1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines several CodeGen-specific LLVM IR analysis utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/Analysis.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/TargetInstrInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/CodeGen/TargetSubtargetInfo.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Transforms/Utils/GlobalStatus.h" 30 31 using namespace llvm; 32 33 /// Compute the linearized index of a member in a nested aggregate/struct/array 34 /// by recursing and accumulating CurIndex as long as there are indices in the 35 /// index list. 36 unsigned llvm::ComputeLinearIndex(Type *Ty, 37 const unsigned *Indices, 38 const unsigned *IndicesEnd, 39 unsigned CurIndex) { 40 // Base case: We're done. 41 if (Indices && Indices == IndicesEnd) 42 return CurIndex; 43 44 // Given a struct type, recursively traverse the elements. 45 if (StructType *STy = dyn_cast<StructType>(Ty)) { 46 for (StructType::element_iterator EB = STy->element_begin(), 47 EI = EB, 48 EE = STy->element_end(); 49 EI != EE; ++EI) { 50 if (Indices && *Indices == unsigned(EI - EB)) 51 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 52 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 53 } 54 assert(!Indices && "Unexpected out of bound"); 55 return CurIndex; 56 } 57 // Given an array type, recursively traverse the elements. 58 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 59 Type *EltTy = ATy->getElementType(); 60 unsigned NumElts = ATy->getNumElements(); 61 // Compute the Linear offset when jumping one element of the array 62 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 63 if (Indices) { 64 assert(*Indices < NumElts && "Unexpected out of bound"); 65 // If the indice is inside the array, compute the index to the requested 66 // elt and recurse inside the element with the end of the indices list 67 CurIndex += EltLinearOffset* *Indices; 68 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 69 } 70 CurIndex += EltLinearOffset*NumElts; 71 return CurIndex; 72 } 73 // We haven't found the type we're looking for, so keep searching. 74 return CurIndex + 1; 75 } 76 77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 78 /// EVTs that represent all the individual underlying 79 /// non-aggregate types that comprise it. 80 /// 81 /// If Offsets is non-null, it points to a vector to be filled in 82 /// with the in-memory offsets of each of the individual values. 83 /// 84 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 85 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 86 SmallVectorImpl<EVT> *MemVTs, 87 SmallVectorImpl<uint64_t> *Offsets, 88 uint64_t StartingOffset) { 89 // Given a struct type, recursively traverse the elements. 90 if (StructType *STy = dyn_cast<StructType>(Ty)) { 91 const StructLayout *SL = DL.getStructLayout(STy); 92 for (StructType::element_iterator EB = STy->element_begin(), 93 EI = EB, 94 EE = STy->element_end(); 95 EI != EE; ++EI) 96 ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets, 97 StartingOffset + SL->getElementOffset(EI - EB)); 98 return; 99 } 100 // Given an array type, recursively traverse the elements. 101 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 102 Type *EltTy = ATy->getElementType(); 103 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 104 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 105 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets, 106 StartingOffset + i * EltSize); 107 return; 108 } 109 // Interpret void as zero return values. 110 if (Ty->isVoidTy()) 111 return; 112 // Base case: we can get an EVT for this LLVM IR type. 113 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 114 if (MemVTs) 115 MemVTs->push_back(TLI.getMemValueType(DL, Ty)); 116 if (Offsets) 117 Offsets->push_back(StartingOffset); 118 } 119 120 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 121 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 122 SmallVectorImpl<uint64_t> *Offsets, 123 uint64_t StartingOffset) { 124 return ComputeValueVTs(TLI, DL, Ty, ValueVTs, /*MemVTs=*/nullptr, Offsets, 125 StartingOffset); 126 } 127 128 void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty, 129 SmallVectorImpl<LLT> &ValueTys, 130 SmallVectorImpl<uint64_t> *Offsets, 131 uint64_t StartingOffset) { 132 // Given a struct type, recursively traverse the elements. 133 if (StructType *STy = dyn_cast<StructType>(&Ty)) { 134 const StructLayout *SL = DL.getStructLayout(STy); 135 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) 136 computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets, 137 StartingOffset + SL->getElementOffset(I)); 138 return; 139 } 140 // Given an array type, recursively traverse the elements. 141 if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) { 142 Type *EltTy = ATy->getElementType(); 143 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 144 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 145 computeValueLLTs(DL, *EltTy, ValueTys, Offsets, 146 StartingOffset + i * EltSize); 147 return; 148 } 149 // Interpret void as zero return values. 150 if (Ty.isVoidTy()) 151 return; 152 // Base case: we can get an LLT for this LLVM IR type. 153 ValueTys.push_back(getLLTForType(Ty, DL)); 154 if (Offsets != nullptr) 155 Offsets->push_back(StartingOffset * 8); 156 } 157 158 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 159 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 160 V = V->stripPointerCasts(); 161 GlobalValue *GV = dyn_cast<GlobalValue>(V); 162 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 163 164 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 165 assert(Var->hasInitializer() && 166 "The EH catch-all value must have an initializer"); 167 Value *Init = Var->getInitializer(); 168 GV = dyn_cast<GlobalValue>(Init); 169 if (!GV) V = cast<ConstantPointerNull>(Init); 170 } 171 172 assert((GV || isa<ConstantPointerNull>(V)) && 173 "TypeInfo must be a global variable or NULL"); 174 return GV; 175 } 176 177 /// getFCmpCondCode - Return the ISD condition code corresponding to 178 /// the given LLVM IR floating-point condition code. This includes 179 /// consideration of global floating-point math flags. 180 /// 181 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 182 switch (Pred) { 183 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 184 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 185 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 186 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 187 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 188 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 189 case FCmpInst::FCMP_ONE: return ISD::SETONE; 190 case FCmpInst::FCMP_ORD: return ISD::SETO; 191 case FCmpInst::FCMP_UNO: return ISD::SETUO; 192 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 193 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 194 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 195 case FCmpInst::FCMP_ULT: return ISD::SETULT; 196 case FCmpInst::FCMP_ULE: return ISD::SETULE; 197 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 198 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 199 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 200 } 201 } 202 203 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 204 switch (CC) { 205 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 206 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 207 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 208 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 209 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 210 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 211 default: return CC; 212 } 213 } 214 215 /// getICmpCondCode - Return the ISD condition code corresponding to 216 /// the given LLVM IR integer condition code. 217 /// 218 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 219 switch (Pred) { 220 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 221 case ICmpInst::ICMP_NE: return ISD::SETNE; 222 case ICmpInst::ICMP_SLE: return ISD::SETLE; 223 case ICmpInst::ICMP_ULE: return ISD::SETULE; 224 case ICmpInst::ICMP_SGE: return ISD::SETGE; 225 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 226 case ICmpInst::ICMP_SLT: return ISD::SETLT; 227 case ICmpInst::ICMP_ULT: return ISD::SETULT; 228 case ICmpInst::ICMP_SGT: return ISD::SETGT; 229 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 230 default: 231 llvm_unreachable("Invalid ICmp predicate opcode!"); 232 } 233 } 234 235 static bool isNoopBitcast(Type *T1, Type *T2, 236 const TargetLoweringBase& TLI) { 237 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 238 (isa<VectorType>(T1) && isa<VectorType>(T2) && 239 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 240 } 241 242 /// Look through operations that will be free to find the earliest source of 243 /// this value. 244 /// 245 /// @param ValLoc If V has aggregate type, we will be interested in a particular 246 /// scalar component. This records its address; the reverse of this list gives a 247 /// sequence of indices appropriate for an extractvalue to locate the important 248 /// value. This value is updated during the function and on exit will indicate 249 /// similar information for the Value returned. 250 /// 251 /// @param DataBits If this function looks through truncate instructions, this 252 /// will record the smallest size attained. 253 static const Value *getNoopInput(const Value *V, 254 SmallVectorImpl<unsigned> &ValLoc, 255 unsigned &DataBits, 256 const TargetLoweringBase &TLI, 257 const DataLayout &DL) { 258 while (true) { 259 // Try to look through V1; if V1 is not an instruction, it can't be looked 260 // through. 261 const Instruction *I = dyn_cast<Instruction>(V); 262 if (!I || I->getNumOperands() == 0) return V; 263 const Value *NoopInput = nullptr; 264 265 Value *Op = I->getOperand(0); 266 if (isa<BitCastInst>(I)) { 267 // Look through truly no-op bitcasts. 268 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 269 NoopInput = Op; 270 } else if (isa<GetElementPtrInst>(I)) { 271 // Look through getelementptr 272 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 273 NoopInput = Op; 274 } else if (isa<IntToPtrInst>(I)) { 275 // Look through inttoptr. 276 // Make sure this isn't a truncating or extending cast. We could 277 // support this eventually, but don't bother for now. 278 if (!isa<VectorType>(I->getType()) && 279 DL.getPointerSizeInBits() == 280 cast<IntegerType>(Op->getType())->getBitWidth()) 281 NoopInput = Op; 282 } else if (isa<PtrToIntInst>(I)) { 283 // Look through ptrtoint. 284 // Make sure this isn't a truncating or extending cast. We could 285 // support this eventually, but don't bother for now. 286 if (!isa<VectorType>(I->getType()) && 287 DL.getPointerSizeInBits() == 288 cast<IntegerType>(I->getType())->getBitWidth()) 289 NoopInput = Op; 290 } else if (isa<TruncInst>(I) && 291 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 292 DataBits = std::min((uint64_t)DataBits, 293 I->getType()->getPrimitiveSizeInBits().getFixedSize()); 294 NoopInput = Op; 295 } else if (auto *CB = dyn_cast<CallBase>(I)) { 296 const Value *ReturnedOp = CB->getReturnedArgOperand(); 297 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 298 NoopInput = ReturnedOp; 299 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 300 // Value may come from either the aggregate or the scalar 301 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 302 if (ValLoc.size() >= InsertLoc.size() && 303 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 304 // The type being inserted is a nested sub-type of the aggregate; we 305 // have to remove those initial indices to get the location we're 306 // interested in for the operand. 307 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 308 NoopInput = IVI->getInsertedValueOperand(); 309 } else { 310 // The struct we're inserting into has the value we're interested in, no 311 // change of address. 312 NoopInput = Op; 313 } 314 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 315 // The part we're interested in will inevitably be some sub-section of the 316 // previous aggregate. Combine the two paths to obtain the true address of 317 // our element. 318 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 319 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 320 NoopInput = Op; 321 } 322 // Terminate if we couldn't find anything to look through. 323 if (!NoopInput) 324 return V; 325 326 V = NoopInput; 327 } 328 } 329 330 /// Return true if this scalar return value only has bits discarded on its path 331 /// from the "tail call" to the "ret". This includes the obvious noop 332 /// instructions handled by getNoopInput above as well as free truncations (or 333 /// extensions prior to the call). 334 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 335 SmallVectorImpl<unsigned> &RetIndices, 336 SmallVectorImpl<unsigned> &CallIndices, 337 bool AllowDifferingSizes, 338 const TargetLoweringBase &TLI, 339 const DataLayout &DL) { 340 341 // Trace the sub-value needed by the return value as far back up the graph as 342 // possible, in the hope that it will intersect with the value produced by the 343 // call. In the simple case with no "returned" attribute, the hope is actually 344 // that we end up back at the tail call instruction itself. 345 unsigned BitsRequired = UINT_MAX; 346 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 347 348 // If this slot in the value returned is undef, it doesn't matter what the 349 // call puts there, it'll be fine. 350 if (isa<UndefValue>(RetVal)) 351 return true; 352 353 // Now do a similar search up through the graph to find where the value 354 // actually returned by the "tail call" comes from. In the simple case without 355 // a "returned" attribute, the search will be blocked immediately and the loop 356 // a Noop. 357 unsigned BitsProvided = UINT_MAX; 358 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 359 360 // There's no hope if we can't actually trace them to (the same part of!) the 361 // same value. 362 if (CallVal != RetVal || CallIndices != RetIndices) 363 return false; 364 365 // However, intervening truncates may have made the call non-tail. Make sure 366 // all the bits that are needed by the "ret" have been provided by the "tail 367 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 368 // extensions too. 369 if (BitsProvided < BitsRequired || 370 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 371 return false; 372 373 return true; 374 } 375 376 /// For an aggregate type, determine whether a given index is within bounds or 377 /// not. 378 static bool indexReallyValid(Type *T, unsigned Idx) { 379 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 380 return Idx < AT->getNumElements(); 381 382 return Idx < cast<StructType>(T)->getNumElements(); 383 } 384 385 /// Move the given iterators to the next leaf type in depth first traversal. 386 /// 387 /// Performs a depth-first traversal of the type as specified by its arguments, 388 /// stopping at the next leaf node (which may be a legitimate scalar type or an 389 /// empty struct or array). 390 /// 391 /// @param SubTypes List of the partial components making up the type from 392 /// outermost to innermost non-empty aggregate. The element currently 393 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 394 /// 395 /// @param Path Set of extractvalue indices leading from the outermost type 396 /// (SubTypes[0]) to the leaf node currently represented. 397 /// 398 /// @returns true if a new type was found, false otherwise. Calling this 399 /// function again on a finished iterator will repeatedly return 400 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 401 /// aggregate or a non-aggregate 402 static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes, 403 SmallVectorImpl<unsigned> &Path) { 404 // First march back up the tree until we can successfully increment one of the 405 // coordinates in Path. 406 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 407 Path.pop_back(); 408 SubTypes.pop_back(); 409 } 410 411 // If we reached the top, then the iterator is done. 412 if (Path.empty()) 413 return false; 414 415 // We know there's *some* valid leaf now, so march back down the tree picking 416 // out the left-most element at each node. 417 ++Path.back(); 418 Type *DeeperType = 419 ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()); 420 while (DeeperType->isAggregateType()) { 421 if (!indexReallyValid(DeeperType, 0)) 422 return true; 423 424 SubTypes.push_back(DeeperType); 425 Path.push_back(0); 426 427 DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0); 428 } 429 430 return true; 431 } 432 433 /// Find the first non-empty, scalar-like type in Next and setup the iterator 434 /// components. 435 /// 436 /// Assuming Next is an aggregate of some kind, this function will traverse the 437 /// tree from left to right (i.e. depth-first) looking for the first 438 /// non-aggregate type which will play a role in function return. 439 /// 440 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 441 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 442 /// i32 in that type. 443 static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes, 444 SmallVectorImpl<unsigned> &Path) { 445 // First initialise the iterator components to the first "leaf" node 446 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 447 // despite nominally being an aggregate). 448 while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) { 449 SubTypes.push_back(Next); 450 Path.push_back(0); 451 Next = FirstInner; 452 } 453 454 // If there's no Path now, Next was originally scalar already (or empty 455 // leaf). We're done. 456 if (Path.empty()) 457 return true; 458 459 // Otherwise, use normal iteration to keep looking through the tree until we 460 // find a non-aggregate type. 461 while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 462 ->isAggregateType()) { 463 if (!advanceToNextLeafType(SubTypes, Path)) 464 return false; 465 } 466 467 return true; 468 } 469 470 /// Set the iterator data-structures to the next non-empty, non-aggregate 471 /// subtype. 472 static bool nextRealType(SmallVectorImpl<Type *> &SubTypes, 473 SmallVectorImpl<unsigned> &Path) { 474 do { 475 if (!advanceToNextLeafType(SubTypes, Path)) 476 return false; 477 478 assert(!Path.empty() && "found a leaf but didn't set the path?"); 479 } while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back()) 480 ->isAggregateType()); 481 482 return true; 483 } 484 485 486 /// Test if the given instruction is in a position to be optimized 487 /// with a tail-call. This roughly means that it's in a block with 488 /// a return and there's nothing that needs to be scheduled 489 /// between it and the return. 490 /// 491 /// This function only tests target-independent requirements. 492 bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM) { 493 const BasicBlock *ExitBB = Call.getParent(); 494 const Instruction *Term = ExitBB->getTerminator(); 495 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 496 497 // The block must end in a return statement or unreachable. 498 // 499 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 500 // an unreachable, for now. The way tailcall optimization is currently 501 // implemented means it will add an epilogue followed by a jump. That is 502 // not profitable. Also, if the callee is a special function (e.g. 503 // longjmp on x86), it can end up causing miscompilation that has not 504 // been fully understood. 505 if (!Ret && 506 ((!TM.Options.GuaranteedTailCallOpt && 507 Call.getCallingConv() != CallingConv::Tail) || !isa<UnreachableInst>(Term))) 508 return false; 509 510 // If I will have a chain, make sure no other instruction that will have a 511 // chain interposes between I and the return. 512 // Check for all calls including speculatable functions. 513 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 514 if (&*BBI == &Call) 515 break; 516 // Debug info intrinsics do not get in the way of tail call optimization. 517 if (isa<DbgInfoIntrinsic>(BBI)) 518 continue; 519 // Pseudo probe intrinsics do not block tail call optimization either. 520 if (isa<PseudoProbeInst>(BBI)) 521 continue; 522 // A lifetime end or assume intrinsic should not stop tail call 523 // optimization. 524 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 525 if (II->getIntrinsicID() == Intrinsic::lifetime_end || 526 II->getIntrinsicID() == Intrinsic::assume) 527 continue; 528 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 529 !isSafeToSpeculativelyExecute(&*BBI)) 530 return false; 531 } 532 533 const Function *F = ExitBB->getParent(); 534 return returnTypeIsEligibleForTailCall( 535 F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 536 } 537 538 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 539 const ReturnInst *Ret, 540 const TargetLoweringBase &TLI, 541 bool *AllowDifferingSizes) { 542 // ADS may be null, so don't write to it directly. 543 bool DummyADS; 544 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 545 ADS = true; 546 547 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 548 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 549 AttributeList::ReturnIndex); 550 551 // Following attributes are completely benign as far as calling convention 552 // goes, they shouldn't affect whether the call is a tail call. 553 CallerAttrs.removeAttribute(Attribute::NoAlias); 554 CalleeAttrs.removeAttribute(Attribute::NoAlias); 555 CallerAttrs.removeAttribute(Attribute::NonNull); 556 CalleeAttrs.removeAttribute(Attribute::NonNull); 557 CallerAttrs.removeAttribute(Attribute::Dereferenceable); 558 CalleeAttrs.removeAttribute(Attribute::Dereferenceable); 559 CallerAttrs.removeAttribute(Attribute::DereferenceableOrNull); 560 CalleeAttrs.removeAttribute(Attribute::DereferenceableOrNull); 561 562 if (CallerAttrs.contains(Attribute::ZExt)) { 563 if (!CalleeAttrs.contains(Attribute::ZExt)) 564 return false; 565 566 ADS = false; 567 CallerAttrs.removeAttribute(Attribute::ZExt); 568 CalleeAttrs.removeAttribute(Attribute::ZExt); 569 } else if (CallerAttrs.contains(Attribute::SExt)) { 570 if (!CalleeAttrs.contains(Attribute::SExt)) 571 return false; 572 573 ADS = false; 574 CallerAttrs.removeAttribute(Attribute::SExt); 575 CalleeAttrs.removeAttribute(Attribute::SExt); 576 } 577 578 // Drop sext and zext return attributes if the result is not used. 579 // This enables tail calls for code like: 580 // 581 // define void @caller() { 582 // entry: 583 // %unused_result = tail call zeroext i1 @callee() 584 // br label %retlabel 585 // retlabel: 586 // ret void 587 // } 588 if (I->use_empty()) { 589 CalleeAttrs.removeAttribute(Attribute::SExt); 590 CalleeAttrs.removeAttribute(Attribute::ZExt); 591 } 592 593 // If they're still different, there's some facet we don't understand 594 // (currently only "inreg", but in future who knows). It may be OK but the 595 // only safe option is to reject the tail call. 596 return CallerAttrs == CalleeAttrs; 597 } 598 599 /// Check whether B is a bitcast of a pointer type to another pointer type, 600 /// which is equal to A. 601 static bool isPointerBitcastEqualTo(const Value *A, const Value *B) { 602 assert(A && B && "Expected non-null inputs!"); 603 604 auto *BitCastIn = dyn_cast<BitCastInst>(B); 605 606 if (!BitCastIn) 607 return false; 608 609 if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy()) 610 return false; 611 612 return A == BitCastIn->getOperand(0); 613 } 614 615 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 616 const Instruction *I, 617 const ReturnInst *Ret, 618 const TargetLoweringBase &TLI) { 619 // If the block ends with a void return or unreachable, it doesn't matter 620 // what the call's return type is. 621 if (!Ret || Ret->getNumOperands() == 0) return true; 622 623 // If the return value is undef, it doesn't matter what the call's 624 // return type is. 625 if (isa<UndefValue>(Ret->getOperand(0))) return true; 626 627 // Make sure the attributes attached to each return are compatible. 628 bool AllowDifferingSizes; 629 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 630 return false; 631 632 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 633 // Intrinsic like llvm.memcpy has no return value, but the expanded 634 // libcall may or may not have return value. On most platforms, it 635 // will be expanded as memcpy in libc, which returns the first 636 // argument. On other platforms like arm-none-eabi, memcpy may be 637 // expanded as library call without return value, like __aeabi_memcpy. 638 const CallInst *Call = cast<CallInst>(I); 639 if (Function *F = Call->getCalledFunction()) { 640 Intrinsic::ID IID = F->getIntrinsicID(); 641 if (((IID == Intrinsic::memcpy && 642 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 643 (IID == Intrinsic::memmove && 644 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 645 (IID == Intrinsic::memset && 646 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 647 (RetVal == Call->getArgOperand(0) || 648 isPointerBitcastEqualTo(RetVal, Call->getArgOperand(0)))) 649 return true; 650 } 651 652 SmallVector<unsigned, 4> RetPath, CallPath; 653 SmallVector<Type *, 4> RetSubTypes, CallSubTypes; 654 655 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 656 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 657 658 // Nothing's actually returned, it doesn't matter what the callee put there 659 // it's a valid tail call. 660 if (RetEmpty) 661 return true; 662 663 // Iterate pairwise through each of the value types making up the tail call 664 // and the corresponding return. For each one we want to know whether it's 665 // essentially going directly from the tail call to the ret, via operations 666 // that end up not generating any code. 667 // 668 // We allow a certain amount of covariance here. For example it's permitted 669 // for the tail call to define more bits than the ret actually cares about 670 // (e.g. via a truncate). 671 do { 672 if (CallEmpty) { 673 // We've exhausted the values produced by the tail call instruction, the 674 // rest are essentially undef. The type doesn't really matter, but we need 675 // *something*. 676 Type *SlotType = 677 ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back()); 678 CallVal = UndefValue::get(SlotType); 679 } 680 681 // The manipulations performed when we're looking through an insertvalue or 682 // an extractvalue would happen at the front of the RetPath list, so since 683 // we have to copy it anyway it's more efficient to create a reversed copy. 684 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 685 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 686 687 // Finally, we can check whether the value produced by the tail call at this 688 // index is compatible with the value we return. 689 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 690 AllowDifferingSizes, TLI, 691 F->getParent()->getDataLayout())) 692 return false; 693 694 CallEmpty = !nextRealType(CallSubTypes, CallPath); 695 } while(nextRealType(RetSubTypes, RetPath)); 696 697 return true; 698 } 699 700 static void collectEHScopeMembers( 701 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 702 const MachineBasicBlock *MBB) { 703 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 704 while (!Worklist.empty()) { 705 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 706 // Don't follow blocks which start new scopes. 707 if (Visiting->isEHPad() && Visiting != MBB) 708 continue; 709 710 // Add this MBB to our scope. 711 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 712 713 // Don't revisit blocks. 714 if (!P.second) { 715 assert(P.first->second == EHScope && "MBB is part of two scopes!"); 716 continue; 717 } 718 719 // Returns are boundaries where scope transfer can occur, don't follow 720 // successors. 721 if (Visiting->isEHScopeReturnBlock()) 722 continue; 723 724 for (const MachineBasicBlock *Succ : Visiting->successors()) 725 Worklist.push_back(Succ); 726 } 727 } 728 729 DenseMap<const MachineBasicBlock *, int> 730 llvm::getEHScopeMembership(const MachineFunction &MF) { 731 DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 732 733 // We don't have anything to do if there aren't any EH pads. 734 if (!MF.hasEHScopes()) 735 return EHScopeMembership; 736 737 int EntryBBNumber = MF.front().getNumber(); 738 bool IsSEH = isAsynchronousEHPersonality( 739 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 740 741 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 742 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 743 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 744 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 745 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 746 for (const MachineBasicBlock &MBB : MF) { 747 if (MBB.isEHScopeEntry()) { 748 EHScopeBlocks.push_back(&MBB); 749 } else if (IsSEH && MBB.isEHPad()) { 750 SEHCatchPads.push_back(&MBB); 751 } else if (MBB.pred_empty()) { 752 UnreachableBlocks.push_back(&MBB); 753 } 754 755 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 756 757 // CatchPads are not scopes for SEH so do not consider CatchRet to 758 // transfer control to another scope. 759 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 760 continue; 761 762 // FIXME: SEH CatchPads are not necessarily in the parent function: 763 // they could be inside a finally block. 764 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 765 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 766 CatchRetSuccessors.push_back( 767 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 768 } 769 770 // We don't have anything to do if there aren't any EH pads. 771 if (EHScopeBlocks.empty()) 772 return EHScopeMembership; 773 774 // Identify all the basic blocks reachable from the function entry. 775 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 776 // All blocks not part of a scope are in the parent function. 777 for (const MachineBasicBlock *MBB : UnreachableBlocks) 778 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 779 // Next, identify all the blocks inside the scopes. 780 for (const MachineBasicBlock *MBB : EHScopeBlocks) 781 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 782 // SEH CatchPads aren't really scopes, handle them separately. 783 for (const MachineBasicBlock *MBB : SEHCatchPads) 784 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 785 // Finally, identify all the targets of a catchret. 786 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 787 CatchRetSuccessors) 788 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 789 CatchRetPair.first); 790 return EHScopeMembership; 791 } 792