1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineModuleInfo.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Target/TargetLowering.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetSubtargetInfo.h" 30 #include "llvm/Transforms/Utils/GlobalStatus.h" 31 32 using namespace llvm; 33 34 /// Compute the linearized index of a member in a nested aggregate/struct/array 35 /// by recursing and accumulating CurIndex as long as there are indices in the 36 /// index list. 37 unsigned llvm::ComputeLinearIndex(Type *Ty, 38 const unsigned *Indices, 39 const unsigned *IndicesEnd, 40 unsigned CurIndex) { 41 // Base case: We're done. 42 if (Indices && Indices == IndicesEnd) 43 return CurIndex; 44 45 // Given a struct type, recursively traverse the elements. 46 if (StructType *STy = dyn_cast<StructType>(Ty)) { 47 for (StructType::element_iterator EB = STy->element_begin(), 48 EI = EB, 49 EE = STy->element_end(); 50 EI != EE; ++EI) { 51 if (Indices && *Indices == unsigned(EI - EB)) 52 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 53 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 54 } 55 assert(!Indices && "Unexpected out of bound"); 56 return CurIndex; 57 } 58 // Given an array type, recursively traverse the elements. 59 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 60 Type *EltTy = ATy->getElementType(); 61 unsigned NumElts = ATy->getNumElements(); 62 // Compute the Linear offset when jumping one element of the array 63 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 64 if (Indices) { 65 assert(*Indices < NumElts && "Unexpected out of bound"); 66 // If the indice is inside the array, compute the index to the requested 67 // elt and recurse inside the element with the end of the indices list 68 CurIndex += EltLinearOffset* *Indices; 69 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 70 } 71 CurIndex += EltLinearOffset*NumElts; 72 return CurIndex; 73 } 74 // We haven't found the type we're looking for, so keep searching. 75 return CurIndex + 1; 76 } 77 78 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 79 /// EVTs that represent all the individual underlying 80 /// non-aggregate types that comprise it. 81 /// 82 /// If Offsets is non-null, it points to a vector to be filled in 83 /// with the in-memory offsets of each of the individual values. 84 /// 85 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 86 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 87 SmallVectorImpl<uint64_t> *Offsets, 88 uint64_t StartingOffset) { 89 // Given a struct type, recursively traverse the elements. 90 if (StructType *STy = dyn_cast<StructType>(Ty)) { 91 const StructLayout *SL = DL.getStructLayout(STy); 92 for (StructType::element_iterator EB = STy->element_begin(), 93 EI = EB, 94 EE = STy->element_end(); 95 EI != EE; ++EI) 96 ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets, 97 StartingOffset + SL->getElementOffset(EI - EB)); 98 return; 99 } 100 // Given an array type, recursively traverse the elements. 101 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 102 Type *EltTy = ATy->getElementType(); 103 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 104 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 105 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, 106 StartingOffset + i * EltSize); 107 return; 108 } 109 // Interpret void as zero return values. 110 if (Ty->isVoidTy()) 111 return; 112 // Base case: we can get an EVT for this LLVM IR type. 113 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 114 if (Offsets) 115 Offsets->push_back(StartingOffset); 116 } 117 118 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 119 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 120 V = V->stripPointerCasts(); 121 GlobalValue *GV = dyn_cast<GlobalValue>(V); 122 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 123 124 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 125 assert(Var->hasInitializer() && 126 "The EH catch-all value must have an initializer"); 127 Value *Init = Var->getInitializer(); 128 GV = dyn_cast<GlobalValue>(Init); 129 if (!GV) V = cast<ConstantPointerNull>(Init); 130 } 131 132 assert((GV || isa<ConstantPointerNull>(V)) && 133 "TypeInfo must be a global variable or NULL"); 134 return GV; 135 } 136 137 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 138 /// processed uses a memory 'm' constraint. 139 bool 140 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 141 const TargetLowering &TLI) { 142 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 143 InlineAsm::ConstraintInfo &CI = CInfos[i]; 144 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 145 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 146 if (CType == TargetLowering::C_Memory) 147 return true; 148 } 149 150 // Indirect operand accesses access memory. 151 if (CI.isIndirect) 152 return true; 153 } 154 155 return false; 156 } 157 158 /// getFCmpCondCode - Return the ISD condition code corresponding to 159 /// the given LLVM IR floating-point condition code. This includes 160 /// consideration of global floating-point math flags. 161 /// 162 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 163 switch (Pred) { 164 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 165 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 166 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 167 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 168 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 169 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 170 case FCmpInst::FCMP_ONE: return ISD::SETONE; 171 case FCmpInst::FCMP_ORD: return ISD::SETO; 172 case FCmpInst::FCMP_UNO: return ISD::SETUO; 173 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 174 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 175 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 176 case FCmpInst::FCMP_ULT: return ISD::SETULT; 177 case FCmpInst::FCMP_ULE: return ISD::SETULE; 178 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 179 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 180 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 181 } 182 } 183 184 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 185 switch (CC) { 186 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 187 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 188 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 189 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 190 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 191 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 192 default: return CC; 193 } 194 } 195 196 /// getICmpCondCode - Return the ISD condition code corresponding to 197 /// the given LLVM IR integer condition code. 198 /// 199 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 200 switch (Pred) { 201 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 202 case ICmpInst::ICMP_NE: return ISD::SETNE; 203 case ICmpInst::ICMP_SLE: return ISD::SETLE; 204 case ICmpInst::ICMP_ULE: return ISD::SETULE; 205 case ICmpInst::ICMP_SGE: return ISD::SETGE; 206 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 207 case ICmpInst::ICMP_SLT: return ISD::SETLT; 208 case ICmpInst::ICMP_ULT: return ISD::SETULT; 209 case ICmpInst::ICMP_SGT: return ISD::SETGT; 210 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 211 default: 212 llvm_unreachable("Invalid ICmp predicate opcode!"); 213 } 214 } 215 216 static bool isNoopBitcast(Type *T1, Type *T2, 217 const TargetLoweringBase& TLI) { 218 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 219 (isa<VectorType>(T1) && isa<VectorType>(T2) && 220 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 221 } 222 223 /// Look through operations that will be free to find the earliest source of 224 /// this value. 225 /// 226 /// @param ValLoc If V has aggegate type, we will be interested in a particular 227 /// scalar component. This records its address; the reverse of this list gives a 228 /// sequence of indices appropriate for an extractvalue to locate the important 229 /// value. This value is updated during the function and on exit will indicate 230 /// similar information for the Value returned. 231 /// 232 /// @param DataBits If this function looks through truncate instructions, this 233 /// will record the smallest size attained. 234 static const Value *getNoopInput(const Value *V, 235 SmallVectorImpl<unsigned> &ValLoc, 236 unsigned &DataBits, 237 const TargetLoweringBase &TLI, 238 const DataLayout &DL) { 239 while (true) { 240 // Try to look through V1; if V1 is not an instruction, it can't be looked 241 // through. 242 const Instruction *I = dyn_cast<Instruction>(V); 243 if (!I || I->getNumOperands() == 0) return V; 244 const Value *NoopInput = nullptr; 245 246 Value *Op = I->getOperand(0); 247 if (isa<BitCastInst>(I)) { 248 // Look through truly no-op bitcasts. 249 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 250 NoopInput = Op; 251 } else if (isa<GetElementPtrInst>(I)) { 252 // Look through getelementptr 253 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 254 NoopInput = Op; 255 } else if (isa<IntToPtrInst>(I)) { 256 // Look through inttoptr. 257 // Make sure this isn't a truncating or extending cast. We could 258 // support this eventually, but don't bother for now. 259 if (!isa<VectorType>(I->getType()) && 260 DL.getPointerSizeInBits() == 261 cast<IntegerType>(Op->getType())->getBitWidth()) 262 NoopInput = Op; 263 } else if (isa<PtrToIntInst>(I)) { 264 // Look through ptrtoint. 265 // Make sure this isn't a truncating or extending cast. We could 266 // support this eventually, but don't bother for now. 267 if (!isa<VectorType>(I->getType()) && 268 DL.getPointerSizeInBits() == 269 cast<IntegerType>(I->getType())->getBitWidth()) 270 NoopInput = Op; 271 } else if (isa<TruncInst>(I) && 272 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 273 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 274 NoopInput = Op; 275 } else if (isa<CallInst>(I)) { 276 // Look through call (skipping callee) 277 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 278 i != e; ++i) { 279 unsigned attrInd = i - I->op_begin() + 1; 280 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 281 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 282 NoopInput = *i; 283 break; 284 } 285 } 286 } else if (isa<InvokeInst>(I)) { 287 // Look through invoke (skipping BB, BB, Callee) 288 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 289 i != e; ++i) { 290 unsigned attrInd = i - I->op_begin() + 1; 291 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 292 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 293 NoopInput = *i; 294 break; 295 } 296 } 297 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 298 // Value may come from either the aggregate or the scalar 299 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 300 if (ValLoc.size() >= InsertLoc.size() && 301 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 302 // The type being inserted is a nested sub-type of the aggregate; we 303 // have to remove those initial indices to get the location we're 304 // interested in for the operand. 305 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 306 NoopInput = IVI->getInsertedValueOperand(); 307 } else { 308 // The struct we're inserting into has the value we're interested in, no 309 // change of address. 310 NoopInput = Op; 311 } 312 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 313 // The part we're interested in will inevitably be some sub-section of the 314 // previous aggregate. Combine the two paths to obtain the true address of 315 // our element. 316 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 317 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 318 NoopInput = Op; 319 } 320 // Terminate if we couldn't find anything to look through. 321 if (!NoopInput) 322 return V; 323 324 V = NoopInput; 325 } 326 } 327 328 /// Return true if this scalar return value only has bits discarded on its path 329 /// from the "tail call" to the "ret". This includes the obvious noop 330 /// instructions handled by getNoopInput above as well as free truncations (or 331 /// extensions prior to the call). 332 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 333 SmallVectorImpl<unsigned> &RetIndices, 334 SmallVectorImpl<unsigned> &CallIndices, 335 bool AllowDifferingSizes, 336 const TargetLoweringBase &TLI, 337 const DataLayout &DL) { 338 339 // Trace the sub-value needed by the return value as far back up the graph as 340 // possible, in the hope that it will intersect with the value produced by the 341 // call. In the simple case with no "returned" attribute, the hope is actually 342 // that we end up back at the tail call instruction itself. 343 unsigned BitsRequired = UINT_MAX; 344 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 345 346 // If this slot in the value returned is undef, it doesn't matter what the 347 // call puts there, it'll be fine. 348 if (isa<UndefValue>(RetVal)) 349 return true; 350 351 // Now do a similar search up through the graph to find where the value 352 // actually returned by the "tail call" comes from. In the simple case without 353 // a "returned" attribute, the search will be blocked immediately and the loop 354 // a Noop. 355 unsigned BitsProvided = UINT_MAX; 356 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 357 358 // There's no hope if we can't actually trace them to (the same part of!) the 359 // same value. 360 if (CallVal != RetVal || CallIndices != RetIndices) 361 return false; 362 363 // However, intervening truncates may have made the call non-tail. Make sure 364 // all the bits that are needed by the "ret" have been provided by the "tail 365 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 366 // extensions too. 367 if (BitsProvided < BitsRequired || 368 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 369 return false; 370 371 return true; 372 } 373 374 /// For an aggregate type, determine whether a given index is within bounds or 375 /// not. 376 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 377 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 378 return Idx < AT->getNumElements(); 379 380 return Idx < cast<StructType>(T)->getNumElements(); 381 } 382 383 /// Move the given iterators to the next leaf type in depth first traversal. 384 /// 385 /// Performs a depth-first traversal of the type as specified by its arguments, 386 /// stopping at the next leaf node (which may be a legitimate scalar type or an 387 /// empty struct or array). 388 /// 389 /// @param SubTypes List of the partial components making up the type from 390 /// outermost to innermost non-empty aggregate. The element currently 391 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 392 /// 393 /// @param Path Set of extractvalue indices leading from the outermost type 394 /// (SubTypes[0]) to the leaf node currently represented. 395 /// 396 /// @returns true if a new type was found, false otherwise. Calling this 397 /// function again on a finished iterator will repeatedly return 398 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 399 /// aggregate or a non-aggregate 400 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 401 SmallVectorImpl<unsigned> &Path) { 402 // First march back up the tree until we can successfully increment one of the 403 // coordinates in Path. 404 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 405 Path.pop_back(); 406 SubTypes.pop_back(); 407 } 408 409 // If we reached the top, then the iterator is done. 410 if (Path.empty()) 411 return false; 412 413 // We know there's *some* valid leaf now, so march back down the tree picking 414 // out the left-most element at each node. 415 ++Path.back(); 416 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 417 while (DeeperType->isAggregateType()) { 418 CompositeType *CT = cast<CompositeType>(DeeperType); 419 if (!indexReallyValid(CT, 0)) 420 return true; 421 422 SubTypes.push_back(CT); 423 Path.push_back(0); 424 425 DeeperType = CT->getTypeAtIndex(0U); 426 } 427 428 return true; 429 } 430 431 /// Find the first non-empty, scalar-like type in Next and setup the iterator 432 /// components. 433 /// 434 /// Assuming Next is an aggregate of some kind, this function will traverse the 435 /// tree from left to right (i.e. depth-first) looking for the first 436 /// non-aggregate type which will play a role in function return. 437 /// 438 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 439 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 440 /// i32 in that type. 441 static bool firstRealType(Type *Next, 442 SmallVectorImpl<CompositeType *> &SubTypes, 443 SmallVectorImpl<unsigned> &Path) { 444 // First initialise the iterator components to the first "leaf" node 445 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 446 // despite nominally being an aggregate). 447 while (Next->isAggregateType() && 448 indexReallyValid(cast<CompositeType>(Next), 0)) { 449 SubTypes.push_back(cast<CompositeType>(Next)); 450 Path.push_back(0); 451 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 452 } 453 454 // If there's no Path now, Next was originally scalar already (or empty 455 // leaf). We're done. 456 if (Path.empty()) 457 return true; 458 459 // Otherwise, use normal iteration to keep looking through the tree until we 460 // find a non-aggregate type. 461 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 462 if (!advanceToNextLeafType(SubTypes, Path)) 463 return false; 464 } 465 466 return true; 467 } 468 469 /// Set the iterator data-structures to the next non-empty, non-aggregate 470 /// subtype. 471 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 472 SmallVectorImpl<unsigned> &Path) { 473 do { 474 if (!advanceToNextLeafType(SubTypes, Path)) 475 return false; 476 477 assert(!Path.empty() && "found a leaf but didn't set the path?"); 478 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 479 480 return true; 481 } 482 483 484 /// Test if the given instruction is in a position to be optimized 485 /// with a tail-call. This roughly means that it's in a block with 486 /// a return and there's nothing that needs to be scheduled 487 /// between it and the return. 488 /// 489 /// This function only tests target-independent requirements. 490 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 491 const Instruction *I = CS.getInstruction(); 492 const BasicBlock *ExitBB = I->getParent(); 493 const TerminatorInst *Term = ExitBB->getTerminator(); 494 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 495 496 // The block must end in a return statement or unreachable. 497 // 498 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 499 // an unreachable, for now. The way tailcall optimization is currently 500 // implemented means it will add an epilogue followed by a jump. That is 501 // not profitable. Also, if the callee is a special function (e.g. 502 // longjmp on x86), it can end up causing miscompilation that has not 503 // been fully understood. 504 if (!Ret && 505 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 506 return false; 507 508 // If I will have a chain, make sure no other instruction that will have a 509 // chain interposes between I and the return. 510 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 511 !isSafeToSpeculativelyExecute(I)) 512 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 513 if (&*BBI == I) 514 break; 515 // Debug info intrinsics do not get in the way of tail call optimization. 516 if (isa<DbgInfoIntrinsic>(BBI)) 517 continue; 518 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 519 !isSafeToSpeculativelyExecute(&*BBI)) 520 return false; 521 } 522 523 const Function *F = ExitBB->getParent(); 524 return returnTypeIsEligibleForTailCall( 525 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 526 } 527 528 bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I, 529 const ReturnInst *Ret, 530 const TargetLoweringBase &TLI, 531 bool *AllowDifferingSizes) { 532 // ADS may be null, so don't write to it directly. 533 bool DummyADS; 534 bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS; 535 ADS = true; 536 537 AttrBuilder CallerAttrs(F->getAttributes(), 538 AttributeSet::ReturnIndex); 539 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 540 AttributeSet::ReturnIndex); 541 542 // Noalias is completely benign as far as calling convention goes, it 543 // shouldn't affect whether the call is a tail call. 544 CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias); 545 CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias); 546 547 if (CallerAttrs.contains(Attribute::ZExt)) { 548 if (!CalleeAttrs.contains(Attribute::ZExt)) 549 return false; 550 551 ADS = false; 552 CallerAttrs.removeAttribute(Attribute::ZExt); 553 CalleeAttrs.removeAttribute(Attribute::ZExt); 554 } else if (CallerAttrs.contains(Attribute::SExt)) { 555 if (!CalleeAttrs.contains(Attribute::SExt)) 556 return false; 557 558 ADS = false; 559 CallerAttrs.removeAttribute(Attribute::SExt); 560 CalleeAttrs.removeAttribute(Attribute::SExt); 561 } 562 563 // If they're still different, there's some facet we don't understand 564 // (currently only "inreg", but in future who knows). It may be OK but the 565 // only safe option is to reject the tail call. 566 return CallerAttrs == CalleeAttrs; 567 } 568 569 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 570 const Instruction *I, 571 const ReturnInst *Ret, 572 const TargetLoweringBase &TLI) { 573 // If the block ends with a void return or unreachable, it doesn't matter 574 // what the call's return type is. 575 if (!Ret || Ret->getNumOperands() == 0) return true; 576 577 // If the return value is undef, it doesn't matter what the call's 578 // return type is. 579 if (isa<UndefValue>(Ret->getOperand(0))) return true; 580 581 // Make sure the attributes attached to each return are compatible. 582 bool AllowDifferingSizes; 583 if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes)) 584 return false; 585 586 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 587 SmallVector<unsigned, 4> RetPath, CallPath; 588 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 589 590 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 591 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 592 593 // Nothing's actually returned, it doesn't matter what the callee put there 594 // it's a valid tail call. 595 if (RetEmpty) 596 return true; 597 598 // Iterate pairwise through each of the value types making up the tail call 599 // and the corresponding return. For each one we want to know whether it's 600 // essentially going directly from the tail call to the ret, via operations 601 // that end up not generating any code. 602 // 603 // We allow a certain amount of covariance here. For example it's permitted 604 // for the tail call to define more bits than the ret actually cares about 605 // (e.g. via a truncate). 606 do { 607 if (CallEmpty) { 608 // We've exhausted the values produced by the tail call instruction, the 609 // rest are essentially undef. The type doesn't really matter, but we need 610 // *something*. 611 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 612 CallVal = UndefValue::get(SlotType); 613 } 614 615 // The manipulations performed when we're looking through an insertvalue or 616 // an extractvalue would happen at the front of the RetPath list, so since 617 // we have to copy it anyway it's more efficient to create a reversed copy. 618 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 619 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 620 621 // Finally, we can check whether the value produced by the tail call at this 622 // index is compatible with the value we return. 623 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 624 AllowDifferingSizes, TLI, 625 F->getParent()->getDataLayout())) 626 return false; 627 628 CallEmpty = !nextRealType(CallSubTypes, CallPath); 629 } while(nextRealType(RetSubTypes, RetPath)); 630 631 return true; 632 } 633 634 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) { 635 if (!GV->hasLinkOnceODRLinkage()) 636 return false; 637 638 // We assume that anyone who sets global unnamed_addr on a non-constant knows 639 // what they're doing. 640 if (GV->hasGlobalUnnamedAddr()) 641 return true; 642 643 // If it is a non constant variable, it needs to be uniqued across shared 644 // objects. 645 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 646 if (!Var->isConstant()) 647 return false; 648 } 649 650 return GV->hasAtLeastLocalUnnamedAddr(); 651 } 652 653 static void collectFuncletMembers( 654 DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet, 655 const MachineBasicBlock *MBB) { 656 SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB}; 657 while (!Worklist.empty()) { 658 const MachineBasicBlock *Visiting = Worklist.pop_back_val(); 659 // Don't follow blocks which start new funclets. 660 if (Visiting->isEHPad() && Visiting != MBB) 661 continue; 662 663 // Add this MBB to our funclet. 664 auto P = FuncletMembership.insert(std::make_pair(Visiting, Funclet)); 665 666 // Don't revisit blocks. 667 if (!P.second) { 668 assert(P.first->second == Funclet && "MBB is part of two funclets!"); 669 continue; 670 } 671 672 // Returns are boundaries where funclet transfer can occur, don't follow 673 // successors. 674 if (Visiting->isReturnBlock()) 675 continue; 676 677 for (const MachineBasicBlock *Succ : Visiting->successors()) 678 Worklist.push_back(Succ); 679 } 680 } 681 682 DenseMap<const MachineBasicBlock *, int> 683 llvm::getFuncletMembership(const MachineFunction &MF) { 684 DenseMap<const MachineBasicBlock *, int> FuncletMembership; 685 686 // We don't have anything to do if there aren't any EH pads. 687 if (!MF.getMMI().hasEHFunclets()) 688 return FuncletMembership; 689 690 int EntryBBNumber = MF.front().getNumber(); 691 bool IsSEH = isAsynchronousEHPersonality( 692 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 693 694 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 695 SmallVector<const MachineBasicBlock *, 16> FuncletBlocks; 696 SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks; 697 SmallVector<const MachineBasicBlock *, 16> SEHCatchPads; 698 SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors; 699 for (const MachineBasicBlock &MBB : MF) { 700 if (MBB.isEHFuncletEntry()) { 701 FuncletBlocks.push_back(&MBB); 702 } else if (IsSEH && MBB.isEHPad()) { 703 SEHCatchPads.push_back(&MBB); 704 } else if (MBB.pred_empty()) { 705 UnreachableBlocks.push_back(&MBB); 706 } 707 708 MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator(); 709 710 // CatchPads are not funclets for SEH so do not consider CatchRet to 711 // transfer control to another funclet. 712 if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode()) 713 continue; 714 715 // FIXME: SEH CatchPads are not necessarily in the parent function: 716 // they could be inside a finally block. 717 const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB(); 718 const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB(); 719 CatchRetSuccessors.push_back( 720 {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()}); 721 } 722 723 // We don't have anything to do if there aren't any EH pads. 724 if (FuncletBlocks.empty()) 725 return FuncletMembership; 726 727 // Identify all the basic blocks reachable from the function entry. 728 collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front()); 729 // All blocks not part of a funclet are in the parent function. 730 for (const MachineBasicBlock *MBB : UnreachableBlocks) 731 collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 732 // Next, identify all the blocks inside the funclets. 733 for (const MachineBasicBlock *MBB : FuncletBlocks) 734 collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB); 735 // SEH CatchPads aren't really funclets, handle them separately. 736 for (const MachineBasicBlock *MBB : SEHCatchPads) 737 collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB); 738 // Finally, identify all the targets of a catchret. 739 for (std::pair<const MachineBasicBlock *, int> CatchRetPair : 740 CatchRetSuccessors) 741 collectFuncletMembers(FuncletMembership, CatchRetPair.second, 742 CatchRetPair.first); 743 return FuncletMembership; 744 } 745