1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCContext.h"
84 #include "llvm/MC/MCDirectives.h"
85 #include "llvm/MC/MCDwarf.h"
86 #include "llvm/MC/MCExpr.h"
87 #include "llvm/MC/MCInst.h"
88 #include "llvm/MC/MCSection.h"
89 #include "llvm/MC/MCSectionCOFF.h"
90 #include "llvm/MC/MCSectionELF.h"
91 #include "llvm/MC/MCSectionMachO.h"
92 #include "llvm/MC/MCSectionXCOFF.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCSymbolXCOFF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStreamer.h"
105 #include "llvm/Remarks/RemarkStringTable.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/Format.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/Path.h"
113 #include "llvm/Support/TargetRegistry.h"
114 #include "llvm/Support/Timer.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetLoweringObjectFile.h"
117 #include "llvm/Target/TargetMachine.h"
118 #include "llvm/Target/TargetOptions.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cinttypes>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <memory>
126 #include <string>
127 #include <utility>
128 #include <vector>
129 
130 using namespace llvm;
131 
132 #define DEBUG_TYPE "asm-printer"
133 
134 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
135 static cl::opt<bool>
136     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
137                              cl::desc("Disable debug info printing"));
138 
139 static const char *const DWARFGroupName = "dwarf";
140 static const char *const DWARFGroupDescription = "DWARF Emission";
141 static const char *const DbgTimerName = "emit";
142 static const char *const DbgTimerDescription = "Debug Info Emission";
143 static const char *const EHTimerName = "write_exception";
144 static const char *const EHTimerDescription = "DWARF Exception Writer";
145 static const char *const CFGuardName = "Control Flow Guard";
146 static const char *const CFGuardDescription = "Control Flow Guard";
147 static const char *const CodeViewLineTablesGroupName = "linetables";
148 static const char *const CodeViewLineTablesGroupDescription =
149   "CodeView Line Tables";
150 
151 STATISTIC(EmittedInsts, "Number of machine instrs printed");
152 
153 char AsmPrinter::ID = 0;
154 
155 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
156 
157 static gcp_map_type &getGCMap(void *&P) {
158   if (!P)
159     P = new gcp_map_type();
160   return *(gcp_map_type*)P;
161 }
162 
163 /// getGVAlignment - Return the alignment to use for the specified global
164 /// value.  This rounds up to the preferred alignment if possible and legal.
165 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
166                                  Align InAlign) {
167   Align Alignment;
168   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
169     Alignment = DL.getPreferredAlign(GVar);
170 
171   // If InAlign is specified, round it to it.
172   if (InAlign > Alignment)
173     Alignment = InAlign;
174 
175   // If the GV has a specified alignment, take it into account.
176   const MaybeAlign GVAlign(GV->getAlignment());
177   if (!GVAlign)
178     return Alignment;
179 
180   assert(GVAlign && "GVAlign must be set");
181 
182   // If the GVAlign is larger than NumBits, or if we are required to obey
183   // NumBits because the GV has an assigned section, obey it.
184   if (*GVAlign > Alignment || GV->hasSection())
185     Alignment = *GVAlign;
186   return Alignment;
187 }
188 
189 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
190     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
191       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
192   VerboseAsm = OutStreamer->isVerboseAsm();
193 }
194 
195 AsmPrinter::~AsmPrinter() {
196   assert(!DD && Handlers.size() == NumUserHandlers &&
197          "Debug/EH info didn't get finalized");
198 
199   if (GCMetadataPrinters) {
200     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
201 
202     delete &GCMap;
203     GCMetadataPrinters = nullptr;
204   }
205 }
206 
207 bool AsmPrinter::isPositionIndependent() const {
208   return TM.isPositionIndependent();
209 }
210 
211 /// getFunctionNumber - Return a unique ID for the current function.
212 unsigned AsmPrinter::getFunctionNumber() const {
213   return MF->getFunctionNumber();
214 }
215 
216 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
217   return *TM.getObjFileLowering();
218 }
219 
220 const DataLayout &AsmPrinter::getDataLayout() const {
221   return MMI->getModule()->getDataLayout();
222 }
223 
224 // Do not use the cached DataLayout because some client use it without a Module
225 // (dsymutil, llvm-dwarfdump).
226 unsigned AsmPrinter::getPointerSize() const {
227   return TM.getPointerSize(0); // FIXME: Default address space
228 }
229 
230 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
231   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
232   return MF->getSubtarget<MCSubtargetInfo>();
233 }
234 
235 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
236   S.emitInstruction(Inst, getSubtargetInfo());
237 }
238 
239 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
240   if (DD) {
241     assert(OutStreamer->hasRawTextSupport() &&
242            "Expected assembly output mode.");
243     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
244   }
245 }
246 
247 /// getCurrentSection() - Return the current section we are emitting to.
248 const MCSection *AsmPrinter::getCurrentSection() const {
249   return OutStreamer->getCurrentSectionOnly();
250 }
251 
252 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
253   AU.setPreservesAll();
254   MachineFunctionPass::getAnalysisUsage(AU);
255   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
256   AU.addRequired<GCModuleInfo>();
257 }
258 
259 bool AsmPrinter::doInitialization(Module &M) {
260   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
261   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
262 
263   // Initialize TargetLoweringObjectFile.
264   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
265     .Initialize(OutContext, TM);
266 
267   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
268       .getModuleMetadata(M);
269 
270   OutStreamer->InitSections(false);
271 
272   if (DisableDebugInfoPrinting)
273     MMI->setDebugInfoAvailability(false);
274 
275   // Emit the version-min deployment target directive if needed.
276   //
277   // FIXME: If we end up with a collection of these sorts of Darwin-specific
278   // or ELF-specific things, it may make sense to have a platform helper class
279   // that will work with the target helper class. For now keep it here, as the
280   // alternative is duplicated code in each of the target asm printers that
281   // use the directive, where it would need the same conditionalization
282   // anyway.
283   const Triple &Target = TM.getTargetTriple();
284   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
285 
286   // Allow the target to emit any magic that it wants at the start of the file.
287   emitStartOfAsmFile(M);
288 
289   // Very minimal debug info. It is ignored if we emit actual debug info. If we
290   // don't, this at least helps the user find where a global came from.
291   if (MAI->hasSingleParameterDotFile()) {
292     // .file "foo.c"
293     OutStreamer->emitFileDirective(
294         llvm::sys::path::filename(M.getSourceFileName()));
295   }
296 
297   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
298   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
299   for (auto &I : *MI)
300     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
301       MP->beginAssembly(M, *MI, *this);
302 
303   // Emit module-level inline asm if it exists.
304   if (!M.getModuleInlineAsm().empty()) {
305     // We're at the module level. Construct MCSubtarget from the default CPU
306     // and target triple.
307     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
308         TM.getTargetTriple().str(), TM.getTargetCPU(),
309         TM.getTargetFeatureString()));
310     assert(STI && "Unable to create subtarget info");
311     OutStreamer->AddComment("Start of file scope inline assembly");
312     OutStreamer->AddBlankLine();
313     emitInlineAsm(M.getModuleInlineAsm() + "\n",
314                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
315     OutStreamer->AddComment("End of file scope inline assembly");
316     OutStreamer->AddBlankLine();
317   }
318 
319   if (MAI->doesSupportDebugInformation()) {
320     bool EmitCodeView = M.getCodeViewFlag();
321     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
322       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
323                             DbgTimerName, DbgTimerDescription,
324                             CodeViewLineTablesGroupName,
325                             CodeViewLineTablesGroupDescription);
326     }
327     if (!EmitCodeView || M.getDwarfVersion()) {
328       if (!DisableDebugInfoPrinting) {
329         DD = new DwarfDebug(this);
330         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
331                               DbgTimerDescription, DWARFGroupName,
332                               DWARFGroupDescription);
333       }
334     }
335   }
336 
337   switch (MAI->getExceptionHandlingType()) {
338   case ExceptionHandling::SjLj:
339   case ExceptionHandling::DwarfCFI:
340   case ExceptionHandling::ARM:
341     isCFIMoveForDebugging = true;
342     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
343       break;
344     for (auto &F: M.getFunctionList()) {
345       // If the module contains any function with unwind data,
346       // .eh_frame has to be emitted.
347       // Ignore functions that won't get emitted.
348       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
349         isCFIMoveForDebugging = false;
350         break;
351       }
352     }
353     break;
354   default:
355     isCFIMoveForDebugging = false;
356     break;
357   }
358 
359   EHStreamer *ES = nullptr;
360   switch (MAI->getExceptionHandlingType()) {
361   case ExceptionHandling::None:
362     break;
363   case ExceptionHandling::SjLj:
364   case ExceptionHandling::DwarfCFI:
365     ES = new DwarfCFIException(this);
366     break;
367   case ExceptionHandling::ARM:
368     ES = new ARMException(this);
369     break;
370   case ExceptionHandling::WinEH:
371     switch (MAI->getWinEHEncodingType()) {
372     default: llvm_unreachable("unsupported unwinding information encoding");
373     case WinEH::EncodingType::Invalid:
374       break;
375     case WinEH::EncodingType::X86:
376     case WinEH::EncodingType::Itanium:
377       ES = new WinException(this);
378       break;
379     }
380     break;
381   case ExceptionHandling::Wasm:
382     ES = new WasmException(this);
383     break;
384   }
385   if (ES)
386     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
387                           EHTimerDescription, DWARFGroupName,
388                           DWARFGroupDescription);
389 
390   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
391   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
392     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
393                           CFGuardDescription, DWARFGroupName,
394                           DWARFGroupDescription);
395 
396   for (const HandlerInfo &HI : Handlers) {
397     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
398                        HI.TimerGroupDescription, TimePassesIsEnabled);
399     HI.Handler->beginModule(&M);
400   }
401 
402   return false;
403 }
404 
405 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
406   if (!MAI.hasWeakDefCanBeHiddenDirective())
407     return false;
408 
409   return GV->canBeOmittedFromSymbolTable();
410 }
411 
412 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
413   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
414   switch (Linkage) {
415   case GlobalValue::CommonLinkage:
416   case GlobalValue::LinkOnceAnyLinkage:
417   case GlobalValue::LinkOnceODRLinkage:
418   case GlobalValue::WeakAnyLinkage:
419   case GlobalValue::WeakODRLinkage:
420     if (MAI->hasWeakDefDirective()) {
421       // .globl _foo
422       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
423 
424       if (!canBeHidden(GV, *MAI))
425         // .weak_definition _foo
426         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
427       else
428         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
429     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
430       // .globl _foo
431       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
432       //NOTE: linkonce is handled by the section the symbol was assigned to.
433     } else {
434       // .weak _foo
435       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
436     }
437     return;
438   case GlobalValue::ExternalLinkage:
439     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
440     return;
441   case GlobalValue::PrivateLinkage:
442   case GlobalValue::InternalLinkage:
443     return;
444   case GlobalValue::ExternalWeakLinkage:
445   case GlobalValue::AvailableExternallyLinkage:
446   case GlobalValue::AppendingLinkage:
447     llvm_unreachable("Should never emit this");
448   }
449   llvm_unreachable("Unknown linkage type!");
450 }
451 
452 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
453                                    const GlobalValue *GV) const {
454   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
455 }
456 
457 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
458   return TM.getSymbol(GV);
459 }
460 
461 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
462   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
463   // exact definion (intersection of GlobalValue::hasExactDefinition() and
464   // !isInterposable()). These linkages include: external, appending, internal,
465   // private. It may be profitable to use a local alias for external. The
466   // assembler would otherwise be conservative and assume a global default
467   // visibility symbol can be interposable, even if the code generator already
468   // assumed it.
469   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
470     const Module &M = *GV.getParent();
471     if (TM.getRelocationModel() != Reloc::Static &&
472         M.getPIELevel() == PIELevel::Default)
473       if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() &&
474                               GV.getParent()->noSemanticInterposition()))
475         return getSymbolWithGlobalValueBase(&GV, "$local");
476   }
477   return TM.getSymbol(&GV);
478 }
479 
480 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
481 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
482   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
483   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
484          "No emulated TLS variables in the common section");
485 
486   // Never emit TLS variable xyz in emulated TLS model.
487   // The initialization value is in __emutls_t.xyz instead of xyz.
488   if (IsEmuTLSVar)
489     return;
490 
491   if (GV->hasInitializer()) {
492     // Check to see if this is a special global used by LLVM, if so, emit it.
493     if (emitSpecialLLVMGlobal(GV))
494       return;
495 
496     // Skip the emission of global equivalents. The symbol can be emitted later
497     // on by emitGlobalGOTEquivs in case it turns out to be needed.
498     if (GlobalGOTEquivs.count(getSymbol(GV)))
499       return;
500 
501     if (isVerbose()) {
502       // When printing the control variable __emutls_v.*,
503       // we don't need to print the original TLS variable name.
504       GV->printAsOperand(OutStreamer->GetCommentOS(),
505                      /*PrintType=*/false, GV->getParent());
506       OutStreamer->GetCommentOS() << '\n';
507     }
508   }
509 
510   MCSymbol *GVSym = getSymbol(GV);
511   MCSymbol *EmittedSym = GVSym;
512 
513   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
514   // attributes.
515   // GV's or GVSym's attributes will be used for the EmittedSym.
516   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
517 
518   if (!GV->hasInitializer())   // External globals require no extra code.
519     return;
520 
521   GVSym->redefineIfPossible();
522   if (GVSym->isDefined() || GVSym->isVariable())
523     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
524                        "' is already defined");
525 
526   if (MAI->hasDotTypeDotSizeDirective())
527     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
528 
529   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
530 
531   const DataLayout &DL = GV->getParent()->getDataLayout();
532   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
533 
534   // If the alignment is specified, we *must* obey it.  Overaligning a global
535   // with a specified alignment is a prompt way to break globals emitted to
536   // sections and expected to be contiguous (e.g. ObjC metadata).
537   const Align Alignment = getGVAlignment(GV, DL);
538 
539   for (const HandlerInfo &HI : Handlers) {
540     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
541                        HI.TimerGroupName, HI.TimerGroupDescription,
542                        TimePassesIsEnabled);
543     HI.Handler->setSymbolSize(GVSym, Size);
544   }
545 
546   // Handle common symbols
547   if (GVKind.isCommon()) {
548     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
549     // .comm _foo, 42, 4
550     const bool SupportsAlignment =
551         getObjFileLowering().getCommDirectiveSupportsAlignment();
552     OutStreamer->emitCommonSymbol(GVSym, Size,
553                                   SupportsAlignment ? Alignment.value() : 0);
554     return;
555   }
556 
557   // Determine to which section this global should be emitted.
558   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
559 
560   // If we have a bss global going to a section that supports the
561   // zerofill directive, do so here.
562   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
563       TheSection->isVirtualSection()) {
564     if (Size == 0)
565       Size = 1; // zerofill of 0 bytes is undefined.
566     emitLinkage(GV, GVSym);
567     // .zerofill __DATA, __bss, _foo, 400, 5
568     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
569     return;
570   }
571 
572   // If this is a BSS local symbol and we are emitting in the BSS
573   // section use .lcomm/.comm directive.
574   if (GVKind.isBSSLocal() &&
575       getObjFileLowering().getBSSSection() == TheSection) {
576     if (Size == 0)
577       Size = 1; // .comm Foo, 0 is undefined, avoid it.
578 
579     // Use .lcomm only if it supports user-specified alignment.
580     // Otherwise, while it would still be correct to use .lcomm in some
581     // cases (e.g. when Align == 1), the external assembler might enfore
582     // some -unknown- default alignment behavior, which could cause
583     // spurious differences between external and integrated assembler.
584     // Prefer to simply fall back to .local / .comm in this case.
585     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
586       // .lcomm _foo, 42
587       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
588       return;
589     }
590 
591     // .local _foo
592     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
593     // .comm _foo, 42, 4
594     const bool SupportsAlignment =
595         getObjFileLowering().getCommDirectiveSupportsAlignment();
596     OutStreamer->emitCommonSymbol(GVSym, Size,
597                                   SupportsAlignment ? Alignment.value() : 0);
598     return;
599   }
600 
601   // Handle thread local data for mach-o which requires us to output an
602   // additional structure of data and mangle the original symbol so that we
603   // can reference it later.
604   //
605   // TODO: This should become an "emit thread local global" method on TLOF.
606   // All of this macho specific stuff should be sunk down into TLOFMachO and
607   // stuff like "TLSExtraDataSection" should no longer be part of the parent
608   // TLOF class.  This will also make it more obvious that stuff like
609   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
610   // specific code.
611   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
612     // Emit the .tbss symbol
613     MCSymbol *MangSym =
614         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
615 
616     if (GVKind.isThreadBSS()) {
617       TheSection = getObjFileLowering().getTLSBSSSection();
618       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
619     } else if (GVKind.isThreadData()) {
620       OutStreamer->SwitchSection(TheSection);
621 
622       emitAlignment(Alignment, GV);
623       OutStreamer->emitLabel(MangSym);
624 
625       emitGlobalConstant(GV->getParent()->getDataLayout(),
626                          GV->getInitializer());
627     }
628 
629     OutStreamer->AddBlankLine();
630 
631     // Emit the variable struct for the runtime.
632     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
633 
634     OutStreamer->SwitchSection(TLVSect);
635     // Emit the linkage here.
636     emitLinkage(GV, GVSym);
637     OutStreamer->emitLabel(GVSym);
638 
639     // Three pointers in size:
640     //   - __tlv_bootstrap - used to make sure support exists
641     //   - spare pointer, used when mapped by the runtime
642     //   - pointer to mangled symbol above with initializer
643     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
644     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
645                                 PtrSize);
646     OutStreamer->emitIntValue(0, PtrSize);
647     OutStreamer->emitSymbolValue(MangSym, PtrSize);
648 
649     OutStreamer->AddBlankLine();
650     return;
651   }
652 
653   MCSymbol *EmittedInitSym = GVSym;
654 
655   OutStreamer->SwitchSection(TheSection);
656 
657   emitLinkage(GV, EmittedInitSym);
658   emitAlignment(Alignment, GV);
659 
660   OutStreamer->emitLabel(EmittedInitSym);
661   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
662   if (LocalAlias != EmittedInitSym)
663     OutStreamer->emitLabel(LocalAlias);
664 
665   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
666 
667   if (MAI->hasDotTypeDotSizeDirective())
668     // .size foo, 42
669     OutStreamer->emitELFSize(EmittedInitSym,
670                              MCConstantExpr::create(Size, OutContext));
671 
672   OutStreamer->AddBlankLine();
673 }
674 
675 /// Emit the directive and value for debug thread local expression
676 ///
677 /// \p Value - The value to emit.
678 /// \p Size - The size of the integer (in bytes) to emit.
679 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
680   OutStreamer->emitValue(Value, Size);
681 }
682 
683 void AsmPrinter::emitFunctionHeaderComment() {}
684 
685 /// EmitFunctionHeader - This method emits the header for the current
686 /// function.
687 void AsmPrinter::emitFunctionHeader() {
688   const Function &F = MF->getFunction();
689 
690   if (isVerbose())
691     OutStreamer->GetCommentOS()
692         << "-- Begin function "
693         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
694 
695   // Print out constants referenced by the function
696   emitConstantPool();
697 
698   // Print the 'header' of function.
699   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
700   OutStreamer->SwitchSection(MF->getSection());
701 
702   if (!MAI->hasVisibilityOnlyWithLinkage())
703     emitVisibility(CurrentFnSym, F.getVisibility());
704 
705   if (MAI->needsFunctionDescriptors())
706     emitLinkage(&F, CurrentFnDescSym);
707 
708   emitLinkage(&F, CurrentFnSym);
709   if (MAI->hasFunctionAlignment())
710     emitAlignment(MF->getAlignment(), &F);
711 
712   if (MAI->hasDotTypeDotSizeDirective())
713     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
714 
715   if (F.hasFnAttribute(Attribute::Cold))
716     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
717 
718   if (isVerbose()) {
719     F.printAsOperand(OutStreamer->GetCommentOS(),
720                    /*PrintType=*/false, F.getParent());
721     emitFunctionHeaderComment();
722     OutStreamer->GetCommentOS() << '\n';
723   }
724 
725   // Emit the prefix data.
726   if (F.hasPrefixData()) {
727     if (MAI->hasSubsectionsViaSymbols()) {
728       // Preserving prefix data on platforms which use subsections-via-symbols
729       // is a bit tricky. Here we introduce a symbol for the prefix data
730       // and use the .alt_entry attribute to mark the function's real entry point
731       // as an alternative entry point to the prefix-data symbol.
732       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
733       OutStreamer->emitLabel(PrefixSym);
734 
735       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
736 
737       // Emit an .alt_entry directive for the actual function symbol.
738       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
739     } else {
740       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
741     }
742   }
743 
744   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
745   // place prefix data before NOPs.
746   unsigned PatchableFunctionPrefix = 0;
747   unsigned PatchableFunctionEntry = 0;
748   (void)F.getFnAttribute("patchable-function-prefix")
749       .getValueAsString()
750       .getAsInteger(10, PatchableFunctionPrefix);
751   (void)F.getFnAttribute("patchable-function-entry")
752       .getValueAsString()
753       .getAsInteger(10, PatchableFunctionEntry);
754   if (PatchableFunctionPrefix) {
755     CurrentPatchableFunctionEntrySym =
756         OutContext.createLinkerPrivateTempSymbol();
757     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
758     emitNops(PatchableFunctionPrefix);
759   } else if (PatchableFunctionEntry) {
760     // May be reassigned when emitting the body, to reference the label after
761     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
762     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
763   }
764 
765   // Emit the function descriptor. This is a virtual function to allow targets
766   // to emit their specific function descriptor. Right now it is only used by
767   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
768   // descriptors and should be converted to use this hook as well.
769   if (MAI->needsFunctionDescriptors())
770     emitFunctionDescriptor();
771 
772   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
773   // their wild and crazy things as required.
774   emitFunctionEntryLabel();
775 
776   if (CurrentFnBegin) {
777     if (MAI->useAssignmentForEHBegin()) {
778       MCSymbol *CurPos = OutContext.createTempSymbol();
779       OutStreamer->emitLabel(CurPos);
780       OutStreamer->emitAssignment(CurrentFnBegin,
781                                  MCSymbolRefExpr::create(CurPos, OutContext));
782     } else {
783       OutStreamer->emitLabel(CurrentFnBegin);
784     }
785   }
786 
787   // Emit pre-function debug and/or EH information.
788   for (const HandlerInfo &HI : Handlers) {
789     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
790                        HI.TimerGroupDescription, TimePassesIsEnabled);
791     HI.Handler->beginFunction(MF);
792   }
793 
794   // Emit the prologue data.
795   if (F.hasPrologueData())
796     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
797 }
798 
799 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
800 /// function.  This can be overridden by targets as required to do custom stuff.
801 void AsmPrinter::emitFunctionEntryLabel() {
802   CurrentFnSym->redefineIfPossible();
803 
804   // The function label could have already been emitted if two symbols end up
805   // conflicting due to asm renaming.  Detect this and emit an error.
806   if (CurrentFnSym->isVariable())
807     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
808                        "' is a protected alias");
809   if (CurrentFnSym->isDefined())
810     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
811                        "' label emitted multiple times to assembly file");
812 
813   OutStreamer->emitLabel(CurrentFnSym);
814 
815   if (TM.getTargetTriple().isOSBinFormatELF()) {
816     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
817     if (Sym != CurrentFnSym)
818       OutStreamer->emitLabel(Sym);
819   }
820 }
821 
822 /// emitComments - Pretty-print comments for instructions.
823 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
824   const MachineFunction *MF = MI.getMF();
825   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
826 
827   // Check for spills and reloads
828 
829   // We assume a single instruction only has a spill or reload, not
830   // both.
831   Optional<unsigned> Size;
832   if ((Size = MI.getRestoreSize(TII))) {
833     CommentOS << *Size << "-byte Reload\n";
834   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
835     if (*Size)
836       CommentOS << *Size << "-byte Folded Reload\n";
837   } else if ((Size = MI.getSpillSize(TII))) {
838     CommentOS << *Size << "-byte Spill\n";
839   } else if ((Size = MI.getFoldedSpillSize(TII))) {
840     if (*Size)
841       CommentOS << *Size << "-byte Folded Spill\n";
842   }
843 
844   // Check for spill-induced copies
845   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
846     CommentOS << " Reload Reuse\n";
847 }
848 
849 /// emitImplicitDef - This method emits the specified machine instruction
850 /// that is an implicit def.
851 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
852   Register RegNo = MI->getOperand(0).getReg();
853 
854   SmallString<128> Str;
855   raw_svector_ostream OS(Str);
856   OS << "implicit-def: "
857      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
858 
859   OutStreamer->AddComment(OS.str());
860   OutStreamer->AddBlankLine();
861 }
862 
863 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
864   std::string Str;
865   raw_string_ostream OS(Str);
866   OS << "kill:";
867   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
868     const MachineOperand &Op = MI->getOperand(i);
869     assert(Op.isReg() && "KILL instruction must have only register operands");
870     OS << ' ' << (Op.isDef() ? "def " : "killed ")
871        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
872   }
873   AP.OutStreamer->AddComment(OS.str());
874   AP.OutStreamer->AddBlankLine();
875 }
876 
877 /// emitDebugValueComment - This method handles the target-independent form
878 /// of DBG_VALUE, returning true if it was able to do so.  A false return
879 /// means the target will need to handle MI in EmitInstruction.
880 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
881   // This code handles only the 4-operand target-independent form.
882   if (MI->getNumOperands() != 4)
883     return false;
884 
885   SmallString<128> Str;
886   raw_svector_ostream OS(Str);
887   OS << "DEBUG_VALUE: ";
888 
889   const DILocalVariable *V = MI->getDebugVariable();
890   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
891     StringRef Name = SP->getName();
892     if (!Name.empty())
893       OS << Name << ":";
894   }
895   OS << V->getName();
896   OS << " <- ";
897 
898   // The second operand is only an offset if it's an immediate.
899   bool MemLoc = MI->isIndirectDebugValue();
900   auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0);
901   const DIExpression *Expr = MI->getDebugExpression();
902   if (Expr->getNumElements()) {
903     OS << '[';
904     bool NeedSep = false;
905     for (auto Op : Expr->expr_ops()) {
906       if (NeedSep)
907         OS << ", ";
908       else
909         NeedSep = true;
910       OS << dwarf::OperationEncodingString(Op.getOp());
911       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
912         OS << ' ' << Op.getArg(I);
913     }
914     OS << "] ";
915   }
916 
917   // Register or immediate value. Register 0 means undef.
918   if (MI->getDebugOperand(0).isFPImm()) {
919     APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
920     if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
921       OS << (double)APF.convertToFloat();
922     } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
923       OS << APF.convertToDouble();
924     } else {
925       // There is no good way to print long double.  Convert a copy to
926       // double.  Ah well, it's only a comment.
927       bool ignored;
928       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
929                   &ignored);
930       OS << "(long double) " << APF.convertToDouble();
931     }
932   } else if (MI->getDebugOperand(0).isImm()) {
933     OS << MI->getDebugOperand(0).getImm();
934   } else if (MI->getDebugOperand(0).isCImm()) {
935     MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
936   } else if (MI->getDebugOperand(0).isTargetIndex()) {
937     auto Op = MI->getDebugOperand(0);
938     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
939     return true;
940   } else {
941     Register Reg;
942     if (MI->getDebugOperand(0).isReg()) {
943       Reg = MI->getDebugOperand(0).getReg();
944     } else {
945       assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
946       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
947       Offset += TFI->getFrameIndexReference(
948           *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
949       MemLoc = true;
950     }
951     if (Reg == 0) {
952       // Suppress offset, it is not meaningful here.
953       OS << "undef";
954       // NOTE: Want this comment at start of line, don't emit with AddComment.
955       AP.OutStreamer->emitRawComment(OS.str());
956       return true;
957     }
958     if (MemLoc)
959       OS << '[';
960     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
961   }
962 
963   if (MemLoc)
964     OS << '+' << Offset.getFixed() << ']';
965 
966   // NOTE: Want this comment at start of line, don't emit with AddComment.
967   AP.OutStreamer->emitRawComment(OS.str());
968   return true;
969 }
970 
971 /// This method handles the target-independent form of DBG_LABEL, returning
972 /// true if it was able to do so.  A false return means the target will need
973 /// to handle MI in EmitInstruction.
974 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
975   if (MI->getNumOperands() != 1)
976     return false;
977 
978   SmallString<128> Str;
979   raw_svector_ostream OS(Str);
980   OS << "DEBUG_LABEL: ";
981 
982   const DILabel *V = MI->getDebugLabel();
983   if (auto *SP = dyn_cast<DISubprogram>(
984           V->getScope()->getNonLexicalBlockFileScope())) {
985     StringRef Name = SP->getName();
986     if (!Name.empty())
987       OS << Name << ":";
988   }
989   OS << V->getName();
990 
991   // NOTE: Want this comment at start of line, don't emit with AddComment.
992   AP.OutStreamer->emitRawComment(OS.str());
993   return true;
994 }
995 
996 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
997   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
998       MF->getFunction().needsUnwindTableEntry())
999     return CFI_M_EH;
1000 
1001   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
1002     return CFI_M_Debug;
1003 
1004   return CFI_M_None;
1005 }
1006 
1007 bool AsmPrinter::needsSEHMoves() {
1008   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1009 }
1010 
1011 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1012   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1013   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1014       ExceptionHandlingType != ExceptionHandling::ARM)
1015     return;
1016 
1017   if (needsCFIMoves() == CFI_M_None)
1018     return;
1019 
1020   // If there is no "real" instruction following this CFI instruction, skip
1021   // emitting it; it would be beyond the end of the function's FDE range.
1022   auto *MBB = MI.getParent();
1023   auto I = std::next(MI.getIterator());
1024   while (I != MBB->end() && I->isTransient())
1025     ++I;
1026   if (I == MBB->instr_end() &&
1027       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1028     return;
1029 
1030   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1031   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1032   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1033   emitCFIInstruction(CFI);
1034 }
1035 
1036 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1037   // The operands are the MCSymbol and the frame offset of the allocation.
1038   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1039   int FrameOffset = MI.getOperand(1).getImm();
1040 
1041   // Emit a symbol assignment.
1042   OutStreamer->emitAssignment(FrameAllocSym,
1043                              MCConstantExpr::create(FrameOffset, OutContext));
1044 }
1045 
1046 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1047 /// given basic block. This can be used to capture more precise profile
1048 /// information. We use the last 3 bits (LSBs) to ecnode the following
1049 /// information:
1050 ///  * (1): set if return block (ret or tail call).
1051 ///  * (2): set if ends with a tail call.
1052 ///  * (3): set if exception handling (EH) landing pad.
1053 /// The remaining bits are zero.
1054 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1055   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1056   return ((unsigned)MBB.isReturnBlock()) |
1057          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1058          (MBB.isEHPad() << 2);
1059 }
1060 
1061 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1062   MCSection *BBAddrMapSection =
1063       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1064   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1065 
1066   const MCSymbol *FunctionSymbol = getFunctionBegin();
1067 
1068   OutStreamer->PushSection();
1069   OutStreamer->SwitchSection(BBAddrMapSection);
1070   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1071   // Emit the total number of basic blocks in this function.
1072   OutStreamer->emitULEB128IntValue(MF.size());
1073   // Emit BB Information for each basic block in the funciton.
1074   for (const MachineBasicBlock &MBB : MF) {
1075     const MCSymbol *MBBSymbol =
1076         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1077     // Emit the basic block offset.
1078     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1079     // Emit the basic block size. When BBs have alignments, their size cannot
1080     // always be computed from their offsets.
1081     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1082     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1083   }
1084   OutStreamer->PopSection();
1085 }
1086 
1087 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1088   if (!MF.getTarget().Options.EmitStackSizeSection)
1089     return;
1090 
1091   MCSection *StackSizeSection =
1092       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1093   if (!StackSizeSection)
1094     return;
1095 
1096   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1097   // Don't emit functions with dynamic stack allocations.
1098   if (FrameInfo.hasVarSizedObjects())
1099     return;
1100 
1101   OutStreamer->PushSection();
1102   OutStreamer->SwitchSection(StackSizeSection);
1103 
1104   const MCSymbol *FunctionSymbol = getFunctionBegin();
1105   uint64_t StackSize = FrameInfo.getStackSize();
1106   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1107   OutStreamer->emitULEB128IntValue(StackSize);
1108 
1109   OutStreamer->PopSection();
1110 }
1111 
1112 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1113   MachineModuleInfo &MMI = MF.getMMI();
1114   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1115     return true;
1116 
1117   // We might emit an EH table that uses function begin and end labels even if
1118   // we don't have any landingpads.
1119   if (!MF.getFunction().hasPersonalityFn())
1120     return false;
1121   return !isNoOpWithoutInvoke(
1122       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1123 }
1124 
1125 /// EmitFunctionBody - This method emits the body and trailer for a
1126 /// function.
1127 void AsmPrinter::emitFunctionBody() {
1128   emitFunctionHeader();
1129 
1130   // Emit target-specific gunk before the function body.
1131   emitFunctionBodyStart();
1132 
1133   if (isVerbose()) {
1134     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1135     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1136     if (!MDT) {
1137       OwnedMDT = std::make_unique<MachineDominatorTree>();
1138       OwnedMDT->getBase().recalculate(*MF);
1139       MDT = OwnedMDT.get();
1140     }
1141 
1142     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1143     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1144     if (!MLI) {
1145       OwnedMLI = std::make_unique<MachineLoopInfo>();
1146       OwnedMLI->getBase().analyze(MDT->getBase());
1147       MLI = OwnedMLI.get();
1148     }
1149   }
1150 
1151   // Print out code for the function.
1152   bool HasAnyRealCode = false;
1153   int NumInstsInFunction = 0;
1154 
1155   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1156   for (auto &MBB : *MF) {
1157     // Print a label for the basic block.
1158     emitBasicBlockStart(MBB);
1159     DenseMap<StringRef, unsigned> MnemonicCounts;
1160     for (auto &MI : MBB) {
1161       // Print the assembly for the instruction.
1162       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1163           !MI.isDebugInstr()) {
1164         HasAnyRealCode = true;
1165         ++NumInstsInFunction;
1166       }
1167 
1168       // If there is a pre-instruction symbol, emit a label for it here.
1169       if (MCSymbol *S = MI.getPreInstrSymbol())
1170         OutStreamer->emitLabel(S);
1171 
1172       for (const HandlerInfo &HI : Handlers) {
1173         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1174                            HI.TimerGroupDescription, TimePassesIsEnabled);
1175         HI.Handler->beginInstruction(&MI);
1176       }
1177 
1178       if (isVerbose())
1179         emitComments(MI, OutStreamer->GetCommentOS());
1180 
1181       switch (MI.getOpcode()) {
1182       case TargetOpcode::CFI_INSTRUCTION:
1183         emitCFIInstruction(MI);
1184         break;
1185       case TargetOpcode::LOCAL_ESCAPE:
1186         emitFrameAlloc(MI);
1187         break;
1188       case TargetOpcode::ANNOTATION_LABEL:
1189       case TargetOpcode::EH_LABEL:
1190       case TargetOpcode::GC_LABEL:
1191         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1192         break;
1193       case TargetOpcode::INLINEASM:
1194       case TargetOpcode::INLINEASM_BR:
1195         emitInlineAsm(&MI);
1196         break;
1197       case TargetOpcode::DBG_VALUE:
1198         if (isVerbose()) {
1199           if (!emitDebugValueComment(&MI, *this))
1200             emitInstruction(&MI);
1201         }
1202         break;
1203       case TargetOpcode::DBG_INSTR_REF:
1204         // This instruction reference will have been resolved to a machine
1205         // location, and a nearby DBG_VALUE created. We can safely ignore
1206         // the instruction reference.
1207         break;
1208       case TargetOpcode::DBG_LABEL:
1209         if (isVerbose()) {
1210           if (!emitDebugLabelComment(&MI, *this))
1211             emitInstruction(&MI);
1212         }
1213         break;
1214       case TargetOpcode::IMPLICIT_DEF:
1215         if (isVerbose()) emitImplicitDef(&MI);
1216         break;
1217       case TargetOpcode::KILL:
1218         if (isVerbose()) emitKill(&MI, *this);
1219         break;
1220       default:
1221         emitInstruction(&MI);
1222         if (CanDoExtraAnalysis) {
1223           MCInst MCI;
1224           MCI.setOpcode(MI.getOpcode());
1225           auto Name = OutStreamer->getMnemonic(MCI);
1226           auto I = MnemonicCounts.insert({Name, 0u});
1227           I.first->second++;
1228         }
1229         break;
1230       }
1231 
1232       // If there is a post-instruction symbol, emit a label for it here.
1233       if (MCSymbol *S = MI.getPostInstrSymbol())
1234         OutStreamer->emitLabel(S);
1235 
1236       for (const HandlerInfo &HI : Handlers) {
1237         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1238                            HI.TimerGroupDescription, TimePassesIsEnabled);
1239         HI.Handler->endInstruction();
1240       }
1241     }
1242 
1243     // We must emit temporary symbol for the end of this basic block, if either
1244     // we have BBLabels enabled or if this basic blocks marks the end of a
1245     // section (except the section containing the entry basic block as the end
1246     // symbol for that section is CurrentFnEnd).
1247     if (MF->hasBBLabels() ||
1248         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1249          !MBB.sameSection(&MF->front())))
1250       OutStreamer->emitLabel(MBB.getEndSymbol());
1251 
1252     if (MBB.isEndSection()) {
1253       // The size directive for the section containing the entry block is
1254       // handled separately by the function section.
1255       if (!MBB.sameSection(&MF->front())) {
1256         if (MAI->hasDotTypeDotSizeDirective()) {
1257           // Emit the size directive for the basic block section.
1258           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1259               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1260               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1261               OutContext);
1262           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1263         }
1264         MBBSectionRanges[MBB.getSectionIDNum()] =
1265             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1266       }
1267     }
1268     emitBasicBlockEnd(MBB);
1269 
1270     if (CanDoExtraAnalysis) {
1271       // Skip empty blocks.
1272       if (MBB.empty())
1273         continue;
1274 
1275       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1276                                           MBB.begin()->getDebugLoc(), &MBB);
1277 
1278       // Generate instruction mix remark. First, sort counts in descending order
1279       // by count and name.
1280       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1281       for (auto &KV : MnemonicCounts)
1282         MnemonicVec.emplace_back(KV.first, KV.second);
1283 
1284       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1285                            const std::pair<StringRef, unsigned> &B) {
1286         if (A.second > B.second)
1287           return true;
1288         if (A.second == B.second)
1289           return StringRef(A.first) < StringRef(B.first);
1290         return false;
1291       });
1292       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1293       for (auto &KV : MnemonicVec) {
1294         auto Name = (Twine("INST_") + KV.first.trim()).str();
1295         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1296       }
1297       ORE->emit(R);
1298     }
1299   }
1300 
1301   EmittedInsts += NumInstsInFunction;
1302   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1303                                       MF->getFunction().getSubprogram(),
1304                                       &MF->front());
1305   R << ore::NV("NumInstructions", NumInstsInFunction)
1306     << " instructions in function";
1307   ORE->emit(R);
1308 
1309   // If the function is empty and the object file uses .subsections_via_symbols,
1310   // then we need to emit *something* to the function body to prevent the
1311   // labels from collapsing together.  Just emit a noop.
1312   // Similarly, don't emit empty functions on Windows either. It can lead to
1313   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1314   // after linking, causing the kernel not to load the binary:
1315   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1316   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1317   const Triple &TT = TM.getTargetTriple();
1318   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1319                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1320     MCInst Noop;
1321     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1322 
1323     // Targets can opt-out of emitting the noop here by leaving the opcode
1324     // unspecified.
1325     if (Noop.getOpcode()) {
1326       OutStreamer->AddComment("avoids zero-length function");
1327       emitNops(1);
1328     }
1329   }
1330 
1331   // Switch to the original section in case basic block sections was used.
1332   OutStreamer->SwitchSection(MF->getSection());
1333 
1334   const Function &F = MF->getFunction();
1335   for (const auto &BB : F) {
1336     if (!BB.hasAddressTaken())
1337       continue;
1338     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1339     if (Sym->isDefined())
1340       continue;
1341     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1342     OutStreamer->emitLabel(Sym);
1343   }
1344 
1345   // Emit target-specific gunk after the function body.
1346   emitFunctionBodyEnd();
1347 
1348   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1349       MAI->hasDotTypeDotSizeDirective()) {
1350     // Create a symbol for the end of function.
1351     CurrentFnEnd = createTempSymbol("func_end");
1352     OutStreamer->emitLabel(CurrentFnEnd);
1353   }
1354 
1355   // If the target wants a .size directive for the size of the function, emit
1356   // it.
1357   if (MAI->hasDotTypeDotSizeDirective()) {
1358     // We can get the size as difference between the function label and the
1359     // temp label.
1360     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1361         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1362         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1363     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1364   }
1365 
1366   for (const HandlerInfo &HI : Handlers) {
1367     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1368                        HI.TimerGroupDescription, TimePassesIsEnabled);
1369     HI.Handler->markFunctionEnd();
1370   }
1371 
1372   MBBSectionRanges[MF->front().getSectionIDNum()] =
1373       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1374 
1375   // Print out jump tables referenced by the function.
1376   emitJumpTableInfo();
1377 
1378   // Emit post-function debug and/or EH information.
1379   for (const HandlerInfo &HI : Handlers) {
1380     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1381                        HI.TimerGroupDescription, TimePassesIsEnabled);
1382     HI.Handler->endFunction(MF);
1383   }
1384 
1385   // Emit section containing BB address offsets and their metadata, when
1386   // BB labels are requested for this function.
1387   if (MF->hasBBLabels())
1388     emitBBAddrMapSection(*MF);
1389 
1390   // Emit section containing stack size metadata.
1391   emitStackSizeSection(*MF);
1392 
1393   emitPatchableFunctionEntries();
1394 
1395   if (isVerbose())
1396     OutStreamer->GetCommentOS() << "-- End function\n";
1397 
1398   OutStreamer->AddBlankLine();
1399 }
1400 
1401 /// Compute the number of Global Variables that uses a Constant.
1402 static unsigned getNumGlobalVariableUses(const Constant *C) {
1403   if (!C)
1404     return 0;
1405 
1406   if (isa<GlobalVariable>(C))
1407     return 1;
1408 
1409   unsigned NumUses = 0;
1410   for (auto *CU : C->users())
1411     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1412 
1413   return NumUses;
1414 }
1415 
1416 /// Only consider global GOT equivalents if at least one user is a
1417 /// cstexpr inside an initializer of another global variables. Also, don't
1418 /// handle cstexpr inside instructions. During global variable emission,
1419 /// candidates are skipped and are emitted later in case at least one cstexpr
1420 /// isn't replaced by a PC relative GOT entry access.
1421 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1422                                      unsigned &NumGOTEquivUsers) {
1423   // Global GOT equivalents are unnamed private globals with a constant
1424   // pointer initializer to another global symbol. They must point to a
1425   // GlobalVariable or Function, i.e., as GlobalValue.
1426   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1427       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1428       !isa<GlobalValue>(GV->getOperand(0)))
1429     return false;
1430 
1431   // To be a got equivalent, at least one of its users need to be a constant
1432   // expression used by another global variable.
1433   for (auto *U : GV->users())
1434     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1435 
1436   return NumGOTEquivUsers > 0;
1437 }
1438 
1439 /// Unnamed constant global variables solely contaning a pointer to
1440 /// another globals variable is equivalent to a GOT table entry; it contains the
1441 /// the address of another symbol. Optimize it and replace accesses to these
1442 /// "GOT equivalents" by using the GOT entry for the final global instead.
1443 /// Compute GOT equivalent candidates among all global variables to avoid
1444 /// emitting them if possible later on, after it use is replaced by a GOT entry
1445 /// access.
1446 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1447   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1448     return;
1449 
1450   for (const auto &G : M.globals()) {
1451     unsigned NumGOTEquivUsers = 0;
1452     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1453       continue;
1454 
1455     const MCSymbol *GOTEquivSym = getSymbol(&G);
1456     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1457   }
1458 }
1459 
1460 /// Constant expressions using GOT equivalent globals may not be eligible
1461 /// for PC relative GOT entry conversion, in such cases we need to emit such
1462 /// globals we previously omitted in EmitGlobalVariable.
1463 void AsmPrinter::emitGlobalGOTEquivs() {
1464   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1465     return;
1466 
1467   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1468   for (auto &I : GlobalGOTEquivs) {
1469     const GlobalVariable *GV = I.second.first;
1470     unsigned Cnt = I.second.second;
1471     if (Cnt)
1472       FailedCandidates.push_back(GV);
1473   }
1474   GlobalGOTEquivs.clear();
1475 
1476   for (auto *GV : FailedCandidates)
1477     emitGlobalVariable(GV);
1478 }
1479 
1480 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1481                                           const GlobalIndirectSymbol& GIS) {
1482   MCSymbol *Name = getSymbol(&GIS);
1483   bool IsFunction = GIS.getValueType()->isFunctionTy();
1484   // Treat bitcasts of functions as functions also. This is important at least
1485   // on WebAssembly where object and function addresses can't alias each other.
1486   if (!IsFunction)
1487     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1488       if (CE->getOpcode() == Instruction::BitCast)
1489         IsFunction =
1490           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1491 
1492   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1493   // so AIX has to use the extra-label-at-definition strategy. At this
1494   // point, all the extra label is emitted, we just have to emit linkage for
1495   // those labels.
1496   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1497     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1498     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1499            "Visibility should be handled with emitLinkage() on AIX.");
1500     emitLinkage(&GIS, Name);
1501     // If it's a function, also emit linkage for aliases of function entry
1502     // point.
1503     if (IsFunction)
1504       emitLinkage(&GIS,
1505                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1506     return;
1507   }
1508 
1509   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1510     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1511   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1512     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1513   else
1514     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1515 
1516   // Set the symbol type to function if the alias has a function type.
1517   // This affects codegen when the aliasee is not a function.
1518   if (IsFunction)
1519     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1520                                                ? MCSA_ELF_TypeIndFunction
1521                                                : MCSA_ELF_TypeFunction);
1522 
1523   emitVisibility(Name, GIS.getVisibility());
1524 
1525   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1526 
1527   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1528     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1529 
1530   // Emit the directives as assignments aka .set:
1531   OutStreamer->emitAssignment(Name, Expr);
1532   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1533   if (LocalAlias != Name)
1534     OutStreamer->emitAssignment(LocalAlias, Expr);
1535 
1536   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1537     // If the aliasee does not correspond to a symbol in the output, i.e. the
1538     // alias is not of an object or the aliased object is private, then set the
1539     // size of the alias symbol from the type of the alias. We don't do this in
1540     // other situations as the alias and aliasee having differing types but same
1541     // size may be intentional.
1542     const GlobalObject *BaseObject = GA->getBaseObject();
1543     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1544         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1545       const DataLayout &DL = M.getDataLayout();
1546       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1547       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1548     }
1549   }
1550 }
1551 
1552 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1553   if (!RS.needsSection())
1554     return;
1555 
1556   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1557 
1558   Optional<SmallString<128>> Filename;
1559   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1560     Filename = *FilenameRef;
1561     sys::fs::make_absolute(*Filename);
1562     assert(!Filename->empty() && "The filename can't be empty.");
1563   }
1564 
1565   std::string Buf;
1566   raw_string_ostream OS(Buf);
1567   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1568       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1569                : RemarkSerializer.metaSerializer(OS);
1570   MetaSerializer->emit();
1571 
1572   // Switch to the remarks section.
1573   MCSection *RemarksSection =
1574       OutContext.getObjectFileInfo()->getRemarksSection();
1575   OutStreamer->SwitchSection(RemarksSection);
1576 
1577   OutStreamer->emitBinaryData(OS.str());
1578 }
1579 
1580 bool AsmPrinter::doFinalization(Module &M) {
1581   // Set the MachineFunction to nullptr so that we can catch attempted
1582   // accesses to MF specific features at the module level and so that
1583   // we can conditionalize accesses based on whether or not it is nullptr.
1584   MF = nullptr;
1585 
1586   // Gather all GOT equivalent globals in the module. We really need two
1587   // passes over the globals: one to compute and another to avoid its emission
1588   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1589   // where the got equivalent shows up before its use.
1590   computeGlobalGOTEquivs(M);
1591 
1592   // Emit global variables.
1593   for (const auto &G : M.globals())
1594     emitGlobalVariable(&G);
1595 
1596   // Emit remaining GOT equivalent globals.
1597   emitGlobalGOTEquivs();
1598 
1599   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1600 
1601   // Emit linkage(XCOFF) and visibility info for declarations
1602   for (const Function &F : M) {
1603     if (!F.isDeclarationForLinker())
1604       continue;
1605 
1606     MCSymbol *Name = getSymbol(&F);
1607     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1608 
1609     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1610       GlobalValue::VisibilityTypes V = F.getVisibility();
1611       if (V == GlobalValue::DefaultVisibility)
1612         continue;
1613 
1614       emitVisibility(Name, V, false);
1615       continue;
1616     }
1617 
1618     if (F.isIntrinsic())
1619       continue;
1620 
1621     // Handle the XCOFF case.
1622     // Variable `Name` is the function descriptor symbol (see above). Get the
1623     // function entry point symbol.
1624     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1625     // Emit linkage for the function entry point.
1626     emitLinkage(&F, FnEntryPointSym);
1627 
1628     // Emit linkage for the function descriptor.
1629     emitLinkage(&F, Name);
1630   }
1631 
1632   // Emit the remarks section contents.
1633   // FIXME: Figure out when is the safest time to emit this section. It should
1634   // not come after debug info.
1635   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1636     emitRemarksSection(*RS);
1637 
1638   TLOF.emitModuleMetadata(*OutStreamer, M);
1639 
1640   if (TM.getTargetTriple().isOSBinFormatELF()) {
1641     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1642 
1643     // Output stubs for external and common global variables.
1644     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1645     if (!Stubs.empty()) {
1646       OutStreamer->SwitchSection(TLOF.getDataSection());
1647       const DataLayout &DL = M.getDataLayout();
1648 
1649       emitAlignment(Align(DL.getPointerSize()));
1650       for (const auto &Stub : Stubs) {
1651         OutStreamer->emitLabel(Stub.first);
1652         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1653                                      DL.getPointerSize());
1654       }
1655     }
1656   }
1657 
1658   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1659     MachineModuleInfoCOFF &MMICOFF =
1660         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1661 
1662     // Output stubs for external and common global variables.
1663     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1664     if (!Stubs.empty()) {
1665       const DataLayout &DL = M.getDataLayout();
1666 
1667       for (const auto &Stub : Stubs) {
1668         SmallString<256> SectionName = StringRef(".rdata$");
1669         SectionName += Stub.first->getName();
1670         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1671             SectionName,
1672             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1673                 COFF::IMAGE_SCN_LNK_COMDAT,
1674             SectionKind::getReadOnly(), Stub.first->getName(),
1675             COFF::IMAGE_COMDAT_SELECT_ANY));
1676         emitAlignment(Align(DL.getPointerSize()));
1677         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1678         OutStreamer->emitLabel(Stub.first);
1679         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1680                                      DL.getPointerSize());
1681       }
1682     }
1683   }
1684 
1685   // Finalize debug and EH information.
1686   for (const HandlerInfo &HI : Handlers) {
1687     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1688                        HI.TimerGroupDescription, TimePassesIsEnabled);
1689     HI.Handler->endModule();
1690   }
1691 
1692   // This deletes all the ephemeral handlers that AsmPrinter added, while
1693   // keeping all the user-added handlers alive until the AsmPrinter is
1694   // destroyed.
1695   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1696   DD = nullptr;
1697 
1698   // If the target wants to know about weak references, print them all.
1699   if (MAI->getWeakRefDirective()) {
1700     // FIXME: This is not lazy, it would be nice to only print weak references
1701     // to stuff that is actually used.  Note that doing so would require targets
1702     // to notice uses in operands (due to constant exprs etc).  This should
1703     // happen with the MC stuff eventually.
1704 
1705     // Print out module-level global objects here.
1706     for (const auto &GO : M.global_objects()) {
1707       if (!GO.hasExternalWeakLinkage())
1708         continue;
1709       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1710     }
1711   }
1712 
1713   // Print aliases in topological order, that is, for each alias a = b,
1714   // b must be printed before a.
1715   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1716   // such an order to generate correct TOC information.
1717   SmallVector<const GlobalAlias *, 16> AliasStack;
1718   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1719   for (const auto &Alias : M.aliases()) {
1720     for (const GlobalAlias *Cur = &Alias; Cur;
1721          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1722       if (!AliasVisited.insert(Cur).second)
1723         break;
1724       AliasStack.push_back(Cur);
1725     }
1726     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1727       emitGlobalIndirectSymbol(M, *AncestorAlias);
1728     AliasStack.clear();
1729   }
1730   for (const auto &IFunc : M.ifuncs())
1731     emitGlobalIndirectSymbol(M, IFunc);
1732 
1733   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1734   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1735   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1736     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1737       MP->finishAssembly(M, *MI, *this);
1738 
1739   // Emit llvm.ident metadata in an '.ident' directive.
1740   emitModuleIdents(M);
1741 
1742   // Emit bytes for llvm.commandline metadata.
1743   emitModuleCommandLines(M);
1744 
1745   // Emit __morestack address if needed for indirect calls.
1746   if (MMI->usesMorestackAddr()) {
1747     Align Alignment(1);
1748     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1749         getDataLayout(), SectionKind::getReadOnly(),
1750         /*C=*/nullptr, Alignment);
1751     OutStreamer->SwitchSection(ReadOnlySection);
1752 
1753     MCSymbol *AddrSymbol =
1754         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1755     OutStreamer->emitLabel(AddrSymbol);
1756 
1757     unsigned PtrSize = MAI->getCodePointerSize();
1758     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1759                                  PtrSize);
1760   }
1761 
1762   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1763   // split-stack is used.
1764   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1765     OutStreamer->SwitchSection(
1766         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1767     if (MMI->hasNosplitStack())
1768       OutStreamer->SwitchSection(
1769           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1770   }
1771 
1772   // If we don't have any trampolines, then we don't require stack memory
1773   // to be executable. Some targets have a directive to declare this.
1774   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1775   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1776     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1777       OutStreamer->SwitchSection(S);
1778 
1779   if (TM.Options.EmitAddrsig) {
1780     // Emit address-significance attributes for all globals.
1781     OutStreamer->emitAddrsig();
1782     for (const GlobalValue &GV : M.global_values())
1783       if (!GV.use_empty() && !GV.isThreadLocal() &&
1784           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1785           !GV.hasAtLeastLocalUnnamedAddr())
1786         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1787   }
1788 
1789   // Emit symbol partition specifications (ELF only).
1790   if (TM.getTargetTriple().isOSBinFormatELF()) {
1791     unsigned UniqueID = 0;
1792     for (const GlobalValue &GV : M.global_values()) {
1793       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1794           GV.getVisibility() != GlobalValue::DefaultVisibility)
1795         continue;
1796 
1797       OutStreamer->SwitchSection(
1798           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1799                                    "", ++UniqueID, nullptr));
1800       OutStreamer->emitBytes(GV.getPartition());
1801       OutStreamer->emitZeros(1);
1802       OutStreamer->emitValue(
1803           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1804           MAI->getCodePointerSize());
1805     }
1806   }
1807 
1808   // Allow the target to emit any magic that it wants at the end of the file,
1809   // after everything else has gone out.
1810   emitEndOfAsmFile(M);
1811 
1812   MMI = nullptr;
1813 
1814   OutStreamer->Finish();
1815   OutStreamer->reset();
1816   OwnedMLI.reset();
1817   OwnedMDT.reset();
1818 
1819   return false;
1820 }
1821 
1822 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1823   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1824   if (Res.second)
1825     Res.first->second = createTempSymbol("exception");
1826   return Res.first->second;
1827 }
1828 
1829 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1830   this->MF = &MF;
1831   const Function &F = MF.getFunction();
1832 
1833   // Get the function symbol.
1834   if (!MAI->needsFunctionDescriptors()) {
1835     CurrentFnSym = getSymbol(&MF.getFunction());
1836   } else {
1837     assert(TM.getTargetTriple().isOSAIX() &&
1838            "Only AIX uses the function descriptor hooks.");
1839     // AIX is unique here in that the name of the symbol emitted for the
1840     // function body does not have the same name as the source function's
1841     // C-linkage name.
1842     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1843                                " initalized first.");
1844 
1845     // Get the function entry point symbol.
1846     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1847   }
1848 
1849   CurrentFnSymForSize = CurrentFnSym;
1850   CurrentFnBegin = nullptr;
1851   CurrentSectionBeginSym = nullptr;
1852   MBBSectionRanges.clear();
1853   MBBSectionExceptionSyms.clear();
1854   bool NeedsLocalForSize = MAI->needsLocalForSize();
1855   if (F.hasFnAttribute("patchable-function-entry") ||
1856       F.hasFnAttribute("function-instrument") ||
1857       F.hasFnAttribute("xray-instruction-threshold") ||
1858       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1859       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1860     CurrentFnBegin = createTempSymbol("func_begin");
1861     if (NeedsLocalForSize)
1862       CurrentFnSymForSize = CurrentFnBegin;
1863   }
1864 
1865   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1866 }
1867 
1868 namespace {
1869 
1870 // Keep track the alignment, constpool entries per Section.
1871   struct SectionCPs {
1872     MCSection *S;
1873     Align Alignment;
1874     SmallVector<unsigned, 4> CPEs;
1875 
1876     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1877   };
1878 
1879 } // end anonymous namespace
1880 
1881 /// EmitConstantPool - Print to the current output stream assembly
1882 /// representations of the constants in the constant pool MCP. This is
1883 /// used to print out constants which have been "spilled to memory" by
1884 /// the code generator.
1885 void AsmPrinter::emitConstantPool() {
1886   const MachineConstantPool *MCP = MF->getConstantPool();
1887   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1888   if (CP.empty()) return;
1889 
1890   // Calculate sections for constant pool entries. We collect entries to go into
1891   // the same section together to reduce amount of section switch statements.
1892   SmallVector<SectionCPs, 4> CPSections;
1893   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1894     const MachineConstantPoolEntry &CPE = CP[i];
1895     Align Alignment = CPE.getAlign();
1896 
1897     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1898 
1899     const Constant *C = nullptr;
1900     if (!CPE.isMachineConstantPoolEntry())
1901       C = CPE.Val.ConstVal;
1902 
1903     MCSection *S = getObjFileLowering().getSectionForConstant(
1904         getDataLayout(), Kind, C, Alignment);
1905 
1906     // The number of sections are small, just do a linear search from the
1907     // last section to the first.
1908     bool Found = false;
1909     unsigned SecIdx = CPSections.size();
1910     while (SecIdx != 0) {
1911       if (CPSections[--SecIdx].S == S) {
1912         Found = true;
1913         break;
1914       }
1915     }
1916     if (!Found) {
1917       SecIdx = CPSections.size();
1918       CPSections.push_back(SectionCPs(S, Alignment));
1919     }
1920 
1921     if (Alignment > CPSections[SecIdx].Alignment)
1922       CPSections[SecIdx].Alignment = Alignment;
1923     CPSections[SecIdx].CPEs.push_back(i);
1924   }
1925 
1926   // Now print stuff into the calculated sections.
1927   const MCSection *CurSection = nullptr;
1928   unsigned Offset = 0;
1929   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1930     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1931       unsigned CPI = CPSections[i].CPEs[j];
1932       MCSymbol *Sym = GetCPISymbol(CPI);
1933       if (!Sym->isUndefined())
1934         continue;
1935 
1936       if (CurSection != CPSections[i].S) {
1937         OutStreamer->SwitchSection(CPSections[i].S);
1938         emitAlignment(Align(CPSections[i].Alignment));
1939         CurSection = CPSections[i].S;
1940         Offset = 0;
1941       }
1942 
1943       MachineConstantPoolEntry CPE = CP[CPI];
1944 
1945       // Emit inter-object padding for alignment.
1946       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1947       OutStreamer->emitZeros(NewOffset - Offset);
1948 
1949       Type *Ty = CPE.getType();
1950       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1951 
1952       OutStreamer->emitLabel(Sym);
1953       if (CPE.isMachineConstantPoolEntry())
1954         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1955       else
1956         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1957     }
1958   }
1959 }
1960 
1961 // Print assembly representations of the jump tables used by the current
1962 // function.
1963 void AsmPrinter::emitJumpTableInfo() {
1964   const DataLayout &DL = MF->getDataLayout();
1965   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1966   if (!MJTI) return;
1967   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1968   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1969   if (JT.empty()) return;
1970 
1971   // Pick the directive to use to print the jump table entries, and switch to
1972   // the appropriate section.
1973   const Function &F = MF->getFunction();
1974   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1975   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1976       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1977       F);
1978   if (JTInDiffSection) {
1979     // Drop it in the readonly section.
1980     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1981     OutStreamer->SwitchSection(ReadOnlySection);
1982   }
1983 
1984   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
1985 
1986   // Jump tables in code sections are marked with a data_region directive
1987   // where that's supported.
1988   if (!JTInDiffSection)
1989     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
1990 
1991   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1992     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1993 
1994     // If this jump table was deleted, ignore it.
1995     if (JTBBs.empty()) continue;
1996 
1997     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1998     /// emit a .set directive for each unique entry.
1999     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2000         MAI->doesSetDirectiveSuppressReloc()) {
2001       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2002       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2003       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2004       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2005         const MachineBasicBlock *MBB = JTBBs[ii];
2006         if (!EmittedSets.insert(MBB).second)
2007           continue;
2008 
2009         // .set LJTSet, LBB32-base
2010         const MCExpr *LHS =
2011           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2012         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2013                                     MCBinaryExpr::createSub(LHS, Base,
2014                                                             OutContext));
2015       }
2016     }
2017 
2018     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2019     // before each jump table.  The first label is never referenced, but tells
2020     // the assembler and linker the extents of the jump table object.  The
2021     // second label is actually referenced by the code.
2022     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2023       // FIXME: This doesn't have to have any specific name, just any randomly
2024       // named and numbered local label started with 'l' would work.  Simplify
2025       // GetJTISymbol.
2026       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2027 
2028     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2029     OutStreamer->emitLabel(JTISymbol);
2030 
2031     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2032       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2033   }
2034   if (!JTInDiffSection)
2035     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2036 }
2037 
2038 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2039 /// current stream.
2040 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2041                                     const MachineBasicBlock *MBB,
2042                                     unsigned UID) const {
2043   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2044   const MCExpr *Value = nullptr;
2045   switch (MJTI->getEntryKind()) {
2046   case MachineJumpTableInfo::EK_Inline:
2047     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2048   case MachineJumpTableInfo::EK_Custom32:
2049     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2050         MJTI, MBB, UID, OutContext);
2051     break;
2052   case MachineJumpTableInfo::EK_BlockAddress:
2053     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2054     //     .word LBB123
2055     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2056     break;
2057   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2058     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2059     // with a relocation as gp-relative, e.g.:
2060     //     .gprel32 LBB123
2061     MCSymbol *MBBSym = MBB->getSymbol();
2062     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2063     return;
2064   }
2065 
2066   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2067     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2068     // with a relocation as gp-relative, e.g.:
2069     //     .gpdword LBB123
2070     MCSymbol *MBBSym = MBB->getSymbol();
2071     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2072     return;
2073   }
2074 
2075   case MachineJumpTableInfo::EK_LabelDifference32: {
2076     // Each entry is the address of the block minus the address of the jump
2077     // table. This is used for PIC jump tables where gprel32 is not supported.
2078     // e.g.:
2079     //      .word LBB123 - LJTI1_2
2080     // If the .set directive avoids relocations, this is emitted as:
2081     //      .set L4_5_set_123, LBB123 - LJTI1_2
2082     //      .word L4_5_set_123
2083     if (MAI->doesSetDirectiveSuppressReloc()) {
2084       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2085                                       OutContext);
2086       break;
2087     }
2088     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2089     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2090     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2091     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2092     break;
2093   }
2094   }
2095 
2096   assert(Value && "Unknown entry kind!");
2097 
2098   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2099   OutStreamer->emitValue(Value, EntrySize);
2100 }
2101 
2102 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2103 /// special global used by LLVM.  If so, emit it and return true, otherwise
2104 /// do nothing and return false.
2105 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2106   if (GV->getName() == "llvm.used") {
2107     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2108       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2109     return true;
2110   }
2111 
2112   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2113   if (GV->getSection() == "llvm.metadata" ||
2114       GV->hasAvailableExternallyLinkage())
2115     return true;
2116 
2117   if (!GV->hasAppendingLinkage()) return false;
2118 
2119   assert(GV->hasInitializer() && "Not a special LLVM global!");
2120 
2121   if (GV->getName() == "llvm.global_ctors") {
2122     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2123                        /* isCtor */ true);
2124 
2125     return true;
2126   }
2127 
2128   if (GV->getName() == "llvm.global_dtors") {
2129     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2130                        /* isCtor */ false);
2131 
2132     return true;
2133   }
2134 
2135   report_fatal_error("unknown special variable");
2136 }
2137 
2138 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2139 /// global in the specified llvm.used list.
2140 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2141   // Should be an array of 'i8*'.
2142   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2143     const GlobalValue *GV =
2144       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2145     if (GV)
2146       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2147   }
2148 }
2149 
2150 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2151                                           const Constant *List,
2152                                           SmallVector<Structor, 8> &Structors) {
2153   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2154   // the init priority.
2155   if (!isa<ConstantArray>(List))
2156     return;
2157 
2158   // Gather the structors in a form that's convenient for sorting by priority.
2159   for (Value *O : cast<ConstantArray>(List)->operands()) {
2160     auto *CS = cast<ConstantStruct>(O);
2161     if (CS->getOperand(1)->isNullValue())
2162       break; // Found a null terminator, skip the rest.
2163     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2164     if (!Priority)
2165       continue; // Malformed.
2166     Structors.push_back(Structor());
2167     Structor &S = Structors.back();
2168     S.Priority = Priority->getLimitedValue(65535);
2169     S.Func = CS->getOperand(1);
2170     if (!CS->getOperand(2)->isNullValue()) {
2171       if (TM.getTargetTriple().isOSAIX())
2172         llvm::report_fatal_error(
2173             "associated data of XXStructor list is not yet supported on AIX");
2174       S.ComdatKey =
2175           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2176     }
2177   }
2178 
2179   // Emit the function pointers in the target-specific order
2180   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2181     return L.Priority < R.Priority;
2182   });
2183 }
2184 
2185 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2186 /// priority.
2187 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2188                                     bool IsCtor) {
2189   SmallVector<Structor, 8> Structors;
2190   preprocessXXStructorList(DL, List, Structors);
2191   if (Structors.empty())
2192     return;
2193 
2194   const Align Align = DL.getPointerPrefAlignment();
2195   for (Structor &S : Structors) {
2196     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2197     const MCSymbol *KeySym = nullptr;
2198     if (GlobalValue *GV = S.ComdatKey) {
2199       if (GV->isDeclarationForLinker())
2200         // If the associated variable is not defined in this module
2201         // (it might be available_externally, or have been an
2202         // available_externally definition that was dropped by the
2203         // EliminateAvailableExternally pass), some other TU
2204         // will provide its dynamic initializer.
2205         continue;
2206 
2207       KeySym = getSymbol(GV);
2208     }
2209 
2210     MCSection *OutputSection =
2211         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2212                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2213     OutStreamer->SwitchSection(OutputSection);
2214     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2215       emitAlignment(Align);
2216     emitXXStructor(DL, S.Func);
2217   }
2218 }
2219 
2220 void AsmPrinter::emitModuleIdents(Module &M) {
2221   if (!MAI->hasIdentDirective())
2222     return;
2223 
2224   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2225     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2226       const MDNode *N = NMD->getOperand(i);
2227       assert(N->getNumOperands() == 1 &&
2228              "llvm.ident metadata entry can have only one operand");
2229       const MDString *S = cast<MDString>(N->getOperand(0));
2230       OutStreamer->emitIdent(S->getString());
2231     }
2232   }
2233 }
2234 
2235 void AsmPrinter::emitModuleCommandLines(Module &M) {
2236   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2237   if (!CommandLine)
2238     return;
2239 
2240   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2241   if (!NMD || !NMD->getNumOperands())
2242     return;
2243 
2244   OutStreamer->PushSection();
2245   OutStreamer->SwitchSection(CommandLine);
2246   OutStreamer->emitZeros(1);
2247   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2248     const MDNode *N = NMD->getOperand(i);
2249     assert(N->getNumOperands() == 1 &&
2250            "llvm.commandline metadata entry can have only one operand");
2251     const MDString *S = cast<MDString>(N->getOperand(0));
2252     OutStreamer->emitBytes(S->getString());
2253     OutStreamer->emitZeros(1);
2254   }
2255   OutStreamer->PopSection();
2256 }
2257 
2258 //===--------------------------------------------------------------------===//
2259 // Emission and print routines
2260 //
2261 
2262 /// Emit a byte directive and value.
2263 ///
2264 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2265 
2266 /// Emit a short directive and value.
2267 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2268 
2269 /// Emit a long directive and value.
2270 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2271 
2272 /// Emit a long long directive and value.
2273 void AsmPrinter::emitInt64(uint64_t Value) const {
2274   OutStreamer->emitInt64(Value);
2275 }
2276 
2277 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2278 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2279 /// .set if it avoids relocations.
2280 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2281                                      unsigned Size) const {
2282   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2283 }
2284 
2285 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2286 /// where the size in bytes of the directive is specified by Size and Label
2287 /// specifies the label.  This implicitly uses .set if it is available.
2288 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2289                                      unsigned Size,
2290                                      bool IsSectionRelative) const {
2291   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2292     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2293     if (Size > 4)
2294       OutStreamer->emitZeros(Size - 4);
2295     return;
2296   }
2297 
2298   // Emit Label+Offset (or just Label if Offset is zero)
2299   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2300   if (Offset)
2301     Expr = MCBinaryExpr::createAdd(
2302         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2303 
2304   OutStreamer->emitValue(Expr, Size);
2305 }
2306 
2307 //===----------------------------------------------------------------------===//
2308 
2309 // EmitAlignment - Emit an alignment directive to the specified power of
2310 // two boundary.  If a global value is specified, and if that global has
2311 // an explicit alignment requested, it will override the alignment request
2312 // if required for correctness.
2313 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2314   if (GV)
2315     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2316 
2317   if (Alignment == Align(1))
2318     return; // 1-byte aligned: no need to emit alignment.
2319 
2320   if (getCurrentSection()->getKind().isText())
2321     OutStreamer->emitCodeAlignment(Alignment.value());
2322   else
2323     OutStreamer->emitValueToAlignment(Alignment.value());
2324 }
2325 
2326 //===----------------------------------------------------------------------===//
2327 // Constant emission.
2328 //===----------------------------------------------------------------------===//
2329 
2330 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2331   MCContext &Ctx = OutContext;
2332 
2333   if (CV->isNullValue() || isa<UndefValue>(CV))
2334     return MCConstantExpr::create(0, Ctx);
2335 
2336   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2337     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2338 
2339   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2340     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2341 
2342   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2343     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2344 
2345   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2346     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2347 
2348   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2349   if (!CE) {
2350     llvm_unreachable("Unknown constant value to lower!");
2351   }
2352 
2353   switch (CE->getOpcode()) {
2354   case Instruction::AddrSpaceCast: {
2355     const Constant *Op = CE->getOperand(0);
2356     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2357     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2358     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2359       return lowerConstant(Op);
2360 
2361     // Fallthrough to error.
2362     LLVM_FALLTHROUGH;
2363   }
2364   default: {
2365     // If the code isn't optimized, there may be outstanding folding
2366     // opportunities. Attempt to fold the expression using DataLayout as a
2367     // last resort before giving up.
2368     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2369     if (C != CE)
2370       return lowerConstant(C);
2371 
2372     // Otherwise report the problem to the user.
2373     std::string S;
2374     raw_string_ostream OS(S);
2375     OS << "Unsupported expression in static initializer: ";
2376     CE->printAsOperand(OS, /*PrintType=*/false,
2377                    !MF ? nullptr : MF->getFunction().getParent());
2378     report_fatal_error(OS.str());
2379   }
2380   case Instruction::GetElementPtr: {
2381     // Generate a symbolic expression for the byte address
2382     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2383     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2384 
2385     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2386     if (!OffsetAI)
2387       return Base;
2388 
2389     int64_t Offset = OffsetAI.getSExtValue();
2390     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2391                                    Ctx);
2392   }
2393 
2394   case Instruction::Trunc:
2395     // We emit the value and depend on the assembler to truncate the generated
2396     // expression properly.  This is important for differences between
2397     // blockaddress labels.  Since the two labels are in the same function, it
2398     // is reasonable to treat their delta as a 32-bit value.
2399     LLVM_FALLTHROUGH;
2400   case Instruction::BitCast:
2401     return lowerConstant(CE->getOperand(0));
2402 
2403   case Instruction::IntToPtr: {
2404     const DataLayout &DL = getDataLayout();
2405 
2406     // Handle casts to pointers by changing them into casts to the appropriate
2407     // integer type.  This promotes constant folding and simplifies this code.
2408     Constant *Op = CE->getOperand(0);
2409     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2410                                       false/*ZExt*/);
2411     return lowerConstant(Op);
2412   }
2413 
2414   case Instruction::PtrToInt: {
2415     const DataLayout &DL = getDataLayout();
2416 
2417     // Support only foldable casts to/from pointers that can be eliminated by
2418     // changing the pointer to the appropriately sized integer type.
2419     Constant *Op = CE->getOperand(0);
2420     Type *Ty = CE->getType();
2421 
2422     const MCExpr *OpExpr = lowerConstant(Op);
2423 
2424     // We can emit the pointer value into this slot if the slot is an
2425     // integer slot equal to the size of the pointer.
2426     //
2427     // If the pointer is larger than the resultant integer, then
2428     // as with Trunc just depend on the assembler to truncate it.
2429     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2430         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2431       return OpExpr;
2432 
2433     // Otherwise the pointer is smaller than the resultant integer, mask off
2434     // the high bits so we are sure to get a proper truncation if the input is
2435     // a constant expr.
2436     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2437     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2438     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2439   }
2440 
2441   case Instruction::Sub: {
2442     GlobalValue *LHSGV;
2443     APInt LHSOffset;
2444     DSOLocalEquivalent *DSOEquiv;
2445     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2446                                    getDataLayout(), &DSOEquiv)) {
2447       GlobalValue *RHSGV;
2448       APInt RHSOffset;
2449       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2450                                      getDataLayout())) {
2451         const MCExpr *RelocExpr =
2452             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2453         if (!RelocExpr) {
2454           const MCExpr *LHSExpr =
2455               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2456           if (DSOEquiv &&
2457               getObjFileLowering().supportDSOLocalEquivalentLowering())
2458             LHSExpr =
2459                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2460           RelocExpr = MCBinaryExpr::createSub(
2461               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2462         }
2463         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2464         if (Addend != 0)
2465           RelocExpr = MCBinaryExpr::createAdd(
2466               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2467         return RelocExpr;
2468       }
2469     }
2470   }
2471   // else fallthrough
2472   LLVM_FALLTHROUGH;
2473 
2474   // The MC library also has a right-shift operator, but it isn't consistently
2475   // signed or unsigned between different targets.
2476   case Instruction::Add:
2477   case Instruction::Mul:
2478   case Instruction::SDiv:
2479   case Instruction::SRem:
2480   case Instruction::Shl:
2481   case Instruction::And:
2482   case Instruction::Or:
2483   case Instruction::Xor: {
2484     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2485     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2486     switch (CE->getOpcode()) {
2487     default: llvm_unreachable("Unknown binary operator constant cast expr");
2488     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2489     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2490     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2491     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2492     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2493     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2494     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2495     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2496     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2497     }
2498   }
2499   }
2500 }
2501 
2502 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2503                                    AsmPrinter &AP,
2504                                    const Constant *BaseCV = nullptr,
2505                                    uint64_t Offset = 0);
2506 
2507 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2508 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2509 
2510 /// isRepeatedByteSequence - Determine whether the given value is
2511 /// composed of a repeated sequence of identical bytes and return the
2512 /// byte value.  If it is not a repeated sequence, return -1.
2513 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2514   StringRef Data = V->getRawDataValues();
2515   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2516   char C = Data[0];
2517   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2518     if (Data[i] != C) return -1;
2519   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2520 }
2521 
2522 /// isRepeatedByteSequence - Determine whether the given value is
2523 /// composed of a repeated sequence of identical bytes and return the
2524 /// byte value.  If it is not a repeated sequence, return -1.
2525 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2526   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2527     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2528     assert(Size % 8 == 0);
2529 
2530     // Extend the element to take zero padding into account.
2531     APInt Value = CI->getValue().zextOrSelf(Size);
2532     if (!Value.isSplat(8))
2533       return -1;
2534 
2535     return Value.zextOrTrunc(8).getZExtValue();
2536   }
2537   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2538     // Make sure all array elements are sequences of the same repeated
2539     // byte.
2540     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2541     Constant *Op0 = CA->getOperand(0);
2542     int Byte = isRepeatedByteSequence(Op0, DL);
2543     if (Byte == -1)
2544       return -1;
2545 
2546     // All array elements must be equal.
2547     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2548       if (CA->getOperand(i) != Op0)
2549         return -1;
2550     return Byte;
2551   }
2552 
2553   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2554     return isRepeatedByteSequence(CDS);
2555 
2556   return -1;
2557 }
2558 
2559 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2560                                              const ConstantDataSequential *CDS,
2561                                              AsmPrinter &AP) {
2562   // See if we can aggregate this into a .fill, if so, emit it as such.
2563   int Value = isRepeatedByteSequence(CDS, DL);
2564   if (Value != -1) {
2565     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2566     // Don't emit a 1-byte object as a .fill.
2567     if (Bytes > 1)
2568       return AP.OutStreamer->emitFill(Bytes, Value);
2569   }
2570 
2571   // If this can be emitted with .ascii/.asciz, emit it as such.
2572   if (CDS->isString())
2573     return AP.OutStreamer->emitBytes(CDS->getAsString());
2574 
2575   // Otherwise, emit the values in successive locations.
2576   unsigned ElementByteSize = CDS->getElementByteSize();
2577   if (isa<IntegerType>(CDS->getElementType())) {
2578     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2579       if (AP.isVerbose())
2580         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2581                                                  CDS->getElementAsInteger(i));
2582       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2583                                    ElementByteSize);
2584     }
2585   } else {
2586     Type *ET = CDS->getElementType();
2587     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2588       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2589   }
2590 
2591   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2592   unsigned EmittedSize =
2593       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2594   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2595   if (unsigned Padding = Size - EmittedSize)
2596     AP.OutStreamer->emitZeros(Padding);
2597 }
2598 
2599 static void emitGlobalConstantArray(const DataLayout &DL,
2600                                     const ConstantArray *CA, AsmPrinter &AP,
2601                                     const Constant *BaseCV, uint64_t Offset) {
2602   // See if we can aggregate some values.  Make sure it can be
2603   // represented as a series of bytes of the constant value.
2604   int Value = isRepeatedByteSequence(CA, DL);
2605 
2606   if (Value != -1) {
2607     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2608     AP.OutStreamer->emitFill(Bytes, Value);
2609   }
2610   else {
2611     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2612       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2613       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2614     }
2615   }
2616 }
2617 
2618 static void emitGlobalConstantVector(const DataLayout &DL,
2619                                      const ConstantVector *CV, AsmPrinter &AP) {
2620   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2621     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2622 
2623   unsigned Size = DL.getTypeAllocSize(CV->getType());
2624   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2625                          CV->getType()->getNumElements();
2626   if (unsigned Padding = Size - EmittedSize)
2627     AP.OutStreamer->emitZeros(Padding);
2628 }
2629 
2630 static void emitGlobalConstantStruct(const DataLayout &DL,
2631                                      const ConstantStruct *CS, AsmPrinter &AP,
2632                                      const Constant *BaseCV, uint64_t Offset) {
2633   // Print the fields in successive locations. Pad to align if needed!
2634   unsigned Size = DL.getTypeAllocSize(CS->getType());
2635   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2636   uint64_t SizeSoFar = 0;
2637   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2638     const Constant *Field = CS->getOperand(i);
2639 
2640     // Print the actual field value.
2641     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2642 
2643     // Check if padding is needed and insert one or more 0s.
2644     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2645     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2646                         - Layout->getElementOffset(i)) - FieldSize;
2647     SizeSoFar += FieldSize + PadSize;
2648 
2649     // Insert padding - this may include padding to increase the size of the
2650     // current field up to the ABI size (if the struct is not packed) as well
2651     // as padding to ensure that the next field starts at the right offset.
2652     AP.OutStreamer->emitZeros(PadSize);
2653   }
2654   assert(SizeSoFar == Layout->getSizeInBytes() &&
2655          "Layout of constant struct may be incorrect!");
2656 }
2657 
2658 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2659   assert(ET && "Unknown float type");
2660   APInt API = APF.bitcastToAPInt();
2661 
2662   // First print a comment with what we think the original floating-point value
2663   // should have been.
2664   if (AP.isVerbose()) {
2665     SmallString<8> StrVal;
2666     APF.toString(StrVal);
2667     ET->print(AP.OutStreamer->GetCommentOS());
2668     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2669   }
2670 
2671   // Now iterate through the APInt chunks, emitting them in endian-correct
2672   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2673   // floats).
2674   unsigned NumBytes = API.getBitWidth() / 8;
2675   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2676   const uint64_t *p = API.getRawData();
2677 
2678   // PPC's long double has odd notions of endianness compared to how LLVM
2679   // handles it: p[0] goes first for *big* endian on PPC.
2680   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2681     int Chunk = API.getNumWords() - 1;
2682 
2683     if (TrailingBytes)
2684       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2685 
2686     for (; Chunk >= 0; --Chunk)
2687       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2688   } else {
2689     unsigned Chunk;
2690     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2691       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2692 
2693     if (TrailingBytes)
2694       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2695   }
2696 
2697   // Emit the tail padding for the long double.
2698   const DataLayout &DL = AP.getDataLayout();
2699   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2700 }
2701 
2702 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2703   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2704 }
2705 
2706 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2707   const DataLayout &DL = AP.getDataLayout();
2708   unsigned BitWidth = CI->getBitWidth();
2709 
2710   // Copy the value as we may massage the layout for constants whose bit width
2711   // is not a multiple of 64-bits.
2712   APInt Realigned(CI->getValue());
2713   uint64_t ExtraBits = 0;
2714   unsigned ExtraBitsSize = BitWidth & 63;
2715 
2716   if (ExtraBitsSize) {
2717     // The bit width of the data is not a multiple of 64-bits.
2718     // The extra bits are expected to be at the end of the chunk of the memory.
2719     // Little endian:
2720     // * Nothing to be done, just record the extra bits to emit.
2721     // Big endian:
2722     // * Record the extra bits to emit.
2723     // * Realign the raw data to emit the chunks of 64-bits.
2724     if (DL.isBigEndian()) {
2725       // Basically the structure of the raw data is a chunk of 64-bits cells:
2726       //    0        1         BitWidth / 64
2727       // [chunk1][chunk2] ... [chunkN].
2728       // The most significant chunk is chunkN and it should be emitted first.
2729       // However, due to the alignment issue chunkN contains useless bits.
2730       // Realign the chunks so that they contain only useful information:
2731       // ExtraBits     0       1       (BitWidth / 64) - 1
2732       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2733       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2734       ExtraBits = Realigned.getRawData()[0] &
2735         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2736       Realigned.lshrInPlace(ExtraBitsSize);
2737     } else
2738       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2739   }
2740 
2741   // We don't expect assemblers to support integer data directives
2742   // for more than 64 bits, so we emit the data in at most 64-bit
2743   // quantities at a time.
2744   const uint64_t *RawData = Realigned.getRawData();
2745   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2746     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2747     AP.OutStreamer->emitIntValue(Val, 8);
2748   }
2749 
2750   if (ExtraBitsSize) {
2751     // Emit the extra bits after the 64-bits chunks.
2752 
2753     // Emit a directive that fills the expected size.
2754     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2755     Size -= (BitWidth / 64) * 8;
2756     assert(Size && Size * 8 >= ExtraBitsSize &&
2757            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2758            == ExtraBits && "Directive too small for extra bits.");
2759     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2760   }
2761 }
2762 
2763 /// Transform a not absolute MCExpr containing a reference to a GOT
2764 /// equivalent global, by a target specific GOT pc relative access to the
2765 /// final symbol.
2766 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2767                                          const Constant *BaseCst,
2768                                          uint64_t Offset) {
2769   // The global @foo below illustrates a global that uses a got equivalent.
2770   //
2771   //  @bar = global i32 42
2772   //  @gotequiv = private unnamed_addr constant i32* @bar
2773   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2774   //                             i64 ptrtoint (i32* @foo to i64))
2775   //                        to i32)
2776   //
2777   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2778   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2779   // form:
2780   //
2781   //  foo = cstexpr, where
2782   //    cstexpr := <gotequiv> - "." + <cst>
2783   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2784   //
2785   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2786   //
2787   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2788   //    gotpcrelcst := <offset from @foo base> + <cst>
2789   MCValue MV;
2790   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2791     return;
2792   const MCSymbolRefExpr *SymA = MV.getSymA();
2793   if (!SymA)
2794     return;
2795 
2796   // Check that GOT equivalent symbol is cached.
2797   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2798   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2799     return;
2800 
2801   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2802   if (!BaseGV)
2803     return;
2804 
2805   // Check for a valid base symbol
2806   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2807   const MCSymbolRefExpr *SymB = MV.getSymB();
2808 
2809   if (!SymB || BaseSym != &SymB->getSymbol())
2810     return;
2811 
2812   // Make sure to match:
2813   //
2814   //    gotpcrelcst := <offset from @foo base> + <cst>
2815   //
2816   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2817   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2818   // if the target knows how to encode it.
2819   int64_t GOTPCRelCst = Offset + MV.getConstant();
2820   if (GOTPCRelCst < 0)
2821     return;
2822   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2823     return;
2824 
2825   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2826   //
2827   //  bar:
2828   //    .long 42
2829   //  gotequiv:
2830   //    .quad bar
2831   //  foo:
2832   //    .long gotequiv - "." + <cst>
2833   //
2834   // is replaced by the target specific equivalent to:
2835   //
2836   //  bar:
2837   //    .long 42
2838   //  foo:
2839   //    .long bar@GOTPCREL+<gotpcrelcst>
2840   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2841   const GlobalVariable *GV = Result.first;
2842   int NumUses = (int)Result.second;
2843   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2844   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2845   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2846       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2847 
2848   // Update GOT equivalent usage information
2849   --NumUses;
2850   if (NumUses >= 0)
2851     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2852 }
2853 
2854 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2855                                    AsmPrinter &AP, const Constant *BaseCV,
2856                                    uint64_t Offset) {
2857   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2858 
2859   // Globals with sub-elements such as combinations of arrays and structs
2860   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2861   // constant symbol base and the current position with BaseCV and Offset.
2862   if (!BaseCV && CV->hasOneUse())
2863     BaseCV = dyn_cast<Constant>(CV->user_back());
2864 
2865   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2866     return AP.OutStreamer->emitZeros(Size);
2867 
2868   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2869     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2870 
2871     if (StoreSize <= 8) {
2872       if (AP.isVerbose())
2873         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2874                                                  CI->getZExtValue());
2875       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2876     } else {
2877       emitGlobalConstantLargeInt(CI, AP);
2878     }
2879 
2880     // Emit tail padding if needed
2881     if (Size != StoreSize)
2882       AP.OutStreamer->emitZeros(Size - StoreSize);
2883 
2884     return;
2885   }
2886 
2887   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2888     return emitGlobalConstantFP(CFP, AP);
2889 
2890   if (isa<ConstantPointerNull>(CV)) {
2891     AP.OutStreamer->emitIntValue(0, Size);
2892     return;
2893   }
2894 
2895   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2896     return emitGlobalConstantDataSequential(DL, CDS, AP);
2897 
2898   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2899     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2900 
2901   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2902     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2903 
2904   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2905     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2906     // vectors).
2907     if (CE->getOpcode() == Instruction::BitCast)
2908       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2909 
2910     if (Size > 8) {
2911       // If the constant expression's size is greater than 64-bits, then we have
2912       // to emit the value in chunks. Try to constant fold the value and emit it
2913       // that way.
2914       Constant *New = ConstantFoldConstant(CE, DL);
2915       if (New != CE)
2916         return emitGlobalConstantImpl(DL, New, AP);
2917     }
2918   }
2919 
2920   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2921     return emitGlobalConstantVector(DL, V, AP);
2922 
2923   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2924   // thread the streamer with EmitValue.
2925   const MCExpr *ME = AP.lowerConstant(CV);
2926 
2927   // Since lowerConstant already folded and got rid of all IR pointer and
2928   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2929   // directly.
2930   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2931     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2932 
2933   AP.OutStreamer->emitValue(ME, Size);
2934 }
2935 
2936 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2937 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2938   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2939   if (Size)
2940     emitGlobalConstantImpl(DL, CV, *this);
2941   else if (MAI->hasSubsectionsViaSymbols()) {
2942     // If the global has zero size, emit a single byte so that two labels don't
2943     // look like they are at the same location.
2944     OutStreamer->emitIntValue(0, 1);
2945   }
2946 }
2947 
2948 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2949   // Target doesn't support this yet!
2950   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2951 }
2952 
2953 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2954   if (Offset > 0)
2955     OS << '+' << Offset;
2956   else if (Offset < 0)
2957     OS << Offset;
2958 }
2959 
2960 void AsmPrinter::emitNops(unsigned N) {
2961   MCInst Nop;
2962   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2963   for (; N; --N)
2964     EmitToStreamer(*OutStreamer, Nop);
2965 }
2966 
2967 //===----------------------------------------------------------------------===//
2968 // Symbol Lowering Routines.
2969 //===----------------------------------------------------------------------===//
2970 
2971 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2972   return OutContext.createTempSymbol(Name, true);
2973 }
2974 
2975 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2976   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2977 }
2978 
2979 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2980   return MMI->getAddrLabelSymbol(BB);
2981 }
2982 
2983 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2984 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2985   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2986     const MachineConstantPoolEntry &CPE =
2987         MF->getConstantPool()->getConstants()[CPID];
2988     if (!CPE.isMachineConstantPoolEntry()) {
2989       const DataLayout &DL = MF->getDataLayout();
2990       SectionKind Kind = CPE.getSectionKind(&DL);
2991       const Constant *C = CPE.Val.ConstVal;
2992       Align Alignment = CPE.Alignment;
2993       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2994               getObjFileLowering().getSectionForConstant(DL, Kind, C,
2995                                                          Alignment))) {
2996         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2997           if (Sym->isUndefined())
2998             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2999           return Sym;
3000         }
3001       }
3002     }
3003   }
3004 
3005   const DataLayout &DL = getDataLayout();
3006   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3007                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3008                                       Twine(CPID));
3009 }
3010 
3011 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3012 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3013   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3014 }
3015 
3016 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3017 /// FIXME: privatize to AsmPrinter.
3018 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3019   const DataLayout &DL = getDataLayout();
3020   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3021                                       Twine(getFunctionNumber()) + "_" +
3022                                       Twine(UID) + "_set_" + Twine(MBBID));
3023 }
3024 
3025 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3026                                                    StringRef Suffix) const {
3027   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3028 }
3029 
3030 /// Return the MCSymbol for the specified ExternalSymbol.
3031 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3032   SmallString<60> NameStr;
3033   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3034   return OutContext.getOrCreateSymbol(NameStr);
3035 }
3036 
3037 /// PrintParentLoopComment - Print comments about parent loops of this one.
3038 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3039                                    unsigned FunctionNumber) {
3040   if (!Loop) return;
3041   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3042   OS.indent(Loop->getLoopDepth()*2)
3043     << "Parent Loop BB" << FunctionNumber << "_"
3044     << Loop->getHeader()->getNumber()
3045     << " Depth=" << Loop->getLoopDepth() << '\n';
3046 }
3047 
3048 /// PrintChildLoopComment - Print comments about child loops within
3049 /// the loop for this basic block, with nesting.
3050 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3051                                   unsigned FunctionNumber) {
3052   // Add child loop information
3053   for (const MachineLoop *CL : *Loop) {
3054     OS.indent(CL->getLoopDepth()*2)
3055       << "Child Loop BB" << FunctionNumber << "_"
3056       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3057       << '\n';
3058     PrintChildLoopComment(OS, CL, FunctionNumber);
3059   }
3060 }
3061 
3062 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3063 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3064                                        const MachineLoopInfo *LI,
3065                                        const AsmPrinter &AP) {
3066   // Add loop depth information
3067   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3068   if (!Loop) return;
3069 
3070   MachineBasicBlock *Header = Loop->getHeader();
3071   assert(Header && "No header for loop");
3072 
3073   // If this block is not a loop header, just print out what is the loop header
3074   // and return.
3075   if (Header != &MBB) {
3076     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3077                                Twine(AP.getFunctionNumber())+"_" +
3078                                Twine(Loop->getHeader()->getNumber())+
3079                                " Depth="+Twine(Loop->getLoopDepth()));
3080     return;
3081   }
3082 
3083   // Otherwise, it is a loop header.  Print out information about child and
3084   // parent loops.
3085   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3086 
3087   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3088 
3089   OS << "=>";
3090   OS.indent(Loop->getLoopDepth()*2-2);
3091 
3092   OS << "This ";
3093   if (Loop->isInnermost())
3094     OS << "Inner ";
3095   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3096 
3097   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3098 }
3099 
3100 /// emitBasicBlockStart - This method prints the label for the specified
3101 /// MachineBasicBlock, an alignment (if present) and a comment describing
3102 /// it if appropriate.
3103 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3104   // End the previous funclet and start a new one.
3105   if (MBB.isEHFuncletEntry()) {
3106     for (const HandlerInfo &HI : Handlers) {
3107       HI.Handler->endFunclet();
3108       HI.Handler->beginFunclet(MBB);
3109     }
3110   }
3111 
3112   // Emit an alignment directive for this block, if needed.
3113   const Align Alignment = MBB.getAlignment();
3114   if (Alignment != Align(1))
3115     emitAlignment(Alignment);
3116 
3117   // Switch to a new section if this basic block must begin a section. The
3118   // entry block is always placed in the function section and is handled
3119   // separately.
3120   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3121     OutStreamer->SwitchSection(
3122         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3123                                                             MBB, TM));
3124     CurrentSectionBeginSym = MBB.getSymbol();
3125   }
3126 
3127   // If the block has its address taken, emit any labels that were used to
3128   // reference the block.  It is possible that there is more than one label
3129   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3130   // the references were generated.
3131   if (MBB.hasAddressTaken()) {
3132     const BasicBlock *BB = MBB.getBasicBlock();
3133     if (isVerbose())
3134       OutStreamer->AddComment("Block address taken");
3135 
3136     // MBBs can have their address taken as part of CodeGen without having
3137     // their corresponding BB's address taken in IR
3138     if (BB->hasAddressTaken())
3139       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3140         OutStreamer->emitLabel(Sym);
3141   }
3142 
3143   // Print some verbose block comments.
3144   if (isVerbose()) {
3145     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3146       if (BB->hasName()) {
3147         BB->printAsOperand(OutStreamer->GetCommentOS(),
3148                            /*PrintType=*/false, BB->getModule());
3149         OutStreamer->GetCommentOS() << '\n';
3150       }
3151     }
3152 
3153     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3154     emitBasicBlockLoopComments(MBB, MLI, *this);
3155   }
3156 
3157   // Print the main label for the block.
3158   if (shouldEmitLabelForBasicBlock(MBB)) {
3159     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3160       OutStreamer->AddComment("Label of block must be emitted");
3161     OutStreamer->emitLabel(MBB.getSymbol());
3162   } else {
3163     if (isVerbose()) {
3164       // NOTE: Want this comment at start of line, don't emit with AddComment.
3165       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3166                                   false);
3167     }
3168   }
3169 
3170   // With BB sections, each basic block must handle CFI information on its own
3171   // if it begins a section (Entry block is handled separately by
3172   // AsmPrinterHandler::beginFunction).
3173   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3174     for (const HandlerInfo &HI : Handlers)
3175       HI.Handler->beginBasicBlock(MBB);
3176 }
3177 
3178 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3179   // Check if CFI information needs to be updated for this MBB with basic block
3180   // sections.
3181   if (MBB.isEndSection())
3182     for (const HandlerInfo &HI : Handlers)
3183       HI.Handler->endBasicBlock(MBB);
3184 }
3185 
3186 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3187                                 bool IsDefinition) const {
3188   MCSymbolAttr Attr = MCSA_Invalid;
3189 
3190   switch (Visibility) {
3191   default: break;
3192   case GlobalValue::HiddenVisibility:
3193     if (IsDefinition)
3194       Attr = MAI->getHiddenVisibilityAttr();
3195     else
3196       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3197     break;
3198   case GlobalValue::ProtectedVisibility:
3199     Attr = MAI->getProtectedVisibilityAttr();
3200     break;
3201   }
3202 
3203   if (Attr != MCSA_Invalid)
3204     OutStreamer->emitSymbolAttribute(Sym, Attr);
3205 }
3206 
3207 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3208     const MachineBasicBlock &MBB) const {
3209   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3210   // in the labels mode (option `=labels`) and every section beginning in the
3211   // sections mode (`=all` and `=list=`).
3212   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3213     return true;
3214   // A label is needed for any block with at least one predecessor (when that
3215   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3216   // entry, or if a label is forced).
3217   return !MBB.pred_empty() &&
3218          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3219           MBB.hasLabelMustBeEmitted());
3220 }
3221 
3222 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3223 /// exactly one predecessor and the control transfer mechanism between
3224 /// the predecessor and this block is a fall-through.
3225 bool AsmPrinter::
3226 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3227   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3228   // then nothing falls through to it.
3229   if (MBB->isEHPad() || MBB->pred_empty())
3230     return false;
3231 
3232   // If there isn't exactly one predecessor, it can't be a fall through.
3233   if (MBB->pred_size() > 1)
3234     return false;
3235 
3236   // The predecessor has to be immediately before this block.
3237   MachineBasicBlock *Pred = *MBB->pred_begin();
3238   if (!Pred->isLayoutSuccessor(MBB))
3239     return false;
3240 
3241   // If the block is completely empty, then it definitely does fall through.
3242   if (Pred->empty())
3243     return true;
3244 
3245   // Check the terminators in the previous blocks
3246   for (const auto &MI : Pred->terminators()) {
3247     // If it is not a simple branch, we are in a table somewhere.
3248     if (!MI.isBranch() || MI.isIndirectBranch())
3249       return false;
3250 
3251     // If we are the operands of one of the branches, this is not a fall
3252     // through. Note that targets with delay slots will usually bundle
3253     // terminators with the delay slot instruction.
3254     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3255       if (OP->isJTI())
3256         return false;
3257       if (OP->isMBB() && OP->getMBB() == MBB)
3258         return false;
3259     }
3260   }
3261 
3262   return true;
3263 }
3264 
3265 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3266   if (!S.usesMetadata())
3267     return nullptr;
3268 
3269   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3270   gcp_map_type::iterator GCPI = GCMap.find(&S);
3271   if (GCPI != GCMap.end())
3272     return GCPI->second.get();
3273 
3274   auto Name = S.getName();
3275 
3276   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3277        GCMetadataPrinterRegistry::entries())
3278     if (Name == GCMetaPrinter.getName()) {
3279       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3280       GMP->S = &S;
3281       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3282       return IterBool.first->second.get();
3283     }
3284 
3285   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3286 }
3287 
3288 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3289   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3290   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3291   bool NeedsDefault = false;
3292   if (MI->begin() == MI->end())
3293     // No GC strategy, use the default format.
3294     NeedsDefault = true;
3295   else
3296     for (auto &I : *MI) {
3297       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3298         if (MP->emitStackMaps(SM, *this))
3299           continue;
3300       // The strategy doesn't have printer or doesn't emit custom stack maps.
3301       // Use the default format.
3302       NeedsDefault = true;
3303     }
3304 
3305   if (NeedsDefault)
3306     SM.serializeToStackMapSection();
3307 }
3308 
3309 /// Pin vtable to this file.
3310 AsmPrinterHandler::~AsmPrinterHandler() = default;
3311 
3312 void AsmPrinterHandler::markFunctionEnd() {}
3313 
3314 // In the binary's "xray_instr_map" section, an array of these function entries
3315 // describes each instrumentation point.  When XRay patches your code, the index
3316 // into this table will be given to your handler as a patch point identifier.
3317 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3318   auto Kind8 = static_cast<uint8_t>(Kind);
3319   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3320   Out->emitBinaryData(
3321       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3322   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3323   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3324   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3325   Out->emitZeros(Padding);
3326 }
3327 
3328 void AsmPrinter::emitXRayTable() {
3329   if (Sleds.empty())
3330     return;
3331 
3332   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3333   const Function &F = MF->getFunction();
3334   MCSection *InstMap = nullptr;
3335   MCSection *FnSledIndex = nullptr;
3336   const Triple &TT = TM.getTargetTriple();
3337   // Use PC-relative addresses on all targets.
3338   if (TT.isOSBinFormatELF()) {
3339     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3340     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3341     StringRef GroupName;
3342     if (F.hasComdat()) {
3343       Flags |= ELF::SHF_GROUP;
3344       GroupName = F.getComdat()->getName();
3345     }
3346     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3347                                        Flags, 0, GroupName,
3348                                        MCSection::NonUniqueID, LinkedToSym);
3349 
3350     if (!TM.Options.XRayOmitFunctionIndex)
3351       FnSledIndex = OutContext.getELFSection(
3352           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3353           GroupName, MCSection::NonUniqueID, LinkedToSym);
3354   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3355     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3356                                          SectionKind::getReadOnlyWithRel());
3357     if (!TM.Options.XRayOmitFunctionIndex)
3358       FnSledIndex = OutContext.getMachOSection(
3359           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3360   } else {
3361     llvm_unreachable("Unsupported target");
3362   }
3363 
3364   auto WordSizeBytes = MAI->getCodePointerSize();
3365 
3366   // Now we switch to the instrumentation map section. Because this is done
3367   // per-function, we are able to create an index entry that will represent the
3368   // range of sleds associated with a function.
3369   auto &Ctx = OutContext;
3370   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3371   OutStreamer->SwitchSection(InstMap);
3372   OutStreamer->emitLabel(SledsStart);
3373   for (const auto &Sled : Sleds) {
3374     MCSymbol *Dot = Ctx.createTempSymbol();
3375     OutStreamer->emitLabel(Dot);
3376     OutStreamer->emitValueImpl(
3377         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3378                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3379         WordSizeBytes);
3380     OutStreamer->emitValueImpl(
3381         MCBinaryExpr::createSub(
3382             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3383             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3384                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3385                                     Ctx),
3386             Ctx),
3387         WordSizeBytes);
3388     Sled.emit(WordSizeBytes, OutStreamer.get());
3389   }
3390   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3391   OutStreamer->emitLabel(SledsEnd);
3392 
3393   // We then emit a single entry in the index per function. We use the symbols
3394   // that bound the instrumentation map as the range for a specific function.
3395   // Each entry here will be 2 * word size aligned, as we're writing down two
3396   // pointers. This should work for both 32-bit and 64-bit platforms.
3397   if (FnSledIndex) {
3398     OutStreamer->SwitchSection(FnSledIndex);
3399     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3400     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3401     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3402     OutStreamer->SwitchSection(PrevSection);
3403   }
3404   Sleds.clear();
3405 }
3406 
3407 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3408                             SledKind Kind, uint8_t Version) {
3409   const Function &F = MI.getMF()->getFunction();
3410   auto Attr = F.getFnAttribute("function-instrument");
3411   bool LogArgs = F.hasFnAttribute("xray-log-args");
3412   bool AlwaysInstrument =
3413     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3414   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3415     Kind = SledKind::LOG_ARGS_ENTER;
3416   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3417                                        AlwaysInstrument, &F, Version});
3418 }
3419 
3420 void AsmPrinter::emitPatchableFunctionEntries() {
3421   const Function &F = MF->getFunction();
3422   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3423   (void)F.getFnAttribute("patchable-function-prefix")
3424       .getValueAsString()
3425       .getAsInteger(10, PatchableFunctionPrefix);
3426   (void)F.getFnAttribute("patchable-function-entry")
3427       .getValueAsString()
3428       .getAsInteger(10, PatchableFunctionEntry);
3429   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3430     return;
3431   const unsigned PointerSize = getPointerSize();
3432   if (TM.getTargetTriple().isOSBinFormatELF()) {
3433     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3434     const MCSymbolELF *LinkedToSym = nullptr;
3435     StringRef GroupName;
3436 
3437     // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3438     // if we are using the integrated assembler.
3439     if (MAI->useIntegratedAssembler()) {
3440       Flags |= ELF::SHF_LINK_ORDER;
3441       if (F.hasComdat()) {
3442         Flags |= ELF::SHF_GROUP;
3443         GroupName = F.getComdat()->getName();
3444       }
3445       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3446     }
3447     OutStreamer->SwitchSection(OutContext.getELFSection(
3448         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3449         MCSection::NonUniqueID, LinkedToSym));
3450     emitAlignment(Align(PointerSize));
3451     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3452   }
3453 }
3454 
3455 uint16_t AsmPrinter::getDwarfVersion() const {
3456   return OutStreamer->getContext().getDwarfVersion();
3457 }
3458 
3459 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3460   OutStreamer->getContext().setDwarfVersion(Version);
3461 }
3462 
3463 bool AsmPrinter::isDwarf64() const {
3464   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3465 }
3466 
3467 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3468   return dwarf::getDwarfOffsetByteSize(
3469       OutStreamer->getContext().getDwarfFormat());
3470 }
3471 
3472 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3473   return dwarf::getUnitLengthFieldByteSize(
3474       OutStreamer->getContext().getDwarfFormat());
3475 }
3476