1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilties. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/DerivedTypes.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Target/TargetLowering.h" 27 #include "llvm/Target/TargetOptions.h" 28 using namespace llvm; 29 30 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence 31 /// of insertvalue or extractvalue indices that identify a member, return 32 /// the linearized index of the start of the member. 33 /// 34 unsigned llvm::ComputeLinearIndex(Type *Ty, 35 const unsigned *Indices, 36 const unsigned *IndicesEnd, 37 unsigned CurIndex) { 38 // Base case: We're done. 39 if (Indices && Indices == IndicesEnd) 40 return CurIndex; 41 42 // Given a struct type, recursively traverse the elements. 43 if (StructType *STy = dyn_cast<StructType>(Ty)) { 44 for (StructType::element_iterator EB = STy->element_begin(), 45 EI = EB, 46 EE = STy->element_end(); 47 EI != EE; ++EI) { 48 if (Indices && *Indices == unsigned(EI - EB)) 49 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 50 CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex); 51 } 52 return CurIndex; 53 } 54 // Given an array type, recursively traverse the elements. 55 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 56 Type *EltTy = ATy->getElementType(); 57 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 58 if (Indices && *Indices == i) 59 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 60 CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex); 61 } 62 return CurIndex; 63 } 64 // We haven't found the type we're looking for, so keep searching. 65 return CurIndex + 1; 66 } 67 68 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 69 /// EVTs that represent all the individual underlying 70 /// non-aggregate types that comprise it. 71 /// 72 /// If Offsets is non-null, it points to a vector to be filled in 73 /// with the in-memory offsets of each of the individual values. 74 /// 75 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 76 SmallVectorImpl<EVT> &ValueVTs, 77 SmallVectorImpl<uint64_t> *Offsets, 78 uint64_t StartingOffset) { 79 // Given a struct type, recursively traverse the elements. 80 if (StructType *STy = dyn_cast<StructType>(Ty)) { 81 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy); 82 for (StructType::element_iterator EB = STy->element_begin(), 83 EI = EB, 84 EE = STy->element_end(); 85 EI != EE; ++EI) 86 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 87 StartingOffset + SL->getElementOffset(EI - EB)); 88 return; 89 } 90 // Given an array type, recursively traverse the elements. 91 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 92 Type *EltTy = ATy->getElementType(); 93 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy); 94 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 95 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 96 StartingOffset + i * EltSize); 97 return; 98 } 99 // Interpret void as zero return values. 100 if (Ty->isVoidTy()) 101 return; 102 // Base case: we can get an EVT for this LLVM IR type. 103 ValueVTs.push_back(TLI.getValueType(Ty)); 104 if (Offsets) 105 Offsets->push_back(StartingOffset); 106 } 107 108 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 109 GlobalVariable *llvm::ExtractTypeInfo(Value *V) { 110 V = V->stripPointerCasts(); 111 GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 112 113 if (GV && GV->getName() == "llvm.eh.catch.all.value") { 114 assert(GV->hasInitializer() && 115 "The EH catch-all value must have an initializer"); 116 Value *Init = GV->getInitializer(); 117 GV = dyn_cast<GlobalVariable>(Init); 118 if (!GV) V = cast<ConstantPointerNull>(Init); 119 } 120 121 assert((GV || isa<ConstantPointerNull>(V)) && 122 "TypeInfo must be a global variable or NULL"); 123 return GV; 124 } 125 126 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 127 /// processed uses a memory 'm' constraint. 128 bool 129 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 130 const TargetLowering &TLI) { 131 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 132 InlineAsm::ConstraintInfo &CI = CInfos[i]; 133 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 134 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 135 if (CType == TargetLowering::C_Memory) 136 return true; 137 } 138 139 // Indirect operand accesses access memory. 140 if (CI.isIndirect) 141 return true; 142 } 143 144 return false; 145 } 146 147 /// getFCmpCondCode - Return the ISD condition code corresponding to 148 /// the given LLVM IR floating-point condition code. This includes 149 /// consideration of global floating-point math flags. 150 /// 151 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 152 switch (Pred) { 153 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 154 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 155 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 156 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 157 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 158 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 159 case FCmpInst::FCMP_ONE: return ISD::SETONE; 160 case FCmpInst::FCMP_ORD: return ISD::SETO; 161 case FCmpInst::FCMP_UNO: return ISD::SETUO; 162 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 163 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 164 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 165 case FCmpInst::FCMP_ULT: return ISD::SETULT; 166 case FCmpInst::FCMP_ULE: return ISD::SETULE; 167 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 168 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 169 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 170 } 171 } 172 173 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 174 switch (CC) { 175 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 176 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 177 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 178 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 179 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 180 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 181 default: return CC; 182 } 183 } 184 185 /// getICmpCondCode - Return the ISD condition code corresponding to 186 /// the given LLVM IR integer condition code. 187 /// 188 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 189 switch (Pred) { 190 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 191 case ICmpInst::ICMP_NE: return ISD::SETNE; 192 case ICmpInst::ICMP_SLE: return ISD::SETLE; 193 case ICmpInst::ICMP_ULE: return ISD::SETULE; 194 case ICmpInst::ICMP_SGE: return ISD::SETGE; 195 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 196 case ICmpInst::ICMP_SLT: return ISD::SETLT; 197 case ICmpInst::ICMP_ULT: return ISD::SETULT; 198 case ICmpInst::ICMP_SGT: return ISD::SETGT; 199 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 200 default: 201 llvm_unreachable("Invalid ICmp predicate opcode!"); 202 } 203 } 204 205 206 /// getNoopInput - If V is a noop (i.e., lowers to no machine code), look 207 /// through it (and any transitive noop operands to it) and return its input 208 /// value. This is used to determine if a tail call can be formed. 209 /// 210 static const Value *getNoopInput(const Value *V, const TargetLowering &TLI) { 211 // If V is not an instruction, it can't be looked through. 212 const Instruction *I = dyn_cast<Instruction>(V); 213 if (I == 0 || !I->hasOneUse() || I->getNumOperands() == 0) return V; 214 215 Value *Op = I->getOperand(0); 216 217 // Look through truly no-op truncates. 218 if (isa<TruncInst>(I) && 219 TLI.isTruncateFree(I->getOperand(0)->getType(), I->getType())) 220 return getNoopInput(I->getOperand(0), TLI); 221 222 // Look through truly no-op bitcasts. 223 if (isa<BitCastInst>(I)) { 224 // No type change at all. 225 if (Op->getType() == I->getType()) 226 return getNoopInput(Op, TLI); 227 228 // Pointer to pointer cast. 229 if (Op->getType()->isPointerTy() && I->getType()->isPointerTy()) 230 return getNoopInput(Op, TLI); 231 232 if (isa<VectorType>(Op->getType()) && isa<VectorType>(I->getType()) && 233 TLI.isTypeLegal(EVT::getEVT(Op->getType())) && 234 TLI.isTypeLegal(EVT::getEVT(I->getType()))) 235 return getNoopInput(Op, TLI); 236 } 237 238 // Look through inttoptr. 239 if (isa<IntToPtrInst>(I) && !isa<VectorType>(I->getType())) { 240 // Make sure this isn't a truncating or extending cast. We could support 241 // this eventually, but don't bother for now. 242 if (TLI.getPointerTy().getSizeInBits() == 243 cast<IntegerType>(Op->getType())->getBitWidth()) 244 return getNoopInput(Op, TLI); 245 } 246 247 // Look through ptrtoint. 248 if (isa<PtrToIntInst>(I) && !isa<VectorType>(I->getType())) { 249 // Make sure this isn't a truncating or extending cast. We could support 250 // this eventually, but don't bother for now. 251 if (TLI.getPointerTy().getSizeInBits() == 252 cast<IntegerType>(I->getType())->getBitWidth()) 253 return getNoopInput(Op, TLI); 254 } 255 256 257 // Otherwise it's not something we can look through. 258 return V; 259 } 260 261 262 /// Test if the given instruction is in a position to be optimized 263 /// with a tail-call. This roughly means that it's in a block with 264 /// a return and there's nothing that needs to be scheduled 265 /// between it and the return. 266 /// 267 /// This function only tests target-independent requirements. 268 bool llvm::isInTailCallPosition(ImmutableCallSite CS,const TargetLowering &TLI){ 269 const Instruction *I = CS.getInstruction(); 270 const BasicBlock *ExitBB = I->getParent(); 271 const TerminatorInst *Term = ExitBB->getTerminator(); 272 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 273 274 // The block must end in a return statement or unreachable. 275 // 276 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 277 // an unreachable, for now. The way tailcall optimization is currently 278 // implemented means it will add an epilogue followed by a jump. That is 279 // not profitable. Also, if the callee is a special function (e.g. 280 // longjmp on x86), it can end up causing miscompilation that has not 281 // been fully understood. 282 if (!Ret && 283 (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt || 284 !isa<UnreachableInst>(Term))) 285 return false; 286 287 // If I will have a chain, make sure no other instruction that will have a 288 // chain interposes between I and the return. 289 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 290 !isSafeToSpeculativelyExecute(I)) 291 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 292 --BBI) { 293 if (&*BBI == I) 294 break; 295 // Debug info intrinsics do not get in the way of tail call optimization. 296 if (isa<DbgInfoIntrinsic>(BBI)) 297 continue; 298 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 299 !isSafeToSpeculativelyExecute(BBI)) 300 return false; 301 } 302 303 // If the block ends with a void return or unreachable, it doesn't matter 304 // what the call's return type is. 305 if (!Ret || Ret->getNumOperands() == 0) return true; 306 307 // If the return value is undef, it doesn't matter what the call's 308 // return type is. 309 if (isa<UndefValue>(Ret->getOperand(0))) return true; 310 311 // Conservatively require the attributes of the call to match those of 312 // the return. Ignore noalias because it doesn't affect the call sequence. 313 const Function *F = ExitBB->getParent(); 314 AttributeSet CallerAttrs = F->getAttributes(); 315 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). 316 removeAttribute(Attribute::NoAlias) != 317 AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex). 318 removeAttribute(Attribute::NoAlias)) 319 return false; 320 321 // It's not safe to eliminate the sign / zero extension of the return value. 322 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 323 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 324 return false; 325 326 // Otherwise, make sure the unmodified return value of I is the return value. 327 // We handle two cases: multiple return values + scalars. 328 Value *RetVal = Ret->getOperand(0); 329 if (!isa<InsertValueInst>(RetVal) || !isa<StructType>(RetVal->getType())) 330 // Handle scalars first. 331 return getNoopInput(Ret->getOperand(0), TLI) == I; 332 333 // If this is an aggregate return, look through the insert/extract values and 334 // see if each is transparent. 335 for (unsigned i = 0, e =cast<StructType>(RetVal->getType())->getNumElements(); 336 i != e; ++i) { 337 const Value *InScalar = FindInsertedValue(RetVal, i); 338 if (InScalar == 0) return false; 339 InScalar = getNoopInput(InScalar, TLI); 340 341 // If the scalar value being inserted is an extractvalue of the right index 342 // from the call, then everything is good. 343 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(InScalar); 344 if (EVI == 0 || EVI->getOperand(0) != I || EVI->getNumIndices() != 1 || 345 EVI->getIndices()[0] != i) 346 return false; 347 } 348 349 return true; 350 } 351