It is possible that there is more than one label 2946 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2947 // the references were generated. 2948 if (MBB.hasAddressTaken()) { 2949 const BasicBlock *BB = MBB.getBasicBlock(); 2950 if (isVerbose()) 2951 OutStreamer->AddComment("Block address taken"); 2952 2953 // MBBs can have their address taken as part of CodeGen without having 2954 // their corresponding BB's address taken in IR 2955 if (BB->hasAddressTaken()) 2956 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2957 OutStreamer->EmitLabel(Sym); 2958 } 2959 2960 // Print some verbose block comments. 2961 if (isVerbose()) { 2962 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2963 if (BB->hasName()) { 2964 BB->printAsOperand(OutStreamer->GetCommentOS(), 2965 /*PrintType=*/false, BB->getModule()); 2966 OutStreamer->GetCommentOS() << '\n'; 2967 } 2968 } 2969 2970 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2971 emitBasicBlockLoopComments(MBB, MLI, *this); 2972 } 2973 2974 // Print the main label for the block. 2975 if (MBB.pred_empty() || 2976 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2977 !MBB.hasLabelMustBeEmitted())) { 2978 if (isVerbose()) { 2979 // NOTE: Want this comment at start of line, don't emit with AddComment. 2980 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2981 false); 2982 } 2983 } else { 2984 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2985 OutStreamer->AddComment("Label of block must be emitted"); 2986 OutStreamer->EmitLabel(MBB.getSymbol()); 2987 } 2988 } 2989 2990 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2991 MCCodePaddingContext Context; 2992 setupCodePaddingContext(MBB, Context); 2993 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2994 } 2995 2996 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2997 bool IsDefinition) const { 2998 MCSymbolAttr Attr = MCSA_Invalid; 2999 3000 switch (Visibility) { 3001 default: break; 3002 case GlobalValue::HiddenVisibility: 3003 if (IsDefinition) 3004 Attr = MAI->getHiddenVisibilityAttr(); 3005 else 3006 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3007 break; 3008 case GlobalValue::ProtectedVisibility: 3009 Attr = MAI->getProtectedVisibilityAttr(); 3010 break; 3011 } 3012 3013 if (Attr != MCSA_Invalid) 3014 OutStreamer->EmitSymbolAttribute(Sym, Attr); 3015 } 3016 3017 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3018 /// exactly one predecessor and the control transfer mechanism between 3019 /// the predecessor and this block is a fall-through. 3020 bool AsmPrinter:: 3021 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3022 // If this is a landing pad, it isn't a fall through. If it has no preds, 3023 // then nothing falls through to it. 3024 if (MBB->isEHPad() || MBB->pred_empty()) 3025 return false; 3026 3027 // If there isn't exactly one predecessor, it can't be a fall through. 3028 if (MBB->pred_size() > 1) 3029 return false; 3030 3031 // The predecessor has to be immediately before this block. 3032 MachineBasicBlock *Pred = *MBB->pred_begin(); 3033 if (!Pred->isLayoutSuccessor(MBB)) 3034 return false; 3035 3036 // If the block is completely empty, then it definitely does fall through. 3037 if (Pred->empty()) 3038 return true; 3039 3040 // Check the terminators in the previous blocks 3041 for (const auto &MI : Pred->terminators()) { 3042 // If it is not a simple branch, we are in a table somewhere. 3043 if (!MI.isBranch() || MI.isIndirectBranch()) 3044 return false; 3045 3046 // If we are the operands of one of the branches, this is not a fall 3047 // through. Note that targets with delay slots will usually bundle 3048 // terminators with the delay slot instruction. 3049 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3050 if (OP->isJTI()) 3051 return false; 3052 if (OP->isMBB() && OP->getMBB() == MBB) 3053 return false; 3054 } 3055 } 3056 3057 return true; 3058 } 3059 3060 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3061 if (!S.usesMetadata()) 3062 return nullptr; 3063 3064 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3065 gcp_map_type::iterator GCPI = GCMap.find(&S); 3066 if (GCPI != GCMap.end()) 3067 return GCPI->second.get(); 3068 3069 auto Name = S.getName(); 3070 3071 for (GCMetadataPrinterRegistry::iterator 3072 I = GCMetadataPrinterRegistry::begin(), 3073 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3074 if (Name == I->getName()) { 3075 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3076 GMP->S = &S; 3077 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3078 return IterBool.first->second.get(); 3079 } 3080 3081 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3082 } 3083 3084 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3085 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3086 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3087 bool NeedsDefault = false; 3088 if (MI->begin() == MI->end()) 3089 // No GC strategy, use the default format. 3090 NeedsDefault = true; 3091 else 3092 for (auto &I : *MI) { 3093 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3094 if (MP->emitStackMaps(SM, *this)) 3095 continue; 3096 // The strategy doesn't have printer or doesn't emit custom stack maps. 3097 // Use the default format. 3098 NeedsDefault = true; 3099 } 3100 3101 if (NeedsDefault) 3102 SM.serializeToStackMapSection(); 3103 } 3104 3105 /// Pin vtable to this file. 3106 AsmPrinterHandler::~AsmPrinterHandler() = default; 3107 3108 void AsmPrinterHandler::markFunctionEnd() {} 3109 3110 // In the binary's "xray_instr_map" section, an array of these function entries 3111 // describes each instrumentation point. When XRay patches your code, the index 3112 // into this table will be given to your handler as a patch point identifier. 3113 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3114 const MCSymbol *CurrentFnSym) const { 3115 Out->EmitSymbolValue(Sled, Bytes); 3116 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3117 auto Kind8 = static_cast<uint8_t>(Kind); 3118 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3119 Out->EmitBinaryData( 3120 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3121 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3122 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3123 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3124 Out->EmitZeros(Padding); 3125 } 3126 3127 void AsmPrinter::emitXRayTable() { 3128 if (Sleds.empty()) 3129 return; 3130 3131 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3132 const Function &F = MF->getFunction(); 3133 MCSection *InstMap = nullptr; 3134 MCSection *FnSledIndex = nullptr; 3135 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3136 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3137 assert(Associated != nullptr); 3138 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3139 std::string GroupName; 3140 if (F.hasComdat()) { 3141 Flags |= ELF::SHF_GROUP; 3142 GroupName = F.getComdat()->getName(); 3143 } 3144 3145 auto UniqueID = ++XRayFnUniqueID; 3146 InstMap = 3147 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3148 GroupName, UniqueID, Associated); 3149 FnSledIndex = 3150 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3151 GroupName, UniqueID, Associated); 3152 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3153 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3154 SectionKind::getReadOnlyWithRel()); 3155 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3156 SectionKind::getReadOnlyWithRel()); 3157 } else { 3158 llvm_unreachable("Unsupported target"); 3159 } 3160 3161 auto WordSizeBytes = MAI->getCodePointerSize(); 3162 3163 // Now we switch to the instrumentation map section. Because this is done 3164 // per-function, we are able to create an index entry that will represent the 3165 // range of sleds associated with a function. 3166 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3167 OutStreamer->SwitchSection(InstMap); 3168 OutStreamer->EmitLabel(SledsStart); 3169 for (const auto &Sled : Sleds) 3170 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3171 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3172 OutStreamer->EmitLabel(SledsEnd); 3173 3174 // We then emit a single entry in the index per function. We use the symbols 3175 // that bound the instrumentation map as the range for a specific function. 3176 // Each entry here will be 2 * word size aligned, as we're writing down two 3177 // pointers. This should work for both 32-bit and 64-bit platforms. 3178 OutStreamer->SwitchSection(FnSledIndex); 3179 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3180 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3181 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3182 OutStreamer->SwitchSection(PrevSection); 3183 Sleds.clear(); 3184 } 3185 3186 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3187 SledKind Kind, uint8_t Version) { 3188 const Function &F = MI.getMF()->getFunction(); 3189 auto Attr = F.getFnAttribute("function-instrument"); 3190 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3191 bool AlwaysInstrument = 3192 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3193 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3194 Kind = SledKind::LOG_ARGS_ENTER; 3195 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3196 AlwaysInstrument, &F, Version}); 3197 } 3198 3199 uint16_t AsmPrinter::getDwarfVersion() const { 3200 return OutStreamer->getContext().getDwarfVersion(); 3201 } 3202 3203 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3204 OutStreamer->getContext().setDwarfVersion(Version); 3205 } 3206