1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines several CodeGen-specific LLVM IR analysis utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/Analysis.h" 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/TargetInstrInfo.h" 17 #include "llvm/CodeGen/TargetLowering.h" 18 #include "llvm/CodeGen/TargetSubtargetInfo.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Transforms/Utils/GlobalStatus.h" 29 30 using namespace llvm; 31 32 /// Compute the linearized index of a member in a nested aggregate/struct/array 33 /// by recursing and accumulating CurIndex as long as there are indices in the 34 /// index list. 35 unsigned llvm::ComputeLinearIndex(Type *Ty, 36 const unsigned *Indices, 37 const unsigned *IndicesEnd, 38 unsigned CurIndex) { 39 // Base case: We're done. 40 if (Indices && Indices == IndicesEnd) 41 return CurIndex; 42 43 // Given a struct type, recursively traverse the elements. 44 if (StructType *STy = dyn_cast<StructType>(Ty)) { 45 for (StructType::element_iterator EB = STy->element_begin(), 46 EI = EB, 47 EE = STy->element_end(); 48 EI != EE; ++EI) { 49 if (Indices && *Indices == unsigned(EI - EB)) 50 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 51 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 52 } 53 assert(!Indices && "Unexpected out of bound"); 54 return CurIndex; 55 } 56 // Given an array type, recursively traverse the elements. 57 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 58 Type *EltTy = ATy->getElementType(); 59 unsigned NumElts = ATy->getNumElements(); 60 // Compute the Linear offset when jumping one element of the array 61 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 62 if (Indices) { 63 assert(*Indices < NumElts && "Unexpected out of bound"); 64 // If the indice is inside the array, compute the index to the requested 65 // elt and recurse inside the element with the end of the indices list 66 CurIndex += EltLinearOffset* *Indices; 67 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 68 } 69 CurIndex += EltLinearOffset*NumElts; 70 return CurIndex; 71 } 72 // We haven't found the type we're looking for, so keep searching. 73 return CurIndex + 1; 74 } 75 76 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 77 /// EVTs that represent all the individual underlying 78 /// non-aggregate types that comprise it. 79 /// 80 /// If Offsets is non-null, it points to a vector to be filled in 81 /// with the in-memory offsets of each of the individual values. 82 /// 83 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 84 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 85 SmallVectorImpl<uint64_t> *Offsets, 86 uint64_t StartingOffset) { 87 // Given a struct type, recursively traverse the elements. 88 if (StructType *STy = dyn_cast<StructType>(Ty)) { 89 const StructLayout *SL = DL.getStructLayout(STy); 90 for (StructType::element_iterator EB = STy->element_begin(), 91 EI = EB, 92 EE = STy->element_end(); 93 EI != EE; ++EI) 94 ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets, 95 StartingOffset + SL->getElementOffset(EI - EB)); 96 return; 97 } 98 // Given an array type, recursively traverse the elements. 99 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 100 Type *EltTy = ATy->getElementType(); 101 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 102 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 103 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, 104 StartingOffset + i * EltSize); 105 return; 106 } 107 // Interpret void as zero return values. 108 if (Ty->isVoidTy()) 109 return; 110 // Base case: we can get an EVT for this LLVM IR type. 111 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 112 if (Offsets) 113 Offsets->push_back(StartingOffset); 114 } 115 116 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 117 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 118 V = V->stripPointerCasts(); 119 GlobalValue *GV = dyn_cast<GlobalValue>(V); 120 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 121 122 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 123 assert(Var->hasInitializer() && 124 "The EH catch-all value must have an initializer"); 125 Value *Init = Var->getInitializer(); 126 GV = dyn_cast<GlobalValue>(Init); 127 if (!GV) V = cast<ConstantPointerNull>(Init); 128 } 129 130 assert((GV || isa<ConstantPointerNull>(V)) && 131 "TypeInfo must be a global variable or NULL"); 132 return GV; 133 } 134 135 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 136 /// processed uses a memory 'm' constraint. 137 bool 138 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 139 const TargetLowering &TLI) { 140 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 141 InlineAsm::ConstraintInfo &CI = CInfos[i]; 142 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 143 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 144 if (CType == TargetLowering::C_Memory) 145 return true; 146 } 147 148 // Indirect operand accesses access memory. 149 if (CI.isIndirect) 150 return true; 151 } 152 153 return false; 154 } 155 156 /// getFCmpCondCode - Return the ISD condition code corresponding to 157 /// the given LLVM IR floating-point condition code. This includes 158 /// consideration of global floating-point math flags. 159 /// 160 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 161 switch (Pred) { 162 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 163 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 164 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 165 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 166 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 167 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 168 case FCmpInst::FCMP_ONE: return ISD::SETONE; 169 case FCmpInst::FCMP_ORD: return ISD::SETO; 170 case FCmpInst::FCMP_UNO: return ISD::SETUO; 171 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 172 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 173 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 174 case FCmpInst::FCMP_ULT: return ISD::SETULT; 175 case FCmpInst::FCMP_ULE: return ISD::SETULE; 176 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 177 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 178 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 179 } 180 } 181 182 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 183 switch (CC) { 184 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 185 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 186 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 187 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 188 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 189 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 190 default: return CC; 191 } 192 } 193 194 /// getICmpCondCode - Return the ISD condition code corresponding to 195 /// the given LLVM IR integer condition code. 196 /// 197 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 198 switch (Pred) { 199 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 200 case ICmpInst::ICMP_NE: return ISD::SETNE; 201 case ICmpInst::ICMP_SLE: return ISD::SETLE; 202 case ICmpInst::ICMP_ULE: return ISD::SETULE; 203 case ICmpInst::ICMP_SGE: return ISD::SETGE; 204 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 205 case ICmpInst::ICMP_SLT: return ISD::SETLT; 206 case ICmpInst::ICMP_ULT: return ISD::SETULT; 207 case ICmpInst::ICMP_SGT: return ISD::SETGT; 208 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 209 default: 210 llvm_unreachable("Invalid ICmp predicate opcode!"); 211 } 212 } 213 214 static bool isNoopBitcast(Type *T1, Type *T2, 215 const TargetLoweringBase& TLI) { 216 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 217 (isa<VectorType>(T1) && isa<VectorType>(T2) && 218 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 219 } 220 221 /// Look through operations that will be free to find the earliest source of 222 /// this value. 223 /// 224 /// @param ValLoc If V has aggegate type, we will be interested in a particular 225 /// scalar component. This records its address; the reverse of this list gives a 226 /// sequence of indices appropriate for an extractvalue to locate the important 227 /// value. This value is updated during the function and on exit will indicate 228 /// similar information for the Value returned. 229 /// 230 /// @param DataBits If this function looks through truncate instructions, this 231 /// will record the smallest size attained. 232 static const Value *getNoopInput(const Value *V, 233 SmallVectorImpl<unsigned> &ValLoc, 234 unsigned &DataBits, 235 const TargetLoweringBase &TLI, 236 const DataLayout &DL) { 237 while (true) { 238 // Try to look through V1; if V1 is not an instruction, it can't be looked 239 // through. 240 const Instruction *I = dyn_cast<Instruction>(V); 241 if (!I || I->getNumOperands() == 0) return V; 242 const Value *NoopInput = nullptr; 243 244 Value *Op = I->getOperand(0); 245 if (isa<BitCastInst>(I)) { 246 // Look through truly no-op bitcasts. 247 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 248 NoopInput = Op; 249 } else if (isa<GetElementPtrInst>(I)) { 250 // Look through getelementptr 251 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 252 NoopInput = Op; 253 } else if (isa<IntToPtrInst>(I)) { 254 // Look through inttoptr. 255 // Make sure this isn't a truncating or extending cast. We could 256 // support this eventually, but don't bother for now. 257 if (!isa<VectorType>(I->getType()) && 258 DL.getPointerSizeInBits() == 259 cast<IntegerType>(Op->getType())->getBitWidth()) 260 NoopInput = Op; 261 } else if (isa<PtrToIntInst>(I)) { 262 // Look through ptrtoint. 263 // Make sure this isn't a truncating or extending cast. We could 264 // support this eventually, but don't bother for now. 265 if (!isa<VectorType>(I->getType()) && 266 DL.getPointerSizeInBits() == 267 cast<IntegerType>(I->getType())->getBitWidth()) 268 NoopInput = Op; 269 } else if (isa<TruncInst>(I) && 270 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 271 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 272 NoopInput = Op; 273 } else if (auto CS = ImmutableCallSite(I)) { 274 const Value *ReturnedOp = CS.getReturnedArgOperand(); 275 if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI)) 276 NoopInput = ReturnedOp; 277 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 278 // Value may come from either the aggregate or the scalar 279 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 280 if (ValLoc.size() >= InsertLoc.size() && 281 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 282 // The type being inserted is a nested sub-type of the aggregate; we 283 // have to remove those initial indices to get the location we're 284 // interested in for the operand. 285 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 286 NoopInput = IVI->getInsertedValueOperand(); 287 } else { 288 // The struct we're inserting into has the value we're interested in, no 289 // change of address. 290 NoopInput = Op; 291 } 292 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 293 // The part we're interested in will inevitably be some sub-section of the 294 // previous aggregate. Combine the two paths to obtain the true address of 295 // our element. 296 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 297 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 298 NoopInput = Op; 299 } 300 // Terminate if we couldn't find anything to look through. 301 if (!NoopInput) 302 return V; 303 304 V = NoopInput; 305 } 306 } 307 308 /// Return true if this scalar return value only has bits discarded on its path 309 /// from the "tail call" to the "ret". This includes the obvious noop 310 /// instructions handled by getNoopInput above as well as free truncations (or 311 /// extensions prior to the call). 312 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 313 SmallVectorImpl<unsigned> &RetIndices, 314 SmallVectorImpl<unsigned> &CallIndices, 315 bool AllowDifferingSizes, 316 const TargetLoweringBase &TLI, 317 const DataLayout &DL) { 318 319 // Trace the sub-value needed by the return value as far back up the graph as 320 // possible, in the hope that it will intersect with the value produced by the 321 // call. In the simple case with no "returned" attribute, the hope is actually 322 // that we end up back at the tail call instruction itself. 323 unsigned BitsRequired = UINT_MAX; 324 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 325 326 // If this slot in the value returned is undef, it doesn't matter what the 327 // call puts there, it'll be fine. 328 if (isa<UndefValue>(RetVal)) 329 return true; 330 331 // Now do a similar search up through the graph to find where the value 332 // actually returned by the "tail call" comes from. In the simple case without 333 // a "returned" attribute, the search will be blocked immediately and the loop 334 // a Noop. 335 unsigned BitsProvided = UINT_MAX; 336 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 337 338 // There's no hope if we can't actually trace them to (the same part of!) the 339 // same value. 340 if (CallVal != RetVal || CallIndices != RetIndices) 341 return false; 342 343 // However, intervening truncates may have made the call non-tail. Make sure 344 // all the bits that are needed by the "ret" have been provided by the "tail 345 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 346 // extensions too. 347 if (BitsProvided < BitsRequired || 348 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 349 return false; 350 351 return true; 352 } 353 354 /// For an aggregate type, determine whether a given index is within bounds or 355 /// not. 356 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 357 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 358 return Idx < AT->getNumElements(); 359 360 return Idx < cast<StructType>(T)->getNumElements(); 361 } 362 363 /// Move the given iterators to the next leaf type in depth first traversal. 364 /// 365 /// Performs a depth-first traversal of the type as specified by its arguments, 366 /// stopping at the next leaf node (which may be a legitimate scalar type or an 367 /// empty struct or array). 368 /// 369 /// @param SubTypes List of the partial components making up the type from 370 /// outermost to innermost non-empty aggregate. The element currently 371 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 372 /// 373 /// @param Path Set of extractvalue indices leading from the outermost type 374 /// (SubTypes[0]) to the leaf node currently represented. 375 /// 376 /// @returns true if a new type was found, false otherwise. Calling this 377 /// function again on a finished iterator will repeatedly return 378 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 379 /// aggregate or a non-aggregate 380 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 381 SmallVectorImpl<unsigned> &Path) { 382 // First march back up the tree until we can successfully increment one of the 383 // coordinates in Path. 384 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 385 Path.pop_back(); 386 SubTypes.pop_back(); 387 } 388 389 // If we reached the top, then the iterator is done. 390 if (Path.empty()) 391 return false; 392 393 // We know there's *some* valid leaf now, so march back down the tree picking 394 // out the left-most element at each node. 395 ++Path.back(); 396 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 397 while (DeeperType->isAggregateType()) { 398 CompositeType *CT = cast<CompositeType>(DeeperType); 399 if (!indexReallyValid(CT, 0)) 400 return true; 401 402 SubTypes.push_back(CT); 403 Path.push_back(0); 404 405 DeeperType = CT->getTypeAtIndex(0U); 406 } 407 408 return true; 409 } 410 411 /// Find the first non-empty, scalar-like type in Next and setup the iterator 412 /// components. 413 /// 414 /// Assuming Next is an aggregate of some kind, this function will traverse the 415 /// tree from left to right (i.e. depth-first) looking for the first 416 /// non-aggregate type which will play a role in function return. 417 /// 418 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 419 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 420 /// i32 in that type. 421 static bool firstRealType(Type *Next, 422 SmallVectorImpl<CompositeType *> &SubTypes, 423 SmallVectorImpl<unsigned> &Path) { 424 // First initialise the iterator components to the first "leaf" node 425 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 426 // despite nominally being an aggregate). 427 while (Next->isAggregateType() && 428 indexReallyValid(cast<CompositeType>(Next), 0)) { 429 SubTypes.push_back(cast<CompositeType>(Next)); 430 Path.push_back(0); 431 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 432 } 433 434 // If there's no Path now, Next was originally scalar already (or empty 435 // leaf). We're done. 436 if (Path.empty()) 437 return true; 438 439 // Otherwise, use normal iteration to keep looking through the tree until we 440 // find a non-aggregate type. 441 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 442 if (!advanceToNextLeafType(SubTypes, Path)) 443 return false; 444 } 445 446 return true; 447 } 448 449 /// Set the iterator data-structures to the next non-empty, non-aggregate 450 /// subtype. 451 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 452 SmallVectorImpl<unsigned> &Path) { 453 do { 454 if (!advanceToNextLeafType(SubTypes, Path)) 455 return false; 456 457 assert(!Path.empty() && "found a leaf but didn't set the path?"); 458 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 459 460 return true; 461 } 462 463 464 /// Test if the given instruction is in a position to be optimized 465 /// with a tail-call. This roughly means that it's in a block with 466 /// a return and there's nothing that needs to be scheduled 467 /// between it and the return. 468 /// 469 /// This function only tests target-independent requirements. 470 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 471 const Instruction *I = CS.getInstruction(); 472 const BasicBlock *ExitBB = I->getParent(); 473 const Instruction *Term = ExitBB->getTerminator(); 474 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 475 476 // The block must end in a return statement or unreachable. 477 // 478 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 479 // an unreachable, for now. The way tailcall optimization is currently 480 // implemented means it will add an epilogue followed by a jump. That is 481 // not profitable. Also, if the callee is a special function (e.g. 482 // longjmp on x86), it can end up causing miscompilation that has not 483 // been fully understood. 484 if (!Ret && 485 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 486 return false; 487 488 // If I will have a chain, make sure no other instruction that will have a 489 // chain interposes between I and the return. 490 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 491 !isSafeToSpeculativelyExecute(I)) 492 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 493 if (&*BBI == I) 494 break; 495 // Debug info intrinsics do not get in the way of tail call optimization. 496 if (isa<DbgInfoIntrinsic>(BBI)) 497 continue; 498 // A lifetime end intrinsic should not stop tail call optimization. 499 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI)) 500 if (II->getIntrinsicID() == Intrinsic::lifetime_end) 501 continue; 502 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 503 !isSafeToSpeculativelyExecute(&*BBI)) 504 return false; 505 } 506 507 const Function *F = ExitBB->getParent(); 508 return returnTypeIsEligibleForTailCall( 509 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 510 } 511 512 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 513 const ReturnInst *Ret, 514 const TargetLoweringBase &TLI, 515 bool *AllowDifferingSizes) { 516 // ADS may be null, so don't write to it directly. 517 bool DummyADS; 518 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 519 ADS = true; 520 521 AttrBuilder CallerAttrs(F->getAttributes(), AttributeList::ReturnIndex); 522 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 523 AttributeList::ReturnIndex); 524 525 // NoAlias and NonNull are completely benign as far as calling convention 526 // goes, they shouldn't affect whether the call is a tail call. 527 CallerAttrs.removeAttribute(Attribute::NoAlias); 528 CalleeAttrs.removeAttribute(Attribute::NoAlias); 529 CallerAttrs.removeAttribute(Attribute::NonNull); 530 CalleeAttrs.removeAttribute(Attribute::NonNull); 531 532 if (CallerAttrs.contains(Attribute::ZExt)) { 533 if (!CalleeAttrs.contains(Attribute::ZExt)) 534 return false; 535 536 ADS = false; 537 CallerAttrs.removeAttribute(Attribute::ZExt); 538 CalleeAttrs.removeAttribute(Attribute::ZExt); 539 } else if (CallerAttrs.contains(Attribute::SExt)) { 540 if (!CalleeAttrs.contains(Attribute::SExt)) 541 return false; 542 543 ADS = false; 544 CallerAttrs.removeAttribute(Attribute::SExt); 545 CalleeAttrs.removeAttribute(Attribute::SExt); 546 } 547 548 // Drop sext and zext return attributes if the result is not used. 549 // This enables tail calls for code like: 550 // 551 // define void @caller() { 552 // entry: 553 // %unused_result = tail call zeroext i1 @callee() 554 // br label %retlabel 555 // retlabel: 556 // ret void 557 // } 558 if (I->use_empty()) { 559 CalleeAttrs.removeAttribute(Attribute::SExt); 560 CalleeAttrs.removeAttribute(Attribute::ZExt); 561 } 562 563 // If they're still different, there's some facet we don't understand 564 // (currently only "inreg", but in future who knows). It may be OK but the 565 // only safe option is to reject the tail call. 566 return CallerAttrs == CalleeAttrs; 567 } 568 569 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 570 const Instruction *I, 571 const ReturnInst *Ret, 572 const TargetLoweringBase &TLI) { 573 // If the block ends with a void return or unreachable, it doesn't matter 574 // what the call's return type is. 575 if (!Ret || Ret->getNumOperands() == 0) return true; 576 577 // If the return value is undef, it doesn't matter what the call's 578 // return type is. 579 if (isa<UndefValue>(Ret->getOperand(0))) return true; 580 581 // Make sure the attributes attached to each return are compatible. 582 bool AllowDifferingSizes; 583 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 584 return false; 585 586 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 587 // Intrinsic like llvm.memcpy has no return value, but the expanded 588 // libcall may or may not have return value. On most platforms, it 589 // will be expanded as memcpy in libc, which returns the first 590 // argument. On other platforms like arm-none-eabi, memcpy may be 591 // expanded as library call without return value, like __aeabi_memcpy. 592 const CallInst *Call = cast<CallInst>(I); 593 if (Function *F = Call->getCalledFunction()) { 594 Intrinsic::ID IID = F->getIntrinsicID(); 595 if (((IID == Intrinsic::memcpy && 596 TLI.getLibcallName(RTLIB::MEMCPY) == StringRef("memcpy")) || 597 (IID == Intrinsic::memmove && 598 TLI.getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove")) || 599 (IID == Intrinsic::memset && 600 TLI.getLibcallName(RTLIB::MEMSET) == StringRef("memset"))) && 601 RetVal == Call->getArgOperand(0)) 602 return true; 603 } 604 605 SmallVector<unsigned, 4> RetPath, CallPath; 606 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 607 608 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 609 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 610 611 // Nothing's actually returned, it doesn't matter what the callee put there 612 // it's a valid tail call. 613 if (RetEmpty) 614 return true; 615 616 // Iterate pairwise through each of the value types making up the tail call 617 // and the corresponding return. For each one we want to know whether it's 618 // essentially going directly from the tail call to the ret, via operations 619 // that end up not generating any code. 620 // 621 // We allow a certain amount of covariance here. For example it's permitted 622 // for the tail call to define more bits than the ret actually cares about 623 // (e.g. via a truncate). 624 do { 625 if (CallEmpty) { 626 // We've exhausted the values produced by the tail call instruction, the 627 // rest are essentially undef. The type doesn't really matter, but we need 628 // *something*. 629 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 630 CallVal = UndefValue::get(SlotType); 631 } 632 633 // The manipulations performed when we're looking through an insertvalue or 634 // an extractvalue would happen at the front of the RetPath list, so since 635 // we have to copy it anyway it's more efficient to create a reversed copy. 636 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 637 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 638 639 // Finally, we can check whether the value produced by the tail call at this 640 // index is compatible with the value we return. 641 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 642 AllowDifferingSizes, TLI, 643 F->getParent()->getDataLayout())) 644 return false; 645 646 CallEmpty = !nextRealType(CallSubTypes, CallPath); 647 } while(nextRealType(RetSubTypes, RetPath)); 648 649 return true; 650 } 651 652 static void collectEHScopeMembers( 653 DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope, 654 const MachineBasicBlock *MBB) { 655 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 656 while (!Worklist.empty()) { 657 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 658 // Don't follow blocks which start new scopes. 659 if (Visiting->isEHPad() && Visiting != MBB) 660 continue; 661 662 // Add this MBB to our scope. 663 auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope)); 664 665 // Don't revisit blocks. 666 if (!P.second) { 667 assert(P.first->second == EHScope && "MBB is part of two scopes!"); 668 continue; 669 } 670 671 // Returns are boundaries where scope transfer can occur, don't follow 672 // successors. 673 if (Visiting->isEHScopeReturnBlock()) 674 continue; 675 676 for (const MachineBasicBlock *Succ : Visiting->successors()) 677 Worklist.push_back(Succ); 678 } 679 } 680 681 DenseMap<const MachineBasicBlock *, int> 682 llvm::getEHScopeMembership(const MachineFunction &MF) { 683 DenseMap<const MachineBasicBlock *, int> EHScopeMembership; 684 685 // We don't have anything to do if there aren't any EH pads. 686 if (!MF.hasEHScopes()) 687 return EHScopeMembership; 688 689 int EntryBBNumber = MF.front().getNumber(); 690 bool IsSEH = isAsynchronousEHPersonality( 691 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 692 693 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 694 SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks; 695 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 696 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 697 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 698 for (const MachineBasicBlock &MBB : MF) { 699 if (MBB.isEHScopeEntry()) { 700 EHScopeBlocks.push_back(&MBB); 701 } else if (IsSEH && MBB.isEHPad()) { 702 SEHCatchPads.push_back(&MBB); 703 } else if (MBB.pred_empty()) { 704 UnreachableBlocks.push_back(&MBB); 705 } 706 707 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 708 709 // CatchPads are not scopes for SEH so do not consider CatchRet to 710 // transfer control to another scope. 711 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 712 continue; 713 714 // FIXME: SEH CatchPads are not necessarily in the parent function: 715 // they could be inside a finally block. 716 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 717 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 718 CatchRetSuccessors.push_back( 719 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 720 } 721 722 // We don't have anything to do if there aren't any EH pads. 723 if (EHScopeBlocks.empty()) 724 return EHScopeMembership; 725 726 // Identify all the basic blocks reachable from the function entry. 727 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front()); 728 // All blocks not part of a scope are in the parent function. 729 for (const MachineBasicBlock *MBB : UnreachableBlocks) 730 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 731 // Next, identify all the blocks inside the scopes. 732 for (const MachineBasicBlock *MBB : EHScopeBlocks) 733 collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB); 734 // SEH CatchPads aren't really scopes, handle them separately. 735 for (const MachineBasicBlock *MBB : SEHCatchPads) 736 collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB); 737 // Finally, identify all the targets of a catchret. 738 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 739 CatchRetSuccessors) 740 collectEHScopeMembers(EHScopeMembership, CatchRetPair.second, 741 CatchRetPair.first); 742 return EHScopeMembership; 743 } 744