1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/MCValue.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 static const char *const DWARFGroupName = "DWARF Emission"; 60 static const char *const DbgTimerName = "Debug Info Emission"; 61 static const char *const EHTimerName = "DWARF Exception Writer"; 62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 63 64 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 65 66 char AsmPrinter::ID = 0; 67 68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 69 static gcp_map_type &getGCMap(void *&P) { 70 if (!P) 71 P = new gcp_map_type(); 72 return *(gcp_map_type*)P; 73 } 74 75 76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 77 /// value in log2 form. This rounds up to the preferred alignment if possible 78 /// and legal. 79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 80 unsigned InBits = 0) { 81 unsigned NumBits = 0; 82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 83 NumBits = DL.getPreferredAlignmentLog(GVar); 84 85 // If InBits is specified, round it to it. 86 if (InBits > NumBits) 87 NumBits = InBits; 88 89 // If the GV has a specified alignment, take it into account. 90 if (GV->getAlignment() == 0) 91 return NumBits; 92 93 unsigned GVAlign = Log2_32(GV->getAlignment()); 94 95 // If the GVAlign is larger than NumBits, or if we are required to obey 96 // NumBits because the GV has an assigned section, obey it. 97 if (GVAlign > NumBits || GV->hasSection()) 98 NumBits = GVAlign; 99 return NumBits; 100 } 101 102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 105 LastMI(nullptr), LastFn(0), Counter(~0U) { 106 DD = nullptr; 107 MMI = nullptr; 108 LI = nullptr; 109 MF = nullptr; 110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 111 CurrentFnBegin = nullptr; 112 CurrentFnEnd = nullptr; 113 GCMetadataPrinters = nullptr; 114 VerboseAsm = OutStreamer->isVerboseAsm(); 115 } 116 117 AsmPrinter::~AsmPrinter() { 118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 119 120 if (GCMetadataPrinters) { 121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 122 123 delete &GCMap; 124 GCMetadataPrinters = nullptr; 125 } 126 } 127 128 /// getFunctionNumber - Return a unique ID for the current function. 129 /// 130 unsigned AsmPrinter::getFunctionNumber() const { 131 return MF->getFunctionNumber(); 132 } 133 134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 135 return *TM.getObjFileLowering(); 136 } 137 138 const DataLayout &AsmPrinter::getDataLayout() const { 139 return MMI->getModule()->getDataLayout(); 140 } 141 142 unsigned AsmPrinter::getPointerSize() const { 143 return TM.getDataLayout()->getPointerSize(); 144 } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple().str(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer->getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 178 // Initialize TargetLoweringObjectFile. 179 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 180 .Initialize(OutContext, TM); 181 182 OutStreamer->InitSections(false); 183 184 Mang = new Mangler(); 185 186 // Emit the version-min deplyment target directive if needed. 187 // 188 // FIXME: If we end up with a collection of these sorts of Darwin-specific 189 // or ELF-specific things, it may make sense to have a platform helper class 190 // that will work with the target helper class. For now keep it here, as the 191 // alternative is duplicated code in each of the target asm printers that 192 // use the directive, where it would need the same conditionalization 193 // anyway. 194 Triple TT(getTargetTriple()); 195 if (TT.isOSDarwin()) { 196 unsigned Major, Minor, Update; 197 TT.getOSVersion(Major, Minor, Update); 198 // If there is a version specified, Major will be non-zero. 199 if (Major) 200 OutStreamer->EmitVersionMin((TT.isMacOSX() ? 201 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 202 Major, Minor, Update); 203 } 204 205 // Allow the target to emit any magic that it wants at the start of the file. 206 EmitStartOfAsmFile(M); 207 208 // Very minimal debug info. It is ignored if we emit actual debug info. If we 209 // don't, this at least helps the user find where a global came from. 210 if (MAI->hasSingleParameterDotFile()) { 211 // .file "foo.c" 212 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 213 } 214 215 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 216 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 217 for (auto &I : *MI) 218 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 219 MP->beginAssembly(M, *MI, *this); 220 221 // Emit module-level inline asm if it exists. 222 if (!M.getModuleInlineAsm().empty()) { 223 // We're at the module level. Construct MCSubtarget from the default CPU 224 // and target triple. 225 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 226 TM.getTargetTriple().str(), TM.getTargetCPU(), 227 TM.getTargetFeatureString())); 228 OutStreamer->AddComment("Start of file scope inline assembly"); 229 OutStreamer->AddBlankLine(); 230 EmitInlineAsm(M.getModuleInlineAsm()+"\n", *STI, TM.Options.MCOptions); 231 OutStreamer->AddComment("End of file scope inline assembly"); 232 OutStreamer->AddBlankLine(); 233 } 234 235 if (MAI->doesSupportDebugInformation()) { 236 bool skip_dwarf = false; 237 if (TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 238 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 239 DbgTimerName, 240 CodeViewLineTablesGroupName)); 241 // FIXME: Don't emit DWARF debug info if there's at least one function 242 // with AddressSanitizer instrumentation. 243 // This is a band-aid fix for PR22032. 244 for (auto &F : M.functions()) { 245 if (F.hasFnAttribute(Attribute::SanitizeAddress)) { 246 skip_dwarf = true; 247 break; 248 } 249 } 250 } 251 if (!skip_dwarf) { 252 DD = new DwarfDebug(this, &M); 253 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 254 } 255 } 256 257 EHStreamer *ES = nullptr; 258 switch (MAI->getExceptionHandlingType()) { 259 case ExceptionHandling::None: 260 break; 261 case ExceptionHandling::SjLj: 262 case ExceptionHandling::DwarfCFI: 263 ES = new DwarfCFIException(this); 264 break; 265 case ExceptionHandling::ARM: 266 ES = new ARMException(this); 267 break; 268 case ExceptionHandling::WinEH: 269 switch (MAI->getWinEHEncodingType()) { 270 default: llvm_unreachable("unsupported unwinding information encoding"); 271 case WinEH::EncodingType::Invalid: 272 break; 273 case WinEH::EncodingType::X86: 274 case WinEH::EncodingType::Itanium: 275 ES = new WinException(this); 276 break; 277 } 278 break; 279 } 280 if (ES) 281 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 282 return false; 283 } 284 285 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 286 if (!MAI.hasWeakDefCanBeHiddenDirective()) 287 return false; 288 289 return canBeOmittedFromSymbolTable(GV); 290 } 291 292 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 293 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 294 switch (Linkage) { 295 case GlobalValue::CommonLinkage: 296 case GlobalValue::LinkOnceAnyLinkage: 297 case GlobalValue::LinkOnceODRLinkage: 298 case GlobalValue::WeakAnyLinkage: 299 case GlobalValue::WeakODRLinkage: 300 if (MAI->hasWeakDefDirective()) { 301 // .globl _foo 302 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 303 304 if (!canBeHidden(GV, *MAI)) 305 // .weak_definition _foo 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 307 else 308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 309 } else if (MAI->hasLinkOnceDirective()) { 310 // .globl _foo 311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 312 //NOTE: linkonce is handled by the section the symbol was assigned to. 313 } else { 314 // .weak _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 316 } 317 return; 318 case GlobalValue::AppendingLinkage: 319 // FIXME: appending linkage variables should go into a section of 320 // their name or something. For now, just emit them as external. 321 case GlobalValue::ExternalLinkage: 322 // If external or appending, declare as a global symbol. 323 // .globl _foo 324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 325 return; 326 case GlobalValue::PrivateLinkage: 327 case GlobalValue::InternalLinkage: 328 return; 329 case GlobalValue::AvailableExternallyLinkage: 330 llvm_unreachable("Should never emit this"); 331 case GlobalValue::ExternalWeakLinkage: 332 llvm_unreachable("Don't know how to emit these"); 333 } 334 llvm_unreachable("Unknown linkage type!"); 335 } 336 337 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 338 const GlobalValue *GV) const { 339 TM.getNameWithPrefix(Name, GV, *Mang); 340 } 341 342 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 343 return TM.getSymbol(GV, *Mang); 344 } 345 346 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 347 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 348 if (GV->hasInitializer()) { 349 // Check to see if this is a special global used by LLVM, if so, emit it. 350 if (EmitSpecialLLVMGlobal(GV)) 351 return; 352 353 // Skip the emission of global equivalents. The symbol can be emitted later 354 // on by emitGlobalGOTEquivs in case it turns out to be needed. 355 if (GlobalGOTEquivs.count(getSymbol(GV))) 356 return; 357 358 if (isVerbose()) { 359 GV->printAsOperand(OutStreamer->GetCommentOS(), 360 /*PrintType=*/false, GV->getParent()); 361 OutStreamer->GetCommentOS() << '\n'; 362 } 363 } 364 365 MCSymbol *GVSym = getSymbol(GV); 366 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 367 368 if (!GV->hasInitializer()) // External globals require no extra code. 369 return; 370 371 GVSym->redefineIfPossible(); 372 if (GVSym->isDefined() || GVSym->isVariable()) 373 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 374 "' is already defined"); 375 376 if (MAI->hasDotTypeDotSizeDirective()) 377 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 378 379 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 380 381 const DataLayout &DL = GV->getParent()->getDataLayout(); 382 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 383 384 // If the alignment is specified, we *must* obey it. Overaligning a global 385 // with a specified alignment is a prompt way to break globals emitted to 386 // sections and expected to be contiguous (e.g. ObjC metadata). 387 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 388 389 for (const HandlerInfo &HI : Handlers) { 390 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 391 HI.Handler->setSymbolSize(GVSym, Size); 392 } 393 394 // Handle common and BSS local symbols (.lcomm). 395 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 396 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 397 unsigned Align = 1 << AlignLog; 398 399 // Handle common symbols. 400 if (GVKind.isCommon()) { 401 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 402 Align = 0; 403 404 // .comm _foo, 42, 4 405 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 406 return; 407 } 408 409 // Handle local BSS symbols. 410 if (MAI->hasMachoZeroFillDirective()) { 411 MCSection *TheSection = 412 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 413 // .zerofill __DATA, __bss, _foo, 400, 5 414 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 415 return; 416 } 417 418 // Use .lcomm only if it supports user-specified alignment. 419 // Otherwise, while it would still be correct to use .lcomm in some 420 // cases (e.g. when Align == 1), the external assembler might enfore 421 // some -unknown- default alignment behavior, which could cause 422 // spurious differences between external and integrated assembler. 423 // Prefer to simply fall back to .local / .comm in this case. 424 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 425 // .lcomm _foo, 42 426 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 427 return; 428 } 429 430 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 431 Align = 0; 432 433 // .local _foo 434 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 435 // .comm _foo, 42, 4 436 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 437 return; 438 } 439 440 MCSection *TheSection = 441 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 442 443 // Handle the zerofill directive on darwin, which is a special form of BSS 444 // emission. 445 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 446 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 447 448 // .globl _foo 449 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 450 // .zerofill __DATA, __common, _foo, 400, 5 451 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 452 return; 453 } 454 455 // Handle thread local data for mach-o which requires us to output an 456 // additional structure of data and mangle the original symbol so that we 457 // can reference it later. 458 // 459 // TODO: This should become an "emit thread local global" method on TLOF. 460 // All of this macho specific stuff should be sunk down into TLOFMachO and 461 // stuff like "TLSExtraDataSection" should no longer be part of the parent 462 // TLOF class. This will also make it more obvious that stuff like 463 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 464 // specific code. 465 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 466 // Emit the .tbss symbol 467 MCSymbol *MangSym = 468 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 469 470 if (GVKind.isThreadBSS()) { 471 TheSection = getObjFileLowering().getTLSBSSSection(); 472 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 473 } else if (GVKind.isThreadData()) { 474 OutStreamer->SwitchSection(TheSection); 475 476 EmitAlignment(AlignLog, GV); 477 OutStreamer->EmitLabel(MangSym); 478 479 EmitGlobalConstant(GV->getParent()->getDataLayout(), 480 GV->getInitializer()); 481 } 482 483 OutStreamer->AddBlankLine(); 484 485 // Emit the variable struct for the runtime. 486 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 487 488 OutStreamer->SwitchSection(TLVSect); 489 // Emit the linkage here. 490 EmitLinkage(GV, GVSym); 491 OutStreamer->EmitLabel(GVSym); 492 493 // Three pointers in size: 494 // - __tlv_bootstrap - used to make sure support exists 495 // - spare pointer, used when mapped by the runtime 496 // - pointer to mangled symbol above with initializer 497 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 498 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 499 PtrSize); 500 OutStreamer->EmitIntValue(0, PtrSize); 501 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 502 503 OutStreamer->AddBlankLine(); 504 return; 505 } 506 507 OutStreamer->SwitchSection(TheSection); 508 509 EmitLinkage(GV, GVSym); 510 EmitAlignment(AlignLog, GV); 511 512 OutStreamer->EmitLabel(GVSym); 513 514 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 515 516 if (MAI->hasDotTypeDotSizeDirective()) 517 // .size foo, 42 518 OutStreamer->emitELFSize(cast<MCSymbolELF>(GVSym), 519 MCConstantExpr::create(Size, OutContext)); 520 521 OutStreamer->AddBlankLine(); 522 } 523 524 /// EmitFunctionHeader - This method emits the header for the current 525 /// function. 526 void AsmPrinter::EmitFunctionHeader() { 527 // Print out constants referenced by the function 528 EmitConstantPool(); 529 530 // Print the 'header' of function. 531 const Function *F = MF->getFunction(); 532 533 OutStreamer->SwitchSection( 534 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 535 EmitVisibility(CurrentFnSym, F->getVisibility()); 536 537 EmitLinkage(F, CurrentFnSym); 538 if (MAI->hasFunctionAlignment()) 539 EmitAlignment(MF->getAlignment(), F); 540 541 if (MAI->hasDotTypeDotSizeDirective()) 542 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 543 544 if (isVerbose()) { 545 F->printAsOperand(OutStreamer->GetCommentOS(), 546 /*PrintType=*/false, F->getParent()); 547 OutStreamer->GetCommentOS() << '\n'; 548 } 549 550 // Emit the prefix data. 551 if (F->hasPrefixData()) 552 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 553 554 // Emit the CurrentFnSym. This is a virtual function to allow targets to 555 // do their wild and crazy things as required. 556 EmitFunctionEntryLabel(); 557 558 // If the function had address-taken blocks that got deleted, then we have 559 // references to the dangling symbols. Emit them at the start of the function 560 // so that we don't get references to undefined symbols. 561 std::vector<MCSymbol*> DeadBlockSyms; 562 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 563 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 564 OutStreamer->AddComment("Address taken block that was later removed"); 565 OutStreamer->EmitLabel(DeadBlockSyms[i]); 566 } 567 568 if (CurrentFnBegin) { 569 if (MAI->useAssignmentForEHBegin()) { 570 MCSymbol *CurPos = OutContext.createTempSymbol(); 571 OutStreamer->EmitLabel(CurPos); 572 OutStreamer->EmitAssignment(CurrentFnBegin, 573 MCSymbolRefExpr::create(CurPos, OutContext)); 574 } else { 575 OutStreamer->EmitLabel(CurrentFnBegin); 576 } 577 } 578 579 // Emit pre-function debug and/or EH information. 580 for (const HandlerInfo &HI : Handlers) { 581 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 582 HI.Handler->beginFunction(MF); 583 } 584 585 // Emit the prologue data. 586 if (F->hasPrologueData()) 587 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 588 } 589 590 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 591 /// function. This can be overridden by targets as required to do custom stuff. 592 void AsmPrinter::EmitFunctionEntryLabel() { 593 CurrentFnSym->redefineIfPossible(); 594 595 // The function label could have already been emitted if two symbols end up 596 // conflicting due to asm renaming. Detect this and emit an error. 597 if (CurrentFnSym->isVariable()) 598 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 599 "' is a protected alias"); 600 if (CurrentFnSym->isDefined()) 601 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 602 "' label emitted multiple times to assembly file"); 603 604 return OutStreamer->EmitLabel(CurrentFnSym); 605 } 606 607 /// emitComments - Pretty-print comments for instructions. 608 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 609 const MachineFunction *MF = MI.getParent()->getParent(); 610 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 611 612 // Check for spills and reloads 613 int FI; 614 615 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 616 617 // We assume a single instruction only has a spill or reload, not 618 // both. 619 const MachineMemOperand *MMO; 620 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 621 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 622 MMO = *MI.memoperands_begin(); 623 CommentOS << MMO->getSize() << "-byte Reload\n"; 624 } 625 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 626 if (FrameInfo->isSpillSlotObjectIndex(FI)) 627 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 628 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 629 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 630 MMO = *MI.memoperands_begin(); 631 CommentOS << MMO->getSize() << "-byte Spill\n"; 632 } 633 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 634 if (FrameInfo->isSpillSlotObjectIndex(FI)) 635 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 636 } 637 638 // Check for spill-induced copies 639 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 640 CommentOS << " Reload Reuse\n"; 641 } 642 643 /// emitImplicitDef - This method emits the specified machine instruction 644 /// that is an implicit def. 645 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 646 unsigned RegNo = MI->getOperand(0).getReg(); 647 OutStreamer->AddComment(Twine("implicit-def: ") + 648 MMI->getContext().getRegisterInfo()->getName(RegNo)); 649 OutStreamer->AddBlankLine(); 650 } 651 652 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 653 std::string Str = "kill:"; 654 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 655 const MachineOperand &Op = MI->getOperand(i); 656 assert(Op.isReg() && "KILL instruction must have only register operands"); 657 Str += ' '; 658 Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg()); 659 Str += (Op.isDef() ? "<def>" : "<kill>"); 660 } 661 AP.OutStreamer->AddComment(Str); 662 AP.OutStreamer->AddBlankLine(); 663 } 664 665 /// emitDebugValueComment - This method handles the target-independent form 666 /// of DBG_VALUE, returning true if it was able to do so. A false return 667 /// means the target will need to handle MI in EmitInstruction. 668 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 669 // This code handles only the 4-operand target-independent form. 670 if (MI->getNumOperands() != 4) 671 return false; 672 673 SmallString<128> Str; 674 raw_svector_ostream OS(Str); 675 OS << "DEBUG_VALUE: "; 676 677 const DILocalVariable *V = MI->getDebugVariable(); 678 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 679 StringRef Name = SP->getDisplayName(); 680 if (!Name.empty()) 681 OS << Name << ":"; 682 } 683 OS << V->getName(); 684 685 const DIExpression *Expr = MI->getDebugExpression(); 686 if (Expr->isBitPiece()) 687 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 688 << " size=" << Expr->getBitPieceSize() << "]"; 689 OS << " <- "; 690 691 // The second operand is only an offset if it's an immediate. 692 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 693 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 694 695 // Register or immediate value. Register 0 means undef. 696 if (MI->getOperand(0).isFPImm()) { 697 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 698 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 699 OS << (double)APF.convertToFloat(); 700 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 701 OS << APF.convertToDouble(); 702 } else { 703 // There is no good way to print long double. Convert a copy to 704 // double. Ah well, it's only a comment. 705 bool ignored; 706 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 707 &ignored); 708 OS << "(long double) " << APF.convertToDouble(); 709 } 710 } else if (MI->getOperand(0).isImm()) { 711 OS << MI->getOperand(0).getImm(); 712 } else if (MI->getOperand(0).isCImm()) { 713 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 714 } else { 715 unsigned Reg; 716 if (MI->getOperand(0).isReg()) { 717 Reg = MI->getOperand(0).getReg(); 718 } else { 719 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 720 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 721 Offset += TFI->getFrameIndexReference(*AP.MF, 722 MI->getOperand(0).getIndex(), Reg); 723 Deref = true; 724 } 725 if (Reg == 0) { 726 // Suppress offset, it is not meaningful here. 727 OS << "undef"; 728 // NOTE: Want this comment at start of line, don't emit with AddComment. 729 AP.OutStreamer->emitRawComment(OS.str()); 730 return true; 731 } 732 if (Deref) 733 OS << '['; 734 OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg); 735 } 736 737 if (Deref) 738 OS << '+' << Offset << ']'; 739 740 // NOTE: Want this comment at start of line, don't emit with AddComment. 741 AP.OutStreamer->emitRawComment(OS.str()); 742 return true; 743 } 744 745 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 746 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 747 MF->getFunction()->needsUnwindTableEntry()) 748 return CFI_M_EH; 749 750 if (MMI->hasDebugInfo()) 751 return CFI_M_Debug; 752 753 return CFI_M_None; 754 } 755 756 bool AsmPrinter::needsSEHMoves() { 757 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 758 } 759 760 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 761 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 762 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 763 ExceptionHandlingType != ExceptionHandling::ARM) 764 return; 765 766 if (needsCFIMoves() == CFI_M_None) 767 return; 768 769 const MachineModuleInfo &MMI = MF->getMMI(); 770 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 771 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 772 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 773 emitCFIInstruction(CFI); 774 } 775 776 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 777 // The operands are the MCSymbol and the frame offset of the allocation. 778 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 779 int FrameOffset = MI.getOperand(1).getImm(); 780 781 // Emit a symbol assignment. 782 OutStreamer->EmitAssignment(FrameAllocSym, 783 MCConstantExpr::create(FrameOffset, OutContext)); 784 } 785 786 /// EmitFunctionBody - This method emits the body and trailer for a 787 /// function. 788 void AsmPrinter::EmitFunctionBody() { 789 EmitFunctionHeader(); 790 791 // Emit target-specific gunk before the function body. 792 EmitFunctionBodyStart(); 793 794 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 795 796 // Print out code for the function. 797 bool HasAnyRealCode = false; 798 for (auto &MBB : *MF) { 799 // Print a label for the basic block. 800 EmitBasicBlockStart(MBB); 801 for (auto &MI : MBB) { 802 803 // Print the assembly for the instruction. 804 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 805 !MI.isDebugValue()) { 806 HasAnyRealCode = true; 807 ++EmittedInsts; 808 } 809 810 if (ShouldPrintDebugScopes) { 811 for (const HandlerInfo &HI : Handlers) { 812 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 813 TimePassesIsEnabled); 814 HI.Handler->beginInstruction(&MI); 815 } 816 } 817 818 if (isVerbose()) 819 emitComments(MI, OutStreamer->GetCommentOS()); 820 821 switch (MI.getOpcode()) { 822 case TargetOpcode::CFI_INSTRUCTION: 823 emitCFIInstruction(MI); 824 break; 825 826 case TargetOpcode::LOCAL_ESCAPE: 827 emitFrameAlloc(MI); 828 break; 829 830 case TargetOpcode::EH_LABEL: 831 case TargetOpcode::GC_LABEL: 832 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 833 break; 834 case TargetOpcode::INLINEASM: 835 EmitInlineAsm(&MI); 836 break; 837 case TargetOpcode::DBG_VALUE: 838 if (isVerbose()) { 839 if (!emitDebugValueComment(&MI, *this)) 840 EmitInstruction(&MI); 841 } 842 break; 843 case TargetOpcode::IMPLICIT_DEF: 844 if (isVerbose()) emitImplicitDef(&MI); 845 break; 846 case TargetOpcode::KILL: 847 if (isVerbose()) emitKill(&MI, *this); 848 break; 849 default: 850 EmitInstruction(&MI); 851 break; 852 } 853 854 if (ShouldPrintDebugScopes) { 855 for (const HandlerInfo &HI : Handlers) { 856 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 857 TimePassesIsEnabled); 858 HI.Handler->endInstruction(); 859 } 860 } 861 } 862 863 EmitBasicBlockEnd(MBB); 864 } 865 866 // If the function is empty and the object file uses .subsections_via_symbols, 867 // then we need to emit *something* to the function body to prevent the 868 // labels from collapsing together. Just emit a noop. 869 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 870 MCInst Noop; 871 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 872 OutStreamer->AddComment("avoids zero-length function"); 873 874 // Targets can opt-out of emitting the noop here by leaving the opcode 875 // unspecified. 876 if (Noop.getOpcode()) 877 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 878 } 879 880 const Function *F = MF->getFunction(); 881 for (const auto &BB : *F) { 882 if (!BB.hasAddressTaken()) 883 continue; 884 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 885 if (Sym->isDefined()) 886 continue; 887 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 888 OutStreamer->EmitLabel(Sym); 889 } 890 891 // Emit target-specific gunk after the function body. 892 EmitFunctionBodyEnd(); 893 894 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 895 MAI->hasDotTypeDotSizeDirective()) { 896 // Create a symbol for the end of function. 897 CurrentFnEnd = createTempSymbol("func_end"); 898 OutStreamer->EmitLabel(CurrentFnEnd); 899 } 900 901 // If the target wants a .size directive for the size of the function, emit 902 // it. 903 if (MAI->hasDotTypeDotSizeDirective()) { 904 // We can get the size as difference between the function label and the 905 // temp label. 906 const MCExpr *SizeExp = MCBinaryExpr::createSub( 907 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 908 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 909 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 910 OutStreamer->emitELFSize(Sym, SizeExp); 911 } 912 913 for (const HandlerInfo &HI : Handlers) { 914 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 915 HI.Handler->markFunctionEnd(); 916 } 917 918 // Print out jump tables referenced by the function. 919 EmitJumpTableInfo(); 920 921 // Emit post-function debug and/or EH information. 922 for (const HandlerInfo &HI : Handlers) { 923 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 924 HI.Handler->endFunction(MF); 925 } 926 MMI->EndFunction(); 927 928 OutStreamer->AddBlankLine(); 929 } 930 931 /// \brief Compute the number of Global Variables that uses a Constant. 932 static unsigned getNumGlobalVariableUses(const Constant *C) { 933 if (!C) 934 return 0; 935 936 if (isa<GlobalVariable>(C)) 937 return 1; 938 939 unsigned NumUses = 0; 940 for (auto *CU : C->users()) 941 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 942 943 return NumUses; 944 } 945 946 /// \brief Only consider global GOT equivalents if at least one user is a 947 /// cstexpr inside an initializer of another global variables. Also, don't 948 /// handle cstexpr inside instructions. During global variable emission, 949 /// candidates are skipped and are emitted later in case at least one cstexpr 950 /// isn't replaced by a PC relative GOT entry access. 951 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 952 unsigned &NumGOTEquivUsers) { 953 // Global GOT equivalents are unnamed private globals with a constant 954 // pointer initializer to another global symbol. They must point to a 955 // GlobalVariable or Function, i.e., as GlobalValue. 956 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 957 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 958 return false; 959 960 // To be a got equivalent, at least one of its users need to be a constant 961 // expression used by another global variable. 962 for (auto *U : GV->users()) 963 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 964 965 return NumGOTEquivUsers > 0; 966 } 967 968 /// \brief Unnamed constant global variables solely contaning a pointer to 969 /// another globals variable is equivalent to a GOT table entry; it contains the 970 /// the address of another symbol. Optimize it and replace accesses to these 971 /// "GOT equivalents" by using the GOT entry for the final global instead. 972 /// Compute GOT equivalent candidates among all global variables to avoid 973 /// emitting them if possible later on, after it use is replaced by a GOT entry 974 /// access. 975 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 976 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 977 return; 978 979 for (const auto &G : M.globals()) { 980 unsigned NumGOTEquivUsers = 0; 981 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 982 continue; 983 984 const MCSymbol *GOTEquivSym = getSymbol(&G); 985 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 986 } 987 } 988 989 /// \brief Constant expressions using GOT equivalent globals may not be eligible 990 /// for PC relative GOT entry conversion, in such cases we need to emit such 991 /// globals we previously omitted in EmitGlobalVariable. 992 void AsmPrinter::emitGlobalGOTEquivs() { 993 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 994 return; 995 996 SmallVector<const GlobalVariable *, 8> FailedCandidates; 997 for (auto &I : GlobalGOTEquivs) { 998 const GlobalVariable *GV = I.second.first; 999 unsigned Cnt = I.second.second; 1000 if (Cnt) 1001 FailedCandidates.push_back(GV); 1002 } 1003 GlobalGOTEquivs.clear(); 1004 1005 for (auto *GV : FailedCandidates) 1006 EmitGlobalVariable(GV); 1007 } 1008 1009 bool AsmPrinter::doFinalization(Module &M) { 1010 // Set the MachineFunction to nullptr so that we can catch attempted 1011 // accesses to MF specific features at the module level and so that 1012 // we can conditionalize accesses based on whether or not it is nullptr. 1013 MF = nullptr; 1014 1015 // Gather all GOT equivalent globals in the module. We really need two 1016 // passes over the globals: one to compute and another to avoid its emission 1017 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1018 // where the got equivalent shows up before its use. 1019 computeGlobalGOTEquivs(M); 1020 1021 // Emit global variables. 1022 for (const auto &G : M.globals()) 1023 EmitGlobalVariable(&G); 1024 1025 // Emit remaining GOT equivalent globals. 1026 emitGlobalGOTEquivs(); 1027 1028 // Emit visibility info for declarations 1029 for (const Function &F : M) { 1030 if (!F.isDeclarationForLinker()) 1031 continue; 1032 GlobalValue::VisibilityTypes V = F.getVisibility(); 1033 if (V == GlobalValue::DefaultVisibility) 1034 continue; 1035 1036 MCSymbol *Name = getSymbol(&F); 1037 EmitVisibility(Name, V, false); 1038 } 1039 1040 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1041 1042 // Emit module flags. 1043 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1044 M.getModuleFlagsMetadata(ModuleFlags); 1045 if (!ModuleFlags.empty()) 1046 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1047 1048 if (TM.getTargetTriple().isOSBinFormatELF()) { 1049 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1050 1051 // Output stubs for external and common global variables. 1052 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1053 if (!Stubs.empty()) { 1054 OutStreamer->SwitchSection(TLOF.getDataRelSection()); 1055 const DataLayout &DL = M.getDataLayout(); 1056 1057 for (const auto &Stub : Stubs) { 1058 OutStreamer->EmitLabel(Stub.first); 1059 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1060 DL.getPointerSize()); 1061 } 1062 } 1063 } 1064 1065 // Make sure we wrote out everything we need. 1066 OutStreamer->Flush(); 1067 1068 // Finalize debug and EH information. 1069 for (const HandlerInfo &HI : Handlers) { 1070 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1071 TimePassesIsEnabled); 1072 HI.Handler->endModule(); 1073 delete HI.Handler; 1074 } 1075 Handlers.clear(); 1076 DD = nullptr; 1077 1078 // If the target wants to know about weak references, print them all. 1079 if (MAI->getWeakRefDirective()) { 1080 // FIXME: This is not lazy, it would be nice to only print weak references 1081 // to stuff that is actually used. Note that doing so would require targets 1082 // to notice uses in operands (due to constant exprs etc). This should 1083 // happen with the MC stuff eventually. 1084 1085 // Print out module-level global variables here. 1086 for (const auto &G : M.globals()) { 1087 if (!G.hasExternalWeakLinkage()) 1088 continue; 1089 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1090 } 1091 1092 for (const auto &F : M) { 1093 if (!F.hasExternalWeakLinkage()) 1094 continue; 1095 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1096 } 1097 } 1098 1099 OutStreamer->AddBlankLine(); 1100 for (const auto &Alias : M.aliases()) { 1101 MCSymbol *Name = getSymbol(&Alias); 1102 1103 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1104 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1105 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1106 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1107 else 1108 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1109 1110 EmitVisibility(Name, Alias.getVisibility()); 1111 1112 // Emit the directives as assignments aka .set: 1113 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1114 1115 // Set the size of the alias symbol if we can, as otherwise the alias gets 1116 // the size of the aliasee which may not be correct e.g. if the alias is of 1117 // a member of a struct. 1118 if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized()) { 1119 const DataLayout &DL = M.getDataLayout(); 1120 uint64_t Size = DL.getTypeAllocSize(Alias.getValueType()); 1121 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1122 MCConstantExpr::create(Size, OutContext)); 1123 } 1124 } 1125 1126 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1127 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1128 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1129 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1130 MP->finishAssembly(M, *MI, *this); 1131 1132 // Emit llvm.ident metadata in an '.ident' directive. 1133 EmitModuleIdents(M); 1134 1135 // Emit __morestack address if needed for indirect calls. 1136 if (MMI->usesMorestackAddr()) { 1137 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1138 getDataLayout(), SectionKind::getReadOnly(), 1139 /*C=*/nullptr); 1140 OutStreamer->SwitchSection(ReadOnlySection); 1141 1142 MCSymbol *AddrSymbol = 1143 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1144 OutStreamer->EmitLabel(AddrSymbol); 1145 1146 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1147 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1148 PtrSize); 1149 } 1150 1151 // If we don't have any trampolines, then we don't require stack memory 1152 // to be executable. Some targets have a directive to declare this. 1153 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1154 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1155 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1156 OutStreamer->SwitchSection(S); 1157 1158 // Allow the target to emit any magic that it wants at the end of the file, 1159 // after everything else has gone out. 1160 EmitEndOfAsmFile(M); 1161 1162 delete Mang; Mang = nullptr; 1163 MMI = nullptr; 1164 1165 OutStreamer->Finish(); 1166 OutStreamer->reset(); 1167 1168 return false; 1169 } 1170 1171 MCSymbol *AsmPrinter::getCurExceptionSym() { 1172 if (!CurExceptionSym) 1173 CurExceptionSym = createTempSymbol("exception"); 1174 return CurExceptionSym; 1175 } 1176 1177 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1178 this->MF = &MF; 1179 // Get the function symbol. 1180 CurrentFnSym = getSymbol(MF.getFunction()); 1181 CurrentFnSymForSize = CurrentFnSym; 1182 CurrentFnBegin = nullptr; 1183 CurExceptionSym = nullptr; 1184 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1185 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1186 NeedsLocalForSize) { 1187 CurrentFnBegin = createTempSymbol("func_begin"); 1188 if (NeedsLocalForSize) 1189 CurrentFnSymForSize = CurrentFnBegin; 1190 } 1191 1192 if (isVerbose()) 1193 LI = &getAnalysis<MachineLoopInfo>(); 1194 } 1195 1196 namespace { 1197 // Keep track the alignment, constpool entries per Section. 1198 struct SectionCPs { 1199 MCSection *S; 1200 unsigned Alignment; 1201 SmallVector<unsigned, 4> CPEs; 1202 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1203 }; 1204 } 1205 1206 /// EmitConstantPool - Print to the current output stream assembly 1207 /// representations of the constants in the constant pool MCP. This is 1208 /// used to print out constants which have been "spilled to memory" by 1209 /// the code generator. 1210 /// 1211 void AsmPrinter::EmitConstantPool() { 1212 const MachineConstantPool *MCP = MF->getConstantPool(); 1213 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1214 if (CP.empty()) return; 1215 1216 // Calculate sections for constant pool entries. We collect entries to go into 1217 // the same section together to reduce amount of section switch statements. 1218 SmallVector<SectionCPs, 4> CPSections; 1219 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1220 const MachineConstantPoolEntry &CPE = CP[i]; 1221 unsigned Align = CPE.getAlignment(); 1222 1223 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1224 1225 const Constant *C = nullptr; 1226 if (!CPE.isMachineConstantPoolEntry()) 1227 C = CPE.Val.ConstVal; 1228 1229 MCSection *S = 1230 getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C); 1231 1232 // The number of sections are small, just do a linear search from the 1233 // last section to the first. 1234 bool Found = false; 1235 unsigned SecIdx = CPSections.size(); 1236 while (SecIdx != 0) { 1237 if (CPSections[--SecIdx].S == S) { 1238 Found = true; 1239 break; 1240 } 1241 } 1242 if (!Found) { 1243 SecIdx = CPSections.size(); 1244 CPSections.push_back(SectionCPs(S, Align)); 1245 } 1246 1247 if (Align > CPSections[SecIdx].Alignment) 1248 CPSections[SecIdx].Alignment = Align; 1249 CPSections[SecIdx].CPEs.push_back(i); 1250 } 1251 1252 // Now print stuff into the calculated sections. 1253 const MCSection *CurSection = nullptr; 1254 unsigned Offset = 0; 1255 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1256 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1257 unsigned CPI = CPSections[i].CPEs[j]; 1258 MCSymbol *Sym = GetCPISymbol(CPI); 1259 if (!Sym->isUndefined()) 1260 continue; 1261 1262 if (CurSection != CPSections[i].S) { 1263 OutStreamer->SwitchSection(CPSections[i].S); 1264 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1265 CurSection = CPSections[i].S; 1266 Offset = 0; 1267 } 1268 1269 MachineConstantPoolEntry CPE = CP[CPI]; 1270 1271 // Emit inter-object padding for alignment. 1272 unsigned AlignMask = CPE.getAlignment() - 1; 1273 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1274 OutStreamer->EmitZeros(NewOffset - Offset); 1275 1276 Type *Ty = CPE.getType(); 1277 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1278 1279 OutStreamer->EmitLabel(Sym); 1280 if (CPE.isMachineConstantPoolEntry()) 1281 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1282 else 1283 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1284 } 1285 } 1286 } 1287 1288 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1289 /// by the current function to the current output stream. 1290 /// 1291 void AsmPrinter::EmitJumpTableInfo() { 1292 const DataLayout &DL = MF->getDataLayout(); 1293 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1294 if (!MJTI) return; 1295 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1296 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1297 if (JT.empty()) return; 1298 1299 // Pick the directive to use to print the jump table entries, and switch to 1300 // the appropriate section. 1301 const Function *F = MF->getFunction(); 1302 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1303 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1304 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1305 *F); 1306 if (JTInDiffSection) { 1307 // Drop it in the readonly section. 1308 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1309 OutStreamer->SwitchSection(ReadOnlySection); 1310 } 1311 1312 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1313 1314 // Jump tables in code sections are marked with a data_region directive 1315 // where that's supported. 1316 if (!JTInDiffSection) 1317 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1318 1319 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1320 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1321 1322 // If this jump table was deleted, ignore it. 1323 if (JTBBs.empty()) continue; 1324 1325 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1326 /// emit a .set directive for each unique entry. 1327 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1328 MAI->doesSetDirectiveSuppressesReloc()) { 1329 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1330 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1331 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1332 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1333 const MachineBasicBlock *MBB = JTBBs[ii]; 1334 if (!EmittedSets.insert(MBB).second) 1335 continue; 1336 1337 // .set LJTSet, LBB32-base 1338 const MCExpr *LHS = 1339 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1340 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1341 MCBinaryExpr::createSub(LHS, Base, 1342 OutContext)); 1343 } 1344 } 1345 1346 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1347 // before each jump table. The first label is never referenced, but tells 1348 // the assembler and linker the extents of the jump table object. The 1349 // second label is actually referenced by the code. 1350 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1351 // FIXME: This doesn't have to have any specific name, just any randomly 1352 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1353 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1354 1355 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1356 1357 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1358 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1359 } 1360 if (!JTInDiffSection) 1361 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1362 } 1363 1364 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1365 /// current stream. 1366 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1367 const MachineBasicBlock *MBB, 1368 unsigned UID) const { 1369 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1370 const MCExpr *Value = nullptr; 1371 switch (MJTI->getEntryKind()) { 1372 case MachineJumpTableInfo::EK_Inline: 1373 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1374 case MachineJumpTableInfo::EK_Custom32: 1375 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1376 MJTI, MBB, UID, OutContext); 1377 break; 1378 case MachineJumpTableInfo::EK_BlockAddress: 1379 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1380 // .word LBB123 1381 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1382 break; 1383 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1384 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1385 // with a relocation as gp-relative, e.g.: 1386 // .gprel32 LBB123 1387 MCSymbol *MBBSym = MBB->getSymbol(); 1388 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1389 return; 1390 } 1391 1392 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1393 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1394 // with a relocation as gp-relative, e.g.: 1395 // .gpdword LBB123 1396 MCSymbol *MBBSym = MBB->getSymbol(); 1397 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1398 return; 1399 } 1400 1401 case MachineJumpTableInfo::EK_LabelDifference32: { 1402 // Each entry is the address of the block minus the address of the jump 1403 // table. This is used for PIC jump tables where gprel32 is not supported. 1404 // e.g.: 1405 // .word LBB123 - LJTI1_2 1406 // If the .set directive avoids relocations, this is emitted as: 1407 // .set L4_5_set_123, LBB123 - LJTI1_2 1408 // .word L4_5_set_123 1409 if (MAI->doesSetDirectiveSuppressesReloc()) { 1410 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1411 OutContext); 1412 break; 1413 } 1414 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1415 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1416 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1417 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1418 break; 1419 } 1420 } 1421 1422 assert(Value && "Unknown entry kind!"); 1423 1424 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1425 OutStreamer->EmitValue(Value, EntrySize); 1426 } 1427 1428 1429 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1430 /// special global used by LLVM. If so, emit it and return true, otherwise 1431 /// do nothing and return false. 1432 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1433 if (GV->getName() == "llvm.used") { 1434 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1435 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1436 return true; 1437 } 1438 1439 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1440 if (StringRef(GV->getSection()) == "llvm.metadata" || 1441 GV->hasAvailableExternallyLinkage()) 1442 return true; 1443 1444 if (!GV->hasAppendingLinkage()) return false; 1445 1446 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1447 1448 if (GV->getName() == "llvm.global_ctors") { 1449 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1450 /* isCtor */ true); 1451 1452 if (TM.getRelocationModel() == Reloc::Static && 1453 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1454 StringRef Sym(".constructors_used"); 1455 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1456 MCSA_Reference); 1457 } 1458 return true; 1459 } 1460 1461 if (GV->getName() == "llvm.global_dtors") { 1462 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1463 /* isCtor */ false); 1464 1465 if (TM.getRelocationModel() == Reloc::Static && 1466 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1467 StringRef Sym(".destructors_used"); 1468 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1469 MCSA_Reference); 1470 } 1471 return true; 1472 } 1473 1474 return false; 1475 } 1476 1477 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1478 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1479 /// is true, as being used with this directive. 1480 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1481 // Should be an array of 'i8*'. 1482 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1483 const GlobalValue *GV = 1484 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1485 if (GV) 1486 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1487 } 1488 } 1489 1490 namespace { 1491 struct Structor { 1492 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1493 int Priority; 1494 llvm::Constant *Func; 1495 llvm::GlobalValue *ComdatKey; 1496 }; 1497 } // end namespace 1498 1499 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1500 /// priority. 1501 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1502 bool isCtor) { 1503 // Should be an array of '{ int, void ()* }' structs. The first value is the 1504 // init priority. 1505 if (!isa<ConstantArray>(List)) return; 1506 1507 // Sanity check the structors list. 1508 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1509 if (!InitList) return; // Not an array! 1510 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1511 // FIXME: Only allow the 3-field form in LLVM 4.0. 1512 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1513 return; // Not an array of two or three elements! 1514 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1515 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1516 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1517 return; // Not (int, ptr, ptr). 1518 1519 // Gather the structors in a form that's convenient for sorting by priority. 1520 SmallVector<Structor, 8> Structors; 1521 for (Value *O : InitList->operands()) { 1522 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1523 if (!CS) continue; // Malformed. 1524 if (CS->getOperand(1)->isNullValue()) 1525 break; // Found a null terminator, skip the rest. 1526 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1527 if (!Priority) continue; // Malformed. 1528 Structors.push_back(Structor()); 1529 Structor &S = Structors.back(); 1530 S.Priority = Priority->getLimitedValue(65535); 1531 S.Func = CS->getOperand(1); 1532 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1533 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1534 } 1535 1536 // Emit the function pointers in the target-specific order 1537 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1538 std::stable_sort(Structors.begin(), Structors.end(), 1539 [](const Structor &L, 1540 const Structor &R) { return L.Priority < R.Priority; }); 1541 for (Structor &S : Structors) { 1542 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1543 const MCSymbol *KeySym = nullptr; 1544 if (GlobalValue *GV = S.ComdatKey) { 1545 if (GV->hasAvailableExternallyLinkage()) 1546 // If the associated variable is available_externally, some other TU 1547 // will provide its dynamic initializer. 1548 continue; 1549 1550 KeySym = getSymbol(GV); 1551 } 1552 MCSection *OutputSection = 1553 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1554 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1555 OutStreamer->SwitchSection(OutputSection); 1556 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1557 EmitAlignment(Align); 1558 EmitXXStructor(DL, S.Func); 1559 } 1560 } 1561 1562 void AsmPrinter::EmitModuleIdents(Module &M) { 1563 if (!MAI->hasIdentDirective()) 1564 return; 1565 1566 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1567 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1568 const MDNode *N = NMD->getOperand(i); 1569 assert(N->getNumOperands() == 1 && 1570 "llvm.ident metadata entry can have only one operand"); 1571 const MDString *S = cast<MDString>(N->getOperand(0)); 1572 OutStreamer->EmitIdent(S->getString()); 1573 } 1574 } 1575 } 1576 1577 //===--------------------------------------------------------------------===// 1578 // Emission and print routines 1579 // 1580 1581 /// EmitInt8 - Emit a byte directive and value. 1582 /// 1583 void AsmPrinter::EmitInt8(int Value) const { 1584 OutStreamer->EmitIntValue(Value, 1); 1585 } 1586 1587 /// EmitInt16 - Emit a short directive and value. 1588 /// 1589 void AsmPrinter::EmitInt16(int Value) const { 1590 OutStreamer->EmitIntValue(Value, 2); 1591 } 1592 1593 /// EmitInt32 - Emit a long directive and value. 1594 /// 1595 void AsmPrinter::EmitInt32(int Value) const { 1596 OutStreamer->EmitIntValue(Value, 4); 1597 } 1598 1599 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1600 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1601 /// .set if it avoids relocations. 1602 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1603 unsigned Size) const { 1604 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1605 } 1606 1607 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1608 /// where the size in bytes of the directive is specified by Size and Label 1609 /// specifies the label. This implicitly uses .set if it is available. 1610 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1611 unsigned Size, 1612 bool IsSectionRelative) const { 1613 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1614 OutStreamer->EmitCOFFSecRel32(Label); 1615 return; 1616 } 1617 1618 // Emit Label+Offset (or just Label if Offset is zero) 1619 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1620 if (Offset) 1621 Expr = MCBinaryExpr::createAdd( 1622 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1623 1624 OutStreamer->EmitValue(Expr, Size); 1625 } 1626 1627 //===----------------------------------------------------------------------===// 1628 1629 // EmitAlignment - Emit an alignment directive to the specified power of 1630 // two boundary. For example, if you pass in 3 here, you will get an 8 1631 // byte alignment. If a global value is specified, and if that global has 1632 // an explicit alignment requested, it will override the alignment request 1633 // if required for correctness. 1634 // 1635 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1636 if (GV) 1637 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1638 1639 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1640 1641 assert(NumBits < 1642 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1643 "undefined behavior"); 1644 if (getCurrentSection()->getKind().isText()) 1645 OutStreamer->EmitCodeAlignment(1u << NumBits); 1646 else 1647 OutStreamer->EmitValueToAlignment(1u << NumBits); 1648 } 1649 1650 //===----------------------------------------------------------------------===// 1651 // Constant emission. 1652 //===----------------------------------------------------------------------===// 1653 1654 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1655 MCContext &Ctx = OutContext; 1656 1657 if (CV->isNullValue() || isa<UndefValue>(CV)) 1658 return MCConstantExpr::create(0, Ctx); 1659 1660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1661 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1662 1663 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1664 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1665 1666 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1667 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1668 1669 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1670 if (!CE) { 1671 llvm_unreachable("Unknown constant value to lower!"); 1672 } 1673 1674 if (const MCExpr *RelocExpr 1675 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1676 return RelocExpr; 1677 1678 switch (CE->getOpcode()) { 1679 default: 1680 // If the code isn't optimized, there may be outstanding folding 1681 // opportunities. Attempt to fold the expression using DataLayout as a 1682 // last resort before giving up. 1683 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1684 if (C != CE) 1685 return lowerConstant(C); 1686 1687 // Otherwise report the problem to the user. 1688 { 1689 std::string S; 1690 raw_string_ostream OS(S); 1691 OS << "Unsupported expression in static initializer: "; 1692 CE->printAsOperand(OS, /*PrintType=*/false, 1693 !MF ? nullptr : MF->getFunction()->getParent()); 1694 report_fatal_error(OS.str()); 1695 } 1696 case Instruction::GetElementPtr: { 1697 // Generate a symbolic expression for the byte address 1698 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1699 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1700 1701 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1702 if (!OffsetAI) 1703 return Base; 1704 1705 int64_t Offset = OffsetAI.getSExtValue(); 1706 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1707 Ctx); 1708 } 1709 1710 case Instruction::Trunc: 1711 // We emit the value and depend on the assembler to truncate the generated 1712 // expression properly. This is important for differences between 1713 // blockaddress labels. Since the two labels are in the same function, it 1714 // is reasonable to treat their delta as a 32-bit value. 1715 // FALL THROUGH. 1716 case Instruction::BitCast: 1717 return lowerConstant(CE->getOperand(0)); 1718 1719 case Instruction::IntToPtr: { 1720 const DataLayout &DL = getDataLayout(); 1721 1722 // Handle casts to pointers by changing them into casts to the appropriate 1723 // integer type. This promotes constant folding and simplifies this code. 1724 Constant *Op = CE->getOperand(0); 1725 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1726 false/*ZExt*/); 1727 return lowerConstant(Op); 1728 } 1729 1730 case Instruction::PtrToInt: { 1731 const DataLayout &DL = getDataLayout(); 1732 1733 // Support only foldable casts to/from pointers that can be eliminated by 1734 // changing the pointer to the appropriately sized integer type. 1735 Constant *Op = CE->getOperand(0); 1736 Type *Ty = CE->getType(); 1737 1738 const MCExpr *OpExpr = lowerConstant(Op); 1739 1740 // We can emit the pointer value into this slot if the slot is an 1741 // integer slot equal to the size of the pointer. 1742 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1743 return OpExpr; 1744 1745 // Otherwise the pointer is smaller than the resultant integer, mask off 1746 // the high bits so we are sure to get a proper truncation if the input is 1747 // a constant expr. 1748 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1749 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1750 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1751 } 1752 1753 // The MC library also has a right-shift operator, but it isn't consistently 1754 // signed or unsigned between different targets. 1755 case Instruction::Add: 1756 case Instruction::Sub: 1757 case Instruction::Mul: 1758 case Instruction::SDiv: 1759 case Instruction::SRem: 1760 case Instruction::Shl: 1761 case Instruction::And: 1762 case Instruction::Or: 1763 case Instruction::Xor: { 1764 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1765 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1766 switch (CE->getOpcode()) { 1767 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1768 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1769 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1770 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1771 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1772 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1773 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1774 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1775 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1776 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1777 } 1778 } 1779 } 1780 } 1781 1782 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1783 AsmPrinter &AP, 1784 const Constant *BaseCV = nullptr, 1785 uint64_t Offset = 0); 1786 1787 /// isRepeatedByteSequence - Determine whether the given value is 1788 /// composed of a repeated sequence of identical bytes and return the 1789 /// byte value. If it is not a repeated sequence, return -1. 1790 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1791 StringRef Data = V->getRawDataValues(); 1792 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1793 char C = Data[0]; 1794 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1795 if (Data[i] != C) return -1; 1796 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1797 } 1798 1799 1800 /// isRepeatedByteSequence - Determine whether the given value is 1801 /// composed of a repeated sequence of identical bytes and return the 1802 /// byte value. If it is not a repeated sequence, return -1. 1803 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1804 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1805 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1806 assert(Size % 8 == 0); 1807 1808 // Extend the element to take zero padding into account. 1809 APInt Value = CI->getValue().zextOrSelf(Size); 1810 if (!Value.isSplat(8)) 1811 return -1; 1812 1813 return Value.zextOrTrunc(8).getZExtValue(); 1814 } 1815 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1816 // Make sure all array elements are sequences of the same repeated 1817 // byte. 1818 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1819 Constant *Op0 = CA->getOperand(0); 1820 int Byte = isRepeatedByteSequence(Op0, DL); 1821 if (Byte == -1) 1822 return -1; 1823 1824 // All array elements must be equal. 1825 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1826 if (CA->getOperand(i) != Op0) 1827 return -1; 1828 return Byte; 1829 } 1830 1831 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1832 return isRepeatedByteSequence(CDS); 1833 1834 return -1; 1835 } 1836 1837 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1838 const ConstantDataSequential *CDS, 1839 AsmPrinter &AP) { 1840 1841 // See if we can aggregate this into a .fill, if so, emit it as such. 1842 int Value = isRepeatedByteSequence(CDS, DL); 1843 if (Value != -1) { 1844 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1845 // Don't emit a 1-byte object as a .fill. 1846 if (Bytes > 1) 1847 return AP.OutStreamer->EmitFill(Bytes, Value); 1848 } 1849 1850 // If this can be emitted with .ascii/.asciz, emit it as such. 1851 if (CDS->isString()) 1852 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1853 1854 // Otherwise, emit the values in successive locations. 1855 unsigned ElementByteSize = CDS->getElementByteSize(); 1856 if (isa<IntegerType>(CDS->getElementType())) { 1857 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1858 if (AP.isVerbose()) 1859 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1860 CDS->getElementAsInteger(i)); 1861 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1862 ElementByteSize); 1863 } 1864 } else if (ElementByteSize == 4) { 1865 // FP Constants are printed as integer constants to avoid losing 1866 // precision. 1867 assert(CDS->getElementType()->isFloatTy()); 1868 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1869 union { 1870 float F; 1871 uint32_t I; 1872 }; 1873 1874 F = CDS->getElementAsFloat(i); 1875 if (AP.isVerbose()) 1876 AP.OutStreamer->GetCommentOS() << "float " << F << '\n'; 1877 AP.OutStreamer->EmitIntValue(I, 4); 1878 } 1879 } else { 1880 assert(CDS->getElementType()->isDoubleTy()); 1881 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1882 union { 1883 double F; 1884 uint64_t I; 1885 }; 1886 1887 F = CDS->getElementAsDouble(i); 1888 if (AP.isVerbose()) 1889 AP.OutStreamer->GetCommentOS() << "double " << F << '\n'; 1890 AP.OutStreamer->EmitIntValue(I, 8); 1891 } 1892 } 1893 1894 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1895 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1896 CDS->getNumElements(); 1897 if (unsigned Padding = Size - EmittedSize) 1898 AP.OutStreamer->EmitZeros(Padding); 1899 1900 } 1901 1902 static void emitGlobalConstantArray(const DataLayout &DL, 1903 const ConstantArray *CA, AsmPrinter &AP, 1904 const Constant *BaseCV, uint64_t Offset) { 1905 // See if we can aggregate some values. Make sure it can be 1906 // represented as a series of bytes of the constant value. 1907 int Value = isRepeatedByteSequence(CA, DL); 1908 1909 if (Value != -1) { 1910 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1911 AP.OutStreamer->EmitFill(Bytes, Value); 1912 } 1913 else { 1914 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1915 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 1916 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1917 } 1918 } 1919 } 1920 1921 static void emitGlobalConstantVector(const DataLayout &DL, 1922 const ConstantVector *CV, AsmPrinter &AP) { 1923 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1924 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 1925 1926 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1927 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1928 CV->getType()->getNumElements(); 1929 if (unsigned Padding = Size - EmittedSize) 1930 AP.OutStreamer->EmitZeros(Padding); 1931 } 1932 1933 static void emitGlobalConstantStruct(const DataLayout &DL, 1934 const ConstantStruct *CS, AsmPrinter &AP, 1935 const Constant *BaseCV, uint64_t Offset) { 1936 // Print the fields in successive locations. Pad to align if needed! 1937 unsigned Size = DL.getTypeAllocSize(CS->getType()); 1938 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 1939 uint64_t SizeSoFar = 0; 1940 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1941 const Constant *Field = CS->getOperand(i); 1942 1943 // Print the actual field value. 1944 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 1945 1946 // Check if padding is needed and insert one or more 0s. 1947 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 1948 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1949 - Layout->getElementOffset(i)) - FieldSize; 1950 SizeSoFar += FieldSize + PadSize; 1951 1952 // Insert padding - this may include padding to increase the size of the 1953 // current field up to the ABI size (if the struct is not packed) as well 1954 // as padding to ensure that the next field starts at the right offset. 1955 AP.OutStreamer->EmitZeros(PadSize); 1956 } 1957 assert(SizeSoFar == Layout->getSizeInBytes() && 1958 "Layout of constant struct may be incorrect!"); 1959 } 1960 1961 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1962 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1963 1964 // First print a comment with what we think the original floating-point value 1965 // should have been. 1966 if (AP.isVerbose()) { 1967 SmallString<8> StrVal; 1968 CFP->getValueAPF().toString(StrVal); 1969 1970 if (CFP->getType()) 1971 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 1972 else 1973 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 1974 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 1975 } 1976 1977 // Now iterate through the APInt chunks, emitting them in endian-correct 1978 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1979 // floats). 1980 unsigned NumBytes = API.getBitWidth() / 8; 1981 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1982 const uint64_t *p = API.getRawData(); 1983 1984 // PPC's long double has odd notions of endianness compared to how LLVM 1985 // handles it: p[0] goes first for *big* endian on PPC. 1986 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 1987 int Chunk = API.getNumWords() - 1; 1988 1989 if (TrailingBytes) 1990 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 1991 1992 for (; Chunk >= 0; --Chunk) 1993 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 1994 } else { 1995 unsigned Chunk; 1996 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1997 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 1998 1999 if (TrailingBytes) 2000 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2001 } 2002 2003 // Emit the tail padding for the long double. 2004 const DataLayout &DL = AP.getDataLayout(); 2005 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2006 DL.getTypeStoreSize(CFP->getType())); 2007 } 2008 2009 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2010 const DataLayout &DL = AP.getDataLayout(); 2011 unsigned BitWidth = CI->getBitWidth(); 2012 2013 // Copy the value as we may massage the layout for constants whose bit width 2014 // is not a multiple of 64-bits. 2015 APInt Realigned(CI->getValue()); 2016 uint64_t ExtraBits = 0; 2017 unsigned ExtraBitsSize = BitWidth & 63; 2018 2019 if (ExtraBitsSize) { 2020 // The bit width of the data is not a multiple of 64-bits. 2021 // The extra bits are expected to be at the end of the chunk of the memory. 2022 // Little endian: 2023 // * Nothing to be done, just record the extra bits to emit. 2024 // Big endian: 2025 // * Record the extra bits to emit. 2026 // * Realign the raw data to emit the chunks of 64-bits. 2027 if (DL.isBigEndian()) { 2028 // Basically the structure of the raw data is a chunk of 64-bits cells: 2029 // 0 1 BitWidth / 64 2030 // [chunk1][chunk2] ... [chunkN]. 2031 // The most significant chunk is chunkN and it should be emitted first. 2032 // However, due to the alignment issue chunkN contains useless bits. 2033 // Realign the chunks so that they contain only useless information: 2034 // ExtraBits 0 1 (BitWidth / 64) - 1 2035 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2036 ExtraBits = Realigned.getRawData()[0] & 2037 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2038 Realigned = Realigned.lshr(ExtraBitsSize); 2039 } else 2040 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2041 } 2042 2043 // We don't expect assemblers to support integer data directives 2044 // for more than 64 bits, so we emit the data in at most 64-bit 2045 // quantities at a time. 2046 const uint64_t *RawData = Realigned.getRawData(); 2047 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2048 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2049 AP.OutStreamer->EmitIntValue(Val, 8); 2050 } 2051 2052 if (ExtraBitsSize) { 2053 // Emit the extra bits after the 64-bits chunks. 2054 2055 // Emit a directive that fills the expected size. 2056 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2057 Size -= (BitWidth / 64) * 8; 2058 assert(Size && Size * 8 >= ExtraBitsSize && 2059 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2060 == ExtraBits && "Directive too small for extra bits."); 2061 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2062 } 2063 } 2064 2065 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2066 /// equivalent global, by a target specific GOT pc relative access to the 2067 /// final symbol. 2068 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2069 const Constant *BaseCst, 2070 uint64_t Offset) { 2071 // The global @foo below illustrates a global that uses a got equivalent. 2072 // 2073 // @bar = global i32 42 2074 // @gotequiv = private unnamed_addr constant i32* @bar 2075 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2076 // i64 ptrtoint (i32* @foo to i64)) 2077 // to i32) 2078 // 2079 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2080 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2081 // form: 2082 // 2083 // foo = cstexpr, where 2084 // cstexpr := <gotequiv> - "." + <cst> 2085 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2086 // 2087 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2088 // 2089 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2090 // gotpcrelcst := <offset from @foo base> + <cst> 2091 // 2092 MCValue MV; 2093 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2094 return; 2095 const MCSymbolRefExpr *SymA = MV.getSymA(); 2096 if (!SymA) 2097 return; 2098 2099 // Check that GOT equivalent symbol is cached. 2100 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2101 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2102 return; 2103 2104 const GlobalValue *BaseGV = dyn_cast<GlobalValue>(BaseCst); 2105 if (!BaseGV) 2106 return; 2107 2108 // Check for a valid base symbol 2109 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2110 const MCSymbolRefExpr *SymB = MV.getSymB(); 2111 2112 if (!SymB || BaseSym != &SymB->getSymbol()) 2113 return; 2114 2115 // Make sure to match: 2116 // 2117 // gotpcrelcst := <offset from @foo base> + <cst> 2118 // 2119 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2120 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2121 // if the target knows how to encode it. 2122 // 2123 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2124 if (GOTPCRelCst < 0) 2125 return; 2126 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2127 return; 2128 2129 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2130 // 2131 // bar: 2132 // .long 42 2133 // gotequiv: 2134 // .quad bar 2135 // foo: 2136 // .long gotequiv - "." + <cst> 2137 // 2138 // is replaced by the target specific equivalent to: 2139 // 2140 // bar: 2141 // .long 42 2142 // foo: 2143 // .long bar@GOTPCREL+<gotpcrelcst> 2144 // 2145 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2146 const GlobalVariable *GV = Result.first; 2147 int NumUses = (int)Result.second; 2148 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2149 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2150 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2151 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2152 2153 // Update GOT equivalent usage information 2154 --NumUses; 2155 if (NumUses >= 0) 2156 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2157 } 2158 2159 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2160 AsmPrinter &AP, const Constant *BaseCV, 2161 uint64_t Offset) { 2162 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2163 2164 // Globals with sub-elements such as combinations of arrays and structs 2165 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2166 // constant symbol base and the current position with BaseCV and Offset. 2167 if (!BaseCV && CV->hasOneUse()) 2168 BaseCV = dyn_cast<Constant>(CV->user_back()); 2169 2170 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2171 return AP.OutStreamer->EmitZeros(Size); 2172 2173 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2174 switch (Size) { 2175 case 1: 2176 case 2: 2177 case 4: 2178 case 8: 2179 if (AP.isVerbose()) 2180 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2181 CI->getZExtValue()); 2182 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2183 return; 2184 default: 2185 emitGlobalConstantLargeInt(CI, AP); 2186 return; 2187 } 2188 } 2189 2190 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2191 return emitGlobalConstantFP(CFP, AP); 2192 2193 if (isa<ConstantPointerNull>(CV)) { 2194 AP.OutStreamer->EmitIntValue(0, Size); 2195 return; 2196 } 2197 2198 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2199 return emitGlobalConstantDataSequential(DL, CDS, AP); 2200 2201 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2202 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2203 2204 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2205 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2206 2207 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2208 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2209 // vectors). 2210 if (CE->getOpcode() == Instruction::BitCast) 2211 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2212 2213 if (Size > 8) { 2214 // If the constant expression's size is greater than 64-bits, then we have 2215 // to emit the value in chunks. Try to constant fold the value and emit it 2216 // that way. 2217 Constant *New = ConstantFoldConstantExpression(CE, DL); 2218 if (New && New != CE) 2219 return emitGlobalConstantImpl(DL, New, AP); 2220 } 2221 } 2222 2223 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2224 return emitGlobalConstantVector(DL, V, AP); 2225 2226 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2227 // thread the streamer with EmitValue. 2228 const MCExpr *ME = AP.lowerConstant(CV); 2229 2230 // Since lowerConstant already folded and got rid of all IR pointer and 2231 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2232 // directly. 2233 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2234 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2235 2236 AP.OutStreamer->EmitValue(ME, Size); 2237 } 2238 2239 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2240 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2241 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2242 if (Size) 2243 emitGlobalConstantImpl(DL, CV, *this); 2244 else if (MAI->hasSubsectionsViaSymbols()) { 2245 // If the global has zero size, emit a single byte so that two labels don't 2246 // look like they are at the same location. 2247 OutStreamer->EmitIntValue(0, 1); 2248 } 2249 } 2250 2251 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2252 // Target doesn't support this yet! 2253 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2254 } 2255 2256 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2257 if (Offset > 0) 2258 OS << '+' << Offset; 2259 else if (Offset < 0) 2260 OS << Offset; 2261 } 2262 2263 //===----------------------------------------------------------------------===// 2264 // Symbol Lowering Routines. 2265 //===----------------------------------------------------------------------===// 2266 2267 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2268 return OutContext.createTempSymbol(Name, true); 2269 } 2270 2271 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2272 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2273 } 2274 2275 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2276 return MMI->getAddrLabelSymbol(BB); 2277 } 2278 2279 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2280 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2281 const DataLayout &DL = getDataLayout(); 2282 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2283 "CPI" + Twine(getFunctionNumber()) + "_" + 2284 Twine(CPID)); 2285 } 2286 2287 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2288 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2289 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2290 } 2291 2292 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2293 /// FIXME: privatize to AsmPrinter. 2294 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2295 const DataLayout &DL = getDataLayout(); 2296 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2297 Twine(getFunctionNumber()) + "_" + 2298 Twine(UID) + "_set_" + Twine(MBBID)); 2299 } 2300 2301 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2302 StringRef Suffix) const { 2303 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2304 TM); 2305 } 2306 2307 /// Return the MCSymbol for the specified ExternalSymbol. 2308 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2309 SmallString<60> NameStr; 2310 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2311 return OutContext.getOrCreateSymbol(NameStr); 2312 } 2313 2314 2315 2316 /// PrintParentLoopComment - Print comments about parent loops of this one. 2317 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2318 unsigned FunctionNumber) { 2319 if (!Loop) return; 2320 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2321 OS.indent(Loop->getLoopDepth()*2) 2322 << "Parent Loop BB" << FunctionNumber << "_" 2323 << Loop->getHeader()->getNumber() 2324 << " Depth=" << Loop->getLoopDepth() << '\n'; 2325 } 2326 2327 2328 /// PrintChildLoopComment - Print comments about child loops within 2329 /// the loop for this basic block, with nesting. 2330 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2331 unsigned FunctionNumber) { 2332 // Add child loop information 2333 for (const MachineLoop *CL : *Loop) { 2334 OS.indent(CL->getLoopDepth()*2) 2335 << "Child Loop BB" << FunctionNumber << "_" 2336 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2337 << '\n'; 2338 PrintChildLoopComment(OS, CL, FunctionNumber); 2339 } 2340 } 2341 2342 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2343 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2344 const MachineLoopInfo *LI, 2345 const AsmPrinter &AP) { 2346 // Add loop depth information 2347 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2348 if (!Loop) return; 2349 2350 MachineBasicBlock *Header = Loop->getHeader(); 2351 assert(Header && "No header for loop"); 2352 2353 // If this block is not a loop header, just print out what is the loop header 2354 // and return. 2355 if (Header != &MBB) { 2356 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2357 Twine(AP.getFunctionNumber())+"_" + 2358 Twine(Loop->getHeader()->getNumber())+ 2359 " Depth="+Twine(Loop->getLoopDepth())); 2360 return; 2361 } 2362 2363 // Otherwise, it is a loop header. Print out information about child and 2364 // parent loops. 2365 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2366 2367 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2368 2369 OS << "=>"; 2370 OS.indent(Loop->getLoopDepth()*2-2); 2371 2372 OS << "This "; 2373 if (Loop->empty()) 2374 OS << "Inner "; 2375 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2376 2377 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2378 } 2379 2380 2381 /// EmitBasicBlockStart - This method prints the label for the specified 2382 /// MachineBasicBlock, an alignment (if present) and a comment describing 2383 /// it if appropriate. 2384 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2385 // Emit an alignment directive for this block, if needed. 2386 if (unsigned Align = MBB.getAlignment()) 2387 EmitAlignment(Align); 2388 2389 // If the block has its address taken, emit any labels that were used to 2390 // reference the block. It is possible that there is more than one label 2391 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2392 // the references were generated. 2393 if (MBB.hasAddressTaken()) { 2394 const BasicBlock *BB = MBB.getBasicBlock(); 2395 if (isVerbose()) 2396 OutStreamer->AddComment("Block address taken"); 2397 2398 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2399 OutStreamer->EmitLabel(Sym); 2400 } 2401 2402 // Print some verbose block comments. 2403 if (isVerbose()) { 2404 if (const BasicBlock *BB = MBB.getBasicBlock()) 2405 if (BB->hasName()) 2406 OutStreamer->AddComment("%" + BB->getName()); 2407 emitBasicBlockLoopComments(MBB, LI, *this); 2408 } 2409 2410 // Print the main label for the block. 2411 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2412 if (isVerbose()) { 2413 // NOTE: Want this comment at start of line, don't emit with AddComment. 2414 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2415 } 2416 } else { 2417 OutStreamer->EmitLabel(MBB.getSymbol()); 2418 } 2419 } 2420 2421 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2422 bool IsDefinition) const { 2423 MCSymbolAttr Attr = MCSA_Invalid; 2424 2425 switch (Visibility) { 2426 default: break; 2427 case GlobalValue::HiddenVisibility: 2428 if (IsDefinition) 2429 Attr = MAI->getHiddenVisibilityAttr(); 2430 else 2431 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2432 break; 2433 case GlobalValue::ProtectedVisibility: 2434 Attr = MAI->getProtectedVisibilityAttr(); 2435 break; 2436 } 2437 2438 if (Attr != MCSA_Invalid) 2439 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2440 } 2441 2442 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2443 /// exactly one predecessor and the control transfer mechanism between 2444 /// the predecessor and this block is a fall-through. 2445 bool AsmPrinter:: 2446 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2447 // If this is a landing pad, it isn't a fall through. If it has no preds, 2448 // then nothing falls through to it. 2449 if (MBB->isLandingPad() || MBB->pred_empty()) 2450 return false; 2451 2452 // If there isn't exactly one predecessor, it can't be a fall through. 2453 if (MBB->pred_size() > 1) 2454 return false; 2455 2456 // The predecessor has to be immediately before this block. 2457 MachineBasicBlock *Pred = *MBB->pred_begin(); 2458 if (!Pred->isLayoutSuccessor(MBB)) 2459 return false; 2460 2461 // If the block is completely empty, then it definitely does fall through. 2462 if (Pred->empty()) 2463 return true; 2464 2465 // Check the terminators in the previous blocks 2466 for (const auto &MI : Pred->terminators()) { 2467 // If it is not a simple branch, we are in a table somewhere. 2468 if (!MI.isBranch() || MI.isIndirectBranch()) 2469 return false; 2470 2471 // If we are the operands of one of the branches, this is not a fall 2472 // through. Note that targets with delay slots will usually bundle 2473 // terminators with the delay slot instruction. 2474 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2475 if (OP->isJTI()) 2476 return false; 2477 if (OP->isMBB() && OP->getMBB() == MBB) 2478 return false; 2479 } 2480 } 2481 2482 return true; 2483 } 2484 2485 2486 2487 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2488 if (!S.usesMetadata()) 2489 return nullptr; 2490 2491 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2492 " stackmap formats, please see the documentation for a description of" 2493 " the default format. If you really need a custom serialized format," 2494 " please file a bug"); 2495 2496 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2497 gcp_map_type::iterator GCPI = GCMap.find(&S); 2498 if (GCPI != GCMap.end()) 2499 return GCPI->second.get(); 2500 2501 const char *Name = S.getName().c_str(); 2502 2503 for (GCMetadataPrinterRegistry::iterator 2504 I = GCMetadataPrinterRegistry::begin(), 2505 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2506 if (strcmp(Name, I->getName()) == 0) { 2507 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2508 GMP->S = &S; 2509 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2510 return IterBool.first->second.get(); 2511 } 2512 2513 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2514 } 2515 2516 /// Pin vtable to this file. 2517 AsmPrinterHandler::~AsmPrinterHandler() {} 2518 2519 void AsmPrinterHandler::markFunctionEnd() {} 2520