1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/TargetInstrInfo.h" 18 #include "llvm/CodeGen/TargetLowering.h" 19 #include "llvm/CodeGen/TargetSubtargetInfo.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Transforms/Utils/GlobalStatus.h" 30 31 using namespace llvm; 32 33 /// Compute the linearized index of a member in a nested aggregate/struct/array 34 /// by recursing and accumulating CurIndex as long as there are indices in the 35 /// index list. 36 unsigned llvm::ComputeLinearIndex(Type *Ty, 37 const unsigned *Indices, 38 const unsigned *IndicesEnd, 39 unsigned CurIndex) { 40 // Base case: We're done. 41 if (Indices && Indices == IndicesEnd) 42 return CurIndex; 43 44 // Given a struct type, recursively traverse the elements. 45 if (StructType *STy = dyn_cast<StructType>(Ty)) { 46 for (StructType::element_iterator EB = STy->element_begin(), 47 EI = EB, 48 EE = STy->element_end(); 49 EI != EE; ++EI) { 50 if (Indices && *Indices == unsigned(EI - EB)) 51 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 52 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 53 } 54 assert(!Indices && "Unexpected out of bound"); 55 return CurIndex; 56 } 57 // Given an array type, recursively traverse the elements. 58 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 59 Type *EltTy = ATy->getElementType(); 60 unsigned NumElts = ATy->getNumElements(); 61 // Compute the Linear offset when jumping one element of the array 62 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 63 if (Indices) { 64 assert(*Indices < NumElts && "Unexpected out of bound"); 65 // If the indice is inside the array, compute the index to the requested 66 // elt and recurse inside the element with the end of the indices list 67 CurIndex += EltLinearOffset* *Indices; 68 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 69 } 70 CurIndex += EltLinearOffset*NumElts; 71 return CurIndex; 72 } 73 // We haven't found the type we're looking for, so keep searching. 74 return CurIndex + 1; 75 } 76 77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 78 /// EVTs that represent all the individual underlying 79 /// non-aggregate types that comprise it. 80 /// 81 /// If Offsets is non-null, it points to a vector to be filled in 82 /// with the in-memory offsets of each of the individual values. 83 /// 84 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 85 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 86 SmallVectorImpl<uint64_t> *Offsets, 87 uint64_t StartingOffset) { 88 // Given a struct type, recursively traverse the elements. 89 if (StructType *STy = dyn_cast<StructType>(Ty)) { 90 const StructLayout *SL = DL.getStructLayout(STy); 91 for (StructType::element_iterator EB = STy->element_begin(), 92 EI = EB, 93 EE = STy->element_end(); 94 EI != EE; ++EI) 95 ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets, 96 StartingOffset + SL->getElementOffset(EI - EB)); 97 return; 98 } 99 // Given an array type, recursively traverse the elements. 100 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 101 Type *EltTy = ATy->getElementType(); 102 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 103 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 104 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, 105 StartingOffset + i * EltSize); 106 return; 107 } 108 // Interpret void as zero return values. 109 if (Ty->isVoidTy()) 110 return; 111 // Base case: we can get an EVT for this LLVM IR type. 112 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 113 if (Offsets) 114 Offsets->push_back(StartingOffset); 115 } 116 117 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 118 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 119 V = V->stripPointerCasts(); 120 GlobalValue *GV = dyn_cast<GlobalValue>(V); 121 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 122 123 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 124 assert(Var->hasInitializer() && 125 "The EH catch-all value must have an initializer"); 126 Value *Init = Var->getInitializer(); 127 GV = dyn_cast<GlobalValue>(Init); 128 if (!GV) V = cast<ConstantPointerNull>(Init); 129 } 130 131 assert((GV || isa<ConstantPointerNull>(V)) && 132 "TypeInfo must be a global variable or NULL"); 133 return GV; 134 } 135 136 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 137 /// processed uses a memory 'm' constraint. 138 bool 139 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 140 const TargetLowering &TLI) { 141 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 142 InlineAsm::ConstraintInfo &CI = CInfos[i]; 143 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 144 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 145 if (CType == TargetLowering::C_Memory) 146 return true; 147 } 148 149 // Indirect operand accesses access memory. 150 if (CI.isIndirect) 151 return true; 152 } 153 154 return false; 155 } 156 157 /// getFCmpCondCode - Return the ISD condition code corresponding to 158 /// the given LLVM IR floating-point condition code. This includes 159 /// consideration of global floating-point math flags. 160 /// 161 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 162 switch (Pred) { 163 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 164 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 165 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 166 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 167 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 168 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 169 case FCmpInst::FCMP_ONE: return ISD::SETONE; 170 case FCmpInst::FCMP_ORD: return ISD::SETO; 171 case FCmpInst::FCMP_UNO: return ISD::SETUO; 172 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 173 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 174 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 175 case FCmpInst::FCMP_ULT: return ISD::SETULT; 176 case FCmpInst::FCMP_ULE: return ISD::SETULE; 177 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 178 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 179 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 180 } 181 } 182 183 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 184 switch (CC) { 185 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 186 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 187 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 188 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 189 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 190 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 191 default: return CC; 192 } 193 } 194 195 /// getICmpCondCode - Return the ISD condition code corresponding to 196 /// the given LLVM IR integer condition code. 197 /// 198 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 199 switch (Pred) { 200 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 201 case ICmpInst::ICMP_NE: return ISD::SETNE; 202 case ICmpInst::ICMP_SLE: return ISD::SETLE; 203 case ICmpInst::ICMP_ULE: return ISD::SETULE; 204 case ICmpInst::ICMP_SGE: return ISD::SETGE; 205 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 206 case ICmpInst::ICMP_SLT: return ISD::SETLT; 207 case ICmpInst::ICMP_ULT: return ISD::SETULT; 208 case ICmpInst::ICMP_SGT: return ISD::SETGT; 209 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 210 default: 211 llvm_unreachable("Invalid ICmp predicate opcode!"); 212 } 213 } 214 215 static bool isNoopBitcast(Type *T1, Type *T2, 216 const TargetLoweringBase& TLI) { 217 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 218 (isa<VectorType>(T1) && isa<VectorType>(T2) && 219 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 220 } 221 222 /// Look through operations that will be free to find the earliest source of 223 /// this value. 224 /// 225 /// @param ValLoc If V has aggegate type, we will be interested in a particular 226 /// scalar component. This records its address; the reverse of this list gives a 227 /// sequence of indices appropriate for an extractvalue to locate the important 228 /// value. This value is updated during the function and on exit will indicate 229 /// similar information for the Value returned. 230 /// 231 /// @param DataBits If this function looks through truncate instructions, this 232 /// will record the smallest size attained. 233 static const Value *getNoopInput(const Value *V, 234 SmallVectorImpl<unsigned> &ValLoc, 235 unsigned &DataBits, 236 const TargetLoweringBase &TLI, 237 const DataLayout &DL) { 238 while (true) { 239 // Try to look through V1; if V1 is not an instruction, it can't be looked 240 // through. 241 const Instruction *I = dyn_cast<Instruction>(V); 242 if (!I || I->getNumOperands() == 0) return V; 243 const Value *NoopInput = nullptr; 244 245 Value *Op = I->getOperand(0); 246 if (isa<BitCastInst>(I)) { 247 // Look through truly no-op bitcasts. 248 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 249 NoopInput = Op; 250 } else if (isa<GetElementPtrInst>(I)) { 251 // Look through getelementptr 252 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 253 NoopInput = Op; 254 } else if (isa<IntToPtrInst>(I)) { 255 // Look through inttoptr. 256 // Make sure this isn't a truncating or extending cast. We could 257 // support this eventually, but don't bother for now. 258 if (!isa<VectorType>(I->getType()) && 259 DL.getPointerSizeInBits() == 260 cast<IntegerType>(Op->getType())->getBitWidth()) 261 NoopInput = Op; 262 } else if (isa<PtrToIntInst>(I)) { 263 // Look through ptrtoint. 264 // Make sure this isn't a truncating or extending cast. We could 265 // support this eventually, but don't bother for now. 266 if (!isa<VectorType>(I->getType()) && 267 DL.getPointerSizeInBits() == 268 cast<IntegerType>(I->getType())->getBitWidth()) 269 NoopInput = Op; 270 } else if (isa<TruncInst>(I) && 271 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 272 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 273 NoopInput = Op; 274 } else if (auto CS = ImmutableCallSite(I)) { 275 const Value *ReturnedOp = CS.getReturnedArgOperand(); 276 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 277 NoopInput = ReturnedOp; 278 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 279 // Value may come from either the aggregate or the scalar 280 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 281 if (ValLoc.size() >= InsertLoc.size() && 282 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 283 // The type being inserted is a nested sub-type of the aggregate; we 284 // have to remove those initial indices to get the location we're 285 // interested in for the operand. 286 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 287 NoopInput = IVI->getInsertedValueOperand(); 288 } else { 289 // The struct we're inserting into has the value we're interested in, no 290 // change of address. 291 NoopInput = Op; 292 } 293 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 294 // The part we're interested in will inevitably be some sub-section of the 295 // previous aggregate. Combine the two paths to obtain the true address of 296 // our element. 297 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 298 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 299 NoopInput = Op; 300 } 301 // Terminate if we couldn't find anything to look through. 302 if (!NoopInput) 303 return V; 304 305 V = NoopInput; 306 } 307 } 308 309 /// Return true if this scalar return value only has bits discarded on its path 310 /// from the "tail call" to the "ret". This includes the obvious noop 311 /// instructions handled by getNoopInput above as well as free truncations (or 312 /// extensions prior to the call). 313 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 314 SmallVectorImpl<unsigned> &RetIndices, 315 SmallVectorImpl<unsigned> &CallIndices, 316 bool AllowDifferingSizes, 317 const TargetLoweringBase &TLI, 318 const DataLayout &DL) { 319 320 // Trace the sub-value needed by the return value as far back up the graph as 321 // possible, in the hope that it will intersect with the value produced by the 322 // call. In the simple case with no "returned" attribute, the hope is actually 323 // that we end up back at the tail call instruction itself. 324 unsigned BitsRequired = UINT_MAX; 325 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 326 327 // If this slot in the value returned is undef, it doesn't matter what the 328 // call puts there, it'll be fine. 329 if (isa<UndefValue>(RetVal)) 330 return true; 331 332 // Now do a similar search up through the graph to find where the value 333 // actually returned by the "tail call" comes from. In the simple case without 334 // a "returned" attribute, the search will be blocked immediately and the loop 335 // a Noop. 336 unsigned BitsProvided = UINT_MAX; 337 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 338 339 // There's no hope if we can't actually trace them to (the same part of!) the 340 // same value. 341 if (CallVal != RetVal || CallIndices != RetIndices) 342 return false; 343 344 // However, intervening truncates may have made the call non-tail. Make sure 345 // all the bits that are needed by the "ret" have been provided by the "tail 346 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 347 // extensions too. 348 if (BitsProvided < BitsRequired || 349 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 350 return false; 351 352 return true; 353 } 354 355 /// For an aggregate type, determine whether a given index is within bounds or 356 /// not. 357 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 358 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 359 return Idx < AT->getNumElements(); 360 361 return Idx < cast<StructType>(T)->getNumElements(); 362 } 363 364 /// Move the given iterators to the next leaf type in depth first traversal. 365 /// 366 /// Performs a depth-first traversal of the type as specified by its arguments, 367 /// stopping at the next leaf node (which may be a legitimate scalar type or an 368 /// empty struct or array). 369 /// 370 /// @param SubTypes List of the partial components making up the type from 371 /// outermost to innermost non-empty aggregate. The element currently 372 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 373 /// 374 /// @param Path Set of extractvalue indices leading from the outermost type 375 /// (SubTypes[0]) to the leaf node currently represented. 376 /// 377 /// @returns true if a new type was found, false otherwise. Calling this 378 /// function again on a finished iterator will repeatedly return 379 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 380 /// aggregate or a non-aggregate 381 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 382 SmallVectorImpl<unsigned> &Path) { 383 // First march back up the tree until we can successfully increment one of the 384 // coordinates in Path. 385 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 386 Path.pop_back(); 387 SubTypes.pop_back(); 388 } 389 390 // If we reached the top, then the iterator is done. 391 if (Path.empty()) 392 return false; 393 394 // We know there's *some* valid leaf now, so march back down the tree picking 395 // out the left-most element at each node. 396 ++Path.back(); 397 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 398 while (DeeperType->isAggregateType()) { 399 CompositeType *CT = cast<CompositeType>(DeeperType); 400 if (!indexReallyValid(CT, 0)) 401 return true; 402 403 SubTypes.push_back(CT); 404 Path.push_back(0); 405 406 DeeperType = CT->getTypeAtIndex(0U); 407 } 408 409 return true; 410 } 411 412 /// Find the first non-empty, scalar-like type in Next and setup the iterator 413 /// components. 414 /// 415 /// Assuming Next is an aggregate of some kind, this function will traverse the 416 /// tree from left to right (i.e. depth-first) looking for the first 417 /// non-aggregate type which will play a role in function return. 418 /// 419 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 420 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 421 /// i32 in that type. 422 static bool firstRealType(Type *Next, 423 SmallVectorImpl<CompositeType *> &SubTypes, 424 SmallVectorImpl<unsigned> &Path) { 425 // First initialise the iterator components to the first "leaf" node 426 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 427 // despite nominally being an aggregate). 428 while (Next->isAggregateType() && 429 indexReallyValid(cast<CompositeType>(Next), 0)) { 430 SubTypes.push_back(cast<CompositeType>(Next)); 431 Path.push_back(0); 432 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 433 } 434 435 // If there's no Path now, Next was originally scalar already (or empty 436 // leaf). We're done. 437 if (Path.empty()) 438 return true; 439 440 // Otherwise, use normal iteration to keep looking through the tree until we 441 // find a non-aggregate type. 442 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 443 if (!advanceToNextLeafType(SubTypes, Path)) 444 return false; 445 } 446 447 return true; 448 } 449 450 /// Set the iterator data-structures to the next non-empty, non-aggregate 451 /// subtype. 452 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 453 SmallVectorImpl<unsigned> &Path) { 454 do { 455 if (!advanceToNextLeafType(SubTypes, Path)) 456 return false; 457 458 assert(!Path.empty() && "found a leaf but didn't set the path?"); 459 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 460 461 return true; 462 } 463 464 465 /// Test if the given instruction is in a position to be optimized 466 /// with a tail-call. This roughly means that it's in a block with 467 /// a return and there's nothing that needs to be scheduled 468 /// between it and the return. 469 /// 470 /// This function only tests target-independent requirements. 471 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 472 const Instruction *I = CS.getInstruction(); 473 const BasicBlock *ExitBB = I->getParent(); 474 const TerminatorInst *Term = ExitBB->getTerminator(); 475 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 476 477 // The block must end in a return statement or unreachable. 478 // 479 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 480 // an unreachable, for now. The way tailcall optimization is currently 481 // implemented means it will add an epilogue followed by a jump. That is 482 // not profitable. Also, if the callee is a special function (e.g. 483 // longjmp on x86), it can end up causing miscompilation that has not 484 // been fully understood. 485 if (!Ret && 486 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 487 return false; 488 489 // If I will have a chain, make sure no other instruction that will have a 490 // chain interposes between I and the return. 491 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 492 !isSafeToSpeculativelyExecute(I)) 493 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 494 if (&*BBI == I) 495 break; 496 // Debug info intrinsics do not get in the way of tail call optimization. 497 if (isa<DbgInfoIntrinsic>(BBI)) 498 continue; 499 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 500 !isSafeToSpeculativelyExecute(&*BBI)) 501 return false; 502 } 503 504 const Function *F = ExitBB->getParent(); 505 return returnTypeIsEligibleForTailCall( 506 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 507 } 508 509 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 510 const ReturnInst *Ret, 511 const TargetLoweringBase &TLI, 512 bool *AllowDifferingSizes) { 513 // ADS may be null, so don't write to it directly. 514 bool DummyADS; 515 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 516 ADS = true; 517 518 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 519 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 520 AttributeList::ReturnIndex); 521 522 // Noalias is completely benign as far as calling convention goes, it 523 // shouldn't affect whether the call is a tail call. 524 CallerAttrs.removeAttribute(Attribute::NoAlias); 525 CalleeAttrs.removeAttribute(Attribute::NoAlias); 526 527 if (CallerAttrs.contains(Attribute::ZExt)) { 528 if (!CalleeAttrs.contains(Attribute::ZExt)) 529 return false; 530 531 ADS = false; 532 CallerAttrs.removeAttribute(Attribute::ZExt); 533 CalleeAttrs.removeAttribute(Attribute::ZExt); 534 } else if (CallerAttrs.contains(Attribute::SExt)) { 535 if (!CalleeAttrs.contains(Attribute::SExt)) 536 return false; 537 538 ADS = false; 539 CallerAttrs.removeAttribute(Attribute::SExt); 540 CalleeAttrs.removeAttribute(Attribute::SExt); 541 } 542 543 // If they're still different, there's some facet we don't understand 544 // (currently only "inreg", but in future who knows). It may be OK but the 545 // only safe option is to reject the tail call. 546 return CallerAttrs == CalleeAttrs; 547 } 548 549 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 550 const Instruction *I, 551 const ReturnInst *Ret, 552 const TargetLoweringBase &TLI) { 553 // If the block ends with a void return or unreachable, it doesn't matter 554 // what the call's return type is. 555 if (!Ret || Ret->getNumOperands() == 0) return true; 556 557 // If the return value is undef, it doesn't matter what the call's 558 // return type is. 559 if (isa<UndefValue>(Ret->getOperand(0))) return true; 560 561 // Make sure the attributes attached to each return are compatible. 562 bool AllowDifferingSizes; 563 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 564 return false; 565 566 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 567 // Intrinsic like llvm.memcpy has no return value, but the expanded 568 // libcall may or may not have return value. On most platforms, it 569 // will be expanded as memcpy in libc, which returns the first 570 // argument. On other platforms like arm-none-eabi, memcpy may be 571 // expanded as library call without return value, like __aeabi_memcpy. 572 const CallInst *Call = cast<CallInst>(I); 573 if (Function *F = Call->getCalledFunction()) { 574 Intrinsic::ID IID = F->getIntrinsicID(); 575 if (((IID == Intrinsic::memcpy && 576 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 577 (IID == Intrinsic::memmove && 578 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 579 (IID == Intrinsic::memset && 580 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 581 RetVal == Call->getArgOperand(0)) 582 return true; 583 } 584 585 SmallVector<unsigned, 4> RetPath, CallPath; 586 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 587 588 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 589 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 590 591 // Nothing's actually returned, it doesn't matter what the callee put there 592 // it's a valid tail call. 593 if (RetEmpty) 594 return true; 595 596 // Iterate pairwise through each of the value types making up the tail call 597 // and the corresponding return. For each one we want to know whether it's 598 // essentially going directly from the tail call to the ret, via operations 599 // that end up not generating any code. 600 // 601 // We allow a certain amount of covariance here. For example it's permitted 602 // for the tail call to define more bits than the ret actually cares about 603 // (e.g. via a truncate). 604 do { 605 if (CallEmpty) { 606 // We've exhausted the values produced by the tail call instruction, the 607 // rest are essentially undef. The type doesn't really matter, but we need 608 // *something*. 609 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 610 CallVal = UndefValue::get(SlotType); 611 } 612 613 // The manipulations performed when we're looking through an insertvalue or 614 // an extractvalue would happen at the front of the RetPath list, so since 615 // we have to copy it anyway it's more efficient to create a reversed copy. 616 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 617 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 618 619 // Finally, we can check whether the value produced by the tail call at this 620 // index is compatible with the value we return. 621 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 622 AllowDifferingSizes, TLI, 623 F->getParent()->getDataLayout())) 624 return false; 625 626 CallEmpty = !nextRealType(CallSubTypes, CallPath); 627 } while(nextRealType(RetSubTypes, RetPath)); 628 629 return true; 630 } 631 632 static void collectFuncletMembers( 633 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet, 634 const MachineBasicBlock *MBB) { 635 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 636 while (!Worklist.empty()) { 637 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 638 // Don't follow blocks which start new funclets. 639 if (Visiting->isEHPad() && Visiting != MBB) 640 continue; 641 642 // Add this MBB to our funclet. 643 auto P = FuncletMembership.insert(std::make_pair(Visiting, Funclet)); 644 645 // Don't revisit blocks. 646 if (!P.second) { 647 assert(P.first->second == Funclet && "MBB is part of two funclets!"); 648 continue; 649 } 650 651 // Returns are boundaries where funclet transfer can occur, don't follow 652 // successors. 653 if (Visiting->isReturnBlock()) 654 continue; 655 656 for (const MachineBasicBlock *Succ : Visiting->successors()) 657 Worklist.push_back(Succ); 658 } 659 } 660 661 DenseMap<const MachineBasicBlock *, int> 662 llvm::getFuncletMembership(const MachineFunction &MF) { 663 DenseMap<const MachineBasicBlock *, int> FuncletMembership; 664 665 // We don't have anything to do if there aren't any EH pads. 666 if (!MF.hasEHFunclets()) 667 return FuncletMembership; 668 669 int EntryBBNumber = MF.front().getNumber(); 670 bool IsSEH = isAsynchronousEHPersonality( 671 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 672 673 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 674 SmallVector<const MachineBasicBlock *, 16> FuncletBlocks; 675 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 676 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 677 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 678 for (const MachineBasicBlock &MBB : MF) { 679 if (MBB.isEHFuncletEntry()) { 680 FuncletBlocks.push_back(&MBB); 681 } else if (IsSEH && MBB.isEHPad()) { 682 SEHCatchPads.push_back(&MBB); 683 } else if (MBB.pred_empty()) { 684 UnreachableBlocks.push_back(&MBB); 685 } 686 687 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 688 689 // CatchPads are not funclets for SEH so do not consider CatchRet to 690 // transfer control to another funclet. 691 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 692 continue; 693 694 // FIXME: SEH CatchPads are not necessarily in the parent function: 695 // they could be inside a finally block. 696 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 697 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 698 CatchRetSuccessors.push_back( 699 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 700 } 701 702 // We don't have anything to do if there aren't any EH pads. 703 if (FuncletBlocks.empty()) 704 return FuncletMembership; 705 706 // Identify all the basic blocks reachable from the function entry. 707 collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front()); 708 // All blocks not part of a funclet are in the parent function. 709 for (const MachineBasicBlock *MBB : UnreachableBlocks) 710 collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 711 // Next, identify all the blocks inside the funclets. 712 for (const MachineBasicBlock *MBB : FuncletBlocks) 713 collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB); 714 // SEH CatchPads aren't really funclets, handle them separately. 715 for (const MachineBasicBlock *MBB : SEHCatchPads) 716 collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 717 // Finally, identify all the targets of a catchret. 718 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 719 CatchRetSuccessors) 720 collectFuncletMembers(FuncletMembership, CatchRetPair.second, 721 CatchRetPair.first); 722 return FuncletMembership; 723 } 724