1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/ObjectUtils.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSubtargetInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionELF.h" 92 #include "llvm/MC/MCSectionMachO.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCTargetOptions.h" 98 #include "llvm/MC/MCValue.h" 99 #include "llvm/MC/SectionKind.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/Format.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/Path.h" 108 #include "llvm/Support/TargetRegistry.h" 109 #include "llvm/Support/Timer.h" 110 #include "llvm/Support/raw_ostream.h" 111 #include "llvm/Target/TargetMachine.h" 112 #include "llvm/Target/TargetOptions.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cinttypes> 116 #include <cstdint> 117 #include <iterator> 118 #include <limits> 119 #include <memory> 120 #include <string> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 126 #define DEBUG_TYPE "asm-printer" 127 128 static const char *const DWARFGroupName = "dwarf"; 129 static const char *const DWARFGroupDescription = "DWARF Emission"; 130 static const char *const DbgTimerName = "emit"; 131 static const char *const DbgTimerDescription = "Debug Info Emission"; 132 static const char *const EHTimerName = "write_exception"; 133 static const char *const EHTimerDescription = "DWARF Exception Writer"; 134 static const char *const CFGuardName = "Control Flow Guard"; 135 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 136 static const char *const CodeViewLineTablesGroupName = "linetables"; 137 static const char *const CodeViewLineTablesGroupDescription = 138 "CodeView Line Tables"; 139 140 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 141 142 static cl::opt<bool> 143 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 144 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 145 146 char AsmPrinter::ID = 0; 147 148 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 149 150 static gcp_map_type &getGCMap(void *&P) { 151 if (!P) 152 P = new gcp_map_type(); 153 return *(gcp_map_type*)P; 154 } 155 156 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 157 /// value in log2 form. This rounds up to the preferred alignment if possible 158 /// and legal. 159 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 160 unsigned InBits = 0) { 161 unsigned NumBits = 0; 162 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 163 NumBits = DL.getPreferredAlignmentLog(GVar); 164 165 // If InBits is specified, round it to it. 166 if (InBits > NumBits) 167 NumBits = InBits; 168 169 // If the GV has a specified alignment, take it into account. 170 if (GV->getAlignment() == 0) 171 return NumBits; 172 173 unsigned GVAlign = Log2_32(GV->getAlignment()); 174 175 // If the GVAlign is larger than NumBits, or if we are required to obey 176 // NumBits because the GV has an assigned section, obey it. 177 if (GVAlign > NumBits || GV->hasSection()) 178 NumBits = GVAlign; 179 return NumBits; 180 } 181 182 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 183 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 184 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 185 VerboseAsm = OutStreamer->isVerboseAsm(); 186 } 187 188 AsmPrinter::~AsmPrinter() { 189 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 190 191 if (GCMetadataPrinters) { 192 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 193 194 delete &GCMap; 195 GCMetadataPrinters = nullptr; 196 } 197 } 198 199 bool AsmPrinter::isPositionIndependent() const { 200 return TM.isPositionIndependent(); 201 } 202 203 /// getFunctionNumber - Return a unique ID for the current function. 204 unsigned AsmPrinter::getFunctionNumber() const { 205 return MF->getFunctionNumber(); 206 } 207 208 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 209 return *TM.getObjFileLowering(); 210 } 211 212 const DataLayout &AsmPrinter::getDataLayout() const { 213 return MMI->getModule()->getDataLayout(); 214 } 215 216 // Do not use the cached DataLayout because some client use it without a Module 217 // (llvm-dsymutil, llvm-dwarfdump). 218 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 219 220 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 221 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 222 return MF->getSubtarget<MCSubtargetInfo>(); 223 } 224 225 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 226 S.EmitInstruction(Inst, getSubtargetInfo()); 227 } 228 229 /// getCurrentSection() - Return the current section we are emitting to. 230 const MCSection *AsmPrinter::getCurrentSection() const { 231 return OutStreamer->getCurrentSectionOnly(); 232 } 233 234 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 235 AU.setPreservesAll(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 AU.addRequired<MachineModuleInfo>(); 238 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 239 AU.addRequired<GCModuleInfo>(); 240 AU.addRequired<MachineLoopInfo>(); 241 } 242 243 bool AsmPrinter::doInitialization(Module &M) { 244 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 245 246 // Initialize TargetLoweringObjectFile. 247 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 248 .Initialize(OutContext, TM); 249 250 OutStreamer->InitSections(false); 251 252 // Emit the version-min deployment target directive if needed. 253 // 254 // FIXME: If we end up with a collection of these sorts of Darwin-specific 255 // or ELF-specific things, it may make sense to have a platform helper class 256 // that will work with the target helper class. For now keep it here, as the 257 // alternative is duplicated code in each of the target asm printers that 258 // use the directive, where it would need the same conditionalization 259 // anyway. 260 const Triple &Target = TM.getTargetTriple(); 261 OutStreamer->EmitVersionForTarget(Target); 262 263 // Allow the target to emit any magic that it wants at the start of the file. 264 EmitStartOfAsmFile(M); 265 266 // Very minimal debug info. It is ignored if we emit actual debug info. If we 267 // don't, this at least helps the user find where a global came from. 268 if (MAI->hasSingleParameterDotFile()) { 269 // .file "foo.c" 270 OutStreamer->EmitFileDirective( 271 llvm::sys::path::filename(M.getSourceFileName())); 272 } 273 274 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 275 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 276 for (auto &I : *MI) 277 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 278 MP->beginAssembly(M, *MI, *this); 279 280 // Emit module-level inline asm if it exists. 281 if (!M.getModuleInlineAsm().empty()) { 282 // We're at the module level. Construct MCSubtarget from the default CPU 283 // and target triple. 284 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 285 TM.getTargetTriple().str(), TM.getTargetCPU(), 286 TM.getTargetFeatureString())); 287 OutStreamer->AddComment("Start of file scope inline assembly"); 288 OutStreamer->AddBlankLine(); 289 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 290 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 291 OutStreamer->AddComment("End of file scope inline assembly"); 292 OutStreamer->AddBlankLine(); 293 } 294 295 if (MAI->doesSupportDebugInformation()) { 296 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 297 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 298 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 299 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 300 DbgTimerName, DbgTimerDescription, 301 CodeViewLineTablesGroupName, 302 CodeViewLineTablesGroupDescription)); 303 } 304 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 305 DD = new DwarfDebug(this, &M); 306 DD->beginModule(); 307 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 308 DWARFGroupName, DWARFGroupDescription)); 309 } 310 } 311 312 switch (MAI->getExceptionHandlingType()) { 313 case ExceptionHandling::SjLj: 314 case ExceptionHandling::DwarfCFI: 315 case ExceptionHandling::ARM: 316 isCFIMoveForDebugging = true; 317 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 318 break; 319 for (auto &F: M.getFunctionList()) { 320 // If the module contains any function with unwind data, 321 // .eh_frame has to be emitted. 322 // Ignore functions that won't get emitted. 323 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 324 isCFIMoveForDebugging = false; 325 break; 326 } 327 } 328 break; 329 default: 330 isCFIMoveForDebugging = false; 331 break; 332 } 333 334 EHStreamer *ES = nullptr; 335 switch (MAI->getExceptionHandlingType()) { 336 case ExceptionHandling::None: 337 break; 338 case ExceptionHandling::SjLj: 339 case ExceptionHandling::DwarfCFI: 340 ES = new DwarfCFIException(this); 341 break; 342 case ExceptionHandling::ARM: 343 ES = new ARMException(this); 344 break; 345 case ExceptionHandling::WinEH: 346 switch (MAI->getWinEHEncodingType()) { 347 default: llvm_unreachable("unsupported unwinding information encoding"); 348 case WinEH::EncodingType::Invalid: 349 break; 350 case WinEH::EncodingType::X86: 351 case WinEH::EncodingType::Itanium: 352 ES = new WinException(this); 353 break; 354 } 355 break; 356 case ExceptionHandling::Wasm: 357 // TODO to prevent warning 358 break; 359 } 360 if (ES) 361 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 362 DWARFGroupName, DWARFGroupDescription)); 363 364 if (mdconst::extract_or_null<ConstantInt>( 365 MMI->getModule()->getModuleFlag("cfguard"))) 366 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 367 CFGuardDescription, DWARFGroupName, 368 DWARFGroupDescription)); 369 370 return false; 371 } 372 373 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 374 if (!MAI.hasWeakDefCanBeHiddenDirective()) 375 return false; 376 377 return canBeOmittedFromSymbolTable(GV); 378 } 379 380 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 381 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 382 switch (Linkage) { 383 case GlobalValue::CommonLinkage: 384 case GlobalValue::LinkOnceAnyLinkage: 385 case GlobalValue::LinkOnceODRLinkage: 386 case GlobalValue::WeakAnyLinkage: 387 case GlobalValue::WeakODRLinkage: 388 if (MAI->hasWeakDefDirective()) { 389 // .globl _foo 390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 391 392 if (!canBeHidden(GV, *MAI)) 393 // .weak_definition _foo 394 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 395 else 396 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 397 } else if (MAI->hasLinkOnceDirective()) { 398 // .globl _foo 399 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 400 //NOTE: linkonce is handled by the section the symbol was assigned to. 401 } else { 402 // .weak _foo 403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 404 } 405 return; 406 case GlobalValue::ExternalLinkage: 407 // If external, declare as a global symbol: .globl _foo 408 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 409 return; 410 case GlobalValue::PrivateLinkage: 411 case GlobalValue::InternalLinkage: 412 return; 413 case GlobalValue::AppendingLinkage: 414 case GlobalValue::AvailableExternallyLinkage: 415 case GlobalValue::ExternalWeakLinkage: 416 llvm_unreachable("Should never emit this"); 417 } 418 llvm_unreachable("Unknown linkage type!"); 419 } 420 421 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 422 const GlobalValue *GV) const { 423 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 424 } 425 426 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 427 return TM.getSymbol(GV); 428 } 429 430 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 431 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 432 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 433 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 434 "No emulated TLS variables in the common section"); 435 436 // Never emit TLS variable xyz in emulated TLS model. 437 // The initialization value is in __emutls_t.xyz instead of xyz. 438 if (IsEmuTLSVar) 439 return; 440 441 if (GV->hasInitializer()) { 442 // Check to see if this is a special global used by LLVM, if so, emit it. 443 if (EmitSpecialLLVMGlobal(GV)) 444 return; 445 446 // Skip the emission of global equivalents. The symbol can be emitted later 447 // on by emitGlobalGOTEquivs in case it turns out to be needed. 448 if (GlobalGOTEquivs.count(getSymbol(GV))) 449 return; 450 451 if (isVerbose()) { 452 // When printing the control variable __emutls_v.*, 453 // we don't need to print the original TLS variable name. 454 GV->printAsOperand(OutStreamer->GetCommentOS(), 455 /*PrintType=*/false, GV->getParent()); 456 OutStreamer->GetCommentOS() << '\n'; 457 } 458 } 459 460 MCSymbol *GVSym = getSymbol(GV); 461 MCSymbol *EmittedSym = GVSym; 462 463 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 464 // attributes. 465 // GV's or GVSym's attributes will be used for the EmittedSym. 466 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 467 468 if (!GV->hasInitializer()) // External globals require no extra code. 469 return; 470 471 GVSym->redefineIfPossible(); 472 if (GVSym->isDefined() || GVSym->isVariable()) 473 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 474 "' is already defined"); 475 476 if (MAI->hasDotTypeDotSizeDirective()) 477 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 478 479 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 480 481 const DataLayout &DL = GV->getParent()->getDataLayout(); 482 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 483 484 // If the alignment is specified, we *must* obey it. Overaligning a global 485 // with a specified alignment is a prompt way to break globals emitted to 486 // sections and expected to be contiguous (e.g. ObjC metadata). 487 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 488 489 for (const HandlerInfo &HI : Handlers) { 490 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 491 HI.TimerGroupName, HI.TimerGroupDescription, 492 TimePassesIsEnabled); 493 HI.Handler->setSymbolSize(GVSym, Size); 494 } 495 496 // Handle common symbols 497 if (GVKind.isCommon()) { 498 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 499 unsigned Align = 1 << AlignLog; 500 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 501 Align = 0; 502 503 // .comm _foo, 42, 4 504 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 505 return; 506 } 507 508 // Determine to which section this global should be emitted. 509 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 510 511 // If we have a bss global going to a section that supports the 512 // zerofill directive, do so here. 513 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 514 TheSection->isVirtualSection()) { 515 if (Size == 0) 516 Size = 1; // zerofill of 0 bytes is undefined. 517 unsigned Align = 1 << AlignLog; 518 EmitLinkage(GV, GVSym); 519 // .zerofill __DATA, __bss, _foo, 400, 5 520 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 521 return; 522 } 523 524 // If this is a BSS local symbol and we are emitting in the BSS 525 // section use .lcomm/.comm directive. 526 if (GVKind.isBSSLocal() && 527 getObjFileLowering().getBSSSection() == TheSection) { 528 if (Size == 0) 529 Size = 1; // .comm Foo, 0 is undefined, avoid it. 530 unsigned Align = 1 << AlignLog; 531 532 // Use .lcomm only if it supports user-specified alignment. 533 // Otherwise, while it would still be correct to use .lcomm in some 534 // cases (e.g. when Align == 1), the external assembler might enfore 535 // some -unknown- default alignment behavior, which could cause 536 // spurious differences between external and integrated assembler. 537 // Prefer to simply fall back to .local / .comm in this case. 538 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 539 // .lcomm _foo, 42 540 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 541 return; 542 } 543 544 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 545 Align = 0; 546 547 // .local _foo 548 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 549 // .comm _foo, 42, 4 550 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 551 return; 552 } 553 554 // Handle thread local data for mach-o which requires us to output an 555 // additional structure of data and mangle the original symbol so that we 556 // can reference it later. 557 // 558 // TODO: This should become an "emit thread local global" method on TLOF. 559 // All of this macho specific stuff should be sunk down into TLOFMachO and 560 // stuff like "TLSExtraDataSection" should no longer be part of the parent 561 // TLOF class. This will also make it more obvious that stuff like 562 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 563 // specific code. 564 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 565 // Emit the .tbss symbol 566 MCSymbol *MangSym = 567 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 568 569 if (GVKind.isThreadBSS()) { 570 TheSection = getObjFileLowering().getTLSBSSSection(); 571 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 572 } else if (GVKind.isThreadData()) { 573 OutStreamer->SwitchSection(TheSection); 574 575 EmitAlignment(AlignLog, GV); 576 OutStreamer->EmitLabel(MangSym); 577 578 EmitGlobalConstant(GV->getParent()->getDataLayout(), 579 GV->getInitializer()); 580 } 581 582 OutStreamer->AddBlankLine(); 583 584 // Emit the variable struct for the runtime. 585 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 586 587 OutStreamer->SwitchSection(TLVSect); 588 // Emit the linkage here. 589 EmitLinkage(GV, GVSym); 590 OutStreamer->EmitLabel(GVSym); 591 592 // Three pointers in size: 593 // - __tlv_bootstrap - used to make sure support exists 594 // - spare pointer, used when mapped by the runtime 595 // - pointer to mangled symbol above with initializer 596 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 597 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 598 PtrSize); 599 OutStreamer->EmitIntValue(0, PtrSize); 600 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 601 602 OutStreamer->AddBlankLine(); 603 return; 604 } 605 606 MCSymbol *EmittedInitSym = GVSym; 607 608 OutStreamer->SwitchSection(TheSection); 609 610 EmitLinkage(GV, EmittedInitSym); 611 EmitAlignment(AlignLog, GV); 612 613 OutStreamer->EmitLabel(EmittedInitSym); 614 615 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 616 617 if (MAI->hasDotTypeDotSizeDirective()) 618 // .size foo, 42 619 OutStreamer->emitELFSize(EmittedInitSym, 620 MCConstantExpr::create(Size, OutContext)); 621 622 OutStreamer->AddBlankLine(); 623 } 624 625 /// Emit the directive and value for debug thread local expression 626 /// 627 /// \p Value - The value to emit. 628 /// \p Size - The size of the integer (in bytes) to emit. 629 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 630 unsigned Size) const { 631 OutStreamer->EmitValue(Value, Size); 632 } 633 634 /// EmitFunctionHeader - This method emits the header for the current 635 /// function. 636 void AsmPrinter::EmitFunctionHeader() { 637 const Function &F = MF->getFunction(); 638 639 if (isVerbose()) 640 OutStreamer->GetCommentOS() 641 << "-- Begin function " 642 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 643 644 // Print out constants referenced by the function 645 EmitConstantPool(); 646 647 // Print the 'header' of function. 648 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 649 EmitVisibility(CurrentFnSym, F.getVisibility()); 650 651 EmitLinkage(&F, CurrentFnSym); 652 if (MAI->hasFunctionAlignment()) 653 EmitAlignment(MF->getAlignment(), &F); 654 655 if (MAI->hasDotTypeDotSizeDirective()) 656 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 657 658 if (isVerbose()) { 659 F.printAsOperand(OutStreamer->GetCommentOS(), 660 /*PrintType=*/false, F.getParent()); 661 OutStreamer->GetCommentOS() << '\n'; 662 } 663 664 // Emit the prefix data. 665 if (F.hasPrefixData()) { 666 if (MAI->hasSubsectionsViaSymbols()) { 667 // Preserving prefix data on platforms which use subsections-via-symbols 668 // is a bit tricky. Here we introduce a symbol for the prefix data 669 // and use the .alt_entry attribute to mark the function's real entry point 670 // as an alternative entry point to the prefix-data symbol. 671 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 672 OutStreamer->EmitLabel(PrefixSym); 673 674 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 675 676 // Emit an .alt_entry directive for the actual function symbol. 677 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 678 } else { 679 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 680 } 681 } 682 683 // Emit the CurrentFnSym. This is a virtual function to allow targets to 684 // do their wild and crazy things as required. 685 EmitFunctionEntryLabel(); 686 687 // If the function had address-taken blocks that got deleted, then we have 688 // references to the dangling symbols. Emit them at the start of the function 689 // so that we don't get references to undefined symbols. 690 std::vector<MCSymbol*> DeadBlockSyms; 691 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 692 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 693 OutStreamer->AddComment("Address taken block that was later removed"); 694 OutStreamer->EmitLabel(DeadBlockSyms[i]); 695 } 696 697 if (CurrentFnBegin) { 698 if (MAI->useAssignmentForEHBegin()) { 699 MCSymbol *CurPos = OutContext.createTempSymbol(); 700 OutStreamer->EmitLabel(CurPos); 701 OutStreamer->EmitAssignment(CurrentFnBegin, 702 MCSymbolRefExpr::create(CurPos, OutContext)); 703 } else { 704 OutStreamer->EmitLabel(CurrentFnBegin); 705 } 706 } 707 708 // Emit pre-function debug and/or EH information. 709 for (const HandlerInfo &HI : Handlers) { 710 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 711 HI.TimerGroupDescription, TimePassesIsEnabled); 712 HI.Handler->beginFunction(MF); 713 } 714 715 // Emit the prologue data. 716 if (F.hasPrologueData()) 717 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 718 } 719 720 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 721 /// function. This can be overridden by targets as required to do custom stuff. 722 void AsmPrinter::EmitFunctionEntryLabel() { 723 CurrentFnSym->redefineIfPossible(); 724 725 // The function label could have already been emitted if two symbols end up 726 // conflicting due to asm renaming. Detect this and emit an error. 727 if (CurrentFnSym->isVariable()) 728 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 729 "' is a protected alias"); 730 if (CurrentFnSym->isDefined()) 731 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 732 "' label emitted multiple times to assembly file"); 733 734 return OutStreamer->EmitLabel(CurrentFnSym); 735 } 736 737 /// emitComments - Pretty-print comments for instructions. 738 /// It returns true iff the sched comment was emitted. 739 /// Otherwise it returns false. 740 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 741 AsmPrinter *AP) { 742 const MachineFunction *MF = MI.getMF(); 743 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 744 745 // Check for spills and reloads 746 int FI; 747 748 const MachineFrameInfo &MFI = MF->getFrameInfo(); 749 bool Commented = false; 750 751 // We assume a single instruction only has a spill or reload, not 752 // both. 753 const MachineMemOperand *MMO; 754 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 755 if (MFI.isSpillSlotObjectIndex(FI)) { 756 MMO = *MI.memoperands_begin(); 757 CommentOS << MMO->getSize() << "-byte Reload"; 758 Commented = true; 759 } 760 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 761 if (MFI.isSpillSlotObjectIndex(FI)) { 762 CommentOS << MMO->getSize() << "-byte Folded Reload"; 763 Commented = true; 764 } 765 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 766 if (MFI.isSpillSlotObjectIndex(FI)) { 767 MMO = *MI.memoperands_begin(); 768 CommentOS << MMO->getSize() << "-byte Spill"; 769 Commented = true; 770 } 771 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 772 if (MFI.isSpillSlotObjectIndex(FI)) { 773 CommentOS << MMO->getSize() << "-byte Folded Spill"; 774 Commented = true; 775 } 776 } 777 778 // Check for spill-induced copies 779 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 780 Commented = true; 781 CommentOS << " Reload Reuse"; 782 } 783 784 if (Commented) { 785 if (AP->EnablePrintSchedInfo) { 786 // If any comment was added above and we need sched info comment then add 787 // this new comment just after the above comment w/o "\n" between them. 788 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 789 return true; 790 } 791 CommentOS << "\n"; 792 } 793 return false; 794 } 795 796 /// emitImplicitDef - This method emits the specified machine instruction 797 /// that is an implicit def. 798 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 799 unsigned RegNo = MI->getOperand(0).getReg(); 800 801 SmallString<128> Str; 802 raw_svector_ostream OS(Str); 803 OS << "implicit-def: " 804 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 805 806 OutStreamer->AddComment(OS.str()); 807 OutStreamer->AddBlankLine(); 808 } 809 810 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 811 std::string Str; 812 raw_string_ostream OS(Str); 813 OS << "kill:"; 814 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 815 const MachineOperand &Op = MI->getOperand(i); 816 assert(Op.isReg() && "KILL instruction must have only register operands"); 817 OS << ' ' << (Op.isDef() ? "def " : "killed ") 818 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 819 } 820 AP.OutStreamer->AddComment(OS.str()); 821 AP.OutStreamer->AddBlankLine(); 822 } 823 824 /// emitDebugValueComment - This method handles the target-independent form 825 /// of DBG_VALUE, returning true if it was able to do so. A false return 826 /// means the target will need to handle MI in EmitInstruction. 827 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 828 // This code handles only the 4-operand target-independent form. 829 if (MI->getNumOperands() != 4) 830 return false; 831 832 SmallString<128> Str; 833 raw_svector_ostream OS(Str); 834 OS << "DEBUG_VALUE: "; 835 836 const DILocalVariable *V = MI->getDebugVariable(); 837 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 838 StringRef Name = SP->getName(); 839 if (!Name.empty()) 840 OS << Name << ":"; 841 } 842 OS << V->getName(); 843 OS << " <- "; 844 845 // The second operand is only an offset if it's an immediate. 846 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 847 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 848 const DIExpression *Expr = MI->getDebugExpression(); 849 if (Expr->getNumElements()) { 850 OS << '['; 851 bool NeedSep = false; 852 for (auto Op : Expr->expr_ops()) { 853 if (NeedSep) 854 OS << ", "; 855 else 856 NeedSep = true; 857 OS << dwarf::OperationEncodingString(Op.getOp()); 858 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 859 OS << ' ' << Op.getArg(I); 860 } 861 OS << "] "; 862 } 863 864 // Register or immediate value. Register 0 means undef. 865 if (MI->getOperand(0).isFPImm()) { 866 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 867 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 868 OS << (double)APF.convertToFloat(); 869 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 870 OS << APF.convertToDouble(); 871 } else { 872 // There is no good way to print long double. Convert a copy to 873 // double. Ah well, it's only a comment. 874 bool ignored; 875 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 876 &ignored); 877 OS << "(long double) " << APF.convertToDouble(); 878 } 879 } else if (MI->getOperand(0).isImm()) { 880 OS << MI->getOperand(0).getImm(); 881 } else if (MI->getOperand(0).isCImm()) { 882 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 883 } else { 884 unsigned Reg; 885 if (MI->getOperand(0).isReg()) { 886 Reg = MI->getOperand(0).getReg(); 887 } else { 888 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 889 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 890 Offset += TFI->getFrameIndexReference(*AP.MF, 891 MI->getOperand(0).getIndex(), Reg); 892 MemLoc = true; 893 } 894 if (Reg == 0) { 895 // Suppress offset, it is not meaningful here. 896 OS << "undef"; 897 // NOTE: Want this comment at start of line, don't emit with AddComment. 898 AP.OutStreamer->emitRawComment(OS.str()); 899 return true; 900 } 901 if (MemLoc) 902 OS << '['; 903 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 904 } 905 906 if (MemLoc) 907 OS << '+' << Offset << ']'; 908 909 // NOTE: Want this comment at start of line, don't emit with AddComment. 910 AP.OutStreamer->emitRawComment(OS.str()); 911 return true; 912 } 913 914 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 915 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 916 MF->getFunction().needsUnwindTableEntry()) 917 return CFI_M_EH; 918 919 if (MMI->hasDebugInfo()) 920 return CFI_M_Debug; 921 922 return CFI_M_None; 923 } 924 925 bool AsmPrinter::needsSEHMoves() { 926 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 927 } 928 929 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 930 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 931 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 932 ExceptionHandlingType != ExceptionHandling::ARM) 933 return; 934 935 if (needsCFIMoves() == CFI_M_None) 936 return; 937 938 // If there is no "real" instruction following this CFI instruction, skip 939 // emitting it; it would be beyond the end of the function's FDE range. 940 auto *MBB = MI.getParent(); 941 auto I = std::next(MI.getIterator()); 942 while (I != MBB->end() && I->isTransient()) 943 ++I; 944 if (I == MBB->instr_end() && 945 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 946 return; 947 948 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 949 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 950 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 951 emitCFIInstruction(CFI); 952 } 953 954 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 955 // The operands are the MCSymbol and the frame offset of the allocation. 956 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 957 int FrameOffset = MI.getOperand(1).getImm(); 958 959 // Emit a symbol assignment. 960 OutStreamer->EmitAssignment(FrameAllocSym, 961 MCConstantExpr::create(FrameOffset, OutContext)); 962 } 963 964 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 965 if (!MF.getTarget().Options.EmitStackSizeSection) 966 return; 967 968 MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection(); 969 if (!StackSizeSection) 970 return; 971 972 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 973 // Don't emit functions with dynamic stack allocations. 974 if (FrameInfo.hasVarSizedObjects()) 975 return; 976 977 OutStreamer->PushSection(); 978 OutStreamer->SwitchSection(StackSizeSection); 979 980 const MCSymbol *FunctionSymbol = getSymbol(&MF.getFunction()); 981 uint64_t StackSize = FrameInfo.getStackSize(); 982 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getPointerSize()); 983 OutStreamer->EmitULEB128IntValue(StackSize); 984 985 OutStreamer->PopSection(); 986 } 987 988 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 989 MachineModuleInfo *MMI) { 990 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 991 return true; 992 993 // We might emit an EH table that uses function begin and end labels even if 994 // we don't have any landingpads. 995 if (!MF.getFunction().hasPersonalityFn()) 996 return false; 997 return !isNoOpWithoutInvoke( 998 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 999 } 1000 1001 /// EmitFunctionBody - This method emits the body and trailer for a 1002 /// function. 1003 void AsmPrinter::EmitFunctionBody() { 1004 EmitFunctionHeader(); 1005 1006 // Emit target-specific gunk before the function body. 1007 EmitFunctionBodyStart(); 1008 1009 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1010 1011 // Print out code for the function. 1012 bool HasAnyRealCode = false; 1013 int NumInstsInFunction = 0; 1014 for (auto &MBB : *MF) { 1015 // Print a label for the basic block. 1016 EmitBasicBlockStart(MBB); 1017 for (auto &MI : MBB) { 1018 // Print the assembly for the instruction. 1019 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1020 !MI.isDebugValue()) { 1021 HasAnyRealCode = true; 1022 ++NumInstsInFunction; 1023 } 1024 1025 if (ShouldPrintDebugScopes) { 1026 for (const HandlerInfo &HI : Handlers) { 1027 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1028 HI.TimerGroupName, HI.TimerGroupDescription, 1029 TimePassesIsEnabled); 1030 HI.Handler->beginInstruction(&MI); 1031 } 1032 } 1033 1034 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1035 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1036 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1037 } 1038 1039 switch (MI.getOpcode()) { 1040 case TargetOpcode::CFI_INSTRUCTION: 1041 emitCFIInstruction(MI); 1042 break; 1043 case TargetOpcode::LOCAL_ESCAPE: 1044 emitFrameAlloc(MI); 1045 break; 1046 case TargetOpcode::EH_LABEL: 1047 case TargetOpcode::GC_LABEL: 1048 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1049 break; 1050 case TargetOpcode::INLINEASM: 1051 EmitInlineAsm(&MI); 1052 break; 1053 case TargetOpcode::DBG_VALUE: 1054 if (isVerbose()) { 1055 if (!emitDebugValueComment(&MI, *this)) 1056 EmitInstruction(&MI); 1057 } 1058 break; 1059 case TargetOpcode::IMPLICIT_DEF: 1060 if (isVerbose()) emitImplicitDef(&MI); 1061 break; 1062 case TargetOpcode::KILL: 1063 if (isVerbose()) emitKill(&MI, *this); 1064 break; 1065 default: 1066 EmitInstruction(&MI); 1067 break; 1068 } 1069 1070 if (ShouldPrintDebugScopes) { 1071 for (const HandlerInfo &HI : Handlers) { 1072 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1073 HI.TimerGroupName, HI.TimerGroupDescription, 1074 TimePassesIsEnabled); 1075 HI.Handler->endInstruction(); 1076 } 1077 } 1078 } 1079 1080 EmitBasicBlockEnd(MBB); 1081 } 1082 1083 EmittedInsts += NumInstsInFunction; 1084 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1085 MF->getFunction().getSubprogram(), 1086 &MF->front()); 1087 R << ore::NV("NumInstructions", NumInstsInFunction) 1088 << " instructions in function"; 1089 ORE->emit(R); 1090 1091 // If the function is empty and the object file uses .subsections_via_symbols, 1092 // then we need to emit *something* to the function body to prevent the 1093 // labels from collapsing together. Just emit a noop. 1094 // Similarly, don't emit empty functions on Windows either. It can lead to 1095 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1096 // after linking, causing the kernel not to load the binary: 1097 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1098 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1099 const Triple &TT = TM.getTargetTriple(); 1100 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1101 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1102 MCInst Noop; 1103 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1104 1105 // Targets can opt-out of emitting the noop here by leaving the opcode 1106 // unspecified. 1107 if (Noop.getOpcode()) { 1108 OutStreamer->AddComment("avoids zero-length function"); 1109 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1110 } 1111 } 1112 1113 const Function &F = MF->getFunction(); 1114 for (const auto &BB : F) { 1115 if (!BB.hasAddressTaken()) 1116 continue; 1117 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1118 if (Sym->isDefined()) 1119 continue; 1120 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1121 OutStreamer->EmitLabel(Sym); 1122 } 1123 1124 // Emit target-specific gunk after the function body. 1125 EmitFunctionBodyEnd(); 1126 1127 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1128 MAI->hasDotTypeDotSizeDirective()) { 1129 // Create a symbol for the end of function. 1130 CurrentFnEnd = createTempSymbol("func_end"); 1131 OutStreamer->EmitLabel(CurrentFnEnd); 1132 } 1133 1134 // If the target wants a .size directive for the size of the function, emit 1135 // it. 1136 if (MAI->hasDotTypeDotSizeDirective()) { 1137 // We can get the size as difference between the function label and the 1138 // temp label. 1139 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1140 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1141 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1142 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1143 } 1144 1145 for (const HandlerInfo &HI : Handlers) { 1146 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1147 HI.TimerGroupDescription, TimePassesIsEnabled); 1148 HI.Handler->markFunctionEnd(); 1149 } 1150 1151 // Print out jump tables referenced by the function. 1152 EmitJumpTableInfo(); 1153 1154 // Emit post-function debug and/or EH information. 1155 for (const HandlerInfo &HI : Handlers) { 1156 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1157 HI.TimerGroupDescription, TimePassesIsEnabled); 1158 HI.Handler->endFunction(MF); 1159 } 1160 1161 // Emit section containing stack size metadata. 1162 emitStackSizeSection(*MF); 1163 1164 if (isVerbose()) 1165 OutStreamer->GetCommentOS() << "-- End function\n"; 1166 1167 OutStreamer->AddBlankLine(); 1168 } 1169 1170 /// \brief Compute the number of Global Variables that uses a Constant. 1171 static unsigned getNumGlobalVariableUses(const Constant *C) { 1172 if (!C) 1173 return 0; 1174 1175 if (isa<GlobalVariable>(C)) 1176 return 1; 1177 1178 unsigned NumUses = 0; 1179 for (auto *CU : C->users()) 1180 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1181 1182 return NumUses; 1183 } 1184 1185 /// \brief Only consider global GOT equivalents if at least one user is a 1186 /// cstexpr inside an initializer of another global variables. Also, don't 1187 /// handle cstexpr inside instructions. During global variable emission, 1188 /// candidates are skipped and are emitted later in case at least one cstexpr 1189 /// isn't replaced by a PC relative GOT entry access. 1190 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1191 unsigned &NumGOTEquivUsers) { 1192 // Global GOT equivalents are unnamed private globals with a constant 1193 // pointer initializer to another global symbol. They must point to a 1194 // GlobalVariable or Function, i.e., as GlobalValue. 1195 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1196 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1197 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1198 return false; 1199 1200 // To be a got equivalent, at least one of its users need to be a constant 1201 // expression used by another global variable. 1202 for (auto *U : GV->users()) 1203 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1204 1205 return NumGOTEquivUsers > 0; 1206 } 1207 1208 /// \brief Unnamed constant global variables solely contaning a pointer to 1209 /// another globals variable is equivalent to a GOT table entry; it contains the 1210 /// the address of another symbol. Optimize it and replace accesses to these 1211 /// "GOT equivalents" by using the GOT entry for the final global instead. 1212 /// Compute GOT equivalent candidates among all global variables to avoid 1213 /// emitting them if possible later on, after it use is replaced by a GOT entry 1214 /// access. 1215 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1216 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1217 return; 1218 1219 for (const auto &G : M.globals()) { 1220 unsigned NumGOTEquivUsers = 0; 1221 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1222 continue; 1223 1224 const MCSymbol *GOTEquivSym = getSymbol(&G); 1225 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1226 } 1227 } 1228 1229 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1230 /// for PC relative GOT entry conversion, in such cases we need to emit such 1231 /// globals we previously omitted in EmitGlobalVariable. 1232 void AsmPrinter::emitGlobalGOTEquivs() { 1233 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1234 return; 1235 1236 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1237 for (auto &I : GlobalGOTEquivs) { 1238 const GlobalVariable *GV = I.second.first; 1239 unsigned Cnt = I.second.second; 1240 if (Cnt) 1241 FailedCandidates.push_back(GV); 1242 } 1243 GlobalGOTEquivs.clear(); 1244 1245 for (auto *GV : FailedCandidates) 1246 EmitGlobalVariable(GV); 1247 } 1248 1249 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1250 const GlobalIndirectSymbol& GIS) { 1251 MCSymbol *Name = getSymbol(&GIS); 1252 1253 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1254 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1255 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1256 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1257 else 1258 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1259 1260 // Set the symbol type to function if the alias has a function type. 1261 // This affects codegen when the aliasee is not a function. 1262 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1263 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1264 if (isa<GlobalIFunc>(GIS)) 1265 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1266 } 1267 1268 EmitVisibility(Name, GIS.getVisibility()); 1269 1270 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1271 1272 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1273 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1274 1275 // Emit the directives as assignments aka .set: 1276 OutStreamer->EmitAssignment(Name, Expr); 1277 1278 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1279 // If the aliasee does not correspond to a symbol in the output, i.e. the 1280 // alias is not of an object or the aliased object is private, then set the 1281 // size of the alias symbol from the type of the alias. We don't do this in 1282 // other situations as the alias and aliasee having differing types but same 1283 // size may be intentional. 1284 const GlobalObject *BaseObject = GA->getBaseObject(); 1285 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1286 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1287 const DataLayout &DL = M.getDataLayout(); 1288 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1289 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1290 } 1291 } 1292 } 1293 1294 bool AsmPrinter::doFinalization(Module &M) { 1295 // Set the MachineFunction to nullptr so that we can catch attempted 1296 // accesses to MF specific features at the module level and so that 1297 // we can conditionalize accesses based on whether or not it is nullptr. 1298 MF = nullptr; 1299 1300 // Gather all GOT equivalent globals in the module. We really need two 1301 // passes over the globals: one to compute and another to avoid its emission 1302 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1303 // where the got equivalent shows up before its use. 1304 computeGlobalGOTEquivs(M); 1305 1306 // Emit global variables. 1307 for (const auto &G : M.globals()) 1308 EmitGlobalVariable(&G); 1309 1310 // Emit remaining GOT equivalent globals. 1311 emitGlobalGOTEquivs(); 1312 1313 // Emit visibility info for declarations 1314 for (const Function &F : M) { 1315 if (!F.isDeclarationForLinker()) 1316 continue; 1317 GlobalValue::VisibilityTypes V = F.getVisibility(); 1318 if (V == GlobalValue::DefaultVisibility) 1319 continue; 1320 1321 MCSymbol *Name = getSymbol(&F); 1322 EmitVisibility(Name, V, false); 1323 } 1324 1325 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1326 1327 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1328 1329 if (TM.getTargetTriple().isOSBinFormatELF()) { 1330 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1331 1332 // Output stubs for external and common global variables. 1333 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1334 if (!Stubs.empty()) { 1335 OutStreamer->SwitchSection(TLOF.getDataSection()); 1336 const DataLayout &DL = M.getDataLayout(); 1337 1338 for (const auto &Stub : Stubs) { 1339 OutStreamer->EmitLabel(Stub.first); 1340 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1341 DL.getPointerSize()); 1342 } 1343 } 1344 } 1345 1346 // Finalize debug and EH information. 1347 for (const HandlerInfo &HI : Handlers) { 1348 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1349 HI.TimerGroupDescription, TimePassesIsEnabled); 1350 HI.Handler->endModule(); 1351 delete HI.Handler; 1352 } 1353 Handlers.clear(); 1354 DD = nullptr; 1355 1356 // If the target wants to know about weak references, print them all. 1357 if (MAI->getWeakRefDirective()) { 1358 // FIXME: This is not lazy, it would be nice to only print weak references 1359 // to stuff that is actually used. Note that doing so would require targets 1360 // to notice uses in operands (due to constant exprs etc). This should 1361 // happen with the MC stuff eventually. 1362 1363 // Print out module-level global objects here. 1364 for (const auto &GO : M.global_objects()) { 1365 if (!GO.hasExternalWeakLinkage()) 1366 continue; 1367 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1368 } 1369 } 1370 1371 OutStreamer->AddBlankLine(); 1372 1373 // Print aliases in topological order, that is, for each alias a = b, 1374 // b must be printed before a. 1375 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1376 // such an order to generate correct TOC information. 1377 SmallVector<const GlobalAlias *, 16> AliasStack; 1378 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1379 for (const auto &Alias : M.aliases()) { 1380 for (const GlobalAlias *Cur = &Alias; Cur; 1381 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1382 if (!AliasVisited.insert(Cur).second) 1383 break; 1384 AliasStack.push_back(Cur); 1385 } 1386 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1387 emitGlobalIndirectSymbol(M, *AncestorAlias); 1388 AliasStack.clear(); 1389 } 1390 for (const auto &IFunc : M.ifuncs()) 1391 emitGlobalIndirectSymbol(M, IFunc); 1392 1393 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1394 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1395 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1396 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1397 MP->finishAssembly(M, *MI, *this); 1398 1399 // Emit llvm.ident metadata in an '.ident' directive. 1400 EmitModuleIdents(M); 1401 1402 // Emit __morestack address if needed for indirect calls. 1403 if (MMI->usesMorestackAddr()) { 1404 unsigned Align = 1; 1405 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1406 getDataLayout(), SectionKind::getReadOnly(), 1407 /*C=*/nullptr, Align); 1408 OutStreamer->SwitchSection(ReadOnlySection); 1409 1410 MCSymbol *AddrSymbol = 1411 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1412 OutStreamer->EmitLabel(AddrSymbol); 1413 1414 unsigned PtrSize = MAI->getCodePointerSize(); 1415 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1416 PtrSize); 1417 } 1418 1419 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1420 // split-stack is used. 1421 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1422 OutStreamer->SwitchSection( 1423 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1424 if (MMI->hasNosplitStack()) 1425 OutStreamer->SwitchSection( 1426 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1427 } 1428 1429 // If we don't have any trampolines, then we don't require stack memory 1430 // to be executable. Some targets have a directive to declare this. 1431 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1432 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1433 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1434 OutStreamer->SwitchSection(S); 1435 1436 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1437 // Emit /EXPORT: flags for each exported global as necessary. 1438 const auto &TLOF = getObjFileLowering(); 1439 std::string Flags; 1440 1441 for (const GlobalValue &GV : M.global_values()) { 1442 raw_string_ostream OS(Flags); 1443 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1444 OS.flush(); 1445 if (!Flags.empty()) { 1446 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1447 OutStreamer->EmitBytes(Flags); 1448 } 1449 Flags.clear(); 1450 } 1451 1452 // Emit /INCLUDE: flags for each used global as necessary. 1453 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1454 assert(LU->hasInitializer() && 1455 "expected llvm.used to have an initializer"); 1456 assert(isa<ArrayType>(LU->getValueType()) && 1457 "expected llvm.used to be an array type"); 1458 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1459 for (const Value *Op : A->operands()) { 1460 const auto *GV = 1461 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1462 // Global symbols with internal or private linkage are not visible to 1463 // the linker, and thus would cause an error when the linker tried to 1464 // preserve the symbol due to the `/include:` directive. 1465 if (GV->hasLocalLinkage()) 1466 continue; 1467 1468 raw_string_ostream OS(Flags); 1469 TLOF.emitLinkerFlagsForUsed(OS, GV); 1470 OS.flush(); 1471 1472 if (!Flags.empty()) { 1473 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1474 OutStreamer->EmitBytes(Flags); 1475 } 1476 Flags.clear(); 1477 } 1478 } 1479 } 1480 } 1481 1482 // Allow the target to emit any magic that it wants at the end of the file, 1483 // after everything else has gone out. 1484 EmitEndOfAsmFile(M); 1485 1486 MMI = nullptr; 1487 1488 OutStreamer->Finish(); 1489 OutStreamer->reset(); 1490 1491 return false; 1492 } 1493 1494 MCSymbol *AsmPrinter::getCurExceptionSym() { 1495 if (!CurExceptionSym) 1496 CurExceptionSym = createTempSymbol("exception"); 1497 return CurExceptionSym; 1498 } 1499 1500 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1501 this->MF = &MF; 1502 // Get the function symbol. 1503 CurrentFnSym = getSymbol(&MF.getFunction()); 1504 CurrentFnSymForSize = CurrentFnSym; 1505 CurrentFnBegin = nullptr; 1506 CurExceptionSym = nullptr; 1507 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1508 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1509 CurrentFnBegin = createTempSymbol("func_begin"); 1510 if (NeedsLocalForSize) 1511 CurrentFnSymForSize = CurrentFnBegin; 1512 } 1513 1514 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1515 LI = &getAnalysis<MachineLoopInfo>(); 1516 1517 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1518 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1519 ? PrintSchedule 1520 : STI.supportPrintSchedInfo(); 1521 } 1522 1523 namespace { 1524 1525 // Keep track the alignment, constpool entries per Section. 1526 struct SectionCPs { 1527 MCSection *S; 1528 unsigned Alignment; 1529 SmallVector<unsigned, 4> CPEs; 1530 1531 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1532 }; 1533 1534 } // end anonymous namespace 1535 1536 /// EmitConstantPool - Print to the current output stream assembly 1537 /// representations of the constants in the constant pool MCP. This is 1538 /// used to print out constants which have been "spilled to memory" by 1539 /// the code generator. 1540 void AsmPrinter::EmitConstantPool() { 1541 const MachineConstantPool *MCP = MF->getConstantPool(); 1542 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1543 if (CP.empty()) return; 1544 1545 // Calculate sections for constant pool entries. We collect entries to go into 1546 // the same section together to reduce amount of section switch statements. 1547 SmallVector<SectionCPs, 4> CPSections; 1548 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1549 const MachineConstantPoolEntry &CPE = CP[i]; 1550 unsigned Align = CPE.getAlignment(); 1551 1552 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1553 1554 const Constant *C = nullptr; 1555 if (!CPE.isMachineConstantPoolEntry()) 1556 C = CPE.Val.ConstVal; 1557 1558 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1559 Kind, C, Align); 1560 1561 // The number of sections are small, just do a linear search from the 1562 // last section to the first. 1563 bool Found = false; 1564 unsigned SecIdx = CPSections.size(); 1565 while (SecIdx != 0) { 1566 if (CPSections[--SecIdx].S == S) { 1567 Found = true; 1568 break; 1569 } 1570 } 1571 if (!Found) { 1572 SecIdx = CPSections.size(); 1573 CPSections.push_back(SectionCPs(S, Align)); 1574 } 1575 1576 if (Align > CPSections[SecIdx].Alignment) 1577 CPSections[SecIdx].Alignment = Align; 1578 CPSections[SecIdx].CPEs.push_back(i); 1579 } 1580 1581 // Now print stuff into the calculated sections. 1582 const MCSection *CurSection = nullptr; 1583 unsigned Offset = 0; 1584 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1585 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1586 unsigned CPI = CPSections[i].CPEs[j]; 1587 MCSymbol *Sym = GetCPISymbol(CPI); 1588 if (!Sym->isUndefined()) 1589 continue; 1590 1591 if (CurSection != CPSections[i].S) { 1592 OutStreamer->SwitchSection(CPSections[i].S); 1593 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1594 CurSection = CPSections[i].S; 1595 Offset = 0; 1596 } 1597 1598 MachineConstantPoolEntry CPE = CP[CPI]; 1599 1600 // Emit inter-object padding for alignment. 1601 unsigned AlignMask = CPE.getAlignment() - 1; 1602 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1603 OutStreamer->EmitZeros(NewOffset - Offset); 1604 1605 Type *Ty = CPE.getType(); 1606 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1607 1608 OutStreamer->EmitLabel(Sym); 1609 if (CPE.isMachineConstantPoolEntry()) 1610 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1611 else 1612 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1613 } 1614 } 1615 } 1616 1617 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1618 /// by the current function to the current output stream. 1619 void AsmPrinter::EmitJumpTableInfo() { 1620 const DataLayout &DL = MF->getDataLayout(); 1621 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1622 if (!MJTI) return; 1623 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1624 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1625 if (JT.empty()) return; 1626 1627 // Pick the directive to use to print the jump table entries, and switch to 1628 // the appropriate section. 1629 const Function &F = MF->getFunction(); 1630 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1631 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1632 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1633 F); 1634 if (JTInDiffSection) { 1635 // Drop it in the readonly section. 1636 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1637 OutStreamer->SwitchSection(ReadOnlySection); 1638 } 1639 1640 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1641 1642 // Jump tables in code sections are marked with a data_region directive 1643 // where that's supported. 1644 if (!JTInDiffSection) 1645 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1646 1647 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1648 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1649 1650 // If this jump table was deleted, ignore it. 1651 if (JTBBs.empty()) continue; 1652 1653 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1654 /// emit a .set directive for each unique entry. 1655 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1656 MAI->doesSetDirectiveSuppressReloc()) { 1657 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1658 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1659 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1660 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1661 const MachineBasicBlock *MBB = JTBBs[ii]; 1662 if (!EmittedSets.insert(MBB).second) 1663 continue; 1664 1665 // .set LJTSet, LBB32-base 1666 const MCExpr *LHS = 1667 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1668 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1669 MCBinaryExpr::createSub(LHS, Base, 1670 OutContext)); 1671 } 1672 } 1673 1674 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1675 // before each jump table. The first label is never referenced, but tells 1676 // the assembler and linker the extents of the jump table object. The 1677 // second label is actually referenced by the code. 1678 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1679 // FIXME: This doesn't have to have any specific name, just any randomly 1680 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1681 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1682 1683 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1684 1685 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1686 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1687 } 1688 if (!JTInDiffSection) 1689 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1690 } 1691 1692 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1693 /// current stream. 1694 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1695 const MachineBasicBlock *MBB, 1696 unsigned UID) const { 1697 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1698 const MCExpr *Value = nullptr; 1699 switch (MJTI->getEntryKind()) { 1700 case MachineJumpTableInfo::EK_Inline: 1701 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1702 case MachineJumpTableInfo::EK_Custom32: 1703 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1704 MJTI, MBB, UID, OutContext); 1705 break; 1706 case MachineJumpTableInfo::EK_BlockAddress: 1707 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1708 // .word LBB123 1709 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1710 break; 1711 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1712 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1713 // with a relocation as gp-relative, e.g.: 1714 // .gprel32 LBB123 1715 MCSymbol *MBBSym = MBB->getSymbol(); 1716 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1717 return; 1718 } 1719 1720 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1721 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1722 // with a relocation as gp-relative, e.g.: 1723 // .gpdword LBB123 1724 MCSymbol *MBBSym = MBB->getSymbol(); 1725 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1726 return; 1727 } 1728 1729 case MachineJumpTableInfo::EK_LabelDifference32: { 1730 // Each entry is the address of the block minus the address of the jump 1731 // table. This is used for PIC jump tables where gprel32 is not supported. 1732 // e.g.: 1733 // .word LBB123 - LJTI1_2 1734 // If the .set directive avoids relocations, this is emitted as: 1735 // .set L4_5_set_123, LBB123 - LJTI1_2 1736 // .word L4_5_set_123 1737 if (MAI->doesSetDirectiveSuppressReloc()) { 1738 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1739 OutContext); 1740 break; 1741 } 1742 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1743 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1744 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1745 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1746 break; 1747 } 1748 } 1749 1750 assert(Value && "Unknown entry kind!"); 1751 1752 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1753 OutStreamer->EmitValue(Value, EntrySize); 1754 } 1755 1756 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1757 /// special global used by LLVM. If so, emit it and return true, otherwise 1758 /// do nothing and return false. 1759 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1760 if (GV->getName() == "llvm.used") { 1761 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1762 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1763 return true; 1764 } 1765 1766 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1767 if (GV->getSection() == "llvm.metadata" || 1768 GV->hasAvailableExternallyLinkage()) 1769 return true; 1770 1771 if (!GV->hasAppendingLinkage()) return false; 1772 1773 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1774 1775 if (GV->getName() == "llvm.global_ctors") { 1776 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1777 /* isCtor */ true); 1778 1779 return true; 1780 } 1781 1782 if (GV->getName() == "llvm.global_dtors") { 1783 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1784 /* isCtor */ false); 1785 1786 return true; 1787 } 1788 1789 report_fatal_error("unknown special variable"); 1790 } 1791 1792 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1793 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1794 /// is true, as being used with this directive. 1795 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1796 // Should be an array of 'i8*'. 1797 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1798 const GlobalValue *GV = 1799 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1800 if (GV) 1801 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1802 } 1803 } 1804 1805 namespace { 1806 1807 struct Structor { 1808 int Priority = 0; 1809 Constant *Func = nullptr; 1810 GlobalValue *ComdatKey = nullptr; 1811 1812 Structor() = default; 1813 }; 1814 1815 } // end anonymous namespace 1816 1817 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1818 /// priority. 1819 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1820 bool isCtor) { 1821 // Should be an array of '{ int, void ()* }' structs. The first value is the 1822 // init priority. 1823 if (!isa<ConstantArray>(List)) return; 1824 1825 // Sanity check the structors list. 1826 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1827 if (!InitList) return; // Not an array! 1828 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1829 // FIXME: Only allow the 3-field form in LLVM 4.0. 1830 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1831 return; // Not an array of two or three elements! 1832 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1833 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1834 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1835 return; // Not (int, ptr, ptr). 1836 1837 // Gather the structors in a form that's convenient for sorting by priority. 1838 SmallVector<Structor, 8> Structors; 1839 for (Value *O : InitList->operands()) { 1840 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1841 if (!CS) continue; // Malformed. 1842 if (CS->getOperand(1)->isNullValue()) 1843 break; // Found a null terminator, skip the rest. 1844 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1845 if (!Priority) continue; // Malformed. 1846 Structors.push_back(Structor()); 1847 Structor &S = Structors.back(); 1848 S.Priority = Priority->getLimitedValue(65535); 1849 S.Func = CS->getOperand(1); 1850 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1851 S.ComdatKey = 1852 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1853 } 1854 1855 // Emit the function pointers in the target-specific order 1856 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1857 std::stable_sort(Structors.begin(), Structors.end(), 1858 [](const Structor &L, 1859 const Structor &R) { return L.Priority < R.Priority; }); 1860 for (Structor &S : Structors) { 1861 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1862 const MCSymbol *KeySym = nullptr; 1863 if (GlobalValue *GV = S.ComdatKey) { 1864 if (GV->isDeclarationForLinker()) 1865 // If the associated variable is not defined in this module 1866 // (it might be available_externally, or have been an 1867 // available_externally definition that was dropped by the 1868 // EliminateAvailableExternally pass), some other TU 1869 // will provide its dynamic initializer. 1870 continue; 1871 1872 KeySym = getSymbol(GV); 1873 } 1874 MCSection *OutputSection = 1875 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1876 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1877 OutStreamer->SwitchSection(OutputSection); 1878 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1879 EmitAlignment(Align); 1880 EmitXXStructor(DL, S.Func); 1881 } 1882 } 1883 1884 void AsmPrinter::EmitModuleIdents(Module &M) { 1885 if (!MAI->hasIdentDirective()) 1886 return; 1887 1888 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1889 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1890 const MDNode *N = NMD->getOperand(i); 1891 assert(N->getNumOperands() == 1 && 1892 "llvm.ident metadata entry can have only one operand"); 1893 const MDString *S = cast<MDString>(N->getOperand(0)); 1894 OutStreamer->EmitIdent(S->getString()); 1895 } 1896 } 1897 } 1898 1899 //===--------------------------------------------------------------------===// 1900 // Emission and print routines 1901 // 1902 1903 /// EmitInt8 - Emit a byte directive and value. 1904 /// 1905 void AsmPrinter::EmitInt8(int Value) const { 1906 OutStreamer->EmitIntValue(Value, 1); 1907 } 1908 1909 /// EmitInt16 - Emit a short directive and value. 1910 void AsmPrinter::EmitInt16(int Value) const { 1911 OutStreamer->EmitIntValue(Value, 2); 1912 } 1913 1914 /// EmitInt32 - Emit a long directive and value. 1915 void AsmPrinter::EmitInt32(int Value) const { 1916 OutStreamer->EmitIntValue(Value, 4); 1917 } 1918 1919 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1920 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1921 /// .set if it avoids relocations. 1922 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1923 unsigned Size) const { 1924 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1925 } 1926 1927 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1928 /// where the size in bytes of the directive is specified by Size and Label 1929 /// specifies the label. This implicitly uses .set if it is available. 1930 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1931 unsigned Size, 1932 bool IsSectionRelative) const { 1933 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1934 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1935 if (Size > 4) 1936 OutStreamer->EmitZeros(Size - 4); 1937 return; 1938 } 1939 1940 // Emit Label+Offset (or just Label if Offset is zero) 1941 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1942 if (Offset) 1943 Expr = MCBinaryExpr::createAdd( 1944 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1945 1946 OutStreamer->EmitValue(Expr, Size); 1947 } 1948 1949 //===----------------------------------------------------------------------===// 1950 1951 // EmitAlignment - Emit an alignment directive to the specified power of 1952 // two boundary. For example, if you pass in 3 here, you will get an 8 1953 // byte alignment. If a global value is specified, and if that global has 1954 // an explicit alignment requested, it will override the alignment request 1955 // if required for correctness. 1956 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1957 if (GV) 1958 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1959 1960 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1961 1962 assert(NumBits < 1963 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1964 "undefined behavior"); 1965 if (getCurrentSection()->getKind().isText()) 1966 OutStreamer->EmitCodeAlignment(1u << NumBits); 1967 else 1968 OutStreamer->EmitValueToAlignment(1u << NumBits); 1969 } 1970 1971 //===----------------------------------------------------------------------===// 1972 // Constant emission. 1973 //===----------------------------------------------------------------------===// 1974 1975 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1976 MCContext &Ctx = OutContext; 1977 1978 if (CV->isNullValue() || isa<UndefValue>(CV)) 1979 return MCConstantExpr::create(0, Ctx); 1980 1981 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1982 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1983 1984 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1985 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1986 1987 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1988 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1989 1990 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1991 if (!CE) { 1992 llvm_unreachable("Unknown constant value to lower!"); 1993 } 1994 1995 switch (CE->getOpcode()) { 1996 default: 1997 // If the code isn't optimized, there may be outstanding folding 1998 // opportunities. Attempt to fold the expression using DataLayout as a 1999 // last resort before giving up. 2000 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2001 if (C != CE) 2002 return lowerConstant(C); 2003 2004 // Otherwise report the problem to the user. 2005 { 2006 std::string S; 2007 raw_string_ostream OS(S); 2008 OS << "Unsupported expression in static initializer: "; 2009 CE->printAsOperand(OS, /*PrintType=*/false, 2010 !MF ? nullptr : MF->getFunction().getParent()); 2011 report_fatal_error(OS.str()); 2012 } 2013 case Instruction::GetElementPtr: { 2014 // Generate a symbolic expression for the byte address 2015 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2016 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2017 2018 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2019 if (!OffsetAI) 2020 return Base; 2021 2022 int64_t Offset = OffsetAI.getSExtValue(); 2023 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2024 Ctx); 2025 } 2026 2027 case Instruction::Trunc: 2028 // We emit the value and depend on the assembler to truncate the generated 2029 // expression properly. This is important for differences between 2030 // blockaddress labels. Since the two labels are in the same function, it 2031 // is reasonable to treat their delta as a 32-bit value. 2032 LLVM_FALLTHROUGH; 2033 case Instruction::BitCast: 2034 return lowerConstant(CE->getOperand(0)); 2035 2036 case Instruction::IntToPtr: { 2037 const DataLayout &DL = getDataLayout(); 2038 2039 // Handle casts to pointers by changing them into casts to the appropriate 2040 // integer type. This promotes constant folding and simplifies this code. 2041 Constant *Op = CE->getOperand(0); 2042 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2043 false/*ZExt*/); 2044 return lowerConstant(Op); 2045 } 2046 2047 case Instruction::PtrToInt: { 2048 const DataLayout &DL = getDataLayout(); 2049 2050 // Support only foldable casts to/from pointers that can be eliminated by 2051 // changing the pointer to the appropriately sized integer type. 2052 Constant *Op = CE->getOperand(0); 2053 Type *Ty = CE->getType(); 2054 2055 const MCExpr *OpExpr = lowerConstant(Op); 2056 2057 // We can emit the pointer value into this slot if the slot is an 2058 // integer slot equal to the size of the pointer. 2059 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2060 return OpExpr; 2061 2062 // Otherwise the pointer is smaller than the resultant integer, mask off 2063 // the high bits so we are sure to get a proper truncation if the input is 2064 // a constant expr. 2065 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2066 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2067 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2068 } 2069 2070 case Instruction::Sub: { 2071 GlobalValue *LHSGV; 2072 APInt LHSOffset; 2073 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2074 getDataLayout())) { 2075 GlobalValue *RHSGV; 2076 APInt RHSOffset; 2077 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2078 getDataLayout())) { 2079 const MCExpr *RelocExpr = 2080 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2081 if (!RelocExpr) 2082 RelocExpr = MCBinaryExpr::createSub( 2083 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2084 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2085 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2086 if (Addend != 0) 2087 RelocExpr = MCBinaryExpr::createAdd( 2088 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2089 return RelocExpr; 2090 } 2091 } 2092 } 2093 // else fallthrough 2094 LLVM_FALLTHROUGH; 2095 2096 // The MC library also has a right-shift operator, but it isn't consistently 2097 // signed or unsigned between different targets. 2098 case Instruction::Add: 2099 case Instruction::Mul: 2100 case Instruction::SDiv: 2101 case Instruction::SRem: 2102 case Instruction::Shl: 2103 case Instruction::And: 2104 case Instruction::Or: 2105 case Instruction::Xor: { 2106 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2107 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2108 switch (CE->getOpcode()) { 2109 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2110 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2111 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2112 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2113 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2114 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2115 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2116 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2117 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2118 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2119 } 2120 } 2121 } 2122 } 2123 2124 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2125 AsmPrinter &AP, 2126 const Constant *BaseCV = nullptr, 2127 uint64_t Offset = 0); 2128 2129 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2130 2131 /// isRepeatedByteSequence - Determine whether the given value is 2132 /// composed of a repeated sequence of identical bytes and return the 2133 /// byte value. If it is not a repeated sequence, return -1. 2134 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2135 StringRef Data = V->getRawDataValues(); 2136 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2137 char C = Data[0]; 2138 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2139 if (Data[i] != C) return -1; 2140 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2141 } 2142 2143 /// isRepeatedByteSequence - Determine whether the given value is 2144 /// composed of a repeated sequence of identical bytes and return the 2145 /// byte value. If it is not a repeated sequence, return -1. 2146 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2147 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2148 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2149 assert(Size % 8 == 0); 2150 2151 // Extend the element to take zero padding into account. 2152 APInt Value = CI->getValue().zextOrSelf(Size); 2153 if (!Value.isSplat(8)) 2154 return -1; 2155 2156 return Value.zextOrTrunc(8).getZExtValue(); 2157 } 2158 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2159 // Make sure all array elements are sequences of the same repeated 2160 // byte. 2161 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2162 Constant *Op0 = CA->getOperand(0); 2163 int Byte = isRepeatedByteSequence(Op0, DL); 2164 if (Byte == -1) 2165 return -1; 2166 2167 // All array elements must be equal. 2168 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2169 if (CA->getOperand(i) != Op0) 2170 return -1; 2171 return Byte; 2172 } 2173 2174 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2175 return isRepeatedByteSequence(CDS); 2176 2177 return -1; 2178 } 2179 2180 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2181 const ConstantDataSequential *CDS, 2182 AsmPrinter &AP) { 2183 // See if we can aggregate this into a .fill, if so, emit it as such. 2184 int Value = isRepeatedByteSequence(CDS, DL); 2185 if (Value != -1) { 2186 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2187 // Don't emit a 1-byte object as a .fill. 2188 if (Bytes > 1) 2189 return AP.OutStreamer->emitFill(Bytes, Value); 2190 } 2191 2192 // If this can be emitted with .ascii/.asciz, emit it as such. 2193 if (CDS->isString()) 2194 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2195 2196 // Otherwise, emit the values in successive locations. 2197 unsigned ElementByteSize = CDS->getElementByteSize(); 2198 if (isa<IntegerType>(CDS->getElementType())) { 2199 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2200 if (AP.isVerbose()) 2201 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2202 CDS->getElementAsInteger(i)); 2203 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2204 ElementByteSize); 2205 } 2206 } else { 2207 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2208 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2209 } 2210 2211 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2212 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2213 CDS->getNumElements(); 2214 if (unsigned Padding = Size - EmittedSize) 2215 AP.OutStreamer->EmitZeros(Padding); 2216 } 2217 2218 static void emitGlobalConstantArray(const DataLayout &DL, 2219 const ConstantArray *CA, AsmPrinter &AP, 2220 const Constant *BaseCV, uint64_t Offset) { 2221 // See if we can aggregate some values. Make sure it can be 2222 // represented as a series of bytes of the constant value. 2223 int Value = isRepeatedByteSequence(CA, DL); 2224 2225 if (Value != -1) { 2226 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2227 AP.OutStreamer->emitFill(Bytes, Value); 2228 } 2229 else { 2230 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2231 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2232 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2233 } 2234 } 2235 } 2236 2237 static void emitGlobalConstantVector(const DataLayout &DL, 2238 const ConstantVector *CV, AsmPrinter &AP) { 2239 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2240 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2241 2242 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2243 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2244 CV->getType()->getNumElements(); 2245 if (unsigned Padding = Size - EmittedSize) 2246 AP.OutStreamer->EmitZeros(Padding); 2247 } 2248 2249 static void emitGlobalConstantStruct(const DataLayout &DL, 2250 const ConstantStruct *CS, AsmPrinter &AP, 2251 const Constant *BaseCV, uint64_t Offset) { 2252 // Print the fields in successive locations. Pad to align if needed! 2253 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2254 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2255 uint64_t SizeSoFar = 0; 2256 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2257 const Constant *Field = CS->getOperand(i); 2258 2259 // Print the actual field value. 2260 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2261 2262 // Check if padding is needed and insert one or more 0s. 2263 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2264 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2265 - Layout->getElementOffset(i)) - FieldSize; 2266 SizeSoFar += FieldSize + PadSize; 2267 2268 // Insert padding - this may include padding to increase the size of the 2269 // current field up to the ABI size (if the struct is not packed) as well 2270 // as padding to ensure that the next field starts at the right offset. 2271 AP.OutStreamer->EmitZeros(PadSize); 2272 } 2273 assert(SizeSoFar == Layout->getSizeInBytes() && 2274 "Layout of constant struct may be incorrect!"); 2275 } 2276 2277 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2278 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2279 2280 // First print a comment with what we think the original floating-point value 2281 // should have been. 2282 if (AP.isVerbose()) { 2283 SmallString<8> StrVal; 2284 CFP->getValueAPF().toString(StrVal); 2285 2286 if (CFP->getType()) 2287 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2288 else 2289 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2290 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2291 } 2292 2293 // Now iterate through the APInt chunks, emitting them in endian-correct 2294 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2295 // floats). 2296 unsigned NumBytes = API.getBitWidth() / 8; 2297 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2298 const uint64_t *p = API.getRawData(); 2299 2300 // PPC's long double has odd notions of endianness compared to how LLVM 2301 // handles it: p[0] goes first for *big* endian on PPC. 2302 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2303 int Chunk = API.getNumWords() - 1; 2304 2305 if (TrailingBytes) 2306 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2307 2308 for (; Chunk >= 0; --Chunk) 2309 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2310 } else { 2311 unsigned Chunk; 2312 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2313 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2314 2315 if (TrailingBytes) 2316 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2317 } 2318 2319 // Emit the tail padding for the long double. 2320 const DataLayout &DL = AP.getDataLayout(); 2321 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2322 DL.getTypeStoreSize(CFP->getType())); 2323 } 2324 2325 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2326 const DataLayout &DL = AP.getDataLayout(); 2327 unsigned BitWidth = CI->getBitWidth(); 2328 2329 // Copy the value as we may massage the layout for constants whose bit width 2330 // is not a multiple of 64-bits. 2331 APInt Realigned(CI->getValue()); 2332 uint64_t ExtraBits = 0; 2333 unsigned ExtraBitsSize = BitWidth & 63; 2334 2335 if (ExtraBitsSize) { 2336 // The bit width of the data is not a multiple of 64-bits. 2337 // The extra bits are expected to be at the end of the chunk of the memory. 2338 // Little endian: 2339 // * Nothing to be done, just record the extra bits to emit. 2340 // Big endian: 2341 // * Record the extra bits to emit. 2342 // * Realign the raw data to emit the chunks of 64-bits. 2343 if (DL.isBigEndian()) { 2344 // Basically the structure of the raw data is a chunk of 64-bits cells: 2345 // 0 1 BitWidth / 64 2346 // [chunk1][chunk2] ... [chunkN]. 2347 // The most significant chunk is chunkN and it should be emitted first. 2348 // However, due to the alignment issue chunkN contains useless bits. 2349 // Realign the chunks so that they contain only useless information: 2350 // ExtraBits 0 1 (BitWidth / 64) - 1 2351 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2352 ExtraBits = Realigned.getRawData()[0] & 2353 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2354 Realigned.lshrInPlace(ExtraBitsSize); 2355 } else 2356 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2357 } 2358 2359 // We don't expect assemblers to support integer data directives 2360 // for more than 64 bits, so we emit the data in at most 64-bit 2361 // quantities at a time. 2362 const uint64_t *RawData = Realigned.getRawData(); 2363 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2364 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2365 AP.OutStreamer->EmitIntValue(Val, 8); 2366 } 2367 2368 if (ExtraBitsSize) { 2369 // Emit the extra bits after the 64-bits chunks. 2370 2371 // Emit a directive that fills the expected size. 2372 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2373 Size -= (BitWidth / 64) * 8; 2374 assert(Size && Size * 8 >= ExtraBitsSize && 2375 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2376 == ExtraBits && "Directive too small for extra bits."); 2377 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2378 } 2379 } 2380 2381 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2382 /// equivalent global, by a target specific GOT pc relative access to the 2383 /// final symbol. 2384 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2385 const Constant *BaseCst, 2386 uint64_t Offset) { 2387 // The global @foo below illustrates a global that uses a got equivalent. 2388 // 2389 // @bar = global i32 42 2390 // @gotequiv = private unnamed_addr constant i32* @bar 2391 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2392 // i64 ptrtoint (i32* @foo to i64)) 2393 // to i32) 2394 // 2395 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2396 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2397 // form: 2398 // 2399 // foo = cstexpr, where 2400 // cstexpr := <gotequiv> - "." + <cst> 2401 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2402 // 2403 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2404 // 2405 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2406 // gotpcrelcst := <offset from @foo base> + <cst> 2407 MCValue MV; 2408 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2409 return; 2410 const MCSymbolRefExpr *SymA = MV.getSymA(); 2411 if (!SymA) 2412 return; 2413 2414 // Check that GOT equivalent symbol is cached. 2415 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2416 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2417 return; 2418 2419 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2420 if (!BaseGV) 2421 return; 2422 2423 // Check for a valid base symbol 2424 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2425 const MCSymbolRefExpr *SymB = MV.getSymB(); 2426 2427 if (!SymB || BaseSym != &SymB->getSymbol()) 2428 return; 2429 2430 // Make sure to match: 2431 // 2432 // gotpcrelcst := <offset from @foo base> + <cst> 2433 // 2434 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2435 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2436 // if the target knows how to encode it. 2437 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2438 if (GOTPCRelCst < 0) 2439 return; 2440 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2441 return; 2442 2443 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2444 // 2445 // bar: 2446 // .long 42 2447 // gotequiv: 2448 // .quad bar 2449 // foo: 2450 // .long gotequiv - "." + <cst> 2451 // 2452 // is replaced by the target specific equivalent to: 2453 // 2454 // bar: 2455 // .long 42 2456 // foo: 2457 // .long bar@GOTPCREL+<gotpcrelcst> 2458 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2459 const GlobalVariable *GV = Result.first; 2460 int NumUses = (int)Result.second; 2461 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2462 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2463 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2464 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2465 2466 // Update GOT equivalent usage information 2467 --NumUses; 2468 if (NumUses >= 0) 2469 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2470 } 2471 2472 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2473 AsmPrinter &AP, const Constant *BaseCV, 2474 uint64_t Offset) { 2475 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2476 2477 // Globals with sub-elements such as combinations of arrays and structs 2478 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2479 // constant symbol base and the current position with BaseCV and Offset. 2480 if (!BaseCV && CV->hasOneUse()) 2481 BaseCV = dyn_cast<Constant>(CV->user_back()); 2482 2483 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2484 return AP.OutStreamer->EmitZeros(Size); 2485 2486 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2487 switch (Size) { 2488 case 1: 2489 case 2: 2490 case 4: 2491 case 8: 2492 if (AP.isVerbose()) 2493 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2494 CI->getZExtValue()); 2495 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2496 return; 2497 default: 2498 emitGlobalConstantLargeInt(CI, AP); 2499 return; 2500 } 2501 } 2502 2503 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2504 return emitGlobalConstantFP(CFP, AP); 2505 2506 if (isa<ConstantPointerNull>(CV)) { 2507 AP.OutStreamer->EmitIntValue(0, Size); 2508 return; 2509 } 2510 2511 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2512 return emitGlobalConstantDataSequential(DL, CDS, AP); 2513 2514 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2515 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2516 2517 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2518 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2519 2520 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2521 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2522 // vectors). 2523 if (CE->getOpcode() == Instruction::BitCast) 2524 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2525 2526 if (Size > 8) { 2527 // If the constant expression's size is greater than 64-bits, then we have 2528 // to emit the value in chunks. Try to constant fold the value and emit it 2529 // that way. 2530 Constant *New = ConstantFoldConstant(CE, DL); 2531 if (New && New != CE) 2532 return emitGlobalConstantImpl(DL, New, AP); 2533 } 2534 } 2535 2536 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2537 return emitGlobalConstantVector(DL, V, AP); 2538 2539 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2540 // thread the streamer with EmitValue. 2541 const MCExpr *ME = AP.lowerConstant(CV); 2542 2543 // Since lowerConstant already folded and got rid of all IR pointer and 2544 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2545 // directly. 2546 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2547 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2548 2549 AP.OutStreamer->EmitValue(ME, Size); 2550 } 2551 2552 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2553 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2554 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2555 if (Size) 2556 emitGlobalConstantImpl(DL, CV, *this); 2557 else if (MAI->hasSubsectionsViaSymbols()) { 2558 // If the global has zero size, emit a single byte so that two labels don't 2559 // look like they are at the same location. 2560 OutStreamer->EmitIntValue(0, 1); 2561 } 2562 } 2563 2564 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2565 // Target doesn't support this yet! 2566 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2567 } 2568 2569 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2570 if (Offset > 0) 2571 OS << '+' << Offset; 2572 else if (Offset < 0) 2573 OS << Offset; 2574 } 2575 2576 //===----------------------------------------------------------------------===// 2577 // Symbol Lowering Routines. 2578 //===----------------------------------------------------------------------===// 2579 2580 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2581 return OutContext.createTempSymbol(Name, true); 2582 } 2583 2584 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2585 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2586 } 2587 2588 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2589 return MMI->getAddrLabelSymbol(BB); 2590 } 2591 2592 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2593 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2594 const DataLayout &DL = getDataLayout(); 2595 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2596 "CPI" + Twine(getFunctionNumber()) + "_" + 2597 Twine(CPID)); 2598 } 2599 2600 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2601 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2602 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2603 } 2604 2605 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2606 /// FIXME: privatize to AsmPrinter. 2607 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2608 const DataLayout &DL = getDataLayout(); 2609 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2610 Twine(getFunctionNumber()) + "_" + 2611 Twine(UID) + "_set_" + Twine(MBBID)); 2612 } 2613 2614 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2615 StringRef Suffix) const { 2616 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2617 } 2618 2619 /// Return the MCSymbol for the specified ExternalSymbol. 2620 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2621 SmallString<60> NameStr; 2622 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2623 return OutContext.getOrCreateSymbol(NameStr); 2624 } 2625 2626 /// PrintParentLoopComment - Print comments about parent loops of this one. 2627 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2628 unsigned FunctionNumber) { 2629 if (!Loop) return; 2630 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2631 OS.indent(Loop->getLoopDepth()*2) 2632 << "Parent Loop BB" << FunctionNumber << "_" 2633 << Loop->getHeader()->getNumber() 2634 << " Depth=" << Loop->getLoopDepth() << '\n'; 2635 } 2636 2637 /// PrintChildLoopComment - Print comments about child loops within 2638 /// the loop for this basic block, with nesting. 2639 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2640 unsigned FunctionNumber) { 2641 // Add child loop information 2642 for (const MachineLoop *CL : *Loop) { 2643 OS.indent(CL->getLoopDepth()*2) 2644 << "Child Loop BB" << FunctionNumber << "_" 2645 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2646 << '\n'; 2647 PrintChildLoopComment(OS, CL, FunctionNumber); 2648 } 2649 } 2650 2651 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2652 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2653 const MachineLoopInfo *LI, 2654 const AsmPrinter &AP) { 2655 // Add loop depth information 2656 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2657 if (!Loop) return; 2658 2659 MachineBasicBlock *Header = Loop->getHeader(); 2660 assert(Header && "No header for loop"); 2661 2662 // If this block is not a loop header, just print out what is the loop header 2663 // and return. 2664 if (Header != &MBB) { 2665 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2666 Twine(AP.getFunctionNumber())+"_" + 2667 Twine(Loop->getHeader()->getNumber())+ 2668 " Depth="+Twine(Loop->getLoopDepth())); 2669 return; 2670 } 2671 2672 // Otherwise, it is a loop header. Print out information about child and 2673 // parent loops. 2674 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2675 2676 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2677 2678 OS << "=>"; 2679 OS.indent(Loop->getLoopDepth()*2-2); 2680 2681 OS << "This "; 2682 if (Loop->empty()) 2683 OS << "Inner "; 2684 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2685 2686 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2687 } 2688 2689 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2690 MCCodePaddingContext &Context) const { 2691 assert(MF != nullptr && "Machine function must be valid"); 2692 assert(LI != nullptr && "Loop info must be valid"); 2693 Context.IsPaddingActive = !MF->hasInlineAsm() && 2694 !MF->getFunction().optForSize() && 2695 TM.getOptLevel() != CodeGenOpt::None; 2696 const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB); 2697 Context.IsBasicBlockInsideInnermostLoop = 2698 CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty(); 2699 Context.IsBasicBlockReachableViaFallthrough = 2700 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2701 MBB.pred_end(); 2702 Context.IsBasicBlockReachableViaBranch = 2703 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2704 } 2705 2706 /// EmitBasicBlockStart - This method prints the label for the specified 2707 /// MachineBasicBlock, an alignment (if present) and a comment describing 2708 /// it if appropriate. 2709 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2710 // End the previous funclet and start a new one. 2711 if (MBB.isEHFuncletEntry()) { 2712 for (const HandlerInfo &HI : Handlers) { 2713 HI.Handler->endFunclet(); 2714 HI.Handler->beginFunclet(MBB); 2715 } 2716 } 2717 2718 // Emit an alignment directive for this block, if needed. 2719 if (unsigned Align = MBB.getAlignment()) 2720 EmitAlignment(Align); 2721 MCCodePaddingContext Context; 2722 setupCodePaddingContext(MBB, Context); 2723 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2724 2725 // If the block has its address taken, emit any labels that were used to 2726 // reference the block. It is possible that there is more than one label 2727 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2728 // the references were generated. 2729 if (MBB.hasAddressTaken()) { 2730 const BasicBlock *BB = MBB.getBasicBlock(); 2731 if (isVerbose()) 2732 OutStreamer->AddComment("Block address taken"); 2733 2734 // MBBs can have their address taken as part of CodeGen without having 2735 // their corresponding BB's address taken in IR 2736 if (BB->hasAddressTaken()) 2737 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2738 OutStreamer->EmitLabel(Sym); 2739 } 2740 2741 // Print some verbose block comments. 2742 if (isVerbose()) { 2743 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2744 if (BB->hasName()) { 2745 BB->printAsOperand(OutStreamer->GetCommentOS(), 2746 /*PrintType=*/false, BB->getModule()); 2747 OutStreamer->GetCommentOS() << '\n'; 2748 } 2749 } 2750 emitBasicBlockLoopComments(MBB, LI, *this); 2751 } 2752 2753 // Print the main label for the block. 2754 if (MBB.pred_empty() || 2755 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2756 if (isVerbose()) { 2757 // NOTE: Want this comment at start of line, don't emit with AddComment. 2758 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2759 false); 2760 } 2761 } else { 2762 OutStreamer->EmitLabel(MBB.getSymbol()); 2763 } 2764 } 2765 2766 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2767 MCCodePaddingContext Context; 2768 setupCodePaddingContext(MBB, Context); 2769 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2770 } 2771 2772 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2773 bool IsDefinition) const { 2774 MCSymbolAttr Attr = MCSA_Invalid; 2775 2776 switch (Visibility) { 2777 default: break; 2778 case GlobalValue::HiddenVisibility: 2779 if (IsDefinition) 2780 Attr = MAI->getHiddenVisibilityAttr(); 2781 else 2782 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2783 break; 2784 case GlobalValue::ProtectedVisibility: 2785 Attr = MAI->getProtectedVisibilityAttr(); 2786 break; 2787 } 2788 2789 if (Attr != MCSA_Invalid) 2790 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2791 } 2792 2793 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2794 /// exactly one predecessor and the control transfer mechanism between 2795 /// the predecessor and this block is a fall-through. 2796 bool AsmPrinter:: 2797 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2798 // If this is a landing pad, it isn't a fall through. If it has no preds, 2799 // then nothing falls through to it. 2800 if (MBB->isEHPad() || MBB->pred_empty()) 2801 return false; 2802 2803 // If there isn't exactly one predecessor, it can't be a fall through. 2804 if (MBB->pred_size() > 1) 2805 return false; 2806 2807 // The predecessor has to be immediately before this block. 2808 MachineBasicBlock *Pred = *MBB->pred_begin(); 2809 if (!Pred->isLayoutSuccessor(MBB)) 2810 return false; 2811 2812 // If the block is completely empty, then it definitely does fall through. 2813 if (Pred->empty()) 2814 return true; 2815 2816 // Check the terminators in the previous blocks 2817 for (const auto &MI : Pred->terminators()) { 2818 // If it is not a simple branch, we are in a table somewhere. 2819 if (!MI.isBranch() || MI.isIndirectBranch()) 2820 return false; 2821 2822 // If we are the operands of one of the branches, this is not a fall 2823 // through. Note that targets with delay slots will usually bundle 2824 // terminators with the delay slot instruction. 2825 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2826 if (OP->isJTI()) 2827 return false; 2828 if (OP->isMBB() && OP->getMBB() == MBB) 2829 return false; 2830 } 2831 } 2832 2833 return true; 2834 } 2835 2836 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2837 if (!S.usesMetadata()) 2838 return nullptr; 2839 2840 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2841 " stackmap formats, please see the documentation for a description of" 2842 " the default format. If you really need a custom serialized format," 2843 " please file a bug"); 2844 2845 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2846 gcp_map_type::iterator GCPI = GCMap.find(&S); 2847 if (GCPI != GCMap.end()) 2848 return GCPI->second.get(); 2849 2850 auto Name = S.getName(); 2851 2852 for (GCMetadataPrinterRegistry::iterator 2853 I = GCMetadataPrinterRegistry::begin(), 2854 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2855 if (Name == I->getName()) { 2856 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2857 GMP->S = &S; 2858 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2859 return IterBool.first->second.get(); 2860 } 2861 2862 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2863 } 2864 2865 /// Pin vtable to this file. 2866 AsmPrinterHandler::~AsmPrinterHandler() = default; 2867 2868 void AsmPrinterHandler::markFunctionEnd() {} 2869 2870 // In the binary's "xray_instr_map" section, an array of these function entries 2871 // describes each instrumentation point. When XRay patches your code, the index 2872 // into this table will be given to your handler as a patch point identifier. 2873 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2874 const MCSymbol *CurrentFnSym) const { 2875 Out->EmitSymbolValue(Sled, Bytes); 2876 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2877 auto Kind8 = static_cast<uint8_t>(Kind); 2878 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2879 Out->EmitBinaryData( 2880 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2881 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2882 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2883 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2884 Out->EmitZeros(Padding); 2885 } 2886 2887 void AsmPrinter::emitXRayTable() { 2888 if (Sleds.empty()) 2889 return; 2890 2891 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2892 const Function &F = MF->getFunction(); 2893 MCSection *InstMap = nullptr; 2894 MCSection *FnSledIndex = nullptr; 2895 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2896 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2897 assert(Associated != nullptr); 2898 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2899 std::string GroupName; 2900 if (F.hasComdat()) { 2901 Flags |= ELF::SHF_GROUP; 2902 GroupName = F.getComdat()->getName(); 2903 } 2904 2905 auto UniqueID = ++XRayFnUniqueID; 2906 InstMap = 2907 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2908 GroupName, UniqueID, Associated); 2909 FnSledIndex = 2910 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2911 GroupName, UniqueID, Associated); 2912 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2913 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2914 SectionKind::getReadOnlyWithRel()); 2915 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2916 SectionKind::getReadOnlyWithRel()); 2917 } else { 2918 llvm_unreachable("Unsupported target"); 2919 } 2920 2921 auto WordSizeBytes = MAI->getCodePointerSize(); 2922 2923 // Now we switch to the instrumentation map section. Because this is done 2924 // per-function, we are able to create an index entry that will represent the 2925 // range of sleds associated with a function. 2926 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2927 OutStreamer->SwitchSection(InstMap); 2928 OutStreamer->EmitLabel(SledsStart); 2929 for (const auto &Sled : Sleds) 2930 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2931 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2932 OutStreamer->EmitLabel(SledsEnd); 2933 2934 // We then emit a single entry in the index per function. We use the symbols 2935 // that bound the instrumentation map as the range for a specific function. 2936 // Each entry here will be 2 * word size aligned, as we're writing down two 2937 // pointers. This should work for both 32-bit and 64-bit platforms. 2938 OutStreamer->SwitchSection(FnSledIndex); 2939 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2940 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2941 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2942 OutStreamer->SwitchSection(PrevSection); 2943 Sleds.clear(); 2944 } 2945 2946 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2947 SledKind Kind, uint8_t Version) { 2948 const Function &F = MI.getMF()->getFunction(); 2949 auto Attr = F.getFnAttribute("function-instrument"); 2950 bool LogArgs = F.hasFnAttribute("xray-log-args"); 2951 bool AlwaysInstrument = 2952 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2953 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2954 Kind = SledKind::LOG_ARGS_ENTER; 2955 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2956 AlwaysInstrument, &F, Version}); 2957 } 2958 2959 uint16_t AsmPrinter::getDwarfVersion() const { 2960 return OutStreamer->getContext().getDwarfVersion(); 2961 } 2962 2963 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2964 OutStreamer->getContext().setDwarfVersion(Version); 2965 } 2966