1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Transforms/Utils/GlobalStatus.h"
29 
30 using namespace llvm;
31 
32 /// Compute the linearized index of a member in a nested aggregate/struct/array
33 /// by recursing and accumulating CurIndex as long as there are indices in the
34 /// index list.
35 unsigned llvm::ComputeLinearIndex(Type *Ty,
36                                   const unsigned *Indices,
37                                   const unsigned *IndicesEnd,
38                                   unsigned CurIndex) {
39   // Base case: We're done.
40   if (Indices && Indices == IndicesEnd)
41     return CurIndex;
42 
43   // Given a struct type, recursively traverse the elements.
44   if (StructType *STy = dyn_cast<StructType>(Ty)) {
45     for (StructType::element_iterator EB = STy->element_begin(),
46                                       EI = EB,
47                                       EE = STy->element_end();
48         EI != EE; ++EI) {
49       if (Indices && *Indices == unsigned(EI - EB))
50         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
51       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
52     }
53     assert(!Indices && "Unexpected out of bound");
54     return CurIndex;
55   }
56   // Given an array type, recursively traverse the elements.
57   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
58     Type *EltTy = ATy->getElementType();
59     unsigned NumElts = ATy->getNumElements();
60     // Compute the Linear offset when jumping one element of the array
61     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
62     if (Indices) {
63       assert(*Indices < NumElts && "Unexpected out of bound");
64       // If the indice is inside the array, compute the index to the requested
65       // elt and recurse inside the element with the end of the indices list
66       CurIndex += EltLinearOffset* *Indices;
67       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
68     }
69     CurIndex += EltLinearOffset*NumElts;
70     return CurIndex;
71   }
72   // We haven't found the type we're looking for, so keep searching.
73   return CurIndex + 1;
74 }
75 
76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
77 /// EVTs that represent all the individual underlying
78 /// non-aggregate types that comprise it.
79 ///
80 /// If Offsets is non-null, it points to a vector to be filled in
81 /// with the in-memory offsets of each of the individual values.
82 ///
83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85                            SmallVectorImpl<uint64_t> *Offsets,
86                            uint64_t StartingOffset) {
87   // Given a struct type, recursively traverse the elements.
88   if (StructType *STy = dyn_cast<StructType>(Ty)) {
89     const StructLayout *SL = DL.getStructLayout(STy);
90     for (StructType::element_iterator EB = STy->element_begin(),
91                                       EI = EB,
92                                       EE = STy->element_end();
93          EI != EE; ++EI)
94       ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
95                       StartingOffset + SL->getElementOffset(EI - EB));
96     return;
97   }
98   // Given an array type, recursively traverse the elements.
99   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
100     Type *EltTy = ATy->getElementType();
101     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
102     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
103       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
104                       StartingOffset + i * EltSize);
105     return;
106   }
107   // Interpret void as zero return values.
108   if (Ty->isVoidTy())
109     return;
110   // Base case: we can get an EVT for this LLVM IR type.
111   ValueVTs.push_back(TLI.getValueType(DL, Ty));
112   if (Offsets)
113     Offsets->push_back(StartingOffset);
114 }
115 
116 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
117 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
118   V = V->stripPointerCasts();
119   GlobalValue *GV = dyn_cast<GlobalValue>(V);
120   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
121 
122   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
123     assert(Var->hasInitializer() &&
124            "The EH catch-all value must have an initializer");
125     Value *Init = Var->getInitializer();
126     GV = dyn_cast<GlobalValue>(Init);
127     if (!GV) V = cast<ConstantPointerNull>(Init);
128   }
129 
130   assert((GV || isa<ConstantPointerNull>(V)) &&
131          "TypeInfo must be a global variable or NULL");
132   return GV;
133 }
134 
135 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
136 /// processed uses a memory 'm' constraint.
137 bool
138 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
139                                 const TargetLowering &TLI) {
140   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
141     InlineAsm::ConstraintInfo &CI = CInfos[i];
142     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
143       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
144       if (CType == TargetLowering::C_Memory)
145         return true;
146     }
147 
148     // Indirect operand accesses access memory.
149     if (CI.isIndirect)
150       return true;
151   }
152 
153   return false;
154 }
155 
156 /// getFCmpCondCode - Return the ISD condition code corresponding to
157 /// the given LLVM IR floating-point condition code.  This includes
158 /// consideration of global floating-point math flags.
159 ///
160 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
161   switch (Pred) {
162   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
163   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
164   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
165   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
166   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
167   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
168   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
169   case FCmpInst::FCMP_ORD:   return ISD::SETO;
170   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
171   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
172   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
173   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
174   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
175   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
176   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
177   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
178   default: llvm_unreachable("Invalid FCmp predicate opcode!");
179   }
180 }
181 
182 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
183   switch (CC) {
184     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
185     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
186     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
187     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
188     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
189     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
190     default: return CC;
191   }
192 }
193 
194 /// getICmpCondCode - Return the ISD condition code corresponding to
195 /// the given LLVM IR integer condition code.
196 ///
197 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
198   switch (Pred) {
199   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
200   case ICmpInst::ICMP_NE:  return ISD::SETNE;
201   case ICmpInst::ICMP_SLE: return ISD::SETLE;
202   case ICmpInst::ICMP_ULE: return ISD::SETULE;
203   case ICmpInst::ICMP_SGE: return ISD::SETGE;
204   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
205   case ICmpInst::ICMP_SLT: return ISD::SETLT;
206   case ICmpInst::ICMP_ULT: return ISD::SETULT;
207   case ICmpInst::ICMP_SGT: return ISD::SETGT;
208   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
209   default:
210     llvm_unreachable("Invalid ICmp predicate opcode!");
211   }
212 }
213 
214 static bool isNoopBitcast(Type *T1, Type *T2,
215                           const TargetLoweringBase& TLI) {
216   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
217          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
218           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
219 }
220 
221 /// Look through operations that will be free to find the earliest source of
222 /// this value.
223 ///
224 /// @param ValLoc If V has aggegate type, we will be interested in a particular
225 /// scalar component. This records its address; the reverse of this list gives a
226 /// sequence of indices appropriate for an extractvalue to locate the important
227 /// value. This value is updated during the function and on exit will indicate
228 /// similar information for the Value returned.
229 ///
230 /// @param DataBits If this function looks through truncate instructions, this
231 /// will record the smallest size attained.
232 static const Value *getNoopInput(const Value *V,
233                                  SmallVectorImpl<unsigned> &ValLoc,
234                                  unsigned &DataBits,
235                                  const TargetLoweringBase &TLI,
236                                  const DataLayout &DL) {
237   while (true) {
238     // Try to look through V1; if V1 is not an instruction, it can't be looked
239     // through.
240     const Instruction *I = dyn_cast<Instruction>(V);
241     if (!I || I->getNumOperands() == 0) return V;
242     const Value *NoopInput = nullptr;
243 
244     Value *Op = I->getOperand(0);
245     if (isa<BitCastInst>(I)) {
246       // Look through truly no-op bitcasts.
247       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
248         NoopInput = Op;
249     } else if (isa<GetElementPtrInst>(I)) {
250       // Look through getelementptr
251       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
252         NoopInput = Op;
253     } else if (isa<IntToPtrInst>(I)) {
254       // Look through inttoptr.
255       // Make sure this isn't a truncating or extending cast.  We could
256       // support this eventually, but don't bother for now.
257       if (!isa<VectorType>(I->getType()) &&
258           DL.getPointerSizeInBits() ==
259               cast<IntegerType>(Op->getType())->getBitWidth())
260         NoopInput = Op;
261     } else if (isa<PtrToIntInst>(I)) {
262       // Look through ptrtoint.
263       // Make sure this isn't a truncating or extending cast.  We could
264       // support this eventually, but don't bother for now.
265       if (!isa<VectorType>(I->getType()) &&
266           DL.getPointerSizeInBits() ==
267               cast<IntegerType>(I->getType())->getBitWidth())
268         NoopInput = Op;
269     } else if (isa<TruncInst>(I) &&
270                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
271       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
272       NoopInput = Op;
273     } else if (auto CS = ImmutableCallSite(I)) {
274       const Value *ReturnedOp = CS.getReturnedArgOperand();
275       if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
276         NoopInput = ReturnedOp;
277     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
278       // Value may come from either the aggregate or the scalar
279       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
280       if (ValLoc.size() >= InsertLoc.size() &&
281           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
282         // The type being inserted is a nested sub-type of the aggregate; we
283         // have to remove those initial indices to get the location we're
284         // interested in for the operand.
285         ValLoc.resize(ValLoc.size() - InsertLoc.size());
286         NoopInput = IVI->getInsertedValueOperand();
287       } else {
288         // The struct we're inserting into has the value we're interested in, no
289         // change of address.
290         NoopInput = Op;
291       }
292     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
293       // The part we're interested in will inevitably be some sub-section of the
294       // previous aggregate. Combine the two paths to obtain the true address of
295       // our element.
296       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
297       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
298       NoopInput = Op;
299     }
300     // Terminate if we couldn't find anything to look through.
301     if (!NoopInput)
302       return V;
303 
304     V = NoopInput;
305   }
306 }
307 
308 /// Return true if this scalar return value only has bits discarded on its path
309 /// from the "tail call" to the "ret". This includes the obvious noop
310 /// instructions handled by getNoopInput above as well as free truncations (or
311 /// extensions prior to the call).
312 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
313                                  SmallVectorImpl<unsigned> &RetIndices,
314                                  SmallVectorImpl<unsigned> &CallIndices,
315                                  bool AllowDifferingSizes,
316                                  const TargetLoweringBase &TLI,
317                                  const DataLayout &DL) {
318 
319   // Trace the sub-value needed by the return value as far back up the graph as
320   // possible, in the hope that it will intersect with the value produced by the
321   // call. In the simple case with no "returned" attribute, the hope is actually
322   // that we end up back at the tail call instruction itself.
323   unsigned BitsRequired = UINT_MAX;
324   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
325 
326   // If this slot in the value returned is undef, it doesn't matter what the
327   // call puts there, it'll be fine.
328   if (isa<UndefValue>(RetVal))
329     return true;
330 
331   // Now do a similar search up through the graph to find where the value
332   // actually returned by the "tail call" comes from. In the simple case without
333   // a "returned" attribute, the search will be blocked immediately and the loop
334   // a Noop.
335   unsigned BitsProvided = UINT_MAX;
336   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
337 
338   // There's no hope if we can't actually trace them to (the same part of!) the
339   // same value.
340   if (CallVal != RetVal || CallIndices != RetIndices)
341     return false;
342 
343   // However, intervening truncates may have made the call non-tail. Make sure
344   // all the bits that are needed by the "ret" have been provided by the "tail
345   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
346   // extensions too.
347   if (BitsProvided < BitsRequired ||
348       (!AllowDifferingSizes && BitsProvided != BitsRequired))
349     return false;
350 
351   return true;
352 }
353 
354 /// For an aggregate type, determine whether a given index is within bounds or
355 /// not.
356 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
357   if (ArrayType *AT = dyn_cast<ArrayType>(T))
358     return Idx < AT->getNumElements();
359 
360   return Idx < cast<StructType>(T)->getNumElements();
361 }
362 
363 /// Move the given iterators to the next leaf type in depth first traversal.
364 ///
365 /// Performs a depth-first traversal of the type as specified by its arguments,
366 /// stopping at the next leaf node (which may be a legitimate scalar type or an
367 /// empty struct or array).
368 ///
369 /// @param SubTypes List of the partial components making up the type from
370 /// outermost to innermost non-empty aggregate. The element currently
371 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
372 ///
373 /// @param Path Set of extractvalue indices leading from the outermost type
374 /// (SubTypes[0]) to the leaf node currently represented.
375 ///
376 /// @returns true if a new type was found, false otherwise. Calling this
377 /// function again on a finished iterator will repeatedly return
378 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
379 /// aggregate or a non-aggregate
380 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
381                                   SmallVectorImpl<unsigned> &Path) {
382   // First march back up the tree until we can successfully increment one of the
383   // coordinates in Path.
384   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
385     Path.pop_back();
386     SubTypes.pop_back();
387   }
388 
389   // If we reached the top, then the iterator is done.
390   if (Path.empty())
391     return false;
392 
393   // We know there's *some* valid leaf now, so march back down the tree picking
394   // out the left-most element at each node.
395   ++Path.back();
396   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
397   while (DeeperType->isAggregateType()) {
398     CompositeType *CT = cast<CompositeType>(DeeperType);
399     if (!indexReallyValid(CT, 0))
400       return true;
401 
402     SubTypes.push_back(CT);
403     Path.push_back(0);
404 
405     DeeperType = CT->getTypeAtIndex(0U);
406   }
407 
408   return true;
409 }
410 
411 /// Find the first non-empty, scalar-like type in Next and setup the iterator
412 /// components.
413 ///
414 /// Assuming Next is an aggregate of some kind, this function will traverse the
415 /// tree from left to right (i.e. depth-first) looking for the first
416 /// non-aggregate type which will play a role in function return.
417 ///
418 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
419 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
420 /// i32 in that type.
421 static bool firstRealType(Type *Next,
422                           SmallVectorImpl<CompositeType *> &SubTypes,
423                           SmallVectorImpl<unsigned> &Path) {
424   // First initialise the iterator components to the first "leaf" node
425   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
426   // despite nominally being an aggregate).
427   while (Next->isAggregateType() &&
428          indexReallyValid(cast<CompositeType>(Next), 0)) {
429     SubTypes.push_back(cast<CompositeType>(Next));
430     Path.push_back(0);
431     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
432   }
433 
434   // If there's no Path now, Next was originally scalar already (or empty
435   // leaf). We're done.
436   if (Path.empty())
437     return true;
438 
439   // Otherwise, use normal iteration to keep looking through the tree until we
440   // find a non-aggregate type.
441   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
442     if (!advanceToNextLeafType(SubTypes, Path))
443       return false;
444   }
445 
446   return true;
447 }
448 
449 /// Set the iterator data-structures to the next non-empty, non-aggregate
450 /// subtype.
451 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
452                          SmallVectorImpl<unsigned> &Path) {
453   do {
454     if (!advanceToNextLeafType(SubTypes, Path))
455       return false;
456 
457     assert(!Path.empty() && "found a leaf but didn't set the path?");
458   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
459 
460   return true;
461 }
462 
463 
464 /// Test if the given instruction is in a position to be optimized
465 /// with a tail-call. This roughly means that it's in a block with
466 /// a return and there's nothing that needs to be scheduled
467 /// between it and the return.
468 ///
469 /// This function only tests target-independent requirements.
470 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
471   const Instruction *I = CS.getInstruction();
472   const BasicBlock *ExitBB = I->getParent();
473   const Instruction *Term = ExitBB->getTerminator();
474   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
475 
476   // The block must end in a return statement or unreachable.
477   //
478   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
479   // an unreachable, for now. The way tailcall optimization is currently
480   // implemented means it will add an epilogue followed by a jump. That is
481   // not profitable. Also, if the callee is a special function (e.g.
482   // longjmp on x86), it can end up causing miscompilation that has not
483   // been fully understood.
484   if (!Ret &&
485       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
486     return false;
487 
488   // If I will have a chain, make sure no other instruction that will have a
489   // chain interposes between I and the return.
490   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
491       !isSafeToSpeculativelyExecute(I))
492     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
493       if (&*BBI == I)
494         break;
495       // Debug info intrinsics do not get in the way of tail call optimization.
496       if (isa<DbgInfoIntrinsic>(BBI))
497         continue;
498       // A lifetime end intrinsic should not stop tail call optimization.
499       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
500         if (II->getIntrinsicID() == Intrinsic::lifetime_end)
501           continue;
502       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
503           !isSafeToSpeculativelyExecute(&*BBI))
504         return false;
505     }
506 
507   const Function *F = ExitBB->getParent();
508   return returnTypeIsEligibleForTailCall(
509       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
510 }
511 
512 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
513                                     const ReturnInst *Ret,
514                                     const TargetLoweringBase &TLI,
515                                     bool *AllowDifferingSizes) {
516   // ADS may be null, so don't write to it directly.
517   bool DummyADS;
518   bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
519   ADS = true;
520 
521   AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex);
522   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
523                           AttributeList::ReturnIndex);
524 
525   // NoAlias and NonNull are completely benign as far as calling convention
526   // goes, they shouldn't affect whether the call is a tail call.
527   CallerAttrs.removeAttribute(Attribute::NoAlias);
528   CalleeAttrs.removeAttribute(Attribute::NoAlias);
529   CallerAttrs.removeAttribute(Attribute::NonNull);
530   CalleeAttrs.removeAttribute(Attribute::NonNull);
531 
532   if (CallerAttrs.contains(Attribute::ZExt)) {
533     if (!CalleeAttrs.contains(Attribute::ZExt))
534       return false;
535 
536     ADS = false;
537     CallerAttrs.removeAttribute(Attribute::ZExt);
538     CalleeAttrs.removeAttribute(Attribute::ZExt);
539   } else if (CallerAttrs.contains(Attribute::SExt)) {
540     if (!CalleeAttrs.contains(Attribute::SExt))
541       return false;
542 
543     ADS = false;
544     CallerAttrs.removeAttribute(Attribute::SExt);
545     CalleeAttrs.removeAttribute(Attribute::SExt);
546   }
547 
548   // Drop sext and zext return attributes if the result is not used.
549   // This enables tail calls for code like:
550   //
551   // define void @caller() {
552   // entry:
553   //   %unused_result = tail call zeroext i1 @callee()
554   //   br label %retlabel
555   // retlabel:
556   //   ret void
557   // }
558   if (I->use_empty()) {
559     CalleeAttrs.removeAttribute(Attribute::SExt);
560     CalleeAttrs.removeAttribute(Attribute::ZExt);
561   }
562 
563   // If they're still different, there's some facet we don't understand
564   // (currently only "inreg", but in future who knows). It may be OK but the
565   // only safe option is to reject the tail call.
566   return CallerAttrs == CalleeAttrs;
567 }
568 
569 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
570                                            const Instruction *I,
571                                            const ReturnInst *Ret,
572                                            const TargetLoweringBase &TLI) {
573   // If the block ends with a void return or unreachable, it doesn't matter
574   // what the call's return type is.
575   if (!Ret || Ret->getNumOperands() == 0) return true;
576 
577   // If the return value is undef, it doesn't matter what the call's
578   // return type is.
579   if (isa<UndefValue>(Ret->getOperand(0))) return true;
580 
581   // Make sure the attributes attached to each return are compatible.
582   bool AllowDifferingSizes;
583   if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
584     return false;
585 
586   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
587   // Intrinsic like llvm.memcpy has no return value, but the expanded
588   // libcall may or may not have return value. On most platforms, it
589   // will be expanded as memcpy in libc, which returns the first
590   // argument. On other platforms like arm-none-eabi, memcpy may be
591   // expanded as library call without return value, like __aeabi_memcpy.
592   const CallInst *Call = cast<CallInst>(I);
593   if (Function *F = Call->getCalledFunction()) {
594     Intrinsic::ID IID = F->getIntrinsicID();
595     if (((IID == Intrinsic::memcpy &&
596           TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) ||
597          (IID == Intrinsic::memmove &&
598           TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) ||
599          (IID == Intrinsic::memset &&
600           TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) &&
601         RetVal == Call->getArgOperand(0))
602       return true;
603   }
604 
605   SmallVector<unsigned, 4> RetPath, CallPath;
606   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
607 
608   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
609   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
610 
611   // Nothing's actually returned, it doesn't matter what the callee put there
612   // it's a valid tail call.
613   if (RetEmpty)
614     return true;
615 
616   // Iterate pairwise through each of the value types making up the tail call
617   // and the corresponding return. For each one we want to know whether it's
618   // essentially going directly from the tail call to the ret, via operations
619   // that end up not generating any code.
620   //
621   // We allow a certain amount of covariance here. For example it's permitted
622   // for the tail call to define more bits than the ret actually cares about
623   // (e.g. via a truncate).
624   do {
625     if (CallEmpty) {
626       // We've exhausted the values produced by the tail call instruction, the
627       // rest are essentially undef. The type doesn't really matter, but we need
628       // *something*.
629       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
630       CallVal = UndefValue::get(SlotType);
631     }
632 
633     // The manipulations performed when we're looking through an insertvalue or
634     // an extractvalue would happen at the front of the RetPath list, so since
635     // we have to copy it anyway it's more efficient to create a reversed copy.
636     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
637     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
638 
639     // Finally, we can check whether the value produced by the tail call at this
640     // index is compatible with the value we return.
641     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
642                               AllowDifferingSizes, TLI,
643                               F->getParent()->getDataLayout()))
644       return false;
645 
646     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
647   } while(nextRealType(RetSubTypes, RetPath));
648 
649   return true;
650 }
651 
652 static void collectEHScopeMembers(
653     DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
654     const MachineBasicBlock *MBB) {
655   SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
656   while (!Worklist.empty()) {
657     const MachineBasicBlock *Visiting = Worklist.pop_back_val();
658     // Don't follow blocks which start new scopes.
659     if (Visiting->isEHPad() && Visiting != MBB)
660       continue;
661 
662     // Add this MBB to our scope.
663     auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
664 
665     // Don't revisit blocks.
666     if (!P.second) {
667       assert(P.first->second == EHScope && "MBB is part of two scopes!");
668       continue;
669     }
670 
671     // Returns are boundaries where scope transfer can occur, don't follow
672     // successors.
673     if (Visiting->isEHScopeReturnBlock())
674       continue;
675 
676     for (const MachineBasicBlock *Succ : Visiting->successors())
677       Worklist.push_back(Succ);
678   }
679 }
680 
681 DenseMap<const MachineBasicBlock *, int>
682 llvm::getEHScopeMembership(const MachineFunction &MF) {
683   DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
684 
685   // We don't have anything to do if there aren't any EH pads.
686   if (!MF.hasEHScopes())
687     return EHScopeMembership;
688 
689   int EntryBBNumber = MF.front().getNumber();
690   bool IsSEH = isAsynchronousEHPersonality(
691       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
692 
693   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
694   SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
695   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
696   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
697   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
698   for (const MachineBasicBlock &MBB : MF) {
699     if (MBB.isEHScopeEntry()) {
700       EHScopeBlocks.push_back(&MBB);
701     } else if (IsSEH && MBB.isEHPad()) {
702       SEHCatchPads.push_back(&MBB);
703     } else if (MBB.pred_empty()) {
704       UnreachableBlocks.push_back(&MBB);
705     }
706 
707     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
708 
709     // CatchPads are not scopes for SEH so do not consider CatchRet to
710     // transfer control to another scope.
711     if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
712       continue;
713 
714     // FIXME: SEH CatchPads are not necessarily in the parent function:
715     // they could be inside a finally block.
716     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
717     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
718     CatchRetSuccessors.push_back(
719         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
720   }
721 
722   // We don't have anything to do if there aren't any EH pads.
723   if (EHScopeBlocks.empty())
724     return EHScopeMembership;
725 
726   // Identify all the basic blocks reachable from the function entry.
727   collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
728   // All blocks not part of a scope are in the parent function.
729   for (const MachineBasicBlock *MBB : UnreachableBlocks)
730     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
731   // Next, identify all the blocks inside the scopes.
732   for (const MachineBasicBlock *MBB : EHScopeBlocks)
733     collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
734   // SEH CatchPads aren't really scopes, handle them separately.
735   for (const MachineBasicBlock *MBB : SEHCatchPads)
736     collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
737   // Finally, identify all the targets of a catchret.
738   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
739        CatchRetSuccessors)
740     collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
741                           CatchRetPair.first);
742   return EHScopeMembership;
743 }
744