1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/ObjectUtils.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSubtargetInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionELF.h" 92 #include "llvm/MC/MCSectionMachO.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCTargetOptions.h" 98 #include "llvm/MC/MCValue.h" 99 #include "llvm/MC/SectionKind.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/Format.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/Path.h" 108 #include "llvm/Support/TargetRegistry.h" 109 #include "llvm/Support/Timer.h" 110 #include "llvm/Support/raw_ostream.h" 111 #include "llvm/Target/TargetMachine.h" 112 #include "llvm/Target/TargetOptions.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cinttypes> 116 #include <cstdint> 117 #include <iterator> 118 #include <limits> 119 #include <memory> 120 #include <string> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 126 #define DEBUG_TYPE "asm-printer" 127 128 static const char *const DWARFGroupName = "dwarf"; 129 static const char *const DWARFGroupDescription = "DWARF Emission"; 130 static const char *const DbgTimerName = "emit"; 131 static const char *const DbgTimerDescription = "Debug Info Emission"; 132 static const char *const EHTimerName = "write_exception"; 133 static const char *const EHTimerDescription = "DWARF Exception Writer"; 134 static const char *const CFGuardName = "Control Flow Guard"; 135 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 136 static const char *const CodeViewLineTablesGroupName = "linetables"; 137 static const char *const CodeViewLineTablesGroupDescription = 138 "CodeView Line Tables"; 139 140 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 141 142 static cl::opt<bool> 143 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 144 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 145 146 char AsmPrinter::ID = 0; 147 148 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 149 150 static gcp_map_type &getGCMap(void *&P) { 151 if (!P) 152 P = new gcp_map_type(); 153 return *(gcp_map_type*)P; 154 } 155 156 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 157 /// value in log2 form. This rounds up to the preferred alignment if possible 158 /// and legal. 159 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 160 unsigned InBits = 0) { 161 unsigned NumBits = 0; 162 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 163 NumBits = DL.getPreferredAlignmentLog(GVar); 164 165 // If InBits is specified, round it to it. 166 if (InBits > NumBits) 167 NumBits = InBits; 168 169 // If the GV has a specified alignment, take it into account. 170 if (GV->getAlignment() == 0) 171 return NumBits; 172 173 unsigned GVAlign = Log2_32(GV->getAlignment()); 174 175 // If the GVAlign is larger than NumBits, or if we are required to obey 176 // NumBits because the GV has an assigned section, obey it. 177 if (GVAlign > NumBits || GV->hasSection()) 178 NumBits = GVAlign; 179 return NumBits; 180 } 181 182 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 183 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 184 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 185 VerboseAsm = OutStreamer->isVerboseAsm(); 186 } 187 188 AsmPrinter::~AsmPrinter() { 189 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 190 191 if (GCMetadataPrinters) { 192 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 193 194 delete &GCMap; 195 GCMetadataPrinters = nullptr; 196 } 197 } 198 199 bool AsmPrinter::isPositionIndependent() const { 200 return TM.isPositionIndependent(); 201 } 202 203 /// getFunctionNumber - Return a unique ID for the current function. 204 unsigned AsmPrinter::getFunctionNumber() const { 205 return MF->getFunctionNumber(); 206 } 207 208 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 209 return *TM.getObjFileLowering(); 210 } 211 212 const DataLayout &AsmPrinter::getDataLayout() const { 213 return MMI->getModule()->getDataLayout(); 214 } 215 216 // Do not use the cached DataLayout because some client use it without a Module 217 // (llvm-dsymutil, llvm-dwarfdump). 218 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 219 220 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 221 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 222 return MF->getSubtarget<MCSubtargetInfo>(); 223 } 224 225 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 226 S.EmitInstruction(Inst, getSubtargetInfo()); 227 } 228 229 /// getCurrentSection() - Return the current section we are emitting to. 230 const MCSection *AsmPrinter::getCurrentSection() const { 231 return OutStreamer->getCurrentSectionOnly(); 232 } 233 234 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 235 AU.setPreservesAll(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 AU.addRequired<MachineModuleInfo>(); 238 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 239 AU.addRequired<GCModuleInfo>(); 240 AU.addRequired<MachineLoopInfo>(); 241 } 242 243 bool AsmPrinter::doInitialization(Module &M) { 244 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 245 246 // Initialize TargetLoweringObjectFile. 247 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 248 .Initialize(OutContext, TM); 249 250 OutStreamer->InitSections(false); 251 252 // Emit the version-min deplyment target directive if needed. 253 // 254 // FIXME: If we end up with a collection of these sorts of Darwin-specific 255 // or ELF-specific things, it may make sense to have a platform helper class 256 // that will work with the target helper class. For now keep it here, as the 257 // alternative is duplicated code in each of the target asm printers that 258 // use the directive, where it would need the same conditionalization 259 // anyway. 260 const Triple &Target = TM.getTargetTriple(); 261 OutStreamer->EmitVersionForTarget(Target); 262 263 // Allow the target to emit any magic that it wants at the start of the file. 264 EmitStartOfAsmFile(M); 265 266 // Very minimal debug info. It is ignored if we emit actual debug info. If we 267 // don't, this at least helps the user find where a global came from. 268 if (MAI->hasSingleParameterDotFile()) { 269 // .file "foo.c" 270 OutStreamer->EmitFileDirective( 271 llvm::sys::path::filename(M.getSourceFileName())); 272 } 273 274 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 275 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 276 for (auto &I : *MI) 277 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 278 MP->beginAssembly(M, *MI, *this); 279 280 // Emit module-level inline asm if it exists. 281 if (!M.getModuleInlineAsm().empty()) { 282 // We're at the module level. Construct MCSubtarget from the default CPU 283 // and target triple. 284 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 285 TM.getTargetTriple().str(), TM.getTargetCPU(), 286 TM.getTargetFeatureString())); 287 OutStreamer->AddComment("Start of file scope inline assembly"); 288 OutStreamer->AddBlankLine(); 289 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 290 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 291 OutStreamer->AddComment("End of file scope inline assembly"); 292 OutStreamer->AddBlankLine(); 293 } 294 295 if (MAI->doesSupportDebugInformation()) { 296 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 297 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 298 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 299 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 300 DbgTimerName, DbgTimerDescription, 301 CodeViewLineTablesGroupName, 302 CodeViewLineTablesGroupDescription)); 303 } 304 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 305 DD = new DwarfDebug(this, &M); 306 DD->beginModule(); 307 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 308 DWARFGroupName, DWARFGroupDescription)); 309 } 310 } 311 312 switch (MAI->getExceptionHandlingType()) { 313 case ExceptionHandling::SjLj: 314 case ExceptionHandling::DwarfCFI: 315 case ExceptionHandling::ARM: 316 isCFIMoveForDebugging = true; 317 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 318 break; 319 for (auto &F: M.getFunctionList()) { 320 // If the module contains any function with unwind data, 321 // .eh_frame has to be emitted. 322 // Ignore functions that won't get emitted. 323 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 324 isCFIMoveForDebugging = false; 325 break; 326 } 327 } 328 break; 329 default: 330 isCFIMoveForDebugging = false; 331 break; 332 } 333 334 EHStreamer *ES = nullptr; 335 switch (MAI->getExceptionHandlingType()) { 336 case ExceptionHandling::None: 337 break; 338 case ExceptionHandling::SjLj: 339 case ExceptionHandling::DwarfCFI: 340 ES = new DwarfCFIException(this); 341 break; 342 case ExceptionHandling::ARM: 343 ES = new ARMException(this); 344 break; 345 case ExceptionHandling::WinEH: 346 switch (MAI->getWinEHEncodingType()) { 347 default: llvm_unreachable("unsupported unwinding information encoding"); 348 case WinEH::EncodingType::Invalid: 349 break; 350 case WinEH::EncodingType::X86: 351 case WinEH::EncodingType::Itanium: 352 ES = new WinException(this); 353 break; 354 } 355 break; 356 } 357 if (ES) 358 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 359 DWARFGroupName, DWARFGroupDescription)); 360 361 if (mdconst::extract_or_null<ConstantInt>( 362 MMI->getModule()->getModuleFlag("cfguard"))) 363 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 364 CFGuardDescription, DWARFGroupName, 365 DWARFGroupDescription)); 366 367 return false; 368 } 369 370 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 371 if (!MAI.hasWeakDefCanBeHiddenDirective()) 372 return false; 373 374 return canBeOmittedFromSymbolTable(GV); 375 } 376 377 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 378 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 379 switch (Linkage) { 380 case GlobalValue::CommonLinkage: 381 case GlobalValue::LinkOnceAnyLinkage: 382 case GlobalValue::LinkOnceODRLinkage: 383 case GlobalValue::WeakAnyLinkage: 384 case GlobalValue::WeakODRLinkage: 385 if (MAI->hasWeakDefDirective()) { 386 // .globl _foo 387 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 388 389 if (!canBeHidden(GV, *MAI)) 390 // .weak_definition _foo 391 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 392 else 393 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 394 } else if (MAI->hasLinkOnceDirective()) { 395 // .globl _foo 396 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 397 //NOTE: linkonce is handled by the section the symbol was assigned to. 398 } else { 399 // .weak _foo 400 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 401 } 402 return; 403 case GlobalValue::ExternalLinkage: 404 // If external, declare as a global symbol: .globl _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 406 return; 407 case GlobalValue::PrivateLinkage: 408 case GlobalValue::InternalLinkage: 409 return; 410 case GlobalValue::AppendingLinkage: 411 case GlobalValue::AvailableExternallyLinkage: 412 case GlobalValue::ExternalWeakLinkage: 413 llvm_unreachable("Should never emit this"); 414 } 415 llvm_unreachable("Unknown linkage type!"); 416 } 417 418 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 419 const GlobalValue *GV) const { 420 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 421 } 422 423 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 424 return TM.getSymbol(GV); 425 } 426 427 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 428 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 429 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 430 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 431 "No emulated TLS variables in the common section"); 432 433 // Never emit TLS variable xyz in emulated TLS model. 434 // The initialization value is in __emutls_t.xyz instead of xyz. 435 if (IsEmuTLSVar) 436 return; 437 438 if (GV->hasInitializer()) { 439 // Check to see if this is a special global used by LLVM, if so, emit it. 440 if (EmitSpecialLLVMGlobal(GV)) 441 return; 442 443 // Skip the emission of global equivalents. The symbol can be emitted later 444 // on by emitGlobalGOTEquivs in case it turns out to be needed. 445 if (GlobalGOTEquivs.count(getSymbol(GV))) 446 return; 447 448 if (isVerbose()) { 449 // When printing the control variable __emutls_v.*, 450 // we don't need to print the original TLS variable name. 451 GV->printAsOperand(OutStreamer->GetCommentOS(), 452 /*PrintType=*/false, GV->getParent()); 453 OutStreamer->GetCommentOS() << '\n'; 454 } 455 } 456 457 MCSymbol *GVSym = getSymbol(GV); 458 MCSymbol *EmittedSym = GVSym; 459 460 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 461 // attributes. 462 // GV's or GVSym's attributes will be used for the EmittedSym. 463 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 464 465 if (!GV->hasInitializer()) // External globals require no extra code. 466 return; 467 468 GVSym->redefineIfPossible(); 469 if (GVSym->isDefined() || GVSym->isVariable()) 470 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 471 "' is already defined"); 472 473 if (MAI->hasDotTypeDotSizeDirective()) 474 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 475 476 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 477 478 const DataLayout &DL = GV->getParent()->getDataLayout(); 479 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 480 481 // If the alignment is specified, we *must* obey it. Overaligning a global 482 // with a specified alignment is a prompt way to break globals emitted to 483 // sections and expected to be contiguous (e.g. ObjC metadata). 484 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 485 486 for (const HandlerInfo &HI : Handlers) { 487 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 488 HI.TimerGroupName, HI.TimerGroupDescription, 489 TimePassesIsEnabled); 490 HI.Handler->setSymbolSize(GVSym, Size); 491 } 492 493 // Handle common symbols 494 if (GVKind.isCommon()) { 495 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 496 unsigned Align = 1 << AlignLog; 497 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 498 Align = 0; 499 500 // .comm _foo, 42, 4 501 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 502 return; 503 } 504 505 // Determine to which section this global should be emitted. 506 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 507 508 // If we have a bss global going to a section that supports the 509 // zerofill directive, do so here. 510 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 511 TheSection->isVirtualSection()) { 512 if (Size == 0) 513 Size = 1; // zerofill of 0 bytes is undefined. 514 unsigned Align = 1 << AlignLog; 515 EmitLinkage(GV, GVSym); 516 // .zerofill __DATA, __bss, _foo, 400, 5 517 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 518 return; 519 } 520 521 // If this is a BSS local symbol and we are emitting in the BSS 522 // section use .lcomm/.comm directive. 523 if (GVKind.isBSSLocal() && 524 getObjFileLowering().getBSSSection() == TheSection) { 525 if (Size == 0) 526 Size = 1; // .comm Foo, 0 is undefined, avoid it. 527 unsigned Align = 1 << AlignLog; 528 529 // Use .lcomm only if it supports user-specified alignment. 530 // Otherwise, while it would still be correct to use .lcomm in some 531 // cases (e.g. when Align == 1), the external assembler might enfore 532 // some -unknown- default alignment behavior, which could cause 533 // spurious differences between external and integrated assembler. 534 // Prefer to simply fall back to .local / .comm in this case. 535 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 536 // .lcomm _foo, 42 537 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 538 return; 539 } 540 541 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 542 Align = 0; 543 544 // .local _foo 545 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 546 // .comm _foo, 42, 4 547 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 548 return; 549 } 550 551 // Handle thread local data for mach-o which requires us to output an 552 // additional structure of data and mangle the original symbol so that we 553 // can reference it later. 554 // 555 // TODO: This should become an "emit thread local global" method on TLOF. 556 // All of this macho specific stuff should be sunk down into TLOFMachO and 557 // stuff like "TLSExtraDataSection" should no longer be part of the parent 558 // TLOF class. This will also make it more obvious that stuff like 559 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 560 // specific code. 561 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 562 // Emit the .tbss symbol 563 MCSymbol *MangSym = 564 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 565 566 if (GVKind.isThreadBSS()) { 567 TheSection = getObjFileLowering().getTLSBSSSection(); 568 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 569 } else if (GVKind.isThreadData()) { 570 OutStreamer->SwitchSection(TheSection); 571 572 EmitAlignment(AlignLog, GV); 573 OutStreamer->EmitLabel(MangSym); 574 575 EmitGlobalConstant(GV->getParent()->getDataLayout(), 576 GV->getInitializer()); 577 } 578 579 OutStreamer->AddBlankLine(); 580 581 // Emit the variable struct for the runtime. 582 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 583 584 OutStreamer->SwitchSection(TLVSect); 585 // Emit the linkage here. 586 EmitLinkage(GV, GVSym); 587 OutStreamer->EmitLabel(GVSym); 588 589 // Three pointers in size: 590 // - __tlv_bootstrap - used to make sure support exists 591 // - spare pointer, used when mapped by the runtime 592 // - pointer to mangled symbol above with initializer 593 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 594 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 595 PtrSize); 596 OutStreamer->EmitIntValue(0, PtrSize); 597 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 598 599 OutStreamer->AddBlankLine(); 600 return; 601 } 602 603 MCSymbol *EmittedInitSym = GVSym; 604 605 OutStreamer->SwitchSection(TheSection); 606 607 EmitLinkage(GV, EmittedInitSym); 608 EmitAlignment(AlignLog, GV); 609 610 OutStreamer->EmitLabel(EmittedInitSym); 611 612 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 613 614 if (MAI->hasDotTypeDotSizeDirective()) 615 // .size foo, 42 616 OutStreamer->emitELFSize(EmittedInitSym, 617 MCConstantExpr::create(Size, OutContext)); 618 619 OutStreamer->AddBlankLine(); 620 } 621 622 /// Emit the directive and value for debug thread local expression 623 /// 624 /// \p Value - The value to emit. 625 /// \p Size - The size of the integer (in bytes) to emit. 626 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 627 unsigned Size) const { 628 OutStreamer->EmitValue(Value, Size); 629 } 630 631 /// EmitFunctionHeader - This method emits the header for the current 632 /// function. 633 void AsmPrinter::EmitFunctionHeader() { 634 const Function &F = MF->getFunction(); 635 636 if (isVerbose()) 637 OutStreamer->GetCommentOS() 638 << "-- Begin function " 639 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 640 641 // Print out constants referenced by the function 642 EmitConstantPool(); 643 644 // Print the 'header' of function. 645 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 646 EmitVisibility(CurrentFnSym, F.getVisibility()); 647 648 EmitLinkage(&F, CurrentFnSym); 649 if (MAI->hasFunctionAlignment()) 650 EmitAlignment(MF->getAlignment(), &F); 651 652 if (MAI->hasDotTypeDotSizeDirective()) 653 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 654 655 if (isVerbose()) { 656 F.printAsOperand(OutStreamer->GetCommentOS(), 657 /*PrintType=*/false, F.getParent()); 658 OutStreamer->GetCommentOS() << '\n'; 659 } 660 661 // Emit the prefix data. 662 if (F.hasPrefixData()) { 663 if (MAI->hasSubsectionsViaSymbols()) { 664 // Preserving prefix data on platforms which use subsections-via-symbols 665 // is a bit tricky. Here we introduce a symbol for the prefix data 666 // and use the .alt_entry attribute to mark the function's real entry point 667 // as an alternative entry point to the prefix-data symbol. 668 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 669 OutStreamer->EmitLabel(PrefixSym); 670 671 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 672 673 // Emit an .alt_entry directive for the actual function symbol. 674 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 675 } else { 676 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 677 } 678 } 679 680 // Emit the CurrentFnSym. This is a virtual function to allow targets to 681 // do their wild and crazy things as required. 682 EmitFunctionEntryLabel(); 683 684 // If the function had address-taken blocks that got deleted, then we have 685 // references to the dangling symbols. Emit them at the start of the function 686 // so that we don't get references to undefined symbols. 687 std::vector<MCSymbol*> DeadBlockSyms; 688 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 689 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 690 OutStreamer->AddComment("Address taken block that was later removed"); 691 OutStreamer->EmitLabel(DeadBlockSyms[i]); 692 } 693 694 if (CurrentFnBegin) { 695 if (MAI->useAssignmentForEHBegin()) { 696 MCSymbol *CurPos = OutContext.createTempSymbol(); 697 OutStreamer->EmitLabel(CurPos); 698 OutStreamer->EmitAssignment(CurrentFnBegin, 699 MCSymbolRefExpr::create(CurPos, OutContext)); 700 } else { 701 OutStreamer->EmitLabel(CurrentFnBegin); 702 } 703 } 704 705 // Emit pre-function debug and/or EH information. 706 for (const HandlerInfo &HI : Handlers) { 707 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 708 HI.TimerGroupDescription, TimePassesIsEnabled); 709 HI.Handler->beginFunction(MF); 710 } 711 712 // Emit the prologue data. 713 if (F.hasPrologueData()) 714 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 715 } 716 717 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 718 /// function. This can be overridden by targets as required to do custom stuff. 719 void AsmPrinter::EmitFunctionEntryLabel() { 720 CurrentFnSym->redefineIfPossible(); 721 722 // The function label could have already been emitted if two symbols end up 723 // conflicting due to asm renaming. Detect this and emit an error. 724 if (CurrentFnSym->isVariable()) 725 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 726 "' is a protected alias"); 727 if (CurrentFnSym->isDefined()) 728 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 729 "' label emitted multiple times to assembly file"); 730 731 return OutStreamer->EmitLabel(CurrentFnSym); 732 } 733 734 /// emitComments - Pretty-print comments for instructions. 735 /// It returns true iff the sched comment was emitted. 736 /// Otherwise it returns false. 737 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 738 AsmPrinter *AP) { 739 const MachineFunction *MF = MI.getMF(); 740 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 741 742 // Check for spills and reloads 743 int FI; 744 745 const MachineFrameInfo &MFI = MF->getFrameInfo(); 746 bool Commented = false; 747 748 // We assume a single instruction only has a spill or reload, not 749 // both. 750 const MachineMemOperand *MMO; 751 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 752 if (MFI.isSpillSlotObjectIndex(FI)) { 753 MMO = *MI.memoperands_begin(); 754 CommentOS << MMO->getSize() << "-byte Reload"; 755 Commented = true; 756 } 757 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 758 if (MFI.isSpillSlotObjectIndex(FI)) { 759 CommentOS << MMO->getSize() << "-byte Folded Reload"; 760 Commented = true; 761 } 762 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 763 if (MFI.isSpillSlotObjectIndex(FI)) { 764 MMO = *MI.memoperands_begin(); 765 CommentOS << MMO->getSize() << "-byte Spill"; 766 Commented = true; 767 } 768 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 769 if (MFI.isSpillSlotObjectIndex(FI)) { 770 CommentOS << MMO->getSize() << "-byte Folded Spill"; 771 Commented = true; 772 } 773 } 774 775 // Check for spill-induced copies 776 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 777 Commented = true; 778 CommentOS << " Reload Reuse"; 779 } 780 781 if (Commented) { 782 if (AP->EnablePrintSchedInfo) { 783 // If any comment was added above and we need sched info comment then add 784 // this new comment just after the above comment w/o "\n" between them. 785 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 786 return true; 787 } 788 CommentOS << "\n"; 789 } 790 return false; 791 } 792 793 /// emitImplicitDef - This method emits the specified machine instruction 794 /// that is an implicit def. 795 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 796 unsigned RegNo = MI->getOperand(0).getReg(); 797 798 SmallString<128> Str; 799 raw_svector_ostream OS(Str); 800 OS << "implicit-def: " 801 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 802 803 OutStreamer->AddComment(OS.str()); 804 OutStreamer->AddBlankLine(); 805 } 806 807 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 808 std::string Str; 809 raw_string_ostream OS(Str); 810 OS << "kill:"; 811 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 812 const MachineOperand &Op = MI->getOperand(i); 813 assert(Op.isReg() && "KILL instruction must have only register operands"); 814 OS << ' ' << (Op.isDef() ? "def " : "killed ") 815 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 816 } 817 AP.OutStreamer->AddComment(OS.str()); 818 AP.OutStreamer->AddBlankLine(); 819 } 820 821 /// emitDebugValueComment - This method handles the target-independent form 822 /// of DBG_VALUE, returning true if it was able to do so. A false return 823 /// means the target will need to handle MI in EmitInstruction. 824 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 825 // This code handles only the 4-operand target-independent form. 826 if (MI->getNumOperands() != 4) 827 return false; 828 829 SmallString<128> Str; 830 raw_svector_ostream OS(Str); 831 OS << "DEBUG_VALUE: "; 832 833 const DILocalVariable *V = MI->getDebugVariable(); 834 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 835 StringRef Name = SP->getName(); 836 if (!Name.empty()) 837 OS << Name << ":"; 838 } 839 OS << V->getName(); 840 OS << " <- "; 841 842 // The second operand is only an offset if it's an immediate. 843 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 844 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 845 const DIExpression *Expr = MI->getDebugExpression(); 846 if (Expr->getNumElements()) { 847 OS << '['; 848 bool NeedSep = false; 849 for (auto Op : Expr->expr_ops()) { 850 if (NeedSep) 851 OS << ", "; 852 else 853 NeedSep = true; 854 OS << dwarf::OperationEncodingString(Op.getOp()); 855 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 856 OS << ' ' << Op.getArg(I); 857 } 858 OS << "] "; 859 } 860 861 // Register or immediate value. Register 0 means undef. 862 if (MI->getOperand(0).isFPImm()) { 863 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 864 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 865 OS << (double)APF.convertToFloat(); 866 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 867 OS << APF.convertToDouble(); 868 } else { 869 // There is no good way to print long double. Convert a copy to 870 // double. Ah well, it's only a comment. 871 bool ignored; 872 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 873 &ignored); 874 OS << "(long double) " << APF.convertToDouble(); 875 } 876 } else if (MI->getOperand(0).isImm()) { 877 OS << MI->getOperand(0).getImm(); 878 } else if (MI->getOperand(0).isCImm()) { 879 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 880 } else { 881 unsigned Reg; 882 if (MI->getOperand(0).isReg()) { 883 Reg = MI->getOperand(0).getReg(); 884 } else { 885 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 886 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 887 Offset += TFI->getFrameIndexReference(*AP.MF, 888 MI->getOperand(0).getIndex(), Reg); 889 MemLoc = true; 890 } 891 if (Reg == 0) { 892 // Suppress offset, it is not meaningful here. 893 OS << "undef"; 894 // NOTE: Want this comment at start of line, don't emit with AddComment. 895 AP.OutStreamer->emitRawComment(OS.str()); 896 return true; 897 } 898 if (MemLoc) 899 OS << '['; 900 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 901 } 902 903 if (MemLoc) 904 OS << '+' << Offset << ']'; 905 906 // NOTE: Want this comment at start of line, don't emit with AddComment. 907 AP.OutStreamer->emitRawComment(OS.str()); 908 return true; 909 } 910 911 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 912 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 913 MF->getFunction().needsUnwindTableEntry()) 914 return CFI_M_EH; 915 916 if (MMI->hasDebugInfo()) 917 return CFI_M_Debug; 918 919 return CFI_M_None; 920 } 921 922 bool AsmPrinter::needsSEHMoves() { 923 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 924 } 925 926 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 927 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 928 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 929 ExceptionHandlingType != ExceptionHandling::ARM) 930 return; 931 932 if (needsCFIMoves() == CFI_M_None) 933 return; 934 935 // If there is no "real" instruction following this CFI instruction, skip 936 // emitting it; it would be beyond the end of the function's FDE range. 937 auto *MBB = MI.getParent(); 938 auto I = std::next(MI.getIterator()); 939 while (I != MBB->end() && I->isTransient()) 940 ++I; 941 if (I == MBB->instr_end() && 942 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 943 return; 944 945 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 946 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 947 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 948 emitCFIInstruction(CFI); 949 } 950 951 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 952 // The operands are the MCSymbol and the frame offset of the allocation. 953 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 954 int FrameOffset = MI.getOperand(1).getImm(); 955 956 // Emit a symbol assignment. 957 OutStreamer->EmitAssignment(FrameAllocSym, 958 MCConstantExpr::create(FrameOffset, OutContext)); 959 } 960 961 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 962 if (!MF.getTarget().Options.EmitStackSizeSection) 963 return; 964 965 MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection(); 966 if (!StackSizeSection) 967 return; 968 969 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 970 // Don't emit functions with dynamic stack allocations. 971 if (FrameInfo.hasVarSizedObjects()) 972 return; 973 974 OutStreamer->PushSection(); 975 OutStreamer->SwitchSection(StackSizeSection); 976 977 const MCSymbol *FunctionSymbol = getSymbol(&MF.getFunction()); 978 uint64_t StackSize = FrameInfo.getStackSize(); 979 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getPointerSize()); 980 OutStreamer->EmitULEB128IntValue(StackSize); 981 982 OutStreamer->PopSection(); 983 } 984 985 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 986 MachineModuleInfo *MMI) { 987 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 988 return true; 989 990 // We might emit an EH table that uses function begin and end labels even if 991 // we don't have any landingpads. 992 if (!MF.getFunction().hasPersonalityFn()) 993 return false; 994 return !isNoOpWithoutInvoke( 995 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 996 } 997 998 /// EmitFunctionBody - This method emits the body and trailer for a 999 /// function. 1000 void AsmPrinter::EmitFunctionBody() { 1001 EmitFunctionHeader(); 1002 1003 // Emit target-specific gunk before the function body. 1004 EmitFunctionBodyStart(); 1005 1006 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1007 1008 // Print out code for the function. 1009 bool HasAnyRealCode = false; 1010 int NumInstsInFunction = 0; 1011 for (auto &MBB : *MF) { 1012 // Print a label for the basic block. 1013 EmitBasicBlockStart(MBB); 1014 for (auto &MI : MBB) { 1015 // Print the assembly for the instruction. 1016 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1017 !MI.isDebugValue()) { 1018 HasAnyRealCode = true; 1019 ++NumInstsInFunction; 1020 } 1021 1022 if (ShouldPrintDebugScopes) { 1023 for (const HandlerInfo &HI : Handlers) { 1024 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1025 HI.TimerGroupName, HI.TimerGroupDescription, 1026 TimePassesIsEnabled); 1027 HI.Handler->beginInstruction(&MI); 1028 } 1029 } 1030 1031 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1032 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1033 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1034 } 1035 1036 switch (MI.getOpcode()) { 1037 case TargetOpcode::CFI_INSTRUCTION: 1038 emitCFIInstruction(MI); 1039 break; 1040 case TargetOpcode::LOCAL_ESCAPE: 1041 emitFrameAlloc(MI); 1042 break; 1043 case TargetOpcode::EH_LABEL: 1044 case TargetOpcode::GC_LABEL: 1045 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1046 break; 1047 case TargetOpcode::INLINEASM: 1048 EmitInlineAsm(&MI); 1049 break; 1050 case TargetOpcode::DBG_VALUE: 1051 if (isVerbose()) { 1052 if (!emitDebugValueComment(&MI, *this)) 1053 EmitInstruction(&MI); 1054 } 1055 break; 1056 case TargetOpcode::IMPLICIT_DEF: 1057 if (isVerbose()) emitImplicitDef(&MI); 1058 break; 1059 case TargetOpcode::KILL: 1060 if (isVerbose()) emitKill(&MI, *this); 1061 break; 1062 default: 1063 EmitInstruction(&MI); 1064 break; 1065 } 1066 1067 if (ShouldPrintDebugScopes) { 1068 for (const HandlerInfo &HI : Handlers) { 1069 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1070 HI.TimerGroupName, HI.TimerGroupDescription, 1071 TimePassesIsEnabled); 1072 HI.Handler->endInstruction(); 1073 } 1074 } 1075 } 1076 1077 EmitBasicBlockEnd(MBB); 1078 } 1079 1080 EmittedInsts += NumInstsInFunction; 1081 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1082 MF->getFunction().getSubprogram(), 1083 &MF->front()); 1084 R << ore::NV("NumInstructions", NumInstsInFunction) 1085 << " instructions in function"; 1086 ORE->emit(R); 1087 1088 // If the function is empty and the object file uses .subsections_via_symbols, 1089 // then we need to emit *something* to the function body to prevent the 1090 // labels from collapsing together. Just emit a noop. 1091 // Similarly, don't emit empty functions on Windows either. It can lead to 1092 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1093 // after linking, causing the kernel not to load the binary: 1094 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1095 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1096 const Triple &TT = TM.getTargetTriple(); 1097 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1098 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1099 MCInst Noop; 1100 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1101 1102 // Targets can opt-out of emitting the noop here by leaving the opcode 1103 // unspecified. 1104 if (Noop.getOpcode()) { 1105 OutStreamer->AddComment("avoids zero-length function"); 1106 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1107 } 1108 } 1109 1110 const Function &F = MF->getFunction(); 1111 for (const auto &BB : F) { 1112 if (!BB.hasAddressTaken()) 1113 continue; 1114 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1115 if (Sym->isDefined()) 1116 continue; 1117 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1118 OutStreamer->EmitLabel(Sym); 1119 } 1120 1121 // Emit target-specific gunk after the function body. 1122 EmitFunctionBodyEnd(); 1123 1124 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1125 MAI->hasDotTypeDotSizeDirective()) { 1126 // Create a symbol for the end of function. 1127 CurrentFnEnd = createTempSymbol("func_end"); 1128 OutStreamer->EmitLabel(CurrentFnEnd); 1129 } 1130 1131 // If the target wants a .size directive for the size of the function, emit 1132 // it. 1133 if (MAI->hasDotTypeDotSizeDirective()) { 1134 // We can get the size as difference between the function label and the 1135 // temp label. 1136 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1137 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1138 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1139 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1140 } 1141 1142 for (const HandlerInfo &HI : Handlers) { 1143 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1144 HI.TimerGroupDescription, TimePassesIsEnabled); 1145 HI.Handler->markFunctionEnd(); 1146 } 1147 1148 // Print out jump tables referenced by the function. 1149 EmitJumpTableInfo(); 1150 1151 // Emit post-function debug and/or EH information. 1152 for (const HandlerInfo &HI : Handlers) { 1153 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1154 HI.TimerGroupDescription, TimePassesIsEnabled); 1155 HI.Handler->endFunction(MF); 1156 } 1157 1158 // Emit section containing stack size metadata. 1159 emitStackSizeSection(*MF); 1160 1161 if (isVerbose()) 1162 OutStreamer->GetCommentOS() << "-- End function\n"; 1163 1164 OutStreamer->AddBlankLine(); 1165 } 1166 1167 /// \brief Compute the number of Global Variables that uses a Constant. 1168 static unsigned getNumGlobalVariableUses(const Constant *C) { 1169 if (!C) 1170 return 0; 1171 1172 if (isa<GlobalVariable>(C)) 1173 return 1; 1174 1175 unsigned NumUses = 0; 1176 for (auto *CU : C->users()) 1177 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1178 1179 return NumUses; 1180 } 1181 1182 /// \brief Only consider global GOT equivalents if at least one user is a 1183 /// cstexpr inside an initializer of another global variables. Also, don't 1184 /// handle cstexpr inside instructions. During global variable emission, 1185 /// candidates are skipped and are emitted later in case at least one cstexpr 1186 /// isn't replaced by a PC relative GOT entry access. 1187 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1188 unsigned &NumGOTEquivUsers) { 1189 // Global GOT equivalents are unnamed private globals with a constant 1190 // pointer initializer to another global symbol. They must point to a 1191 // GlobalVariable or Function, i.e., as GlobalValue. 1192 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1193 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1194 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1195 return false; 1196 1197 // To be a got equivalent, at least one of its users need to be a constant 1198 // expression used by another global variable. 1199 for (auto *U : GV->users()) 1200 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1201 1202 return NumGOTEquivUsers > 0; 1203 } 1204 1205 /// \brief Unnamed constant global variables solely contaning a pointer to 1206 /// another globals variable is equivalent to a GOT table entry; it contains the 1207 /// the address of another symbol. Optimize it and replace accesses to these 1208 /// "GOT equivalents" by using the GOT entry for the final global instead. 1209 /// Compute GOT equivalent candidates among all global variables to avoid 1210 /// emitting them if possible later on, after it use is replaced by a GOT entry 1211 /// access. 1212 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1213 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1214 return; 1215 1216 for (const auto &G : M.globals()) { 1217 unsigned NumGOTEquivUsers = 0; 1218 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1219 continue; 1220 1221 const MCSymbol *GOTEquivSym = getSymbol(&G); 1222 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1223 } 1224 } 1225 1226 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1227 /// for PC relative GOT entry conversion, in such cases we need to emit such 1228 /// globals we previously omitted in EmitGlobalVariable. 1229 void AsmPrinter::emitGlobalGOTEquivs() { 1230 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1231 return; 1232 1233 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1234 for (auto &I : GlobalGOTEquivs) { 1235 const GlobalVariable *GV = I.second.first; 1236 unsigned Cnt = I.second.second; 1237 if (Cnt) 1238 FailedCandidates.push_back(GV); 1239 } 1240 GlobalGOTEquivs.clear(); 1241 1242 for (auto *GV : FailedCandidates) 1243 EmitGlobalVariable(GV); 1244 } 1245 1246 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1247 const GlobalIndirectSymbol& GIS) { 1248 MCSymbol *Name = getSymbol(&GIS); 1249 1250 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1251 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1252 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1253 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1254 else 1255 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1256 1257 // Set the symbol type to function if the alias has a function type. 1258 // This affects codegen when the aliasee is not a function. 1259 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1260 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1261 if (isa<GlobalIFunc>(GIS)) 1262 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1263 } 1264 1265 EmitVisibility(Name, GIS.getVisibility()); 1266 1267 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1268 1269 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1270 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1271 1272 // Emit the directives as assignments aka .set: 1273 OutStreamer->EmitAssignment(Name, Expr); 1274 1275 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1276 // If the aliasee does not correspond to a symbol in the output, i.e. the 1277 // alias is not of an object or the aliased object is private, then set the 1278 // size of the alias symbol from the type of the alias. We don't do this in 1279 // other situations as the alias and aliasee having differing types but same 1280 // size may be intentional. 1281 const GlobalObject *BaseObject = GA->getBaseObject(); 1282 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1283 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1284 const DataLayout &DL = M.getDataLayout(); 1285 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1286 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1287 } 1288 } 1289 } 1290 1291 bool AsmPrinter::doFinalization(Module &M) { 1292 // Set the MachineFunction to nullptr so that we can catch attempted 1293 // accesses to MF specific features at the module level and so that 1294 // we can conditionalize accesses based on whether or not it is nullptr. 1295 MF = nullptr; 1296 1297 // Gather all GOT equivalent globals in the module. We really need two 1298 // passes over the globals: one to compute and another to avoid its emission 1299 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1300 // where the got equivalent shows up before its use. 1301 computeGlobalGOTEquivs(M); 1302 1303 // Emit global variables. 1304 for (const auto &G : M.globals()) 1305 EmitGlobalVariable(&G); 1306 1307 // Emit remaining GOT equivalent globals. 1308 emitGlobalGOTEquivs(); 1309 1310 // Emit visibility info for declarations 1311 for (const Function &F : M) { 1312 if (!F.isDeclarationForLinker()) 1313 continue; 1314 GlobalValue::VisibilityTypes V = F.getVisibility(); 1315 if (V == GlobalValue::DefaultVisibility) 1316 continue; 1317 1318 MCSymbol *Name = getSymbol(&F); 1319 EmitVisibility(Name, V, false); 1320 } 1321 1322 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1323 1324 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1325 1326 if (TM.getTargetTriple().isOSBinFormatELF()) { 1327 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1328 1329 // Output stubs for external and common global variables. 1330 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1331 if (!Stubs.empty()) { 1332 OutStreamer->SwitchSection(TLOF.getDataSection()); 1333 const DataLayout &DL = M.getDataLayout(); 1334 1335 for (const auto &Stub : Stubs) { 1336 OutStreamer->EmitLabel(Stub.first); 1337 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1338 DL.getPointerSize()); 1339 } 1340 } 1341 } 1342 1343 // Finalize debug and EH information. 1344 for (const HandlerInfo &HI : Handlers) { 1345 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1346 HI.TimerGroupDescription, TimePassesIsEnabled); 1347 HI.Handler->endModule(); 1348 delete HI.Handler; 1349 } 1350 Handlers.clear(); 1351 DD = nullptr; 1352 1353 // If the target wants to know about weak references, print them all. 1354 if (MAI->getWeakRefDirective()) { 1355 // FIXME: This is not lazy, it would be nice to only print weak references 1356 // to stuff that is actually used. Note that doing so would require targets 1357 // to notice uses in operands (due to constant exprs etc). This should 1358 // happen with the MC stuff eventually. 1359 1360 // Print out module-level global objects here. 1361 for (const auto &GO : M.global_objects()) { 1362 if (!GO.hasExternalWeakLinkage()) 1363 continue; 1364 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1365 } 1366 } 1367 1368 OutStreamer->AddBlankLine(); 1369 1370 // Print aliases in topological order, that is, for each alias a = b, 1371 // b must be printed before a. 1372 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1373 // such an order to generate correct TOC information. 1374 SmallVector<const GlobalAlias *, 16> AliasStack; 1375 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1376 for (const auto &Alias : M.aliases()) { 1377 for (const GlobalAlias *Cur = &Alias; Cur; 1378 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1379 if (!AliasVisited.insert(Cur).second) 1380 break; 1381 AliasStack.push_back(Cur); 1382 } 1383 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1384 emitGlobalIndirectSymbol(M, *AncestorAlias); 1385 AliasStack.clear(); 1386 } 1387 for (const auto &IFunc : M.ifuncs()) 1388 emitGlobalIndirectSymbol(M, IFunc); 1389 1390 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1391 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1392 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1393 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1394 MP->finishAssembly(M, *MI, *this); 1395 1396 // Emit llvm.ident metadata in an '.ident' directive. 1397 EmitModuleIdents(M); 1398 1399 // Emit __morestack address if needed for indirect calls. 1400 if (MMI->usesMorestackAddr()) { 1401 unsigned Align = 1; 1402 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1403 getDataLayout(), SectionKind::getReadOnly(), 1404 /*C=*/nullptr, Align); 1405 OutStreamer->SwitchSection(ReadOnlySection); 1406 1407 MCSymbol *AddrSymbol = 1408 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1409 OutStreamer->EmitLabel(AddrSymbol); 1410 1411 unsigned PtrSize = MAI->getCodePointerSize(); 1412 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1413 PtrSize); 1414 } 1415 1416 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1417 // split-stack is used. 1418 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1419 OutStreamer->SwitchSection( 1420 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1421 if (MMI->hasNosplitStack()) 1422 OutStreamer->SwitchSection( 1423 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1424 } 1425 1426 // If we don't have any trampolines, then we don't require stack memory 1427 // to be executable. Some targets have a directive to declare this. 1428 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1429 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1430 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1431 OutStreamer->SwitchSection(S); 1432 1433 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1434 // Emit /EXPORT: flags for each exported global as necessary. 1435 const auto &TLOF = getObjFileLowering(); 1436 std::string Flags; 1437 for (const GlobalValue &GV : M.global_values()) { 1438 raw_string_ostream OS(Flags); 1439 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1440 OS.flush(); 1441 if (!Flags.empty()) { 1442 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1443 OutStreamer->EmitBytes(Flags); 1444 } 1445 Flags.clear(); 1446 } 1447 } 1448 1449 // Allow the target to emit any magic that it wants at the end of the file, 1450 // after everything else has gone out. 1451 EmitEndOfAsmFile(M); 1452 1453 MMI = nullptr; 1454 1455 OutStreamer->Finish(); 1456 OutStreamer->reset(); 1457 1458 return false; 1459 } 1460 1461 MCSymbol *AsmPrinter::getCurExceptionSym() { 1462 if (!CurExceptionSym) 1463 CurExceptionSym = createTempSymbol("exception"); 1464 return CurExceptionSym; 1465 } 1466 1467 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1468 this->MF = &MF; 1469 // Get the function symbol. 1470 CurrentFnSym = getSymbol(&MF.getFunction()); 1471 CurrentFnSymForSize = CurrentFnSym; 1472 CurrentFnBegin = nullptr; 1473 CurExceptionSym = nullptr; 1474 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1475 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1476 CurrentFnBegin = createTempSymbol("func_begin"); 1477 if (NeedsLocalForSize) 1478 CurrentFnSymForSize = CurrentFnBegin; 1479 } 1480 1481 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1482 LI = &getAnalysis<MachineLoopInfo>(); 1483 1484 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1485 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1486 ? PrintSchedule 1487 : STI.supportPrintSchedInfo(); 1488 } 1489 1490 namespace { 1491 1492 // Keep track the alignment, constpool entries per Section. 1493 struct SectionCPs { 1494 MCSection *S; 1495 unsigned Alignment; 1496 SmallVector<unsigned, 4> CPEs; 1497 1498 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1499 }; 1500 1501 } // end anonymous namespace 1502 1503 /// EmitConstantPool - Print to the current output stream assembly 1504 /// representations of the constants in the constant pool MCP. This is 1505 /// used to print out constants which have been "spilled to memory" by 1506 /// the code generator. 1507 void AsmPrinter::EmitConstantPool() { 1508 const MachineConstantPool *MCP = MF->getConstantPool(); 1509 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1510 if (CP.empty()) return; 1511 1512 // Calculate sections for constant pool entries. We collect entries to go into 1513 // the same section together to reduce amount of section switch statements. 1514 SmallVector<SectionCPs, 4> CPSections; 1515 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1516 const MachineConstantPoolEntry &CPE = CP[i]; 1517 unsigned Align = CPE.getAlignment(); 1518 1519 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1520 1521 const Constant *C = nullptr; 1522 if (!CPE.isMachineConstantPoolEntry()) 1523 C = CPE.Val.ConstVal; 1524 1525 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1526 Kind, C, Align); 1527 1528 // The number of sections are small, just do a linear search from the 1529 // last section to the first. 1530 bool Found = false; 1531 unsigned SecIdx = CPSections.size(); 1532 while (SecIdx != 0) { 1533 if (CPSections[--SecIdx].S == S) { 1534 Found = true; 1535 break; 1536 } 1537 } 1538 if (!Found) { 1539 SecIdx = CPSections.size(); 1540 CPSections.push_back(SectionCPs(S, Align)); 1541 } 1542 1543 if (Align > CPSections[SecIdx].Alignment) 1544 CPSections[SecIdx].Alignment = Align; 1545 CPSections[SecIdx].CPEs.push_back(i); 1546 } 1547 1548 // Now print stuff into the calculated sections. 1549 const MCSection *CurSection = nullptr; 1550 unsigned Offset = 0; 1551 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1552 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1553 unsigned CPI = CPSections[i].CPEs[j]; 1554 MCSymbol *Sym = GetCPISymbol(CPI); 1555 if (!Sym->isUndefined()) 1556 continue; 1557 1558 if (CurSection != CPSections[i].S) { 1559 OutStreamer->SwitchSection(CPSections[i].S); 1560 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1561 CurSection = CPSections[i].S; 1562 Offset = 0; 1563 } 1564 1565 MachineConstantPoolEntry CPE = CP[CPI]; 1566 1567 // Emit inter-object padding for alignment. 1568 unsigned AlignMask = CPE.getAlignment() - 1; 1569 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1570 OutStreamer->EmitZeros(NewOffset - Offset); 1571 1572 Type *Ty = CPE.getType(); 1573 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1574 1575 OutStreamer->EmitLabel(Sym); 1576 if (CPE.isMachineConstantPoolEntry()) 1577 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1578 else 1579 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1580 } 1581 } 1582 } 1583 1584 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1585 /// by the current function to the current output stream. 1586 void AsmPrinter::EmitJumpTableInfo() { 1587 const DataLayout &DL = MF->getDataLayout(); 1588 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1589 if (!MJTI) return; 1590 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1591 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1592 if (JT.empty()) return; 1593 1594 // Pick the directive to use to print the jump table entries, and switch to 1595 // the appropriate section. 1596 const Function &F = MF->getFunction(); 1597 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1598 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1599 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1600 F); 1601 if (JTInDiffSection) { 1602 // Drop it in the readonly section. 1603 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1604 OutStreamer->SwitchSection(ReadOnlySection); 1605 } 1606 1607 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1608 1609 // Jump tables in code sections are marked with a data_region directive 1610 // where that's supported. 1611 if (!JTInDiffSection) 1612 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1613 1614 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1615 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1616 1617 // If this jump table was deleted, ignore it. 1618 if (JTBBs.empty()) continue; 1619 1620 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1621 /// emit a .set directive for each unique entry. 1622 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1623 MAI->doesSetDirectiveSuppressReloc()) { 1624 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1625 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1626 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1627 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1628 const MachineBasicBlock *MBB = JTBBs[ii]; 1629 if (!EmittedSets.insert(MBB).second) 1630 continue; 1631 1632 // .set LJTSet, LBB32-base 1633 const MCExpr *LHS = 1634 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1635 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1636 MCBinaryExpr::createSub(LHS, Base, 1637 OutContext)); 1638 } 1639 } 1640 1641 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1642 // before each jump table. The first label is never referenced, but tells 1643 // the assembler and linker the extents of the jump table object. The 1644 // second label is actually referenced by the code. 1645 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1646 // FIXME: This doesn't have to have any specific name, just any randomly 1647 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1648 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1649 1650 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1651 1652 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1653 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1654 } 1655 if (!JTInDiffSection) 1656 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1657 } 1658 1659 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1660 /// current stream. 1661 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1662 const MachineBasicBlock *MBB, 1663 unsigned UID) const { 1664 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1665 const MCExpr *Value = nullptr; 1666 switch (MJTI->getEntryKind()) { 1667 case MachineJumpTableInfo::EK_Inline: 1668 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1669 case MachineJumpTableInfo::EK_Custom32: 1670 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1671 MJTI, MBB, UID, OutContext); 1672 break; 1673 case MachineJumpTableInfo::EK_BlockAddress: 1674 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1675 // .word LBB123 1676 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1677 break; 1678 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1679 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1680 // with a relocation as gp-relative, e.g.: 1681 // .gprel32 LBB123 1682 MCSymbol *MBBSym = MBB->getSymbol(); 1683 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1684 return; 1685 } 1686 1687 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1688 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1689 // with a relocation as gp-relative, e.g.: 1690 // .gpdword LBB123 1691 MCSymbol *MBBSym = MBB->getSymbol(); 1692 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1693 return; 1694 } 1695 1696 case MachineJumpTableInfo::EK_LabelDifference32: { 1697 // Each entry is the address of the block minus the address of the jump 1698 // table. This is used for PIC jump tables where gprel32 is not supported. 1699 // e.g.: 1700 // .word LBB123 - LJTI1_2 1701 // If the .set directive avoids relocations, this is emitted as: 1702 // .set L4_5_set_123, LBB123 - LJTI1_2 1703 // .word L4_5_set_123 1704 if (MAI->doesSetDirectiveSuppressReloc()) { 1705 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1706 OutContext); 1707 break; 1708 } 1709 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1710 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1711 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1712 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1713 break; 1714 } 1715 } 1716 1717 assert(Value && "Unknown entry kind!"); 1718 1719 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1720 OutStreamer->EmitValue(Value, EntrySize); 1721 } 1722 1723 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1724 /// special global used by LLVM. If so, emit it and return true, otherwise 1725 /// do nothing and return false. 1726 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1727 if (GV->getName() == "llvm.used") { 1728 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1729 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1730 return true; 1731 } 1732 1733 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1734 if (GV->getSection() == "llvm.metadata" || 1735 GV->hasAvailableExternallyLinkage()) 1736 return true; 1737 1738 if (!GV->hasAppendingLinkage()) return false; 1739 1740 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1741 1742 if (GV->getName() == "llvm.global_ctors") { 1743 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1744 /* isCtor */ true); 1745 1746 return true; 1747 } 1748 1749 if (GV->getName() == "llvm.global_dtors") { 1750 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1751 /* isCtor */ false); 1752 1753 return true; 1754 } 1755 1756 report_fatal_error("unknown special variable"); 1757 } 1758 1759 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1760 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1761 /// is true, as being used with this directive. 1762 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1763 // Should be an array of 'i8*'. 1764 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1765 const GlobalValue *GV = 1766 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1767 if (GV) 1768 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1769 } 1770 } 1771 1772 namespace { 1773 1774 struct Structor { 1775 int Priority = 0; 1776 Constant *Func = nullptr; 1777 GlobalValue *ComdatKey = nullptr; 1778 1779 Structor() = default; 1780 }; 1781 1782 } // end anonymous namespace 1783 1784 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1785 /// priority. 1786 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1787 bool isCtor) { 1788 // Should be an array of '{ int, void ()* }' structs. The first value is the 1789 // init priority. 1790 if (!isa<ConstantArray>(List)) return; 1791 1792 // Sanity check the structors list. 1793 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1794 if (!InitList) return; // Not an array! 1795 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1796 // FIXME: Only allow the 3-field form in LLVM 4.0. 1797 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1798 return; // Not an array of two or three elements! 1799 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1800 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1801 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1802 return; // Not (int, ptr, ptr). 1803 1804 // Gather the structors in a form that's convenient for sorting by priority. 1805 SmallVector<Structor, 8> Structors; 1806 for (Value *O : InitList->operands()) { 1807 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1808 if (!CS) continue; // Malformed. 1809 if (CS->getOperand(1)->isNullValue()) 1810 break; // Found a null terminator, skip the rest. 1811 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1812 if (!Priority) continue; // Malformed. 1813 Structors.push_back(Structor()); 1814 Structor &S = Structors.back(); 1815 S.Priority = Priority->getLimitedValue(65535); 1816 S.Func = CS->getOperand(1); 1817 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1818 S.ComdatKey = 1819 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1820 } 1821 1822 // Emit the function pointers in the target-specific order 1823 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1824 std::stable_sort(Structors.begin(), Structors.end(), 1825 [](const Structor &L, 1826 const Structor &R) { return L.Priority < R.Priority; }); 1827 for (Structor &S : Structors) { 1828 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1829 const MCSymbol *KeySym = nullptr; 1830 if (GlobalValue *GV = S.ComdatKey) { 1831 if (GV->isDeclarationForLinker()) 1832 // If the associated variable is not defined in this module 1833 // (it might be available_externally, or have been an 1834 // available_externally definition that was dropped by the 1835 // EliminateAvailableExternally pass), some other TU 1836 // will provide its dynamic initializer. 1837 continue; 1838 1839 KeySym = getSymbol(GV); 1840 } 1841 MCSection *OutputSection = 1842 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1843 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1844 OutStreamer->SwitchSection(OutputSection); 1845 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1846 EmitAlignment(Align); 1847 EmitXXStructor(DL, S.Func); 1848 } 1849 } 1850 1851 void AsmPrinter::EmitModuleIdents(Module &M) { 1852 if (!MAI->hasIdentDirective()) 1853 return; 1854 1855 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1856 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1857 const MDNode *N = NMD->getOperand(i); 1858 assert(N->getNumOperands() == 1 && 1859 "llvm.ident metadata entry can have only one operand"); 1860 const MDString *S = cast<MDString>(N->getOperand(0)); 1861 OutStreamer->EmitIdent(S->getString()); 1862 } 1863 } 1864 } 1865 1866 //===--------------------------------------------------------------------===// 1867 // Emission and print routines 1868 // 1869 1870 /// EmitInt8 - Emit a byte directive and value. 1871 /// 1872 void AsmPrinter::EmitInt8(int Value) const { 1873 OutStreamer->EmitIntValue(Value, 1); 1874 } 1875 1876 /// EmitInt16 - Emit a short directive and value. 1877 void AsmPrinter::EmitInt16(int Value) const { 1878 OutStreamer->EmitIntValue(Value, 2); 1879 } 1880 1881 /// EmitInt32 - Emit a long directive and value. 1882 void AsmPrinter::EmitInt32(int Value) const { 1883 OutStreamer->EmitIntValue(Value, 4); 1884 } 1885 1886 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1887 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1888 /// .set if it avoids relocations. 1889 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1890 unsigned Size) const { 1891 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1892 } 1893 1894 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1895 /// where the size in bytes of the directive is specified by Size and Label 1896 /// specifies the label. This implicitly uses .set if it is available. 1897 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1898 unsigned Size, 1899 bool IsSectionRelative) const { 1900 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1901 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1902 if (Size > 4) 1903 OutStreamer->EmitZeros(Size - 4); 1904 return; 1905 } 1906 1907 // Emit Label+Offset (or just Label if Offset is zero) 1908 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1909 if (Offset) 1910 Expr = MCBinaryExpr::createAdd( 1911 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1912 1913 OutStreamer->EmitValue(Expr, Size); 1914 } 1915 1916 //===----------------------------------------------------------------------===// 1917 1918 // EmitAlignment - Emit an alignment directive to the specified power of 1919 // two boundary. For example, if you pass in 3 here, you will get an 8 1920 // byte alignment. If a global value is specified, and if that global has 1921 // an explicit alignment requested, it will override the alignment request 1922 // if required for correctness. 1923 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1924 if (GV) 1925 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1926 1927 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1928 1929 assert(NumBits < 1930 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1931 "undefined behavior"); 1932 if (getCurrentSection()->getKind().isText()) 1933 OutStreamer->EmitCodeAlignment(1u << NumBits); 1934 else 1935 OutStreamer->EmitValueToAlignment(1u << NumBits); 1936 } 1937 1938 //===----------------------------------------------------------------------===// 1939 // Constant emission. 1940 //===----------------------------------------------------------------------===// 1941 1942 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1943 MCContext &Ctx = OutContext; 1944 1945 if (CV->isNullValue() || isa<UndefValue>(CV)) 1946 return MCConstantExpr::create(0, Ctx); 1947 1948 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1949 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1950 1951 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1952 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1953 1954 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1955 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1956 1957 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1958 if (!CE) { 1959 llvm_unreachable("Unknown constant value to lower!"); 1960 } 1961 1962 switch (CE->getOpcode()) { 1963 default: 1964 // If the code isn't optimized, there may be outstanding folding 1965 // opportunities. Attempt to fold the expression using DataLayout as a 1966 // last resort before giving up. 1967 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1968 if (C != CE) 1969 return lowerConstant(C); 1970 1971 // Otherwise report the problem to the user. 1972 { 1973 std::string S; 1974 raw_string_ostream OS(S); 1975 OS << "Unsupported expression in static initializer: "; 1976 CE->printAsOperand(OS, /*PrintType=*/false, 1977 !MF ? nullptr : MF->getFunction().getParent()); 1978 report_fatal_error(OS.str()); 1979 } 1980 case Instruction::GetElementPtr: { 1981 // Generate a symbolic expression for the byte address 1982 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1983 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1984 1985 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1986 if (!OffsetAI) 1987 return Base; 1988 1989 int64_t Offset = OffsetAI.getSExtValue(); 1990 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1991 Ctx); 1992 } 1993 1994 case Instruction::Trunc: 1995 // We emit the value and depend on the assembler to truncate the generated 1996 // expression properly. This is important for differences between 1997 // blockaddress labels. Since the two labels are in the same function, it 1998 // is reasonable to treat their delta as a 32-bit value. 1999 LLVM_FALLTHROUGH; 2000 case Instruction::BitCast: 2001 return lowerConstant(CE->getOperand(0)); 2002 2003 case Instruction::IntToPtr: { 2004 const DataLayout &DL = getDataLayout(); 2005 2006 // Handle casts to pointers by changing them into casts to the appropriate 2007 // integer type. This promotes constant folding and simplifies this code. 2008 Constant *Op = CE->getOperand(0); 2009 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2010 false/*ZExt*/); 2011 return lowerConstant(Op); 2012 } 2013 2014 case Instruction::PtrToInt: { 2015 const DataLayout &DL = getDataLayout(); 2016 2017 // Support only foldable casts to/from pointers that can be eliminated by 2018 // changing the pointer to the appropriately sized integer type. 2019 Constant *Op = CE->getOperand(0); 2020 Type *Ty = CE->getType(); 2021 2022 const MCExpr *OpExpr = lowerConstant(Op); 2023 2024 // We can emit the pointer value into this slot if the slot is an 2025 // integer slot equal to the size of the pointer. 2026 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2027 return OpExpr; 2028 2029 // Otherwise the pointer is smaller than the resultant integer, mask off 2030 // the high bits so we are sure to get a proper truncation if the input is 2031 // a constant expr. 2032 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2033 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2034 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2035 } 2036 2037 case Instruction::Sub: { 2038 GlobalValue *LHSGV; 2039 APInt LHSOffset; 2040 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2041 getDataLayout())) { 2042 GlobalValue *RHSGV; 2043 APInt RHSOffset; 2044 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2045 getDataLayout())) { 2046 const MCExpr *RelocExpr = 2047 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2048 if (!RelocExpr) 2049 RelocExpr = MCBinaryExpr::createSub( 2050 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2051 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2052 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2053 if (Addend != 0) 2054 RelocExpr = MCBinaryExpr::createAdd( 2055 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2056 return RelocExpr; 2057 } 2058 } 2059 } 2060 // else fallthrough 2061 LLVM_FALLTHROUGH; 2062 2063 // The MC library also has a right-shift operator, but it isn't consistently 2064 // signed or unsigned between different targets. 2065 case Instruction::Add: 2066 case Instruction::Mul: 2067 case Instruction::SDiv: 2068 case Instruction::SRem: 2069 case Instruction::Shl: 2070 case Instruction::And: 2071 case Instruction::Or: 2072 case Instruction::Xor: { 2073 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2074 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2075 switch (CE->getOpcode()) { 2076 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2077 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2078 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2079 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2080 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2081 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2082 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2083 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2084 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2085 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2086 } 2087 } 2088 } 2089 } 2090 2091 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2092 AsmPrinter &AP, 2093 const Constant *BaseCV = nullptr, 2094 uint64_t Offset = 0); 2095 2096 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2097 2098 /// isRepeatedByteSequence - Determine whether the given value is 2099 /// composed of a repeated sequence of identical bytes and return the 2100 /// byte value. If it is not a repeated sequence, return -1. 2101 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2102 StringRef Data = V->getRawDataValues(); 2103 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2104 char C = Data[0]; 2105 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2106 if (Data[i] != C) return -1; 2107 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2108 } 2109 2110 /// isRepeatedByteSequence - Determine whether the given value is 2111 /// composed of a repeated sequence of identical bytes and return the 2112 /// byte value. If it is not a repeated sequence, return -1. 2113 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2114 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2115 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2116 assert(Size % 8 == 0); 2117 2118 // Extend the element to take zero padding into account. 2119 APInt Value = CI->getValue().zextOrSelf(Size); 2120 if (!Value.isSplat(8)) 2121 return -1; 2122 2123 return Value.zextOrTrunc(8).getZExtValue(); 2124 } 2125 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2126 // Make sure all array elements are sequences of the same repeated 2127 // byte. 2128 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2129 Constant *Op0 = CA->getOperand(0); 2130 int Byte = isRepeatedByteSequence(Op0, DL); 2131 if (Byte == -1) 2132 return -1; 2133 2134 // All array elements must be equal. 2135 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2136 if (CA->getOperand(i) != Op0) 2137 return -1; 2138 return Byte; 2139 } 2140 2141 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2142 return isRepeatedByteSequence(CDS); 2143 2144 return -1; 2145 } 2146 2147 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2148 const ConstantDataSequential *CDS, 2149 AsmPrinter &AP) { 2150 // See if we can aggregate this into a .fill, if so, emit it as such. 2151 int Value = isRepeatedByteSequence(CDS, DL); 2152 if (Value != -1) { 2153 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2154 // Don't emit a 1-byte object as a .fill. 2155 if (Bytes > 1) 2156 return AP.OutStreamer->emitFill(Bytes, Value); 2157 } 2158 2159 // If this can be emitted with .ascii/.asciz, emit it as such. 2160 if (CDS->isString()) 2161 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2162 2163 // Otherwise, emit the values in successive locations. 2164 unsigned ElementByteSize = CDS->getElementByteSize(); 2165 if (isa<IntegerType>(CDS->getElementType())) { 2166 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2167 if (AP.isVerbose()) 2168 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2169 CDS->getElementAsInteger(i)); 2170 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2171 ElementByteSize); 2172 } 2173 } else { 2174 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2175 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2176 } 2177 2178 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2179 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2180 CDS->getNumElements(); 2181 if (unsigned Padding = Size - EmittedSize) 2182 AP.OutStreamer->EmitZeros(Padding); 2183 } 2184 2185 static void emitGlobalConstantArray(const DataLayout &DL, 2186 const ConstantArray *CA, AsmPrinter &AP, 2187 const Constant *BaseCV, uint64_t Offset) { 2188 // See if we can aggregate some values. Make sure it can be 2189 // represented as a series of bytes of the constant value. 2190 int Value = isRepeatedByteSequence(CA, DL); 2191 2192 if (Value != -1) { 2193 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2194 AP.OutStreamer->emitFill(Bytes, Value); 2195 } 2196 else { 2197 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2198 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2199 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2200 } 2201 } 2202 } 2203 2204 static void emitGlobalConstantVector(const DataLayout &DL, 2205 const ConstantVector *CV, AsmPrinter &AP) { 2206 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2207 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2208 2209 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2210 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2211 CV->getType()->getNumElements(); 2212 if (unsigned Padding = Size - EmittedSize) 2213 AP.OutStreamer->EmitZeros(Padding); 2214 } 2215 2216 static void emitGlobalConstantStruct(const DataLayout &DL, 2217 const ConstantStruct *CS, AsmPrinter &AP, 2218 const Constant *BaseCV, uint64_t Offset) { 2219 // Print the fields in successive locations. Pad to align if needed! 2220 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2221 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2222 uint64_t SizeSoFar = 0; 2223 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2224 const Constant *Field = CS->getOperand(i); 2225 2226 // Print the actual field value. 2227 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2228 2229 // Check if padding is needed and insert one or more 0s. 2230 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2231 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2232 - Layout->getElementOffset(i)) - FieldSize; 2233 SizeSoFar += FieldSize + PadSize; 2234 2235 // Insert padding - this may include padding to increase the size of the 2236 // current field up to the ABI size (if the struct is not packed) as well 2237 // as padding to ensure that the next field starts at the right offset. 2238 AP.OutStreamer->EmitZeros(PadSize); 2239 } 2240 assert(SizeSoFar == Layout->getSizeInBytes() && 2241 "Layout of constant struct may be incorrect!"); 2242 } 2243 2244 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2245 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2246 2247 // First print a comment with what we think the original floating-point value 2248 // should have been. 2249 if (AP.isVerbose()) { 2250 SmallString<8> StrVal; 2251 CFP->getValueAPF().toString(StrVal); 2252 2253 if (CFP->getType()) 2254 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2255 else 2256 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2257 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2258 } 2259 2260 // Now iterate through the APInt chunks, emitting them in endian-correct 2261 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2262 // floats). 2263 unsigned NumBytes = API.getBitWidth() / 8; 2264 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2265 const uint64_t *p = API.getRawData(); 2266 2267 // PPC's long double has odd notions of endianness compared to how LLVM 2268 // handles it: p[0] goes first for *big* endian on PPC. 2269 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2270 int Chunk = API.getNumWords() - 1; 2271 2272 if (TrailingBytes) 2273 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2274 2275 for (; Chunk >= 0; --Chunk) 2276 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2277 } else { 2278 unsigned Chunk; 2279 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2280 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2281 2282 if (TrailingBytes) 2283 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2284 } 2285 2286 // Emit the tail padding for the long double. 2287 const DataLayout &DL = AP.getDataLayout(); 2288 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2289 DL.getTypeStoreSize(CFP->getType())); 2290 } 2291 2292 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2293 const DataLayout &DL = AP.getDataLayout(); 2294 unsigned BitWidth = CI->getBitWidth(); 2295 2296 // Copy the value as we may massage the layout for constants whose bit width 2297 // is not a multiple of 64-bits. 2298 APInt Realigned(CI->getValue()); 2299 uint64_t ExtraBits = 0; 2300 unsigned ExtraBitsSize = BitWidth & 63; 2301 2302 if (ExtraBitsSize) { 2303 // The bit width of the data is not a multiple of 64-bits. 2304 // The extra bits are expected to be at the end of the chunk of the memory. 2305 // Little endian: 2306 // * Nothing to be done, just record the extra bits to emit. 2307 // Big endian: 2308 // * Record the extra bits to emit. 2309 // * Realign the raw data to emit the chunks of 64-bits. 2310 if (DL.isBigEndian()) { 2311 // Basically the structure of the raw data is a chunk of 64-bits cells: 2312 // 0 1 BitWidth / 64 2313 // [chunk1][chunk2] ... [chunkN]. 2314 // The most significant chunk is chunkN and it should be emitted first. 2315 // However, due to the alignment issue chunkN contains useless bits. 2316 // Realign the chunks so that they contain only useless information: 2317 // ExtraBits 0 1 (BitWidth / 64) - 1 2318 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2319 ExtraBits = Realigned.getRawData()[0] & 2320 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2321 Realigned.lshrInPlace(ExtraBitsSize); 2322 } else 2323 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2324 } 2325 2326 // We don't expect assemblers to support integer data directives 2327 // for more than 64 bits, so we emit the data in at most 64-bit 2328 // quantities at a time. 2329 const uint64_t *RawData = Realigned.getRawData(); 2330 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2331 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2332 AP.OutStreamer->EmitIntValue(Val, 8); 2333 } 2334 2335 if (ExtraBitsSize) { 2336 // Emit the extra bits after the 64-bits chunks. 2337 2338 // Emit a directive that fills the expected size. 2339 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2340 Size -= (BitWidth / 64) * 8; 2341 assert(Size && Size * 8 >= ExtraBitsSize && 2342 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2343 == ExtraBits && "Directive too small for extra bits."); 2344 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2345 } 2346 } 2347 2348 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2349 /// equivalent global, by a target specific GOT pc relative access to the 2350 /// final symbol. 2351 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2352 const Constant *BaseCst, 2353 uint64_t Offset) { 2354 // The global @foo below illustrates a global that uses a got equivalent. 2355 // 2356 // @bar = global i32 42 2357 // @gotequiv = private unnamed_addr constant i32* @bar 2358 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2359 // i64 ptrtoint (i32* @foo to i64)) 2360 // to i32) 2361 // 2362 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2363 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2364 // form: 2365 // 2366 // foo = cstexpr, where 2367 // cstexpr := <gotequiv> - "." + <cst> 2368 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2369 // 2370 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2371 // 2372 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2373 // gotpcrelcst := <offset from @foo base> + <cst> 2374 MCValue MV; 2375 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2376 return; 2377 const MCSymbolRefExpr *SymA = MV.getSymA(); 2378 if (!SymA) 2379 return; 2380 2381 // Check that GOT equivalent symbol is cached. 2382 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2383 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2384 return; 2385 2386 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2387 if (!BaseGV) 2388 return; 2389 2390 // Check for a valid base symbol 2391 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2392 const MCSymbolRefExpr *SymB = MV.getSymB(); 2393 2394 if (!SymB || BaseSym != &SymB->getSymbol()) 2395 return; 2396 2397 // Make sure to match: 2398 // 2399 // gotpcrelcst := <offset from @foo base> + <cst> 2400 // 2401 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2402 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2403 // if the target knows how to encode it. 2404 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2405 if (GOTPCRelCst < 0) 2406 return; 2407 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2408 return; 2409 2410 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2411 // 2412 // bar: 2413 // .long 42 2414 // gotequiv: 2415 // .quad bar 2416 // foo: 2417 // .long gotequiv - "." + <cst> 2418 // 2419 // is replaced by the target specific equivalent to: 2420 // 2421 // bar: 2422 // .long 42 2423 // foo: 2424 // .long bar@GOTPCREL+<gotpcrelcst> 2425 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2426 const GlobalVariable *GV = Result.first; 2427 int NumUses = (int)Result.second; 2428 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2429 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2430 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2431 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2432 2433 // Update GOT equivalent usage information 2434 --NumUses; 2435 if (NumUses >= 0) 2436 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2437 } 2438 2439 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2440 AsmPrinter &AP, const Constant *BaseCV, 2441 uint64_t Offset) { 2442 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2443 2444 // Globals with sub-elements such as combinations of arrays and structs 2445 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2446 // constant symbol base and the current position with BaseCV and Offset. 2447 if (!BaseCV && CV->hasOneUse()) 2448 BaseCV = dyn_cast<Constant>(CV->user_back()); 2449 2450 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2451 return AP.OutStreamer->EmitZeros(Size); 2452 2453 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2454 switch (Size) { 2455 case 1: 2456 case 2: 2457 case 4: 2458 case 8: 2459 if (AP.isVerbose()) 2460 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2461 CI->getZExtValue()); 2462 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2463 return; 2464 default: 2465 emitGlobalConstantLargeInt(CI, AP); 2466 return; 2467 } 2468 } 2469 2470 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2471 return emitGlobalConstantFP(CFP, AP); 2472 2473 if (isa<ConstantPointerNull>(CV)) { 2474 AP.OutStreamer->EmitIntValue(0, Size); 2475 return; 2476 } 2477 2478 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2479 return emitGlobalConstantDataSequential(DL, CDS, AP); 2480 2481 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2482 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2483 2484 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2485 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2486 2487 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2488 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2489 // vectors). 2490 if (CE->getOpcode() == Instruction::BitCast) 2491 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2492 2493 if (Size > 8) { 2494 // If the constant expression's size is greater than 64-bits, then we have 2495 // to emit the value in chunks. Try to constant fold the value and emit it 2496 // that way. 2497 Constant *New = ConstantFoldConstant(CE, DL); 2498 if (New && New != CE) 2499 return emitGlobalConstantImpl(DL, New, AP); 2500 } 2501 } 2502 2503 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2504 return emitGlobalConstantVector(DL, V, AP); 2505 2506 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2507 // thread the streamer with EmitValue. 2508 const MCExpr *ME = AP.lowerConstant(CV); 2509 2510 // Since lowerConstant already folded and got rid of all IR pointer and 2511 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2512 // directly. 2513 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2514 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2515 2516 AP.OutStreamer->EmitValue(ME, Size); 2517 } 2518 2519 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2520 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2521 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2522 if (Size) 2523 emitGlobalConstantImpl(DL, CV, *this); 2524 else if (MAI->hasSubsectionsViaSymbols()) { 2525 // If the global has zero size, emit a single byte so that two labels don't 2526 // look like they are at the same location. 2527 OutStreamer->EmitIntValue(0, 1); 2528 } 2529 } 2530 2531 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2532 // Target doesn't support this yet! 2533 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2534 } 2535 2536 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2537 if (Offset > 0) 2538 OS << '+' << Offset; 2539 else if (Offset < 0) 2540 OS << Offset; 2541 } 2542 2543 //===----------------------------------------------------------------------===// 2544 // Symbol Lowering Routines. 2545 //===----------------------------------------------------------------------===// 2546 2547 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2548 return OutContext.createTempSymbol(Name, true); 2549 } 2550 2551 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2552 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2553 } 2554 2555 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2556 return MMI->getAddrLabelSymbol(BB); 2557 } 2558 2559 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2560 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2561 const DataLayout &DL = getDataLayout(); 2562 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2563 "CPI" + Twine(getFunctionNumber()) + "_" + 2564 Twine(CPID)); 2565 } 2566 2567 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2568 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2569 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2570 } 2571 2572 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2573 /// FIXME: privatize to AsmPrinter. 2574 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2575 const DataLayout &DL = getDataLayout(); 2576 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2577 Twine(getFunctionNumber()) + "_" + 2578 Twine(UID) + "_set_" + Twine(MBBID)); 2579 } 2580 2581 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2582 StringRef Suffix) const { 2583 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2584 } 2585 2586 /// Return the MCSymbol for the specified ExternalSymbol. 2587 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2588 SmallString<60> NameStr; 2589 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2590 return OutContext.getOrCreateSymbol(NameStr); 2591 } 2592 2593 /// PrintParentLoopComment - Print comments about parent loops of this one. 2594 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2595 unsigned FunctionNumber) { 2596 if (!Loop) return; 2597 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2598 OS.indent(Loop->getLoopDepth()*2) 2599 << "Parent Loop BB" << FunctionNumber << "_" 2600 << Loop->getHeader()->getNumber() 2601 << " Depth=" << Loop->getLoopDepth() << '\n'; 2602 } 2603 2604 /// PrintChildLoopComment - Print comments about child loops within 2605 /// the loop for this basic block, with nesting. 2606 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2607 unsigned FunctionNumber) { 2608 // Add child loop information 2609 for (const MachineLoop *CL : *Loop) { 2610 OS.indent(CL->getLoopDepth()*2) 2611 << "Child Loop BB" << FunctionNumber << "_" 2612 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2613 << '\n'; 2614 PrintChildLoopComment(OS, CL, FunctionNumber); 2615 } 2616 } 2617 2618 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2619 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2620 const MachineLoopInfo *LI, 2621 const AsmPrinter &AP) { 2622 // Add loop depth information 2623 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2624 if (!Loop) return; 2625 2626 MachineBasicBlock *Header = Loop->getHeader(); 2627 assert(Header && "No header for loop"); 2628 2629 // If this block is not a loop header, just print out what is the loop header 2630 // and return. 2631 if (Header != &MBB) { 2632 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2633 Twine(AP.getFunctionNumber())+"_" + 2634 Twine(Loop->getHeader()->getNumber())+ 2635 " Depth="+Twine(Loop->getLoopDepth())); 2636 return; 2637 } 2638 2639 // Otherwise, it is a loop header. Print out information about child and 2640 // parent loops. 2641 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2642 2643 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2644 2645 OS << "=>"; 2646 OS.indent(Loop->getLoopDepth()*2-2); 2647 2648 OS << "This "; 2649 if (Loop->empty()) 2650 OS << "Inner "; 2651 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2652 2653 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2654 } 2655 2656 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2657 MCCodePaddingContext &Context) const { 2658 assert(MF != nullptr && "Machine function must be valid"); 2659 assert(LI != nullptr && "Loop info must be valid"); 2660 Context.IsPaddingActive = !MF->hasInlineAsm() && 2661 !MF->getFunction().optForSize() && 2662 TM.getOptLevel() != CodeGenOpt::None; 2663 const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB); 2664 Context.IsBasicBlockInsideInnermostLoop = 2665 CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty(); 2666 Context.IsBasicBlockReachableViaFallthrough = 2667 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2668 MBB.pred_end(); 2669 Context.IsBasicBlockReachableViaBranch = 2670 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2671 } 2672 2673 /// EmitBasicBlockStart - This method prints the label for the specified 2674 /// MachineBasicBlock, an alignment (if present) and a comment describing 2675 /// it if appropriate. 2676 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2677 // End the previous funclet and start a new one. 2678 if (MBB.isEHFuncletEntry()) { 2679 for (const HandlerInfo &HI : Handlers) { 2680 HI.Handler->endFunclet(); 2681 HI.Handler->beginFunclet(MBB); 2682 } 2683 } 2684 2685 // Emit an alignment directive for this block, if needed. 2686 if (unsigned Align = MBB.getAlignment()) 2687 EmitAlignment(Align); 2688 MCCodePaddingContext Context; 2689 setupCodePaddingContext(MBB, Context); 2690 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2691 2692 // If the block has its address taken, emit any labels that were used to 2693 // reference the block. It is possible that there is more than one label 2694 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2695 // the references were generated. 2696 if (MBB.hasAddressTaken()) { 2697 const BasicBlock *BB = MBB.getBasicBlock(); 2698 if (isVerbose()) 2699 OutStreamer->AddComment("Block address taken"); 2700 2701 // MBBs can have their address taken as part of CodeGen without having 2702 // their corresponding BB's address taken in IR 2703 if (BB->hasAddressTaken()) 2704 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2705 OutStreamer->EmitLabel(Sym); 2706 } 2707 2708 // Print some verbose block comments. 2709 if (isVerbose()) { 2710 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2711 if (BB->hasName()) { 2712 BB->printAsOperand(OutStreamer->GetCommentOS(), 2713 /*PrintType=*/false, BB->getModule()); 2714 OutStreamer->GetCommentOS() << '\n'; 2715 } 2716 } 2717 emitBasicBlockLoopComments(MBB, LI, *this); 2718 } 2719 2720 // Print the main label for the block. 2721 if (MBB.pred_empty() || 2722 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2723 if (isVerbose()) { 2724 // NOTE: Want this comment at start of line, don't emit with AddComment. 2725 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2726 false); 2727 } 2728 } else { 2729 OutStreamer->EmitLabel(MBB.getSymbol()); 2730 } 2731 } 2732 2733 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2734 MCCodePaddingContext Context; 2735 setupCodePaddingContext(MBB, Context); 2736 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2737 } 2738 2739 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2740 bool IsDefinition) const { 2741 MCSymbolAttr Attr = MCSA_Invalid; 2742 2743 switch (Visibility) { 2744 default: break; 2745 case GlobalValue::HiddenVisibility: 2746 if (IsDefinition) 2747 Attr = MAI->getHiddenVisibilityAttr(); 2748 else 2749 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2750 break; 2751 case GlobalValue::ProtectedVisibility: 2752 Attr = MAI->getProtectedVisibilityAttr(); 2753 break; 2754 } 2755 2756 if (Attr != MCSA_Invalid) 2757 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2758 } 2759 2760 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2761 /// exactly one predecessor and the control transfer mechanism between 2762 /// the predecessor and this block is a fall-through. 2763 bool AsmPrinter:: 2764 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2765 // If this is a landing pad, it isn't a fall through. If it has no preds, 2766 // then nothing falls through to it. 2767 if (MBB->isEHPad() || MBB->pred_empty()) 2768 return false; 2769 2770 // If there isn't exactly one predecessor, it can't be a fall through. 2771 if (MBB->pred_size() > 1) 2772 return false; 2773 2774 // The predecessor has to be immediately before this block. 2775 MachineBasicBlock *Pred = *MBB->pred_begin(); 2776 if (!Pred->isLayoutSuccessor(MBB)) 2777 return false; 2778 2779 // If the block is completely empty, then it definitely does fall through. 2780 if (Pred->empty()) 2781 return true; 2782 2783 // Check the terminators in the previous blocks 2784 for (const auto &MI : Pred->terminators()) { 2785 // If it is not a simple branch, we are in a table somewhere. 2786 if (!MI.isBranch() || MI.isIndirectBranch()) 2787 return false; 2788 2789 // If we are the operands of one of the branches, this is not a fall 2790 // through. Note that targets with delay slots will usually bundle 2791 // terminators with the delay slot instruction. 2792 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2793 if (OP->isJTI()) 2794 return false; 2795 if (OP->isMBB() && OP->getMBB() == MBB) 2796 return false; 2797 } 2798 } 2799 2800 return true; 2801 } 2802 2803 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2804 if (!S.usesMetadata()) 2805 return nullptr; 2806 2807 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2808 " stackmap formats, please see the documentation for a description of" 2809 " the default format. If you really need a custom serialized format," 2810 " please file a bug"); 2811 2812 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2813 gcp_map_type::iterator GCPI = GCMap.find(&S); 2814 if (GCPI != GCMap.end()) 2815 return GCPI->second.get(); 2816 2817 auto Name = S.getName(); 2818 2819 for (GCMetadataPrinterRegistry::iterator 2820 I = GCMetadataPrinterRegistry::begin(), 2821 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2822 if (Name == I->getName()) { 2823 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2824 GMP->S = &S; 2825 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2826 return IterBool.first->second.get(); 2827 } 2828 2829 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2830 } 2831 2832 /// Pin vtable to this file. 2833 AsmPrinterHandler::~AsmPrinterHandler() = default; 2834 2835 void AsmPrinterHandler::markFunctionEnd() {} 2836 2837 // In the binary's "xray_instr_map" section, an array of these function entries 2838 // describes each instrumentation point. When XRay patches your code, the index 2839 // into this table will be given to your handler as a patch point identifier. 2840 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2841 const MCSymbol *CurrentFnSym) const { 2842 Out->EmitSymbolValue(Sled, Bytes); 2843 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2844 auto Kind8 = static_cast<uint8_t>(Kind); 2845 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2846 Out->EmitBinaryData( 2847 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2848 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2849 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2850 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2851 Out->EmitZeros(Padding); 2852 } 2853 2854 void AsmPrinter::emitXRayTable() { 2855 if (Sleds.empty()) 2856 return; 2857 2858 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2859 const Function &F = MF->getFunction(); 2860 MCSection *InstMap = nullptr; 2861 MCSection *FnSledIndex = nullptr; 2862 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2863 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2864 assert(Associated != nullptr); 2865 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2866 std::string GroupName; 2867 if (F.hasComdat()) { 2868 Flags |= ELF::SHF_GROUP; 2869 GroupName = F.getComdat()->getName(); 2870 } 2871 2872 auto UniqueID = ++XRayFnUniqueID; 2873 InstMap = 2874 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2875 GroupName, UniqueID, Associated); 2876 FnSledIndex = 2877 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2878 GroupName, UniqueID, Associated); 2879 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2880 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2881 SectionKind::getReadOnlyWithRel()); 2882 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2883 SectionKind::getReadOnlyWithRel()); 2884 } else { 2885 llvm_unreachable("Unsupported target"); 2886 } 2887 2888 auto WordSizeBytes = MAI->getCodePointerSize(); 2889 2890 // Now we switch to the instrumentation map section. Because this is done 2891 // per-function, we are able to create an index entry that will represent the 2892 // range of sleds associated with a function. 2893 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2894 OutStreamer->SwitchSection(InstMap); 2895 OutStreamer->EmitLabel(SledsStart); 2896 for (const auto &Sled : Sleds) 2897 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2898 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2899 OutStreamer->EmitLabel(SledsEnd); 2900 2901 // We then emit a single entry in the index per function. We use the symbols 2902 // that bound the instrumentation map as the range for a specific function. 2903 // Each entry here will be 2 * word size aligned, as we're writing down two 2904 // pointers. This should work for both 32-bit and 64-bit platforms. 2905 OutStreamer->SwitchSection(FnSledIndex); 2906 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2907 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2908 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2909 OutStreamer->SwitchSection(PrevSection); 2910 Sleds.clear(); 2911 } 2912 2913 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2914 SledKind Kind, uint8_t Version) { 2915 const Function &F = MI.getMF()->getFunction(); 2916 auto Attr = F.getFnAttribute("function-instrument"); 2917 bool LogArgs = F.hasFnAttribute("xray-log-args"); 2918 bool AlwaysInstrument = 2919 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2920 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2921 Kind = SledKind::LOG_ARGS_ENTER; 2922 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2923 AlwaysInstrument, &F, Version}); 2924 } 2925 2926 uint16_t AsmPrinter::getDwarfVersion() const { 2927 return OutStreamer->getContext().getDwarfVersion(); 2928 } 2929 2930 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2931 OutStreamer->getContext().setDwarfVersion(Version); 2932 } 2933