1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/SelectionDAG.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Target/TargetLowering.h" 28 #include "llvm/Target/TargetSubtargetInfo.h" 29 #include "llvm/Transforms/Utils/GlobalStatus.h" 30 31 using namespace llvm; 32 33 /// Compute the linearized index of a member in a nested aggregate/struct/array 34 /// by recursing and accumulating CurIndex as long as there are indices in the 35 /// index list. 36 unsigned llvm::ComputeLinearIndex(Type *Ty, 37 const unsigned *Indices, 38 const unsigned *IndicesEnd, 39 unsigned CurIndex) { 40 // Base case: We're done. 41 if (Indices && Indices == IndicesEnd) 42 return CurIndex; 43 44 // Given a struct type, recursively traverse the elements. 45 if (StructType *STy = dyn_cast<StructType>(Ty)) { 46 for (StructType::element_iterator EB = STy->element_begin(), 47 EI = EB, 48 EE = STy->element_end(); 49 EI != EE; ++EI) { 50 if (Indices && *Indices == unsigned(EI - EB)) 51 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 52 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 53 } 54 assert(!Indices && "Unexpected out of bound"); 55 return CurIndex; 56 } 57 // Given an array type, recursively traverse the elements. 58 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 59 Type *EltTy = ATy->getElementType(); 60 unsigned NumElts = ATy->getNumElements(); 61 // Compute the Linear offset when jumping one element of the array 62 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 63 if (Indices) { 64 assert(*Indices < NumElts && "Unexpected out of bound"); 65 // If the indice is inside the array, compute the index to the requested 66 // elt and recurse inside the element with the end of the indices list 67 CurIndex += EltLinearOffset* *Indices; 68 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 69 } 70 CurIndex += EltLinearOffset*NumElts; 71 return CurIndex; 72 } 73 // We haven't found the type we're looking for, so keep searching. 74 return CurIndex + 1; 75 } 76 77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 78 /// EVTs that represent all the individual underlying 79 /// non-aggregate types that comprise it. 80 /// 81 /// If Offsets is non-null, it points to a vector to be filled in 82 /// with the in-memory offsets of each of the individual values. 83 /// 84 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty, 85 SmallVectorImpl<EVT> &ValueVTs, 86 SmallVectorImpl<uint64_t> *Offsets, 87 uint64_t StartingOffset) { 88 // Given a struct type, recursively traverse the elements. 89 if (StructType *STy = dyn_cast<StructType>(Ty)) { 90 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy); 91 for (StructType::element_iterator EB = STy->element_begin(), 92 EI = EB, 93 EE = STy->element_end(); 94 EI != EE; ++EI) 95 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, 96 StartingOffset + SL->getElementOffset(EI - EB)); 97 return; 98 } 99 // Given an array type, recursively traverse the elements. 100 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 101 Type *EltTy = ATy->getElementType(); 102 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy); 103 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 104 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, 105 StartingOffset + i * EltSize); 106 return; 107 } 108 // Interpret void as zero return values. 109 if (Ty->isVoidTy()) 110 return; 111 // Base case: we can get an EVT for this LLVM IR type. 112 ValueVTs.push_back(TLI.getValueType(Ty)); 113 if (Offsets) 114 Offsets->push_back(StartingOffset); 115 } 116 117 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 118 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 119 V = V->stripPointerCasts(); 120 GlobalValue *GV = dyn_cast<GlobalValue>(V); 121 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 122 123 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 124 assert(Var->hasInitializer() && 125 "The EH catch-all value must have an initializer"); 126 Value *Init = Var->getInitializer(); 127 GV = dyn_cast<GlobalValue>(Init); 128 if (!GV) V = cast<ConstantPointerNull>(Init); 129 } 130 131 assert((GV || isa<ConstantPointerNull>(V)) && 132 "TypeInfo must be a global variable or NULL"); 133 return GV; 134 } 135 136 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 137 /// processed uses a memory 'm' constraint. 138 bool 139 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 140 const TargetLowering &TLI) { 141 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 142 InlineAsm::ConstraintInfo &CI = CInfos[i]; 143 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 144 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 145 if (CType == TargetLowering::C_Memory) 146 return true; 147 } 148 149 // Indirect operand accesses access memory. 150 if (CI.isIndirect) 151 return true; 152 } 153 154 return false; 155 } 156 157 /// getFCmpCondCode - Return the ISD condition code corresponding to 158 /// the given LLVM IR floating-point condition code. This includes 159 /// consideration of global floating-point math flags. 160 /// 161 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 162 switch (Pred) { 163 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 164 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 165 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 166 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 167 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 168 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 169 case FCmpInst::FCMP_ONE: return ISD::SETONE; 170 case FCmpInst::FCMP_ORD: return ISD::SETO; 171 case FCmpInst::FCMP_UNO: return ISD::SETUO; 172 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 173 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 174 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 175 case FCmpInst::FCMP_ULT: return ISD::SETULT; 176 case FCmpInst::FCMP_ULE: return ISD::SETULE; 177 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 178 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 179 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 180 } 181 } 182 183 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 184 switch (CC) { 185 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 186 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 187 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 188 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 189 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 190 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 191 default: return CC; 192 } 193 } 194 195 /// getICmpCondCode - Return the ISD condition code corresponding to 196 /// the given LLVM IR integer condition code. 197 /// 198 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 199 switch (Pred) { 200 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 201 case ICmpInst::ICMP_NE: return ISD::SETNE; 202 case ICmpInst::ICMP_SLE: return ISD::SETLE; 203 case ICmpInst::ICMP_ULE: return ISD::SETULE; 204 case ICmpInst::ICMP_SGE: return ISD::SETGE; 205 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 206 case ICmpInst::ICMP_SLT: return ISD::SETLT; 207 case ICmpInst::ICMP_ULT: return ISD::SETULT; 208 case ICmpInst::ICMP_SGT: return ISD::SETGT; 209 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 210 default: 211 llvm_unreachable("Invalid ICmp predicate opcode!"); 212 } 213 } 214 215 static bool isNoopBitcast(Type *T1, Type *T2, 216 const TargetLoweringBase& TLI) { 217 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 218 (isa<VectorType>(T1) && isa<VectorType>(T2) && 219 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 220 } 221 222 /// Look through operations that will be free to find the earliest source of 223 /// this value. 224 /// 225 /// @param ValLoc If V has aggegate type, we will be interested in a particular 226 /// scalar component. This records its address; the reverse of this list gives a 227 /// sequence of indices appropriate for an extractvalue to locate the important 228 /// value. This value is updated during the function and on exit will indicate 229 /// similar information for the Value returned. 230 /// 231 /// @param DataBits If this function looks through truncate instructions, this 232 /// will record the smallest size attained. 233 static const Value *getNoopInput(const Value *V, 234 SmallVectorImpl<unsigned> &ValLoc, 235 unsigned &DataBits, 236 const TargetLoweringBase &TLI) { 237 while (true) { 238 // Try to look through V1; if V1 is not an instruction, it can't be looked 239 // through. 240 const Instruction *I = dyn_cast<Instruction>(V); 241 if (!I || I->getNumOperands() == 0) return V; 242 const Value *NoopInput = nullptr; 243 244 Value *Op = I->getOperand(0); 245 if (isa<BitCastInst>(I)) { 246 // Look through truly no-op bitcasts. 247 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 248 NoopInput = Op; 249 } else if (isa<GetElementPtrInst>(I)) { 250 // Look through getelementptr 251 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 252 NoopInput = Op; 253 } else if (isa<IntToPtrInst>(I)) { 254 // Look through inttoptr. 255 // Make sure this isn't a truncating or extending cast. We could 256 // support this eventually, but don't bother for now. 257 if (!isa<VectorType>(I->getType()) && 258 TLI.getPointerTy().getSizeInBits() == 259 cast<IntegerType>(Op->getType())->getBitWidth()) 260 NoopInput = Op; 261 } else if (isa<PtrToIntInst>(I)) { 262 // Look through ptrtoint. 263 // Make sure this isn't a truncating or extending cast. We could 264 // support this eventually, but don't bother for now. 265 if (!isa<VectorType>(I->getType()) && 266 TLI.getPointerTy().getSizeInBits() == 267 cast<IntegerType>(I->getType())->getBitWidth()) 268 NoopInput = Op; 269 } else if (isa<TruncInst>(I) && 270 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 271 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 272 NoopInput = Op; 273 } else if (isa<CallInst>(I)) { 274 // Look through call (skipping callee) 275 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 276 i != e; ++i) { 277 unsigned attrInd = i - I->op_begin() + 1; 278 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 279 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 280 NoopInput = *i; 281 break; 282 } 283 } 284 } else if (isa<InvokeInst>(I)) { 285 // Look through invoke (skipping BB, BB, Callee) 286 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 287 i != e; ++i) { 288 unsigned attrInd = i - I->op_begin() + 1; 289 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 290 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 291 NoopInput = *i; 292 break; 293 } 294 } 295 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 296 // Value may come from either the aggregate or the scalar 297 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 298 if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(), 299 ValLoc.rbegin())) { 300 // The type being inserted is a nested sub-type of the aggregate; we 301 // have to remove those initial indices to get the location we're 302 // interested in for the operand. 303 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 304 NoopInput = IVI->getInsertedValueOperand(); 305 } else { 306 // The struct we're inserting into has the value we're interested in, no 307 // change of address. 308 NoopInput = Op; 309 } 310 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 311 // The part we're interested in will inevitably be some sub-section of the 312 // previous aggregate. Combine the two paths to obtain the true address of 313 // our element. 314 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 315 std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(), 316 std::back_inserter(ValLoc)); 317 NoopInput = Op; 318 } 319 // Terminate if we couldn't find anything to look through. 320 if (!NoopInput) 321 return V; 322 323 V = NoopInput; 324 } 325 } 326 327 /// Return true if this scalar return value only has bits discarded on its path 328 /// from the "tail call" to the "ret". This includes the obvious noop 329 /// instructions handled by getNoopInput above as well as free truncations (or 330 /// extensions prior to the call). 331 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 332 SmallVectorImpl<unsigned> &RetIndices, 333 SmallVectorImpl<unsigned> &CallIndices, 334 bool AllowDifferingSizes, 335 const TargetLoweringBase &TLI) { 336 337 // Trace the sub-value needed by the return value as far back up the graph as 338 // possible, in the hope that it will intersect with the value produced by the 339 // call. In the simple case with no "returned" attribute, the hope is actually 340 // that we end up back at the tail call instruction itself. 341 unsigned BitsRequired = UINT_MAX; 342 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI); 343 344 // If this slot in the value returned is undef, it doesn't matter what the 345 // call puts there, it'll be fine. 346 if (isa<UndefValue>(RetVal)) 347 return true; 348 349 // Now do a similar search up through the graph to find where the value 350 // actually returned by the "tail call" comes from. In the simple case without 351 // a "returned" attribute, the search will be blocked immediately and the loop 352 // a Noop. 353 unsigned BitsProvided = UINT_MAX; 354 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI); 355 356 // There's no hope if we can't actually trace them to (the same part of!) the 357 // same value. 358 if (CallVal != RetVal || CallIndices != RetIndices) 359 return false; 360 361 // However, intervening truncates may have made the call non-tail. Make sure 362 // all the bits that are needed by the "ret" have been provided by the "tail 363 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 364 // extensions too. 365 if (BitsProvided < BitsRequired || 366 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 367 return false; 368 369 return true; 370 } 371 372 /// For an aggregate type, determine whether a given index is within bounds or 373 /// not. 374 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 375 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 376 return Idx < AT->getNumElements(); 377 378 return Idx < cast<StructType>(T)->getNumElements(); 379 } 380 381 /// Move the given iterators to the next leaf type in depth first traversal. 382 /// 383 /// Performs a depth-first traversal of the type as specified by its arguments, 384 /// stopping at the next leaf node (which may be a legitimate scalar type or an 385 /// empty struct or array). 386 /// 387 /// @param SubTypes List of the partial components making up the type from 388 /// outermost to innermost non-empty aggregate. The element currently 389 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 390 /// 391 /// @param Path Set of extractvalue indices leading from the outermost type 392 /// (SubTypes[0]) to the leaf node currently represented. 393 /// 394 /// @returns true if a new type was found, false otherwise. Calling this 395 /// function again on a finished iterator will repeatedly return 396 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 397 /// aggregate or a non-aggregate 398 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 399 SmallVectorImpl<unsigned> &Path) { 400 // First march back up the tree until we can successfully increment one of the 401 // coordinates in Path. 402 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 403 Path.pop_back(); 404 SubTypes.pop_back(); 405 } 406 407 // If we reached the top, then the iterator is done. 408 if (Path.empty()) 409 return false; 410 411 // We know there's *some* valid leaf now, so march back down the tree picking 412 // out the left-most element at each node. 413 ++Path.back(); 414 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 415 while (DeeperType->isAggregateType()) { 416 CompositeType *CT = cast<CompositeType>(DeeperType); 417 if (!indexReallyValid(CT, 0)) 418 return true; 419 420 SubTypes.push_back(CT); 421 Path.push_back(0); 422 423 DeeperType = CT->getTypeAtIndex(0U); 424 } 425 426 return true; 427 } 428 429 /// Find the first non-empty, scalar-like type in Next and setup the iterator 430 /// components. 431 /// 432 /// Assuming Next is an aggregate of some kind, this function will traverse the 433 /// tree from left to right (i.e. depth-first) looking for the first 434 /// non-aggregate type which will play a role in function return. 435 /// 436 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 437 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 438 /// i32 in that type. 439 static bool firstRealType(Type *Next, 440 SmallVectorImpl<CompositeType *> &SubTypes, 441 SmallVectorImpl<unsigned> &Path) { 442 // First initialise the iterator components to the first "leaf" node 443 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 444 // despite nominally being an aggregate). 445 while (Next->isAggregateType() && 446 indexReallyValid(cast<CompositeType>(Next), 0)) { 447 SubTypes.push_back(cast<CompositeType>(Next)); 448 Path.push_back(0); 449 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 450 } 451 452 // If there's no Path now, Next was originally scalar already (or empty 453 // leaf). We're done. 454 if (Path.empty()) 455 return true; 456 457 // Otherwise, use normal iteration to keep looking through the tree until we 458 // find a non-aggregate type. 459 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 460 if (!advanceToNextLeafType(SubTypes, Path)) 461 return false; 462 } 463 464 return true; 465 } 466 467 /// Set the iterator data-structures to the next non-empty, non-aggregate 468 /// subtype. 469 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 470 SmallVectorImpl<unsigned> &Path) { 471 do { 472 if (!advanceToNextLeafType(SubTypes, Path)) 473 return false; 474 475 assert(!Path.empty() && "found a leaf but didn't set the path?"); 476 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 477 478 return true; 479 } 480 481 482 /// Test if the given instruction is in a position to be optimized 483 /// with a tail-call. This roughly means that it's in a block with 484 /// a return and there's nothing that needs to be scheduled 485 /// between it and the return. 486 /// 487 /// This function only tests target-independent requirements. 488 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 489 const Instruction *I = CS.getInstruction(); 490 const BasicBlock *ExitBB = I->getParent(); 491 const TerminatorInst *Term = ExitBB->getTerminator(); 492 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 493 494 // The block must end in a return statement or unreachable. 495 // 496 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 497 // an unreachable, for now. The way tailcall optimization is currently 498 // implemented means it will add an epilogue followed by a jump. That is 499 // not profitable. Also, if the callee is a special function (e.g. 500 // longjmp on x86), it can end up causing miscompilation that has not 501 // been fully understood. 502 if (!Ret && 503 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 504 return false; 505 506 // If I will have a chain, make sure no other instruction that will have a 507 // chain interposes between I and the return. 508 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 509 !isSafeToSpeculativelyExecute(I)) 510 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 511 if (&*BBI == I) 512 break; 513 // Debug info intrinsics do not get in the way of tail call optimization. 514 if (isa<DbgInfoIntrinsic>(BBI)) 515 continue; 516 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 517 !isSafeToSpeculativelyExecute(BBI)) 518 return false; 519 } 520 521 return returnTypeIsEligibleForTailCall( 522 ExitBB->getParent(), I, Ret, *TM.getSubtargetImpl()->getTargetLowering()); 523 } 524 525 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 526 const Instruction *I, 527 const ReturnInst *Ret, 528 const TargetLoweringBase &TLI) { 529 // If the block ends with a void return or unreachable, it doesn't matter 530 // what the call's return type is. 531 if (!Ret || Ret->getNumOperands() == 0) return true; 532 533 // If the return value is undef, it doesn't matter what the call's 534 // return type is. 535 if (isa<UndefValue>(Ret->getOperand(0))) return true; 536 537 // Make sure the attributes attached to each return are compatible. 538 AttrBuilder CallerAttrs(F->getAttributes(), 539 AttributeSet::ReturnIndex); 540 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 541 AttributeSet::ReturnIndex); 542 543 // Noalias is completely benign as far as calling convention goes, it 544 // shouldn't affect whether the call is a tail call. 545 CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias); 546 CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias); 547 548 bool AllowDifferingSizes = true; 549 if (CallerAttrs.contains(Attribute::ZExt)) { 550 if (!CalleeAttrs.contains(Attribute::ZExt)) 551 return false; 552 553 AllowDifferingSizes = false; 554 CallerAttrs.removeAttribute(Attribute::ZExt); 555 CalleeAttrs.removeAttribute(Attribute::ZExt); 556 } else if (CallerAttrs.contains(Attribute::SExt)) { 557 if (!CalleeAttrs.contains(Attribute::SExt)) 558 return false; 559 560 AllowDifferingSizes = false; 561 CallerAttrs.removeAttribute(Attribute::SExt); 562 CalleeAttrs.removeAttribute(Attribute::SExt); 563 } 564 565 // If they're still different, there's some facet we don't understand 566 // (currently only "inreg", but in future who knows). It may be OK but the 567 // only safe option is to reject the tail call. 568 if (CallerAttrs != CalleeAttrs) 569 return false; 570 571 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 572 SmallVector<unsigned, 4> RetPath, CallPath; 573 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 574 575 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 576 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 577 578 // Nothing's actually returned, it doesn't matter what the callee put there 579 // it's a valid tail call. 580 if (RetEmpty) 581 return true; 582 583 // Iterate pairwise through each of the value types making up the tail call 584 // and the corresponding return. For each one we want to know whether it's 585 // essentially going directly from the tail call to the ret, via operations 586 // that end up not generating any code. 587 // 588 // We allow a certain amount of covariance here. For example it's permitted 589 // for the tail call to define more bits than the ret actually cares about 590 // (e.g. via a truncate). 591 do { 592 if (CallEmpty) { 593 // We've exhausted the values produced by the tail call instruction, the 594 // rest are essentially undef. The type doesn't really matter, but we need 595 // *something*. 596 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 597 CallVal = UndefValue::get(SlotType); 598 } 599 600 // The manipulations performed when we're looking through an insertvalue or 601 // an extractvalue would happen at the front of the RetPath list, so since 602 // we have to copy it anyway it's more efficient to create a reversed copy. 603 using std::copy; 604 SmallVector<unsigned, 4> TmpRetPath, TmpCallPath; 605 copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath)); 606 copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath)); 607 608 // Finally, we can check whether the value produced by the tail call at this 609 // index is compatible with the value we return. 610 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 611 AllowDifferingSizes, TLI)) 612 return false; 613 614 CallEmpty = !nextRealType(CallSubTypes, CallPath); 615 } while(nextRealType(RetSubTypes, RetPath)); 616 617 return true; 618 } 619 620 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) { 621 if (!GV->hasLinkOnceODRLinkage()) 622 return false; 623 624 if (GV->hasUnnamedAddr()) 625 return true; 626 627 // If it is a non constant variable, it needs to be uniqued across shared 628 // objects. 629 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 630 if (!Var->isConstant()) 631 return false; 632 } 633 634 // An alias can point to a variable. We could try to resolve the alias to 635 // decide, but for now just don't hide them. 636 if (isa<GlobalAlias>(GV)) 637 return false; 638 639 GlobalStatus GS; 640 if (GlobalStatus::analyzeGlobal(GV, GS)) 641 return false; 642 643 return !GS.IsCompared; 644 } 645