1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilties. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/DerivedTypes.h" 16 #include "llvm/Function.h" 17 #include "llvm/Instructions.h" 18 #include "llvm/IntrinsicInst.h" 19 #include "llvm/LLVMContext.h" 20 #include "llvm/Module.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/Target/TargetData.h" 24 #include "llvm/Target/TargetLowering.h" 25 #include "llvm/Target/TargetOptions.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 using namespace llvm; 29 30 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 31 /// of insertvalue or extractvalue indices that identify a member, return 32 /// the linearized index of the start of the member. 33 /// 34 unsigned llvm::ComputeLinearIndex(Type *Ty, 35 const unsigned *Indices, 36 const unsigned *IndicesEnd, 37 unsigned CurIndex) { 38 // Base case: We're done. 39 if (Indices && Indices == IndicesEnd) 40 return CurIndex; 41 42 // Given a struct type, recursively traverse the elements. 43 if (StructType *STy = dyn_cast<StructType>(Ty)) { 44 for (StructType::element_iterator EB = STy->element_begin(), 45 EI = EB, 46 EE = STy->element_end(); 47 EI != EE; ++EI) { 48 if (Indices && *Indices == unsigned(EI - EB)) 49 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 50 CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); 51 } 52 return CurIndex; 53 } 54 // Given an array type, recursively traverse the elements. 55 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 56 Type *EltTy = ATy->getElementType(); 57 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 58 if (Indices && *Indices == i) 59 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 60 CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); 61 } 62 return CurIndex; 63 } 64 // We haven't found the type we're looking for, so keep searching. 65 return CurIndex + 1; 66 } 67 68 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 69 /// EVTs that represent all the individual underlying 70 /// non-aggregate types that comprise it. 71 /// 72 /// If Offsets is non-null, it points to a vector to be filled in 73 /// with the in-memory offsets of each of the individual values. 74 /// 75 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 76 SmallVectorImpl<EVT> &ValueVTs, 77 SmallVectorImpl<uint64_t> *Offsets, 78 uint64_t StartingOffset) { 79 // Given a struct type, recursively traverse the elements. 80 if (StructType *STy = dyn_cast<StructType>(Ty)) { 81 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); 82 for (StructType::element_iterator EB = STy->element_begin(), 83 EI = EB, 84 EE = STy->element_end(); 85 EI != EE; ++EI) 86 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 87 StartingOffset + SL->getElementOffset(EI - EB)); 88 return; 89 } 90 // Given an array type, recursively traverse the elements. 91 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 92 Type *EltTy = ATy->getElementType(); 93 uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); 94 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 95 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 96 StartingOffset + i * EltSize); 97 return; 98 } 99 // Interpret void as zero return values. 100 if (Ty->isVoidTy()) 101 return; 102 // Base case: we can get an EVT for this LLVM IR type. 103 ValueVTs.push_back(TLI.getValueType(Ty)); 104 if (Offsets) 105 Offsets->push_back(StartingOffset); 106 } 107 108 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 109 GlobalVariable *llvm::ExtractTypeInfo(Value *V) { 110 V = V->stripPointerCasts(); 111 GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 112 113 if (GV && GV->getName() == "llvm.eh.catch.all.value") { 114 assert(GV->hasInitializer() && 115 "The EH catch-all value must have an initializer"); 116 Value *Init = GV->getInitializer(); 117 GV = dyn_cast<GlobalVariable>(Init); 118 if (!GV) V = cast<ConstantPointerNull>(Init); 119 } 120 121 assert((GV || isa<ConstantPointerNull>(V)) && 122 "TypeInfo must be a global variable or NULL"); 123 return GV; 124 } 125 126 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 127 /// processed uses a memory 'm' constraint. 128 bool 129 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 130 const TargetLowering &TLI) { 131 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 132 InlineAsm::ConstraintInfo &CI = CInfos[i]; 133 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 134 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 135 if (CType == TargetLowering::C_Memory) 136 return true; 137 } 138 139 // Indirect operand accesses access memory. 140 if (CI.isIndirect) 141 return true; 142 } 143 144 return false; 145 } 146 147 /// getFCmpCondCode - Return the ISD condition code corresponding to 148 /// the given LLVM IR floating-point condition code. This includes 149 /// consideration of global floating-point math flags. 150 /// 151 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 152 switch (Pred) { 153 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 154 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 155 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 156 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 157 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 158 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 159 case FCmpInst::FCMP_ONE: return ISD::SETONE; 160 case FCmpInst::FCMP_ORD: return ISD::SETO; 161 case FCmpInst::FCMP_UNO: return ISD::SETUO; 162 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 163 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 164 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 165 case FCmpInst::FCMP_ULT: return ISD::SETULT; 166 case FCmpInst::FCMP_ULE: return ISD::SETULE; 167 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 168 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 169 default: break; 170 } 171 llvm_unreachable("Invalid FCmp predicate opcode!"); 172 return ISD::SETFALSE; 173 } 174 175 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 176 switch (CC) { 177 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 178 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 179 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 180 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 181 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 182 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 183 default: break; 184 } 185 return CC; 186 } 187 188 /// getICmpCondCode - Return the ISD condition code corresponding to 189 /// the given LLVM IR integer condition code. 190 /// 191 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 192 switch (Pred) { 193 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 194 case ICmpInst::ICMP_NE: return ISD::SETNE; 195 case ICmpInst::ICMP_SLE: return ISD::SETLE; 196 case ICmpInst::ICMP_ULE: return ISD::SETULE; 197 case ICmpInst::ICMP_SGE: return ISD::SETGE; 198 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 199 case ICmpInst::ICMP_SLT: return ISD::SETLT; 200 case ICmpInst::ICMP_ULT: return ISD::SETULT; 201 case ICmpInst::ICMP_SGT: return ISD::SETGT; 202 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 203 default: 204 llvm_unreachable("Invalid ICmp predicate opcode!"); 205 return ISD::SETNE; 206 } 207 } 208 209 /// Test if the given instruction is in a position to be optimized 210 /// with a tail-call. This roughly means that it's in a block with 211 /// a return and there's nothing that needs to be scheduled 212 /// between it and the return. 213 /// 214 /// This function only tests target-independent requirements. 215 bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attributes CalleeRetAttr, 216 const TargetLowering &TLI) { 217 const Instruction *I = CS.getInstruction(); 218 const BasicBlock *ExitBB = I->getParent(); 219 const TerminatorInst *Term = ExitBB->getTerminator(); 220 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 221 222 // The block must end in a return statement or unreachable. 223 // 224 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 225 // an unreachable, for now. The way tailcall optimization is currently 226 // implemented means it will add an epilogue followed by a jump. That is 227 // not profitable. Also, if the callee is a special function (e.g. 228 // longjmp on x86), it can end up causing miscompilation that has not 229 // been fully understood. 230 if (!Ret && 231 (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt || 232 !isa<UnreachableInst>(Term))) return false; 233 234 // If I will have a chain, make sure no other instruction that will have a 235 // chain interposes between I and the return. 236 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 237 !I->isSafeToSpeculativelyExecute()) 238 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 239 --BBI) { 240 if (&*BBI == I) 241 break; 242 // Debug info intrinsics do not get in the way of tail call optimization. 243 if (isa<DbgInfoIntrinsic>(BBI)) 244 continue; 245 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 246 !BBI->isSafeToSpeculativelyExecute()) 247 return false; 248 } 249 250 // If the block ends with a void return or unreachable, it doesn't matter 251 // what the call's return type is. 252 if (!Ret || Ret->getNumOperands() == 0) return true; 253 254 // If the return value is undef, it doesn't matter what the call's 255 // return type is. 256 if (isa<UndefValue>(Ret->getOperand(0))) return true; 257 258 // Conservatively require the attributes of the call to match those of 259 // the return. Ignore noalias because it doesn't affect the call sequence. 260 const Function *F = ExitBB->getParent(); 261 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 262 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 263 return false; 264 265 // It's not safe to eliminate the sign / zero extension of the return value. 266 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) 267 return false; 268 269 // Otherwise, make sure the unmodified return value of I is the return value. 270 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 271 U = dyn_cast<Instruction>(U->getOperand(0))) { 272 if (!U) 273 return false; 274 if (!U->hasOneUse()) 275 return false; 276 if (U == I) 277 break; 278 // Check for a truly no-op truncate. 279 if (isa<TruncInst>(U) && 280 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 281 continue; 282 // Check for a truly no-op bitcast. 283 if (isa<BitCastInst>(U) && 284 (U->getOperand(0)->getType() == U->getType() || 285 (U->getOperand(0)->getType()->isPointerTy() && 286 U->getType()->isPointerTy()))) 287 continue; 288 // Otherwise it's not a true no-op. 289 return false; 290 } 291 292 return true; 293 } 294 295 bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 296 const TargetLowering &TLI) { 297 const Function *F = DAG.getMachineFunction().getFunction(); 298 299 // Conservatively require the attributes of the call to match those of 300 // the return. Ignore noalias because it doesn't affect the call sequence. 301 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 302 if (CallerRetAttr & ~Attribute::NoAlias) 303 return false; 304 305 // It's not safe to eliminate the sign / zero extension of the return value. 306 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt)) 307 return false; 308 309 // Check if the only use is a function return node. 310 return TLI.isUsedByReturnOnly(Node); 311 } 312