1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines several CodeGen-specific LLVM IR analysis utilities. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/SelectionDAG.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Target/TargetLowering.h" 28 #include "llvm/Target/TargetSubtargetInfo.h" 29 #include "llvm/Transforms/Utils/GlobalStatus.h" 30 31 using namespace llvm; 32 33 /// Compute the linearized index of a member in a nested aggregate/struct/array 34 /// by recursing and accumulating CurIndex as long as there are indices in the 35 /// index list. 36 unsigned llvm::ComputeLinearIndex(Type *Ty, 37 const unsigned *Indices, 38 const unsigned *IndicesEnd, 39 unsigned CurIndex) { 40 // Base case: We're done. 41 if (Indices && Indices == IndicesEnd) 42 return CurIndex; 43 44 // Given a struct type, recursively traverse the elements. 45 if (StructType *STy = dyn_cast<StructType>(Ty)) { 46 for (StructType::element_iterator EB = STy->element_begin(), 47 EI = EB, 48 EE = STy->element_end(); 49 EI != EE; ++EI) { 50 if (Indices && *Indices == unsigned(EI - EB)) 51 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex); 52 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex); 53 } 54 assert(!Indices && "Unexpected out of bound"); 55 return CurIndex; 56 } 57 // Given an array type, recursively traverse the elements. 58 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 59 Type *EltTy = ATy->getElementType(); 60 unsigned NumElts = ATy->getNumElements(); 61 // Compute the Linear offset when jumping one element of the array 62 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0); 63 if (Indices) { 64 assert(*Indices < NumElts && "Unexpected out of bound"); 65 // If the indice is inside the array, compute the index to the requested 66 // elt and recurse inside the element with the end of the indices list 67 CurIndex += EltLinearOffset* *Indices; 68 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex); 69 } 70 CurIndex += EltLinearOffset*NumElts; 71 return CurIndex; 72 } 73 // We haven't found the type we're looking for, so keep searching. 74 return CurIndex + 1; 75 } 76 77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of 78 /// EVTs that represent all the individual underlying 79 /// non-aggregate types that comprise it. 80 /// 81 /// If Offsets is non-null, it points to a vector to be filled in 82 /// with the in-memory offsets of each of the individual values. 83 /// 84 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, 85 Type *Ty, SmallVectorImpl<EVT> &ValueVTs, 86 SmallVectorImpl<uint64_t> *Offsets, 87 uint64_t StartingOffset) { 88 // Given a struct type, recursively traverse the elements. 89 if (StructType *STy = dyn_cast<StructType>(Ty)) { 90 const StructLayout *SL = DL.getStructLayout(STy); 91 for (StructType::element_iterator EB = STy->element_begin(), 92 EI = EB, 93 EE = STy->element_end(); 94 EI != EE; ++EI) 95 ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets, 96 StartingOffset + SL->getElementOffset(EI - EB)); 97 return; 98 } 99 // Given an array type, recursively traverse the elements. 100 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 101 Type *EltTy = ATy->getElementType(); 102 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 103 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) 104 ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets, 105 StartingOffset + i * EltSize); 106 return; 107 } 108 // Interpret void as zero return values. 109 if (Ty->isVoidTy()) 110 return; 111 // Base case: we can get an EVT for this LLVM IR type. 112 ValueVTs.push_back(TLI.getValueType(DL, Ty)); 113 if (Offsets) 114 Offsets->push_back(StartingOffset); 115 } 116 117 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. 118 GlobalValue *llvm::ExtractTypeInfo(Value *V) { 119 V = V->stripPointerCasts(); 120 GlobalValue *GV = dyn_cast<GlobalValue>(V); 121 GlobalVariable *Var = dyn_cast<GlobalVariable>(V); 122 123 if (Var && Var->getName() == "llvm.eh.catch.all.value") { 124 assert(Var->hasInitializer() && 125 "The EH catch-all value must have an initializer"); 126 Value *Init = Var->getInitializer(); 127 GV = dyn_cast<GlobalValue>(Init); 128 if (!GV) V = cast<ConstantPointerNull>(Init); 129 } 130 131 assert((GV || isa<ConstantPointerNull>(V)) && 132 "TypeInfo must be a global variable or NULL"); 133 return GV; 134 } 135 136 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 137 /// processed uses a memory 'm' constraint. 138 bool 139 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, 140 const TargetLowering &TLI) { 141 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 142 InlineAsm::ConstraintInfo &CI = CInfos[i]; 143 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 144 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 145 if (CType == TargetLowering::C_Memory) 146 return true; 147 } 148 149 // Indirect operand accesses access memory. 150 if (CI.isIndirect) 151 return true; 152 } 153 154 return false; 155 } 156 157 /// getFCmpCondCode - Return the ISD condition code corresponding to 158 /// the given LLVM IR floating-point condition code. This includes 159 /// consideration of global floating-point math flags. 160 /// 161 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { 162 switch (Pred) { 163 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE; 164 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ; 165 case FCmpInst::FCMP_OGT: return ISD::SETOGT; 166 case FCmpInst::FCMP_OGE: return ISD::SETOGE; 167 case FCmpInst::FCMP_OLT: return ISD::SETOLT; 168 case FCmpInst::FCMP_OLE: return ISD::SETOLE; 169 case FCmpInst::FCMP_ONE: return ISD::SETONE; 170 case FCmpInst::FCMP_ORD: return ISD::SETO; 171 case FCmpInst::FCMP_UNO: return ISD::SETUO; 172 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ; 173 case FCmpInst::FCMP_UGT: return ISD::SETUGT; 174 case FCmpInst::FCMP_UGE: return ISD::SETUGE; 175 case FCmpInst::FCMP_ULT: return ISD::SETULT; 176 case FCmpInst::FCMP_ULE: return ISD::SETULE; 177 case FCmpInst::FCMP_UNE: return ISD::SETUNE; 178 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE; 179 default: llvm_unreachable("Invalid FCmp predicate opcode!"); 180 } 181 } 182 183 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) { 184 switch (CC) { 185 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ; 186 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE; 187 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT; 188 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE; 189 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT; 190 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE; 191 default: return CC; 192 } 193 } 194 195 /// getICmpCondCode - Return the ISD condition code corresponding to 196 /// the given LLVM IR integer condition code. 197 /// 198 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { 199 switch (Pred) { 200 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 201 case ICmpInst::ICMP_NE: return ISD::SETNE; 202 case ICmpInst::ICMP_SLE: return ISD::SETLE; 203 case ICmpInst::ICMP_ULE: return ISD::SETULE; 204 case ICmpInst::ICMP_SGE: return ISD::SETGE; 205 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 206 case ICmpInst::ICMP_SLT: return ISD::SETLT; 207 case ICmpInst::ICMP_ULT: return ISD::SETULT; 208 case ICmpInst::ICMP_SGT: return ISD::SETGT; 209 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 210 default: 211 llvm_unreachable("Invalid ICmp predicate opcode!"); 212 } 213 } 214 215 static bool isNoopBitcast(Type *T1, Type *T2, 216 const TargetLoweringBase& TLI) { 217 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) || 218 (isa<VectorType>(T1) && isa<VectorType>(T2) && 219 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2))); 220 } 221 222 /// Look through operations that will be free to find the earliest source of 223 /// this value. 224 /// 225 /// @param ValLoc If V has aggegate type, we will be interested in a particular 226 /// scalar component. This records its address; the reverse of this list gives a 227 /// sequence of indices appropriate for an extractvalue to locate the important 228 /// value. This value is updated during the function and on exit will indicate 229 /// similar information for the Value returned. 230 /// 231 /// @param DataBits If this function looks through truncate instructions, this 232 /// will record the smallest size attained. 233 static const Value *getNoopInput(const Value *V, 234 SmallVectorImpl<unsigned> &ValLoc, 235 unsigned &DataBits, 236 const TargetLoweringBase &TLI, 237 const DataLayout &DL) { 238 while (true) { 239 // Try to look through V1; if V1 is not an instruction, it can't be looked 240 // through. 241 const Instruction *I = dyn_cast<Instruction>(V); 242 if (!I || I->getNumOperands() == 0) return V; 243 const Value *NoopInput = nullptr; 244 245 Value *Op = I->getOperand(0); 246 if (isa<BitCastInst>(I)) { 247 // Look through truly no-op bitcasts. 248 if (isNoopBitcast(Op->getType(), I->getType(), TLI)) 249 NoopInput = Op; 250 } else if (isa<GetElementPtrInst>(I)) { 251 // Look through getelementptr 252 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) 253 NoopInput = Op; 254 } else if (isa<IntToPtrInst>(I)) { 255 // Look through inttoptr. 256 // Make sure this isn't a truncating or extending cast. We could 257 // support this eventually, but don't bother for now. 258 if (!isa<VectorType>(I->getType()) && 259 DL.getPointerSizeInBits() == 260 cast<IntegerType>(Op->getType())->getBitWidth()) 261 NoopInput = Op; 262 } else if (isa<PtrToIntInst>(I)) { 263 // Look through ptrtoint. 264 // Make sure this isn't a truncating or extending cast. We could 265 // support this eventually, but don't bother for now. 266 if (!isa<VectorType>(I->getType()) && 267 DL.getPointerSizeInBits() == 268 cast<IntegerType>(I->getType())->getBitWidth()) 269 NoopInput = Op; 270 } else if (isa<TruncInst>(I) && 271 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) { 272 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits()); 273 NoopInput = Op; 274 } else if (isa<CallInst>(I)) { 275 // Look through call (skipping callee) 276 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1; 277 i != e; ++i) { 278 unsigned attrInd = i - I->op_begin() + 1; 279 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 280 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 281 NoopInput = *i; 282 break; 283 } 284 } 285 } else if (isa<InvokeInst>(I)) { 286 // Look through invoke (skipping BB, BB, Callee) 287 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3; 288 i != e; ++i) { 289 unsigned attrInd = i - I->op_begin() + 1; 290 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) && 291 isNoopBitcast((*i)->getType(), I->getType(), TLI)) { 292 NoopInput = *i; 293 break; 294 } 295 } 296 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) { 297 // Value may come from either the aggregate or the scalar 298 ArrayRef<unsigned> InsertLoc = IVI->getIndices(); 299 if (ValLoc.size() >= InsertLoc.size() && 300 std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) { 301 // The type being inserted is a nested sub-type of the aggregate; we 302 // have to remove those initial indices to get the location we're 303 // interested in for the operand. 304 ValLoc.resize(ValLoc.size() - InsertLoc.size()); 305 NoopInput = IVI->getInsertedValueOperand(); 306 } else { 307 // The struct we're inserting into has the value we're interested in, no 308 // change of address. 309 NoopInput = Op; 310 } 311 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) { 312 // The part we're interested in will inevitably be some sub-section of the 313 // previous aggregate. Combine the two paths to obtain the true address of 314 // our element. 315 ArrayRef<unsigned> ExtractLoc = EVI->getIndices(); 316 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend()); 317 NoopInput = Op; 318 } 319 // Terminate if we couldn't find anything to look through. 320 if (!NoopInput) 321 return V; 322 323 V = NoopInput; 324 } 325 } 326 327 /// Return true if this scalar return value only has bits discarded on its path 328 /// from the "tail call" to the "ret". This includes the obvious noop 329 /// instructions handled by getNoopInput above as well as free truncations (or 330 /// extensions prior to the call). 331 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, 332 SmallVectorImpl<unsigned> &RetIndices, 333 SmallVectorImpl<unsigned> &CallIndices, 334 bool AllowDifferingSizes, 335 const TargetLoweringBase &TLI, 336 const DataLayout &DL) { 337 338 // Trace the sub-value needed by the return value as far back up the graph as 339 // possible, in the hope that it will intersect with the value produced by the 340 // call. In the simple case with no "returned" attribute, the hope is actually 341 // that we end up back at the tail call instruction itself. 342 unsigned BitsRequired = UINT_MAX; 343 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL); 344 345 // If this slot in the value returned is undef, it doesn't matter what the 346 // call puts there, it'll be fine. 347 if (isa<UndefValue>(RetVal)) 348 return true; 349 350 // Now do a similar search up through the graph to find where the value 351 // actually returned by the "tail call" comes from. In the simple case without 352 // a "returned" attribute, the search will be blocked immediately and the loop 353 // a Noop. 354 unsigned BitsProvided = UINT_MAX; 355 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL); 356 357 // There's no hope if we can't actually trace them to (the same part of!) the 358 // same value. 359 if (CallVal != RetVal || CallIndices != RetIndices) 360 return false; 361 362 // However, intervening truncates may have made the call non-tail. Make sure 363 // all the bits that are needed by the "ret" have been provided by the "tail 364 // call". FIXME: with sufficiently cunning bit-tracking, we could look through 365 // extensions too. 366 if (BitsProvided < BitsRequired || 367 (!AllowDifferingSizes && BitsProvided != BitsRequired)) 368 return false; 369 370 return true; 371 } 372 373 /// For an aggregate type, determine whether a given index is within bounds or 374 /// not. 375 static bool indexReallyValid(CompositeType *T, unsigned Idx) { 376 if (ArrayType *AT = dyn_cast<ArrayType>(T)) 377 return Idx < AT->getNumElements(); 378 379 return Idx < cast<StructType>(T)->getNumElements(); 380 } 381 382 /// Move the given iterators to the next leaf type in depth first traversal. 383 /// 384 /// Performs a depth-first traversal of the type as specified by its arguments, 385 /// stopping at the next leaf node (which may be a legitimate scalar type or an 386 /// empty struct or array). 387 /// 388 /// @param SubTypes List of the partial components making up the type from 389 /// outermost to innermost non-empty aggregate. The element currently 390 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1). 391 /// 392 /// @param Path Set of extractvalue indices leading from the outermost type 393 /// (SubTypes[0]) to the leaf node currently represented. 394 /// 395 /// @returns true if a new type was found, false otherwise. Calling this 396 /// function again on a finished iterator will repeatedly return 397 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty 398 /// aggregate or a non-aggregate 399 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes, 400 SmallVectorImpl<unsigned> &Path) { 401 // First march back up the tree until we can successfully increment one of the 402 // coordinates in Path. 403 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) { 404 Path.pop_back(); 405 SubTypes.pop_back(); 406 } 407 408 // If we reached the top, then the iterator is done. 409 if (Path.empty()) 410 return false; 411 412 // We know there's *some* valid leaf now, so march back down the tree picking 413 // out the left-most element at each node. 414 ++Path.back(); 415 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back()); 416 while (DeeperType->isAggregateType()) { 417 CompositeType *CT = cast<CompositeType>(DeeperType); 418 if (!indexReallyValid(CT, 0)) 419 return true; 420 421 SubTypes.push_back(CT); 422 Path.push_back(0); 423 424 DeeperType = CT->getTypeAtIndex(0U); 425 } 426 427 return true; 428 } 429 430 /// Find the first non-empty, scalar-like type in Next and setup the iterator 431 /// components. 432 /// 433 /// Assuming Next is an aggregate of some kind, this function will traverse the 434 /// tree from left to right (i.e. depth-first) looking for the first 435 /// non-aggregate type which will play a role in function return. 436 /// 437 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup 438 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first 439 /// i32 in that type. 440 static bool firstRealType(Type *Next, 441 SmallVectorImpl<CompositeType *> &SubTypes, 442 SmallVectorImpl<unsigned> &Path) { 443 // First initialise the iterator components to the first "leaf" node 444 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf 445 // despite nominally being an aggregate). 446 while (Next->isAggregateType() && 447 indexReallyValid(cast<CompositeType>(Next), 0)) { 448 SubTypes.push_back(cast<CompositeType>(Next)); 449 Path.push_back(0); 450 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U); 451 } 452 453 // If there's no Path now, Next was originally scalar already (or empty 454 // leaf). We're done. 455 if (Path.empty()) 456 return true; 457 458 // Otherwise, use normal iteration to keep looking through the tree until we 459 // find a non-aggregate type. 460 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) { 461 if (!advanceToNextLeafType(SubTypes, Path)) 462 return false; 463 } 464 465 return true; 466 } 467 468 /// Set the iterator data-structures to the next non-empty, non-aggregate 469 /// subtype. 470 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes, 471 SmallVectorImpl<unsigned> &Path) { 472 do { 473 if (!advanceToNextLeafType(SubTypes, Path)) 474 return false; 475 476 assert(!Path.empty() && "found a leaf but didn't set the path?"); 477 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()); 478 479 return true; 480 } 481 482 483 /// Test if the given instruction is in a position to be optimized 484 /// with a tail-call. This roughly means that it's in a block with 485 /// a return and there's nothing that needs to be scheduled 486 /// between it and the return. 487 /// 488 /// This function only tests target-independent requirements. 489 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) { 490 const Instruction *I = CS.getInstruction(); 491 const BasicBlock *ExitBB = I->getParent(); 492 const TerminatorInst *Term = ExitBB->getTerminator(); 493 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 494 495 // The block must end in a return statement or unreachable. 496 // 497 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in 498 // an unreachable, for now. The way tailcall optimization is currently 499 // implemented means it will add an epilogue followed by a jump. That is 500 // not profitable. Also, if the callee is a special function (e.g. 501 // longjmp on x86), it can end up causing miscompilation that has not 502 // been fully understood. 503 if (!Ret && 504 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term))) 505 return false; 506 507 // If I will have a chain, make sure no other instruction that will have a 508 // chain interposes between I and the return. 509 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 510 !isSafeToSpeculativelyExecute(I)) 511 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) { 512 if (&*BBI == I) 513 break; 514 // Debug info intrinsics do not get in the way of tail call optimization. 515 if (isa<DbgInfoIntrinsic>(BBI)) 516 continue; 517 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 518 !isSafeToSpeculativelyExecute(BBI)) 519 return false; 520 } 521 522 const Function *F = ExitBB->getParent(); 523 return returnTypeIsEligibleForTailCall( 524 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering()); 525 } 526 527 bool llvm::returnTypeIsEligibleForTailCall(const Function *F, 528 const Instruction *I, 529 const ReturnInst *Ret, 530 const TargetLoweringBase &TLI) { 531 // If the block ends with a void return or unreachable, it doesn't matter 532 // what the call's return type is. 533 if (!Ret || Ret->getNumOperands() == 0) return true; 534 535 // If the return value is undef, it doesn't matter what the call's 536 // return type is. 537 if (isa<UndefValue>(Ret->getOperand(0))) return true; 538 539 // Make sure the attributes attached to each return are compatible. 540 AttrBuilder CallerAttrs(F->getAttributes(), 541 AttributeSet::ReturnIndex); 542 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(), 543 AttributeSet::ReturnIndex); 544 545 // Noalias is completely benign as far as calling convention goes, it 546 // shouldn't affect whether the call is a tail call. 547 CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias); 548 CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias); 549 550 bool AllowDifferingSizes = true; 551 if (CallerAttrs.contains(Attribute::ZExt)) { 552 if (!CalleeAttrs.contains(Attribute::ZExt)) 553 return false; 554 555 AllowDifferingSizes = false; 556 CallerAttrs.removeAttribute(Attribute::ZExt); 557 CalleeAttrs.removeAttribute(Attribute::ZExt); 558 } else if (CallerAttrs.contains(Attribute::SExt)) { 559 if (!CalleeAttrs.contains(Attribute::SExt)) 560 return false; 561 562 AllowDifferingSizes = false; 563 CallerAttrs.removeAttribute(Attribute::SExt); 564 CalleeAttrs.removeAttribute(Attribute::SExt); 565 } 566 567 // If they're still different, there's some facet we don't understand 568 // (currently only "inreg", but in future who knows). It may be OK but the 569 // only safe option is to reject the tail call. 570 if (CallerAttrs != CalleeAttrs) 571 return false; 572 573 const Value *RetVal = Ret->getOperand(0), *CallVal = I; 574 SmallVector<unsigned, 4> RetPath, CallPath; 575 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes; 576 577 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath); 578 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath); 579 580 // Nothing's actually returned, it doesn't matter what the callee put there 581 // it's a valid tail call. 582 if (RetEmpty) 583 return true; 584 585 // Iterate pairwise through each of the value types making up the tail call 586 // and the corresponding return. For each one we want to know whether it's 587 // essentially going directly from the tail call to the ret, via operations 588 // that end up not generating any code. 589 // 590 // We allow a certain amount of covariance here. For example it's permitted 591 // for the tail call to define more bits than the ret actually cares about 592 // (e.g. via a truncate). 593 do { 594 if (CallEmpty) { 595 // We've exhausted the values produced by the tail call instruction, the 596 // rest are essentially undef. The type doesn't really matter, but we need 597 // *something*. 598 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back()); 599 CallVal = UndefValue::get(SlotType); 600 } 601 602 // The manipulations performed when we're looking through an insertvalue or 603 // an extractvalue would happen at the front of the RetPath list, so since 604 // we have to copy it anyway it's more efficient to create a reversed copy. 605 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend()); 606 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend()); 607 608 // Finally, we can check whether the value produced by the tail call at this 609 // index is compatible with the value we return. 610 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath, 611 AllowDifferingSizes, TLI, 612 F->getParent()->getDataLayout())) 613 return false; 614 615 CallEmpty = !nextRealType(CallSubTypes, CallPath); 616 } while(nextRealType(RetSubTypes, RetPath)); 617 618 return true; 619 } 620 621 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) { 622 if (!GV->hasLinkOnceODRLinkage()) 623 return false; 624 625 if (GV->hasUnnamedAddr()) 626 return true; 627 628 // If it is a non constant variable, it needs to be uniqued across shared 629 // objects. 630 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 631 if (!Var->isConstant()) 632 return false; 633 } 634 635 // An alias can point to a variable. We could try to resolve the alias to 636 // decide, but for now just don't hide them. 637 if (isa<GlobalAlias>(GV)) 638 return false; 639 640 GlobalStatus GS; 641 if (GlobalStatus::analyzeGlobal(GV, GS)) 642 return false; 643 644 return !GS.IsCompared; 645 } 646