1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/ObjectUtils.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/Comdat.h" 56 #include "llvm/IR/Constant.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DebugInfoMetadata.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/GlobalAlias.h" 63 #include "llvm/IR/GlobalIFunc.h" 64 #include "llvm/IR/GlobalIndirectSymbol.h" 65 #include "llvm/IR/GlobalObject.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/GlobalVariable.h" 68 #include "llvm/IR/Instruction.h" 69 #include "llvm/IR/Mangler.h" 70 #include "llvm/IR/Metadata.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Operator.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCAsmInfo.h" 76 #include "llvm/MC/MCContext.h" 77 #include "llvm/MC/MCDirectives.h" 78 #include "llvm/MC/MCDwarf.h" 79 #include "llvm/MC/MCExpr.h" 80 #include "llvm/MC/MCInst.h" 81 #include "llvm/MC/MCSection.h" 82 #include "llvm/MC/MCSectionELF.h" 83 #include "llvm/MC/MCSectionMachO.h" 84 #include "llvm/MC/MCStreamer.h" 85 #include "llvm/MC/MCSubtargetInfo.h" 86 #include "llvm/MC/MCSymbol.h" 87 #include "llvm/MC/MCSymbolELF.h" 88 #include "llvm/MC/MCTargetOptions.h" 89 #include "llvm/MC/MCValue.h" 90 #include "llvm/MC/SectionKind.h" 91 #include "llvm/Pass.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/ErrorHandling.h" 96 #include "llvm/Support/Format.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/Path.h" 99 #include "llvm/Support/TargetRegistry.h" 100 #include "llvm/Support/Timer.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Target/TargetFrameLowering.h" 103 #include "llvm/Target/TargetInstrInfo.h" 104 #include "llvm/Target/TargetLowering.h" 105 #include "llvm/Target/TargetLoweringObjectFile.h" 106 #include "llvm/Target/TargetMachine.h" 107 #include "llvm/Target/TargetOpcodes.h" 108 #include "llvm/Target/TargetOptions.h" 109 #include "llvm/Target/TargetRegisterInfo.h" 110 #include "llvm/Target/TargetSubtargetInfo.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cinttypes> 114 #include <cstdint> 115 #include <iterator> 116 #include <limits> 117 #include <memory> 118 #include <string> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "asm-printer" 125 126 static const char *const DWARFGroupName = "dwarf"; 127 static const char *const DWARFGroupDescription = "DWARF Emission"; 128 static const char *const DbgTimerName = "emit"; 129 static const char *const DbgTimerDescription = "Debug Info Emission"; 130 static const char *const EHTimerName = "write_exception"; 131 static const char *const EHTimerDescription = "DWARF Exception Writer"; 132 static const char *const CodeViewLineTablesGroupName = "linetables"; 133 static const char *const CodeViewLineTablesGroupDescription = 134 "CodeView Line Tables"; 135 136 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 137 138 static cl::opt<bool> 139 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 140 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 141 142 char AsmPrinter::ID = 0; 143 144 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 145 146 static gcp_map_type &getGCMap(void *&P) { 147 if (!P) 148 P = new gcp_map_type(); 149 return *(gcp_map_type*)P; 150 } 151 152 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 153 /// value in log2 form. This rounds up to the preferred alignment if possible 154 /// and legal. 155 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 156 unsigned InBits = 0) { 157 unsigned NumBits = 0; 158 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 159 NumBits = DL.getPreferredAlignmentLog(GVar); 160 161 // If InBits is specified, round it to it. 162 if (InBits > NumBits) 163 NumBits = InBits; 164 165 // If the GV has a specified alignment, take it into account. 166 if (GV->getAlignment() == 0) 167 return NumBits; 168 169 unsigned GVAlign = Log2_32(GV->getAlignment()); 170 171 // If the GVAlign is larger than NumBits, or if we are required to obey 172 // NumBits because the GV has an assigned section, obey it. 173 if (GVAlign > NumBits || GV->hasSection()) 174 NumBits = GVAlign; 175 return NumBits; 176 } 177 178 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 179 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 180 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 181 VerboseAsm = OutStreamer->isVerboseAsm(); 182 } 183 184 AsmPrinter::~AsmPrinter() { 185 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 186 187 if (GCMetadataPrinters) { 188 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 189 190 delete &GCMap; 191 GCMetadataPrinters = nullptr; 192 } 193 } 194 195 bool AsmPrinter::isPositionIndependent() const { 196 return TM.isPositionIndependent(); 197 } 198 199 /// getFunctionNumber - Return a unique ID for the current function. 200 unsigned AsmPrinter::getFunctionNumber() const { 201 return MF->getFunctionNumber(); 202 } 203 204 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 205 return *TM.getObjFileLowering(); 206 } 207 208 const DataLayout &AsmPrinter::getDataLayout() const { 209 return MMI->getModule()->getDataLayout(); 210 } 211 212 // Do not use the cached DataLayout because some client use it without a Module 213 // (llvm-dsymutil, llvm-dwarfdump). 214 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 215 216 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 217 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 218 return MF->getSubtarget<MCSubtargetInfo>(); 219 } 220 221 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 222 S.EmitInstruction(Inst, getSubtargetInfo()); 223 } 224 225 /// getCurrentSection() - Return the current section we are emitting to. 226 const MCSection *AsmPrinter::getCurrentSection() const { 227 return OutStreamer->getCurrentSectionOnly(); 228 } 229 230 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 231 AU.setPreservesAll(); 232 MachineFunctionPass::getAnalysisUsage(AU); 233 AU.addRequired<MachineModuleInfo>(); 234 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 235 AU.addRequired<GCModuleInfo>(); 236 if (isVerbose()) 237 AU.addRequired<MachineLoopInfo>(); 238 } 239 240 bool AsmPrinter::doInitialization(Module &M) { 241 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 242 243 // Initialize TargetLoweringObjectFile. 244 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 245 .Initialize(OutContext, TM); 246 247 OutStreamer->InitSections(false); 248 249 // Emit the version-min deplyment target directive if needed. 250 // 251 // FIXME: If we end up with a collection of these sorts of Darwin-specific 252 // or ELF-specific things, it may make sense to have a platform helper class 253 // that will work with the target helper class. For now keep it here, as the 254 // alternative is duplicated code in each of the target asm printers that 255 // use the directive, where it would need the same conditionalization 256 // anyway. 257 const Triple &TT = TM.getTargetTriple(); 258 // If there is a version specified, Major will be non-zero. 259 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 260 unsigned Major, Minor, Update; 261 MCVersionMinType VersionType; 262 if (TT.isWatchOS()) { 263 VersionType = MCVM_WatchOSVersionMin; 264 TT.getWatchOSVersion(Major, Minor, Update); 265 } else if (TT.isTvOS()) { 266 VersionType = MCVM_TvOSVersionMin; 267 TT.getiOSVersion(Major, Minor, Update); 268 } else if (TT.isMacOSX()) { 269 VersionType = MCVM_OSXVersionMin; 270 if (!TT.getMacOSXVersion(Major, Minor, Update)) 271 Major = 0; 272 } else { 273 VersionType = MCVM_IOSVersionMin; 274 TT.getiOSVersion(Major, Minor, Update); 275 } 276 if (Major != 0) 277 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 278 } 279 280 // Allow the target to emit any magic that it wants at the start of the file. 281 EmitStartOfAsmFile(M); 282 283 // Very minimal debug info. It is ignored if we emit actual debug info. If we 284 // don't, this at least helps the user find where a global came from. 285 if (MAI->hasSingleParameterDotFile()) { 286 // .file "foo.c" 287 OutStreamer->EmitFileDirective( 288 llvm::sys::path::filename(M.getSourceFileName())); 289 } 290 291 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 292 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 293 for (auto &I : *MI) 294 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 295 MP->beginAssembly(M, *MI, *this); 296 297 // Emit module-level inline asm if it exists. 298 if (!M.getModuleInlineAsm().empty()) { 299 // We're at the module level. Construct MCSubtarget from the default CPU 300 // and target triple. 301 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 302 TM.getTargetTriple().str(), TM.getTargetCPU(), 303 TM.getTargetFeatureString())); 304 OutStreamer->AddComment("Start of file scope inline assembly"); 305 OutStreamer->AddBlankLine(); 306 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 307 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 308 OutStreamer->AddComment("End of file scope inline assembly"); 309 OutStreamer->AddBlankLine(); 310 } 311 312 if (MAI->doesSupportDebugInformation()) { 313 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 314 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 315 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 316 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 317 DbgTimerName, DbgTimerDescription, 318 CodeViewLineTablesGroupName, 319 CodeViewLineTablesGroupDescription)); 320 } 321 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 322 DD = new DwarfDebug(this, &M); 323 DD->beginModule(); 324 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 325 DWARFGroupName, DWARFGroupDescription)); 326 } 327 } 328 329 switch (MAI->getExceptionHandlingType()) { 330 case ExceptionHandling::SjLj: 331 case ExceptionHandling::DwarfCFI: 332 case ExceptionHandling::ARM: 333 isCFIMoveForDebugging = true; 334 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 335 break; 336 for (auto &F: M.getFunctionList()) { 337 // If the module contains any function with unwind data, 338 // .eh_frame has to be emitted. 339 // Ignore functions that won't get emitted. 340 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 341 isCFIMoveForDebugging = false; 342 break; 343 } 344 } 345 break; 346 default: 347 isCFIMoveForDebugging = false; 348 break; 349 } 350 351 EHStreamer *ES = nullptr; 352 switch (MAI->getExceptionHandlingType()) { 353 case ExceptionHandling::None: 354 break; 355 case ExceptionHandling::SjLj: 356 case ExceptionHandling::DwarfCFI: 357 ES = new DwarfCFIException(this); 358 break; 359 case ExceptionHandling::ARM: 360 ES = new ARMException(this); 361 break; 362 case ExceptionHandling::WinEH: 363 switch (MAI->getWinEHEncodingType()) { 364 default: llvm_unreachable("unsupported unwinding information encoding"); 365 case WinEH::EncodingType::Invalid: 366 break; 367 case WinEH::EncodingType::X86: 368 case WinEH::EncodingType::Itanium: 369 ES = new WinException(this); 370 break; 371 } 372 break; 373 } 374 if (ES) 375 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 376 DWARFGroupName, DWARFGroupDescription)); 377 return false; 378 } 379 380 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 381 if (!MAI.hasWeakDefCanBeHiddenDirective()) 382 return false; 383 384 return canBeOmittedFromSymbolTable(GV); 385 } 386 387 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 388 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 389 switch (Linkage) { 390 case GlobalValue::CommonLinkage: 391 case GlobalValue::LinkOnceAnyLinkage: 392 case GlobalValue::LinkOnceODRLinkage: 393 case GlobalValue::WeakAnyLinkage: 394 case GlobalValue::WeakODRLinkage: 395 if (MAI->hasWeakDefDirective()) { 396 // .globl _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 398 399 if (!canBeHidden(GV, *MAI)) 400 // .weak_definition _foo 401 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 402 else 403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 404 } else if (MAI->hasLinkOnceDirective()) { 405 // .globl _foo 406 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 407 //NOTE: linkonce is handled by the section the symbol was assigned to. 408 } else { 409 // .weak _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 411 } 412 return; 413 case GlobalValue::ExternalLinkage: 414 // If external, declare as a global symbol: .globl _foo 415 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 416 return; 417 case GlobalValue::PrivateLinkage: 418 case GlobalValue::InternalLinkage: 419 return; 420 case GlobalValue::AppendingLinkage: 421 case GlobalValue::AvailableExternallyLinkage: 422 case GlobalValue::ExternalWeakLinkage: 423 llvm_unreachable("Should never emit this"); 424 } 425 llvm_unreachable("Unknown linkage type!"); 426 } 427 428 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 429 const GlobalValue *GV) const { 430 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 431 } 432 433 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 434 return TM.getSymbol(GV); 435 } 436 437 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 438 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 439 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 440 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 441 "No emulated TLS variables in the common section"); 442 443 // Never emit TLS variable xyz in emulated TLS model. 444 // The initialization value is in __emutls_t.xyz instead of xyz. 445 if (IsEmuTLSVar) 446 return; 447 448 if (GV->hasInitializer()) { 449 // Check to see if this is a special global used by LLVM, if so, emit it. 450 if (EmitSpecialLLVMGlobal(GV)) 451 return; 452 453 // Skip the emission of global equivalents. The symbol can be emitted later 454 // on by emitGlobalGOTEquivs in case it turns out to be needed. 455 if (GlobalGOTEquivs.count(getSymbol(GV))) 456 return; 457 458 if (isVerbose()) { 459 // When printing the control variable __emutls_v.*, 460 // we don't need to print the original TLS variable name. 461 GV->printAsOperand(OutStreamer->GetCommentOS(), 462 /*PrintType=*/false, GV->getParent()); 463 OutStreamer->GetCommentOS() << '\n'; 464 } 465 } 466 467 MCSymbol *GVSym = getSymbol(GV); 468 MCSymbol *EmittedSym = GVSym; 469 470 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 471 // attributes. 472 // GV's or GVSym's attributes will be used for the EmittedSym. 473 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 474 475 if (!GV->hasInitializer()) // External globals require no extra code. 476 return; 477 478 GVSym->redefineIfPossible(); 479 if (GVSym->isDefined() || GVSym->isVariable()) 480 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 481 "' is already defined"); 482 483 if (MAI->hasDotTypeDotSizeDirective()) 484 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 485 486 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 487 488 const DataLayout &DL = GV->getParent()->getDataLayout(); 489 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 490 491 // If the alignment is specified, we *must* obey it. Overaligning a global 492 // with a specified alignment is a prompt way to break globals emitted to 493 // sections and expected to be contiguous (e.g. ObjC metadata). 494 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 495 496 for (const HandlerInfo &HI : Handlers) { 497 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 498 HI.TimerGroupName, HI.TimerGroupDescription, 499 TimePassesIsEnabled); 500 HI.Handler->setSymbolSize(GVSym, Size); 501 } 502 503 // Handle common symbols 504 if (GVKind.isCommon()) { 505 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 506 unsigned Align = 1 << AlignLog; 507 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 508 Align = 0; 509 510 // .comm _foo, 42, 4 511 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 512 return; 513 } 514 515 // Determine to which section this global should be emitted. 516 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 517 518 // If we have a bss global going to a section that supports the 519 // zerofill directive, do so here. 520 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 521 TheSection->isVirtualSection()) { 522 if (Size == 0) 523 Size = 1; // zerofill of 0 bytes is undefined. 524 unsigned Align = 1 << AlignLog; 525 EmitLinkage(GV, GVSym); 526 // .zerofill __DATA, __bss, _foo, 400, 5 527 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 528 return; 529 } 530 531 // If this is a BSS local symbol and we are emitting in the BSS 532 // section use .lcomm/.comm directive. 533 if (GVKind.isBSSLocal() && 534 getObjFileLowering().getBSSSection() == TheSection) { 535 if (Size == 0) 536 Size = 1; // .comm Foo, 0 is undefined, avoid it. 537 unsigned Align = 1 << AlignLog; 538 539 // Use .lcomm only if it supports user-specified alignment. 540 // Otherwise, while it would still be correct to use .lcomm in some 541 // cases (e.g. when Align == 1), the external assembler might enfore 542 // some -unknown- default alignment behavior, which could cause 543 // spurious differences between external and integrated assembler. 544 // Prefer to simply fall back to .local / .comm in this case. 545 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 546 // .lcomm _foo, 42 547 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 548 return; 549 } 550 551 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 552 Align = 0; 553 554 // .local _foo 555 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 556 // .comm _foo, 42, 4 557 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 558 return; 559 } 560 561 // Handle thread local data for mach-o which requires us to output an 562 // additional structure of data and mangle the original symbol so that we 563 // can reference it later. 564 // 565 // TODO: This should become an "emit thread local global" method on TLOF. 566 // All of this macho specific stuff should be sunk down into TLOFMachO and 567 // stuff like "TLSExtraDataSection" should no longer be part of the parent 568 // TLOF class. This will also make it more obvious that stuff like 569 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 570 // specific code. 571 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 572 // Emit the .tbss symbol 573 MCSymbol *MangSym = 574 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 575 576 if (GVKind.isThreadBSS()) { 577 TheSection = getObjFileLowering().getTLSBSSSection(); 578 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 579 } else if (GVKind.isThreadData()) { 580 OutStreamer->SwitchSection(TheSection); 581 582 EmitAlignment(AlignLog, GV); 583 OutStreamer->EmitLabel(MangSym); 584 585 EmitGlobalConstant(GV->getParent()->getDataLayout(), 586 GV->getInitializer()); 587 } 588 589 OutStreamer->AddBlankLine(); 590 591 // Emit the variable struct for the runtime. 592 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 593 594 OutStreamer->SwitchSection(TLVSect); 595 // Emit the linkage here. 596 EmitLinkage(GV, GVSym); 597 OutStreamer->EmitLabel(GVSym); 598 599 // Three pointers in size: 600 // - __tlv_bootstrap - used to make sure support exists 601 // - spare pointer, used when mapped by the runtime 602 // - pointer to mangled symbol above with initializer 603 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 604 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 605 PtrSize); 606 OutStreamer->EmitIntValue(0, PtrSize); 607 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 608 609 OutStreamer->AddBlankLine(); 610 return; 611 } 612 613 MCSymbol *EmittedInitSym = GVSym; 614 615 OutStreamer->SwitchSection(TheSection); 616 617 EmitLinkage(GV, EmittedInitSym); 618 EmitAlignment(AlignLog, GV); 619 620 OutStreamer->EmitLabel(EmittedInitSym); 621 622 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 623 624 if (MAI->hasDotTypeDotSizeDirective()) 625 // .size foo, 42 626 OutStreamer->emitELFSize(EmittedInitSym, 627 MCConstantExpr::create(Size, OutContext)); 628 629 OutStreamer->AddBlankLine(); 630 } 631 632 /// Emit the directive and value for debug thread local expression 633 /// 634 /// \p Value - The value to emit. 635 /// \p Size - The size of the integer (in bytes) to emit. 636 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 637 unsigned Size) const { 638 OutStreamer->EmitValue(Value, Size); 639 } 640 641 /// EmitFunctionHeader - This method emits the header for the current 642 /// function. 643 void AsmPrinter::EmitFunctionHeader() { 644 const Function *F = MF->getFunction(); 645 646 if (isVerbose()) 647 OutStreamer->GetCommentOS() 648 << "-- Begin function " 649 << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n'; 650 651 // Print out constants referenced by the function 652 EmitConstantPool(); 653 654 // Print the 'header' of function. 655 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 656 EmitVisibility(CurrentFnSym, F->getVisibility()); 657 658 EmitLinkage(F, CurrentFnSym); 659 if (MAI->hasFunctionAlignment()) 660 EmitAlignment(MF->getAlignment(), F); 661 662 if (MAI->hasDotTypeDotSizeDirective()) 663 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 664 665 if (isVerbose()) { 666 F->printAsOperand(OutStreamer->GetCommentOS(), 667 /*PrintType=*/false, F->getParent()); 668 OutStreamer->GetCommentOS() << '\n'; 669 } 670 671 // Emit the prefix data. 672 if (F->hasPrefixData()) { 673 if (MAI->hasSubsectionsViaSymbols()) { 674 // Preserving prefix data on platforms which use subsections-via-symbols 675 // is a bit tricky. Here we introduce a symbol for the prefix data 676 // and use the .alt_entry attribute to mark the function's real entry point 677 // as an alternative entry point to the prefix-data symbol. 678 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 679 OutStreamer->EmitLabel(PrefixSym); 680 681 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 682 683 // Emit an .alt_entry directive for the actual function symbol. 684 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 685 } else { 686 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 687 } 688 } 689 690 // Emit the CurrentFnSym. This is a virtual function to allow targets to 691 // do their wild and crazy things as required. 692 EmitFunctionEntryLabel(); 693 694 // If the function had address-taken blocks that got deleted, then we have 695 // references to the dangling symbols. Emit them at the start of the function 696 // so that we don't get references to undefined symbols. 697 std::vector<MCSymbol*> DeadBlockSyms; 698 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 699 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 700 OutStreamer->AddComment("Address taken block that was later removed"); 701 OutStreamer->EmitLabel(DeadBlockSyms[i]); 702 } 703 704 if (CurrentFnBegin) { 705 if (MAI->useAssignmentForEHBegin()) { 706 MCSymbol *CurPos = OutContext.createTempSymbol(); 707 OutStreamer->EmitLabel(CurPos); 708 OutStreamer->EmitAssignment(CurrentFnBegin, 709 MCSymbolRefExpr::create(CurPos, OutContext)); 710 } else { 711 OutStreamer->EmitLabel(CurrentFnBegin); 712 } 713 } 714 715 // Emit pre-function debug and/or EH information. 716 for (const HandlerInfo &HI : Handlers) { 717 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 718 HI.TimerGroupDescription, TimePassesIsEnabled); 719 HI.Handler->beginFunction(MF); 720 } 721 722 // Emit the prologue data. 723 if (F->hasPrologueData()) 724 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 725 } 726 727 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 728 /// function. This can be overridden by targets as required to do custom stuff. 729 void AsmPrinter::EmitFunctionEntryLabel() { 730 CurrentFnSym->redefineIfPossible(); 731 732 // The function label could have already been emitted if two symbols end up 733 // conflicting due to asm renaming. Detect this and emit an error. 734 if (CurrentFnSym->isVariable()) 735 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 736 "' is a protected alias"); 737 if (CurrentFnSym->isDefined()) 738 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 739 "' label emitted multiple times to assembly file"); 740 741 return OutStreamer->EmitLabel(CurrentFnSym); 742 } 743 744 /// emitComments - Pretty-print comments for instructions. 745 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 746 AsmPrinter *AP) { 747 const MachineFunction *MF = MI.getMF(); 748 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 749 750 // Check for spills and reloads 751 int FI; 752 753 const MachineFrameInfo &MFI = MF->getFrameInfo(); 754 bool Commented = false; 755 756 // We assume a single instruction only has a spill or reload, not 757 // both. 758 const MachineMemOperand *MMO; 759 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 760 if (MFI.isSpillSlotObjectIndex(FI)) { 761 MMO = *MI.memoperands_begin(); 762 CommentOS << MMO->getSize() << "-byte Reload"; 763 Commented = true; 764 } 765 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 766 if (MFI.isSpillSlotObjectIndex(FI)) { 767 CommentOS << MMO->getSize() << "-byte Folded Reload"; 768 Commented = true; 769 } 770 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 771 if (MFI.isSpillSlotObjectIndex(FI)) { 772 MMO = *MI.memoperands_begin(); 773 CommentOS << MMO->getSize() << "-byte Spill"; 774 Commented = true; 775 } 776 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 777 if (MFI.isSpillSlotObjectIndex(FI)) { 778 CommentOS << MMO->getSize() << "-byte Folded Spill"; 779 Commented = true; 780 } 781 } 782 783 // Check for spill-induced copies 784 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 785 Commented = true; 786 CommentOS << " Reload Reuse"; 787 } 788 789 if (Commented && AP->EnablePrintSchedInfo) 790 // If any comment was added above and we need sched info comment then 791 // add this new comment just after the above comment w/o "\n" between them. 792 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 793 else if (Commented) 794 CommentOS << "\n"; 795 } 796 797 /// emitImplicitDef - This method emits the specified machine instruction 798 /// that is an implicit def. 799 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 800 unsigned RegNo = MI->getOperand(0).getReg(); 801 802 SmallString<128> Str; 803 raw_svector_ostream OS(Str); 804 OS << "implicit-def: " 805 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 806 807 OutStreamer->AddComment(OS.str()); 808 OutStreamer->AddBlankLine(); 809 } 810 811 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 812 std::string Str; 813 raw_string_ostream OS(Str); 814 OS << "kill:"; 815 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 816 const MachineOperand &Op = MI->getOperand(i); 817 assert(Op.isReg() && "KILL instruction must have only register operands"); 818 OS << ' ' 819 << PrintReg(Op.getReg(), 820 AP.MF->getSubtarget().getRegisterInfo()) 821 << (Op.isDef() ? "<def>" : "<kill>"); 822 } 823 AP.OutStreamer->AddComment(OS.str()); 824 AP.OutStreamer->AddBlankLine(); 825 } 826 827 /// emitDebugValueComment - This method handles the target-independent form 828 /// of DBG_VALUE, returning true if it was able to do so. A false return 829 /// means the target will need to handle MI in EmitInstruction. 830 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 831 // This code handles only the 4-operand target-independent form. 832 if (MI->getNumOperands() != 4) 833 return false; 834 835 SmallString<128> Str; 836 raw_svector_ostream OS(Str); 837 OS << "DEBUG_VALUE: "; 838 839 const DILocalVariable *V = MI->getDebugVariable(); 840 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 841 StringRef Name = SP->getName(); 842 if (!Name.empty()) 843 OS << Name << ":"; 844 } 845 OS << V->getName(); 846 OS << " <- "; 847 848 // The second operand is only an offset if it's an immediate. 849 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 850 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 851 const DIExpression *Expr = MI->getDebugExpression(); 852 if (Expr->getNumElements()) { 853 OS << '['; 854 bool NeedSep = false; 855 for (auto Op : Expr->expr_ops()) { 856 if (NeedSep) 857 OS << ", "; 858 else 859 NeedSep = true; 860 OS << dwarf::OperationEncodingString(Op.getOp()); 861 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 862 OS << ' ' << Op.getArg(I); 863 } 864 OS << "] "; 865 } 866 867 // Register or immediate value. Register 0 means undef. 868 if (MI->getOperand(0).isFPImm()) { 869 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 870 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 871 OS << (double)APF.convertToFloat(); 872 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 873 OS << APF.convertToDouble(); 874 } else { 875 // There is no good way to print long double. Convert a copy to 876 // double. Ah well, it's only a comment. 877 bool ignored; 878 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 879 &ignored); 880 OS << "(long double) " << APF.convertToDouble(); 881 } 882 } else if (MI->getOperand(0).isImm()) { 883 OS << MI->getOperand(0).getImm(); 884 } else if (MI->getOperand(0).isCImm()) { 885 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 886 } else { 887 unsigned Reg; 888 if (MI->getOperand(0).isReg()) { 889 Reg = MI->getOperand(0).getReg(); 890 } else { 891 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 892 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 893 Offset += TFI->getFrameIndexReference(*AP.MF, 894 MI->getOperand(0).getIndex(), Reg); 895 MemLoc = true; 896 } 897 if (Reg == 0) { 898 // Suppress offset, it is not meaningful here. 899 OS << "undef"; 900 // NOTE: Want this comment at start of line, don't emit with AddComment. 901 AP.OutStreamer->emitRawComment(OS.str()); 902 return true; 903 } 904 if (MemLoc) 905 OS << '['; 906 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 907 } 908 909 if (MemLoc) 910 OS << '+' << Offset << ']'; 911 912 // NOTE: Want this comment at start of line, don't emit with AddComment. 913 AP.OutStreamer->emitRawComment(OS.str()); 914 return true; 915 } 916 917 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 918 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 919 MF->getFunction()->needsUnwindTableEntry()) 920 return CFI_M_EH; 921 922 if (MMI->hasDebugInfo()) 923 return CFI_M_Debug; 924 925 return CFI_M_None; 926 } 927 928 bool AsmPrinter::needsSEHMoves() { 929 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 930 } 931 932 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 933 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 934 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 935 ExceptionHandlingType != ExceptionHandling::ARM) 936 return; 937 938 if (needsCFIMoves() == CFI_M_None) 939 return; 940 941 // If there is no "real" instruction following this CFI instruction, skip 942 // emitting it; it would be beyond the end of the function's FDE range. 943 auto *MBB = MI.getParent(); 944 auto I = std::next(MI.getIterator()); 945 while (I != MBB->end() && I->isTransient()) 946 ++I; 947 if (I == MBB->instr_end() && 948 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 949 return; 950 951 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 952 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 953 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 954 emitCFIInstruction(CFI); 955 } 956 957 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 958 // The operands are the MCSymbol and the frame offset of the allocation. 959 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 960 int FrameOffset = MI.getOperand(1).getImm(); 961 962 // Emit a symbol assignment. 963 OutStreamer->EmitAssignment(FrameAllocSym, 964 MCConstantExpr::create(FrameOffset, OutContext)); 965 } 966 967 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 968 MachineModuleInfo *MMI) { 969 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 970 return true; 971 972 // We might emit an EH table that uses function begin and end labels even if 973 // we don't have any landingpads. 974 if (!MF.getFunction()->hasPersonalityFn()) 975 return false; 976 return !isNoOpWithoutInvoke( 977 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 978 } 979 980 /// EmitFunctionBody - This method emits the body and trailer for a 981 /// function. 982 void AsmPrinter::EmitFunctionBody() { 983 EmitFunctionHeader(); 984 985 // Emit target-specific gunk before the function body. 986 EmitFunctionBodyStart(); 987 988 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 989 990 // Print out code for the function. 991 bool HasAnyRealCode = false; 992 int NumInstsInFunction = 0; 993 for (auto &MBB : *MF) { 994 // Print a label for the basic block. 995 EmitBasicBlockStart(MBB); 996 for (auto &MI : MBB) { 997 // Print the assembly for the instruction. 998 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 999 !MI.isDebugValue()) { 1000 HasAnyRealCode = true; 1001 ++NumInstsInFunction; 1002 } 1003 1004 if (ShouldPrintDebugScopes) { 1005 for (const HandlerInfo &HI : Handlers) { 1006 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1007 HI.TimerGroupName, HI.TimerGroupDescription, 1008 TimePassesIsEnabled); 1009 HI.Handler->beginInstruction(&MI); 1010 } 1011 } 1012 1013 if (isVerbose()) 1014 emitComments(MI, OutStreamer->GetCommentOS(), this); 1015 1016 switch (MI.getOpcode()) { 1017 case TargetOpcode::CFI_INSTRUCTION: 1018 emitCFIInstruction(MI); 1019 break; 1020 case TargetOpcode::LOCAL_ESCAPE: 1021 emitFrameAlloc(MI); 1022 break; 1023 case TargetOpcode::EH_LABEL: 1024 case TargetOpcode::GC_LABEL: 1025 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1026 break; 1027 case TargetOpcode::INLINEASM: 1028 EmitInlineAsm(&MI); 1029 break; 1030 case TargetOpcode::DBG_VALUE: 1031 if (isVerbose()) { 1032 if (!emitDebugValueComment(&MI, *this)) 1033 EmitInstruction(&MI); 1034 } 1035 break; 1036 case TargetOpcode::IMPLICIT_DEF: 1037 if (isVerbose()) emitImplicitDef(&MI); 1038 break; 1039 case TargetOpcode::KILL: 1040 if (isVerbose()) emitKill(&MI, *this); 1041 break; 1042 default: 1043 EmitInstruction(&MI); 1044 break; 1045 } 1046 1047 if (ShouldPrintDebugScopes) { 1048 for (const HandlerInfo &HI : Handlers) { 1049 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1050 HI.TimerGroupName, HI.TimerGroupDescription, 1051 TimePassesIsEnabled); 1052 HI.Handler->endInstruction(); 1053 } 1054 } 1055 } 1056 1057 EmitBasicBlockEnd(MBB); 1058 } 1059 1060 EmittedInsts += NumInstsInFunction; 1061 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1062 MF->getFunction()->getSubprogram(), 1063 &MF->front()); 1064 R << ore::NV("NumInstructions", NumInstsInFunction) 1065 << " instructions in function"; 1066 ORE->emit(R); 1067 1068 // If the function is empty and the object file uses .subsections_via_symbols, 1069 // then we need to emit *something* to the function body to prevent the 1070 // labels from collapsing together. Just emit a noop. 1071 // Similarly, don't emit empty functions on Windows either. It can lead to 1072 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1073 // after linking, causing the kernel not to load the binary: 1074 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1075 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1076 const Triple &TT = TM.getTargetTriple(); 1077 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1078 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1079 MCInst Noop; 1080 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1081 1082 // Targets can opt-out of emitting the noop here by leaving the opcode 1083 // unspecified. 1084 if (Noop.getOpcode()) { 1085 OutStreamer->AddComment("avoids zero-length function"); 1086 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1087 } 1088 } 1089 1090 const Function *F = MF->getFunction(); 1091 for (const auto &BB : *F) { 1092 if (!BB.hasAddressTaken()) 1093 continue; 1094 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1095 if (Sym->isDefined()) 1096 continue; 1097 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1098 OutStreamer->EmitLabel(Sym); 1099 } 1100 1101 // Emit target-specific gunk after the function body. 1102 EmitFunctionBodyEnd(); 1103 1104 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1105 MAI->hasDotTypeDotSizeDirective()) { 1106 // Create a symbol for the end of function. 1107 CurrentFnEnd = createTempSymbol("func_end"); 1108 OutStreamer->EmitLabel(CurrentFnEnd); 1109 } 1110 1111 // If the target wants a .size directive for the size of the function, emit 1112 // it. 1113 if (MAI->hasDotTypeDotSizeDirective()) { 1114 // We can get the size as difference between the function label and the 1115 // temp label. 1116 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1117 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1118 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1119 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1120 } 1121 1122 for (const HandlerInfo &HI : Handlers) { 1123 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1124 HI.TimerGroupDescription, TimePassesIsEnabled); 1125 HI.Handler->markFunctionEnd(); 1126 } 1127 1128 // Print out jump tables referenced by the function. 1129 EmitJumpTableInfo(); 1130 1131 // Emit post-function debug and/or EH information. 1132 for (const HandlerInfo &HI : Handlers) { 1133 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1134 HI.TimerGroupDescription, TimePassesIsEnabled); 1135 HI.Handler->endFunction(MF); 1136 } 1137 1138 if (isVerbose()) 1139 OutStreamer->GetCommentOS() << "-- End function\n"; 1140 1141 OutStreamer->AddBlankLine(); 1142 } 1143 1144 /// \brief Compute the number of Global Variables that uses a Constant. 1145 static unsigned getNumGlobalVariableUses(const Constant *C) { 1146 if (!C) 1147 return 0; 1148 1149 if (isa<GlobalVariable>(C)) 1150 return 1; 1151 1152 unsigned NumUses = 0; 1153 for (auto *CU : C->users()) 1154 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1155 1156 return NumUses; 1157 } 1158 1159 /// \brief Only consider global GOT equivalents if at least one user is a 1160 /// cstexpr inside an initializer of another global variables. Also, don't 1161 /// handle cstexpr inside instructions. During global variable emission, 1162 /// candidates are skipped and are emitted later in case at least one cstexpr 1163 /// isn't replaced by a PC relative GOT entry access. 1164 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1165 unsigned &NumGOTEquivUsers) { 1166 // Global GOT equivalents are unnamed private globals with a constant 1167 // pointer initializer to another global symbol. They must point to a 1168 // GlobalVariable or Function, i.e., as GlobalValue. 1169 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1170 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1171 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1172 return false; 1173 1174 // To be a got equivalent, at least one of its users need to be a constant 1175 // expression used by another global variable. 1176 for (auto *U : GV->users()) 1177 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1178 1179 return NumGOTEquivUsers > 0; 1180 } 1181 1182 /// \brief Unnamed constant global variables solely contaning a pointer to 1183 /// another globals variable is equivalent to a GOT table entry; it contains the 1184 /// the address of another symbol. Optimize it and replace accesses to these 1185 /// "GOT equivalents" by using the GOT entry for the final global instead. 1186 /// Compute GOT equivalent candidates among all global variables to avoid 1187 /// emitting them if possible later on, after it use is replaced by a GOT entry 1188 /// access. 1189 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1190 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1191 return; 1192 1193 for (const auto &G : M.globals()) { 1194 unsigned NumGOTEquivUsers = 0; 1195 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1196 continue; 1197 1198 const MCSymbol *GOTEquivSym = getSymbol(&G); 1199 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1200 } 1201 } 1202 1203 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1204 /// for PC relative GOT entry conversion, in such cases we need to emit such 1205 /// globals we previously omitted in EmitGlobalVariable. 1206 void AsmPrinter::emitGlobalGOTEquivs() { 1207 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1208 return; 1209 1210 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1211 for (auto &I : GlobalGOTEquivs) { 1212 const GlobalVariable *GV = I.second.first; 1213 unsigned Cnt = I.second.second; 1214 if (Cnt) 1215 FailedCandidates.push_back(GV); 1216 } 1217 GlobalGOTEquivs.clear(); 1218 1219 for (auto *GV : FailedCandidates) 1220 EmitGlobalVariable(GV); 1221 } 1222 1223 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1224 const GlobalIndirectSymbol& GIS) { 1225 MCSymbol *Name = getSymbol(&GIS); 1226 1227 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1228 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1229 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1230 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1231 else 1232 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1233 1234 // Set the symbol type to function if the alias has a function type. 1235 // This affects codegen when the aliasee is not a function. 1236 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1237 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1238 if (isa<GlobalIFunc>(GIS)) 1239 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1240 } 1241 1242 EmitVisibility(Name, GIS.getVisibility()); 1243 1244 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1245 1246 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1247 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1248 1249 // Emit the directives as assignments aka .set: 1250 OutStreamer->EmitAssignment(Name, Expr); 1251 1252 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1253 // If the aliasee does not correspond to a symbol in the output, i.e. the 1254 // alias is not of an object or the aliased object is private, then set the 1255 // size of the alias symbol from the type of the alias. We don't do this in 1256 // other situations as the alias and aliasee having differing types but same 1257 // size may be intentional. 1258 const GlobalObject *BaseObject = GA->getBaseObject(); 1259 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1260 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1261 const DataLayout &DL = M.getDataLayout(); 1262 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1263 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1264 } 1265 } 1266 } 1267 1268 bool AsmPrinter::doFinalization(Module &M) { 1269 // Set the MachineFunction to nullptr so that we can catch attempted 1270 // accesses to MF specific features at the module level and so that 1271 // we can conditionalize accesses based on whether or not it is nullptr. 1272 MF = nullptr; 1273 1274 // Gather all GOT equivalent globals in the module. We really need two 1275 // passes over the globals: one to compute and another to avoid its emission 1276 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1277 // where the got equivalent shows up before its use. 1278 computeGlobalGOTEquivs(M); 1279 1280 // Emit global variables. 1281 for (const auto &G : M.globals()) 1282 EmitGlobalVariable(&G); 1283 1284 // Emit remaining GOT equivalent globals. 1285 emitGlobalGOTEquivs(); 1286 1287 // Emit visibility info for declarations 1288 for (const Function &F : M) { 1289 if (!F.isDeclarationForLinker()) 1290 continue; 1291 GlobalValue::VisibilityTypes V = F.getVisibility(); 1292 if (V == GlobalValue::DefaultVisibility) 1293 continue; 1294 1295 MCSymbol *Name = getSymbol(&F); 1296 EmitVisibility(Name, V, false); 1297 } 1298 1299 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1300 1301 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1302 1303 if (TM.getTargetTriple().isOSBinFormatELF()) { 1304 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1305 1306 // Output stubs for external and common global variables. 1307 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1308 if (!Stubs.empty()) { 1309 OutStreamer->SwitchSection(TLOF.getDataSection()); 1310 const DataLayout &DL = M.getDataLayout(); 1311 1312 for (const auto &Stub : Stubs) { 1313 OutStreamer->EmitLabel(Stub.first); 1314 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1315 DL.getPointerSize()); 1316 } 1317 } 1318 } 1319 1320 // Finalize debug and EH information. 1321 for (const HandlerInfo &HI : Handlers) { 1322 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1323 HI.TimerGroupDescription, TimePassesIsEnabled); 1324 HI.Handler->endModule(); 1325 delete HI.Handler; 1326 } 1327 Handlers.clear(); 1328 DD = nullptr; 1329 1330 // If the target wants to know about weak references, print them all. 1331 if (MAI->getWeakRefDirective()) { 1332 // FIXME: This is not lazy, it would be nice to only print weak references 1333 // to stuff that is actually used. Note that doing so would require targets 1334 // to notice uses in operands (due to constant exprs etc). This should 1335 // happen with the MC stuff eventually. 1336 1337 // Print out module-level global objects here. 1338 for (const auto &GO : M.global_objects()) { 1339 if (!GO.hasExternalWeakLinkage()) 1340 continue; 1341 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1342 } 1343 } 1344 1345 OutStreamer->AddBlankLine(); 1346 1347 // Print aliases in topological order, that is, for each alias a = b, 1348 // b must be printed before a. 1349 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1350 // such an order to generate correct TOC information. 1351 SmallVector<const GlobalAlias *, 16> AliasStack; 1352 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1353 for (const auto &Alias : M.aliases()) { 1354 for (const GlobalAlias *Cur = &Alias; Cur; 1355 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1356 if (!AliasVisited.insert(Cur).second) 1357 break; 1358 AliasStack.push_back(Cur); 1359 } 1360 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1361 emitGlobalIndirectSymbol(M, *AncestorAlias); 1362 AliasStack.clear(); 1363 } 1364 for (const auto &IFunc : M.ifuncs()) 1365 emitGlobalIndirectSymbol(M, IFunc); 1366 1367 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1368 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1369 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1370 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1371 MP->finishAssembly(M, *MI, *this); 1372 1373 // Emit llvm.ident metadata in an '.ident' directive. 1374 EmitModuleIdents(M); 1375 1376 // Emit __morestack address if needed for indirect calls. 1377 if (MMI->usesMorestackAddr()) { 1378 unsigned Align = 1; 1379 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1380 getDataLayout(), SectionKind::getReadOnly(), 1381 /*C=*/nullptr, Align); 1382 OutStreamer->SwitchSection(ReadOnlySection); 1383 1384 MCSymbol *AddrSymbol = 1385 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1386 OutStreamer->EmitLabel(AddrSymbol); 1387 1388 unsigned PtrSize = MAI->getCodePointerSize(); 1389 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1390 PtrSize); 1391 } 1392 1393 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1394 // split-stack is used. 1395 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1396 OutStreamer->SwitchSection( 1397 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1398 if (MMI->hasNosplitStack()) 1399 OutStreamer->SwitchSection( 1400 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1401 } 1402 1403 // If we don't have any trampolines, then we don't require stack memory 1404 // to be executable. Some targets have a directive to declare this. 1405 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1406 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1407 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1408 OutStreamer->SwitchSection(S); 1409 1410 // Allow the target to emit any magic that it wants at the end of the file, 1411 // after everything else has gone out. 1412 EmitEndOfAsmFile(M); 1413 1414 MMI = nullptr; 1415 1416 OutStreamer->Finish(); 1417 OutStreamer->reset(); 1418 1419 return false; 1420 } 1421 1422 MCSymbol *AsmPrinter::getCurExceptionSym() { 1423 if (!CurExceptionSym) 1424 CurExceptionSym = createTempSymbol("exception"); 1425 return CurExceptionSym; 1426 } 1427 1428 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1429 this->MF = &MF; 1430 // Get the function symbol. 1431 CurrentFnSym = getSymbol(MF.getFunction()); 1432 CurrentFnSymForSize = CurrentFnSym; 1433 CurrentFnBegin = nullptr; 1434 CurExceptionSym = nullptr; 1435 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1436 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1437 CurrentFnBegin = createTempSymbol("func_begin"); 1438 if (NeedsLocalForSize) 1439 CurrentFnSymForSize = CurrentFnBegin; 1440 } 1441 1442 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1443 if (isVerbose()) 1444 LI = &getAnalysis<MachineLoopInfo>(); 1445 1446 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1447 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1448 ? PrintSchedule 1449 : STI.supportPrintSchedInfo(); 1450 } 1451 1452 namespace { 1453 1454 // Keep track the alignment, constpool entries per Section. 1455 struct SectionCPs { 1456 MCSection *S; 1457 unsigned Alignment; 1458 SmallVector<unsigned, 4> CPEs; 1459 1460 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1461 }; 1462 1463 } // end anonymous namespace 1464 1465 /// EmitConstantPool - Print to the current output stream assembly 1466 /// representations of the constants in the constant pool MCP. This is 1467 /// used to print out constants which have been "spilled to memory" by 1468 /// the code generator. 1469 void AsmPrinter::EmitConstantPool() { 1470 const MachineConstantPool *MCP = MF->getConstantPool(); 1471 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1472 if (CP.empty()) return; 1473 1474 // Calculate sections for constant pool entries. We collect entries to go into 1475 // the same section together to reduce amount of section switch statements. 1476 SmallVector<SectionCPs, 4> CPSections; 1477 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1478 const MachineConstantPoolEntry &CPE = CP[i]; 1479 unsigned Align = CPE.getAlignment(); 1480 1481 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1482 1483 const Constant *C = nullptr; 1484 if (!CPE.isMachineConstantPoolEntry()) 1485 C = CPE.Val.ConstVal; 1486 1487 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1488 Kind, C, Align); 1489 1490 // The number of sections are small, just do a linear search from the 1491 // last section to the first. 1492 bool Found = false; 1493 unsigned SecIdx = CPSections.size(); 1494 while (SecIdx != 0) { 1495 if (CPSections[--SecIdx].S == S) { 1496 Found = true; 1497 break; 1498 } 1499 } 1500 if (!Found) { 1501 SecIdx = CPSections.size(); 1502 CPSections.push_back(SectionCPs(S, Align)); 1503 } 1504 1505 if (Align > CPSections[SecIdx].Alignment) 1506 CPSections[SecIdx].Alignment = Align; 1507 CPSections[SecIdx].CPEs.push_back(i); 1508 } 1509 1510 // Now print stuff into the calculated sections. 1511 const MCSection *CurSection = nullptr; 1512 unsigned Offset = 0; 1513 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1514 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1515 unsigned CPI = CPSections[i].CPEs[j]; 1516 MCSymbol *Sym = GetCPISymbol(CPI); 1517 if (!Sym->isUndefined()) 1518 continue; 1519 1520 if (CurSection != CPSections[i].S) { 1521 OutStreamer->SwitchSection(CPSections[i].S); 1522 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1523 CurSection = CPSections[i].S; 1524 Offset = 0; 1525 } 1526 1527 MachineConstantPoolEntry CPE = CP[CPI]; 1528 1529 // Emit inter-object padding for alignment. 1530 unsigned AlignMask = CPE.getAlignment() - 1; 1531 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1532 OutStreamer->EmitZeros(NewOffset - Offset); 1533 1534 Type *Ty = CPE.getType(); 1535 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1536 1537 OutStreamer->EmitLabel(Sym); 1538 if (CPE.isMachineConstantPoolEntry()) 1539 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1540 else 1541 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1542 } 1543 } 1544 } 1545 1546 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1547 /// by the current function to the current output stream. 1548 void AsmPrinter::EmitJumpTableInfo() { 1549 const DataLayout &DL = MF->getDataLayout(); 1550 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1551 if (!MJTI) return; 1552 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1553 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1554 if (JT.empty()) return; 1555 1556 // Pick the directive to use to print the jump table entries, and switch to 1557 // the appropriate section. 1558 const Function *F = MF->getFunction(); 1559 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1560 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1561 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1562 *F); 1563 if (JTInDiffSection) { 1564 // Drop it in the readonly section. 1565 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1566 OutStreamer->SwitchSection(ReadOnlySection); 1567 } 1568 1569 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1570 1571 // Jump tables in code sections are marked with a data_region directive 1572 // where that's supported. 1573 if (!JTInDiffSection) 1574 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1575 1576 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1577 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1578 1579 // If this jump table was deleted, ignore it. 1580 if (JTBBs.empty()) continue; 1581 1582 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1583 /// emit a .set directive for each unique entry. 1584 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1585 MAI->doesSetDirectiveSuppressReloc()) { 1586 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1587 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1588 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1589 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1590 const MachineBasicBlock *MBB = JTBBs[ii]; 1591 if (!EmittedSets.insert(MBB).second) 1592 continue; 1593 1594 // .set LJTSet, LBB32-base 1595 const MCExpr *LHS = 1596 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1597 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1598 MCBinaryExpr::createSub(LHS, Base, 1599 OutContext)); 1600 } 1601 } 1602 1603 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1604 // before each jump table. The first label is never referenced, but tells 1605 // the assembler and linker the extents of the jump table object. The 1606 // second label is actually referenced by the code. 1607 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1608 // FIXME: This doesn't have to have any specific name, just any randomly 1609 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1610 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1611 1612 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1613 1614 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1615 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1616 } 1617 if (!JTInDiffSection) 1618 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1619 } 1620 1621 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1622 /// current stream. 1623 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1624 const MachineBasicBlock *MBB, 1625 unsigned UID) const { 1626 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1627 const MCExpr *Value = nullptr; 1628 switch (MJTI->getEntryKind()) { 1629 case MachineJumpTableInfo::EK_Inline: 1630 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1631 case MachineJumpTableInfo::EK_Custom32: 1632 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1633 MJTI, MBB, UID, OutContext); 1634 break; 1635 case MachineJumpTableInfo::EK_BlockAddress: 1636 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1637 // .word LBB123 1638 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1639 break; 1640 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1641 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1642 // with a relocation as gp-relative, e.g.: 1643 // .gprel32 LBB123 1644 MCSymbol *MBBSym = MBB->getSymbol(); 1645 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1646 return; 1647 } 1648 1649 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1650 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1651 // with a relocation as gp-relative, e.g.: 1652 // .gpdword LBB123 1653 MCSymbol *MBBSym = MBB->getSymbol(); 1654 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1655 return; 1656 } 1657 1658 case MachineJumpTableInfo::EK_LabelDifference32: { 1659 // Each entry is the address of the block minus the address of the jump 1660 // table. This is used for PIC jump tables where gprel32 is not supported. 1661 // e.g.: 1662 // .word LBB123 - LJTI1_2 1663 // If the .set directive avoids relocations, this is emitted as: 1664 // .set L4_5_set_123, LBB123 - LJTI1_2 1665 // .word L4_5_set_123 1666 if (MAI->doesSetDirectiveSuppressReloc()) { 1667 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1668 OutContext); 1669 break; 1670 } 1671 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1672 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1673 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1674 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1675 break; 1676 } 1677 } 1678 1679 assert(Value && "Unknown entry kind!"); 1680 1681 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1682 OutStreamer->EmitValue(Value, EntrySize); 1683 } 1684 1685 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1686 /// special global used by LLVM. If so, emit it and return true, otherwise 1687 /// do nothing and return false. 1688 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1689 if (GV->getName() == "llvm.used") { 1690 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1691 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1692 return true; 1693 } 1694 1695 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1696 if (GV->getSection() == "llvm.metadata" || 1697 GV->hasAvailableExternallyLinkage()) 1698 return true; 1699 1700 if (!GV->hasAppendingLinkage()) return false; 1701 1702 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1703 1704 if (GV->getName() == "llvm.global_ctors") { 1705 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1706 /* isCtor */ true); 1707 1708 return true; 1709 } 1710 1711 if (GV->getName() == "llvm.global_dtors") { 1712 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1713 /* isCtor */ false); 1714 1715 return true; 1716 } 1717 1718 report_fatal_error("unknown special variable"); 1719 } 1720 1721 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1722 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1723 /// is true, as being used with this directive. 1724 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1725 // Should be an array of 'i8*'. 1726 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1727 const GlobalValue *GV = 1728 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1729 if (GV) 1730 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1731 } 1732 } 1733 1734 namespace { 1735 1736 struct Structor { 1737 int Priority = 0; 1738 Constant *Func = nullptr; 1739 GlobalValue *ComdatKey = nullptr; 1740 1741 Structor() = default; 1742 }; 1743 1744 } // end anonymous namespace 1745 1746 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1747 /// priority. 1748 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1749 bool isCtor) { 1750 // Should be an array of '{ int, void ()* }' structs. The first value is the 1751 // init priority. 1752 if (!isa<ConstantArray>(List)) return; 1753 1754 // Sanity check the structors list. 1755 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1756 if (!InitList) return; // Not an array! 1757 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1758 // FIXME: Only allow the 3-field form in LLVM 4.0. 1759 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1760 return; // Not an array of two or three elements! 1761 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1762 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1763 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1764 return; // Not (int, ptr, ptr). 1765 1766 // Gather the structors in a form that's convenient for sorting by priority. 1767 SmallVector<Structor, 8> Structors; 1768 for (Value *O : InitList->operands()) { 1769 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1770 if (!CS) continue; // Malformed. 1771 if (CS->getOperand(1)->isNullValue()) 1772 break; // Found a null terminator, skip the rest. 1773 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1774 if (!Priority) continue; // Malformed. 1775 Structors.push_back(Structor()); 1776 Structor &S = Structors.back(); 1777 S.Priority = Priority->getLimitedValue(65535); 1778 S.Func = CS->getOperand(1); 1779 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1780 S.ComdatKey = 1781 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1782 } 1783 1784 // Emit the function pointers in the target-specific order 1785 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1786 std::stable_sort(Structors.begin(), Structors.end(), 1787 [](const Structor &L, 1788 const Structor &R) { return L.Priority < R.Priority; }); 1789 for (Structor &S : Structors) { 1790 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1791 const MCSymbol *KeySym = nullptr; 1792 if (GlobalValue *GV = S.ComdatKey) { 1793 if (GV->isDeclarationForLinker()) 1794 // If the associated variable is not defined in this module 1795 // (it might be available_externally, or have been an 1796 // available_externally definition that was dropped by the 1797 // EliminateAvailableExternally pass), some other TU 1798 // will provide its dynamic initializer. 1799 continue; 1800 1801 KeySym = getSymbol(GV); 1802 } 1803 MCSection *OutputSection = 1804 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1805 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1806 OutStreamer->SwitchSection(OutputSection); 1807 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1808 EmitAlignment(Align); 1809 EmitXXStructor(DL, S.Func); 1810 } 1811 } 1812 1813 void AsmPrinter::EmitModuleIdents(Module &M) { 1814 if (!MAI->hasIdentDirective()) 1815 return; 1816 1817 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1818 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1819 const MDNode *N = NMD->getOperand(i); 1820 assert(N->getNumOperands() == 1 && 1821 "llvm.ident metadata entry can have only one operand"); 1822 const MDString *S = cast<MDString>(N->getOperand(0)); 1823 OutStreamer->EmitIdent(S->getString()); 1824 } 1825 } 1826 } 1827 1828 //===--------------------------------------------------------------------===// 1829 // Emission and print routines 1830 // 1831 1832 /// EmitInt8 - Emit a byte directive and value. 1833 /// 1834 void AsmPrinter::EmitInt8(int Value) const { 1835 OutStreamer->EmitIntValue(Value, 1); 1836 } 1837 1838 /// EmitInt16 - Emit a short directive and value. 1839 void AsmPrinter::EmitInt16(int Value) const { 1840 OutStreamer->EmitIntValue(Value, 2); 1841 } 1842 1843 /// EmitInt32 - Emit a long directive and value. 1844 void AsmPrinter::EmitInt32(int Value) const { 1845 OutStreamer->EmitIntValue(Value, 4); 1846 } 1847 1848 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1849 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1850 /// .set if it avoids relocations. 1851 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1852 unsigned Size) const { 1853 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1854 } 1855 1856 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1857 /// where the size in bytes of the directive is specified by Size and Label 1858 /// specifies the label. This implicitly uses .set if it is available. 1859 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1860 unsigned Size, 1861 bool IsSectionRelative) const { 1862 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1863 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1864 if (Size > 4) 1865 OutStreamer->EmitZeros(Size - 4); 1866 return; 1867 } 1868 1869 // Emit Label+Offset (or just Label if Offset is zero) 1870 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1871 if (Offset) 1872 Expr = MCBinaryExpr::createAdd( 1873 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1874 1875 OutStreamer->EmitValue(Expr, Size); 1876 } 1877 1878 //===----------------------------------------------------------------------===// 1879 1880 // EmitAlignment - Emit an alignment directive to the specified power of 1881 // two boundary. For example, if you pass in 3 here, you will get an 8 1882 // byte alignment. If a global value is specified, and if that global has 1883 // an explicit alignment requested, it will override the alignment request 1884 // if required for correctness. 1885 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1886 if (GV) 1887 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1888 1889 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1890 1891 assert(NumBits < 1892 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1893 "undefined behavior"); 1894 if (getCurrentSection()->getKind().isText()) 1895 OutStreamer->EmitCodeAlignment(1u << NumBits); 1896 else 1897 OutStreamer->EmitValueToAlignment(1u << NumBits); 1898 } 1899 1900 //===----------------------------------------------------------------------===// 1901 // Constant emission. 1902 //===----------------------------------------------------------------------===// 1903 1904 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1905 MCContext &Ctx = OutContext; 1906 1907 if (CV->isNullValue() || isa<UndefValue>(CV)) 1908 return MCConstantExpr::create(0, Ctx); 1909 1910 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1911 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1912 1913 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1914 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1915 1916 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1917 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1918 1919 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1920 if (!CE) { 1921 llvm_unreachable("Unknown constant value to lower!"); 1922 } 1923 1924 switch (CE->getOpcode()) { 1925 default: 1926 // If the code isn't optimized, there may be outstanding folding 1927 // opportunities. Attempt to fold the expression using DataLayout as a 1928 // last resort before giving up. 1929 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1930 if (C != CE) 1931 return lowerConstant(C); 1932 1933 // Otherwise report the problem to the user. 1934 { 1935 std::string S; 1936 raw_string_ostream OS(S); 1937 OS << "Unsupported expression in static initializer: "; 1938 CE->printAsOperand(OS, /*PrintType=*/false, 1939 !MF ? nullptr : MF->getFunction()->getParent()); 1940 report_fatal_error(OS.str()); 1941 } 1942 case Instruction::GetElementPtr: { 1943 // Generate a symbolic expression for the byte address 1944 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1945 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1946 1947 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1948 if (!OffsetAI) 1949 return Base; 1950 1951 int64_t Offset = OffsetAI.getSExtValue(); 1952 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1953 Ctx); 1954 } 1955 1956 case Instruction::Trunc: 1957 // We emit the value and depend on the assembler to truncate the generated 1958 // expression properly. This is important for differences between 1959 // blockaddress labels. Since the two labels are in the same function, it 1960 // is reasonable to treat their delta as a 32-bit value. 1961 LLVM_FALLTHROUGH; 1962 case Instruction::BitCast: 1963 return lowerConstant(CE->getOperand(0)); 1964 1965 case Instruction::IntToPtr: { 1966 const DataLayout &DL = getDataLayout(); 1967 1968 // Handle casts to pointers by changing them into casts to the appropriate 1969 // integer type. This promotes constant folding and simplifies this code. 1970 Constant *Op = CE->getOperand(0); 1971 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1972 false/*ZExt*/); 1973 return lowerConstant(Op); 1974 } 1975 1976 case Instruction::PtrToInt: { 1977 const DataLayout &DL = getDataLayout(); 1978 1979 // Support only foldable casts to/from pointers that can be eliminated by 1980 // changing the pointer to the appropriately sized integer type. 1981 Constant *Op = CE->getOperand(0); 1982 Type *Ty = CE->getType(); 1983 1984 const MCExpr *OpExpr = lowerConstant(Op); 1985 1986 // We can emit the pointer value into this slot if the slot is an 1987 // integer slot equal to the size of the pointer. 1988 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1989 return OpExpr; 1990 1991 // Otherwise the pointer is smaller than the resultant integer, mask off 1992 // the high bits so we are sure to get a proper truncation if the input is 1993 // a constant expr. 1994 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1995 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1996 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1997 } 1998 1999 case Instruction::Sub: { 2000 GlobalValue *LHSGV; 2001 APInt LHSOffset; 2002 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2003 getDataLayout())) { 2004 GlobalValue *RHSGV; 2005 APInt RHSOffset; 2006 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2007 getDataLayout())) { 2008 const MCExpr *RelocExpr = 2009 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2010 if (!RelocExpr) 2011 RelocExpr = MCBinaryExpr::createSub( 2012 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2013 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2014 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2015 if (Addend != 0) 2016 RelocExpr = MCBinaryExpr::createAdd( 2017 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2018 return RelocExpr; 2019 } 2020 } 2021 } 2022 // else fallthrough 2023 2024 // The MC library also has a right-shift operator, but it isn't consistently 2025 // signed or unsigned between different targets. 2026 case Instruction::Add: 2027 case Instruction::Mul: 2028 case Instruction::SDiv: 2029 case Instruction::SRem: 2030 case Instruction::Shl: 2031 case Instruction::And: 2032 case Instruction::Or: 2033 case Instruction::Xor: { 2034 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2035 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2036 switch (CE->getOpcode()) { 2037 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2038 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2039 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2040 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2041 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2042 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2043 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2044 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2045 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2046 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2047 } 2048 } 2049 } 2050 } 2051 2052 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2053 AsmPrinter &AP, 2054 const Constant *BaseCV = nullptr, 2055 uint64_t Offset = 0); 2056 2057 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2058 2059 /// isRepeatedByteSequence - Determine whether the given value is 2060 /// composed of a repeated sequence of identical bytes and return the 2061 /// byte value. If it is not a repeated sequence, return -1. 2062 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2063 StringRef Data = V->getRawDataValues(); 2064 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2065 char C = Data[0]; 2066 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2067 if (Data[i] != C) return -1; 2068 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2069 } 2070 2071 /// isRepeatedByteSequence - Determine whether the given value is 2072 /// composed of a repeated sequence of identical bytes and return the 2073 /// byte value. If it is not a repeated sequence, return -1. 2074 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2075 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2076 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2077 assert(Size % 8 == 0); 2078 2079 // Extend the element to take zero padding into account. 2080 APInt Value = CI->getValue().zextOrSelf(Size); 2081 if (!Value.isSplat(8)) 2082 return -1; 2083 2084 return Value.zextOrTrunc(8).getZExtValue(); 2085 } 2086 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2087 // Make sure all array elements are sequences of the same repeated 2088 // byte. 2089 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2090 Constant *Op0 = CA->getOperand(0); 2091 int Byte = isRepeatedByteSequence(Op0, DL); 2092 if (Byte == -1) 2093 return -1; 2094 2095 // All array elements must be equal. 2096 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2097 if (CA->getOperand(i) != Op0) 2098 return -1; 2099 return Byte; 2100 } 2101 2102 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2103 return isRepeatedByteSequence(CDS); 2104 2105 return -1; 2106 } 2107 2108 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2109 const ConstantDataSequential *CDS, 2110 AsmPrinter &AP) { 2111 // See if we can aggregate this into a .fill, if so, emit it as such. 2112 int Value = isRepeatedByteSequence(CDS, DL); 2113 if (Value != -1) { 2114 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2115 // Don't emit a 1-byte object as a .fill. 2116 if (Bytes > 1) 2117 return AP.OutStreamer->emitFill(Bytes, Value); 2118 } 2119 2120 // If this can be emitted with .ascii/.asciz, emit it as such. 2121 if (CDS->isString()) 2122 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2123 2124 // Otherwise, emit the values in successive locations. 2125 unsigned ElementByteSize = CDS->getElementByteSize(); 2126 if (isa<IntegerType>(CDS->getElementType())) { 2127 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2128 if (AP.isVerbose()) 2129 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2130 CDS->getElementAsInteger(i)); 2131 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2132 ElementByteSize); 2133 } 2134 } else { 2135 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2136 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2137 } 2138 2139 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2140 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2141 CDS->getNumElements(); 2142 if (unsigned Padding = Size - EmittedSize) 2143 AP.OutStreamer->EmitZeros(Padding); 2144 } 2145 2146 static void emitGlobalConstantArray(const DataLayout &DL, 2147 const ConstantArray *CA, AsmPrinter &AP, 2148 const Constant *BaseCV, uint64_t Offset) { 2149 // See if we can aggregate some values. Make sure it can be 2150 // represented as a series of bytes of the constant value. 2151 int Value = isRepeatedByteSequence(CA, DL); 2152 2153 if (Value != -1) { 2154 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2155 AP.OutStreamer->emitFill(Bytes, Value); 2156 } 2157 else { 2158 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2159 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2160 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2161 } 2162 } 2163 } 2164 2165 static void emitGlobalConstantVector(const DataLayout &DL, 2166 const ConstantVector *CV, AsmPrinter &AP) { 2167 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2168 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2169 2170 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2171 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2172 CV->getType()->getNumElements(); 2173 if (unsigned Padding = Size - EmittedSize) 2174 AP.OutStreamer->EmitZeros(Padding); 2175 } 2176 2177 static void emitGlobalConstantStruct(const DataLayout &DL, 2178 const ConstantStruct *CS, AsmPrinter &AP, 2179 const Constant *BaseCV, uint64_t Offset) { 2180 // Print the fields in successive locations. Pad to align if needed! 2181 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2182 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2183 uint64_t SizeSoFar = 0; 2184 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2185 const Constant *Field = CS->getOperand(i); 2186 2187 // Print the actual field value. 2188 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2189 2190 // Check if padding is needed and insert one or more 0s. 2191 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2192 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2193 - Layout->getElementOffset(i)) - FieldSize; 2194 SizeSoFar += FieldSize + PadSize; 2195 2196 // Insert padding - this may include padding to increase the size of the 2197 // current field up to the ABI size (if the struct is not packed) as well 2198 // as padding to ensure that the next field starts at the right offset. 2199 AP.OutStreamer->EmitZeros(PadSize); 2200 } 2201 assert(SizeSoFar == Layout->getSizeInBytes() && 2202 "Layout of constant struct may be incorrect!"); 2203 } 2204 2205 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2206 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2207 2208 // First print a comment with what we think the original floating-point value 2209 // should have been. 2210 if (AP.isVerbose()) { 2211 SmallString<8> StrVal; 2212 CFP->getValueAPF().toString(StrVal); 2213 2214 if (CFP->getType()) 2215 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2216 else 2217 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2218 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2219 } 2220 2221 // Now iterate through the APInt chunks, emitting them in endian-correct 2222 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2223 // floats). 2224 unsigned NumBytes = API.getBitWidth() / 8; 2225 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2226 const uint64_t *p = API.getRawData(); 2227 2228 // PPC's long double has odd notions of endianness compared to how LLVM 2229 // handles it: p[0] goes first for *big* endian on PPC. 2230 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2231 int Chunk = API.getNumWords() - 1; 2232 2233 if (TrailingBytes) 2234 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2235 2236 for (; Chunk >= 0; --Chunk) 2237 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2238 } else { 2239 unsigned Chunk; 2240 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2241 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2242 2243 if (TrailingBytes) 2244 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2245 } 2246 2247 // Emit the tail padding for the long double. 2248 const DataLayout &DL = AP.getDataLayout(); 2249 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2250 DL.getTypeStoreSize(CFP->getType())); 2251 } 2252 2253 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2254 const DataLayout &DL = AP.getDataLayout(); 2255 unsigned BitWidth = CI->getBitWidth(); 2256 2257 // Copy the value as we may massage the layout for constants whose bit width 2258 // is not a multiple of 64-bits. 2259 APInt Realigned(CI->getValue()); 2260 uint64_t ExtraBits = 0; 2261 unsigned ExtraBitsSize = BitWidth & 63; 2262 2263 if (ExtraBitsSize) { 2264 // The bit width of the data is not a multiple of 64-bits. 2265 // The extra bits are expected to be at the end of the chunk of the memory. 2266 // Little endian: 2267 // * Nothing to be done, just record the extra bits to emit. 2268 // Big endian: 2269 // * Record the extra bits to emit. 2270 // * Realign the raw data to emit the chunks of 64-bits. 2271 if (DL.isBigEndian()) { 2272 // Basically the structure of the raw data is a chunk of 64-bits cells: 2273 // 0 1 BitWidth / 64 2274 // [chunk1][chunk2] ... [chunkN]. 2275 // The most significant chunk is chunkN and it should be emitted first. 2276 // However, due to the alignment issue chunkN contains useless bits. 2277 // Realign the chunks so that they contain only useless information: 2278 // ExtraBits 0 1 (BitWidth / 64) - 1 2279 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2280 ExtraBits = Realigned.getRawData()[0] & 2281 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2282 Realigned.lshrInPlace(ExtraBitsSize); 2283 } else 2284 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2285 } 2286 2287 // We don't expect assemblers to support integer data directives 2288 // for more than 64 bits, so we emit the data in at most 64-bit 2289 // quantities at a time. 2290 const uint64_t *RawData = Realigned.getRawData(); 2291 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2292 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2293 AP.OutStreamer->EmitIntValue(Val, 8); 2294 } 2295 2296 if (ExtraBitsSize) { 2297 // Emit the extra bits after the 64-bits chunks. 2298 2299 // Emit a directive that fills the expected size. 2300 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2301 Size -= (BitWidth / 64) * 8; 2302 assert(Size && Size * 8 >= ExtraBitsSize && 2303 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2304 == ExtraBits && "Directive too small for extra bits."); 2305 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2306 } 2307 } 2308 2309 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2310 /// equivalent global, by a target specific GOT pc relative access to the 2311 /// final symbol. 2312 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2313 const Constant *BaseCst, 2314 uint64_t Offset) { 2315 // The global @foo below illustrates a global that uses a got equivalent. 2316 // 2317 // @bar = global i32 42 2318 // @gotequiv = private unnamed_addr constant i32* @bar 2319 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2320 // i64 ptrtoint (i32* @foo to i64)) 2321 // to i32) 2322 // 2323 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2324 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2325 // form: 2326 // 2327 // foo = cstexpr, where 2328 // cstexpr := <gotequiv> - "." + <cst> 2329 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2330 // 2331 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2332 // 2333 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2334 // gotpcrelcst := <offset from @foo base> + <cst> 2335 MCValue MV; 2336 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2337 return; 2338 const MCSymbolRefExpr *SymA = MV.getSymA(); 2339 if (!SymA) 2340 return; 2341 2342 // Check that GOT equivalent symbol is cached. 2343 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2344 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2345 return; 2346 2347 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2348 if (!BaseGV) 2349 return; 2350 2351 // Check for a valid base symbol 2352 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2353 const MCSymbolRefExpr *SymB = MV.getSymB(); 2354 2355 if (!SymB || BaseSym != &SymB->getSymbol()) 2356 return; 2357 2358 // Make sure to match: 2359 // 2360 // gotpcrelcst := <offset from @foo base> + <cst> 2361 // 2362 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2363 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2364 // if the target knows how to encode it. 2365 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2366 if (GOTPCRelCst < 0) 2367 return; 2368 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2369 return; 2370 2371 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2372 // 2373 // bar: 2374 // .long 42 2375 // gotequiv: 2376 // .quad bar 2377 // foo: 2378 // .long gotequiv - "." + <cst> 2379 // 2380 // is replaced by the target specific equivalent to: 2381 // 2382 // bar: 2383 // .long 42 2384 // foo: 2385 // .long bar@GOTPCREL+<gotpcrelcst> 2386 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2387 const GlobalVariable *GV = Result.first; 2388 int NumUses = (int)Result.second; 2389 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2390 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2391 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2392 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2393 2394 // Update GOT equivalent usage information 2395 --NumUses; 2396 if (NumUses >= 0) 2397 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2398 } 2399 2400 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2401 AsmPrinter &AP, const Constant *BaseCV, 2402 uint64_t Offset) { 2403 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2404 2405 // Globals with sub-elements such as combinations of arrays and structs 2406 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2407 // constant symbol base and the current position with BaseCV and Offset. 2408 if (!BaseCV && CV->hasOneUse()) 2409 BaseCV = dyn_cast<Constant>(CV->user_back()); 2410 2411 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2412 return AP.OutStreamer->EmitZeros(Size); 2413 2414 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2415 switch (Size) { 2416 case 1: 2417 case 2: 2418 case 4: 2419 case 8: 2420 if (AP.isVerbose()) 2421 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2422 CI->getZExtValue()); 2423 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2424 return; 2425 default: 2426 emitGlobalConstantLargeInt(CI, AP); 2427 return; 2428 } 2429 } 2430 2431 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2432 return emitGlobalConstantFP(CFP, AP); 2433 2434 if (isa<ConstantPointerNull>(CV)) { 2435 AP.OutStreamer->EmitIntValue(0, Size); 2436 return; 2437 } 2438 2439 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2440 return emitGlobalConstantDataSequential(DL, CDS, AP); 2441 2442 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2443 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2444 2445 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2446 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2447 2448 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2449 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2450 // vectors). 2451 if (CE->getOpcode() == Instruction::BitCast) 2452 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2453 2454 if (Size > 8) { 2455 // If the constant expression's size is greater than 64-bits, then we have 2456 // to emit the value in chunks. Try to constant fold the value and emit it 2457 // that way. 2458 Constant *New = ConstantFoldConstant(CE, DL); 2459 if (New && New != CE) 2460 return emitGlobalConstantImpl(DL, New, AP); 2461 } 2462 } 2463 2464 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2465 return emitGlobalConstantVector(DL, V, AP); 2466 2467 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2468 // thread the streamer with EmitValue. 2469 const MCExpr *ME = AP.lowerConstant(CV); 2470 2471 // Since lowerConstant already folded and got rid of all IR pointer and 2472 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2473 // directly. 2474 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2475 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2476 2477 AP.OutStreamer->EmitValue(ME, Size); 2478 } 2479 2480 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2481 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2482 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2483 if (Size) 2484 emitGlobalConstantImpl(DL, CV, *this); 2485 else if (MAI->hasSubsectionsViaSymbols()) { 2486 // If the global has zero size, emit a single byte so that two labels don't 2487 // look like they are at the same location. 2488 OutStreamer->EmitIntValue(0, 1); 2489 } 2490 } 2491 2492 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2493 // Target doesn't support this yet! 2494 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2495 } 2496 2497 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2498 if (Offset > 0) 2499 OS << '+' << Offset; 2500 else if (Offset < 0) 2501 OS << Offset; 2502 } 2503 2504 //===----------------------------------------------------------------------===// 2505 // Symbol Lowering Routines. 2506 //===----------------------------------------------------------------------===// 2507 2508 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2509 return OutContext.createTempSymbol(Name, true); 2510 } 2511 2512 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2513 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2514 } 2515 2516 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2517 return MMI->getAddrLabelSymbol(BB); 2518 } 2519 2520 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2521 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2522 const DataLayout &DL = getDataLayout(); 2523 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2524 "CPI" + Twine(getFunctionNumber()) + "_" + 2525 Twine(CPID)); 2526 } 2527 2528 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2529 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2530 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2531 } 2532 2533 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2534 /// FIXME: privatize to AsmPrinter. 2535 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2536 const DataLayout &DL = getDataLayout(); 2537 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2538 Twine(getFunctionNumber()) + "_" + 2539 Twine(UID) + "_set_" + Twine(MBBID)); 2540 } 2541 2542 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2543 StringRef Suffix) const { 2544 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2545 } 2546 2547 /// Return the MCSymbol for the specified ExternalSymbol. 2548 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2549 SmallString<60> NameStr; 2550 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2551 return OutContext.getOrCreateSymbol(NameStr); 2552 } 2553 2554 /// PrintParentLoopComment - Print comments about parent loops of this one. 2555 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2556 unsigned FunctionNumber) { 2557 if (!Loop) return; 2558 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2559 OS.indent(Loop->getLoopDepth()*2) 2560 << "Parent Loop BB" << FunctionNumber << "_" 2561 << Loop->getHeader()->getNumber() 2562 << " Depth=" << Loop->getLoopDepth() << '\n'; 2563 } 2564 2565 /// PrintChildLoopComment - Print comments about child loops within 2566 /// the loop for this basic block, with nesting. 2567 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2568 unsigned FunctionNumber) { 2569 // Add child loop information 2570 for (const MachineLoop *CL : *Loop) { 2571 OS.indent(CL->getLoopDepth()*2) 2572 << "Child Loop BB" << FunctionNumber << "_" 2573 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2574 << '\n'; 2575 PrintChildLoopComment(OS, CL, FunctionNumber); 2576 } 2577 } 2578 2579 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2580 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2581 const MachineLoopInfo *LI, 2582 const AsmPrinter &AP) { 2583 // Add loop depth information 2584 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2585 if (!Loop) return; 2586 2587 MachineBasicBlock *Header = Loop->getHeader(); 2588 assert(Header && "No header for loop"); 2589 2590 // If this block is not a loop header, just print out what is the loop header 2591 // and return. 2592 if (Header != &MBB) { 2593 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2594 Twine(AP.getFunctionNumber())+"_" + 2595 Twine(Loop->getHeader()->getNumber())+ 2596 " Depth="+Twine(Loop->getLoopDepth())); 2597 return; 2598 } 2599 2600 // Otherwise, it is a loop header. Print out information about child and 2601 // parent loops. 2602 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2603 2604 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2605 2606 OS << "=>"; 2607 OS.indent(Loop->getLoopDepth()*2-2); 2608 2609 OS << "This "; 2610 if (Loop->empty()) 2611 OS << "Inner "; 2612 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2613 2614 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2615 } 2616 2617 /// EmitBasicBlockStart - This method prints the label for the specified 2618 /// MachineBasicBlock, an alignment (if present) and a comment describing 2619 /// it if appropriate. 2620 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2621 // End the previous funclet and start a new one. 2622 if (MBB.isEHFuncletEntry()) { 2623 for (const HandlerInfo &HI : Handlers) { 2624 HI.Handler->endFunclet(); 2625 HI.Handler->beginFunclet(MBB); 2626 } 2627 } 2628 2629 // Emit an alignment directive for this block, if needed. 2630 if (unsigned Align = MBB.getAlignment()) 2631 EmitAlignment(Align); 2632 2633 // If the block has its address taken, emit any labels that were used to 2634 // reference the block. It is possible that there is more than one label 2635 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2636 // the references were generated. 2637 if (MBB.hasAddressTaken()) { 2638 const BasicBlock *BB = MBB.getBasicBlock(); 2639 if (isVerbose()) 2640 OutStreamer->AddComment("Block address taken"); 2641 2642 // MBBs can have their address taken as part of CodeGen without having 2643 // their corresponding BB's address taken in IR 2644 if (BB->hasAddressTaken()) 2645 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2646 OutStreamer->EmitLabel(Sym); 2647 } 2648 2649 // Print some verbose block comments. 2650 if (isVerbose()) { 2651 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2652 if (BB->hasName()) { 2653 BB->printAsOperand(OutStreamer->GetCommentOS(), 2654 /*PrintType=*/false, BB->getModule()); 2655 OutStreamer->GetCommentOS() << '\n'; 2656 } 2657 } 2658 emitBasicBlockLoopComments(MBB, LI, *this); 2659 } 2660 2661 // Print the main label for the block. 2662 if (MBB.pred_empty() || 2663 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2664 if (isVerbose()) { 2665 // NOTE: Want this comment at start of line, don't emit with AddComment. 2666 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2667 } 2668 } else { 2669 OutStreamer->EmitLabel(MBB.getSymbol()); 2670 } 2671 } 2672 2673 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2674 bool IsDefinition) const { 2675 MCSymbolAttr Attr = MCSA_Invalid; 2676 2677 switch (Visibility) { 2678 default: break; 2679 case GlobalValue::HiddenVisibility: 2680 if (IsDefinition) 2681 Attr = MAI->getHiddenVisibilityAttr(); 2682 else 2683 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2684 break; 2685 case GlobalValue::ProtectedVisibility: 2686 Attr = MAI->getProtectedVisibilityAttr(); 2687 break; 2688 } 2689 2690 if (Attr != MCSA_Invalid) 2691 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2692 } 2693 2694 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2695 /// exactly one predecessor and the control transfer mechanism between 2696 /// the predecessor and this block is a fall-through. 2697 bool AsmPrinter:: 2698 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2699 // If this is a landing pad, it isn't a fall through. If it has no preds, 2700 // then nothing falls through to it. 2701 if (MBB->isEHPad() || MBB->pred_empty()) 2702 return false; 2703 2704 // If there isn't exactly one predecessor, it can't be a fall through. 2705 if (MBB->pred_size() > 1) 2706 return false; 2707 2708 // The predecessor has to be immediately before this block. 2709 MachineBasicBlock *Pred = *MBB->pred_begin(); 2710 if (!Pred->isLayoutSuccessor(MBB)) 2711 return false; 2712 2713 // If the block is completely empty, then it definitely does fall through. 2714 if (Pred->empty()) 2715 return true; 2716 2717 // Check the terminators in the previous blocks 2718 for (const auto &MI : Pred->terminators()) { 2719 // If it is not a simple branch, we are in a table somewhere. 2720 if (!MI.isBranch() || MI.isIndirectBranch()) 2721 return false; 2722 2723 // If we are the operands of one of the branches, this is not a fall 2724 // through. Note that targets with delay slots will usually bundle 2725 // terminators with the delay slot instruction. 2726 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2727 if (OP->isJTI()) 2728 return false; 2729 if (OP->isMBB() && OP->getMBB() == MBB) 2730 return false; 2731 } 2732 } 2733 2734 return true; 2735 } 2736 2737 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2738 if (!S.usesMetadata()) 2739 return nullptr; 2740 2741 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2742 " stackmap formats, please see the documentation for a description of" 2743 " the default format. If you really need a custom serialized format," 2744 " please file a bug"); 2745 2746 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2747 gcp_map_type::iterator GCPI = GCMap.find(&S); 2748 if (GCPI != GCMap.end()) 2749 return GCPI->second.get(); 2750 2751 auto Name = S.getName(); 2752 2753 for (GCMetadataPrinterRegistry::iterator 2754 I = GCMetadataPrinterRegistry::begin(), 2755 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2756 if (Name == I->getName()) { 2757 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2758 GMP->S = &S; 2759 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2760 return IterBool.first->second.get(); 2761 } 2762 2763 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2764 } 2765 2766 /// Pin vtable to this file. 2767 AsmPrinterHandler::~AsmPrinterHandler() = default; 2768 2769 void AsmPrinterHandler::markFunctionEnd() {} 2770 2771 // In the binary's "xray_instr_map" section, an array of these function entries 2772 // describes each instrumentation point. When XRay patches your code, the index 2773 // into this table will be given to your handler as a patch point identifier. 2774 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2775 const MCSymbol *CurrentFnSym) const { 2776 Out->EmitSymbolValue(Sled, Bytes); 2777 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2778 auto Kind8 = static_cast<uint8_t>(Kind); 2779 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2780 Out->EmitBinaryData( 2781 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2782 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2783 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2784 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2785 Out->EmitZeros(Padding); 2786 } 2787 2788 void AsmPrinter::emitXRayTable() { 2789 if (Sleds.empty()) 2790 return; 2791 2792 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2793 auto Fn = MF->getFunction(); 2794 MCSection *InstMap = nullptr; 2795 MCSection *FnSledIndex = nullptr; 2796 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2797 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2798 assert(Associated != nullptr); 2799 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2800 std::string GroupName; 2801 if (Fn->hasComdat()) { 2802 Flags |= ELF::SHF_GROUP; 2803 GroupName = Fn->getComdat()->getName(); 2804 } 2805 2806 auto UniqueID = ++XRayFnUniqueID; 2807 InstMap = 2808 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2809 GroupName, UniqueID, Associated); 2810 FnSledIndex = 2811 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2812 GroupName, UniqueID, Associated); 2813 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2814 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2815 SectionKind::getReadOnlyWithRel()); 2816 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2817 SectionKind::getReadOnlyWithRel()); 2818 } else { 2819 llvm_unreachable("Unsupported target"); 2820 } 2821 2822 auto WordSizeBytes = MAI->getCodePointerSize(); 2823 2824 // Now we switch to the instrumentation map section. Because this is done 2825 // per-function, we are able to create an index entry that will represent the 2826 // range of sleds associated with a function. 2827 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2828 OutStreamer->SwitchSection(InstMap); 2829 OutStreamer->EmitLabel(SledsStart); 2830 for (const auto &Sled : Sleds) 2831 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2832 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2833 OutStreamer->EmitLabel(SledsEnd); 2834 2835 // We then emit a single entry in the index per function. We use the symbols 2836 // that bound the instrumentation map as the range for a specific function. 2837 // Each entry here will be 2 * word size aligned, as we're writing down two 2838 // pointers. This should work for both 32-bit and 64-bit platforms. 2839 OutStreamer->SwitchSection(FnSledIndex); 2840 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2841 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2842 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2843 OutStreamer->SwitchSection(PrevSection); 2844 Sleds.clear(); 2845 } 2846 2847 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2848 SledKind Kind, uint8_t Version) { 2849 auto Fn = MI.getMF()->getFunction(); 2850 auto Attr = Fn->getFnAttribute("function-instrument"); 2851 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2852 bool AlwaysInstrument = 2853 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2854 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2855 Kind = SledKind::LOG_ARGS_ENTER; 2856 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2857 AlwaysInstrument, Fn, Version}); 2858 } 2859 2860 uint16_t AsmPrinter::getDwarfVersion() const { 2861 return OutStreamer->getContext().getDwarfVersion(); 2862 } 2863 2864 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2865 OutStreamer->getContext().setDwarfVersion(Version); 2866 } 2867