1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
29 
30 using namespace llvm;
31 
32 /// Compute the linearized index of a member in a nested aggregate/struct/array
33 /// by recursing and accumulating CurIndex as long as there are indices in the
34 /// index list.
35 unsigned llvm::ComputeLinearIndex(Type *Ty,
36                                   const unsigned *Indices,
37                                   const unsigned *IndicesEnd,
38                                   unsigned CurIndex) {
39   // Base case: We're done.
40   if (Indices && Indices == IndicesEnd)
41     return CurIndex;
42 
43   // Given a struct type, recursively traverse the elements.
44   if (StructType *STy = dyn_cast<StructType>(Ty)) {
45     for (StructType::element_iterator EB = STy->element_begin(),
46                                       EI = EB,
47                                       EE = STy->element_end();
48         EI != EE; ++EI) {
49       if (Indices && *Indices == unsigned(EI - EB))
50         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
52     }
53     assert(!Indices && "Unexpected out of bound");
54     return CurIndex;
55   }
56   // Given an array type, recursively traverse the elements.
57   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58     Type *EltTy = ATy->getElementType();
59     unsigned NumElts = ATy->getNumElements();
60     // Compute the Linear offset when jumping one element of the array
61     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62     if (Indices) {
63       assert(*Indices < NumElts && "Unexpected out of bound");
64       // If the indice is inside the array, compute the index to the requested
65       // elt and recurse inside the element with the end of the indices list
66       CurIndex += EltLinearOffset* *Indices;
67       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
68     }
69     CurIndex += EltLinearOffset*NumElts;
70     return CurIndex;
71   }
72   // We haven't found the type we're looking for, so keep searching.
73   return CurIndex + 1;
74 }
75 
76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77 /// EVTs that represent all the individual underlying
78 /// non-aggregate types that comprise it.
79 ///
80 /// If Offsets is non-null, it points to a vector to be filled in
81 /// with the in-memory offsets of each of the individual values.
82 ///
83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85                            SmallVectorImpl<uint64_t> *Offsets,
86                            uint64_t StartingOffset) {
87   // Given a struct type, recursively traverse the elements.
88   if (StructType *STy = dyn_cast<StructType>(Ty)) {
89     const StructLayout *SL = DL.getStructLayout(STy);
90     for (StructType::element_iterator EB = STy->element_begin(),
91                                       EI = EB,
92                                       EE = STy->element_end();
93          EI != EE; ++EI)
94       ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
95                       StartingOffset + SL->getElementOffset(EI - EB));
96     return;
97   }
98   // Given an array type, recursively traverse the elements.
99   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
100     Type *EltTy = ATy->getElementType();
101     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
102     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
103       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
104                       StartingOffset + i * EltSize);
105     return;
106   }
107   // Interpret void as zero return values.
108   if (Ty->isVoidTy())
109     return;
110   // Base case: we can get an EVT for this LLVM IR type.
111   ValueVTs.push_back(TLI.getValueType(DL, Ty));
112   if (Offsets)
113     Offsets->push_back(StartingOffset);
114 }
115 
116 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
117                             SmallVectorImpl<LLT> &ValueTys,
118                             SmallVectorImpl<uint64_t> *Offsets,
119                             uint64_t StartingOffset) {
120   // Given a struct type, recursively traverse the elements.
121   if (StructType *STy = dyn_cast<StructType>(&Ty)) {
122     const StructLayout *SL = DL.getStructLayout(STy);
123     for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
124       computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
125                        StartingOffset + SL->getElementOffset(I));
126     return;
127   }
128   // Given an array type, recursively traverse the elements.
129   if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
130     Type *EltTy = ATy->getElementType();
131     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
132     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
133       computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
134                        StartingOffset + i * EltSize);
135     return;
136   }
137   // Interpret void as zero return values.
138   if (Ty.isVoidTy())
139     return;
140   // Base case: we can get an LLT for this LLVM IR type.
141   ValueTys.push_back(getLLTForType(Ty, DL));
142   if (Offsets != nullptr)
143     Offsets->push_back(StartingOffset * 8);
144 }
145 
146 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
147 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
148   V = V->stripPointerCasts();
149   GlobalValue *GV = dyn_cast<GlobalValue>(V);
150   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
151 
152   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
153     assert(Var->hasInitializer() &&
154            "The EH catch-all value must have an initializer");
155     Value *Init = Var->getInitializer();
156     GV = dyn_cast<GlobalValue>(Init);
157     if (!GV) V = cast<ConstantPointerNull>(Init);
158   }
159 
160   assert((GV || isa<ConstantPointerNull>(V)) &&
161          "TypeInfo must be a global variable or NULL");
162   return GV;
163 }
164 
165 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
166 /// processed uses a memory 'm' constraint.
167 bool
168 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
169                                 const TargetLowering &TLI) {
170   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
171     InlineAsm::ConstraintInfo &CI = CInfos[i];
172     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
173       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
174       if (CType == TargetLowering::C_Memory)
175         return true;
176     }
177 
178     // Indirect operand accesses access memory.
179     if (CI.isIndirect)
180       return true;
181   }
182 
183   return false;
184 }
185 
186 /// getFCmpCondCode - Return the ISD condition code corresponding to
187 /// the given LLVM IR floating-point condition code.  This includes
188 /// consideration of global floating-point math flags.
189 ///
190 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
191   switch (Pred) {
192   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
193   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
194   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
195   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
196   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
197   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
198   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
199   case FCmpInst::FCMP_ORD:   return ISD::SETO;
200   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
201   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
202   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
203   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
204   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
205   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
206   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
207   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
208   default: llvm_unreachable("Invalid FCmp predicate opcode!");
209   }
210 }
211 
212 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
213   switch (CC) {
214     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
215     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
216     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
217     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
218     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
219     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
220     default: return CC;
221   }
222 }
223 
224 /// getICmpCondCode - Return the ISD condition code corresponding to
225 /// the given LLVM IR integer condition code.
226 ///
227 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
228   switch (Pred) {
229   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
230   case ICmpInst::ICMP_NE:  return ISD::SETNE;
231   case ICmpInst::ICMP_SLE: return ISD::SETLE;
232   case ICmpInst::ICMP_ULE: return ISD::SETULE;
233   case ICmpInst::ICMP_SGE: return ISD::SETGE;
234   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
235   case ICmpInst::ICMP_SLT: return ISD::SETLT;
236   case ICmpInst::ICMP_ULT: return ISD::SETULT;
237   case ICmpInst::ICMP_SGT: return ISD::SETGT;
238   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
239   default:
240     llvm_unreachable("Invalid ICmp predicate opcode!");
241   }
242 }
243 
244 static bool isNoopBitcast(Type *T1, Type *T2,
245                           const TargetLoweringBase& TLI) {
246   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
247          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
248           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
249 }
250 
251 /// Look through operations that will be free to find the earliest source of
252 /// this value.
253 ///
254 /// @param ValLoc If V has aggegate type, we will be interested in a particular
255 /// scalar component. This records its address; the reverse of this list gives a
256 /// sequence of indices appropriate for an extractvalue to locate the important
257 /// value. This value is updated during the function and on exit will indicate
258 /// similar information for the Value returned.
259 ///
260 /// @param DataBits If this function looks through truncate instructions, this
261 /// will record the smallest size attained.
262 static const Value *getNoopInput(const Value *V,
263                                  SmallVectorImpl<unsigned> &ValLoc,
264                                  unsigned &DataBits,
265                                  const TargetLoweringBase &TLI,
266                                  const DataLayout &DL) {
267   while (true) {
268     // Try to look through V1; if V1 is not an instruction, it can't be looked
269     // through.
270     const Instruction *I = dyn_cast<Instruction>(V);
271     if (!I || I->getNumOperands() == 0) return V;
272     const Value *NoopInput = nullptr;
273 
274     Value *Op = I->getOperand(0);
275     if (isa<BitCastInst>(I)) {
276       // Look through truly no-op bitcasts.
277       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
278         NoopInput = Op;
279     } else if (isa<GetElementPtrInst>(I)) {
280       // Look through getelementptr
281       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
282         NoopInput = Op;
283     } else if (isa<IntToPtrInst>(I)) {
284       // Look through inttoptr.
285       // Make sure this isn't a truncating or extending cast.  We could
286       // support this eventually, but don't bother for now.
287       if (!isa<VectorType>(I->getType()) &&
288           DL.getPointerSizeInBits() ==
289               cast<IntegerType>(Op->getType())->getBitWidth())
290         NoopInput = Op;
291     } else if (isa<PtrToIntInst>(I)) {
292       // Look through ptrtoint.
293       // Make sure this isn't a truncating or extending cast.  We could
294       // support this eventually, but don't bother for now.
295       if (!isa<VectorType>(I->getType()) &&
296           DL.getPointerSizeInBits() ==
297               cast<IntegerType>(I->getType())->getBitWidth())
298         NoopInput = Op;
299     } else if (isa<TruncInst>(I) &&
300                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
301       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
302       NoopInput = Op;
303     } else if (auto CS = ImmutableCallSite(I)) {
304       const Value *ReturnedOp = CS.getReturnedArgOperand();
305       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
306         NoopInput = ReturnedOp;
307     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
308       // Value may come from either the aggregate or the scalar
309       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
310       if (ValLoc.size() >= InsertLoc.size() &&
311           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
312         // The type being inserted is a nested sub-type of the aggregate; we
313         // have to remove those initial indices to get the location we're
314         // interested in for the operand.
315         ValLoc.resize(ValLoc.size() - InsertLoc.size());
316         NoopInput = IVI->getInsertedValueOperand();
317       } else {
318         // The struct we're inserting into has the value we're interested in, no
319         // change of address.
320         NoopInput = Op;
321       }
322     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
323       // The part we're interested in will inevitably be some sub-section of the
324       // previous aggregate. Combine the two paths to obtain the true address of
325       // our element.
326       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
327       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
328       NoopInput = Op;
329     }
330     // Terminate if we couldn't find anything to look through.
331     if (!NoopInput)
332       return V;
333 
334     V = NoopInput;
335   }
336 }
337 
338 /// Return true if this scalar return value only has bits discarded on its path
339 /// from the "tail call" to the "ret". This includes the obvious noop
340 /// instructions handled by getNoopInput above as well as free truncations (or
341 /// extensions prior to the call).
342 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
343                                  SmallVectorImpl<unsigned> &RetIndices,
344                                  SmallVectorImpl<unsigned> &CallIndices,
345                                  bool AllowDifferingSizes,
346                                  const TargetLoweringBase &TLI,
347                                  const DataLayout &DL) {
348 
349   // Trace the sub-value needed by the return value as far back up the graph as
350   // possible, in the hope that it will intersect with the value produced by the
351   // call. In the simple case with no "returned" attribute, the hope is actually
352   // that we end up back at the tail call instruction itself.
353   unsigned BitsRequired = UINT_MAX;
354   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
355 
356   // If this slot in the value returned is undef, it doesn't matter what the
357   // call puts there, it'll be fine.
358   if (isa<UndefValue>(RetVal))
359     return true;
360 
361   // Now do a similar search up through the graph to find where the value
362   // actually returned by the "tail call" comes from. In the simple case without
363   // a "returned" attribute, the search will be blocked immediately and the loop
364   // a Noop.
365   unsigned BitsProvided = UINT_MAX;
366   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
367 
368   // There's no hope if we can't actually trace them to (the same part of!) the
369   // same value.
370   if (CallVal != RetVal || CallIndices != RetIndices)
371     return false;
372 
373   // However, intervening truncates may have made the call non-tail. Make sure
374   // all the bits that are needed by the "ret" have been provided by the "tail
375   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
376   // extensions too.
377   if (BitsProvided < BitsRequired ||
378       (!AllowDifferingSizes && BitsProvided != BitsRequired))
379     return false;
380 
381   return true;
382 }
383 
384 /// For an aggregate type, determine whether a given index is within bounds or
385 /// not.
386 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
387   if (ArrayType *AT = dyn_cast<ArrayType>(T))
388     return Idx < AT->getNumElements();
389 
390   return Idx < cast<StructType>(T)->getNumElements();
391 }
392 
393 /// Move the given iterators to the next leaf type in depth first traversal.
394 ///
395 /// Performs a depth-first traversal of the type as specified by its arguments,
396 /// stopping at the next leaf node (which may be a legitimate scalar type or an
397 /// empty struct or array).
398 ///
399 /// @param SubTypes List of the partial components making up the type from
400 /// outermost to innermost non-empty aggregate. The element currently
401 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
402 ///
403 /// @param Path Set of extractvalue indices leading from the outermost type
404 /// (SubTypes[0]) to the leaf node currently represented.
405 ///
406 /// @returns true if a new type was found, false otherwise. Calling this
407 /// function again on a finished iterator will repeatedly return
408 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
409 /// aggregate or a non-aggregate
410 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
411                                   SmallVectorImpl<unsigned> &Path) {
412   // First march back up the tree until we can successfully increment one of the
413   // coordinates in Path.
414   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
415     Path.pop_back();
416     SubTypes.pop_back();
417   }
418 
419   // If we reached the top, then the iterator is done.
420   if (Path.empty())
421     return false;
422 
423   // We know there's *some* valid leaf now, so march back down the tree picking
424   // out the left-most element at each node.
425   ++Path.back();
426   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
427   while (DeeperType->isAggregateType()) {
428     CompositeType *CT = cast<CompositeType>(DeeperType);
429     if (!indexReallyValid(CT, 0))
430       return true;
431 
432     SubTypes.push_back(CT);
433     Path.push_back(0);
434 
435     DeeperType = CT->getTypeAtIndex(0U);
436   }
437 
438   return true;
439 }
440 
441 /// Find the first non-empty, scalar-like type in Next and setup the iterator
442 /// components.
443 ///
444 /// Assuming Next is an aggregate of some kind, this function will traverse the
445 /// tree from left to right (i.e. depth-first) looking for the first
446 /// non-aggregate type which will play a role in function return.
447 ///
448 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
449 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
450 /// i32 in that type.
451 static bool firstRealType(Type *Next,
452                           SmallVectorImpl<CompositeType *> &SubTypes,
453                           SmallVectorImpl<unsigned> &Path) {
454   // First initialise the iterator components to the first "leaf" node
455   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
456   // despite nominally being an aggregate).
457   while (Next->isAggregateType() &&
458          indexReallyValid(cast<CompositeType>(Next), 0)) {
459     SubTypes.push_back(cast<CompositeType>(Next));
460     Path.push_back(0);
461     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
462   }
463 
464   // If there's no Path now, Next was originally scalar already (or empty
465   // leaf). We're done.
466   if (Path.empty())
467     return true;
468 
469   // Otherwise, use normal iteration to keep looking through the tree until we
470   // find a non-aggregate type.
471   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
472     if (!advanceToNextLeafType(SubTypes, Path))
473       return false;
474   }
475 
476   return true;
477 }
478 
479 /// Set the iterator data-structures to the next non-empty, non-aggregate
480 /// subtype.
481 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
482                          SmallVectorImpl<unsigned> &Path) {
483   do {
484     if (!advanceToNextLeafType(SubTypes, Path))
485       return false;
486 
487     assert(!Path.empty() && "found a leaf but didn't set the path?");
488   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
489 
490   return true;
491 }
492 
493 
494 /// Test if the given instruction is in a position to be optimized
495 /// with a tail-call. This roughly means that it's in a block with
496 /// a return and there's nothing that needs to be scheduled
497 /// between it and the return.
498 ///
499 /// This function only tests target-independent requirements.
500 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
501   const Instruction *I = CS.getInstruction();
502   const BasicBlock *ExitBB = I->getParent();
503   const Instruction *Term = ExitBB->getTerminator();
504   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
505 
506   // The block must end in a return statement or unreachable.
507   //
508   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
509   // an unreachable, for now. The way tailcall optimization is currently
510   // implemented means it will add an epilogue followed by a jump. That is
511   // not profitable. Also, if the callee is a special function (e.g.
512   // longjmp on x86), it can end up causing miscompilation that has not
513   // been fully understood.
514   if (!Ret &&
515       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
516     return false;
517 
518   // If I will have a chain, make sure no other instruction that will have a
519   // chain interposes between I and the return.
520   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
521       !isSafeToSpeculativelyExecute(I))
522     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
523       if (&*BBI == I)
524         break;
525       // Debug info intrinsics do not get in the way of tail call optimization.
526       if (isa<DbgInfoIntrinsic>(BBI))
527         continue;
528       // A lifetime end intrinsic should not stop tail call optimization.
529       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
530         if (II->getIntrinsicID() == Intrinsic::lifetime_end)
531           continue;
532       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
533           !isSafeToSpeculativelyExecute(&*BBI))
534         return false;
535     }
536 
537   const Function *F = ExitBB->getParent();
538   return returnTypeIsEligibleForTailCall(
539       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
540 }
541 
542 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
543                                     const ReturnInst *Ret,
544                                     const TargetLoweringBase &TLI,
545                                     bool *AllowDifferingSizes) {
546   // ADS may be null, so don't write to it directly.
547   bool DummyADS;
548   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
549   ADS = true;
550 
551   AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
552   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
553                           AttributeList::ReturnIndex);
554 
555   // NoAlias and NonNull are completely benign as far as calling convention
556   // goes, they shouldn't affect whether the call is a tail call.
557   CallerAttrs.removeAttribute(Attribute::NoAlias);
558   CalleeAttrs.removeAttribute(Attribute::NoAlias);
559   CallerAttrs.removeAttribute(Attribute::NonNull);
560   CalleeAttrs.removeAttribute(Attribute::NonNull);
561 
562   if (CallerAttrs.contains(Attribute::ZExt)) {
563     if (!CalleeAttrs.contains(Attribute::ZExt))
564       return false;
565 
566     ADS = false;
567     CallerAttrs.removeAttribute(Attribute::ZExt);
568     CalleeAttrs.removeAttribute(Attribute::ZExt);
569   } else if (CallerAttrs.contains(Attribute::SExt)) {
570     if (!CalleeAttrs.contains(Attribute::SExt))
571       return false;
572 
573     ADS = false;
574     CallerAttrs.removeAttribute(Attribute::SExt);
575     CalleeAttrs.removeAttribute(Attribute::SExt);
576   }
577 
578   // Drop sext and zext return attributes if the result is not used.
579   // This enables tail calls for code like:
580   //
581   // define void @caller() {
582   // entry:
583   //   %unused_result = tail call zeroext i1 @callee()
584   //   br label %retlabel
585   // retlabel:
586   //   ret void
587   // }
588   if (I->use_empty()) {
589     CalleeAttrs.removeAttribute(Attribute::SExt);
590     CalleeAttrs.removeAttribute(Attribute::ZExt);
591   }
592 
593   // If they're still different, there's some facet we don't understand
594   // (currently only "inreg", but in future who knows). It may be OK but the
595   // only safe option is to reject the tail call.
596   return CallerAttrs == CalleeAttrs;
597 }
598 
599 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
600                                            const Instruction *I,
601                                            const ReturnInst *Ret,
602                                            const TargetLoweringBase &TLI) {
603   // If the block ends with a void return or unreachable, it doesn't matter
604   // what the call's return type is.
605   if (!Ret || Ret->getNumOperands() == 0) return true;
606 
607   // If the return value is undef, it doesn't matter what the call's
608   // return type is.
609   if (isa<UndefValue>(Ret->getOperand(0))) return true;
610 
611   // Make sure the attributes attached to each return are compatible.
612   bool AllowDifferingSizes;
613   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
614     return false;
615 
616   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
617   // Intrinsic like llvm.memcpy has no return value, but the expanded
618   // libcall may or may not have return value. On most platforms, it
619   // will be expanded as memcpy in libc, which returns the first
620   // argument. On other platforms like arm-none-eabi, memcpy may be
621   // expanded as library call without return value, like __aeabi_memcpy.
622   const CallInst *Call = cast<CallInst>(I);
623   if (Function *F = Call->getCalledFunction()) {
624     Intrinsic::ID IID = F->getIntrinsicID();
625     if (((IID == Intrinsic::memcpy &&
626           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
627          (IID == Intrinsic::memmove &&
628           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
629          (IID == Intrinsic::memset &&
630           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
631         RetVal == Call->getArgOperand(0))
632       return true;
633   }
634 
635   SmallVector<unsigned, 4> RetPath, CallPath;
636   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
637 
638   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
639   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
640 
641   // Nothing's actually returned, it doesn't matter what the callee put there
642   // it's a valid tail call.
643   if (RetEmpty)
644     return true;
645 
646   // Iterate pairwise through each of the value types making up the tail call
647   // and the corresponding return. For each one we want to know whether it's
648   // essentially going directly from the tail call to the ret, via operations
649   // that end up not generating any code.
650   //
651   // We allow a certain amount of covariance here. For example it's permitted
652   // for the tail call to define more bits than the ret actually cares about
653   // (e.g. via a truncate).
654   do {
655     if (CallEmpty) {
656       // We've exhausted the values produced by the tail call instruction, the
657       // rest are essentially undef. The type doesn't really matter, but we need
658       // *something*.
659       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
660       CallVal = UndefValue::get(SlotType);
661     }
662 
663     // The manipulations performed when we're looking through an insertvalue or
664     // an extractvalue would happen at the front of the RetPath list, so since
665     // we have to copy it anyway it's more efficient to create a reversed copy.
666     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
667     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
668 
669     // Finally, we can check whether the value produced by the tail call at this
670     // index is compatible with the value we return.
671     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
672                               AllowDifferingSizes, TLI,
673                               F->getParent()->getDataLayout()))
674       return false;
675 
676     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
677   } while(nextRealType(RetSubTypes, RetPath));
678 
679   return true;
680 }
681 
682 static void collectEHScopeMembers(
683     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
684     const MachineBasicBlock *MBB) {
685   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
686   while (!Worklist.empty()) {
687     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
688     // Don't follow blocks which start new scopes.
689     if (Visiting->isEHPad() && Visiting != MBB)
690       continue;
691 
692     // Add this MBB to our scope.
693     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
694 
695     // Don't revisit blocks.
696     if (!P.second) {
697       assert(P.first->second == EHScope && "MBB is part of two scopes!");
698       continue;
699     }
700 
701     // Returns are boundaries where scope transfer can occur, don't follow
702     // successors.
703     if (Visiting->isEHScopeReturnBlock())
704       continue;
705 
706     for (const MachineBasicBlock *Succ : Visiting->successors())
707       Worklist.push_back(Succ);
708   }
709 }
710 
711 DenseMap<const MachineBasicBlock *, int>
712 llvm::getEHScopeMembership(const MachineFunction &MF) {
713   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
714 
715   // We don't have anything to do if there aren't any EH pads.
716   if (!MF.hasEHScopes())
717     return EHScopeMembership;
718 
719   int EntryBBNumber = MF.front().getNumber();
720   bool IsSEH = isAsynchronousEHPersonality(
721       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
722 
723   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
724   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
725   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
726   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
727   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
728   for (const MachineBasicBlock &MBB : MF) {
729     if (MBB.isEHScopeEntry()) {
730       EHScopeBlocks.push_back(&MBB);
731     } else if (IsSEH && MBB.isEHPad()) {
732       SEHCatchPads.push_back(&MBB);
733     } else if (MBB.pred_empty()) {
734       UnreachableBlocks.push_back(&MBB);
735     }
736 
737     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
738 
739     // CatchPads are not scopes for SEH so do not consider CatchRet to
740     // transfer control to another scope.
741     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
742       continue;
743 
744     // FIXME: SEH CatchPads are not necessarily in the parent function:
745     // they could be inside a finally block.
746     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
747     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
748     CatchRetSuccessors.push_back(
749         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
750   }
751 
752   // We don't have anything to do if there aren't any EH pads.
753   if (EHScopeBlocks.empty())
754     return EHScopeMembership;
755 
756   // Identify all the basic blocks reachable from the function entry.
757   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
758   // All blocks not part of a scope are in the parent function.
759   for (const MachineBasicBlock *MBB : UnreachableBlocks)
760     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
761   // Next, identify all the blocks inside the scopes.
762   for (const MachineBasicBlock *MBB : EHScopeBlocks)
763     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
764   // SEH CatchPads aren't really scopes, handle them separately.
765   for (const MachineBasicBlock *MBB : SEHCatchPads)
766     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
767   // Finally, identify all the targets of a catchret.
768   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
769        CatchRetSuccessors)
770     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
771                           CatchRetPair.first);
772   return EHScopeMembership;
773 }
774