1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AsmPrinterHandler.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/ConstantFolding.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/GCMetadata.h" 34 #include "llvm/CodeGen/GCMetadataPrinter.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineConstantPool.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBundle.h" 43 #include "llvm/CodeGen/MachineJumpTableInfo.h" 44 #include "llvm/CodeGen/MachineLoopInfo.h" 45 #include "llvm/CodeGen/MachineMemOperand.h" 46 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugInfoMetadata.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GlobalAlias.h" 57 #include "llvm/IR/GlobalIFunc.h" 58 #include "llvm/IR/GlobalIndirectSymbol.h" 59 #include "llvm/IR/GlobalObject.h" 60 #include "llvm/IR/GlobalValue.h" 61 #include "llvm/IR/GlobalVariable.h" 62 #include "llvm/IR/Mangler.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/MC/MCAsmInfo.h" 68 #include "llvm/MC/MCContext.h" 69 #include "llvm/MC/MCDirectives.h" 70 #include "llvm/MC/MCExpr.h" 71 #include "llvm/MC/MCInst.h" 72 #include "llvm/MC/MCSection.h" 73 #include "llvm/MC/MCSectionELF.h" 74 #include "llvm/MC/MCSectionMachO.h" 75 #include "llvm/MC/MCStreamer.h" 76 #include "llvm/MC/MCSubtargetInfo.h" 77 #include "llvm/MC/MCSymbol.h" 78 #include "llvm/MC/MCTargetOptions.h" 79 #include "llvm/MC/MCValue.h" 80 #include "llvm/MC/SectionKind.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Dwarf.h" 85 #include "llvm/Support/ELF.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Support/TargetRegistry.h" 91 #include "llvm/Support/Timer.h" 92 #include "llvm/Target/TargetFrameLowering.h" 93 #include "llvm/Target/TargetInstrInfo.h" 94 #include "llvm/Target/TargetLowering.h" 95 #include "llvm/Target/TargetLoweringObjectFile.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetRegisterInfo.h" 98 #include "llvm/Target/TargetSubtargetInfo.h" 99 #include <algorithm> 100 #include <cassert> 101 #include <cinttypes> 102 #include <cstdint> 103 #include <limits> 104 #include <memory> 105 #include <string> 106 #include <utility> 107 #include <vector> 108 109 using namespace llvm; 110 111 #define DEBUG_TYPE "asm-printer" 112 113 static const char *const DWARFGroupName = "dwarf"; 114 static const char *const DWARFGroupDescription = "DWARF Emission"; 115 static const char *const DbgTimerName = "emit"; 116 static const char *const DbgTimerDescription = "Debug Info Emission"; 117 static const char *const EHTimerName = "write_exception"; 118 static const char *const EHTimerDescription = "DWARF Exception Writer"; 119 static const char *const CodeViewLineTablesGroupName = "linetables"; 120 static const char *const CodeViewLineTablesGroupDescription = 121 "CodeView Line Tables"; 122 123 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 124 125 char AsmPrinter::ID = 0; 126 127 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 128 static gcp_map_type &getGCMap(void *&P) { 129 if (!P) 130 P = new gcp_map_type(); 131 return *(gcp_map_type*)P; 132 } 133 134 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 135 /// value in log2 form. This rounds up to the preferred alignment if possible 136 /// and legal. 137 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 138 unsigned InBits = 0) { 139 unsigned NumBits = 0; 140 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 141 NumBits = DL.getPreferredAlignmentLog(GVar); 142 143 // If InBits is specified, round it to it. 144 if (InBits > NumBits) 145 NumBits = InBits; 146 147 // If the GV has a specified alignment, take it into account. 148 if (GV->getAlignment() == 0) 149 return NumBits; 150 151 unsigned GVAlign = Log2_32(GV->getAlignment()); 152 153 // If the GVAlign is larger than NumBits, or if we are required to obey 154 // NumBits because the GV has an assigned section, obey it. 155 if (GVAlign > NumBits || GV->hasSection()) 156 NumBits = GVAlign; 157 return NumBits; 158 } 159 160 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 161 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 162 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 163 VerboseAsm = OutStreamer->isVerboseAsm(); 164 } 165 166 AsmPrinter::~AsmPrinter() { 167 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 168 169 if (GCMetadataPrinters) { 170 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 171 172 delete &GCMap; 173 GCMetadataPrinters = nullptr; 174 } 175 } 176 177 bool AsmPrinter::isPositionIndependent() const { 178 return TM.isPositionIndependent(); 179 } 180 181 /// getFunctionNumber - Return a unique ID for the current function. 182 /// 183 unsigned AsmPrinter::getFunctionNumber() const { 184 return MF->getFunctionNumber(); 185 } 186 187 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 188 return *TM.getObjFileLowering(); 189 } 190 191 const DataLayout &AsmPrinter::getDataLayout() const { 192 return MMI->getModule()->getDataLayout(); 193 } 194 195 // Do not use the cached DataLayout because some client use it without a Module 196 // (llvm-dsymutil, llvm-dwarfdump). 197 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 198 199 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 200 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 201 return MF->getSubtarget<MCSubtargetInfo>(); 202 } 203 204 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 205 S.EmitInstruction(Inst, getSubtargetInfo()); 206 } 207 208 /// getCurrentSection() - Return the current section we are emitting to. 209 const MCSection *AsmPrinter::getCurrentSection() const { 210 return OutStreamer->getCurrentSectionOnly(); 211 } 212 213 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 214 AU.setPreservesAll(); 215 MachineFunctionPass::getAnalysisUsage(AU); 216 AU.addRequired<MachineModuleInfo>(); 217 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 218 AU.addRequired<GCModuleInfo>(); 219 if (isVerbose()) 220 AU.addRequired<MachineLoopInfo>(); 221 } 222 223 bool AsmPrinter::doInitialization(Module &M) { 224 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 225 226 // Initialize TargetLoweringObjectFile. 227 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 228 .Initialize(OutContext, TM); 229 230 OutStreamer->InitSections(false); 231 232 // Emit the version-min deplyment target directive if needed. 233 // 234 // FIXME: If we end up with a collection of these sorts of Darwin-specific 235 // or ELF-specific things, it may make sense to have a platform helper class 236 // that will work with the target helper class. For now keep it here, as the 237 // alternative is duplicated code in each of the target asm printers that 238 // use the directive, where it would need the same conditionalization 239 // anyway. 240 const Triple &TT = TM.getTargetTriple(); 241 // If there is a version specified, Major will be non-zero. 242 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 243 unsigned Major, Minor, Update; 244 MCVersionMinType VersionType; 245 if (TT.isWatchOS()) { 246 VersionType = MCVM_WatchOSVersionMin; 247 TT.getWatchOSVersion(Major, Minor, Update); 248 } else if (TT.isTvOS()) { 249 VersionType = MCVM_TvOSVersionMin; 250 TT.getiOSVersion(Major, Minor, Update); 251 } else if (TT.isMacOSX()) { 252 VersionType = MCVM_OSXVersionMin; 253 if (!TT.getMacOSXVersion(Major, Minor, Update)) 254 Major = 0; 255 } else { 256 VersionType = MCVM_IOSVersionMin; 257 TT.getiOSVersion(Major, Minor, Update); 258 } 259 if (Major != 0) 260 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 261 } 262 263 // Allow the target to emit any magic that it wants at the start of the file. 264 EmitStartOfAsmFile(M); 265 266 // Very minimal debug info. It is ignored if we emit actual debug info. If we 267 // don't, this at least helps the user find where a global came from. 268 if (MAI->hasSingleParameterDotFile()) { 269 // .file "foo.c" 270 OutStreamer->EmitFileDirective(M.getSourceFileName()); 271 } 272 273 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 274 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 275 for (auto &I : *MI) 276 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 277 MP->beginAssembly(M, *MI, *this); 278 279 // Emit module-level inline asm if it exists. 280 if (!M.getModuleInlineAsm().empty()) { 281 // We're at the module level. Construct MCSubtarget from the default CPU 282 // and target triple. 283 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 284 TM.getTargetTriple().str(), TM.getTargetCPU(), 285 TM.getTargetFeatureString())); 286 OutStreamer->AddComment("Start of file scope inline assembly"); 287 OutStreamer->AddBlankLine(); 288 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 289 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 290 OutStreamer->AddComment("End of file scope inline assembly"); 291 OutStreamer->AddBlankLine(); 292 } 293 294 if (MAI->doesSupportDebugInformation()) { 295 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 296 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 297 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 298 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 299 DbgTimerName, DbgTimerDescription, 300 CodeViewLineTablesGroupName, 301 CodeViewLineTablesGroupDescription)); 302 } 303 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 304 DD = new DwarfDebug(this, &M); 305 DD->beginModule(); 306 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 307 DWARFGroupName, DWARFGroupDescription)); 308 } 309 } 310 311 switch (MAI->getExceptionHandlingType()) { 312 case ExceptionHandling::SjLj: 313 case ExceptionHandling::DwarfCFI: 314 case ExceptionHandling::ARM: 315 isCFIMoveForDebugging = true; 316 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 317 break; 318 for (auto &F: M.getFunctionList()) { 319 // If the module contains any function with unwind data, 320 // .eh_frame has to be emitted. 321 // Ignore functions that won't get emitted. 322 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 323 isCFIMoveForDebugging = false; 324 break; 325 } 326 } 327 break; 328 default: 329 isCFIMoveForDebugging = false; 330 break; 331 } 332 333 EHStreamer *ES = nullptr; 334 switch (MAI->getExceptionHandlingType()) { 335 case ExceptionHandling::None: 336 break; 337 case ExceptionHandling::SjLj: 338 case ExceptionHandling::DwarfCFI: 339 ES = new DwarfCFIException(this); 340 break; 341 case ExceptionHandling::ARM: 342 ES = new ARMException(this); 343 break; 344 case ExceptionHandling::WinEH: 345 switch (MAI->getWinEHEncodingType()) { 346 default: llvm_unreachable("unsupported unwinding information encoding"); 347 case WinEH::EncodingType::Invalid: 348 break; 349 case WinEH::EncodingType::X86: 350 case WinEH::EncodingType::Itanium: 351 ES = new WinException(this); 352 break; 353 } 354 break; 355 } 356 if (ES) 357 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 358 DWARFGroupName, DWARFGroupDescription)); 359 return false; 360 } 361 362 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 363 if (!MAI.hasWeakDefCanBeHiddenDirective()) 364 return false; 365 366 return canBeOmittedFromSymbolTable(GV); 367 } 368 369 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 370 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 371 switch (Linkage) { 372 case GlobalValue::CommonLinkage: 373 case GlobalValue::LinkOnceAnyLinkage: 374 case GlobalValue::LinkOnceODRLinkage: 375 case GlobalValue::WeakAnyLinkage: 376 case GlobalValue::WeakODRLinkage: 377 if (MAI->hasWeakDefDirective()) { 378 // .globl _foo 379 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 380 381 if (!canBeHidden(GV, *MAI)) 382 // .weak_definition _foo 383 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 384 else 385 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 386 } else if (MAI->hasLinkOnceDirective()) { 387 // .globl _foo 388 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 389 //NOTE: linkonce is handled by the section the symbol was assigned to. 390 } else { 391 // .weak _foo 392 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 393 } 394 return; 395 case GlobalValue::ExternalLinkage: 396 // If external, declare as a global symbol: .globl _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 398 return; 399 case GlobalValue::PrivateLinkage: 400 case GlobalValue::InternalLinkage: 401 return; 402 case GlobalValue::AppendingLinkage: 403 case GlobalValue::AvailableExternallyLinkage: 404 case GlobalValue::ExternalWeakLinkage: 405 llvm_unreachable("Should never emit this"); 406 } 407 llvm_unreachable("Unknown linkage type!"); 408 } 409 410 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 411 const GlobalValue *GV) const { 412 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 413 } 414 415 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 416 return TM.getSymbol(GV); 417 } 418 419 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 420 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 421 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 422 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 423 "No emulated TLS variables in the common section"); 424 425 // Never emit TLS variable xyz in emulated TLS model. 426 // The initialization value is in __emutls_t.xyz instead of xyz. 427 if (IsEmuTLSVar) 428 return; 429 430 if (GV->hasInitializer()) { 431 // Check to see if this is a special global used by LLVM, if so, emit it. 432 if (EmitSpecialLLVMGlobal(GV)) 433 return; 434 435 // Skip the emission of global equivalents. The symbol can be emitted later 436 // on by emitGlobalGOTEquivs in case it turns out to be needed. 437 if (GlobalGOTEquivs.count(getSymbol(GV))) 438 return; 439 440 if (isVerbose()) { 441 // When printing the control variable __emutls_v.*, 442 // we don't need to print the original TLS variable name. 443 GV->printAsOperand(OutStreamer->GetCommentOS(), 444 /*PrintType=*/false, GV->getParent()); 445 OutStreamer->GetCommentOS() << '\n'; 446 } 447 } 448 449 MCSymbol *GVSym = getSymbol(GV); 450 MCSymbol *EmittedSym = GVSym; 451 452 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 453 // attributes. 454 // GV's or GVSym's attributes will be used for the EmittedSym. 455 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 456 457 if (!GV->hasInitializer()) // External globals require no extra code. 458 return; 459 460 GVSym->redefineIfPossible(); 461 if (GVSym->isDefined() || GVSym->isVariable()) 462 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 463 "' is already defined"); 464 465 if (MAI->hasDotTypeDotSizeDirective()) 466 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 467 468 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 469 470 const DataLayout &DL = GV->getParent()->getDataLayout(); 471 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 472 473 // If the alignment is specified, we *must* obey it. Overaligning a global 474 // with a specified alignment is a prompt way to break globals emitted to 475 // sections and expected to be contiguous (e.g. ObjC metadata). 476 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 477 478 for (const HandlerInfo &HI : Handlers) { 479 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 480 HI.TimerGroupName, HI.TimerGroupDescription, 481 TimePassesIsEnabled); 482 HI.Handler->setSymbolSize(GVSym, Size); 483 } 484 485 // Handle common symbols 486 if (GVKind.isCommon()) { 487 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 488 unsigned Align = 1 << AlignLog; 489 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 490 Align = 0; 491 492 // .comm _foo, 42, 4 493 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 494 return; 495 } 496 497 // Determine to which section this global should be emitted. 498 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 499 500 // If we have a bss global going to a section that supports the 501 // zerofill directive, do so here. 502 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 503 TheSection->isVirtualSection()) { 504 if (Size == 0) 505 Size = 1; // zerofill of 0 bytes is undefined. 506 unsigned Align = 1 << AlignLog; 507 EmitLinkage(GV, GVSym); 508 // .zerofill __DATA, __bss, _foo, 400, 5 509 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 510 return; 511 } 512 513 // If this is a BSS local symbol and we are emitting in the BSS 514 // section use .lcomm/.comm directive. 515 if (GVKind.isBSSLocal() && 516 getObjFileLowering().getBSSSection() == TheSection) { 517 if (Size == 0) 518 Size = 1; // .comm Foo, 0 is undefined, avoid it. 519 unsigned Align = 1 << AlignLog; 520 521 // Use .lcomm only if it supports user-specified alignment. 522 // Otherwise, while it would still be correct to use .lcomm in some 523 // cases (e.g. when Align == 1), the external assembler might enfore 524 // some -unknown- default alignment behavior, which could cause 525 // spurious differences between external and integrated assembler. 526 // Prefer to simply fall back to .local / .comm in this case. 527 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 528 // .lcomm _foo, 42 529 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 530 return; 531 } 532 533 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 534 Align = 0; 535 536 // .local _foo 537 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 538 // .comm _foo, 42, 4 539 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 540 return; 541 } 542 543 // Handle thread local data for mach-o which requires us to output an 544 // additional structure of data and mangle the original symbol so that we 545 // can reference it later. 546 // 547 // TODO: This should become an "emit thread local global" method on TLOF. 548 // All of this macho specific stuff should be sunk down into TLOFMachO and 549 // stuff like "TLSExtraDataSection" should no longer be part of the parent 550 // TLOF class. This will also make it more obvious that stuff like 551 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 552 // specific code. 553 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 554 // Emit the .tbss symbol 555 MCSymbol *MangSym = 556 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 557 558 if (GVKind.isThreadBSS()) { 559 TheSection = getObjFileLowering().getTLSBSSSection(); 560 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 561 } else if (GVKind.isThreadData()) { 562 OutStreamer->SwitchSection(TheSection); 563 564 EmitAlignment(AlignLog, GV); 565 OutStreamer->EmitLabel(MangSym); 566 567 EmitGlobalConstant(GV->getParent()->getDataLayout(), 568 GV->getInitializer()); 569 } 570 571 OutStreamer->AddBlankLine(); 572 573 // Emit the variable struct for the runtime. 574 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 575 576 OutStreamer->SwitchSection(TLVSect); 577 // Emit the linkage here. 578 EmitLinkage(GV, GVSym); 579 OutStreamer->EmitLabel(GVSym); 580 581 // Three pointers in size: 582 // - __tlv_bootstrap - used to make sure support exists 583 // - spare pointer, used when mapped by the runtime 584 // - pointer to mangled symbol above with initializer 585 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 586 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 587 PtrSize); 588 OutStreamer->EmitIntValue(0, PtrSize); 589 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 590 591 OutStreamer->AddBlankLine(); 592 return; 593 } 594 595 MCSymbol *EmittedInitSym = GVSym; 596 597 OutStreamer->SwitchSection(TheSection); 598 599 EmitLinkage(GV, EmittedInitSym); 600 EmitAlignment(AlignLog, GV); 601 602 OutStreamer->EmitLabel(EmittedInitSym); 603 604 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 605 606 if (MAI->hasDotTypeDotSizeDirective()) 607 // .size foo, 42 608 OutStreamer->emitELFSize(EmittedInitSym, 609 MCConstantExpr::create(Size, OutContext)); 610 611 OutStreamer->AddBlankLine(); 612 } 613 614 /// Emit the directive and value for debug thread local expression 615 /// 616 /// \p Value - The value to emit. 617 /// \p Size - The size of the integer (in bytes) to emit. 618 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 619 unsigned Size) const { 620 OutStreamer->EmitValue(Value, Size); 621 } 622 623 /// EmitFunctionHeader - This method emits the header for the current 624 /// function. 625 void AsmPrinter::EmitFunctionHeader() { 626 // Print out constants referenced by the function 627 EmitConstantPool(); 628 629 // Print the 'header' of function. 630 const Function *F = MF->getFunction(); 631 632 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 633 EmitVisibility(CurrentFnSym, F->getVisibility()); 634 635 EmitLinkage(F, CurrentFnSym); 636 if (MAI->hasFunctionAlignment()) 637 EmitAlignment(MF->getAlignment(), F); 638 639 if (MAI->hasDotTypeDotSizeDirective()) 640 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 641 642 if (isVerbose()) { 643 F->printAsOperand(OutStreamer->GetCommentOS(), 644 /*PrintType=*/false, F->getParent()); 645 OutStreamer->GetCommentOS() << '\n'; 646 } 647 648 // Emit the prefix data. 649 if (F->hasPrefixData()) { 650 if (MAI->hasSubsectionsViaSymbols()) { 651 // Preserving prefix data on platforms which use subsections-via-symbols 652 // is a bit tricky. Here we introduce a symbol for the prefix data 653 // and use the .alt_entry attribute to mark the function's real entry point 654 // as an alternative entry point to the prefix-data symbol. 655 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 656 OutStreamer->EmitLabel(PrefixSym); 657 658 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 659 660 // Emit an .alt_entry directive for the actual function symbol. 661 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 662 } else { 663 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 664 } 665 } 666 667 // Emit the CurrentFnSym. This is a virtual function to allow targets to 668 // do their wild and crazy things as required. 669 EmitFunctionEntryLabel(); 670 671 // If the function had address-taken blocks that got deleted, then we have 672 // references to the dangling symbols. Emit them at the start of the function 673 // so that we don't get references to undefined symbols. 674 std::vector<MCSymbol*> DeadBlockSyms; 675 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 676 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 677 OutStreamer->AddComment("Address taken block that was later removed"); 678 OutStreamer->EmitLabel(DeadBlockSyms[i]); 679 } 680 681 if (CurrentFnBegin) { 682 if (MAI->useAssignmentForEHBegin()) { 683 MCSymbol *CurPos = OutContext.createTempSymbol(); 684 OutStreamer->EmitLabel(CurPos); 685 OutStreamer->EmitAssignment(CurrentFnBegin, 686 MCSymbolRefExpr::create(CurPos, OutContext)); 687 } else { 688 OutStreamer->EmitLabel(CurrentFnBegin); 689 } 690 } 691 692 // Emit pre-function debug and/or EH information. 693 for (const HandlerInfo &HI : Handlers) { 694 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 695 HI.TimerGroupDescription, TimePassesIsEnabled); 696 HI.Handler->beginFunction(MF); 697 } 698 699 // Emit the prologue data. 700 if (F->hasPrologueData()) 701 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 702 } 703 704 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 705 /// function. This can be overridden by targets as required to do custom stuff. 706 void AsmPrinter::EmitFunctionEntryLabel() { 707 CurrentFnSym->redefineIfPossible(); 708 709 // The function label could have already been emitted if two symbols end up 710 // conflicting due to asm renaming. Detect this and emit an error. 711 if (CurrentFnSym->isVariable()) 712 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 713 "' is a protected alias"); 714 if (CurrentFnSym->isDefined()) 715 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 716 "' label emitted multiple times to assembly file"); 717 718 return OutStreamer->EmitLabel(CurrentFnSym); 719 } 720 721 /// emitComments - Pretty-print comments for instructions. 722 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 723 const MachineFunction *MF = MI.getParent()->getParent(); 724 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 725 726 // Check for spills and reloads 727 int FI; 728 729 const MachineFrameInfo &MFI = MF->getFrameInfo(); 730 731 // We assume a single instruction only has a spill or reload, not 732 // both. 733 const MachineMemOperand *MMO; 734 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 735 if (MFI.isSpillSlotObjectIndex(FI)) { 736 MMO = *MI.memoperands_begin(); 737 CommentOS << MMO->getSize() << "-byte Reload\n"; 738 } 739 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 740 if (MFI.isSpillSlotObjectIndex(FI)) 741 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 742 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 743 if (MFI.isSpillSlotObjectIndex(FI)) { 744 MMO = *MI.memoperands_begin(); 745 CommentOS << MMO->getSize() << "-byte Spill\n"; 746 } 747 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 748 if (MFI.isSpillSlotObjectIndex(FI)) 749 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 750 } 751 752 // Check for spill-induced copies 753 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 754 CommentOS << " Reload Reuse\n"; 755 } 756 757 /// emitImplicitDef - This method emits the specified machine instruction 758 /// that is an implicit def. 759 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 760 unsigned RegNo = MI->getOperand(0).getReg(); 761 762 SmallString<128> Str; 763 raw_svector_ostream OS(Str); 764 OS << "implicit-def: " 765 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 766 767 OutStreamer->AddComment(OS.str()); 768 OutStreamer->AddBlankLine(); 769 } 770 771 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 772 std::string Str; 773 raw_string_ostream OS(Str); 774 OS << "kill:"; 775 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 776 const MachineOperand &Op = MI->getOperand(i); 777 assert(Op.isReg() && "KILL instruction must have only register operands"); 778 OS << ' ' 779 << PrintReg(Op.getReg(), 780 AP.MF->getSubtarget().getRegisterInfo()) 781 << (Op.isDef() ? "<def>" : "<kill>"); 782 } 783 AP.OutStreamer->AddComment(OS.str()); 784 AP.OutStreamer->AddBlankLine(); 785 } 786 787 /// emitDebugValueComment - This method handles the target-independent form 788 /// of DBG_VALUE, returning true if it was able to do so. A false return 789 /// means the target will need to handle MI in EmitInstruction. 790 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 791 // This code handles only the 4-operand target-independent form. 792 if (MI->getNumOperands() != 4) 793 return false; 794 795 SmallString<128> Str; 796 raw_svector_ostream OS(Str); 797 OS << "DEBUG_VALUE: "; 798 799 const DILocalVariable *V = MI->getDebugVariable(); 800 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 801 StringRef Name = SP->getDisplayName(); 802 if (!Name.empty()) 803 OS << Name << ":"; 804 } 805 OS << V->getName(); 806 807 const DIExpression *Expr = MI->getDebugExpression(); 808 auto Fragment = Expr->getFragmentInfo(); 809 if (Fragment) 810 OS << " [fragment offset=" << Fragment->OffsetInBits 811 << " size=" << Fragment->SizeInBits << "]"; 812 OS << " <- "; 813 814 // The second operand is only an offset if it's an immediate. 815 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 816 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 817 818 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 819 uint64_t Op = Expr->getElement(i); 820 if (Op == dwarf::DW_OP_LLVM_fragment) { 821 // There can't be any operands after this in a valid expression 822 break; 823 } else if (Deref) { 824 // We currently don't support extra Offsets or derefs after the first 825 // one. Bail out early instead of emitting an incorrect comment 826 OS << " [complex expression]"; 827 AP.OutStreamer->emitRawComment(OS.str()); 828 return true; 829 } else if (Op == dwarf::DW_OP_deref) { 830 Deref = true; 831 continue; 832 } 833 834 uint64_t ExtraOffset = Expr->getElement(i++); 835 if (Op == dwarf::DW_OP_plus) 836 Offset += ExtraOffset; 837 else { 838 assert(Op == dwarf::DW_OP_minus); 839 Offset -= ExtraOffset; 840 } 841 } 842 843 // Register or immediate value. Register 0 means undef. 844 if (MI->getOperand(0).isFPImm()) { 845 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 846 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 847 OS << (double)APF.convertToFloat(); 848 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 849 OS << APF.convertToDouble(); 850 } else { 851 // There is no good way to print long double. Convert a copy to 852 // double. Ah well, it's only a comment. 853 bool ignored; 854 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 855 &ignored); 856 OS << "(long double) " << APF.convertToDouble(); 857 } 858 } else if (MI->getOperand(0).isImm()) { 859 OS << MI->getOperand(0).getImm(); 860 } else if (MI->getOperand(0).isCImm()) { 861 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 862 } else { 863 unsigned Reg; 864 if (MI->getOperand(0).isReg()) { 865 Reg = MI->getOperand(0).getReg(); 866 } else { 867 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 868 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 869 Offset += TFI->getFrameIndexReference(*AP.MF, 870 MI->getOperand(0).getIndex(), Reg); 871 Deref = true; 872 } 873 if (Reg == 0) { 874 // Suppress offset, it is not meaningful here. 875 OS << "undef"; 876 // NOTE: Want this comment at start of line, don't emit with AddComment. 877 AP.OutStreamer->emitRawComment(OS.str()); 878 return true; 879 } 880 if (Deref) 881 OS << '['; 882 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 883 } 884 885 if (Deref) 886 OS << '+' << Offset << ']'; 887 888 // NOTE: Want this comment at start of line, don't emit with AddComment. 889 AP.OutStreamer->emitRawComment(OS.str()); 890 return true; 891 } 892 893 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 894 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 895 MF->getFunction()->needsUnwindTableEntry()) 896 return CFI_M_EH; 897 898 if (MMI->hasDebugInfo()) 899 return CFI_M_Debug; 900 901 return CFI_M_None; 902 } 903 904 bool AsmPrinter::needsSEHMoves() { 905 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 906 } 907 908 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 909 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 910 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 911 ExceptionHandlingType != ExceptionHandling::ARM) 912 return; 913 914 if (needsCFIMoves() == CFI_M_None) 915 return; 916 917 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 918 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 919 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 920 emitCFIInstruction(CFI); 921 } 922 923 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 924 // The operands are the MCSymbol and the frame offset of the allocation. 925 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 926 int FrameOffset = MI.getOperand(1).getImm(); 927 928 // Emit a symbol assignment. 929 OutStreamer->EmitAssignment(FrameAllocSym, 930 MCConstantExpr::create(FrameOffset, OutContext)); 931 } 932 933 /// EmitFunctionBody - This method emits the body and trailer for a 934 /// function. 935 void AsmPrinter::EmitFunctionBody() { 936 EmitFunctionHeader(); 937 938 // Emit target-specific gunk before the function body. 939 EmitFunctionBodyStart(); 940 941 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 942 943 // Print out code for the function. 944 bool HasAnyRealCode = false; 945 int NumInstsInFunction = 0; 946 for (auto &MBB : *MF) { 947 // Print a label for the basic block. 948 EmitBasicBlockStart(MBB); 949 for (auto &MI : MBB) { 950 951 // Print the assembly for the instruction. 952 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 953 !MI.isDebugValue()) { 954 HasAnyRealCode = true; 955 ++NumInstsInFunction; 956 } 957 958 if (ShouldPrintDebugScopes) { 959 for (const HandlerInfo &HI : Handlers) { 960 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 961 HI.TimerGroupName, HI.TimerGroupDescription, 962 TimePassesIsEnabled); 963 HI.Handler->beginInstruction(&MI); 964 } 965 } 966 967 if (isVerbose()) 968 emitComments(MI, OutStreamer->GetCommentOS()); 969 970 switch (MI.getOpcode()) { 971 case TargetOpcode::CFI_INSTRUCTION: 972 emitCFIInstruction(MI); 973 break; 974 975 case TargetOpcode::LOCAL_ESCAPE: 976 emitFrameAlloc(MI); 977 break; 978 979 case TargetOpcode::EH_LABEL: 980 case TargetOpcode::GC_LABEL: 981 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 982 break; 983 case TargetOpcode::INLINEASM: 984 EmitInlineAsm(&MI); 985 break; 986 case TargetOpcode::DBG_VALUE: 987 if (isVerbose()) { 988 if (!emitDebugValueComment(&MI, *this)) 989 EmitInstruction(&MI); 990 } 991 break; 992 case TargetOpcode::IMPLICIT_DEF: 993 if (isVerbose()) emitImplicitDef(&MI); 994 break; 995 case TargetOpcode::KILL: 996 if (isVerbose()) emitKill(&MI, *this); 997 break; 998 default: 999 EmitInstruction(&MI); 1000 break; 1001 } 1002 1003 if (ShouldPrintDebugScopes) { 1004 for (const HandlerInfo &HI : Handlers) { 1005 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1006 HI.TimerGroupName, HI.TimerGroupDescription, 1007 TimePassesIsEnabled); 1008 HI.Handler->endInstruction(); 1009 } 1010 } 1011 } 1012 1013 EmitBasicBlockEnd(MBB); 1014 } 1015 1016 EmittedInsts += NumInstsInFunction; 1017 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1018 MF->getFunction()->getSubprogram(), 1019 &MF->front()); 1020 R << ore::NV("NumInstructions", NumInstsInFunction) 1021 << " instructions in function"; 1022 ORE->emit(R); 1023 1024 // If the function is empty and the object file uses .subsections_via_symbols, 1025 // then we need to emit *something* to the function body to prevent the 1026 // labels from collapsing together. Just emit a noop. 1027 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 1028 MCInst Noop; 1029 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 1030 OutStreamer->AddComment("avoids zero-length function"); 1031 1032 // Targets can opt-out of emitting the noop here by leaving the opcode 1033 // unspecified. 1034 if (Noop.getOpcode()) 1035 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1036 } 1037 1038 const Function *F = MF->getFunction(); 1039 for (const auto &BB : *F) { 1040 if (!BB.hasAddressTaken()) 1041 continue; 1042 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1043 if (Sym->isDefined()) 1044 continue; 1045 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1046 OutStreamer->EmitLabel(Sym); 1047 } 1048 1049 // Emit target-specific gunk after the function body. 1050 EmitFunctionBodyEnd(); 1051 1052 if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() || 1053 MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 1054 // Create a symbol for the end of function. 1055 CurrentFnEnd = createTempSymbol("func_end"); 1056 OutStreamer->EmitLabel(CurrentFnEnd); 1057 } 1058 1059 // If the target wants a .size directive for the size of the function, emit 1060 // it. 1061 if (MAI->hasDotTypeDotSizeDirective()) { 1062 // We can get the size as difference between the function label and the 1063 // temp label. 1064 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1065 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1066 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1067 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1068 } 1069 1070 for (const HandlerInfo &HI : Handlers) { 1071 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1072 HI.TimerGroupDescription, TimePassesIsEnabled); 1073 HI.Handler->markFunctionEnd(); 1074 } 1075 1076 // Print out jump tables referenced by the function. 1077 EmitJumpTableInfo(); 1078 1079 // Emit post-function debug and/or EH information. 1080 for (const HandlerInfo &HI : Handlers) { 1081 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1082 HI.TimerGroupDescription, TimePassesIsEnabled); 1083 HI.Handler->endFunction(MF); 1084 } 1085 1086 OutStreamer->AddBlankLine(); 1087 } 1088 1089 /// \brief Compute the number of Global Variables that uses a Constant. 1090 static unsigned getNumGlobalVariableUses(const Constant *C) { 1091 if (!C) 1092 return 0; 1093 1094 if (isa<GlobalVariable>(C)) 1095 return 1; 1096 1097 unsigned NumUses = 0; 1098 for (auto *CU : C->users()) 1099 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1100 1101 return NumUses; 1102 } 1103 1104 /// \brief Only consider global GOT equivalents if at least one user is a 1105 /// cstexpr inside an initializer of another global variables. Also, don't 1106 /// handle cstexpr inside instructions. During global variable emission, 1107 /// candidates are skipped and are emitted later in case at least one cstexpr 1108 /// isn't replaced by a PC relative GOT entry access. 1109 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1110 unsigned &NumGOTEquivUsers) { 1111 // Global GOT equivalents are unnamed private globals with a constant 1112 // pointer initializer to another global symbol. They must point to a 1113 // GlobalVariable or Function, i.e., as GlobalValue. 1114 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1115 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1116 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1117 return false; 1118 1119 // To be a got equivalent, at least one of its users need to be a constant 1120 // expression used by another global variable. 1121 for (auto *U : GV->users()) 1122 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1123 1124 return NumGOTEquivUsers > 0; 1125 } 1126 1127 /// \brief Unnamed constant global variables solely contaning a pointer to 1128 /// another globals variable is equivalent to a GOT table entry; it contains the 1129 /// the address of another symbol. Optimize it and replace accesses to these 1130 /// "GOT equivalents" by using the GOT entry for the final global instead. 1131 /// Compute GOT equivalent candidates among all global variables to avoid 1132 /// emitting them if possible later on, after it use is replaced by a GOT entry 1133 /// access. 1134 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1135 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1136 return; 1137 1138 for (const auto &G : M.globals()) { 1139 unsigned NumGOTEquivUsers = 0; 1140 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1141 continue; 1142 1143 const MCSymbol *GOTEquivSym = getSymbol(&G); 1144 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1145 } 1146 } 1147 1148 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1149 /// for PC relative GOT entry conversion, in such cases we need to emit such 1150 /// globals we previously omitted in EmitGlobalVariable. 1151 void AsmPrinter::emitGlobalGOTEquivs() { 1152 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1153 return; 1154 1155 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1156 for (auto &I : GlobalGOTEquivs) { 1157 const GlobalVariable *GV = I.second.first; 1158 unsigned Cnt = I.second.second; 1159 if (Cnt) 1160 FailedCandidates.push_back(GV); 1161 } 1162 GlobalGOTEquivs.clear(); 1163 1164 for (auto *GV : FailedCandidates) 1165 EmitGlobalVariable(GV); 1166 } 1167 1168 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1169 const GlobalIndirectSymbol& GIS) { 1170 MCSymbol *Name = getSymbol(&GIS); 1171 1172 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1173 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1174 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1175 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1176 else 1177 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1178 1179 // Set the symbol type to function if the alias has a function type. 1180 // This affects codegen when the aliasee is not a function. 1181 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1182 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1183 if (isa<GlobalIFunc>(GIS)) 1184 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1185 } 1186 1187 EmitVisibility(Name, GIS.getVisibility()); 1188 1189 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1190 1191 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1192 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1193 1194 // Emit the directives as assignments aka .set: 1195 OutStreamer->EmitAssignment(Name, Expr); 1196 1197 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1198 // If the aliasee does not correspond to a symbol in the output, i.e. the 1199 // alias is not of an object or the aliased object is private, then set the 1200 // size of the alias symbol from the type of the alias. We don't do this in 1201 // other situations as the alias and aliasee having differing types but same 1202 // size may be intentional. 1203 const GlobalObject *BaseObject = GA->getBaseObject(); 1204 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1205 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1206 const DataLayout &DL = M.getDataLayout(); 1207 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1208 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1209 } 1210 } 1211 } 1212 1213 bool AsmPrinter::doFinalization(Module &M) { 1214 // Set the MachineFunction to nullptr so that we can catch attempted 1215 // accesses to MF specific features at the module level and so that 1216 // we can conditionalize accesses based on whether or not it is nullptr. 1217 MF = nullptr; 1218 1219 // Gather all GOT equivalent globals in the module. We really need two 1220 // passes over the globals: one to compute and another to avoid its emission 1221 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1222 // where the got equivalent shows up before its use. 1223 computeGlobalGOTEquivs(M); 1224 1225 // Emit global variables. 1226 for (const auto &G : M.globals()) 1227 EmitGlobalVariable(&G); 1228 1229 // Emit remaining GOT equivalent globals. 1230 emitGlobalGOTEquivs(); 1231 1232 // Emit visibility info for declarations 1233 for (const Function &F : M) { 1234 if (!F.isDeclarationForLinker()) 1235 continue; 1236 GlobalValue::VisibilityTypes V = F.getVisibility(); 1237 if (V == GlobalValue::DefaultVisibility) 1238 continue; 1239 1240 MCSymbol *Name = getSymbol(&F); 1241 EmitVisibility(Name, V, false); 1242 } 1243 1244 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1245 1246 // Emit module flags. 1247 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1248 M.getModuleFlagsMetadata(ModuleFlags); 1249 if (!ModuleFlags.empty()) 1250 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1251 1252 if (TM.getTargetTriple().isOSBinFormatELF()) { 1253 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1254 1255 // Output stubs for external and common global variables. 1256 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1257 if (!Stubs.empty()) { 1258 OutStreamer->SwitchSection(TLOF.getDataSection()); 1259 const DataLayout &DL = M.getDataLayout(); 1260 1261 for (const auto &Stub : Stubs) { 1262 OutStreamer->EmitLabel(Stub.first); 1263 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1264 DL.getPointerSize()); 1265 } 1266 } 1267 } 1268 1269 // Finalize debug and EH information. 1270 for (const HandlerInfo &HI : Handlers) { 1271 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1272 HI.TimerGroupDescription, TimePassesIsEnabled); 1273 HI.Handler->endModule(); 1274 delete HI.Handler; 1275 } 1276 Handlers.clear(); 1277 DD = nullptr; 1278 1279 // If the target wants to know about weak references, print them all. 1280 if (MAI->getWeakRefDirective()) { 1281 // FIXME: This is not lazy, it would be nice to only print weak references 1282 // to stuff that is actually used. Note that doing so would require targets 1283 // to notice uses in operands (due to constant exprs etc). This should 1284 // happen with the MC stuff eventually. 1285 1286 // Print out module-level global objects here. 1287 for (const auto &GO : M.global_objects()) { 1288 if (!GO.hasExternalWeakLinkage()) 1289 continue; 1290 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1291 } 1292 } 1293 1294 OutStreamer->AddBlankLine(); 1295 1296 // Print aliases in topological order, that is, for each alias a = b, 1297 // b must be printed before a. 1298 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1299 // such an order to generate correct TOC information. 1300 SmallVector<const GlobalAlias *, 16> AliasStack; 1301 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1302 for (const auto &Alias : M.aliases()) { 1303 for (const GlobalAlias *Cur = &Alias; Cur; 1304 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1305 if (!AliasVisited.insert(Cur).second) 1306 break; 1307 AliasStack.push_back(Cur); 1308 } 1309 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1310 emitGlobalIndirectSymbol(M, *AncestorAlias); 1311 AliasStack.clear(); 1312 } 1313 for (const auto &IFunc : M.ifuncs()) 1314 emitGlobalIndirectSymbol(M, IFunc); 1315 1316 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1317 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1318 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1319 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1320 MP->finishAssembly(M, *MI, *this); 1321 1322 // Emit llvm.ident metadata in an '.ident' directive. 1323 EmitModuleIdents(M); 1324 1325 // Emit __morestack address if needed for indirect calls. 1326 if (MMI->usesMorestackAddr()) { 1327 unsigned Align = 1; 1328 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1329 getDataLayout(), SectionKind::getReadOnly(), 1330 /*C=*/nullptr, Align); 1331 OutStreamer->SwitchSection(ReadOnlySection); 1332 1333 MCSymbol *AddrSymbol = 1334 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1335 OutStreamer->EmitLabel(AddrSymbol); 1336 1337 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1338 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1339 PtrSize); 1340 } 1341 1342 // If we don't have any trampolines, then we don't require stack memory 1343 // to be executable. Some targets have a directive to declare this. 1344 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1345 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1346 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1347 OutStreamer->SwitchSection(S); 1348 1349 // Allow the target to emit any magic that it wants at the end of the file, 1350 // after everything else has gone out. 1351 EmitEndOfAsmFile(M); 1352 1353 MMI = nullptr; 1354 1355 OutStreamer->Finish(); 1356 OutStreamer->reset(); 1357 1358 return false; 1359 } 1360 1361 MCSymbol *AsmPrinter::getCurExceptionSym() { 1362 if (!CurExceptionSym) 1363 CurExceptionSym = createTempSymbol("exception"); 1364 return CurExceptionSym; 1365 } 1366 1367 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1368 this->MF = &MF; 1369 // Get the function symbol. 1370 CurrentFnSym = getSymbol(MF.getFunction()); 1371 CurrentFnSymForSize = CurrentFnSym; 1372 CurrentFnBegin = nullptr; 1373 CurExceptionSym = nullptr; 1374 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1375 if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() || 1376 MF.hasEHFunclets() || NeedsLocalForSize) { 1377 CurrentFnBegin = createTempSymbol("func_begin"); 1378 if (NeedsLocalForSize) 1379 CurrentFnSymForSize = CurrentFnBegin; 1380 } 1381 1382 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1383 if (isVerbose()) 1384 LI = &getAnalysis<MachineLoopInfo>(); 1385 } 1386 1387 namespace { 1388 1389 // Keep track the alignment, constpool entries per Section. 1390 struct SectionCPs { 1391 MCSection *S; 1392 unsigned Alignment; 1393 SmallVector<unsigned, 4> CPEs; 1394 1395 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1396 }; 1397 1398 } // end anonymous namespace 1399 1400 /// EmitConstantPool - Print to the current output stream assembly 1401 /// representations of the constants in the constant pool MCP. This is 1402 /// used to print out constants which have been "spilled to memory" by 1403 /// the code generator. 1404 /// 1405 void AsmPrinter::EmitConstantPool() { 1406 const MachineConstantPool *MCP = MF->getConstantPool(); 1407 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1408 if (CP.empty()) return; 1409 1410 // Calculate sections for constant pool entries. We collect entries to go into 1411 // the same section together to reduce amount of section switch statements. 1412 SmallVector<SectionCPs, 4> CPSections; 1413 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1414 const MachineConstantPoolEntry &CPE = CP[i]; 1415 unsigned Align = CPE.getAlignment(); 1416 1417 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1418 1419 const Constant *C = nullptr; 1420 if (!CPE.isMachineConstantPoolEntry()) 1421 C = CPE.Val.ConstVal; 1422 1423 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1424 Kind, C, Align); 1425 1426 // The number of sections are small, just do a linear search from the 1427 // last section to the first. 1428 bool Found = false; 1429 unsigned SecIdx = CPSections.size(); 1430 while (SecIdx != 0) { 1431 if (CPSections[--SecIdx].S == S) { 1432 Found = true; 1433 break; 1434 } 1435 } 1436 if (!Found) { 1437 SecIdx = CPSections.size(); 1438 CPSections.push_back(SectionCPs(S, Align)); 1439 } 1440 1441 if (Align > CPSections[SecIdx].Alignment) 1442 CPSections[SecIdx].Alignment = Align; 1443 CPSections[SecIdx].CPEs.push_back(i); 1444 } 1445 1446 // Now print stuff into the calculated sections. 1447 const MCSection *CurSection = nullptr; 1448 unsigned Offset = 0; 1449 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1450 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1451 unsigned CPI = CPSections[i].CPEs[j]; 1452 MCSymbol *Sym = GetCPISymbol(CPI); 1453 if (!Sym->isUndefined()) 1454 continue; 1455 1456 if (CurSection != CPSections[i].S) { 1457 OutStreamer->SwitchSection(CPSections[i].S); 1458 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1459 CurSection = CPSections[i].S; 1460 Offset = 0; 1461 } 1462 1463 MachineConstantPoolEntry CPE = CP[CPI]; 1464 1465 // Emit inter-object padding for alignment. 1466 unsigned AlignMask = CPE.getAlignment() - 1; 1467 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1468 OutStreamer->EmitZeros(NewOffset - Offset); 1469 1470 Type *Ty = CPE.getType(); 1471 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1472 1473 OutStreamer->EmitLabel(Sym); 1474 if (CPE.isMachineConstantPoolEntry()) 1475 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1476 else 1477 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1478 } 1479 } 1480 } 1481 1482 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1483 /// by the current function to the current output stream. 1484 /// 1485 void AsmPrinter::EmitJumpTableInfo() { 1486 const DataLayout &DL = MF->getDataLayout(); 1487 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1488 if (!MJTI) return; 1489 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1490 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1491 if (JT.empty()) return; 1492 1493 // Pick the directive to use to print the jump table entries, and switch to 1494 // the appropriate section. 1495 const Function *F = MF->getFunction(); 1496 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1497 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1498 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1499 *F); 1500 if (JTInDiffSection) { 1501 // Drop it in the readonly section. 1502 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1503 OutStreamer->SwitchSection(ReadOnlySection); 1504 } 1505 1506 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1507 1508 // Jump tables in code sections are marked with a data_region directive 1509 // where that's supported. 1510 if (!JTInDiffSection) 1511 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1512 1513 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1514 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1515 1516 // If this jump table was deleted, ignore it. 1517 if (JTBBs.empty()) continue; 1518 1519 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1520 /// emit a .set directive for each unique entry. 1521 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1522 MAI->doesSetDirectiveSuppressReloc()) { 1523 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1524 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1525 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1526 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1527 const MachineBasicBlock *MBB = JTBBs[ii]; 1528 if (!EmittedSets.insert(MBB).second) 1529 continue; 1530 1531 // .set LJTSet, LBB32-base 1532 const MCExpr *LHS = 1533 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1534 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1535 MCBinaryExpr::createSub(LHS, Base, 1536 OutContext)); 1537 } 1538 } 1539 1540 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1541 // before each jump table. The first label is never referenced, but tells 1542 // the assembler and linker the extents of the jump table object. The 1543 // second label is actually referenced by the code. 1544 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1545 // FIXME: This doesn't have to have any specific name, just any randomly 1546 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1547 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1548 1549 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1550 1551 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1552 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1553 } 1554 if (!JTInDiffSection) 1555 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1556 } 1557 1558 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1559 /// current stream. 1560 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1561 const MachineBasicBlock *MBB, 1562 unsigned UID) const { 1563 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1564 const MCExpr *Value = nullptr; 1565 switch (MJTI->getEntryKind()) { 1566 case MachineJumpTableInfo::EK_Inline: 1567 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1568 case MachineJumpTableInfo::EK_Custom32: 1569 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1570 MJTI, MBB, UID, OutContext); 1571 break; 1572 case MachineJumpTableInfo::EK_BlockAddress: 1573 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1574 // .word LBB123 1575 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1576 break; 1577 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1578 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1579 // with a relocation as gp-relative, e.g.: 1580 // .gprel32 LBB123 1581 MCSymbol *MBBSym = MBB->getSymbol(); 1582 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1583 return; 1584 } 1585 1586 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1587 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1588 // with a relocation as gp-relative, e.g.: 1589 // .gpdword LBB123 1590 MCSymbol *MBBSym = MBB->getSymbol(); 1591 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1592 return; 1593 } 1594 1595 case MachineJumpTableInfo::EK_LabelDifference32: { 1596 // Each entry is the address of the block minus the address of the jump 1597 // table. This is used for PIC jump tables where gprel32 is not supported. 1598 // e.g.: 1599 // .word LBB123 - LJTI1_2 1600 // If the .set directive avoids relocations, this is emitted as: 1601 // .set L4_5_set_123, LBB123 - LJTI1_2 1602 // .word L4_5_set_123 1603 if (MAI->doesSetDirectiveSuppressReloc()) { 1604 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1605 OutContext); 1606 break; 1607 } 1608 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1609 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1610 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1611 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1612 break; 1613 } 1614 } 1615 1616 assert(Value && "Unknown entry kind!"); 1617 1618 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1619 OutStreamer->EmitValue(Value, EntrySize); 1620 } 1621 1622 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1623 /// special global used by LLVM. If so, emit it and return true, otherwise 1624 /// do nothing and return false. 1625 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1626 if (GV->getName() == "llvm.used") { 1627 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1628 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1629 return true; 1630 } 1631 1632 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1633 if (GV->getSection() == "llvm.metadata" || 1634 GV->hasAvailableExternallyLinkage()) 1635 return true; 1636 1637 if (!GV->hasAppendingLinkage()) return false; 1638 1639 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1640 1641 if (GV->getName() == "llvm.global_ctors") { 1642 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1643 /* isCtor */ true); 1644 1645 return true; 1646 } 1647 1648 if (GV->getName() == "llvm.global_dtors") { 1649 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1650 /* isCtor */ false); 1651 1652 return true; 1653 } 1654 1655 report_fatal_error("unknown special variable"); 1656 } 1657 1658 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1659 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1660 /// is true, as being used with this directive. 1661 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1662 // Should be an array of 'i8*'. 1663 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1664 const GlobalValue *GV = 1665 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1666 if (GV) 1667 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1668 } 1669 } 1670 1671 namespace { 1672 1673 struct Structor { 1674 int Priority = 0; 1675 Constant *Func = nullptr; 1676 GlobalValue *ComdatKey = nullptr; 1677 1678 Structor() = default; 1679 }; 1680 1681 } // end anonymous namespace 1682 1683 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1684 /// priority. 1685 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1686 bool isCtor) { 1687 // Should be an array of '{ int, void ()* }' structs. The first value is the 1688 // init priority. 1689 if (!isa<ConstantArray>(List)) return; 1690 1691 // Sanity check the structors list. 1692 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1693 if (!InitList) return; // Not an array! 1694 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1695 // FIXME: Only allow the 3-field form in LLVM 4.0. 1696 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1697 return; // Not an array of two or three elements! 1698 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1699 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1700 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1701 return; // Not (int, ptr, ptr). 1702 1703 // Gather the structors in a form that's convenient for sorting by priority. 1704 SmallVector<Structor, 8> Structors; 1705 for (Value *O : InitList->operands()) { 1706 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1707 if (!CS) continue; // Malformed. 1708 if (CS->getOperand(1)->isNullValue()) 1709 break; // Found a null terminator, skip the rest. 1710 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1711 if (!Priority) continue; // Malformed. 1712 Structors.push_back(Structor()); 1713 Structor &S = Structors.back(); 1714 S.Priority = Priority->getLimitedValue(65535); 1715 S.Func = CS->getOperand(1); 1716 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1717 S.ComdatKey = 1718 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1719 } 1720 1721 // Emit the function pointers in the target-specific order 1722 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1723 std::stable_sort(Structors.begin(), Structors.end(), 1724 [](const Structor &L, 1725 const Structor &R) { return L.Priority < R.Priority; }); 1726 for (Structor &S : Structors) { 1727 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1728 const MCSymbol *KeySym = nullptr; 1729 if (GlobalValue *GV = S.ComdatKey) { 1730 if (GV->isDeclarationForLinker()) 1731 // If the associated variable is not defined in this module 1732 // (it might be available_externally, or have been an 1733 // available_externally definition that was dropped by the 1734 // EliminateAvailableExternally pass), some other TU 1735 // will provide its dynamic initializer. 1736 continue; 1737 1738 KeySym = getSymbol(GV); 1739 } 1740 MCSection *OutputSection = 1741 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1742 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1743 OutStreamer->SwitchSection(OutputSection); 1744 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1745 EmitAlignment(Align); 1746 EmitXXStructor(DL, S.Func); 1747 } 1748 } 1749 1750 void AsmPrinter::EmitModuleIdents(Module &M) { 1751 if (!MAI->hasIdentDirective()) 1752 return; 1753 1754 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1755 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1756 const MDNode *N = NMD->getOperand(i); 1757 assert(N->getNumOperands() == 1 && 1758 "llvm.ident metadata entry can have only one operand"); 1759 const MDString *S = cast<MDString>(N->getOperand(0)); 1760 OutStreamer->EmitIdent(S->getString()); 1761 } 1762 } 1763 } 1764 1765 //===--------------------------------------------------------------------===// 1766 // Emission and print routines 1767 // 1768 1769 /// EmitInt8 - Emit a byte directive and value. 1770 /// 1771 void AsmPrinter::EmitInt8(int Value) const { 1772 OutStreamer->EmitIntValue(Value, 1); 1773 } 1774 1775 /// EmitInt16 - Emit a short directive and value. 1776 /// 1777 void AsmPrinter::EmitInt16(int Value) const { 1778 OutStreamer->EmitIntValue(Value, 2); 1779 } 1780 1781 /// EmitInt32 - Emit a long directive and value. 1782 /// 1783 void AsmPrinter::EmitInt32(int Value) const { 1784 OutStreamer->EmitIntValue(Value, 4); 1785 } 1786 1787 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1788 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1789 /// .set if it avoids relocations. 1790 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1791 unsigned Size) const { 1792 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1793 } 1794 1795 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1796 /// where the size in bytes of the directive is specified by Size and Label 1797 /// specifies the label. This implicitly uses .set if it is available. 1798 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1799 unsigned Size, 1800 bool IsSectionRelative) const { 1801 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1802 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1803 if (Size > 4) 1804 OutStreamer->EmitZeros(Size - 4); 1805 return; 1806 } 1807 1808 // Emit Label+Offset (or just Label if Offset is zero) 1809 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1810 if (Offset) 1811 Expr = MCBinaryExpr::createAdd( 1812 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1813 1814 OutStreamer->EmitValue(Expr, Size); 1815 } 1816 1817 //===----------------------------------------------------------------------===// 1818 1819 // EmitAlignment - Emit an alignment directive to the specified power of 1820 // two boundary. For example, if you pass in 3 here, you will get an 8 1821 // byte alignment. If a global value is specified, and if that global has 1822 // an explicit alignment requested, it will override the alignment request 1823 // if required for correctness. 1824 // 1825 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1826 if (GV) 1827 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1828 1829 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1830 1831 assert(NumBits < 1832 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1833 "undefined behavior"); 1834 if (getCurrentSection()->getKind().isText()) 1835 OutStreamer->EmitCodeAlignment(1u << NumBits); 1836 else 1837 OutStreamer->EmitValueToAlignment(1u << NumBits); 1838 } 1839 1840 //===----------------------------------------------------------------------===// 1841 // Constant emission. 1842 //===----------------------------------------------------------------------===// 1843 1844 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1845 MCContext &Ctx = OutContext; 1846 1847 if (CV->isNullValue() || isa<UndefValue>(CV)) 1848 return MCConstantExpr::create(0, Ctx); 1849 1850 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1851 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1852 1853 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1854 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1855 1856 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1857 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1858 1859 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1860 if (!CE) { 1861 llvm_unreachable("Unknown constant value to lower!"); 1862 } 1863 1864 switch (CE->getOpcode()) { 1865 default: 1866 // If the code isn't optimized, there may be outstanding folding 1867 // opportunities. Attempt to fold the expression using DataLayout as a 1868 // last resort before giving up. 1869 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1870 if (C != CE) 1871 return lowerConstant(C); 1872 1873 // Otherwise report the problem to the user. 1874 { 1875 std::string S; 1876 raw_string_ostream OS(S); 1877 OS << "Unsupported expression in static initializer: "; 1878 CE->printAsOperand(OS, /*PrintType=*/false, 1879 !MF ? nullptr : MF->getFunction()->getParent()); 1880 report_fatal_error(OS.str()); 1881 } 1882 case Instruction::GetElementPtr: { 1883 // Generate a symbolic expression for the byte address 1884 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1885 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1886 1887 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1888 if (!OffsetAI) 1889 return Base; 1890 1891 int64_t Offset = OffsetAI.getSExtValue(); 1892 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1893 Ctx); 1894 } 1895 1896 case Instruction::Trunc: 1897 // We emit the value and depend on the assembler to truncate the generated 1898 // expression properly. This is important for differences between 1899 // blockaddress labels. Since the two labels are in the same function, it 1900 // is reasonable to treat their delta as a 32-bit value. 1901 LLVM_FALLTHROUGH; 1902 case Instruction::BitCast: 1903 return lowerConstant(CE->getOperand(0)); 1904 1905 case Instruction::IntToPtr: { 1906 const DataLayout &DL = getDataLayout(); 1907 1908 // Handle casts to pointers by changing them into casts to the appropriate 1909 // integer type. This promotes constant folding and simplifies this code. 1910 Constant *Op = CE->getOperand(0); 1911 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1912 false/*ZExt*/); 1913 return lowerConstant(Op); 1914 } 1915 1916 case Instruction::PtrToInt: { 1917 const DataLayout &DL = getDataLayout(); 1918 1919 // Support only foldable casts to/from pointers that can be eliminated by 1920 // changing the pointer to the appropriately sized integer type. 1921 Constant *Op = CE->getOperand(0); 1922 Type *Ty = CE->getType(); 1923 1924 const MCExpr *OpExpr = lowerConstant(Op); 1925 1926 // We can emit the pointer value into this slot if the slot is an 1927 // integer slot equal to the size of the pointer. 1928 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1929 return OpExpr; 1930 1931 // Otherwise the pointer is smaller than the resultant integer, mask off 1932 // the high bits so we are sure to get a proper truncation if the input is 1933 // a constant expr. 1934 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1935 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1936 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1937 } 1938 1939 case Instruction::Sub: { 1940 GlobalValue *LHSGV; 1941 APInt LHSOffset; 1942 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1943 getDataLayout())) { 1944 GlobalValue *RHSGV; 1945 APInt RHSOffset; 1946 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1947 getDataLayout())) { 1948 const MCExpr *RelocExpr = 1949 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1950 if (!RelocExpr) 1951 RelocExpr = MCBinaryExpr::createSub( 1952 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1953 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1954 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1955 if (Addend != 0) 1956 RelocExpr = MCBinaryExpr::createAdd( 1957 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1958 return RelocExpr; 1959 } 1960 } 1961 } 1962 // else fallthrough 1963 1964 // The MC library also has a right-shift operator, but it isn't consistently 1965 // signed or unsigned between different targets. 1966 case Instruction::Add: 1967 case Instruction::Mul: 1968 case Instruction::SDiv: 1969 case Instruction::SRem: 1970 case Instruction::Shl: 1971 case Instruction::And: 1972 case Instruction::Or: 1973 case Instruction::Xor: { 1974 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1975 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1976 switch (CE->getOpcode()) { 1977 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1978 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1979 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1980 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1981 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1982 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1983 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1984 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1985 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1986 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1987 } 1988 } 1989 } 1990 } 1991 1992 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1993 AsmPrinter &AP, 1994 const Constant *BaseCV = nullptr, 1995 uint64_t Offset = 0); 1996 1997 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1998 1999 /// isRepeatedByteSequence - Determine whether the given value is 2000 /// composed of a repeated sequence of identical bytes and return the 2001 /// byte value. If it is not a repeated sequence, return -1. 2002 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2003 StringRef Data = V->getRawDataValues(); 2004 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2005 char C = Data[0]; 2006 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2007 if (Data[i] != C) return -1; 2008 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2009 } 2010 2011 /// isRepeatedByteSequence - Determine whether the given value is 2012 /// composed of a repeated sequence of identical bytes and return the 2013 /// byte value. If it is not a repeated sequence, return -1. 2014 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2015 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2016 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2017 assert(Size % 8 == 0); 2018 2019 // Extend the element to take zero padding into account. 2020 APInt Value = CI->getValue().zextOrSelf(Size); 2021 if (!Value.isSplat(8)) 2022 return -1; 2023 2024 return Value.zextOrTrunc(8).getZExtValue(); 2025 } 2026 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2027 // Make sure all array elements are sequences of the same repeated 2028 // byte. 2029 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2030 Constant *Op0 = CA->getOperand(0); 2031 int Byte = isRepeatedByteSequence(Op0, DL); 2032 if (Byte == -1) 2033 return -1; 2034 2035 // All array elements must be equal. 2036 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2037 if (CA->getOperand(i) != Op0) 2038 return -1; 2039 return Byte; 2040 } 2041 2042 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2043 return isRepeatedByteSequence(CDS); 2044 2045 return -1; 2046 } 2047 2048 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2049 const ConstantDataSequential *CDS, 2050 AsmPrinter &AP) { 2051 // See if we can aggregate this into a .fill, if so, emit it as such. 2052 int Value = isRepeatedByteSequence(CDS, DL); 2053 if (Value != -1) { 2054 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2055 // Don't emit a 1-byte object as a .fill. 2056 if (Bytes > 1) 2057 return AP.OutStreamer->emitFill(Bytes, Value); 2058 } 2059 2060 // If this can be emitted with .ascii/.asciz, emit it as such. 2061 if (CDS->isString()) 2062 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2063 2064 // Otherwise, emit the values in successive locations. 2065 unsigned ElementByteSize = CDS->getElementByteSize(); 2066 if (isa<IntegerType>(CDS->getElementType())) { 2067 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2068 if (AP.isVerbose()) 2069 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2070 CDS->getElementAsInteger(i)); 2071 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2072 ElementByteSize); 2073 } 2074 } else { 2075 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2076 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2077 } 2078 2079 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2080 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2081 CDS->getNumElements(); 2082 if (unsigned Padding = Size - EmittedSize) 2083 AP.OutStreamer->EmitZeros(Padding); 2084 } 2085 2086 static void emitGlobalConstantArray(const DataLayout &DL, 2087 const ConstantArray *CA, AsmPrinter &AP, 2088 const Constant *BaseCV, uint64_t Offset) { 2089 // See if we can aggregate some values. Make sure it can be 2090 // represented as a series of bytes of the constant value. 2091 int Value = isRepeatedByteSequence(CA, DL); 2092 2093 if (Value != -1) { 2094 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2095 AP.OutStreamer->emitFill(Bytes, Value); 2096 } 2097 else { 2098 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2099 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2100 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2101 } 2102 } 2103 } 2104 2105 static void emitGlobalConstantVector(const DataLayout &DL, 2106 const ConstantVector *CV, AsmPrinter &AP) { 2107 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2108 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2109 2110 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2111 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2112 CV->getType()->getNumElements(); 2113 if (unsigned Padding = Size - EmittedSize) 2114 AP.OutStreamer->EmitZeros(Padding); 2115 } 2116 2117 static void emitGlobalConstantStruct(const DataLayout &DL, 2118 const ConstantStruct *CS, AsmPrinter &AP, 2119 const Constant *BaseCV, uint64_t Offset) { 2120 // Print the fields in successive locations. Pad to align if needed! 2121 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2122 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2123 uint64_t SizeSoFar = 0; 2124 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2125 const Constant *Field = CS->getOperand(i); 2126 2127 // Print the actual field value. 2128 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2129 2130 // Check if padding is needed and insert one or more 0s. 2131 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2132 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2133 - Layout->getElementOffset(i)) - FieldSize; 2134 SizeSoFar += FieldSize + PadSize; 2135 2136 // Insert padding - this may include padding to increase the size of the 2137 // current field up to the ABI size (if the struct is not packed) as well 2138 // as padding to ensure that the next field starts at the right offset. 2139 AP.OutStreamer->EmitZeros(PadSize); 2140 } 2141 assert(SizeSoFar == Layout->getSizeInBytes() && 2142 "Layout of constant struct may be incorrect!"); 2143 } 2144 2145 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2146 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2147 2148 // First print a comment with what we think the original floating-point value 2149 // should have been. 2150 if (AP.isVerbose()) { 2151 SmallString<8> StrVal; 2152 CFP->getValueAPF().toString(StrVal); 2153 2154 if (CFP->getType()) 2155 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2156 else 2157 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2158 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2159 } 2160 2161 // Now iterate through the APInt chunks, emitting them in endian-correct 2162 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2163 // floats). 2164 unsigned NumBytes = API.getBitWidth() / 8; 2165 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2166 const uint64_t *p = API.getRawData(); 2167 2168 // PPC's long double has odd notions of endianness compared to how LLVM 2169 // handles it: p[0] goes first for *big* endian on PPC. 2170 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2171 int Chunk = API.getNumWords() - 1; 2172 2173 if (TrailingBytes) 2174 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2175 2176 for (; Chunk >= 0; --Chunk) 2177 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2178 } else { 2179 unsigned Chunk; 2180 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2181 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2182 2183 if (TrailingBytes) 2184 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2185 } 2186 2187 // Emit the tail padding for the long double. 2188 const DataLayout &DL = AP.getDataLayout(); 2189 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2190 DL.getTypeStoreSize(CFP->getType())); 2191 } 2192 2193 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2194 const DataLayout &DL = AP.getDataLayout(); 2195 unsigned BitWidth = CI->getBitWidth(); 2196 2197 // Copy the value as we may massage the layout for constants whose bit width 2198 // is not a multiple of 64-bits. 2199 APInt Realigned(CI->getValue()); 2200 uint64_t ExtraBits = 0; 2201 unsigned ExtraBitsSize = BitWidth & 63; 2202 2203 if (ExtraBitsSize) { 2204 // The bit width of the data is not a multiple of 64-bits. 2205 // The extra bits are expected to be at the end of the chunk of the memory. 2206 // Little endian: 2207 // * Nothing to be done, just record the extra bits to emit. 2208 // Big endian: 2209 // * Record the extra bits to emit. 2210 // * Realign the raw data to emit the chunks of 64-bits. 2211 if (DL.isBigEndian()) { 2212 // Basically the structure of the raw data is a chunk of 64-bits cells: 2213 // 0 1 BitWidth / 64 2214 // [chunk1][chunk2] ... [chunkN]. 2215 // The most significant chunk is chunkN and it should be emitted first. 2216 // However, due to the alignment issue chunkN contains useless bits. 2217 // Realign the chunks so that they contain only useless information: 2218 // ExtraBits 0 1 (BitWidth / 64) - 1 2219 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2220 ExtraBits = Realigned.getRawData()[0] & 2221 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2222 Realigned = Realigned.lshr(ExtraBitsSize); 2223 } else 2224 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2225 } 2226 2227 // We don't expect assemblers to support integer data directives 2228 // for more than 64 bits, so we emit the data in at most 64-bit 2229 // quantities at a time. 2230 const uint64_t *RawData = Realigned.getRawData(); 2231 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2232 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2233 AP.OutStreamer->EmitIntValue(Val, 8); 2234 } 2235 2236 if (ExtraBitsSize) { 2237 // Emit the extra bits after the 64-bits chunks. 2238 2239 // Emit a directive that fills the expected size. 2240 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2241 Size -= (BitWidth / 64) * 8; 2242 assert(Size && Size * 8 >= ExtraBitsSize && 2243 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2244 == ExtraBits && "Directive too small for extra bits."); 2245 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2246 } 2247 } 2248 2249 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2250 /// equivalent global, by a target specific GOT pc relative access to the 2251 /// final symbol. 2252 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2253 const Constant *BaseCst, 2254 uint64_t Offset) { 2255 // The global @foo below illustrates a global that uses a got equivalent. 2256 // 2257 // @bar = global i32 42 2258 // @gotequiv = private unnamed_addr constant i32* @bar 2259 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2260 // i64 ptrtoint (i32* @foo to i64)) 2261 // to i32) 2262 // 2263 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2264 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2265 // form: 2266 // 2267 // foo = cstexpr, where 2268 // cstexpr := <gotequiv> - "." + <cst> 2269 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2270 // 2271 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2272 // 2273 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2274 // gotpcrelcst := <offset from @foo base> + <cst> 2275 // 2276 MCValue MV; 2277 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2278 return; 2279 const MCSymbolRefExpr *SymA = MV.getSymA(); 2280 if (!SymA) 2281 return; 2282 2283 // Check that GOT equivalent symbol is cached. 2284 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2285 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2286 return; 2287 2288 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2289 if (!BaseGV) 2290 return; 2291 2292 // Check for a valid base symbol 2293 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2294 const MCSymbolRefExpr *SymB = MV.getSymB(); 2295 2296 if (!SymB || BaseSym != &SymB->getSymbol()) 2297 return; 2298 2299 // Make sure to match: 2300 // 2301 // gotpcrelcst := <offset from @foo base> + <cst> 2302 // 2303 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2304 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2305 // if the target knows how to encode it. 2306 // 2307 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2308 if (GOTPCRelCst < 0) 2309 return; 2310 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2311 return; 2312 2313 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2314 // 2315 // bar: 2316 // .long 42 2317 // gotequiv: 2318 // .quad bar 2319 // foo: 2320 // .long gotequiv - "." + <cst> 2321 // 2322 // is replaced by the target specific equivalent to: 2323 // 2324 // bar: 2325 // .long 42 2326 // foo: 2327 // .long bar@GOTPCREL+<gotpcrelcst> 2328 // 2329 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2330 const GlobalVariable *GV = Result.first; 2331 int NumUses = (int)Result.second; 2332 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2333 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2334 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2335 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2336 2337 // Update GOT equivalent usage information 2338 --NumUses; 2339 if (NumUses >= 0) 2340 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2341 } 2342 2343 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2344 AsmPrinter &AP, const Constant *BaseCV, 2345 uint64_t Offset) { 2346 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2347 2348 // Globals with sub-elements such as combinations of arrays and structs 2349 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2350 // constant symbol base and the current position with BaseCV and Offset. 2351 if (!BaseCV && CV->hasOneUse()) 2352 BaseCV = dyn_cast<Constant>(CV->user_back()); 2353 2354 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2355 return AP.OutStreamer->EmitZeros(Size); 2356 2357 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2358 switch (Size) { 2359 case 1: 2360 case 2: 2361 case 4: 2362 case 8: 2363 if (AP.isVerbose()) 2364 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2365 CI->getZExtValue()); 2366 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2367 return; 2368 default: 2369 emitGlobalConstantLargeInt(CI, AP); 2370 return; 2371 } 2372 } 2373 2374 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2375 return emitGlobalConstantFP(CFP, AP); 2376 2377 if (isa<ConstantPointerNull>(CV)) { 2378 AP.OutStreamer->EmitIntValue(0, Size); 2379 return; 2380 } 2381 2382 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2383 return emitGlobalConstantDataSequential(DL, CDS, AP); 2384 2385 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2386 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2387 2388 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2389 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2390 2391 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2392 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2393 // vectors). 2394 if (CE->getOpcode() == Instruction::BitCast) 2395 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2396 2397 if (Size > 8) { 2398 // If the constant expression's size is greater than 64-bits, then we have 2399 // to emit the value in chunks. Try to constant fold the value and emit it 2400 // that way. 2401 Constant *New = ConstantFoldConstant(CE, DL); 2402 if (New && New != CE) 2403 return emitGlobalConstantImpl(DL, New, AP); 2404 } 2405 } 2406 2407 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2408 return emitGlobalConstantVector(DL, V, AP); 2409 2410 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2411 // thread the streamer with EmitValue. 2412 const MCExpr *ME = AP.lowerConstant(CV); 2413 2414 // Since lowerConstant already folded and got rid of all IR pointer and 2415 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2416 // directly. 2417 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2418 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2419 2420 AP.OutStreamer->EmitValue(ME, Size); 2421 } 2422 2423 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2424 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2425 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2426 if (Size) 2427 emitGlobalConstantImpl(DL, CV, *this); 2428 else if (MAI->hasSubsectionsViaSymbols()) { 2429 // If the global has zero size, emit a single byte so that two labels don't 2430 // look like they are at the same location. 2431 OutStreamer->EmitIntValue(0, 1); 2432 } 2433 } 2434 2435 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2436 // Target doesn't support this yet! 2437 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2438 } 2439 2440 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2441 if (Offset > 0) 2442 OS << '+' << Offset; 2443 else if (Offset < 0) 2444 OS << Offset; 2445 } 2446 2447 //===----------------------------------------------------------------------===// 2448 // Symbol Lowering Routines. 2449 //===----------------------------------------------------------------------===// 2450 2451 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2452 return OutContext.createTempSymbol(Name, true); 2453 } 2454 2455 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2456 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2457 } 2458 2459 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2460 return MMI->getAddrLabelSymbol(BB); 2461 } 2462 2463 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2464 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2465 const DataLayout &DL = getDataLayout(); 2466 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2467 "CPI" + Twine(getFunctionNumber()) + "_" + 2468 Twine(CPID)); 2469 } 2470 2471 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2472 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2473 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2474 } 2475 2476 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2477 /// FIXME: privatize to AsmPrinter. 2478 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2479 const DataLayout &DL = getDataLayout(); 2480 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2481 Twine(getFunctionNumber()) + "_" + 2482 Twine(UID) + "_set_" + Twine(MBBID)); 2483 } 2484 2485 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2486 StringRef Suffix) const { 2487 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2488 } 2489 2490 /// Return the MCSymbol for the specified ExternalSymbol. 2491 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2492 SmallString<60> NameStr; 2493 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2494 return OutContext.getOrCreateSymbol(NameStr); 2495 } 2496 2497 /// PrintParentLoopComment - Print comments about parent loops of this one. 2498 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2499 unsigned FunctionNumber) { 2500 if (!Loop) return; 2501 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2502 OS.indent(Loop->getLoopDepth()*2) 2503 << "Parent Loop BB" << FunctionNumber << "_" 2504 << Loop->getHeader()->getNumber() 2505 << " Depth=" << Loop->getLoopDepth() << '\n'; 2506 } 2507 2508 2509 /// PrintChildLoopComment - Print comments about child loops within 2510 /// the loop for this basic block, with nesting. 2511 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2512 unsigned FunctionNumber) { 2513 // Add child loop information 2514 for (const MachineLoop *CL : *Loop) { 2515 OS.indent(CL->getLoopDepth()*2) 2516 << "Child Loop BB" << FunctionNumber << "_" 2517 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2518 << '\n'; 2519 PrintChildLoopComment(OS, CL, FunctionNumber); 2520 } 2521 } 2522 2523 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2524 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2525 const MachineLoopInfo *LI, 2526 const AsmPrinter &AP) { 2527 // Add loop depth information 2528 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2529 if (!Loop) return; 2530 2531 MachineBasicBlock *Header = Loop->getHeader(); 2532 assert(Header && "No header for loop"); 2533 2534 // If this block is not a loop header, just print out what is the loop header 2535 // and return. 2536 if (Header != &MBB) { 2537 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2538 Twine(AP.getFunctionNumber())+"_" + 2539 Twine(Loop->getHeader()->getNumber())+ 2540 " Depth="+Twine(Loop->getLoopDepth())); 2541 return; 2542 } 2543 2544 // Otherwise, it is a loop header. Print out information about child and 2545 // parent loops. 2546 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2547 2548 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2549 2550 OS << "=>"; 2551 OS.indent(Loop->getLoopDepth()*2-2); 2552 2553 OS << "This "; 2554 if (Loop->empty()) 2555 OS << "Inner "; 2556 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2557 2558 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2559 } 2560 2561 /// EmitBasicBlockStart - This method prints the label for the specified 2562 /// MachineBasicBlock, an alignment (if present) and a comment describing 2563 /// it if appropriate. 2564 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2565 // End the previous funclet and start a new one. 2566 if (MBB.isEHFuncletEntry()) { 2567 for (const HandlerInfo &HI : Handlers) { 2568 HI.Handler->endFunclet(); 2569 HI.Handler->beginFunclet(MBB); 2570 } 2571 } 2572 2573 // Emit an alignment directive for this block, if needed. 2574 if (unsigned Align = MBB.getAlignment()) 2575 EmitAlignment(Align); 2576 2577 // If the block has its address taken, emit any labels that were used to 2578 // reference the block. It is possible that there is more than one label 2579 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2580 // the references were generated. 2581 if (MBB.hasAddressTaken()) { 2582 const BasicBlock *BB = MBB.getBasicBlock(); 2583 if (isVerbose()) 2584 OutStreamer->AddComment("Block address taken"); 2585 2586 // MBBs can have their address taken as part of CodeGen without having 2587 // their corresponding BB's address taken in IR 2588 if (BB->hasAddressTaken()) 2589 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2590 OutStreamer->EmitLabel(Sym); 2591 } 2592 2593 // Print some verbose block comments. 2594 if (isVerbose()) { 2595 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2596 if (BB->hasName()) { 2597 BB->printAsOperand(OutStreamer->GetCommentOS(), 2598 /*PrintType=*/false, BB->getModule()); 2599 OutStreamer->GetCommentOS() << '\n'; 2600 } 2601 } 2602 emitBasicBlockLoopComments(MBB, LI, *this); 2603 } 2604 2605 // Print the main label for the block. 2606 if (MBB.pred_empty() || 2607 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2608 if (isVerbose()) { 2609 // NOTE: Want this comment at start of line, don't emit with AddComment. 2610 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2611 } 2612 } else { 2613 OutStreamer->EmitLabel(MBB.getSymbol()); 2614 } 2615 } 2616 2617 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2618 bool IsDefinition) const { 2619 MCSymbolAttr Attr = MCSA_Invalid; 2620 2621 switch (Visibility) { 2622 default: break; 2623 case GlobalValue::HiddenVisibility: 2624 if (IsDefinition) 2625 Attr = MAI->getHiddenVisibilityAttr(); 2626 else 2627 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2628 break; 2629 case GlobalValue::ProtectedVisibility: 2630 Attr = MAI->getProtectedVisibilityAttr(); 2631 break; 2632 } 2633 2634 if (Attr != MCSA_Invalid) 2635 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2636 } 2637 2638 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2639 /// exactly one predecessor and the control transfer mechanism between 2640 /// the predecessor and this block is a fall-through. 2641 bool AsmPrinter:: 2642 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2643 // If this is a landing pad, it isn't a fall through. If it has no preds, 2644 // then nothing falls through to it. 2645 if (MBB->isEHPad() || MBB->pred_empty()) 2646 return false; 2647 2648 // If there isn't exactly one predecessor, it can't be a fall through. 2649 if (MBB->pred_size() > 1) 2650 return false; 2651 2652 // The predecessor has to be immediately before this block. 2653 MachineBasicBlock *Pred = *MBB->pred_begin(); 2654 if (!Pred->isLayoutSuccessor(MBB)) 2655 return false; 2656 2657 // If the block is completely empty, then it definitely does fall through. 2658 if (Pred->empty()) 2659 return true; 2660 2661 // Check the terminators in the previous blocks 2662 for (const auto &MI : Pred->terminators()) { 2663 // If it is not a simple branch, we are in a table somewhere. 2664 if (!MI.isBranch() || MI.isIndirectBranch()) 2665 return false; 2666 2667 // If we are the operands of one of the branches, this is not a fall 2668 // through. Note that targets with delay slots will usually bundle 2669 // terminators with the delay slot instruction. 2670 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2671 if (OP->isJTI()) 2672 return false; 2673 if (OP->isMBB() && OP->getMBB() == MBB) 2674 return false; 2675 } 2676 } 2677 2678 return true; 2679 } 2680 2681 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2682 if (!S.usesMetadata()) 2683 return nullptr; 2684 2685 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2686 " stackmap formats, please see the documentation for a description of" 2687 " the default format. If you really need a custom serialized format," 2688 " please file a bug"); 2689 2690 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2691 gcp_map_type::iterator GCPI = GCMap.find(&S); 2692 if (GCPI != GCMap.end()) 2693 return GCPI->second.get(); 2694 2695 auto Name = S.getName(); 2696 2697 for (GCMetadataPrinterRegistry::iterator 2698 I = GCMetadataPrinterRegistry::begin(), 2699 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2700 if (Name == I->getName()) { 2701 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2702 GMP->S = &S; 2703 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2704 return IterBool.first->second.get(); 2705 } 2706 2707 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2708 } 2709 2710 /// Pin vtable to this file. 2711 AsmPrinterHandler::~AsmPrinterHandler() = default; 2712 2713 void AsmPrinterHandler::markFunctionEnd() {} 2714 2715 // In the binary's "xray_instr_map" section, an array of these function entries 2716 // describes each instrumentation point. When XRay patches your code, the index 2717 // into this table will be given to your handler as a patch point identifier. 2718 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2719 const MCSymbol *CurrentFnSym) const { 2720 Out->EmitSymbolValue(Sled, Bytes); 2721 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2722 auto Kind8 = static_cast<uint8_t>(Kind); 2723 Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2724 Out->EmitBytes( 2725 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2726 Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries 2727 } 2728 2729 void AsmPrinter::emitXRayTable() { 2730 if (Sleds.empty()) 2731 return; 2732 2733 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2734 auto Fn = MF->getFunction(); 2735 MCSection *Section = nullptr; 2736 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2737 if (Fn->hasComdat()) { 2738 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2739 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2740 Fn->getComdat()->getName()); 2741 } else { 2742 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2743 ELF::SHF_ALLOC); 2744 } 2745 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2746 Section = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2747 SectionKind::getReadOnlyWithRel()); 2748 } else { 2749 llvm_unreachable("Unsupported target"); 2750 } 2751 2752 // Before we switch over, we force a reference to a label inside the 2753 // xray_instr_map section. Since this function is always called just 2754 // before the function's end, we assume that this is happening after 2755 // the last return instruction. 2756 2757 auto WordSizeBytes = TM.getPointerSize(); 2758 MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true); 2759 OutStreamer->EmitCodeAlignment(16); 2760 OutStreamer->EmitSymbolValue(Tmp, WordSizeBytes, false); 2761 OutStreamer->SwitchSection(Section); 2762 OutStreamer->EmitLabel(Tmp); 2763 for (const auto &Sled : Sleds) 2764 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2765 2766 OutStreamer->SwitchSection(PrevSection); 2767 Sleds.clear(); 2768 } 2769 2770 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2771 SledKind Kind) { 2772 auto Fn = MI.getParent()->getParent()->getFunction(); 2773 auto Attr = Fn->getFnAttribute("function-instrument"); 2774 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2775 bool AlwaysInstrument = 2776 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2777 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2778 Kind = SledKind::LOG_ARGS_ENTER; 2779 Sleds.emplace_back( 2780 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2781 } 2782 2783 uint16_t AsmPrinter::getDwarfVersion() const { 2784 return OutStreamer->getContext().getDwarfVersion(); 2785 } 2786 2787 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2788 OutStreamer->getContext().setDwarfVersion(Version); 2789 } 2790